WO2021171404A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2021171404A1
WO2021171404A1 PCT/JP2020/007633 JP2020007633W WO2021171404A1 WO 2021171404 A1 WO2021171404 A1 WO 2021171404A1 JP 2020007633 W JP2020007633 W JP 2020007633W WO 2021171404 A1 WO2021171404 A1 WO 2021171404A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate material
heater
refrigerator
graphite sheet
heat
Prior art date
Application number
PCT/JP2020/007633
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 啓太
荒木 正雄
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/007633 priority Critical patent/WO2021171404A1/en
Priority to AU2020431079A priority patent/AU2020431079B2/en
Priority to JP2022502645A priority patent/JPWO2021171404A1/ja
Publication of WO2021171404A1 publication Critical patent/WO2021171404A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • This disclosure relates to a refrigerator equipped with a double door.
  • a double-door refrigerator that closes the opening for taking in and out the stored items with two doors.
  • a gap is provided between the two doors with the opening closed so that the two doors do not come into contact with each other when opening and closing the doors.
  • one door is provided with a rotatable partition, and when one door closes a part of the opening, the partition rotates.
  • a plate material provided in the partition is configured to close the gap.
  • This plate material is cooled by the cold air in the refrigerator, and dew condensation occurs on the outer surface of the plate material.
  • a heat insulating material is provided so as to cover the inner surface of the plate material on the inner side of the refrigerator, and it is suppressed that the plate material is cooled by the cold air in the refrigerator.
  • the plate material is provided with a heater capable of conducting heat, and the plate material is heated by the heater to suppress dew condensation (for example, Patent Document 1 below).
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a refrigerator capable of reducing the power consumption of a heater for preventing dew condensation on a plate material.
  • the refrigerator according to the present disclosure includes a double door, a plate material that closes a gap formed between the double doors with the double door closed on the outer surface, and a plate material provided on the inner surface side of the plate material to heat the plate material. It is equipped with a heater for the door. The heaters are arranged at intervals from the end of the plate material. Further, the refrigerator is further provided with a graphite sheet that conducts the heat of the heater on the surface of the plate material between the end portion of the plate material and the heater.
  • the graphite sheet is a member whose thermal conductivity in the direction along the inner surface is higher than that in the direction from the inner surface to the outer surface.
  • the refrigerator according to the present disclosure includes a graphite sheet in which the thermal conductivity in the direction along the inner surface of the plate material is higher than the thermal conductivity in the direction toward the outer surface of the plate material, and this graphite sheet is the end portion of the plate material and the heater.
  • the heat of the heater is conducted to the surface of the plate material between the two. Therefore, the heat generated by the heater is not easily transferred to the inside or the outside of the refrigerator, and is easily transferred to the periphery of the end portion where the heater is not provided along the inner surface of the plate material. Therefore, the heat of the heater can be efficiently transferred to the end portion of the plate material, and the power consumption of the heater can be reduced.
  • FIG. 1 is a perspective view of the refrigerator 100, and the front side in the drawing is the front side of the refrigerator 100.
  • FIG. 2 is a cross-sectional view of the refrigerator 100, which is obtained by cutting the refrigerator 100 with a cross section of II-II in FIG.
  • FIG. 3 is a schematic view of the cooling circuit of the refrigerator 100 shown in FIG.
  • the refrigerator 100 includes a hexahedral housing 1, and a door 2 forming a double door between the top plate 1a and the bottom plate 1b on the front side of the housing 1.
  • a door 3 a pull-out type ice making room door 4, a switching room door 5, a freezer room door 6, and a vegetable room door 7.
  • the bottom plate 1b is a portion that comes into contact with the floor surface of the building when the refrigerator 100 is installed
  • the top plate 1a is a portion that faces the bottom plate 1b and is arranged on the ceiling side of the building.
  • the housing 1 is formed with five spaces for storing the stored material inside. As shown in FIG.
  • each space is a space for cooling the stored material at different temperatures, and is partitioned by partition plates 1c, 1d, and 1e made of a resin material containing a heat insulating material. Further, the housing 1 is formed with an opening for communicating each space with the outside on the front side of the refrigerator 100, so that the stored items can be taken in and out. As shown in FIG.
  • the housing 1 is provided with rotatably doors 2 and 3 on both sides of the opening of the refrigerator compartment 11, and the doors 2 and 3 rotate to close a part of the opening. Door and open. A gap is formed between the door 2 and the door 3 with the door 2 and the door 3 closed. This gap extends from the top plate 1a of the housing 1 toward the bottom plate 1b. Further, the ice making room door 4, the switching room door 5, the freezing room door 6, and the vegetable room door 7 slide away from the housing 1 at the openings of the ice making room, the switching room 13, the freezing room 14, and the vegetable room 15, respectively. It is provided as possible.
  • a cooling device 20 is provided on the back surface side of the housing 1.
  • the cooling device 20 includes a compressor 21, a condenser 22, an expanding means 23, an evaporator 24, a fan 25, and a defrosting device 26.
  • the compressor 21 is connected to the condenser 22, adiabatically compresses the refrigerant, and sends a high-temperature and high-pressure gaseous refrigerant to the condenser 22.
  • the condenser 22 is connected to the expansion means 23, exchanges heat between the air outside the housing 1 and the refrigerant, liquefies the refrigerant, and sends the refrigerant to the expansion means 23.
  • the expansion means 23 is composed of a capillary tube connected to the evaporator 24, expands the refrigerant, and sends it to the evaporator 24 as a gas-liquid two-phase refrigerant.
  • the evaporator 24 exchanges heat between the return air 27 in the housing 1 and the refrigerant to vaporize the refrigerant and cool the air in the housing 1. Further, the evaporator 24 is connected to the compressor 21 and sends the vaporized refrigerant to the compressor 21.
  • the compressor 21, the condenser 22, the expanding means 23, and the evaporator 24 form a refrigerant circuit for cooling the air in the housing 1.
  • the cooling device 20 sends the cold air cooled by the evaporator 24 to each space by the fan 25, and maintains the temperature of each space at a low temperature.
  • the cold air sent out by the fan 25 returns from each space to the cooling device 20 as return air 27, is cooled again, and is sent out to each space.
  • the cooling device 20 is provided with a defrosting device 26 at a position where the return air 27 is blown, and the defrosting device 26 is periodically driven to prevent frost from adhering to the evaporator 24.
  • heat radiating pipes 16a, 16b, and 16c are embedded in the partition plates 1c, 1d, and 1e that partition the space inside the housing 1, respectively. Since the partition plates 1c, 1d, and 1e partition spaces having different temperatures, dew condensation may occur. Therefore, a high-temperature fluid is passed through these heat-dissipating pipes 16a, 16b, 16c to heat the partition plates 1c, 1d, and 1e.
  • the space constituting the refrigerating chamber 11 corresponds to the first space
  • the space constituting the ice making chamber or the switching chamber 13 corresponds to the second space.
  • the top plate 1a side is above the refrigerator 100
  • the bottom plate 1b side is below the refrigerator 100.
  • the vertical direction and the direction perpendicular to the direction connecting the front surface and the back surface are the sides of the refrigerator 100.
  • the Z direction in the drawing corresponds to the vertical direction
  • the Y direction corresponds to the direction connecting the front surface and the back surface
  • the X direction corresponds to the direction connecting the side surfaces of the refrigerator 100.
  • FIG. 4 is an enlarged view of the portion of the refrigerator 100 that corresponds to the refrigerating chamber 11 as viewed from the front side.
  • FIG. 5 shows the refrigerator 100 cut along the cross section of VV of FIG.
  • FIG. 6 is an enlargement of the periphery of the partition 30 by cutting the refrigerator 100 along the cross section of VI-VI of FIG.
  • FIG. 7 is a perspective view of the plate material 31 included in the partition 30.
  • FIG. 8 is an exploded perspective view of the heat insulating material 33, the heater 32, the graphite sheet 35, and the plate material 31 included in the partition 30.
  • FIG. 9 is an enlarged view of FIG.
  • the partition 30 includes a plate member 31, a graphite sheet 35, a heater 32, a heat insulating material 33, and a case 34 (FIG. 5).
  • 39a is inside the housing 1
  • 39b is outside the housing 1
  • the plate members 31 to the case 34 are arranged in the above order from the outside of the housing 1.
  • the partition 30 is rotatably provided on the side surface of the door 2 on the door 3 side.
  • the partition 30 When the door 2 is closed, the partition 30 is arranged so that the outer surface of the plate member 31 located on the outside of the housing 1 is substantially parallel to the front surface of the door 2, and the door 2 is opened. Then, it rotates and folds to the side of the door 2. Further, as shown in FIG. 4, the partition 30 closes the gap between the door 2 and the door 3 formed when the door 2 and the door 3 close the opening of the refrigerating chamber 11 on the outer surface of the plate member 31.
  • the sheet metal 31 is a square sheet metal made of a metal material such as iron, aluminum, copper, or stainless steel. More specifically, the plate material 31 is a rectangular sheet metal whose longitudinal direction is the direction in which the gap between the door 2 and the door 3 extends, that is, the vertical direction. Further, as shown in FIG. 5, in the plate material 31, flanges 36a and 36b extend from the upper end portion and the lower end portion toward the case 34 side (internal side of the housing 1), respectively. As shown in FIG. 7, the shapes of the flanges 36a and 36b are quadrangular (FIG. 7 (a)), fan-shaped (FIG. 7 (b)), or triangular (FIG. 7 (c)).
  • the plate material 31 has a longitudinal direction shorter than the gap between the door 2 and the door 3 formed when the door 2 and the door 3 close the opening of the refrigerating chamber 11, and the wall above the refrigerating chamber 11 (heaven). A gap is formed between the plate 1a) and the lower wall (partition plate 1c) and the plate material 31 (FIG. 5).
  • Packing 37a and packing 37b are provided on the front side of the top plate 1a and the partition plate 1c, respectively, so that cold air does not flow out from this gap, and when the plate material 31 closes the gap between the door 2 and the door 3.
  • the plate member 31 and the packings 37a and 37b come into contact with each other.
  • packing 37c is provided around the end of the door 2 facing the door 3 when the doors 2 and 3 close the opening of the housing 1, and similarly, the end of the door 3 is provided. Packing 37c is also provided around the portion.
  • These packings 37a, 37b and 37c are made of a rubber material having high wear resistance. Further, as shown in FIG. 6, throats 38a and 38b protruding from the inner surface of the housing of the doors 2 and 3 are provided on the side of the partition 30, and the cold air in the housing 1 is released. It suppresses the contact with the side of the partition 30 and suppresses the temperature drop of the partition 30.
  • the heater 32 is a cord heater provided on the inner surface side, which is the back side (inside side of the housing 1) of the plate material 31, and heats the plate material 31 to suppress dew condensation. Further, as shown in FIG. 8, the heater 32 is provided with one cord heater inside (center side) from the end portion of the plate material 31, and is provided on the inner surface of the plate material 31 from the inside side of the housing 1. When the plate material 31 is viewed, the heater 32 is not provided up to the periphery of the end portion of the plate material 31 and is arranged inside the plate material 31 at a distance from the end portion of the plate material 31. Further, in the heater 32, the outer periphery of the heating wire is covered with an insulating film to suppress a short circuit due to contact with the plate material 31 or the like.
  • Heat insulating material 33 thermal conductivity, such as styrofoam or urethane foam is made of a material of the foamed plastic system 10 -2 W / m ⁇ K order, heat penetration and the housing 1 from the heater 32 to the housing 1 It suppresses heat leakage from the air to the outside. As shown in FIGS. 5 and 6, the heat insulating material 33 is provided so as to cover the inner surfaces of the heater 32 and the plate material 31.
  • the case 34 is a box-shaped member provided at a position facing the inner surface of the plate member 31 with the heater 32 interposed therebetween, and is made of a resin material such as acrylic or polycarbonate. As shown in FIGS. 5 and 6, the case 34 has a hexahedral shape and has an opening on one surface, and the heat insulating material 33, the heater 32, and the graphite sheet 35 are housed inside the case 34. , Surrounding.
  • the flange 36a and the flange 36b of the plate material 31 are in contact with the walls of the upper and lower cases, respectively, and these walls and the flange 36a and the flange 36b are fixed by fasteners such as screws, and the plate material 31 is It is fixed to the case 34 via flanges 36a and 36b so as to cover the opening of the case 34.
  • the graphite sheet 35 is a sheet-like member containing graphite. A thickness of 40 ⁇ m to 100 ⁇ m is used.
  • the graphite sheet 35 is provided on the heater 32 so as to be heat conductive. Further, at least, the plate material 31 on which the heater 32 is not provided is provided so as to be heat conductive on the surface around the end portion. In other words, the graphite sheet 35 can conduct the heat of the heater 32 to the surface of the plate 31 between the end of the plate 31 and the heater 32 when viewed from the inside of the housing 1 toward the inner surface of the plate 31. That is, it is provided so that it can conduct heat. In the example shown in FIG.
  • the graphite sheet 35 is provided so as to be heat conductive not only on the inner surface around the end portion of the plate material 31 but also on the entire inner surface of the plate material 31. Further, graphite sheets 35 are provided so as to be heat conductive in all the portions of the heater 32 on the plate material 31 side. In this way, the graphite sheet 35 is provided between the inner surface of the plate member 31 and the heater 32.
  • the graphite contained in the graphite sheet 35 includes a plurality of layers of hexagonal plate-shaped crystals covalently bonded to carbon, and each layer of the plate-shaped crystals of the graphite sheet is aligned with the inside of the sheet surface of the graphite sheet 35. It is oriented.
  • the graphite sheet 35 is a member having a large thermal conductivity in the in-plane direction as compared with the thickness direction of the sheet and having anisotropy in the thermal conductivity. Since the graphite sheet 35 is installed along the inner surface of the plate material 31, each layer of the graphite plate-like crystal is oriented along the inner surface of the plate material 31. Therefore, in the graphite sheet 35, the thermal conductivity in the direction along the inner surface of the plate material 31 is higher than the thermal conductivity in the direction from the inner surface to the outer surface of the plate material 31.
  • the thermal conductivity in the direction along the inner surface is 1500 W / m ⁇ K, which is 20 times higher than the thermal conductivity of iron, which is an example of the material of the plate material 31, which is about 80 W / m ⁇ K. Nearly high. Further, the thermal conductivity in the direction from the inner surface to the outer surface is about 10 W / m ⁇ K, which is lower than the thermal conductivity of iron. Therefore, the heat generated by the heater 32 is easily transferred along the inner surface of the plate material 31, and the heat is easily diffused to the end portion of the plate material 31. On the contrary, heat is not easily transferred from the inner surface to the outer surface of the plate member 31, and heat leakage to the outside of the refrigerator 100 is small.
  • the graphite sheet 35 is provided with adhesive tapes 35a and 35b on both side surfaces, and is adhered to the heater 32 by the adhesive tape 35a. Further, it is adhered to the plate material 31 by the adhesive tape 35b.
  • the adhesive tape 35a and the adhesive tape 35b are made of aluminum tape, vinyl tape, polyimide tape or the like that can reduce the contact thermal resistance, and the heat from the heater 32 is efficiently conducted to the graphite sheet 35 and the plate material 31.
  • FIG. 10 is a cross-sectional view of the partition 30 corresponding to the cross-sectional view of FIG.
  • the example of FIG. 10A is the same as the example of the partition 30 shown in FIG. 5, and the graphite sheet 35 is provided on the entire inner surface of the plate member 31.
  • L shown in FIG. 10A indicates the length of the plate member 31 in the vertical direction (longitudinal direction). In this example, heat can be efficiently transferred to both upper and lower ends of the plate member 31.
  • FIG. 10 is a cross-sectional view of the partition 30 corresponding to the cross-sectional view of FIG.
  • the example of FIG. 10A is the same as the example of the partition 30 shown in FIG. 5, and the graphite sheet 35 is provided on the entire inner surface of the plate member 31.
  • L shown in FIG. 10A indicates the length of the plate member 31 in the vertical direction (longitudinal direction). In this example, heat can be efficiently transferred to both upper and lower ends of the plate member 31.
  • the graphite sheet 35 is provided on the end side above the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 4, and the upper side of the plate material 31.
  • the heat radiating pipe 16a is provided in the vicinity of the lower end portion of the plate member 31 as in the first embodiment (see FIGS. 2 and 5), the temperature of the lower end portion is unlikely to decrease. In such a case, it is preferable to adopt this example.
  • the flange 36a is provided at the upper end portion of the plate material 31, it is easy to be cooled.
  • the graphite sheet 35 is provided around the end portion of the plate material 31 where the flange 36a is provided.
  • the temperature drop at the end can be suppressed.
  • the graphite sheet 35 is provided on the end side above the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 2, and the upper side of the plate material 31.
  • This example also efficiently transfers heat to the upper end portion of the plate member 31, and is the same as the example of FIG. 10B.
  • FIG. 10C the graphite sheet 35 is provided around the end portion of the plate material 31 where the flange 36a is provided.
  • the graphite sheet 35 is provided on the end side below the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 4, and the lower part of the plate material 31.
  • heat is efficiently transferred to the lower end portion of the plate member 31.
  • the flange 36b is provided at the lower end portion of the plate material 31, it is easy to be cooled.
  • the graphite sheet 35 is provided around the end portion of the plate material 31 where the flange 36b is provided.
  • the temperature drop at the end can be suppressed.
  • the graphite sheet 35 is provided on the end side below the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 2, and the lower part of the plate material 31.
  • This example also efficiently transfers heat to the lower end portion of the plate member 31, and is the same as the example of FIG. 10 (d).
  • FIG. 10 (d) In the example of FIG.
  • the graphite sheet 35 is provided on the end side above the center and the end side below the center in the longitudinal direction of the plate member 31, and the length of the graphite sheet 35 is L / 4.
  • heat can be efficiently transferred to both upper and lower ends of the plate member 31.
  • FIG. 11 is a cross-sectional view showing the configurations of the partitions 30 and 30'of Comparative Examples 1 to 3 for evaluating the heat diffusion efficiency of the plate member 31.
  • four partitions 30 shown in FIG. 11 were prepared.
  • FIG. 11A shows a partition 30'without a graphite sheet 35, a temperature sensor 40a near the upper end of the plate material 31, a temperature sensor 40c near the center of the plate material 31, and a lower end of the plate material 31.
  • a temperature sensor 40e, a temperature sensor 40b between the temperature sensor 40a and the temperature sensor 40c, and a temperature sensor 40d between the temperature sensor 40c and the temperature sensor 40e were arranged in the vicinity.
  • This partition 30' is a comparative example. Further, the following three are prepared as the partition 30 according to the first embodiment.
  • the partition 30 shown in FIG. 11B has a graphite sheet 35 provided on the entire surface of the plate member 31 (corresponding to FIG. 10A).
  • FIG. 11C is formed by providing a graphite sheet 35 having a length of L / 2 in the vertical direction from the upper end of the plate member 31 (corresponding to FIG. 10C). ).
  • the partition 30 shown in FIG. 11D is formed by providing a graphite sheet 35 having a length of L / 4 in the vertical direction from the upper end of the plate member 31 (corresponding to FIG. 10B). ). Similar to the partition 30', the temperature sensors 40a, 40b, 40c, 40d, and 40e are arranged in the partition 30. The thickness of the graphite sheet 35 was 40 ⁇ m.
  • Example 1 the example of FIG. 11 (b) will be referred to as Example 1
  • Example 2 the example of FIG. 11 (d) will be referred to as Example 3.
  • FIG. 12 shows the minimum temperature of the plate material 31 in the partitions 30 and 30'of Comparative Examples, Examples 1 to 3. The minimum temperature is shown by the difference when the comparative example is set to zero.
  • the minimum temperature was measured by the temperature sensor 40a arranged near the upper end of the plate member 31 in each example. Since the temperature measured by the temperature sensor 40e arranged near the lower end of the plate 31 is affected by the heat radiation from the heat dissipation pipe 16a, the temperature at the upper end of the plate 31 is lower. Comparing the minimum temperature, in Examples 1 to 3, the temperature was 0.9 K or more higher than that in Comparative Example. That is, in Examples 1 to 3, heat can be efficiently transferred to the upper end portion of the plate member 31. It is considered that this is because the heat generated by the heater 32 is easily diffused in the direction along the plate material 31, and the heat of the heater 32 is sufficiently transferred to the upper end portion of the plate material 31.
  • Example 2 and Example 3 when comparing Examples 1 to 3, the minimum temperature of Example 2 and Example 3 was higher than that of Example 1. That is, in the second and third embodiments, heat can be transferred more efficiently to the upper end portion of the plate member 31.
  • the heat generated by the heater 32 is used to heat the entire surface including the lower end portion and the central portion of the plate material 31.
  • the heat of the heater 32 arranged above the plate material 31 is difficult to be transferred to the lower part and the central portion of the plate material 31, and is used to heat the upper end portion. it is conceivable that. From the above, it can be said that the partition 30 provided with the graphite sheet 35 as in Examples 1 to 3 has high heat diffusion efficiency to the upper end portion of the plate material 31.
  • Examples 1 to 3 the results of calculating the annual power consumption of the heater 32 from the minimum temperature measured as described above are shown in FIG.
  • the power consumption of the heater 32 required to suppress the dew condensation on the plate material 31 depends on the minimum temperature of the plate material 31. This is because the part with the lowest temperature is most likely to condense.
  • the minimum temperature is higher than that in Comparative Example, so that the temperature can be maintained at a temperature at which dew condensation does not occur even if the energization rate of the heater 32 is lowered and the power consumption is reduced. Therefore, the power consumption of Examples 1 to 3 is 87% to 89% as compared with Comparative Example, and the power consumption can be reduced from 11% to 13%.
  • the power consumption shown here is the annual temperature and humidity generation probability specified in JIS C9801-3, and the energization of the heater 32 required to keep the plate material surface temperature above the dew point at each temperature and humidity. It is calculated using the rate. Further, since the minimum temperature of Example 2 and Example 3 is higher than that of Example 1, the power consumption of Example 2 and Example 3 can be further reduced.
  • Examples 1 to 3 have been described.
  • the graphite sheet 35 when the graphite sheet 35 is brought into contact with the periphery of the end portion of the plate material 31, the graphite sheet 35 is brought into contact with the plate material 31.
  • the heat generated by the heater 32 is efficiently transferred toward the end portion. Therefore, also in the other modified example of the first embodiment (the example shown in FIG. 11), it is possible to raise the temperature of the end portion on the side to which the graphite sheet 35 is attached as compared with the comparative example.
  • the refrigerator 100 includes a graphite sheet 35 which is a member whose thermal conductivity in the direction along the inner surface of the plate material 31 is higher than the thermal conductivity in the direction from the inner surface to the outer surface of the plate material, and the graphite sheet 35 is a heater.
  • the plate material 31 in which the 32 and the heater 32 are not provided is provided so as to be heat conductive around the end portion of the plate material 31, and the heat of the heater 32 is transmitted to the surface around the end portion of the plate material 31.
  • the heat generated by the heater 32 is difficult to be transmitted to the inside or the outside of the refrigerator 100, and is easily transferred to the periphery of the end portion where the heater 32 is not provided along the inner surface of the plate member 31. That is, in the refrigerator (comparative example) not provided with the graphite sheet 35, the heat of the heater 32 leaks to the inside or the outside of the refrigerator and is wasted, but the refrigerator 100 ends the leaked heat. It can be communicated to the department and used effectively. Therefore, as shown in FIG. 12, the temperature around the end portion of the plate member 31 can be raised. Therefore, the electric power required to prevent dew condensation around the end portion of the plate member 31 can be reduced, and the power consumption of the heater 32 can be reduced.
  • the refrigerator 100 is provided with the above-mentioned graphite sheet 35, the heat around the heater 32 can be efficiently diffused to the end portion of the plate material 31, so that the temperature of the plate material 31 around the heater 32 and the plate material 31 can be efficiently diffused.
  • the difference in temperature at the ends of the plate 31 can be reduced, and the temperature distribution of the plate 31 can be made uniform. Therefore, it is possible to provide a high quality refrigerator 100.
  • a graphite sheet 35 is interposed between the heater 32 and the inner surface of the plate material 31. Therefore, it is possible to prevent the heat generated by the heater 32 from being directly transmitted to the plate material 31 and leaking to the outside of the refrigerator 100.
  • the refrigerator 100 includes a graphite sheet 35 on the end side of the plate member 31 in the longitudinal direction with respect to the center.
  • a heat radiating pipe 16a is provided in the partition plate 1c between the refrigerating chamber 11, the switching chamber 13, and the ice making chamber, and the graphite sheet 35 is an end of the plate material 31 that is separated from the heat radiating pipe 16a. It is provided on the inner surface of the part side.
  • the heat from the heat radiating pipe 16a is easily transferred to the end portion of the plate material 31 close to the heat radiating pipe 16a to maintain a high temperature, but the temperature tends to decrease at the distant end portion. Since the graphite sheet 35 is provided on the distant end side, heat can be transferred to the end portion which is more easily cooled, and the power consumption of the heater 32 can be reduced.
  • the plate material 31 is provided with flanges 36a and 36b extending from the end portions. Since the flanges 36a and 36b extend toward the inside of the housing 1 and are not provided with the heat insulating material 33, they are easily cooled by cold air, and the ends of the plate material 31 provided with the flanges 36a and 36b are other ends. The temperature is more likely to drop than the part. Since the refrigerator 100 is provided with the graphite sheet 35 around the ends where the flanges 36a and 36b are provided, heat can be transferred to the end where it is easier to cool, and the power consumption of the heater 32 can be reduced. ..
  • the door of the refrigerating chamber 11 is composed of double doors 2 and 3, but the door of the refrigerating chamber 11 may be a pull-out type or a single-opening type door.
  • the door of the switching chamber 13, the freezer compartment 14, or the vegetable compartment 15 may be a double door type.
  • the partition 30 of the first embodiment is provided in the double door provided around the opening of the ice making room, the switching room 13, the freezing room 14, or the vegetable room 15.
  • the gap between the door 2 and the door 3 extends in the vertical direction, but the gap may extend not only in the vertical direction but also in the lateral direction.
  • the door 2 and the door 3 have an opening. Arranged above and below.
  • the heater 32 may be configured to be sandwiched between the graphite sheet 35 and the plate material 31.
  • the graphite sheet 35 is pressed from the heat insulating material 33 side against the heater 32 and the plate material 31 to be deformed, and is provided on the heater and the plate material 31 so as to be heat conductive.
  • the graphite sheet 35 is interposed between the heater 32 and the heat insulating material 33, so that the heater 32 and the heat insulating material 33 are not in contact with each other. Therefore, the heat generated by the heater 32 is directly transmitted to the heat insulating material 33, and it is possible to prevent the heat from leaking into the refrigerator 100.
  • the heat radiating pipe 16a is arranged around the lower end portion of the plate material 31
  • the heat radiating pipe is located around the upper end portion of the plate material 31, that is, the top plate 1a of the housing 1. It may be provided inside. In this case, it is preferable to use the partition 30 of FIG. 11 (d) or FIG. 11 (e).
  • Embodiment 2 Next, a second embodiment of the present disclosure will be described. The same parts as those described in the first embodiment will be omitted, and the parts different from the first embodiment will be described below.
  • the refrigerator 100 of the second embodiment can be implemented in combination with the modified example of the first embodiment.
  • the flanges 36a and 36b are formed by bending the plate member 31, so that the flanges 36a and 36b are made of sheet metal.
  • the flanges 236a and 236b are made of a resin material.
  • flanges 236a and 236b extending from the end of the plate member 31 toward the case 34 are made of a resin material. ..
  • the resin material is composed of a material having a lower thermal conductivity than sheet metal, such as polypropylene resin and acrylonitrile resin. Since the plate material 31 made of sheet metal and the flanges 236a and 236b made of resin material are different materials, they are joined with an adhesive, double-sided tape, hot melt, caulking, screw tightening, riveting, hook claws, or the like.
  • the refrigerator 100 according to the second embodiment of the present disclosure is configured as described above, and has the same effects as those of the first embodiment and also has the following effects. Since the flanges 236a and 236b of the plate material 31 of the refrigerator 100 are made of a resin material, it is possible to prevent the end portion of the plate material 31 from being cooled by the cold air inside the housing 1. Therefore, the power consumption of the heater can be reduced.
  • the refrigerator of the present disclosure can be used for storage of stored items.

Abstract

A refrigerator (100) according to the present disclosure comprises: double swing-type doors (2, 3); a plate member (31) that, via the outer surface thereof, closes a gap formed between the double swing-type doors (2, 3) when the double swing-type doors (2, 3) have been closed; and a heater (32) that heated the plate member (31), the heater (32) being provided on the inner surface side of the plate member (31). The heater (32) is set apart from an end part of the plate member (31). The refrigerator (100) further comprises a graphite sheet (35) that conductively transfers the heat of the heater (32) to a surface of the plate member (31) located between the end part of the plate material (31) and the heater (32). The graphite sheet (35) is a member in which the thermal conductivity in the direction along the inner surface is higher than the thermal conductivity in the direction from the inner surface to the outer surface.

Description

冷蔵庫refrigerator
 本開示は、両開き式の扉を備えた冷蔵庫に関する。 This disclosure relates to a refrigerator equipped with a double door.
 貯蔵物を出し入れするための開口を2枚の扉で閉鎖する両開き式の冷蔵庫がある。扉を開閉する際に2枚の扉が接触しないように、開口を閉鎖した状態で2枚の扉の間には隙間が設けられている。この隙間から冷蔵庫内の冷気が流出することを防ぐため、一方の扉には中仕切りが回転可能に設けられており、一方の扉が開口の一部を閉鎖した際に中仕切りが回転し、中仕切りに設けられた板材が隙間を閉鎖するように構成されている。 There is a double-door refrigerator that closes the opening for taking in and out the stored items with two doors. A gap is provided between the two doors with the opening closed so that the two doors do not come into contact with each other when opening and closing the doors. In order to prevent the cold air in the refrigerator from flowing out from this gap, one door is provided with a rotatable partition, and when one door closes a part of the opening, the partition rotates. A plate material provided in the partition is configured to close the gap.
 この板材は冷蔵庫内の冷気によって冷却され、板材の外面に結露が発生する。この結露を防止するために、板材における冷蔵庫内部側の内面を覆うように断熱材が設けられており、冷蔵庫内の冷気で板材が冷却されることを抑制している。また、板材にはヒータが熱伝導可能に設けられており、板材をヒータによって加熱して結露を抑制している(例えば下記の特許文献1)。 This plate material is cooled by the cold air in the refrigerator, and dew condensation occurs on the outer surface of the plate material. In order to prevent this dew condensation, a heat insulating material is provided so as to cover the inner surface of the plate material on the inner side of the refrigerator, and it is suppressed that the plate material is cooled by the cold air in the refrigerator. Further, the plate material is provided with a heater capable of conducting heat, and the plate material is heated by the heater to suppress dew condensation (for example, Patent Document 1 below).
特開2013-221715号公報Japanese Unexamined Patent Publication No. 2013-221715
 しかし、上記の特許文献1の冷蔵庫は、板材の端部が断熱材で覆われていないため、冷蔵庫内の冷気によって板材の端部が冷却され、板材の端部は板材の中央部分に比べ温度が低下しやすい。また、ヒータが板材の端部から間隔を空けて板材の内側(中央側)に設けられているため、端部の温度が低下しやすい。そのため、板材の端部を結露が発生しないように十分に温められるために、ヒータへ供給する電力を大きくしなければならなかった。 However, in the refrigerator of Patent Document 1 described above, since the end portion of the plate material is not covered with the heat insulating material, the end portion of the plate material is cooled by the cold air in the refrigerator, and the end portion of the plate material has a temperature higher than that of the central portion of the plate material. Is likely to decrease. Further, since the heater is provided on the inside (center side) of the plate material at a distance from the end portion of the plate material, the temperature of the end portion tends to decrease. Therefore, in order to sufficiently heat the end portion of the plate material so that dew condensation does not occur, it is necessary to increase the electric power supplied to the heater.
 本開示は、上記のような課題を解決するためになされたものであり、板材の結露を防止するためのヒータの消費電力を低減することが可能な冷蔵庫を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a refrigerator capable of reducing the power consumption of a heater for preventing dew condensation on a plate material.
 本開示に係る冷蔵庫は、両開き式の扉と、両開き式の扉を閉じた状態で両開き式の扉の間にできる隙間を外面で閉鎖する板材と、板材の内面側に設けられて板材を加熱するヒータと、を備えたものである。ヒータは、板材の端部から間隔を空けて配置されている。また、冷蔵庫は、板材の端部とヒータの間にある板材の面にヒータの熱を伝導するグラファイトシートをさらに備えたものである。グラファイトシートは、内面に沿った方向への熱伝導率が内面から外面へ向かう方向への熱伝導率より高い部材である。 The refrigerator according to the present disclosure includes a double door, a plate material that closes a gap formed between the double doors with the double door closed on the outer surface, and a plate material provided on the inner surface side of the plate material to heat the plate material. It is equipped with a heater for the door. The heaters are arranged at intervals from the end of the plate material. Further, the refrigerator is further provided with a graphite sheet that conducts the heat of the heater on the surface of the plate material between the end portion of the plate material and the heater. The graphite sheet is a member whose thermal conductivity in the direction along the inner surface is higher than that in the direction from the inner surface to the outer surface.
 本開示に係る冷蔵庫は、板材の内面に沿った方向への熱伝導率が板材の外面へ向かう方向への熱伝導率より高いグラファイトシートを備えており、このグラファイトシートが板材の端部とヒータの間にある板材の面にヒータの熱を伝導する。そのため、ヒータで発生した熱は、冷蔵庫の内部または外部へは伝達されにくく、板材の内面に沿ってヒータの設けられていない端部周辺へ伝達されやすい。よって、ヒータの熱を効率よく板材の端部へ伝達することができ、ヒータの消費電力を低減することができる。 The refrigerator according to the present disclosure includes a graphite sheet in which the thermal conductivity in the direction along the inner surface of the plate material is higher than the thermal conductivity in the direction toward the outer surface of the plate material, and this graphite sheet is the end portion of the plate material and the heater. The heat of the heater is conducted to the surface of the plate material between the two. Therefore, the heat generated by the heater is not easily transferred to the inside or the outside of the refrigerator, and is easily transferred to the periphery of the end portion where the heater is not provided along the inner surface of the plate material. Therefore, the heat of the heater can be efficiently transferred to the end portion of the plate material, and the power consumption of the heater can be reduced.
本開示の実施の形態1に係る冷蔵庫の斜視図である。It is a perspective view of the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫の断面図である。It is sectional drawing of the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における冷媒回路の概略図である。It is the schematic of the refrigerant circuit in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における両開き式の扉の斜視図である。It is a perspective view of the double door of the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における中仕切りの断面図(Y―Z面)である。It is sectional drawing (YZ plane) of the partition in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における中仕切りの断面図(X―Y面)である。It is sectional drawing (XY plane) of the partition in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における板材の斜視図である。It is a perspective view of the plate material in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る中仕切りの分解斜視図である。It is an exploded perspective view of the partition which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における中仕切りの断面(Y―Z面)の拡大図である。It is an enlarged view of the cross section (YZ plane) of the partition in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における中仕切りの断面図(Y―Z面)である。It is sectional drawing (YZ plane) of the partition in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における中仕切りの断面図(Y―Z面)である。It is sectional drawing (YZ plane) of the partition in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫における中仕切りの温度を示すグラフである。It is a graph which shows the temperature of the partition in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る冷蔵庫におけるヒータの年間消費電力を示すグラフである。It is a graph which shows the annual power consumption of the heater in the refrigerator which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態2に係る冷蔵庫における板材の斜視図および中仕切りの断面図(Y―Z面)である。2 is a perspective view of a plate material and a cross-sectional view (YZ plane) of a partition in the refrigerator according to the second embodiment of the present disclosure.
 以下、本開示の実施の形態について、図を用いて説明する。図中の同一の符号は、同一または相当する部分を表す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The same reference numerals in the drawings represent the same or corresponding parts.
実施の形態1.
 まず、本開示の実施の形態1に係る冷蔵庫100の全体構成について、図1から図3を用いて説明する。
 図1は、冷蔵庫100の斜視図であり、図中の手前側が冷蔵庫100の正面である。図2は、冷蔵庫100の断面図であり、冷蔵庫100を図1におけるII-IIの断面で切断したものである。図3は、図2に示されている冷蔵庫100の冷却回路の概略図である。
Embodiment 1.
First, the overall configuration of the refrigerator 100 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3.
FIG. 1 is a perspective view of the refrigerator 100, and the front side in the drawing is the front side of the refrigerator 100. FIG. 2 is a cross-sectional view of the refrigerator 100, which is obtained by cutting the refrigerator 100 with a cross section of II-II in FIG. FIG. 3 is a schematic view of the cooling circuit of the refrigerator 100 shown in FIG.
 図1に示すように、冷蔵庫100は、六面体形状の筐体1を備えており、筐体1の正面側には、天板1aと底板1bの間に、両開き式の扉を構成する扉2、扉3、および引き出し式の製氷室扉4、切替室扉5、冷凍室扉6、野菜室扉7が設けられている。ここで、底板1bは、冷蔵庫100を設置する際に、建物の床面と接する部分であり、天板1aは、底板1bと対向し、建物の天井側に配置される部分である。
 筐体1には、内部に貯蔵物を貯蔵するための5つの空間が形成されている。図2に示されるように、5つの空間のうち4つは、上から順に並んで配置された冷蔵室11、切替室13、冷凍室14、野菜室15である。もう1つの空間は、図2における切替室13の奥に配置された製氷室である。それぞれの空間は、それぞれ異なる温度で貯蔵物を冷却するための空間であり、断熱材を内蔵した樹脂材で構成される仕切り板1c、1d、1eにより区画されている。また、筐体1には、冷蔵庫100の正面側に各空間と外部とを連通する開口が形成され、貯蔵物の出し入れが可能となっている。
 図1に示されるように、筐体1には、冷蔵室11の開口の両側にそれぞれ扉2、3が回転可能に設けられており、扉2、3は回転し当該開口の一部を閉鎖したり開放したりする。これらの扉2と扉3の間には、扉2および扉3が閉じた状態で隙間が形成される。この隙間は、筐体1の天板1aから底板1bに向かう方向に沿って延びている。
 また、製氷室、切替室13、冷凍室14、野菜室15の開口にはそれぞれ、製氷室扉4、切替室扉5、冷凍室扉6、野菜室扉7が筐体1から離れる方向にスライド可能に設けられている。
As shown in FIG. 1, the refrigerator 100 includes a hexahedral housing 1, and a door 2 forming a double door between the top plate 1a and the bottom plate 1b on the front side of the housing 1. , A door 3, a pull-out type ice making room door 4, a switching room door 5, a freezer room door 6, and a vegetable room door 7. Here, the bottom plate 1b is a portion that comes into contact with the floor surface of the building when the refrigerator 100 is installed, and the top plate 1a is a portion that faces the bottom plate 1b and is arranged on the ceiling side of the building.
The housing 1 is formed with five spaces for storing the stored material inside. As shown in FIG. 2, four of the five spaces are a refrigerating room 11, a switching room 13, a freezing room 14, and a vegetable room 15 arranged in order from the top. The other space is an ice making room arranged at the back of the switching room 13 in FIG. Each space is a space for cooling the stored material at different temperatures, and is partitioned by partition plates 1c, 1d, and 1e made of a resin material containing a heat insulating material. Further, the housing 1 is formed with an opening for communicating each space with the outside on the front side of the refrigerator 100, so that the stored items can be taken in and out.
As shown in FIG. 1, the housing 1 is provided with rotatably doors 2 and 3 on both sides of the opening of the refrigerator compartment 11, and the doors 2 and 3 rotate to close a part of the opening. Door and open. A gap is formed between the door 2 and the door 3 with the door 2 and the door 3 closed. This gap extends from the top plate 1a of the housing 1 toward the bottom plate 1b.
Further, the ice making room door 4, the switching room door 5, the freezing room door 6, and the vegetable room door 7 slide away from the housing 1 at the openings of the ice making room, the switching room 13, the freezing room 14, and the vegetable room 15, respectively. It is provided as possible.
 筐体1の裏面側には冷却装置20が設けられている。冷却装置20は、図2および図3に示されるように、圧縮機21、凝縮器22、膨張手段23、蒸発器24、ファン25、除霜装置26により構成されている。
 図3に示されるように、圧縮機21は、凝縮器22と接続されており、冷媒を断熱圧縮して高温高圧の気体冷媒を凝縮器22へ送り出す。凝縮器22は、膨張手段23と接続されており、筐体1の外部の空気と冷媒の間で熱交換を行って冷媒を液化して膨張手段23へ送り出す。膨張手段23は、蒸発器24と接続されたキャピラリーチューブで構成されたものであり、冷媒を膨張させ気液二相の冷媒として蒸発器24へ送り出す。蒸発器24は、筐体1内の戻り空気27と冷媒との間で熱交換を行い、冷媒を気化させるとともに筐体1内の空気を冷却する。また、蒸発器24は、圧縮機21と接続されており、気化した冷媒を圧縮機21へ送り出す。これらの圧縮機21、凝縮器22、膨張手段23、蒸発器24は、筐体1内の空気を冷却するための冷媒回路を構成している。
 また、冷却装置20は、蒸発器24によって冷却された冷気をファン25によって各空間へ送り出しており、各空間の温度を低温で維持している。ファン25によって送り出された冷気は、戻り空気27として各空間から冷却装置20へ戻り、再び冷却されて各空間へ送り出される。
 冷却装置20は、戻り空気27が吹き込む位置に除霜装置26を備えており、除霜装置26が定期的に駆動して蒸発器24に霜が付着することを抑制している。
A cooling device 20 is provided on the back surface side of the housing 1. As shown in FIGS. 2 and 3, the cooling device 20 includes a compressor 21, a condenser 22, an expanding means 23, an evaporator 24, a fan 25, and a defrosting device 26.
As shown in FIG. 3, the compressor 21 is connected to the condenser 22, adiabatically compresses the refrigerant, and sends a high-temperature and high-pressure gaseous refrigerant to the condenser 22. The condenser 22 is connected to the expansion means 23, exchanges heat between the air outside the housing 1 and the refrigerant, liquefies the refrigerant, and sends the refrigerant to the expansion means 23. The expansion means 23 is composed of a capillary tube connected to the evaporator 24, expands the refrigerant, and sends it to the evaporator 24 as a gas-liquid two-phase refrigerant. The evaporator 24 exchanges heat between the return air 27 in the housing 1 and the refrigerant to vaporize the refrigerant and cool the air in the housing 1. Further, the evaporator 24 is connected to the compressor 21 and sends the vaporized refrigerant to the compressor 21. The compressor 21, the condenser 22, the expanding means 23, and the evaporator 24 form a refrigerant circuit for cooling the air in the housing 1.
Further, the cooling device 20 sends the cold air cooled by the evaporator 24 to each space by the fan 25, and maintains the temperature of each space at a low temperature. The cold air sent out by the fan 25 returns from each space to the cooling device 20 as return air 27, is cooled again, and is sent out to each space.
The cooling device 20 is provided with a defrosting device 26 at a position where the return air 27 is blown, and the defrosting device 26 is periodically driven to prevent frost from adhering to the evaporator 24.
 また、図2に示されるように、筐体1内部の空間を区画する仕切り板1c、1d、1eの内部には、放熱パイプ16a、16b、16cがそれぞれ埋め込まれている。仕切り板1c、1d、1eは、温度の異なる空間を仕切っているため、結露が発生する場合がある。そのため、これらの放熱パイプ16a、16b、16cに、高温の流体を流し、仕切り板1c、1d、1eを加熱している。 Further, as shown in FIG. 2, heat radiating pipes 16a, 16b, and 16c are embedded in the partition plates 1c, 1d, and 1e that partition the space inside the housing 1, respectively. Since the partition plates 1c, 1d, and 1e partition spaces having different temperatures, dew condensation may occur. Therefore, a high-temperature fluid is passed through these heat-dissipating pipes 16a, 16b, 16c to heat the partition plates 1c, 1d, and 1e.
 以上、冷蔵庫100の全体構成について説明したが、冷蔵室11を構成する空間は第1の空間に相当し、製氷室または切替室13を構成する空間は第2の空間に相当する。また、以下の説明で、天板1a側を冷蔵庫100の上方とし、底板1b側を冷蔵庫100の下方とする。また、上下方向および正面と裏面をつなぐ方向に対して垂直な方向は、冷蔵庫100の側方とする。なお、図中のZ方向は、上下方向と対応しており、Y方向は正面と裏面をつなぐ方向と対応しており、X方向は冷蔵庫100の側面同士をつなぐ方向と対応している。 Although the overall configuration of the refrigerator 100 has been described above, the space constituting the refrigerating chamber 11 corresponds to the first space, and the space constituting the ice making chamber or the switching chamber 13 corresponds to the second space. Further, in the following description, the top plate 1a side is above the refrigerator 100, and the bottom plate 1b side is below the refrigerator 100. Further, the vertical direction and the direction perpendicular to the direction connecting the front surface and the back surface are the sides of the refrigerator 100. The Z direction in the drawing corresponds to the vertical direction, the Y direction corresponds to the direction connecting the front surface and the back surface, and the X direction corresponds to the direction connecting the side surfaces of the refrigerator 100.
 次に、冷蔵庫100が備えている中仕切り30について、図4から図9を用いて説明する。
 図4は、正面側から見た冷蔵庫100の冷蔵室11に対応する部分を拡大したものである。図5は、冷蔵庫100を図4のV-Vの断面で切断したものである。図6は、冷蔵庫100を図4のVI-VIの断面で切断して中仕切り30の周辺を拡大したものである。図7は、中仕切り30が備える板材31の斜視図である。図8は、中仕切り30が備える断熱材33、ヒータ32、グラファイトシート35および板材31の分解斜視図である。図9は、図5の拡大図である。
 中仕切り30は、板材31、グラファイトシート35、ヒータ32、断熱材33およびケース34を備えている(図5)。なお、図5中の39aは筐体1内部であり、39bは筐体1外部であり、筐体1外側から上記の順番で板材31からケース34まで配置されている。中仕切り30は、扉2における扉3側の側面に回転可能に設けられている。扉2が閉じている状態では、中仕切り30は、板材31における筐体1の外側に位置する外面が扉2の正面側の面と略平行になるように配置され、扉2が開放されると、それに伴って回転し扉2の側方に折りたたまれる。また、中仕切り30は、図4に示されるように、扉2と扉3が冷蔵室11の開口を閉鎖した際にできる扉2と扉3の間の隙間を板材31の外面で閉鎖する。
Next, the partition 30 provided in the refrigerator 100 will be described with reference to FIGS. 4 to 9.
FIG. 4 is an enlarged view of the portion of the refrigerator 100 that corresponds to the refrigerating chamber 11 as viewed from the front side. FIG. 5 shows the refrigerator 100 cut along the cross section of VV of FIG. FIG. 6 is an enlargement of the periphery of the partition 30 by cutting the refrigerator 100 along the cross section of VI-VI of FIG. FIG. 7 is a perspective view of the plate material 31 included in the partition 30. FIG. 8 is an exploded perspective view of the heat insulating material 33, the heater 32, the graphite sheet 35, and the plate material 31 included in the partition 30. FIG. 9 is an enlarged view of FIG.
The partition 30 includes a plate member 31, a graphite sheet 35, a heater 32, a heat insulating material 33, and a case 34 (FIG. 5). In FIG. 5, 39a is inside the housing 1, 39b is outside the housing 1, and the plate members 31 to the case 34 are arranged in the above order from the outside of the housing 1. The partition 30 is rotatably provided on the side surface of the door 2 on the door 3 side. When the door 2 is closed, the partition 30 is arranged so that the outer surface of the plate member 31 located on the outside of the housing 1 is substantially parallel to the front surface of the door 2, and the door 2 is opened. Then, it rotates and folds to the side of the door 2. Further, as shown in FIG. 4, the partition 30 closes the gap between the door 2 and the door 3 formed when the door 2 and the door 3 close the opening of the refrigerating chamber 11 on the outer surface of the plate member 31.
 板材31は、鉄、アルミニウム、銅、ステンレスなどの金属材料で構成される四角形状の板金である。より具体的には、板材31は、扉2と扉3の間の隙間が延びる方向、すなわち上下方向を長手方向とする長方形状の板金である。また、図5に示すように、板材31は、上方の端部および下方の端部からそれぞれ、フランジ36a、36bがケース34側(筐体1の内部側)へ向かって延びている。フランジ36a、36bの形状は図7に示されているように、四角形状(図7(a))、扇形状(図7(b))、あるいは三角形状(図7(c))である。フランジ36a、36bを四角形状とする場合は、板材31の端部周辺を折り曲げ加工すればよく、フランジ36a、36bを扇形状、三角形状とする場合は、さらに形状に合わせてフランジ36a、36bを切断すればよい。
 板材31は、その長手方向が扉2と扉3が冷蔵室11の開口を閉鎖した際にできる扉2と扉3の間の隙間よりも短くなっており、冷蔵室11の上方の壁(天板1a)および下方の壁(仕切り板1c)と板材31の間には隙間が形成されている(図5)。この隙間から冷気が流出しないように天板1aおよび仕切り板1cの正面側にはそれぞれ、パッキン37aおよびパッキン37bが設けられており、板材31が扉2と扉3の間の隙間を閉鎖した際に、板材31とパッキン37a、37bが接触する。また、図6に示すように、扉2、3が筐体1の開口を閉鎖した際に扉3と対向する扉2の端部周辺にパッキン37cが設けられており、同様に扉3の端部周辺にもパッキン37cが設けられている。板材31が扉2と扉3の間の隙間を閉鎖した際に、板材31とパッキン37cが接触する。これらのパッキン37a、37b、パッキン37cは、耐摩耗性の高いゴム材料で構成されている。
 また、図6に示されるように、中仕切り30の側方には、扉2、3の筐体内部側の面から突出するスロート38a、38bが設けられており、筐体1内の冷気が中仕切り30の側方に当たることを抑制して、中仕切り30の温度低下を抑制している。
The sheet metal 31 is a square sheet metal made of a metal material such as iron, aluminum, copper, or stainless steel. More specifically, the plate material 31 is a rectangular sheet metal whose longitudinal direction is the direction in which the gap between the door 2 and the door 3 extends, that is, the vertical direction. Further, as shown in FIG. 5, in the plate material 31, flanges 36a and 36b extend from the upper end portion and the lower end portion toward the case 34 side (internal side of the housing 1), respectively. As shown in FIG. 7, the shapes of the flanges 36a and 36b are quadrangular (FIG. 7 (a)), fan-shaped (FIG. 7 (b)), or triangular (FIG. 7 (c)). When the flanges 36a and 36b have a quadrangular shape, the periphery of the end portion of the plate member 31 may be bent, and when the flanges 36a and 36b have a fan shape and a triangular shape, the flanges 36a and 36b are further adjusted to the shape. You can cut it.
The plate material 31 has a longitudinal direction shorter than the gap between the door 2 and the door 3 formed when the door 2 and the door 3 close the opening of the refrigerating chamber 11, and the wall above the refrigerating chamber 11 (heaven). A gap is formed between the plate 1a) and the lower wall (partition plate 1c) and the plate material 31 (FIG. 5). Packing 37a and packing 37b are provided on the front side of the top plate 1a and the partition plate 1c, respectively, so that cold air does not flow out from this gap, and when the plate material 31 closes the gap between the door 2 and the door 3. The plate member 31 and the packings 37a and 37b come into contact with each other. Further, as shown in FIG. 6, packing 37c is provided around the end of the door 2 facing the door 3 when the doors 2 and 3 close the opening of the housing 1, and similarly, the end of the door 3 is provided. Packing 37c is also provided around the portion. When the plate material 31 closes the gap between the door 2 and the door 3, the plate material 31 and the packing 37c come into contact with each other. These packings 37a, 37b and 37c are made of a rubber material having high wear resistance.
Further, as shown in FIG. 6, throats 38a and 38b protruding from the inner surface of the housing of the doors 2 and 3 are provided on the side of the partition 30, and the cold air in the housing 1 is released. It suppresses the contact with the side of the partition 30 and suppresses the temperature drop of the partition 30.
 ヒータ32は、板材31の裏側(筐体1の内部側)である内面側に設けられたコードヒータであり、板材31を加熱して結露を抑制するものである。また、ヒータ32は、図8に示されるように、一本のコードヒータが板材31の端部より内側(中央側)に設けられたものであり、筐体1内部側から板材31の内面に向かって板材31をみたとき、ヒータ32は板材の端部周辺までは設けられておらず、板材31の端部から間隔を空けて板材31の内側に配置されている。
 また、ヒータ32は、発熱線の外周が絶縁被膜で被覆されており、板材31などとの接触による短絡を抑制している。
The heater 32 is a cord heater provided on the inner surface side, which is the back side (inside side of the housing 1) of the plate material 31, and heats the plate material 31 to suppress dew condensation. Further, as shown in FIG. 8, the heater 32 is provided with one cord heater inside (center side) from the end portion of the plate material 31, and is provided on the inner surface of the plate material 31 from the inside side of the housing 1. When the plate material 31 is viewed, the heater 32 is not provided up to the periphery of the end portion of the plate material 31 and is arranged inside the plate material 31 at a distance from the end portion of the plate material 31.
Further, in the heater 32, the outer periphery of the heating wire is covered with an insulating film to suppress a short circuit due to contact with the plate material 31 or the like.
 断熱材33は、発泡スチロールあるいは発砲ウレタンなどの熱伝導率が10-2W/m・Kオーダーの発砲プラスチック系の材料で構成され、ヒータ32から筐体1の内部への熱侵入および筐体1から外部への熱漏洩を抑制するものである。断熱材33は、図5および図6に示されるように、ヒータ32および板材31の内面を覆うように設けられている。 Heat insulating material 33, thermal conductivity, such as styrofoam or urethane foam is made of a material of the foamed plastic system 10 -2 W / m · K order, heat penetration and the housing 1 from the heater 32 to the housing 1 It suppresses heat leakage from the air to the outside. As shown in FIGS. 5 and 6, the heat insulating material 33 is provided so as to cover the inner surfaces of the heater 32 and the plate material 31.
 ケース34は、ヒータ32を挟んで板材31の内面と対向する位置に設けられた箱状の部材であり、アクリルまたはポリカーボネイトなどの樹脂材で構成されている。ケース34は、図5および図6に示されるように、六面体形状であり、一つの面に開口を有しており、ケース34の内部に、断熱材33、ヒータ32、グラファイトシート35を収容し、囲っている。また、上下にあるケースの壁には板材31のフランジ36aおよびフランジ36bがそれぞれ接しており、これらの壁とフランジ36aおよびフランジ36bとは、ネジなどの締結具で固定されており、板材31がケース34の開口を覆うように、フランジ36a、36bを介してケース34に固定されている。 The case 34 is a box-shaped member provided at a position facing the inner surface of the plate member 31 with the heater 32 interposed therebetween, and is made of a resin material such as acrylic or polycarbonate. As shown in FIGS. 5 and 6, the case 34 has a hexahedral shape and has an opening on one surface, and the heat insulating material 33, the heater 32, and the graphite sheet 35 are housed inside the case 34. , Surrounding. Further, the flange 36a and the flange 36b of the plate material 31 are in contact with the walls of the upper and lower cases, respectively, and these walls and the flange 36a and the flange 36b are fixed by fasteners such as screws, and the plate material 31 is It is fixed to the case 34 via flanges 36a and 36b so as to cover the opening of the case 34.
 グラファイトシート35は、グラファイトを含むシート状の部材である。厚みは40μmから100μmのものを用いる。グラファイトシート35は、ヒータ32に熱伝導可能に設けられている。また、少なくとも、ヒータ32が設けられていない板材31の端部周辺の面に熱伝導可能に設けられている。言い換えれば、グラファイトシート35は、筐体1の内部から板材31の内面に向かってみたとき、板材31の端部とヒータ32の間にある板材31の面にヒータ32の熱を伝導できるように、すなわち、熱伝導可能に設けられている。図5に示している例では、板材31の端部周辺の内面だけでなく、板材31の内面全体にグラファイトシート35が熱伝導可能に設けられている。また、ヒータ32の板材31側の部分すべてにグラファイトシート35が熱伝導可能に設けられている。このようにして、グラファイトシート35は、板材31の内面とヒータ32の間に設けられている。
 グラファイトシート35に含まれるグラファイトは、炭素が共有結合した六角板状結晶の層を複数備えたものであり、このグラファイトシートの板状結晶の各層は、グラファイトシート35のシート面内に沿うように配向している。このため、グラファイトシート35は、シートの厚み方向に比べて面内方向の熱伝導率が大きく、熱伝導率に異方性を有する部材である。そして、グラファイトシート35は、板材31の内面に沿って設置されるので、グラファイトの板状結晶の各層は、板材31の内面に沿って配向する。そのため、グラファイトシート35は、板材31の内面に沿った方向への熱伝導率が板材31の内面から外面へ向かう方向への熱伝導率より高い。具体的には、内面に沿った方向への熱伝導率は、1500W/m・Kであり、板材31の材料の例である鉄の熱伝導率である約80W/m・Kに比べ20倍近く高い。また、内面から外面へ向かう方向への熱伝導率は、10W/m・K程度であり、鉄の熱伝導率より低い。そのため、ヒータ32が発生した熱は、板材31の内面に沿って伝達されやすく、板材31の端部へ熱が拡散しやすい。反対に、板材31の内面から外面へ向かう方向へは熱が伝達されにくく、冷蔵庫100の外部への熱漏洩が少ない。
The graphite sheet 35 is a sheet-like member containing graphite. A thickness of 40 μm to 100 μm is used. The graphite sheet 35 is provided on the heater 32 so as to be heat conductive. Further, at least, the plate material 31 on which the heater 32 is not provided is provided so as to be heat conductive on the surface around the end portion. In other words, the graphite sheet 35 can conduct the heat of the heater 32 to the surface of the plate 31 between the end of the plate 31 and the heater 32 when viewed from the inside of the housing 1 toward the inner surface of the plate 31. That is, it is provided so that it can conduct heat. In the example shown in FIG. 5, the graphite sheet 35 is provided so as to be heat conductive not only on the inner surface around the end portion of the plate material 31 but also on the entire inner surface of the plate material 31. Further, graphite sheets 35 are provided so as to be heat conductive in all the portions of the heater 32 on the plate material 31 side. In this way, the graphite sheet 35 is provided between the inner surface of the plate member 31 and the heater 32.
The graphite contained in the graphite sheet 35 includes a plurality of layers of hexagonal plate-shaped crystals covalently bonded to carbon, and each layer of the plate-shaped crystals of the graphite sheet is aligned with the inside of the sheet surface of the graphite sheet 35. It is oriented. Therefore, the graphite sheet 35 is a member having a large thermal conductivity in the in-plane direction as compared with the thickness direction of the sheet and having anisotropy in the thermal conductivity. Since the graphite sheet 35 is installed along the inner surface of the plate material 31, each layer of the graphite plate-like crystal is oriented along the inner surface of the plate material 31. Therefore, in the graphite sheet 35, the thermal conductivity in the direction along the inner surface of the plate material 31 is higher than the thermal conductivity in the direction from the inner surface to the outer surface of the plate material 31. Specifically, the thermal conductivity in the direction along the inner surface is 1500 W / m · K, which is 20 times higher than the thermal conductivity of iron, which is an example of the material of the plate material 31, which is about 80 W / m · K. Nearly high. Further, the thermal conductivity in the direction from the inner surface to the outer surface is about 10 W / m · K, which is lower than the thermal conductivity of iron. Therefore, the heat generated by the heater 32 is easily transferred along the inner surface of the plate material 31, and the heat is easily diffused to the end portion of the plate material 31. On the contrary, heat is not easily transferred from the inner surface to the outer surface of the plate member 31, and heat leakage to the outside of the refrigerator 100 is small.
 グラファイトシート35は、図9に示されるように、両側の面に粘着テープ35a、35bを備えており、粘着テープ35aによってヒータ32と接着されている。また、粘着テープ35bによって板材31と接着されている。粘着テープ35aおよび粘着テープ35bは、接触熱抵抗を小さくできるアルミテープ、ビニルテープまたはポリイミドテープなどで構成されており、ヒータ32からの熱が効率よくグラファイトシート35および板材31に伝導される。 As shown in FIG. 9, the graphite sheet 35 is provided with adhesive tapes 35a and 35b on both side surfaces, and is adhered to the heater 32 by the adhesive tape 35a. Further, it is adhered to the plate material 31 by the adhesive tape 35b. The adhesive tape 35a and the adhesive tape 35b are made of aluminum tape, vinyl tape, polyimide tape or the like that can reduce the contact thermal resistance, and the heat from the heater 32 is efficiently conducted to the graphite sheet 35 and the plate material 31.
 ここで、実施の形態1における中仕切り30の変形例を、図10を用いて説明する。図10は、図5の断面図と対応する中仕切り30の断面図である。
 図10(a)の例は、図5で示した中仕切り30の例と同様のものであり、グラファイトシート35が板材31の内面全面に設けられている。なお、図10(a)に示されているLは、板材31の上下方向(長手方向)の長さを示している。この例は、板材31の上方および下方の両端部に熱を効率よく伝達できるものである。
 図10(b)の例は、板材31の長手方向における中心よりも上方の端部側にグラファイトシート35が設けられており、グラファイトシート35の長さがL/4であり、板材31における上方の端部からL/4までの範囲にグラファイトシート35が設けられている例である。実施の形態1のように、板材31の下方の端部近傍に放熱パイプ16aが設けられている場合(図2および図5参照)、下方の端部は温度が低下しにくい。このような場合にこの例を採用することが好ましい。また、板材31の上端部にはフランジ36aが設けられているため、冷却されやすいが、このように、板材31のうち、フランジ36aが設けられた端部周辺にグラファイトシート35を設けることで、当該端部の温度低下を抑制できる。
 図10(c)の例は、板材31の長手方向における中心よりも上方の端部側にグラファイトシート35が設けられており、グラファイトシート35の長さがL/2であり、板材31における上方の端部からL/2までの範囲にグラファイトシート35が設けられている例である。この例も、板材31の上方の端部に熱を効率よく伝達するものであり、図10(b)の例と同様である。
 図10(d)の例は、板材31の長手方向における中心よりも下方の端部側にグラファイトシート35が設けられており、グラファイトシート35の長さがL/4であり、板材31における下方の端部からL/4までの範囲にグラファイトシート35が設けられている例である。この例は、板材31の下方の端部に熱を効率よく伝達するものである。実施の形態1とは異なり、板材31の上方の端部近傍に放熱パイプが設けられている場合にこの例を採用することが好ましい。また、板材31の下端部にはフランジ36bが設けられているため、冷却されやすいが、このように、板材31のうち、フランジ36bが設けられた端部周辺にグラファイトシート35を設けることで、当該端部の温度低下を抑制できる。
 図10(e)の例は、板材31の長手方向における中心よりも下方の端部側にグラファイトシート35が設けられており、グラファイトシート35の長さがL/2であり、板材31における下方の端部からL/2までの範囲にグラファイトシート35が設けられている例である。この例も、板材31の下方の端部に熱を効率よく伝達するものであり、図10(d)の例と同様である。
 図10(f)の例は、板材31の長手方向における中心よりも上方の端部側および下方の端部側にグラファイトシート35が設けられており、グラファイトシート35の長さがL/4であり、二枚のグラファイトシート35が板材31における上方および下方の端部からL/4までの範囲にそれぞれ設けられている例である。この例は、図10(a)の例と同様、板材31の上方および下方の両端部に熱を効率よく伝達できるものである。
Here, a modified example of the partition 30 according to the first embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view of the partition 30 corresponding to the cross-sectional view of FIG.
The example of FIG. 10A is the same as the example of the partition 30 shown in FIG. 5, and the graphite sheet 35 is provided on the entire inner surface of the plate member 31. Note that L shown in FIG. 10A indicates the length of the plate member 31 in the vertical direction (longitudinal direction). In this example, heat can be efficiently transferred to both upper and lower ends of the plate member 31.
In the example of FIG. 10B, the graphite sheet 35 is provided on the end side above the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 4, and the upper side of the plate material 31. This is an example in which the graphite sheet 35 is provided in the range from the end of the surface to L / 4. When the heat radiating pipe 16a is provided in the vicinity of the lower end portion of the plate member 31 as in the first embodiment (see FIGS. 2 and 5), the temperature of the lower end portion is unlikely to decrease. In such a case, it is preferable to adopt this example. Further, since the flange 36a is provided at the upper end portion of the plate material 31, it is easy to be cooled. In this way, by providing the graphite sheet 35 around the end portion of the plate material 31 where the flange 36a is provided, the graphite sheet 35 is provided. The temperature drop at the end can be suppressed.
In the example of FIG. 10C, the graphite sheet 35 is provided on the end side above the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 2, and the upper side of the plate material 31. This is an example in which the graphite sheet 35 is provided in the range from the end of the surface to L / 2. This example also efficiently transfers heat to the upper end portion of the plate member 31, and is the same as the example of FIG. 10B.
In the example of FIG. 10D, the graphite sheet 35 is provided on the end side below the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 4, and the lower part of the plate material 31. This is an example in which the graphite sheet 35 is provided in the range from the end of the surface to L / 4. In this example, heat is efficiently transferred to the lower end portion of the plate member 31. Unlike the first embodiment, it is preferable to adopt this example when the heat radiating pipe is provided near the upper end portion of the plate member 31. Further, since the flange 36b is provided at the lower end portion of the plate material 31, it is easy to be cooled. In this way, by providing the graphite sheet 35 around the end portion of the plate material 31 where the flange 36b is provided, the graphite sheet 35 is provided. The temperature drop at the end can be suppressed.
In the example of FIG. 10 (e), the graphite sheet 35 is provided on the end side below the center in the longitudinal direction of the plate material 31, the length of the graphite sheet 35 is L / 2, and the lower part of the plate material 31. This is an example in which the graphite sheet 35 is provided in the range from the end of the surface to L / 2. This example also efficiently transfers heat to the lower end portion of the plate member 31, and is the same as the example of FIG. 10 (d).
In the example of FIG. 10 (f), the graphite sheet 35 is provided on the end side above the center and the end side below the center in the longitudinal direction of the plate member 31, and the length of the graphite sheet 35 is L / 4. This is an example in which two graphite sheets 35 are provided in the range from the upper and lower ends of the plate member 31 to L / 4, respectively. In this example, similar to the example of FIG. 10A, heat can be efficiently transferred to both upper and lower ends of the plate member 31.
 次に、放熱パイプ16aが板材31の下方の端部近傍に設けられ放熱している状態で、ヒータ32に通電した場合における板材31の上方への端部への熱拡散効率と、ヒータ32の消費電力について、図11から図13を用いて説明する。
 図11は、板材31の熱拡散効率を評価するための比較例、実施例1から実施例3の中仕切り30、30’の構成を示す断面図である。
 グラファイトシート35を設けた板材31の熱拡散効率を評価するため、図11に示されている4つの中仕切り30を用意した。図11(a)は、グラファイトシート35を備えない中仕切り30’であり、板材31の上方の端部付近に温度センサ40a、板材31の中央付近に温度センサ40c、板材31の下方の端部付近に温度センサ40e、温度センサ40aと温度センサ40cの間に温度センサ40b、温度センサ40cと温度センサ40eの間に温度センサ40dを配置した。この中仕切り30’は比較例である。
 また、実施の形態1に係る中仕切り30として次の3つを用意した。図11(b)に示されている中仕切り30は、グラファイトシート35を板材31の全面に設けたものである(図10(a)と対応)。図11(c)に示されている中仕切り30は、上下方向の長さがL/2のグラファイトシート35を板材31の上方の端部から設けたものである(図10(c)と対応)。図11(d)に示されている中仕切り30は、上下方向の長さがL/4のグラファイトシート35を板材31の上方の端部から設けたものである(図10(b)と対応)。これらの中仕切り30には、中仕切り30’同様、温度センサ40a、40b、40c、40d、40eが配置されている。なお、グラファイトシート35の厚みは40μmとした。
 なお、以下では、図11(b)の例を実施例1、図11(c)の例を実施例2、図11(d)の例を実施例3という。
Next, the heat diffusion efficiency to the upper end of the plate 31 when the heater 32 is energized in a state where the heat dissipation pipe 16a is provided near the lower end of the plate 31 to dissipate heat, and the heater 32 The power consumption will be described with reference to FIGS. 11 to 13.
FIG. 11 is a cross-sectional view showing the configurations of the partitions 30 and 30'of Comparative Examples 1 to 3 for evaluating the heat diffusion efficiency of the plate member 31.
In order to evaluate the heat diffusion efficiency of the plate material 31 provided with the graphite sheet 35, four partitions 30 shown in FIG. 11 were prepared. FIG. 11A shows a partition 30'without a graphite sheet 35, a temperature sensor 40a near the upper end of the plate material 31, a temperature sensor 40c near the center of the plate material 31, and a lower end of the plate material 31. A temperature sensor 40e, a temperature sensor 40b between the temperature sensor 40a and the temperature sensor 40c, and a temperature sensor 40d between the temperature sensor 40c and the temperature sensor 40e were arranged in the vicinity. This partition 30'is a comparative example.
Further, the following three are prepared as the partition 30 according to the first embodiment. The partition 30 shown in FIG. 11B has a graphite sheet 35 provided on the entire surface of the plate member 31 (corresponding to FIG. 10A). The partition 30 shown in FIG. 11C is formed by providing a graphite sheet 35 having a length of L / 2 in the vertical direction from the upper end of the plate member 31 (corresponding to FIG. 10C). ). The partition 30 shown in FIG. 11D is formed by providing a graphite sheet 35 having a length of L / 4 in the vertical direction from the upper end of the plate member 31 (corresponding to FIG. 10B). ). Similar to the partition 30', the temperature sensors 40a, 40b, 40c, 40d, and 40e are arranged in the partition 30. The thickness of the graphite sheet 35 was 40 μm.
In the following, the example of FIG. 11 (b) will be referred to as Example 1, the example of FIG. 11 (c) will be referred to as Example 2, and the example of FIG. 11 (d) will be referred to as Example 3.
 次に、上記の中仕切り30、30’を冷蔵庫100に設置し、通電を行い、温度センサ40a、40b、40c、40d、40eで各測定点における温度を測定した。
 試験環境は、JIS規格(JIS9801)に沿って、恒温恒湿槽に冷蔵庫100を設置し、外気温度32℃、相対湿度70%R.H.に設定し、ヒータ32の通電率は40%とした。
 図12に、比較例、実施例1から実施例3の中仕切り30、30’における板材31の最低温度を示す。なお、最低温度は比較例をゼロとした場合の差分で示す。
 最低温度は、いずれの例でも板材31の上方の端部付近に配置した温度センサ40aが測定したものであった。なお、板材31の下方の端部付近に配置した温度センサ40eが測定した温度は、放熱パイプ16aからの放熱の影響を受けているため、板材31の上方の端部のほうが低温となった。
 最低温度について比較すると、実施例1から実施例3では、比較例より0.9K以上、温度が高かった。すなわち、実施例1から実施例3では、板材31の上方の端部に効率的に熱を伝達できている。これは、ヒータ32が発生させる熱が、板材31に沿った方向へ拡散しやすく、板材31の上方の端部にヒータ32の熱が十分に伝わったからと考えられる。
 また、実施例1から実施例3を比較すると、実施例2および実施例3のほうが、実施例1より最低温度が高くなった。すなわち、実施例2および実施例3のほうが板材31の上方の端部に効率的に熱を伝達できている。これは、グラファイトシート35を板材31の全面に貼りつけた実施例1の場合、ヒータ32が発生させた熱が板材31の下方の端部や中央部分を含めた全面を温めるために使われるのに対して、実施例2および実施例3では、板材31の上方に配置されたヒータ32の熱が板材31の下方や中央部分へは伝達されづらく、上方の端部を温めるために使われるからと考えられる。
 以上から、実施例1から実施例3のようにグラファイトシート35を備えた中仕切り30は、板材31の上方の端部への熱拡散効率が高いということができる。
Next, the above partitions 30 and 30'were installed in the refrigerator 100, energized, and the temperature at each measurement point was measured with the temperature sensors 40a, 40b, 40c, 40d, and 40e.
In the test environment, a refrigerator 100 was installed in a constant temperature and humidity chamber in accordance with JIS standards (JIS9801), and the outside air temperature was 32 ° C. and the relative humidity was 70% R. H. The energization rate of the heater 32 was set to 40%.
FIG. 12 shows the minimum temperature of the plate material 31 in the partitions 30 and 30'of Comparative Examples, Examples 1 to 3. The minimum temperature is shown by the difference when the comparative example is set to zero.
The minimum temperature was measured by the temperature sensor 40a arranged near the upper end of the plate member 31 in each example. Since the temperature measured by the temperature sensor 40e arranged near the lower end of the plate 31 is affected by the heat radiation from the heat dissipation pipe 16a, the temperature at the upper end of the plate 31 is lower.
Comparing the minimum temperature, in Examples 1 to 3, the temperature was 0.9 K or more higher than that in Comparative Example. That is, in Examples 1 to 3, heat can be efficiently transferred to the upper end portion of the plate member 31. It is considered that this is because the heat generated by the heater 32 is easily diffused in the direction along the plate material 31, and the heat of the heater 32 is sufficiently transferred to the upper end portion of the plate material 31.
Further, when comparing Examples 1 to 3, the minimum temperature of Example 2 and Example 3 was higher than that of Example 1. That is, in the second and third embodiments, heat can be transferred more efficiently to the upper end portion of the plate member 31. In the case of the first embodiment in which the graphite sheet 35 is attached to the entire surface of the plate material 31, the heat generated by the heater 32 is used to heat the entire surface including the lower end portion and the central portion of the plate material 31. On the other hand, in Examples 2 and 3, the heat of the heater 32 arranged above the plate material 31 is difficult to be transferred to the lower part and the central portion of the plate material 31, and is used to heat the upper end portion. it is conceivable that.
From the above, it can be said that the partition 30 provided with the graphite sheet 35 as in Examples 1 to 3 has high heat diffusion efficiency to the upper end portion of the plate material 31.
 次に、比較例、実施例1から実施例3について、上記の通り測定した最低温度からヒータ32の年間の消費電力を算出した結果を図13に示す。
 板材31の結露を抑制するために必要なヒータ32の消費電力は、板材31の最低温度に依存する。最低温度になる部分が最も結露しやすいからである。実施例1から実施例3は、上記の通り、最低温度が比較例よりも高くなっているため、ヒータ32の通電率を下げ消費電力を低減しても結露しない温度に保つことができる。そのため、実施例1から実施例3の消費電力は、比較例に比べ87%から89%となっており、消費電力を11%から13%低減することができる。なお、ここで示した消費電力は、JIS C9801-3に規定されている年間の気温と湿度の発生確率と、各気温、湿度において板材表面温度を露点以上とするために必要なヒータ32の通電率を用いて算出したものである。
 また、実施例2および実施例3のほうが、実施例1より最低温度が高いため、実施例2および実施例3のほうがより一層、消費電力を低減できる。
Next, for Comparative Examples, Examples 1 to 3, the results of calculating the annual power consumption of the heater 32 from the minimum temperature measured as described above are shown in FIG.
The power consumption of the heater 32 required to suppress the dew condensation on the plate material 31 depends on the minimum temperature of the plate material 31. This is because the part with the lowest temperature is most likely to condense. As described above, in Examples 1 to 3, the minimum temperature is higher than that in Comparative Example, so that the temperature can be maintained at a temperature at which dew condensation does not occur even if the energization rate of the heater 32 is lowered and the power consumption is reduced. Therefore, the power consumption of Examples 1 to 3 is 87% to 89% as compared with Comparative Example, and the power consumption can be reduced from 11% to 13%. The power consumption shown here is the annual temperature and humidity generation probability specified in JIS C9801-3, and the energization of the heater 32 required to keep the plate material surface temperature above the dew point at each temperature and humidity. It is calculated using the rate.
Further, since the minimum temperature of Example 2 and Example 3 is higher than that of Example 1, the power consumption of Example 2 and Example 3 can be further reduced.
 ここまで、実施例1から実施例3について説明したが、特に、実施例2および実施例3の評価結果で示されたように、板材31の端部周辺にグラファイトシート35を接触させた場合、端部に向かってヒータ32が発生させた熱が効率よく伝達される。したがって、実施の形態1のほかの変形例(図11に示した例)についても、グラファイトシート35が貼りつけられた側の端部については、比較例より温度を上昇させることが可能である。 Up to this point, Examples 1 to 3 have been described. In particular, as shown in the evaluation results of Examples 2 and 3, when the graphite sheet 35 is brought into contact with the periphery of the end portion of the plate material 31, the graphite sheet 35 is brought into contact with the plate material 31. The heat generated by the heater 32 is efficiently transferred toward the end portion. Therefore, also in the other modified example of the first embodiment (the example shown in FIG. 11), it is possible to raise the temperature of the end portion on the side to which the graphite sheet 35 is attached as compared with the comparative example.
 本開示の実施の形態1に係る冷蔵庫100は、以上のように構成されており、次のような効果を奏する。
 冷蔵庫100は、板材31の内面に沿った方向への熱伝導率が板材の内面から外面へ向かう方向への熱伝導率より高い部材であるグラファイトシート35を備えており、このグラファイトシート35がヒータ32とヒータ32が設けられていない板材31の端部周辺に熱伝導可能に設けられ、ヒータ32の熱を板材31の端部周辺の面へ伝送する。そのため、ヒータ32で発生した熱は、冷蔵庫100の内部または外部へは伝達されにくく、板材31の内面に沿ってヒータ32の設けられていない端部周辺へ伝達されやすい。すなわち、グラファイトシート35を備えない冷蔵庫(比較例)では、ヒータ32の熱が冷蔵庫の内部または外部へと漏洩し無駄になっていたが、冷蔵庫100は、このような漏洩していた熱を端部へ向けて伝達して有効活用できる。そのため、図12で示したように、板材31の端部周辺の温度を上昇させることができる。よって、板材31の端部周辺での結露を防止するために必要な電力を小さくすることができ、ヒータ32の消費電力を低減することができる。
The refrigerator 100 according to the first embodiment of the present disclosure is configured as described above, and has the following effects.
The refrigerator 100 includes a graphite sheet 35 which is a member whose thermal conductivity in the direction along the inner surface of the plate material 31 is higher than the thermal conductivity in the direction from the inner surface to the outer surface of the plate material, and the graphite sheet 35 is a heater. The plate material 31 in which the 32 and the heater 32 are not provided is provided so as to be heat conductive around the end portion of the plate material 31, and the heat of the heater 32 is transmitted to the surface around the end portion of the plate material 31. Therefore, the heat generated by the heater 32 is difficult to be transmitted to the inside or the outside of the refrigerator 100, and is easily transferred to the periphery of the end portion where the heater 32 is not provided along the inner surface of the plate member 31. That is, in the refrigerator (comparative example) not provided with the graphite sheet 35, the heat of the heater 32 leaks to the inside or the outside of the refrigerator and is wasted, but the refrigerator 100 ends the leaked heat. It can be communicated to the department and used effectively. Therefore, as shown in FIG. 12, the temperature around the end portion of the plate member 31 can be raised. Therefore, the electric power required to prevent dew condensation around the end portion of the plate member 31 can be reduced, and the power consumption of the heater 32 can be reduced.
 また、冷蔵庫100は、上記のグラファイトシート35を備えていることにより、ヒータ32周辺の熱を効率的に板材31の端部へ拡散することができるため、ヒータ32周辺の板材31の温度と板材31の端部の温度の差を小さくすることができ、板材31の温度分布を均一に近づけることができる。よって、品質の高い冷蔵庫100を提供することができる。 Further, since the refrigerator 100 is provided with the above-mentioned graphite sheet 35, the heat around the heater 32 can be efficiently diffused to the end portion of the plate material 31, so that the temperature of the plate material 31 around the heater 32 and the plate material 31 can be efficiently diffused. The difference in temperature at the ends of the plate 31 can be reduced, and the temperature distribution of the plate 31 can be made uniform. Therefore, it is possible to provide a high quality refrigerator 100.
 冷蔵庫100は、ヒータ32と板材31の内面の間にグラファイトシート35が介在している。そのため、ヒータ32が発生させた熱がそのまま板材31に伝達され、冷蔵庫100の外部へ漏洩することを抑制することができる。 In the refrigerator 100, a graphite sheet 35 is interposed between the heater 32 and the inner surface of the plate material 31. Therefore, it is possible to prevent the heat generated by the heater 32 from being directly transmitted to the plate material 31 and leaking to the outside of the refrigerator 100.
 冷蔵庫100は、板材31の長手方向における中心よりも端部側にグラファイトシート35を備えている。このように、グラファイトシート35を板材31の中心より端部側に設けることで、図12に示されているように板材31の端部へ効率的に熱を拡散することができる。 The refrigerator 100 includes a graphite sheet 35 on the end side of the plate member 31 in the longitudinal direction with respect to the center. By providing the graphite sheet 35 on the end side from the center of the plate material 31 in this way, heat can be efficiently diffused to the end portion of the plate material 31 as shown in FIG.
 冷蔵庫100は、冷蔵室11と切替室13および製氷室の間の仕切り板1cには放熱パイプ16aが設けられており、グラファイトシート35は、板材31の端部のうち放熱パイプ16aから離れた端部側の内面に設けられている。放熱パイプ16aに近い板材31の端部は、放熱パイプ16aからの熱が伝わり高温を維持しやすいが、離れた端部は温度が低下しやすい。この離れた端部側にはグラファイトシート35を設けているため、より冷えやすい端部へ熱を伝達することができ、ヒータ32の消費電力を低減することができる。 In the refrigerator 100, a heat radiating pipe 16a is provided in the partition plate 1c between the refrigerating chamber 11, the switching chamber 13, and the ice making chamber, and the graphite sheet 35 is an end of the plate material 31 that is separated from the heat radiating pipe 16a. It is provided on the inner surface of the part side. The heat from the heat radiating pipe 16a is easily transferred to the end portion of the plate material 31 close to the heat radiating pipe 16a to maintain a high temperature, but the temperature tends to decrease at the distant end portion. Since the graphite sheet 35 is provided on the distant end side, heat can be transferred to the end portion which is more easily cooled, and the power consumption of the heater 32 can be reduced.
 冷蔵庫100では、板材31をケース34に固定するために、板材31は端部から延びるフランジ36a、36bを備えている。フランジ36a、36bは筐体1の内部に向かって延びており、断熱材33も設けられていないため、冷気によって冷却されやすく、フランジ36a、36bが設けられた板材31の端部はほかの端部より温度が低下しやすい。冷蔵庫100は、フランジ36a、36bが設けられた端部周辺にグラファイトシート35を設けているため、より冷えやすい端部へ熱を伝達することができ、ヒータ32の消費電力を低減することができる。 In the refrigerator 100, in order to fix the plate material 31 to the case 34, the plate material 31 is provided with flanges 36a and 36b extending from the end portions. Since the flanges 36a and 36b extend toward the inside of the housing 1 and are not provided with the heat insulating material 33, they are easily cooled by cold air, and the ends of the plate material 31 provided with the flanges 36a and 36b are other ends. The temperature is more likely to drop than the part. Since the refrigerator 100 is provided with the graphite sheet 35 around the ends where the flanges 36a and 36b are provided, heat can be transferred to the end where it is easier to cool, and the power consumption of the heater 32 can be reduced. ..
 ここで、本開示の実施の形態1に係る冷蔵庫100の変形例の説明および補足説明を行う。
 冷蔵庫100は、冷蔵室11の扉が両開き式の扉2、3によって構成されていたが、冷蔵室11の扉は引き出し式あるいは片開き式の扉でもよく、冷蔵室11に代えて、製氷室、切替室13、冷凍室14、または野菜室15の扉が両開き式であってもよい。この場合、製氷室、切替室13、冷凍室14、または野菜室15の開口周辺に設けられた両開き式の扉に実施の形態1の中仕切り30を設ける。
Here, a modified example of the refrigerator 100 according to the first embodiment of the present disclosure and a supplementary explanation will be given.
In the refrigerator 100, the door of the refrigerating chamber 11 is composed of double doors 2 and 3, but the door of the refrigerating chamber 11 may be a pull-out type or a single-opening type door. , The door of the switching chamber 13, the freezer compartment 14, or the vegetable compartment 15 may be a double door type. In this case, the partition 30 of the first embodiment is provided in the double door provided around the opening of the ice making room, the switching room 13, the freezing room 14, or the vegetable room 15.
 実施の形態1では、扉2と扉3の間の隙間が上下方向に延びていたが、上下方向に限らず側方に延びていてもよい、この場合、扉2と扉3は、開口の上下に配置される。 In the first embodiment, the gap between the door 2 and the door 3 extends in the vertical direction, but the gap may extend not only in the vertical direction but also in the lateral direction. In this case, the door 2 and the door 3 have an opening. Arranged above and below.
 実施の形態1では、グラファイトシート35が板材31とヒータ32の間に挟まれている構成について説明したが、ヒータ32をグラファイトシート35と板材31とで挟むように構成してもよい。この場合、グラファイトシート35を、断熱材33側からヒータ32と板材31に押し付けて変形させ、ヒータおよび板材31に熱伝導可能に設ける。このようにすることで、ヒータ32と断熱材33の間にグラファイトシート35が介在することになるため、ヒータ32と断熱材33が接触してない。そのためヒータ32が発生させた熱がそのまま断熱材33に伝達され、冷蔵庫100の内部へ漏洩することを抑制することができる。 In the first embodiment, the configuration in which the graphite sheet 35 is sandwiched between the plate material 31 and the heater 32 has been described, but the heater 32 may be configured to be sandwiched between the graphite sheet 35 and the plate material 31. In this case, the graphite sheet 35 is pressed from the heat insulating material 33 side against the heater 32 and the plate material 31 to be deformed, and is provided on the heater and the plate material 31 so as to be heat conductive. By doing so, the graphite sheet 35 is interposed between the heater 32 and the heat insulating material 33, so that the heater 32 and the heat insulating material 33 are not in contact with each other. Therefore, the heat generated by the heater 32 is directly transmitted to the heat insulating material 33, and it is possible to prevent the heat from leaking into the refrigerator 100.
 実施の形態1では、放熱パイプ16aが板材31の下方の端部周辺に配置されている例を示したが、放熱パイプが板材31の上方の端部周辺、すなわち、筐体1の天板1a内部に設けられていてもよい。この場合、図11(d)または図11(e)の中仕切り30を用いることが好適である。 In the first embodiment, an example in which the heat radiating pipe 16a is arranged around the lower end portion of the plate material 31 is shown, but the heat radiating pipe is located around the upper end portion of the plate material 31, that is, the top plate 1a of the housing 1. It may be provided inside. In this case, it is preferable to use the partition 30 of FIG. 11 (d) or FIG. 11 (e).
実施の形態2.
 次に、本開示の実施の形態2について説明する。実施の形態1で説明した構成と同様の部分については説明を省略し、実施の形態1と異なる部分について、以下に説明する。なお、実施の形態2の冷蔵庫100は、実施の形態1の変形例と組み合わせて実施することができる。
 実施の形態1では、板材31を折り曲げ加工することでフランジ36a、36bを形成していたため、フランジ36a、36bは、板金によって構成されていた。
 実施の形態2では、フランジ236a、236bを樹脂材で構成している。
Embodiment 2.
Next, a second embodiment of the present disclosure will be described. The same parts as those described in the first embodiment will be omitted, and the parts different from the first embodiment will be described below. The refrigerator 100 of the second embodiment can be implemented in combination with the modified example of the first embodiment.
In the first embodiment, the flanges 36a and 36b are formed by bending the plate member 31, so that the flanges 36a and 36b are made of sheet metal.
In the second embodiment, the flanges 236a and 236b are made of a resin material.
 実施の形態2の冷蔵庫100は、図14(a)、(b)で示されているように、板材31の端部からケース34に向けて延びるフランジ236a、236bが樹脂材で構成されている。樹脂材は、ポリプロピレン樹脂、アクリロニトリル樹脂などの板金より熱伝導性の低い材料で構成されている。
 板金で構成される板材31と樹脂材で構成されるフランジ236a、236bとは異種材料であるため、接着剤、両面テープ、ホットメルト、カシメ、ネジ締め、リベット止め、フック爪などで接合する。
In the refrigerator 100 of the second embodiment, as shown in FIGS. 14A and 14B, flanges 236a and 236b extending from the end of the plate member 31 toward the case 34 are made of a resin material. .. The resin material is composed of a material having a lower thermal conductivity than sheet metal, such as polypropylene resin and acrylonitrile resin.
Since the plate material 31 made of sheet metal and the flanges 236a and 236b made of resin material are different materials, they are joined with an adhesive, double-sided tape, hot melt, caulking, screw tightening, riveting, hook claws, or the like.
 本開示の実施の形態2に係る冷蔵庫100は、以上のように構成されており、実施の形態1と同様の効果を奏するとともに、次のような効果を奏する。
 冷蔵庫100の板材31のフランジ236a、236bは、樹脂材で構成されているため、筐体1内部の冷気によって板材31の端部が冷却されることを抑制することができる。よって、ヒータの消費電力を低減することができる。
The refrigerator 100 according to the second embodiment of the present disclosure is configured as described above, and has the same effects as those of the first embodiment and also has the following effects.
Since the flanges 236a and 236b of the plate material 31 of the refrigerator 100 are made of a resin material, it is possible to prevent the end portion of the plate material 31 from being cooled by the cold air inside the housing 1. Therefore, the power consumption of the heater can be reduced.
 本開示の冷蔵庫は、貯蔵物の保存のために利用することができる。 The refrigerator of the present disclosure can be used for storage of stored items.
1 筐体、1a 天板、1b 底板、1c 仕切り板、1d 仕切り板、1e 仕切り板、2 扉、3 扉、4 製氷室扉、5 切替室扉、6 冷凍室扉、7 野菜室扉、11 冷蔵室、13 切替室、14 冷凍室、15 野菜室、16a 放熱パイプ、16b 放熱パイプ、16c 放熱パイプ、20 冷却装置、21 圧縮機、22 凝縮器、23 膨張手段、24 蒸発器、25 ファン、26 除霜装置、27 戻り空気、30 中仕切り、31 板材、32 ヒータ、33 断熱材、34 ケース、35 グラファイトシート、35a 粘着テープ、35b 粘着テープ、36a フランジ、36b フランジ、37a パッキン、37b パッキン、38a スロート、38b スロート、39a 筐体内部、39b 筐体外部、40a 温度センサ、40b 温度センサ、40c 温度センサ、40d 温度センサ、40e 温度センサ、230 中仕切り、236a フランジ、236b フランジ 1 housing, 1a top plate, 1b bottom plate, 1c partition plate, 1d partition plate, 1e partition plate, 2 doors, 3 doors, 4 ice making room doors, 5 switching room doors, 6 freezer room doors, 7 vegetable room doors, 11 Refrigerator room, 13 switching room, 14 freezer room, 15 vegetable room, 16a heat dissipation pipe, 16b heat dissipation pipe, 16c heat dissipation pipe, 20 cooling device, 21 compressor, 22 condenser, 23 expansion means, 24 evaporator, 25 fan, 26 defroster, 27 return air, 30 partition, 31 plate material, 32 heater, 33 heat insulating material, 34 case, 35 graphite sheet, 35a adhesive tape, 35b adhesive tape, 36a flange, 36b flange, 37a packing, 37b packing, 38a throat, 38b throat, 39a inside the housing, 39b outside the housing, 40a temperature sensor, 40b temperature sensor, 40c temperature sensor, 40d temperature sensor, 40e temperature sensor, 230 partition, 236a flange, 236b flange

Claims (8)

  1.  両開き式の扉と、前記両開き式の扉を閉じた状態で前記両開き式の扉の間にできる隙間を外面で閉鎖する板材と、前記板材の内面側に設けられて前記板材を加熱するヒータと、を備えた冷蔵庫において、
     前記ヒータは、前記板材の端部から間隔を空けて配置され、
     前記板材の端部と前記ヒータの間にある前記板材の面に前記ヒータの熱を伝導するグラファイトシートをさらに備え、
     前記グラファイトシートは、前記内面に沿った方向への熱伝導率が前記内面から前記外面へ向かう方向への熱伝導率より高い部材である、
     ことを特徴とする冷蔵庫。
    A double door, a plate material that closes the gap formed between the double doors with the double door closed on the outer surface, and a heater provided on the inner surface side of the plate material to heat the plate material. In a refrigerator equipped with,
    The heaters are arranged at a distance from the end portion of the plate material.
    A graphite sheet that conducts the heat of the heater is further provided on the surface of the plate material between the end portion of the plate material and the heater.
    The graphite sheet is a member whose thermal conductivity in the direction along the inner surface is higher than the thermal conductivity in the direction from the inner surface to the outer surface.
    A refrigerator that features that.
  2.  前記グラファイトシートは、前記ヒータと前記板材の前記内面の間に設けられている
     ことを特徴とする請求項1に記載の冷蔵庫。
    The refrigerator according to claim 1, wherein the graphite sheet is provided between the heater and the inner surface of the plate material.
  3.  前記ヒータと前記板材の前記内面を覆うように設けられた断熱材をさらに備え、
     前記グラファイトシートは、前記ヒータと前記断熱材の間に設けられている
     ことを特徴とする請求項1に記載の冷蔵庫。
    Further provided with the heater and a heat insulating material provided so as to cover the inner surface of the plate material.
    The refrigerator according to claim 1, wherein the graphite sheet is provided between the heater and the heat insulating material.
  4.  前記板材の長手方向は、前記両開き式の扉の間の隙間が延びる方向に沿う方向であり、
     前記グラファイトシートは、前記板材の前記長手方向における中心よりも前記板材における前記長手方向の端部側に熱伝導可能に設けられている
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の冷蔵庫。
    The longitudinal direction of the plate material is a direction along the direction in which the gap between the double doors extends.
    Any one of claims 1 to 3, wherein the graphite sheet is provided so as to be thermally conductive on the end side of the plate material in the longitudinal direction with respect to the center of the plate material in the longitudinal direction. Refrigerator as described in the section.
  5.  前記両開き式の扉および前記板材によって閉鎖される開口と、前記開口によって外部と連通し貯蔵物を貯蔵するための第1の空間と、前記隙間が延びる方向に前記第1の空間と並んで配置され前記第1の空間とは異なる温度で貯蔵物を冷却するための第2の空間とが形成された筐体をさらに備えており、
     前記第1の空間と前記第2の空間は、仕切り板により区画され、前記仕切り板には、前記仕切り板を加熱する放熱パイプが設けられており、
     前記グラファイトシートは、前記板材における前記放熱パイプに近い端部よりも前記放熱パイプと離れた端部側に熱伝導可能に設けられている
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の冷蔵庫。
    The double door and the opening closed by the plate material, the first space for storing the storage communicating with the outside by the opening, and the first space arranged side by side in the direction in which the gap extends. Further, it is provided with a housing in which a second space for cooling the storage is formed at a temperature different from that of the first space.
    The first space and the second space are partitioned by a partition plate, and the partition plate is provided with a heat radiating pipe for heating the partition plate.
    Any of claims 1 to 4, wherein the graphite sheet is provided so as to be heat conductive on the end side of the plate material that is farther from the heat radiating pipe than the end portion close to the heat radiating pipe. The refrigerator described in item 1.
  6.  前記ヒータを挟んで前記板材と対向する位置に設けられたケースをさらに備え、
     前記板材は、少なくとも一部の端部に、前記ケース側に向かって延びるフランジを備えており、
     前記板材は、前記フランジを介して前記ケースに固定されており、
     前記グラファイトシートは、前記板材の前記内面のうち、前記フランジが設けられた前記板材の端部と前記ヒータの間にある前記板材の面に熱伝導可能に設けられている
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の冷蔵庫。
    A case provided at a position facing the plate material across the heater is further provided.
    The plate material is provided with a flange extending toward the case side at least at a part of the end portion.
    The plate material is fixed to the case via the flange, and is fixed to the case.
    The graphite sheet is provided on the inner surface of the plate material so as to be heat conductive on the surface of the plate material between the end portion of the plate material provided with the flange and the heater. The refrigerator according to any one of claims 1 to 5.
  7.  前記板材は、板金で構成されており、前記フランジは樹脂材で構成されている
     ことを特徴とする請求項6に記載の冷蔵庫。
    The refrigerator according to claim 6, wherein the plate material is made of sheet metal, and the flange is made of a resin material.
  8.  前記グラファイトシートは、前記板材の前記内面全体に熱伝導可能に設けられている
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の冷蔵庫。
    The refrigerator according to any one of claims 1 to 3, wherein the graphite sheet is provided so as to be heat conductive on the entire inner surface of the plate material.
PCT/JP2020/007633 2020-02-26 2020-02-26 Refrigerator WO2021171404A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/007633 WO2021171404A1 (en) 2020-02-26 2020-02-26 Refrigerator
AU2020431079A AU2020431079B2 (en) 2020-02-26 2020-02-26 Refrigerator
JP2022502645A JPWO2021171404A1 (en) 2020-02-26 2020-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007633 WO2021171404A1 (en) 2020-02-26 2020-02-26 Refrigerator

Publications (1)

Publication Number Publication Date
WO2021171404A1 true WO2021171404A1 (en) 2021-09-02

Family

ID=77490811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007633 WO2021171404A1 (en) 2020-02-26 2020-02-26 Refrigerator

Country Status (3)

Country Link
JP (1) JPWO2021171404A1 (en)
AU (1) AU2020431079B2 (en)
WO (1) WO2021171404A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318657A (en) * 1997-05-21 1998-12-04 Hitachi Ltd Refrigerator
WO2010067937A1 (en) * 2008-12-11 2010-06-17 Lg Electronics Inc. Refrigerator having heat conduction sheet
JP2013221715A (en) * 2012-04-18 2013-10-28 Mitsubishi Electric Corp Refrigerator
WO2019202683A1 (en) * 2018-04-18 2019-10-24 三菱電機株式会社 Refrigeration appliance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123212A (en) * 2014-05-14 2017-07-13 三洋電機株式会社 Battery pack and electronic equipment
JP6435507B2 (en) * 2014-07-18 2018-12-12 パナソニックIpマネジメント株式会社 COMPOSITE SHEET, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING COMPOSITE SHEET
CN108278826B (en) * 2017-01-06 2021-03-12 松下电器产业株式会社 Refrigerator with a door
CN109931744A (en) * 2017-12-19 2019-06-25 Aqua株式会社 Seal strip for refrigerator door

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318657A (en) * 1997-05-21 1998-12-04 Hitachi Ltd Refrigerator
WO2010067937A1 (en) * 2008-12-11 2010-06-17 Lg Electronics Inc. Refrigerator having heat conduction sheet
JP2013221715A (en) * 2012-04-18 2013-10-28 Mitsubishi Electric Corp Refrigerator
WO2019202683A1 (en) * 2018-04-18 2019-10-24 三菱電機株式会社 Refrigeration appliance

Also Published As

Publication number Publication date
AU2020431079B2 (en) 2023-09-28
JPWO2021171404A1 (en) 2021-09-02
AU2020431079A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
CN100498158C (en) Refrigerator
CN102878746A (en) Refrigerator
KR20120044557A (en) A refrigerator comprising a vaccum space
JP2005069596A (en) Refrigerator
JP6373655B2 (en) refrigerator
US11598570B2 (en) Refrigerator including a heater
AU2019427660B2 (en) Refrigerator
US9316430B2 (en) Thermal insulating material
WO2021171404A1 (en) Refrigerator
WO2010016196A1 (en) Refrigerator
WO2012172800A1 (en) Refrigerator
WO2017022102A1 (en) Refrigerator
JP2014137192A (en) Refrigerator
JP4218514B2 (en) refrigerator
JP2005345061A (en) Refrigerator
JP2000213853A (en) Refrigerator
WO2019202683A1 (en) Refrigeration appliance
JP2005164231A (en) Heat exchanger device
JP2019178864A (en) refrigerator
WO2020170310A1 (en) Refrigerator
JP2006153377A (en) Cooling storage
JP2005180720A (en) Refrigerator
JP2006112639A (en) Refrigerator
JP7246246B2 (en) Cooling system
JP6556916B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022502645

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2020431079

Country of ref document: AU

Date of ref document: 20200226

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920801

Country of ref document: EP

Kind code of ref document: A1