JP2013079789A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013079789A
JP2013079789A JP2011221245A JP2011221245A JP2013079789A JP 2013079789 A JP2013079789 A JP 2013079789A JP 2011221245 A JP2011221245 A JP 2011221245A JP 2011221245 A JP2011221245 A JP 2011221245A JP 2013079789 A JP2013079789 A JP 2013079789A
Authority
JP
Japan
Prior art keywords
wall
heat
refrigerator
conductive sheet
temperature refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011221245A
Other languages
Japanese (ja)
Inventor
Kenji Takeuchi
研二 竹内
Junji Yoshida
淳二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung Yokohama Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Yokohama Research Institute filed Critical Samsung Yokohama Research Institute
Priority to JP2011221245A priority Critical patent/JP2013079789A/en
Publication of JP2013079789A publication Critical patent/JP2013079789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of preventing dew condensation by supplying sufficient heat without directly disposing a heat source such as a high temperature refrigerant tube at a place where the dew condensation frequently occurs at an external wall, while vacuum insulation material or the like need not to be molded into a special shape so as to dispose a dew condensation preventing structure even if a refrigerator housing is thinned and thereby the vacuum insulation material or the like is disposed in an inner space.SOLUTION: The refrigerator includes: the refrigerator housing 1 having the external wall 11 contacting external air, and an internal wall 12 defining an internal space 14; and a thermally-conductive seat 3 which is disposed inside a housing internal space 13 formed between the external wall 11 and the internal wall 12, at least one end of which is attached to be adjacent to the heat source 2 or contact therewith, and the other end of which extends to the vicinity of a dew condensation prevention region of the external wall 11.

Description

本発明は、冷蔵庫筺体の外壁に結露が発生するのを防止するための結露防止構造を有した冷蔵庫に関するものである。   The present invention relates to a refrigerator having a dew condensation prevention structure for preventing dew condensation from occurring on an outer wall of a refrigerator housing.

近年、同じ体積の冷蔵庫でさらに多くのものを収容できるように冷蔵庫の容積率を大きくすることが求められている。このような容積率の向上のためには、外気と接する外壁と庫内空間を形成する内壁とからなる冷蔵庫筐体の厚みを薄くする必要がある。そして、前記冷蔵庫筐体の厚みを薄くする場合、庫内空間からの冷気が筐体を介して外部へと逃げにくくするために前記外壁と前記内壁との間の筐体内部空間内に真空断熱材が設けられる。   In recent years, it has been required to increase the volume ratio of the refrigerator so that more refrigerators of the same volume can be accommodated. In order to improve such a volume ratio, it is necessary to reduce the thickness of the refrigerator casing composed of an outer wall in contact with the outside air and an inner wall that forms the interior space. And when reducing the thickness of the refrigerator casing, in order to make it difficult for the cold air from the interior space to escape to the outside through the casing, vacuum insulation is provided in the casing inner space between the outer wall and the inner wall. Materials are provided.

ところで、前記冷蔵庫筐体の筐体内部空間内にウレタン等の断熱部材を充填したとしても、庫内空間内の冷気が逃げることにより前記外壁が冷やされてしまうことを完全に防ぎ、外気と接する外壁表面に結露が生じるのを防ぐことは難しい。そこで、従来から高温冷媒の流れる高温冷媒管を前記断熱部材の中に埋め込み、例えば冷蔵庫側面の全面に亘って高温冷媒管を行き渡らせて、前記外壁の近傍で放熱を行わせることで、外壁表面での結露を防ぐようにしている(特許文献1参照)。   By the way, even if the inside space of the refrigerator case is filled with a heat insulating member such as urethane, the outer wall is completely prevented from being cooled by escape of the cold air in the internal space, and is in contact with the outside air. It is difficult to prevent condensation on the outer wall surface. Therefore, conventionally, a high-temperature refrigerant pipe through which high-temperature refrigerant flows is embedded in the heat insulating member, for example, the high-temperature refrigerant pipe is spread over the entire side surface of the refrigerator, and heat is dissipated in the vicinity of the outer wall. Condensation is prevented (see Patent Document 1).

しかしながら、冷蔵庫筐体を薄肉化し、前記真空断熱材を用いた冷蔵庫の場合、従来のように高温冷媒管を外壁の全体に沿って行き渡らせることで、結露防止構造を形成することは難しい。より具体的に説明すると、従来のように真空断熱材を用いずにウレタン等の断熱部材のみを用いている場合であれば高温冷媒管を断熱部材内に埋め込むことは容易であるものの、前述したような真空断熱材の場合、予め高温冷媒管を通すための溝等をその表面に形成しておく必要がある。すると、真空断熱材を直方体形状等といった単純形状ではなく、高温冷媒管を通すための溝を有した複雑形状で形成しなくてはならなくなるため、製造費用が上昇してしまう。   However, it is difficult to form a dew condensation prevention structure by reducing the thickness of the refrigerator case and using the vacuum heat insulating material to spread the high-temperature refrigerant pipe along the entire outer wall as in the past. More specifically, although it is easy to embed the high-temperature refrigerant pipe in the heat insulating member if only a heat insulating member such as urethane is used without using a vacuum heat insulating material as in the past, the above-mentioned In the case of such a vacuum heat insulating material, a groove or the like for passing a high-temperature refrigerant pipe needs to be formed on the surface in advance. Then, since the vacuum heat insulating material must be formed in a complicated shape having a groove for passing a high-temperature refrigerant pipe instead of a simple shape such as a rectangular parallelepiped shape, the manufacturing cost increases.

さらに、真空断熱材に高温冷媒管を通すための溝が形成されていると、その分、断熱性が悪化したり、生産性が低下したりするといった問題が生じてしまう。加えて、真空断熱材の厚みを高温冷媒管の径以上にしなくてはならないといった制約条件が生じるため、容積率を向上させるために冷蔵庫筐体を薄肉化したいという要求とも矛盾が生じてしまう。かといって、真空断熱材を入れないところだけに高温冷媒管を行き渡らせても、前記高温冷媒管から離れた場所には十分な熱が供給されず、外壁表面への結露を防止することができなくなってしまう。   Furthermore, when the groove | channel for letting a high-temperature refrigerant pipe pass is formed in a vacuum heat insulating material, the problem that heat insulation deteriorates and productivity will fall correspondingly. In addition, there is a constraint that the thickness of the vacuum heat insulating material must be equal to or greater than the diameter of the high-temperature refrigerant pipe, which contradicts the demand for thinning the refrigerator housing in order to improve the volume ratio. However, even if the high-temperature refrigerant pipe is spread only where the vacuum insulation material is not inserted, sufficient heat is not supplied to the place away from the high-temperature refrigerant pipe, and condensation on the outer wall surface can be prevented. It becomes impossible.

特開2000−018796号公報JP 2000-018796 A

そこで、本発明は上述したような問題を鑑みてなされたものであり、高温冷媒管等の熱源を外壁の結露が発生しやすい場所に直接設けなくても、十分な熱を供給して結露を防止することができるとともに、冷蔵庫筐体が薄肉化され真空断熱材等が内部空間内に設けられていても、結露防止構造を設けるために真空断熱材等を特殊な形状に成型しなくてもよい冷蔵庫を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems. Even if a heat source such as a high-temperature refrigerant pipe is not directly provided in a place where condensation on the outer wall is likely to occur, sufficient heat is supplied to cause condensation. Even if the refrigerator casing is thinned and vacuum insulation is provided in the interior space, it is not necessary to mold the vacuum insulation into a special shape in order to provide a dew condensation prevention structure. The purpose is to provide a good refrigerator.

すなわち、本発明の冷蔵庫は、外部空気と接触する外壁と、庫内空間を形成する内壁とを具備する冷蔵庫筐体と、前記外壁と前記内壁との間に形成される筐体内部空間内に設けられるものであり、少なくとも一端が熱源に近接又は接触させて取り付けられ、他端側が前記外壁の結露防止領域近傍へと延びる熱伝導性シートと、を備えたことを特徴とする。   That is, the refrigerator of the present invention is provided in a refrigerator housing having an outer wall that comes into contact with external air, an inner wall that forms an interior space, and an inner space of the housing that is formed between the outer wall and the inner wall. And a heat conductive sheet attached at least one end close to or in contact with a heat source and the other end extending to the vicinity of the dew condensation prevention region of the outer wall.

このようなものであれば、前記外壁の結露防止領域から離れた場所にしか前記熱源を設けられなかったとしても、前記熱伝導性シートにより熱源から結露防止領域に対して結露を防止するのに十分な量の熱を供給することができる。しかも、前記熱伝導性シートはシート状であるので、筐体内部空間においてほとんど設置するためのスペースを必要とせず、例えば、筐体内部空間内に真空断熱材を設ける場合でも真空断熱材の表面に設置するための溝等を形成する必要が無い。   In such a case, even if the heat source can be provided only at a location away from the dew condensation prevention region of the outer wall, the heat conductive sheet prevents condensation from the heat source to the dew condensation prevention region. A sufficient amount of heat can be supplied. Moreover, since the heat conductive sheet is in the form of a sheet, it hardly requires a space for installation in the internal space of the housing. For example, even when a vacuum heat insulating material is provided in the internal space of the housing, the surface of the vacuum heat insulating material There is no need to form a groove or the like for installation.

言い換えると、熱伝導性シートを用いているので、前記外壁の結露防止領域の近傍に前記熱源を直接設ける必要が無いので、真空断熱材の表面に熱源を通すための溝等を形成する必要が無い。従って、真空断熱材を例えば単純な直方体形状等で形成することができ、製造コストの上昇や、断熱性、生産性の悪化と言った問題が生じないようにすることができる。   In other words, since a heat conductive sheet is used, it is not necessary to directly provide the heat source in the vicinity of the dew condensation prevention region of the outer wall, so it is necessary to form a groove or the like for passing the heat source on the surface of the vacuum heat insulating material. No. Therefore, the vacuum heat insulating material can be formed, for example, in a simple rectangular parallelepiped shape, and problems such as an increase in manufacturing cost, a heat insulating property, and a decrease in productivity can be prevented.

これらのことから本発明の冷蔵庫によれば、容積率の向上のために冷蔵庫筐体を薄肉化しつつ、結露防止構造を形成したとしても、例えば真空断熱材等の形状の複雑化を招くことがなく、生産性の優れたものにすることが可能となる。   From these facts, according to the refrigerator of the present invention, even if the dew condensation prevention structure is formed while thinning the refrigerator housing to improve the volume ratio, the shape of the vacuum heat insulating material or the like may be complicated. Therefore, it is possible to make the product excellent in productivity.

ヒータ等の熱源を別途設けることによる製造コストの増加を防ぐとともに、冷蔵庫のコンデンサの放熱効率を向上させることができるようにするには、前記熱源が、圧縮機から吐出される高温冷媒の流れる高温冷媒管あり、前記熱伝導性シートの一端が当該高温冷媒管に巻き回されているものであればよい。このようなものであれば、単に放熱するしかない高温冷媒の熱を結露防止で有効利用することができるとともに、冷凍サイクルとしての効率も向上させることができる。   In order to prevent an increase in manufacturing cost due to the provision of a separate heat source such as a heater and to improve the heat dissipation efficiency of the refrigerator condenser, the heat source has a high temperature through which the high-temperature refrigerant discharged from the compressor flows. Any refrigerant pipe may be used as long as one end of the thermally conductive sheet is wound around the high-temperature refrigerant pipe. If it is such, while being able to use effectively the heat | fever of the high-temperature refrigerant | coolant which can only dissipate heat | fever by prevention of dew condensation, the efficiency as a refrigerating cycle can also be improved.

前記外壁における結露をより防止しやすくするとともに、庫内空間の冷気が冷蔵庫筐体を介して外部へと逃げるのを防止するには、前記筐体内部空間内に真空断熱材が設けられており、前記外壁と前記真空断熱材との間に前記熱伝導性シートが設けられているものであればよい。このような配置であれば、熱伝導性シートからの熱が真空断熱材により遮られることなく、前記外壁へと伝熱させることができ、効率よく結露を防止することができる。   In order to make it easier to prevent dew condensation on the outer wall and to prevent the cool air in the storage space from escaping to the outside through the refrigerator casing, a vacuum heat insulating material is provided in the casing inner space. The thermal conductive sheet may be provided between the outer wall and the vacuum heat insulating material. With such an arrangement, heat from the heat conductive sheet can be transferred to the outer wall without being blocked by the vacuum heat insulating material, and condensation can be efficiently prevented.

前記熱源の近傍から当該熱源から離れた箇所まで均一に熱を行き渡らせて、外壁の広範囲にわたって結露を防止できるようにするには、前記熱伝導性シートの前記外壁面への熱伝導度が一端側よりも他端側のほうが高くなるように設定されていればよい。   In order to distribute heat uniformly from the vicinity of the heat source to a place away from the heat source and prevent condensation over a wide area of the outer wall, the thermal conductivity of the heat conductive sheet to the outer wall surface is one end. It is sufficient that the other end side is set higher than the other side.

熱源近傍における熱伝導性シートから外壁への熱伝導量を小さくするとともに、他端側からの熱伝導量を大きくするには、前記熱伝導性シートの一端側よりも他端側のほうが前記外壁に近接させて設けられていればよい。   In order to reduce the heat conduction amount from the heat conductive sheet to the outer wall in the vicinity of the heat source and increase the heat conduction amount from the other end side, the outer wall is located on the other end side rather than the one end side of the heat conductive sheet. As long as it is provided close to.

熱源近傍において熱伝導性シートから大部分の熱が外壁へと熱伝導してしまい、他端側へ十分な量の熱が供給されない事態を防ぎ、熱源から離れている結露防止領域においても結露を外壁表面に発生しにくくするためには、前記外壁と前記熱伝導性シートとの間において、少なくとも前記熱源の近傍に断熱性部材が更に設けられていればよい。   In the vicinity of the heat source, most of the heat from the heat conductive sheet is conducted to the outer wall, preventing a situation where a sufficient amount of heat is not supplied to the other end, and condensation is also prevented in the dew condensation prevention area away from the heat source. In order to make it hard to generate | occur | produce on the outer wall surface, the heat insulating member should just be further provided in the vicinity of the said heat source at least between the said outer wall and the said heat conductive sheet.

熱伝導性シートの一端側から他端側へと均一に熱伝導させるための具体的な構成の一例としては、前記熱伝導性シートが複数層から形成されるものであり、前記外壁に近接する層の数が一端側よりも他端側の方が多くなるように配置してあるものが挙げられる。   As an example of a specific configuration for uniformly conducting heat from one end side to the other end side of the thermally conductive sheet, the thermally conductive sheet is formed of a plurality of layers and is close to the outer wall. The number of layers is arranged so that the other end side is larger than the one end side.

このように本発明の冷蔵庫によれば、熱伝導性シートにより熱源から離れた場所にある結露防止領域に対しても供給する事が可能となる。さらに、熱結露防止領域の近傍に熱源を直接設ける必要が無く、熱伝導性シートを用いているので狭い空間でも容易に設けることができる。このため、例えば冷蔵庫筐体の内部空間内に設けられる真空断熱材等を熱源や熱伝導性シートの配置ために特殊形状で成形する必要が無い。従って、冷蔵庫筐体の薄肉化により容積率を向上させつつ、外壁への結露防止構造を設けても大幅な製造コストの上昇や、断熱性、生産性の悪化を生じさせることがない。   Thus, according to the refrigerator of this invention, it becomes possible to supply also to the dew condensation prevention area | region in the place away from the heat source with the heat conductive sheet. Furthermore, it is not necessary to directly provide a heat source in the vicinity of the heat condensation prevention region, and since a heat conductive sheet is used, it can be easily provided even in a narrow space. For this reason, for example, it is not necessary to form a vacuum heat insulating material or the like provided in the internal space of the refrigerator housing in a special shape in order to arrange a heat source or a heat conductive sheet. Therefore, even if a dew condensation prevention structure is provided on the outer wall while improving the volume ratio by reducing the thickness of the refrigerator casing, a significant increase in manufacturing cost, heat insulation, and productivity are not caused.

本発明の第1実施形態に係る冷蔵庫を示す模式的斜視図。The typical perspective view showing the refrigerator concerning a 1st embodiment of the present invention. 第1実施形態の冷蔵庫の模式的横断面図。The typical cross-sectional view of the refrigerator of 1st Embodiment. 本発明の第2実施形態に係る冷蔵庫の模式的横断面図。The typical cross-sectional view of the refrigerator which concerns on 2nd Embodiment of this invention. 第1実施形態と第2実施形態の結露防止構造の模式的比較図。The typical comparison figure of the dew condensation prevention structure of 1st Embodiment and 2nd Embodiment. 第1実施形態と第2実施形態の結露防止構造による熱伝導量の比較グラフ。The comparison graph of the heat conduction amount by the dew condensation prevention structure of 1st Embodiment and 2nd Embodiment. 本発明の第3実施形態に係る冷蔵庫の模式的横断面図。The typical cross-sectional view of the refrigerator which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る冷蔵庫の模式的横断面図。The typical cross-sectional view of the refrigerator which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る冷蔵庫の模式的横断面図。The typical cross-sectional view of the refrigerator which concerns on 5th Embodiment of this invention.

本発明の第1実施形態について図面を参照しながら説明する。   A first embodiment of the present invention will be described with reference to the drawings.

図1及び水平方向の断面図である図2に示す第1実施形態の冷蔵庫200は、概略直方体形状の冷蔵庫筐体1を有するものであり、その外壁11に結露が発生するのを防止するための結露防止機構100を備えたものである。また、この冷蔵庫200には、上段に冷蔵室、中段に冷凍室、下段に野菜室を設けてある。   The refrigerator 200 of the first embodiment shown in FIG. 1 and FIG. 2 which is a horizontal cross-sectional view has a refrigerator housing 1 having a substantially rectangular parallelepiped shape, and prevents condensation on the outer wall 11 thereof. The dew condensation prevention mechanism 100 is provided. The refrigerator 200 is provided with a refrigeration room in the upper stage, a freezing room in the middle stage, and a vegetable room in the lower stage.

前記冷蔵庫筐体1は、前面を構成するドア、又は引き出し口等からなる取り出し部1Bと、上面、底面、側面を構成する本体部1Aと、から構成してある。各部は、外部空気と接触する外壁11と、庫内空間14を形成し、当該庫内空間14内の空気と接触する内壁12とを具備するものである。そして、前記冷蔵庫筐体1は、外壁11と内壁12との間に筐体内部空間13が形成してあり、この筐体内部空間13内には高温冷媒の流れる高温冷媒管2や、庫内空間14内から外部へと冷気が逃げるのを防止するための真空断熱材4やウレタン等からなる充填材が収容してある。なお、図1に示すように真空断熱材4は、概略平板状のものであり、少なくとも冷蔵室の下部側面部及び冷凍室の側面に設けてある。   The refrigerator housing 1 is composed of a take-out portion 1B composed of a door or a drawer opening constituting the front surface, and a main body portion 1A constituting a top surface, a bottom surface and side surfaces. Each part includes an outer wall 11 that comes into contact with external air and an inner wall 12 that forms an internal space 14 and comes into contact with the air in the internal space 14. The refrigerator housing 1 has a housing internal space 13 formed between the outer wall 11 and the inner wall 12, and the housing internal space 13 has a high-temperature refrigerant pipe 2 through which high-temperature refrigerant flows, A vacuum insulating material 4 and a filler made of urethane or the like for preventing cold air from escaping from the space 14 to the outside are accommodated. In addition, as shown in FIG. 1, the vacuum heat insulating material 4 is a substantially flat thing, and is provided in the lower side part of the refrigerator compartment, and the side surface of the freezer compartment.

第1実施形態では、図1及び水平方向の断面図である図2に示すように前記冷蔵庫筐体1の側面における筐体内部空間13内に結露防止機構100を設けてあるものである。前記結露防止機構100は、前記側面視において、概略コの字状をなすように前記筐体内部空間13内に配設された高温冷媒管2と、前記高温冷媒管2に一端を接触させて取り付けられた熱伝導性シート3とから構成してある。なお、図2は分かりやすさのために、実際の冷蔵庫筐体1の厚み等をデフォルメして記載してあり、図1の縮尺とは事ならせてある。   In the first embodiment, as shown in FIG. 1 and FIG. 2 which is a cross-sectional view in the horizontal direction, a dew condensation prevention mechanism 100 is provided in the housing internal space 13 on the side surface of the refrigerator housing 1. The dew condensation prevention mechanism 100 has one end in contact with the high-temperature refrigerant pipe 2 and the high-temperature refrigerant pipe 2 disposed in the housing internal space 13 so as to form a substantially U shape in the side view. It is comprised from the heat conductive sheet 3 attached. Note that FIG. 2 shows the actual thickness of the refrigerator housing 1 in a deformed form for the sake of easy understanding, and is different from the scale of FIG.

前記高温冷媒管2は、冷蔵庫200の背面に設けられた圧縮機(図示しない)から吐出される高温冷媒の通る配管であり、図1に示すように前記冷蔵庫筐体1内を背面側から前面側へと概略水平方向に延びた後、側面の前面側において上下方向に延び、その後前面側から背面側へと水平方向に延びるように配置してある。すなわち、前記高温冷媒管2は、冷蔵庫筐体1のある一面において略外縁部を通るように設けてある。言い換えると、熱源である高温冷媒管2は、側面における結露防止領域から離間した場所であるとともに、他の真空断熱材4等の前記筐体内部空間13内に設けられる部材と干渉しないように面板方向に対して所定距離離間させた位置を通るように設けてある。また、図2の断面図に示すように高温冷媒管2の上下方向に延びる部分に関しては、前記本体部1Aにおいて前記取り出し部1Bと近接する部分であり、前記本体部1Aと前記取り出し部1Bとを密閉させるためのガスケットGの近傍に設けてある。   The high-temperature refrigerant pipe 2 is a pipe through which a high-temperature refrigerant discharged from a compressor (not shown) provided on the back surface of the refrigerator 200. As shown in FIG. After extending in the horizontal direction to the side, it extends in the vertical direction on the front side of the side surface, and then extends in the horizontal direction from the front side to the back side. That is, the high-temperature refrigerant pipe 2 is provided so as to pass through a substantially outer edge portion on one surface of the refrigerator housing 1. In other words, the high-temperature refrigerant pipe 2 as a heat source is a place away from the dew condensation prevention region on the side surface, and the face plate so as not to interfere with other members provided in the housing internal space 13 such as the vacuum heat insulating material 4 or the like. It is provided so as to pass through a position separated by a predetermined distance with respect to the direction. Further, as shown in the cross-sectional view of FIG. 2, the portion extending in the vertical direction of the high-temperature refrigerant pipe 2 is a portion adjacent to the take-out portion 1B in the main body portion 1A, and the main body portion 1A and the take-out portion 1B Is provided in the vicinity of the gasket G for sealing.

前記熱伝導性シート3は、例えばグラファイトシートであり、前記高温冷媒管2において前面側を上下方向に延びる部分に一端を巻き回されて取り付けられており、他端側が前記外壁11の結露防止領域近傍へと延びるように設けてある。言い換えると、前記熱伝導性シート3は、一端が取り付けられている前記高温冷媒管2に対して他端が反高温冷媒管3側へと延びるように配置してある。この第1実施形態では、結露防止領域は、前記冷蔵庫筐体1の側面中央部から背面側にかけての領域を対象としている。そして、前記熱伝導性シート3は、図2の断面図に示すように断面視において内壁12、真空断熱材4、熱伝導性シート3、外壁11の順となるように前記真空断熱材4と前記外壁11との間に設けてあるとともに、前記外壁11と略平行に外壁11の内側面に沿って設けてある。また、各部材はウレタン等の充填材によりその設置場所を固定してある。加えて、前記熱伝導性シート3は屈曲性を有するシート状のものであり、前記真空断熱材4と比較してその厚みを薄く形成してある。   The heat conductive sheet 3 is, for example, a graphite sheet, and is attached with one end wound around a portion extending in the vertical direction on the front surface side in the high temperature refrigerant tube 2, and the other end side is a dew condensation prevention region of the outer wall 11. It is provided so as to extend to the vicinity. In other words, the heat conductive sheet 3 is arranged such that the other end extends toward the anti-high temperature refrigerant tube 3 side with respect to the high temperature refrigerant tube 2 to which one end is attached. In this 1st Embodiment, the dew condensation prevention area | region is objected to the area | region from the side surface center part of the said refrigerator housing | casing 1 to the back side. And as shown in sectional drawing of FIG. 2, the said heat conductive sheet 3 is the said vacuum heat insulating material 4 so that it may become the order of the inner wall 12, the vacuum heat insulating material 4, the heat conductive sheet 3, and the outer wall 11 in a cross sectional view. It is provided between the outer wall 11 and along the inner surface of the outer wall 11 substantially parallel to the outer wall 11. Each member has its installation location fixed by a filler such as urethane. In addition, the heat conductive sheet 3 is a sheet having flexibility, and is formed thinner than the vacuum heat insulating material 4.

このように構成された第1実施形態の冷蔵庫200によれば、熱源である高温冷媒管2からの熱を熱伝導性シート3により熱源から離間した場所にある結露防止領域にも熱伝導させることができる。より具体的には、図2の矢印の長さで示すように高温冷媒管2の近傍で最も熱を外壁11に供給でき、他端側に進むほど外壁11に与える熱量は小さくなりつつ側面の背面側の領域まで熱を送り届けることができる。このように熱分配が外壁11に対してなされるので、例えば、結露が生じやすい側面の前面側に対して重点的に結露防止を行いつつ、その他の側面全体においても結露防止効果を持たせることができる。   According to the refrigerator 200 of the first embodiment configured as described above, the heat from the high-temperature refrigerant pipe 2 that is a heat source is also conducted to the dew condensation prevention region in a place separated from the heat source by the heat conductive sheet 3. Can do. More specifically, as shown by the length of the arrow in FIG. 2, heat can be supplied most to the outer wall 11 in the vicinity of the high-temperature refrigerant pipe 2, and the amount of heat given to the outer wall 11 decreases as it goes to the other end side. Heat can be delivered to the area on the back side. Since heat is distributed to the outer wall 11 in this way, for example, condensation prevention is focused on the front side of the side where condensation easily occurs, and the other side as a whole has a condensation prevention effect. Can do.

さらに、前記熱伝導性シート3を用いて熱源から離間した場所にある結露防止領域にも十分な熱を供給することができるので、従来のように熱源である高温冷媒管2を側面の中央部等の結露防止領域に直接設ける必要が無い。つまり、前記高温冷媒管2を側面において外縁部を通るようにのみ通し、側面の中央部等、真空断熱材4の配置される場所を迂回して配置することができるので、前記冷蔵庫筐体1を薄肉化し、前記真空断熱材4を前記筐体内部空間13に設ける場合でも、前記高温冷媒管2と前記真空断熱材4を厚さ方向に重ねて配置しなくてもよい。従って、前記真空断熱材4に前記高温冷媒管2を通すための溝等を別途形成する必要が無く、当該真空断熱材4を複雑形状に形成する必要が無い。つまり、前記冷蔵庫筐体1を薄肉化し、容積率を向上させる場合において、結露防止機構100を採用しても真空断熱材4を図示しているような直方体形状のような単純形状で成形して用いることができ、製造コストの上昇を招くことがない。加えて、真空断熱材4が単純形状であることから、生産性や断熱性を損なうこともない。   Furthermore, since sufficient heat can be supplied to the dew condensation prevention region located away from the heat source using the heat conductive sheet 3, the high-temperature refrigerant pipe 2 as the heat source is connected to the central portion of the side surface as in the prior art. There is no need to provide it directly in the condensation prevention area. That is, since the high-temperature refrigerant pipe 2 can be passed only through the outer edge portion on the side surface and can be disposed around the place where the vacuum heat insulating material 4 is disposed, such as the center portion of the side surface, the refrigerator casing 1 Even when the vacuum heat insulating material 4 is provided in the housing internal space 13, the high temperature refrigerant pipe 2 and the vacuum heat insulating material 4 do not have to be stacked in the thickness direction. Therefore, it is not necessary to separately form a groove or the like for passing the high-temperature refrigerant pipe 2 in the vacuum heat insulating material 4, and it is not necessary to form the vacuum heat insulating material 4 in a complicated shape. That is, when the refrigerator casing 1 is thinned and the volume ratio is improved, the vacuum heat insulating material 4 is molded in a simple shape such as a rectangular parallelepiped shape as illustrated even if the dew condensation prevention mechanism 100 is employed. It can be used and does not cause an increase in manufacturing cost. In addition, since the vacuum heat insulating material 4 has a simple shape, productivity and heat insulating properties are not impaired.

また、前記結露防止機構100は別途ヒータを設けるのではなく、冷蔵庫200に具備されている高温冷媒管2の熱を利用して結露を防止でき、高温冷媒管2における冷媒の放熱により冷凍サイクルとしての効率も向上させることができる。つまり、結露防止とともに消費エネルギの低減を実現することもできる。   In addition, the dew condensation prevention mechanism 100 does not provide a separate heater, but can prevent dew condensation by using the heat of the high temperature refrigerant pipe 2 provided in the refrigerator 200, and the refrigeration cycle is achieved by the heat radiation of the refrigerant in the high temperature refrigerant pipe 2. Efficiency can also be improved. In other words, it is possible to realize a reduction in energy consumption as well as prevention of condensation.

次に第2実施形態の冷蔵庫200について説明する。以下の各実施形態では第1実施形態の冷蔵庫200に対応する部材には同じ符号を付すこととする。   Next, the refrigerator 200 of 2nd Embodiment is demonstrated. In the following embodiments, members corresponding to the refrigerator 200 of the first embodiment are denoted by the same reference numerals.

第2実施形態の冷蔵庫200では、図3の断面図に示すように第1実施形態の結露防止機構100が、外壁11と熱伝導性シート3との間に断熱性部材5をさらに設けてある。前記断熱性部材5は、ウレタン等で形成された概略平板状のものであり、前記真空断熱材4よりも断熱性の低く、所定量の熱は外壁11に対して熱伝導させるものである。そして、図3に示すように熱源である高温冷媒管2の近傍から熱伝導性シート3の他端側へと延び、その途中までの長さ寸法となるように設定してある。また、前記熱伝導性シート3の他端側で前記断熱性部材5よりも長い部分に関しては、前記外壁11に接するようにしてある。   In the refrigerator 200 of the second embodiment, as shown in the sectional view of FIG. 3, the dew condensation prevention mechanism 100 of the first embodiment further includes a heat insulating member 5 between the outer wall 11 and the heat conductive sheet 3. . The heat insulating member 5 is a substantially flat plate formed of urethane or the like, has a lower heat insulating property than the vacuum heat insulating material 4, and conducts a predetermined amount of heat to the outer wall 11. And as shown in FIG. 3, it is set so that it may extend to the other end side of the heat conductive sheet 3 from the vicinity of the high temperature refrigerant | coolant pipe | tube 2 which is a heat source, and may become the length dimension to the middle. Further, a portion longer than the heat insulating member 5 on the other end side of the heat conductive sheet 3 is in contact with the outer wall 11.

このように構成された第2実施形態の結露防止機構100の効果について第1実施形態の結露防止機構100と比較を行いながら説明する。図4には、図2及び図3の想像線で囲われた部分の拡大図とその熱伝導量を模式的に示す矢印とを示したものである。第1実施形態の場合、熱源である高温冷媒管2の近傍に大量の熱が前記外壁11へと熱伝導してしまうため、熱伝導性シート3の他端側から熱伝導される熱量が小さくなっているのに対して、第2実施形態では前記断熱性部材5が前記外壁11と前記熱伝導性シート3との間にあるため、高温冷媒管2近傍で熱伝導する熱量を第1実施形態と比較して小さくすることができる。従って、背面側へと移動する熱量を大きくすることができるため、最終的に熱伝導性シート3の他端へと熱伝導させることのできる熱量を第1実施形態よりも大きくすることができる。   The effect of the dew condensation prevention mechanism 100 of the second embodiment configured as described above will be described while comparing with the dew condensation prevention mechanism 100 of the first embodiment. FIG. 4 shows an enlarged view of a portion surrounded by an imaginary line in FIGS. 2 and 3 and an arrow schematically showing the amount of heat conduction. In the case of the first embodiment, since a large amount of heat is conducted to the outer wall 11 in the vicinity of the high-temperature refrigerant tube 2 that is a heat source, the amount of heat conducted from the other end side of the heat conductive sheet 3 is small. On the other hand, in the second embodiment, since the heat insulating member 5 is located between the outer wall 11 and the heat conductive sheet 3, the amount of heat conducted in the vicinity of the high-temperature refrigerant pipe 2 is set in the first embodiment. It can be made smaller than the form. Therefore, since the amount of heat that moves to the back side can be increased, the amount of heat that can be finally conducted to the other end of the heat conductive sheet 3 can be made larger than that in the first embodiment.

第1実施形態と第2実施形態の結露防止機構100における高温冷媒管2で発生した熱を基準として、どの程度の割合の熱量が、熱伝導性シート3の各地点に到達することができるのかシミュレーションを行ったところ、図5に示すように断熱性部材5を設けた場合、前記熱伝導性シート3の他端において前記外壁11に伝熱させることができる熱量を3.3倍に向上させることができる。従って、ドア側に設けられた高温冷媒管2から背面側に向かって全体をより均一に温めることができ、広い範囲で結露防止の効果を得やすくできる。   What percentage of the amount of heat can reach each point of the heat conductive sheet 3 based on the heat generated in the high-temperature refrigerant pipe 2 in the dew condensation prevention mechanism 100 of the first embodiment and the second embodiment. As a result of the simulation, when the heat insulating member 5 is provided as shown in FIG. 5, the amount of heat that can be transferred to the outer wall 11 at the other end of the heat conductive sheet 3 is increased by 3.3 times. be able to. Therefore, the whole can be warmed more uniformly toward the back side from the high-temperature refrigerant pipe 2 provided on the door side, and the effect of preventing condensation can be easily obtained in a wide range.

次に第3実施形態の冷蔵庫200について説明する。   Next, the refrigerator 200 of 3rd Embodiment is demonstrated.

第2実施形態では断熱性部材5の形状が直方体形状であったのに対して、第3実施形態の結露防止機構100では、前記断熱性部材5が傾斜面を有する概略三角柱形状に形成してある。より具体的には、図6の断面図に示すように前記断熱性部材5の厚みが、高温冷媒管2の近傍において最大となり、前記伝熱性シートの他端側で最小となるように形成してあり、前記伝熱性シートも前記断熱性部材5の傾斜面に沿って設けてある。すなわち、前記伝熱性シートは、一端が最も外壁11面から離間しているとともに、他端側へ進むほど前記外壁11との離間距離が小さくなるように設けてある。   In the second embodiment, the shape of the heat insulating member 5 is a rectangular parallelepiped shape, whereas in the dew condensation prevention mechanism 100 of the third embodiment, the heat insulating member 5 is formed in a substantially triangular prism shape having an inclined surface. is there. More specifically, as shown in the cross-sectional view of FIG. 6, the heat insulating member 5 is formed so that the thickness of the heat insulating member 5 is maximized in the vicinity of the high-temperature refrigerant pipe 2 and minimized on the other end side of the heat transfer sheet. The heat transfer sheet is also provided along the inclined surface of the heat insulating member 5. That is, the heat transfer sheet is provided such that one end is farthest from the surface of the outer wall 11 and the distance from the outer wall 11 becomes smaller as it goes to the other end.

このように構成することで、前記高温冷媒管2からの離間距離による熱伝導性シート3から外壁11面への熱伝導量をさらに均一にすることができ、側面全体に対する結露防止効果をより得やすくなる。   With this configuration, the amount of heat conduction from the heat conductive sheet 3 to the surface of the outer wall 11 due to the separation distance from the high-temperature refrigerant pipe 2 can be made more uniform, and the effect of preventing condensation on the entire side surface can be further obtained. It becomes easy.

次に第4実施形態の冷蔵庫200について説明する。   Next, the refrigerator 200 of 4th Embodiment is demonstrated.

第4実施形態の結露防止機構100は、図7の断面図に示すように前記熱伝導性シート3が複数層から形成してあるものであり、前記外壁11に近接する層の数が一端側よりも他端側の方が多くなるように配置してある。   In the dew condensation prevention mechanism 100 of the fourth embodiment, as shown in the sectional view of FIG. 7, the heat conductive sheet 3 is formed of a plurality of layers, and the number of layers adjacent to the outer wall 11 is one end side. It arrange | positions so that the other end side may increase rather than.

より具体的には、前記断熱性部材5が3つに分割して、前面側から背面側へと並べて筐体内空間に設けてあり、各隙間に熱伝導性部材を一枚ずつ通していくことで、他端側へ行くほど熱伝導性シート3の層の数が増えるようにしてある。   More specifically, the heat insulating member 5 is divided into three parts, arranged from the front side to the back side and provided in the space in the housing, and the heat conductive member is passed through each gap one by one. Thus, the number of layers of the heat conductive sheet 3 is increased toward the other end side.

このように構成しても層の数が少ない高温冷媒管2近傍での外壁11への熱伝導量を抑えるとともに、他端側への熱伝導量を大きくすることができる。従って、側面全体について均一に熱を供給することができ、側面全体での結露防止効果を得やすくすることができる。   Even if it comprises in this way, while suppressing the heat conduction amount to the outer wall 11 in the high temperature refrigerant pipe 2 vicinity with few layers, the heat conduction amount to the other end side can be enlarged. Therefore, heat can be uniformly supplied to the entire side surface, and the effect of preventing condensation on the entire side surface can be easily obtained.

次に第5実施形態の冷蔵庫200について説明する。   Next, the refrigerator 200 of 5th Embodiment is demonstrated.

第5実施形態の結露防止機構100は、図8の断面図に示すように前記第2実施形態の結露防止機構100において熱伝導性シート3と真空断熱材4との間にも断熱性部材5を設けるようにしたものである。   As shown in the cross-sectional view of FIG. 8, the dew condensation prevention mechanism 100 of the fifth embodiment includes a heat insulating member 5 between the heat conductive sheet 3 and the vacuum heat insulating material 4 in the dew condensation prevention mechanism 100 of the second embodiment. Is provided.

このように構成することで、真空断熱材4の表面フィルムを伝い、真空断熱材4の表面を迂回して庫内空間14に高温冷媒管2からの熱が伝熱することを防ぐことができる。すなわち、熱伝導性シート3により供給される熱は、外壁11にだけ略供給されるようにするとともに、庫内空間14にはほとんど伝熱されないようすることができる。従って、結露防止にのみ高温冷媒管2からの熱を有効に利用しつつ、高温冷媒管2の熱により庫内空間14が暖められることを無くし、冷蔵庫200全体としての消費エネルギの低減を図ることができる。   By comprising in this way, it can prevent that the heat | fever from the high temperature refrigerant | coolant pipe | tube 2 is transmitted to the interior space 14 around the surface of the vacuum heat insulating material 4 along the surface film of the vacuum heat insulating material 4. . That is, the heat supplied by the heat conductive sheet 3 can be substantially supplied only to the outer wall 11 and can be hardly transferred to the internal space 14. Therefore, the internal space 14 is not warmed by the heat of the high-temperature refrigerant pipe 2 while effectively using the heat from the high-temperature refrigerant pipe 2 only for preventing condensation, and the energy consumption of the entire refrigerator 200 is reduced. Can do.

その他の実施形態について説明する。   Other embodiments will be described.

前記各実施形態では、熱源として高温冷媒管を利用していたが、例えば、その他のヒータ等を熱源としても構わない。さらに、結露防止構造は冷蔵庫の側面だけでなく、例えば、上面、底面、背面、又はドア部分等様々な箇所に設けても構わない。また、熱伝導性シートの一端のみを高温冷媒管に巻回すのではなく、他端にも高温冷媒管を設けても構わない。このようにすることで、熱伝導性シートからより均一に熱を外壁に対して供給することができる。加えて、前記熱伝導性シートの一端は必ずしも高温冷媒管に接触させる必要は無く、高温冷媒管の近傍に離間させて設けても構わない。熱伝導性シートの材質はグラファイトだけでなく、熱伝導性のよいものであればその他の材質であっても構わない。さらに、熱伝導性シートは各実施形態のように略平面状にした状態で用いるだけでなく、例えば、側面から背面側まで回るように折り曲げて使用しても構わない。   In each of the above embodiments, the high-temperature refrigerant pipe is used as the heat source. However, for example, other heaters or the like may be used as the heat source. Furthermore, the dew condensation prevention structure may be provided not only on the side surface of the refrigerator but also at various locations such as the top surface, the bottom surface, the back surface, or the door portion. Further, instead of winding only one end of the heat conductive sheet around the high temperature refrigerant pipe, a high temperature refrigerant pipe may be provided at the other end. By doing in this way, heat can be more uniformly supplied to an outer wall from a heat conductive sheet. In addition, one end of the heat conductive sheet is not necessarily in contact with the high temperature refrigerant pipe, and may be provided in the vicinity of the high temperature refrigerant pipe. The material of the heat conductive sheet is not limited to graphite, but may be any other material as long as it has good heat conductivity. Furthermore, the heat conductive sheet is not only used in a substantially flat state as in each embodiment, but may be used by being bent so as to turn from the side surface to the back side, for example.

その他、本発明の趣旨に反しない限りにおいて、様々な実施形態の組み合わせや変形を行っても構わない。   In addition, various combinations and modifications of the embodiments may be performed without departing from the spirit of the present invention.

200・・・冷蔵庫
1 ・・・冷蔵庫筐体
11 ・・・外壁
12 ・・・内壁
13 ・・・筐体内部空間
14 ・・・庫内空間
2 ・・・高温冷媒管(熱源)
3 ・・・熱伝導性シート
4 ・・・真空断熱材
5 ・・・断熱性部材
200 ... Refrigerator 1 ... Refrigerator housing 11 ... Outer wall 12 ... Inner wall 13 ... Housing inner space 14 ... Inside chamber 2 ... High temperature refrigerant pipe (heat source)
3 ... Thermally conductive sheet 4 ... Vacuum heat insulating material 5 ... Heat insulating member

Claims (7)

外部空気と接触する外壁と、庫内空間を形成する内壁とを具備する冷蔵庫筐体と、
前記外壁と前記内壁との間に形成される筐体内部空間内に設けられるものであり、少なくとも一端が熱源に近接又は接触させて取り付けられ、他端側が前記外壁の結露防止領域近傍へと延びる熱伝導性シートと、を備えたことを特徴とする冷蔵庫。
A refrigerator housing comprising an outer wall in contact with external air, and an inner wall forming an interior space;
It is provided in a housing internal space formed between the outer wall and the inner wall, and is attached with at least one end close to or in contact with a heat source, and the other end extends to the vicinity of the condensation prevention region of the outer wall. A refrigerator comprising a heat conductive sheet.
前記熱源が、圧縮機から吐出された高温の冷媒が流れる高温冷媒管であり、前記熱伝導性シートの一端が当該高温冷媒管に巻き回されている請求項1記載の冷蔵庫。   The refrigerator according to claim 1, wherein the heat source is a high-temperature refrigerant tube through which a high-temperature refrigerant discharged from a compressor flows, and one end of the heat conductive sheet is wound around the high-temperature refrigerant tube. 前記筐体内部空間内に真空断熱材が設けられており、
前記外壁と前記真空断熱材との間に前記熱伝導性シートが設けられている請求項1又は2記載の冷蔵庫。
A vacuum heat insulating material is provided in the internal space of the housing,
The refrigerator according to claim 1 or 2, wherein the thermally conductive sheet is provided between the outer wall and the vacuum heat insulating material.
前記熱伝導性シートの前記外壁面への熱伝導度が一端側よりも他端側のほうが高くなるように設定されている請求項1、2又は3記載の冷蔵庫。   The refrigerator according to claim 1, 2 or 3, wherein the thermal conductivity of the thermal conductive sheet to the outer wall surface is set to be higher on the other end side than on the one end side. 前記熱伝導性シートの一端側よりも他端側のほうが前記外壁に近接させて設けられている請求項1、2、3又は4記載の冷蔵庫。   The refrigerator according to claim 1, 2, 3, or 4, wherein the other end side of the thermal conductive sheet is provided closer to the outer wall than the one end side. 前記外壁と前記熱伝導性シートとの間において、少なくとも前記熱源の近傍に断熱性部材が更に設けられている請求項1、2、3、4又は5記載の冷蔵庫。   The refrigerator according to claim 1, 2, 3, 4 or 5, further comprising a heat insulating member provided at least in the vicinity of the heat source between the outer wall and the heat conductive sheet. 前記熱伝導性シートが複数層から形成されるものであり、前記外壁に近接する層の数が一端側よりも他端側の方が多くなるように配置してある請求項1、2、3、4、5又は6記載の冷蔵庫。 The heat conductive sheet is formed of a plurality of layers, and is arranged so that the number of layers adjacent to the outer wall is larger on the other end side than on the one end side. The refrigerator according to 4, 5, or 6.
JP2011221245A 2011-10-05 2011-10-05 Refrigerator Pending JP2013079789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221245A JP2013079789A (en) 2011-10-05 2011-10-05 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221245A JP2013079789A (en) 2011-10-05 2011-10-05 Refrigerator

Publications (1)

Publication Number Publication Date
JP2013079789A true JP2013079789A (en) 2013-05-02

Family

ID=48526298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221245A Pending JP2013079789A (en) 2011-10-05 2011-10-05 Refrigerator

Country Status (1)

Country Link
JP (1) JP2013079789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291765A (en) * 2015-10-29 2018-07-17 Lg电子株式会社 Refrigerator and the device for manufacturing refrigerator
WO2019202683A1 (en) * 2018-04-18 2019-10-24 三菱電機株式会社 Refrigeration appliance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291765A (en) * 2015-10-29 2018-07-17 Lg电子株式会社 Refrigerator and the device for manufacturing refrigerator
CN108291765B (en) * 2015-10-29 2020-09-11 Lg电子株式会社 Refrigerator and apparatus for manufacturing the same
US10987757B2 (en) 2015-10-29 2021-04-27 Lg Electronics Inc. Refrigerator and apparatus for fabricating the same
US11926000B2 (en) 2015-10-29 2024-03-12 Lg Electronics Inc. Refrigerator and apparatus for fabricating the same
WO2019202683A1 (en) * 2018-04-18 2019-10-24 三菱電機株式会社 Refrigeration appliance

Similar Documents

Publication Publication Date Title
KR101147779B1 (en) A refrigerator comprising a vaccum space
JP5677737B2 (en) refrigerator
CN102878746B (en) Refrigerator
JP2010038528A (en) Refrigerator
JP6002641B2 (en) Vacuum insulation and refrigerator
JP2005048979A (en) Refrigerator
JP2013242100A (en) Refrigerator heat-insulation box body
JP2018189333A (en) refrigerator
JP2013079789A (en) Refrigerator
JP2012063042A (en) Refrigerator and vacuum heat insulating material
JP2006138609A (en) Refrigerator
JP2018112385A (en) refrigerator
JP2012087992A (en) Refrigerator-freezer
JP5343351B2 (en) refrigerator
JP2013185735A (en) Refrigerator
JP2015052401A (en) Refrigerator
JP6191008B2 (en) refrigerator
JP2013185730A (en) Refrigerator
JP2015034680A (en) Refrigerator
US20130014524A1 (en) Refrigerator
JP2006112639A (en) Refrigerator
JP2006112640A (en) Refrigerator
JP6603017B2 (en) refrigerator
JP2011237120A (en) Refrigerator
JP2006343079A (en) Refrigerator