WO2019201335A1 - 触控测试装置和触控测试方法 - Google Patents

触控测试装置和触控测试方法 Download PDF

Info

Publication number
WO2019201335A1
WO2019201335A1 PCT/CN2019/083469 CN2019083469W WO2019201335A1 WO 2019201335 A1 WO2019201335 A1 WO 2019201335A1 CN 2019083469 W CN2019083469 W CN 2019083469W WO 2019201335 A1 WO2019201335 A1 WO 2019201335A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
component
touch screen
telescopic
coordinate point
Prior art date
Application number
PCT/CN2019/083469
Other languages
English (en)
French (fr)
Inventor
李璐
来航曼
顿胜堡
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/047,741 priority Critical patent/US11698407B2/en
Publication of WO2019201335A1 publication Critical patent/WO2019201335A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • G06F11/2221Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test input/output devices or peripheral units

Definitions

  • Embodiments of the present disclosure relate to a touch test device and a touch test method.
  • touch screens With the rapid development of smart devices, the marketization process of touch screens is gradually accelerating, mainly because touch screens not only meet the needs of people to quickly access information, but also have the advantages of easy interaction. In order to obtain a qualified touch screen, it is often necessary to test the touch screen.
  • the embodiments of the present disclosure provide a touch test device and a touch test method for testing a tap touch.
  • the embodiment of the present disclosure provides a touch test device, including: a telescopic mechanism, the length of the telescopic mechanism is adjustable; a touch screen; a touch component, the touch component is coupled to the telescopic mechanism, so that The telescopic mechanism is configured to drive the touch component to strike the touch screen; the acquiring unit is configured to acquire an actual detected coordinate point of the touch component by tapping the touch screen; The computing unit is configured to calculate a touch coordinate error between the target coordinate point of the touch panel and the actual detected coordinate point.
  • the telescopic mechanism is configured to drive the touch component to tap the touch screen multiple times for the target coordinate point;
  • the acquiring unit is configured to acquire the touch component to tap the touch screen multiple times Actually detecting a coordinate point
  • the operation unit is configured to calculate a maximum value of a distance between the target coordinate point of the touch component and the plurality of the actual detected coordinate points, respectively, The touch component taps a touch coordinate error of the touch screen.
  • the telescopic mechanism includes a body and a telescopic portion connected to the body, the telescopic portion is movable and retractable relative to the body, and the touch component is coupled to the telescopic portion of the telescopic mechanism, the telescopic portion It is configured to drive the touch component to tap the touch screen.
  • the touch test device further includes a moving mechanism, and the moving mechanism is coupled to the body of the telescopic mechanism, the moving mechanism It is configured to drive the body to move at least in a direction parallel to the touch screen.
  • the touch test device includes a plurality of the touch components, and the number of the telescopic mechanisms and the touch component The number of the telescopic portions of each of the telescopic mechanisms is respectively connected to each of the touch components; and the bodies of the plurality of telescopic mechanisms are all connected to one of the moving mechanisms.
  • the touch test device includes a control unit, and the plurality of telescopic mechanisms are respectively connected to the control unit, and the control unit
  • the expansion and contraction portions for controlling the plurality of the telescopic mechanisms are sequentially alternately telescopically moved in accordance with a preset order to drive the corresponding touch components to alternately tap the touch screens in accordance with the preset order.
  • the touch test device further includes a moving mechanism connected to the telescopic mechanism, and the moving mechanism is configured to drive the telescopic mechanism to move at least in a direction parallel to the touch screen.
  • the touch test device includes a plurality of the touch components, the number of the telescopic mechanisms is the same as the number of the touch components, and each of the telescopic mechanisms is respectively connected to one of the touch components; Each of the telescopic mechanisms is coupled to one of the moving mechanisms.
  • the touch test device includes a control unit, and the plurality of the telescopic mechanisms are respectively connected to the control unit, and the control unit is configured to control a plurality of the telescopic mechanisms to alternately expand and contract according to a preset order to drive
  • the touch component alternately taps the touch screen in accordance with the preset order.
  • the touch test device includes a plurality of the touch components, the number of the telescopic mechanisms is the same as the number of the touch components, and each of the telescopic mechanisms is respectively connected to one of the touch components.
  • the touch test device described above further includes a stage for placing the touch screen.
  • the embodiment of the present disclosure provides a touch test method, including: controlling a touch component to tap a touch screen; acquiring an actual detected coordinate point of the touch component by tapping the touch screen; and calculating the touch component knocking Touching a touch coordinate error between the target coordinate point of the touch screen and the actual detected coordinate point.
  • the method further includes: controlling, by the moving mechanism, the touch component to move to a target touch position relative to the touch screen.
  • controlling the touch component to tap the touch screen comprises: controlling a plurality of the touch components to alternately tap the touch screen in a preset order.
  • the acquiring the actual detection coordinate point of the touch component by tapping the touch screen includes: acquiring, for the same target coordinate point, multiple actual detections that the same touch component repeatedly taps the touch screen a coordinate point; the calculating a touch coordinate error between the target coordinate point of the touch component striking the touch screen and the actual detected coordinate point, including: according to a calculation formula Calculating a touch coordinate error of the touch component striking the touch screen, wherein x a is a target coordinate point of any touch component hitting the touch screen, and x r1 ... x rn are respectively The actual detection coordinate point.
  • FIG. 1 is a schematic structural diagram of a touch test apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram of a touch test apparatus according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of multiple touch components alternately tapping a touch screen according to a preset order according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a telescopic mechanism including a body and a telescopic portion in a touch test device according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a touch test method according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of another touch test method according to an embodiment of the present disclosure.
  • the touch test method for the touch screen is: performing a scribe test on the touch screen, that is, performing a touch test along a parallel direction of the touch screen surface.
  • the inventor of the present application noticed that the accuracy of tapping the touch response during the actual touch interaction is an important indicator for measuring the touch test.
  • the embodiment of the present disclosure provides a touch test device including a telescopic mechanism 1 , a touch component 2 , a touch screen 3 , an acquisition unit 4 , and an operation unit 5 .
  • the telescopic mechanism 1 is configured to be adjustable in length; the touch component 2 is connected to the telescopic portion 1B of the telescopic mechanism 1 , and the telescopic portion 1B is used to drive the touch component 2 to strike the touch screen 3 ;
  • the same target coordinate point of the touch screen 3 taps the actual detected coordinate point of the touch screen 3;
  • the operation unit 5 is used to calculate the touch coordinate error between the target coordinate point of the touch component 2 striking the touch screen 3 and the actual detected coordinate point.
  • the telescopic mechanism 1 includes a body 1A and a telescopic portion 1B connected to the body 1A, and the telescopic portion 1B is used for telescopic movement with respect to the body 1A to increase or decrease the length of the telescopic mechanism 1, and
  • a telescopic mechanism 1 has a simple structure and contributes to more objective and fair results to the accuracy of the touch test of the touch screen.
  • the telescopic mechanism 1 may be an electric cylinder or a hydraulic cylinder, or another transmission mechanism capable of linear reciprocating motion, and the like, which is not limited herein.
  • the cylinder of the hydraulic cylinder is a body, and the piston rod of the hydraulic cylinder is a telescopic portion.
  • the telescoping structure 1 can be other types of length adjustable structures (eg, electric springs).
  • the telescopic mechanism 1 can control the number of times, the speed (ie, the speed in the vertical direction), and the time (ie, the time interval of striking the same target coordinate point) of the touch component 2 to be touched, so as to implement the touch performance.
  • the fast tapping performance of the horizontal and vertical directions is tested.
  • the touch component 2 can be an object (also referred to as a test stick) that can be touched on the touch screen 3, and the end of the test stick that touches the touch screen 3 can be designed to be convexly curved to facilitate the test stick and the touch screen 3 . Touch it completely.
  • the actual detected coordinate point of the touch component 2 hitting the touch screen 3 is acquired by the acquiring unit 4, and the actual detected coordinate point and the target coordinate point of the touch component 2 hitting the touch screen 3 may be Positional deviation, wherein the target coordinate point is a preset touch position, so that the touch component 2 is located above the target coordinate point of the touch screen 3, and then the touch component 2 is driven by the telescopic mechanism 1 to tap the touch screen 3,
  • the coordinate point acquired by the acquisition unit 4 is the actual detected coordinate point.
  • the acquisition unit 4 may be a touch sensor or the like, as long as the acquisition unit 4 implements the actual detection coordinate point for acquiring the touch, which is not limited herein.
  • the touch coordinate error between the obtained actual detected coordinate point and the target coordinate point is calculated, and is calculated by the operation unit 5.
  • the calculation of the touch coordinate error may be performed by a processor, and the arithmetic unit 5 is an arithmetic logic component of the processor.
  • the touch coordinate error between the actual detected coordinate point and the target coordinate point is the distance value between the two coordinate points.
  • the touch test device drives the touch component to strike the touch screen through the telescopic mechanism, obtains the actual detection coordinate point of the touch component by the touch component, and calculates the touch component tapping the touch screen through the operation unit.
  • the touch coordinate error between the target coordinate point and the actual detected coordinate point is used to implement the touch screen touch test of the touch screen, further improving the touch interaction test of the touch screen, and contributing to the accuracy of the touch test of the touch screen. More objective and fair results.
  • the telescopic mechanism 1 is used to drive the touch component 2 to tap the touch screen 3 multiple times;
  • the acquisition unit 4 is configured to acquire a plurality of actual detection coordinate points of the touch component 2 that tap the touch screen 3 multiple times, and the operation unit 5 is used to calculate the touch.
  • the control unit 2 strikes the maximum value of the distance between the target coordinate points of the touch screen 3 and the plurality of actual detection coordinate points, which is the touch coordinate error of the touch component 2 striking the touch screen 3.
  • the acquisition unit 4 acquires the actual detected coordinate points a plurality of times, and the data of the actual detected coordinate points is determined multiple times. It is transmitted to the arithmetic unit 5, and the arithmetic unit 5 calculates the touch coordinate error by using the following calculation formula, and the calculation formula is:
  • x a is the target coordinate point of the touch component hitting the touch screen
  • x r1 ... x rn are respectively a plurality of actual detected coordinate points acquired by the acquiring unit.
  • the touch test device further includes a moving mechanism 6 connected to the telescopic mechanism 1 (for example, connected to the telescopic body 1A), and the moving mechanism 6 is used to drive the telescopic mechanism 1 (for example, the telescopic structure 1)
  • the body 1A moves at least in a direction parallel to the touch screen 3.
  • the touch member 2 connected to the retractable mechanism 1 can be moved to a position above the target coordinate point of the touch panel 3 by the moving mechanism 6.
  • the moving mechanism 6 may include a moving arm 6A connected to the body 1A of the telescopic mechanism 1 and a driving mechanism (for example, a servo motor or the like) 6B connected to the moving arm 6A, and the moving arm 6A is controlled by the driving mechanism 6B. moving position.
  • the specific structure of the moving mechanism 6 is not limited herein as long as the moving mechanism 6 can move at least in a direction parallel to the touch screen 3.
  • the touch component 2 connected to the telescopic mechanism 1 is moved along the preset trajectory by the moving mechanism 6, and the moving mechanism 6 can move at least in a direction parallel to the touch screen 3.
  • the moving mechanism 6 moves in the x and y directions; on the basis of this, for example, it can also be designed to be movable in a direction perpendicular to the touch screen 3, that is, the z direction, to adjust the height of the touch member 2 from the touch screen 3.
  • the moving mechanism 6 can drive the touch component 2 to perform a scribe test on the touch screen 3, that is, perform a touch test along the parallel direction of the surface of the touch screen 3.
  • the number of the touch components 2 is plural (the touch components 2 correspond to different target coordinate points), and the number of the telescopic mechanisms 1 is the same as the number of the touch components 2 for multi-touch performance testing.
  • a plurality of telescopic mechanisms 1 are connected to the moving mechanism 6 and are respectively connected to the plurality of touch components 2 in one-to-one correspondence; and the plurality of touch components 2 are connected by the same moving mechanism 6 to control the The plurality of touch members 2 are moved in the same horizontal plane to ensure horizontal testing.
  • FIG. 1 a plurality of telescopic mechanisms 1 are connected to the moving mechanism 6 and are respectively connected to the plurality of touch components 2 in one-to-one correspondence; and the plurality of touch components 2 are connected by the same moving mechanism 6 to control the The plurality of touch members 2 are moved in the same horizontal plane to ensure horizontal testing.
  • each of the telescopic mechanisms 1 is connected to one touch member 2; the body 1A of the plurality of telescopic mechanisms 1 is connected to a movement mechanism 6.
  • a moving mechanism 6 can simultaneously drive a plurality of telescopic mechanisms 1 to move relative to the touch screen 3.
  • Each telescopic mechanism 1 is respectively connected with a touch component 2, and each touch component 2 can be controlled to tap the touch screen 3 to achieve multi-click When the touch operation is performed, the action of each touch member 2 striking the touch screen 3 is not affected by each other.
  • the touch test device includes a control unit 7, and the plurality of telescopic mechanisms 1 are respectively connected to the control unit 7, and the control unit 7 is used to control a plurality of telescopic mechanisms 1 (for example, the telescopic portion of the plurality of telescopic mechanisms)
  • the two telescopic movements are sequentially alternated in a preset order to drive the corresponding touch components 2 to alternately tap the touch screen 3 in a preset order.
  • the first touch member 2 to the Nth touch member 2 tap the touch screen one by one.
  • controlling the plurality of telescopic mechanisms 1 to drive the plurality of touch components 2 to alternately tap the touch screen 3 in a predetermined order may be performed by using a processor, and the control unit 7 is a control component of the processor.
  • the control unit 7 can also control the number of times of expansion and contraction, the time, the speed, and the like of the telescopic portion of the telescopic mechanism 1 to control the number, time, speed, and the like of the touch panel 2 to be touched by the touch unit 2, which is not limited herein.
  • the acquisition unit 4 can obtain an actual detection coordinate point each time, which can effectively ensure that the actual detection coordinate point is accurately and reliably obtained.
  • the touch test device provided by the embodiment of the present disclosure further includes a stage 8 for placing the touch screen 3.
  • the stage 8 may be provided with a fixed structure for fixing the touch screen 3; the stage 8 is suitably formed into a horizontal plane to horizontally place the touch screen 3 on the stage 8, and the touch screen 3 is fixed, by controlling the moving mechanism 6 And the telescopic mechanism 1 completes the touch interaction response test of the touch component 2 tapping the touch screen 3.
  • the touch interaction test of the touch screen is further improved, which helps to provide more objective and fair results for the accuracy of the touch test of the touch screen.
  • an embodiment of the present disclosure provides a touch test method, which includes the following steps 101 to 103.
  • the touch test device of the above embodiment can be used for the touch touch test of the touch screen.
  • the touch test device includes: an adjustable length telescopic mechanism 1.
  • the telescopic mechanism 1 includes a body and a telescopic portion connected to the body, and the telescopic portion is used for telescopic movement relative to the body;
  • the component 2 is connected to the telescopic portion of the telescopic mechanism 1.
  • the structure of the telescopic portion for driving the touch panel 2 to touch the touch panel 3 and the working principle are the same as those of the above embodiment, and details are not described herein.
  • the actual detection coordinate point of the touch panel 2 can be obtained by the acquisition unit 4 by tapping the touch component 2.
  • the acquisition unit 4 may be a touch sensor or the like, or any other type of component capable of acquiring the actual detection coordinate point of the touch, which is not limited herein.
  • the touch control component 2 is controlled to tap the touch screen 3, the target coordinate point is a preset touch position, and the actual detection coordinate point and the touch component 2 are knocked.
  • the target coordinate point of the touch screen 3 has a positional deviation.
  • the touch coordinate error between the actual detected coordinate point and the target coordinate point is the distance value between the two coordinate points.
  • the step can be completed by the operation unit 5, for example, the operation unit 5 Can be the operational logic component of the processor.
  • the touch test method controls the touch component to tap the touch screen to obtain the actual detected coordinate point of the touch component tapping the touch screen, and calculates the target coordinate point of the touch component tapping the touch screen and the actual detection coordinate.
  • the touch coordinate error between the points is used to implement the touch screen touch test of the touch screen, and the touch interaction test of the touch screen is further improved, which helps to provide more objective and fair results for the touch test accuracy of the touch screen.
  • the accuracy of the touch test can be improved by tapping the touch screen multiple times.
  • the touch test method provided by the embodiment of the present disclosure includes the following steps 201 to 204 .
  • the touch test device of the above embodiment can be used for the touch touch test of the touch screen.
  • the touch test device includes a moving mechanism 6, a telescopic mechanism 1 and a touch component 2, and the mobile mechanism 6 is connected.
  • the telescopic mechanism 1 is configured to drive the telescopic mechanism 1 to move at least in a direction parallel to the touch screen 3 .
  • the touch component 2 is coupled to the telescopic mechanism 1 , and the telescopic mechanism 1 is configured to drive the touch component 2 to strike the touch screen 3 .
  • the touch component 2 connected to the telescopic mechanism 1 is moved along the preset trajectory by the moving mechanism 6.
  • the moving mechanism 6 can move at least in a direction parallel to the touch screen, for example, the moving mechanism can move at least in the x and y directions; or, on the basis of this, the moving mechanism 6 can also be designed to be movable in a direction perpendicular to the touch screen 3, ie The z direction is used to adjust the height of the touch component 2 from the touch screen 3; the moving mechanism 6 can drive the touch component 2 to perform a scribe test on the touch screen 3, that is, touch test along the parallel direction of the surface of the touch screen 3.
  • the number of the touch components 2 is multiple, and one moving mechanism 6 can simultaneously drive the plurality of telescopic mechanisms 1 to move relative to the touch screen 3.
  • Each of the telescopic mechanisms 1 is respectively connected with a touch component 2, which can respectively control each touch.
  • the control unit 2 strikes the touch screen 3 to realize a multi-touch operation, and the action of each touch unit 2 striking the touch screen 3 is not affected by each other.
  • control unit 7 can be a control component of the processor.
  • the control unit 7 can control the telescopic mechanism 1 to alternately retract and move in accordance with a preset order to drive the corresponding touch components 2 to alternately tap the touch screen 3 in a preset order.
  • the control unit 7 can also control the number of times of expansion and contraction, the time, the speed, and the like of the telescopic portion of the telescopic mechanism 1 to control the number, time, speed, and the like of the touch panel 2 to be touched by the touch unit 2, which is not limited herein.
  • the error value of the touch interaction response of each touch component of a touch component is calculated, and then the maximum value is taken as the touch coordinate error of the touch component tapping the touch screen, and the calculation result is more accurate and reliable.
  • a touch test method provided by the embodiment of the present disclosure controls a touch component to tap a touch screen to obtain an actual detection coordinate point of the touch component tapping the touch screen, and calculates a target coordinate point and actual detection of the touch component tapping the touch screen.
  • the touch coordinate error between the coordinate points is used to implement the touch screen touch test of the touch screen, and the touch interaction test of the touch screen is further improved, which helps to provide more objective and fair results for the touch test accuracy of the touch screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • User Interface Of Digital Computer (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

一种触控测试装置和触控测试方法,触控测试装置包括:长度可调节的伸缩机构(1);触控部件(2),其连接于伸缩机构(1)以使伸缩机构(1)用于带动触控部件(2)敲击触摸屏(3);获取单元(4),用于获取触控部件(2)敲击触摸屏(3)的实际检测坐标点;运算单元(5),用于计算触控部件(2)敲击触摸屏(3)的目标坐标点与实际检测坐标点之间的触控坐标误差。触控测试装置可实现触摸屏(3)的敲击触控测试。

Description

触控测试装置和触控测试方法
对相关申请的交叉参考
本申请要求于2018年4月19日递交的中国专利申请第201810355639.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种触控测试装置和触控测试方法。
背景技术
随着智能设备的蓬勃发展,触摸屏的市场化进程逐步加快,这主要是因为触摸屏既满足人们快速查阅信息的需求,又具有易于交互等优点。为了获得合格的触摸屏,通常需要对触摸屏进行测试。
发明内容
本公开实施例提供一种触控测试装置和触控测试方法,实现对敲击触控进行测试。
一方面,本公开实施例提供一种触控测试装置,其包括:伸缩机构,所述伸缩机构的长度可调节;触摸屏;触控部件,所述触控部件连接于所述伸缩机构,以使所述伸缩机构被配置为带动所述触控部件敲击所述触摸屏;获取单元,所述获取单元被配置为获取所述触控部件敲击所述触摸屏的实际检测坐标点;运算单元,所述运算单元被配置为计算所述触控部件敲击所述触摸屏的目标坐标点与所述实际检测坐标点之间的触控坐标误差。
例如,针对所述目标坐标点,所述伸缩机构被配置为带动所述触控部件多次敲击触摸屏;所述获取单元被配置为获取所述触控部件多次敲击所述触摸屏的多个实际检测坐标点,所述运算单元被配置为计算所述触控部件敲击所述触摸屏的目标坐标点分别与多个所述实际检测坐标点之间的距离的最大值,该最大值为所述触控部件敲击所述触摸屏的触控坐标误差。
例如,所述伸缩机构包括本体和连接于所述本体的伸缩部,所述伸缩部相对于所述本体伸缩可运动,所述触控部件连接于所述伸缩机构的伸缩部,所述伸缩部被配置为带动所述触控部件敲击触摸屏。
例如,在所述伸缩机构包括本体和连接于所述本体的伸缩部的情况下,上述的触控测试装置还包括移动机构,所述移动机构连接于所述伸缩机构的本体,所述移动机构被配置为带动所述本体至少沿平行于所述触摸屏的方向移动。
例如,在所述伸缩机构包括本体和连接于所述本体的伸缩部的情况下,所述触控测试装置包括多个所述触控部件,所述伸缩机构的数量与所述触控部件的数量相同,每个所述伸缩机构的伸缩部分别连接于每个所述触控部件;多个所述伸缩机构的本体均连接于一个所述移动机构。
例如,在所述伸缩机构包括本体和连接于所述本体的伸缩部的情况下,所述触控测试装置包括控制单元,多个所述伸缩机构分别连接于所述控制单元,所述控制单元用于控制多个所述伸缩机构的伸缩部依照预设次序依次交替伸缩运动,以带动相应的所述触控部件依照所述预设次序依次交替敲击触摸屏。
例如,所述的触控测试装置还包括移动机构,所述移动机构连接于所述伸缩机构,所述移动机构被配置为带动所述伸缩机构至少沿平行于所述触摸屏的方向移动。
例如,所述触控测试装置包括多个所述触控部件,所述伸缩机构的数量与所述触控部件的数量相同,每个所述伸缩机构分别连接于一个所述触控部件;多个所述伸缩机构均连接于一个所述移动机构。
例如,所述触控测试装置包括控制单元,多个所述伸缩机构分别连接于所述控制单元,所述控制单元用于控制多个所述伸缩机构依照预设次序依次交替伸缩运动,以带动相应的所述触控部件依照所述预设次序依次交替敲击触摸屏。
例如,所述触控测试装置包括多个所述触控部件,所述伸缩机构的数量与所述触控部件的数量相同,每个所述伸缩机构分别连接于一个所述触控部件。
例如,上述的触控测试装置还包括:载台,所述载台用于放置所述触摸 屏。
另一方面,本公开实施例提供一种触控测试方法,包括:控制触控部件敲击触摸屏;获取所述触控部件敲击所述触摸屏的实际检测坐标点;计算所述触控部件敲击所述触摸屏的目标坐标点与所述实际检测坐标点之间的触控坐标误差。
例如,所述控制触控部件敲击触摸屏之前,所述方法还包括:通过移动机构控制所述触控部件移动至相对于所述触摸屏的目标触控位置。
例如,所述控制触控部件敲击触摸屏,包括:控制多个所述触控部件依照预设次序依次交替敲击触摸屏。
例如,所述获取所述触控部件敲击所述触摸屏的实际检测坐标点,包括:针对同一所述目标坐标点,获取同一所述触控部件多次敲击所述触摸屏的多个实际检测坐标点;所述计算所述触控部件敲击所述触摸屏的目标坐标点与所述实际检测坐标点之间的触控坐标误差,包括:根据计算式
Figure PCTCN2019083469-appb-000001
计算所述触控部件敲击所述触摸屏的触控坐标误差,其中,x a为任一所述触控部件敲击所述触摸屏的目标坐标点,x r1...x rn分别为多个所述实际检测坐标点。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的一种触控测试装置的结构示意图;
图2为本公开实施例提供的触控测试装置的组成框图;
图3为本公开实施例提供的多个触控部件依照预设次序依次交替敲击触摸屏的示意图;
图4为本公开实施例提供的触控测试装置中伸缩机构包括本体和伸缩部的结构示意图;
图5为本公开实施例提供的一种触控测试方法的流程图;
图6为本公开实施例提供的另一种触控测试方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,对触摸屏的触控测试方法为:在触摸屏上进行划线测试,即沿着触摸屏表面的平行方向进行触控测试。然而,本申请的发明人注意到,在实际触控交互过程中,敲击触控响应的准确性是衡量触控测试的一项重要指标。
如图1和图2所示,本公开实施例提供一种触控测试装置,其包括伸缩机构1、触控部件2、触摸屏3、获取单元4和运算单元5。伸缩机构1被配置为长度可调节;触控部件2连接于伸缩机构1的伸缩部1B,伸缩部1B用于带动触控部件2敲击触摸屏3;获取单元4用于获取触控部件2针对触摸屏3的同一目标坐标点敲击触摸屏3的实际检测坐标点;运算单元5用于计算触控部件2敲击触摸屏3的目标坐标点与实际检测坐标点之间的触控坐标误差。
例如,如图4所示,伸缩机构1包括本体1A和连接于本体1A的伸缩部1B,伸缩部1B用于相对于本体1A伸缩运动,以使伸缩机构1的长度增大或减小,并且这样的伸缩机构1的结构简单且有助于对触摸屏的触控测试的准确性提供更加客观公正的结果。在这种情况下,例如,伸缩机构1可以为电动缸或液压缸,或者其他能够进行直线往复运动的传动机构等,此处不作 限定。以液压缸为例,液压缸的缸筒为本体,液压缸的活塞杆为伸缩部。在其它实施例中,伸缩结构1可以为其它类型的长度可调节的结构(例如电动弹簧)。伸缩机构1带动触控部件2敲击触摸屏3的次数、速度(即垂直方向上的速度)、时间(即敲击同一目标坐标点的时间间隔)等均可进行控制,以实现触控性能中的水平方向和竖直方向的快速敲击性能进行测试。
触控部件2可以为能够在触摸屏3上进行触控的物体(也可称为测试棒),测试棒与触摸屏3相触碰的端部可以设计为凸弧形,以利于测试棒与触摸屏3完全触碰上。
当触控部件2敲击触摸屏3时,触控部件2敲击触摸屏3的实际检测坐标点通过获取单元4进行获取,实际检测坐标点与触控部件2敲击触摸屏3的目标坐标点会有位置偏差,其中,目标坐标点为预先设定好的触控位置,使触控部件2位于触摸屏3的目标坐标点的上方位置,然后通过伸缩机构1带动触控部件2进行敲击触摸屏3,敲击触摸屏3时获取单元4获取到的坐标点为实际检测坐标点。例如,获取单元4可以为触控传感器等,只要获取单元4实现获取触控的实际检测坐标点即可,此处不作限定。
计算获取到的实际检测坐标点与目标坐标点之间的触控坐标误差,通过运算单元5进行计算。例如,触控坐标误差的计算可以采用处理器来完成该计算,则运算单元5为处理器的运算逻辑部件。实际检测坐标点与目标坐标点之间的触控坐标误差即为两坐标点之间的距离值。
本公开实施例提供的一种触控测试装置,通过伸缩机构带动触控部件敲击触摸屏,通过获取单元获取触控部件敲击触摸屏的实际检测坐标点,通过运算单元计算触控部件敲击触摸屏的目标坐标点与实际检测坐标点之间的触控坐标误差,以实现触摸屏的敲击触控测试,进一步完善了触摸屏的触控交互测试,有助于对触摸屏的触控测试的准确性提供更加客观公正的结果。
例如,伸缩机构1用于带动触控部件2多次敲击触摸屏3;获取单元4用于获取触控部件2多次敲击触摸屏3的多个实际检测坐标点,运算单元5用于计算触控部件2敲击触摸屏3的目标坐标点分别与多个实际检测坐标点之间的距离的最大值,该最大值为触控部件2敲击触摸屏3的触控坐标误差。当使一触控部件2位于触摸屏3的目标坐标点的上方位置,并进行多次敲击触摸屏3时,获取单元4获取到多次实际检测坐标点,将该多次实际检测坐 标点的数据传输至运算单元5,运算单元5利用下述计算式计算触控坐标误差,计算式为:
Figure PCTCN2019083469-appb-000002
其中,x a为该触控部件敲击所述触摸屏的目标坐标点,x r1...x rn分别为获取单元获取到的多个实际检测坐标点。其中,计算多次触控交互响应的误差值,然后选取最大值,能够使计算结果更加准确可靠。
例如,本公开实施例提供的触控测试装置还包括移动机构6,移动机构6连接于伸缩机构1(例如连接于伸缩的本体1A),移动机构6用于带动伸缩机构1(例如伸缩结构1的本体1A)至少沿平行于触摸屏3的方向移动。通过移动机构6可使连接于伸缩机构1的触控部件2移动至触摸屏3的目标坐标点的上方位置。
例如,如图4所示,移动机构6可包括连接于伸缩机构1本体1A的移动臂6A以及连接于移动臂6A的驱动机构(例如伺服电机等)6B,通过驱动机构6B控制移动臂6A的移动位置。此处本公开实施例对移动机构6的具体结构不作限定,只要移动机构6至少能沿平行于触摸屏3的方向移动即可。例如,根据测试要求,通过移动机构6带动连接于伸缩机构1的触控部件2沿预设轨迹移动,移动机构6至少可以沿平行于触摸屏3的方向移动。例如,移动机构6沿x和y方向移动;在此基础上,例如,也可以设计为能够沿垂直于触摸屏3的方向移动,即z方向,以调节触控部件2距离触摸屏3的高度。移动机构6可带动触控部件2在触摸屏3上进行划线测试,即沿着触摸屏3表面的平行方向进行触控测试。
例如,触控部件2的数量为多个(这些触控部件2对应不同的目标坐标点),伸缩机构1的数量与触控部件2的数量相同,以进行多点触控性能测试。例如,如图1所示,多个伸缩机构1都与移动机构6连接并且分别与多个触控部件2一一对应地连接;通过同一移动机构6连接多个触控部件2,可控制该多个触控部件2在同一水平面内移动,以确保水平方向的测试。例如,如图4所示,每个伸缩机构1的伸缩部1B连接于一个触控部件2;多个伸缩机构1的本体1A均连接于一个移动机构6。一个移动机构6可同时带动多个伸缩机构1相对于触摸屏3移动,每个伸缩机构1分别连接有一个触控部件2,可分别控制每个触控部件2敲击触摸屏3,实现多点敲击触控操作,每个触控部件2敲击触摸屏3的动作相互之间可不受影响。
例如,如图2所示,触控测试装置包括控制单元7,多个伸缩机构1分别连接于控制单元7,控制单元7用于控制多个伸缩机构1(例如该多个伸缩机构的伸缩部)依照预设次序依次交替伸缩运动,以带动相应的触控部件2依照预设次序依次交替敲击触摸屏3。例如,在设置有N个触控部件2的情况下,第1个触控部件2至第N个触控部件2逐个敲击触摸屏。参见图3,控制多个伸缩机构1带动多个触控部件2依照预设次序依次交替敲击触摸屏3,可以采用处理器来完成,则控制单元7为处理器的控制部件。例如,控制单元7还可控制伸缩机构1的伸缩部的伸缩次数、时间、速度等,以相应的控制触控部件2敲击触摸屏3的次数、时间、速度等,此处不作限定。交替敲击触摸屏3,可使获取单元4每次获取到一个实际检测坐标点,可有效保证获取到实际检测坐标点准确可靠。
例如,本公开实施例提供的触控测试装置还包括载台8,载台8用于放置触摸屏3。例如,载台8上可以设置有固定结构,以固定触摸屏3;载台8适宜制成水平面,以将触摸屏3水平放置在载台8上,并使触摸屏3固定不动,通过控制移动机构6和伸缩机构1来完成触控部件2敲击触摸屏3的触控交互响应测试。
在本公开实施例中,通过实现触摸屏的敲击触控测试,使得进一步完善了触摸屏的触控交互测试,有助于对触摸屏的触控测试的准确性提供更加客观公正的结果。
如图5所示,本公开实施例提供一种触控测试方法,其包括以下步骤101至103。
101、控制触控部件敲击触摸屏。
例如,可采用上述实施例的触控测试装置进行触摸屏的敲击触控测试。例如,参见图1和图2,触控测试装置包括:长度可调节的伸缩机构1,例如,伸缩机构1包括本体和连接于本体的伸缩部,伸缩部用于相对于本体伸缩运动;触控部件2,触控部件2连接于伸缩机构1的伸缩部,伸缩部用于带动触控部件2敲击触摸屏3触控测试装置的结构以及工作原理与上述实施例相同,此处不再赘述。
102、获取触控部件敲击触摸屏的实际检测坐标点。
参见图1和图2,当触控部件2敲击触摸屏3时,可通过获取单元4获 取触控部件2敲击触摸屏3的实际检测坐标点。例如,获取单元4可以为触控传感器等,或者其它任意类型的能够获取触控的实际检测坐标点的部件,此处不作限定。使触控部件2位于触摸屏3的目标坐标点的上方位置后,控制触控部件2敲击触摸屏3,目标坐标点为预先设定好的触控位置,实际检测坐标点与触控部件2敲击触摸屏3的目标坐标点会有位置偏差。
103、计算触控部件敲击触摸屏的目标坐标点与实际检测坐标点之间的触控坐标误差。
例如,实际检测坐标点与目标坐标点之间的触控坐标误差即为两坐标点之间的距离值,参见图1和图2,该步骤可通过运算单元5来完成,例如,运算单元5可为处理器的运算逻辑部件。
本公开实施例提供的一种触控测试方法,通过控制触控部件敲击触摸屏,获取触控部件敲击触摸屏的实际检测坐标点,计算触控部件敲击触摸屏的目标坐标点与实际检测坐标点之间的触控坐标误差,以实现触摸屏的敲击触控测试,进一步完善了触摸屏的触控交互测试,有助于对触摸屏的触控测试的准确性提供更加客观公正的结果。
例如,可以通过多次敲击触摸屏来提高触控测试的准确性。例如,如图6所示,本公开实施例提供的触控测试方法包括如下步骤201至204。
201、通过移动机构控制触控部件移动至相对于触摸屏的目标触控位置。
可采用上述实施例的触控测试装置进行触摸屏的敲击触控测试,例如,参见图1和图2,触控测试装置包括移动机构6、伸缩机构1和触控部件2,移动机构6连接于伸缩机构1,用于带动伸缩机构1至少沿平行于触摸屏3的方向移动,触控部件2连接于伸缩机构1,伸缩机构1用于带动触控部件2敲击触摸屏3。例如,根据测试要求,通过移动机构6带动连接于伸缩机构1的触控部件2沿预设轨迹移动。移动机构6至少可以沿平行于触摸屏的方向移动,例如移动机构至少可以沿x和y方向移动;或者,在此基础上,移动机构6也可以设计为能够沿垂直于触摸屏3的方向移动,即z方向,以调节触控部件2距离触摸屏3的高度;移动机构6可带动触控部件2在触摸屏3上进行划线测试,即沿着触摸屏3表面的平行方向进行触控测试。
例如,触控部件2的数量为多个,一个移动机构6可同时带动多个伸缩机构1相对于触摸屏3移动,每个伸缩机构1分别连接有一个触控部件2, 可分别控制每个触控部件2敲击触摸屏3,实现多点敲击触控操作,每个触控部件2敲击触摸屏3的动作相互之间可不受影响。
202、控制多个触控部件依照预设次序依次交替敲击触摸屏。
参见图1、图2和图3,该步骤可通过控制单元7来完成,例如,控制单元7可为处理器的控制部件。例如,控制单元7可控制伸缩机构1依照预设次序依次交替伸缩运动,以带动相应的触控部件2依照预设次序依次交替敲击触摸屏3。例如,控制单元7还可控制伸缩机构1的伸缩部的伸缩次数、时间、速度等,以相应的控制触控部件2敲击触摸屏3的次数、时间、速度等,此处不作限定。
203、获取任一触控部件多次敲击触摸屏的多个实际检测坐标点。
参见图1和图2,当使一触控部件2位于触摸屏3的目标坐标点的上方位置,并进行多次敲击触摸屏3时,获取到的是多次实际检测坐标点,需要说明的是,该触控部件2相对于触摸屏3的同一触控位置的目标坐标点不变。
204、根据计算式
Figure PCTCN2019083469-appb-000003
计算触控部件敲击触摸屏的触控坐标误差,其中,x a为任一触控部件敲击触摸屏的目标坐标点,x r1...x rn分别为多个实际检测坐标点。
也就是说,将一触控部件每一次敲击的触控交互响应的误差值计算出来,然后取最大值,作为该触控部件敲击触摸屏的触控坐标误差,计算结果更加准确可靠。
本公开实施例提供的一种触控测试方法,通过控制触控部件进行敲击触摸屏,获取触控部件敲击触摸屏的实际检测坐标点,计算触控部件敲击触摸屏的目标坐标点与实际检测坐标点之间的触控坐标误差,以实现触摸屏的敲击触控测试,进一步完善了触摸屏的触控交互测试,有助于对触摸屏的触控测试的准确性提供更加客观公正的结果。
本公开实施例提供的触控测试装置和方法中的相同部件的设置方式可以互相参照。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (15)

  1. 一种触控测试装置,包括:
    伸缩机构,其中,所述伸缩机构的长度可调节;
    触摸屏;
    触控部件,其中,所述触控部件连接于所述伸缩机构,所述伸缩机构被配置为带动所述触控部件敲击所述触摸屏;
    获取单元,所述获取单元被配置为获取所述触控部件敲击所述触摸屏的实际检测坐标点;
    运算单元,所述运算单元被配置为计算所述触控部件敲击所述触摸屏的目标坐标点与所述实际检测坐标点之间的触控坐标误差。
  2. 根据权利要求1所述的触控测试装置,其中,
    针对所述目标坐标点,所述伸缩机构被配置为带动所述触控部件多次敲击触摸屏;
    所述获取单元被配置为获取所述触控部件多次敲击所述触摸屏的多个实际检测坐标点;
    所述运算单元被配置为计算所述触控部件敲击所述触摸屏的目标坐标点分别与多个所述实际检测坐标点之间的距离的最大值,该最大值为所述触控部件敲击所述触摸屏的触控坐标误差。
  3. 根据权利要求1或2所述的触控测试装置,其中,所述伸缩机构包括本体和连接于所述本体的伸缩部,所述伸缩部相对于所述本体伸缩可运动,所述触控部件连接于所述伸缩机构的伸缩部,所述伸缩部被配置为带动所述触控部件敲击触摸屏。
  4. 根据权利要求3所述的触控测试装置,还包括:
    移动机构,所述移动机构连接于所述伸缩机构的本体,所述移动机构被配置为带动所述本体至少沿平行于所述触摸屏的方向移动。
  5. 根据权利要求4所述的触控测试装置,其中,
    所述触控测试装置包括多个所述触控部件,所述伸缩机构的数量与所述触控部件的数量相同,每个所述伸缩机构的伸缩部分别连接于一个所述触控部件;
    多个所述伸缩机构的本体均连接于一个所述移动机构。
  6. 根据权利要求5所述的触控测试装置,其中,
    所述触控测试装置包括控制单元,多个所述伸缩机构分别连接于所述控制单元,所述控制单元用于控制多个所述伸缩机构的伸缩部依照预设次序依次交替伸缩运动,以带动相应的所述触控部件依照所述预设次序依次交替敲击触摸屏。
  7. 根据权利要求1或2所述的触控测试装置,还包括:
    移动机构,所述移动机构连接于所述伸缩机构,所述移动机构被配置为带动所述伸缩机构至少沿平行于所述触摸屏的方向移动。
  8. 根据权利要求7所述的触控测试装置,其中,
    所述触控测试装置包括多个所述触控部件,所述伸缩机构的数量与所述触控部件的数量相同,每个所述伸缩机构分别连接于一个所述触控部件;
    多个所述伸缩机构均连接于一个所述移动机构。
  9. 根据权利要求8所述的触控测试装置,其中,
    所述触控测试装置包括控制单元,多个所述伸缩机构分别连接于所述控制单元,所述控制单元用于控制多个所述伸缩机构依照预设次序依次交替伸缩运动,以带动相应的所述触控部件依照所述预设次序依次交替敲击触摸屏。
  10. 根据权利要求1或2所述的触控测试装置,其中,所述触控测试装置包括多个所述触控部件,所述伸缩机构的数量与所述触控部件的数量相同,每个所述伸缩机构分别连接于一个所述触控部件。
  11. 根据权利要求1至10中任一项所述的触控测试装置,还包括:
    载台,所述载台用于放置所述触摸屏。
  12. 一种触控测试方法,包括:
    控制触控部件敲击触摸屏;
    获取所述触控部件敲击所述触摸屏的实际检测坐标点;
    计算所述触控部件敲击所述触摸屏的目标坐标点与所述实际检测坐标点之间的触控坐标误差。
  13. 根据权利要求12所述的触控测试方法,其中,所述控制触控部件敲击触摸屏之前,还包括:
    通过移动机构控制所述触控部件移动至相对于所述触摸屏的目标触控位 置。
  14. 根据权利要求13所述的触控测试方法,其中,所述控制触控部件敲击触摸屏包括:控制多个所述触控部件依照预设次序依次交替敲击触摸屏。
  15. 根据权利要求12至14中任一项所述的触控测试方法,其中,所述获取所述触控部件敲击所述触摸屏的实际检测坐标点,包括:
    针对同一所述目标坐标点,获取同一所述触控部件多次敲击所述触摸屏的多个实际检测坐标点;
    所述计算所述触控部件敲击所述触摸屏的目标坐标点与所述实际检测坐标点之间的触控坐标误差,包括:根据计算式
    Figure PCTCN2019083469-appb-100001
    计算所述触控部件敲击所述触摸屏的触控坐标误差,其中,x a为同一所述触控部件敲击所述触摸屏的目标坐标点,x r1...x rn分别为多个所述实际检测坐标点。
PCT/CN2019/083469 2018-04-19 2019-04-19 触控测试装置和触控测试方法 WO2019201335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/047,741 US11698407B2 (en) 2018-04-19 2019-04-19 Touch-control test apparatus and touch-control test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810355639.X 2018-04-19
CN201810355639.XA CN110398682A (zh) 2018-04-19 2018-04-19 触控测试装置和触控测试方法

Publications (1)

Publication Number Publication Date
WO2019201335A1 true WO2019201335A1 (zh) 2019-10-24

Family

ID=68240567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083469 WO2019201335A1 (zh) 2018-04-19 2019-04-19 触控测试装置和触控测试方法

Country Status (3)

Country Link
US (1) US11698407B2 (zh)
CN (1) CN110398682A (zh)
WO (1) WO2019201335A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238430B (zh) * 2020-01-21 2022-04-12 上海万物新生环保科技集团有限公司 一种检测机械手触笔头稳定性的方法及设备
CN111307429B (zh) * 2020-01-21 2022-11-01 上海万物新生环保科技集团有限公司 一种检测机械手触笔头松动的方法及设备
CN113297016A (zh) * 2021-04-23 2021-08-24 惠州市德赛西威汽车电子股份有限公司 一种触摸屏的触控精度检验方法及装置
CN113238906B (zh) * 2021-06-04 2024-04-05 京东方科技集团股份有限公司 曲面显示装置的触控性能测试方法、系统及电子设备
CN113407398B (zh) * 2021-06-11 2023-08-01 展讯通信(上海)有限公司 触控屏检测机器人、检测方法、设备及介质
CN113984337A (zh) * 2021-09-14 2022-01-28 合肥联宝信息技术有限公司 一种触屏检测装置与触屏检测方法
CN114754677B (zh) * 2022-04-14 2022-10-14 平方和(北京)科技有限公司 一种触摸屏和触控笔测试设备中自动精确定位的装置和方法
CN115314580B (zh) * 2022-08-17 2023-04-07 江西科莱电子有限公司 一种手机屏幕划线测试装置
CN115314578B (zh) * 2022-08-17 2023-04-07 江西科莱电子有限公司 一种手机屏幕划线与点击一体的检测装置
CN116302763B (zh) * 2023-05-18 2023-08-08 中国标准化研究院 Micro LED显示屏的触控检测方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187685A (zh) * 2007-10-18 2008-05-28 张福尧 触摸屏测试装置及方法
CN101533326A (zh) * 2008-10-15 2009-09-16 闻泰集团有限公司 一种电阻触摸屏坐标校准的方法
JP4493200B2 (ja) * 2000-11-06 2010-06-30 富士通テン株式会社 タッチパネル搭載機器調整装置およびタッチパネル搭載機器調整方法
CN102235954A (zh) * 2010-04-21 2011-11-09 鸿富锦精密工业(深圳)有限公司 触摸屏测试系统及方法
CN103235661A (zh) * 2013-04-13 2013-08-07 北京汇冠新技术股份有限公司 一种定位点击装置和方法及触摸显示屏校准系统和方法
CN103383600A (zh) * 2012-05-03 2013-11-06 杨志沅 线性度测试装置及方法
CN103383601A (zh) * 2012-05-03 2013-11-06 杨志沅 定位装置及方法
US20140320461A1 (en) * 2013-04-24 2014-10-30 Kabushiki Kaisha Toshiba Electronic apparatus, calibration method and storage medium
CN104714679A (zh) * 2013-12-13 2015-06-17 财团法人工业技术研究院 自动校正系统与自动校正方法
CN105975132A (zh) * 2016-05-05 2016-09-28 青岛歌尔声学科技有限公司 一种触摸屏精确度的检测方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436109A (zh) * 2007-11-13 2009-05-20 英华达(上海)科技有限公司 触控装置定点测试的改善方法
KR200448253Y1 (ko) * 2009-02-20 2010-03-29 김동언 전자기기의 입력부 검사장치
CN101751179B (zh) * 2009-12-16 2012-05-23 深圳市汇顶科技有限公司 一种触摸检测灵敏度的自动校准方法、系统及触控终端
CN102879673B (zh) * 2012-09-19 2016-03-02 广州视睿电子科技有限公司 一种触摸屏精准度的测试方法及装置
CN102904996B (zh) * 2012-10-16 2016-08-03 深圳创维数字技术有限公司 一种手机触摸屏性能测试的方法及装置、系统
CN102968217B (zh) * 2012-12-07 2016-01-20 深圳市汇顶科技股份有限公司 触摸屏的基准更新方法、系统及触控终端
CN103487692B (zh) * 2013-09-25 2016-08-17 成都吉锐触摸技术股份有限公司 一种触摸屏的质量检测方法
CN103853640B (zh) * 2014-03-31 2017-04-19 广州华欣电子科技有限公司 触摸屏测试方法以及装置
CN103954860B (zh) * 2014-04-22 2017-10-27 上海大学 一种用于触控设备功能和性能的测试工具
CN104346018B (zh) * 2014-09-30 2017-10-27 深圳市英威腾控制技术有限公司 四线制电阻式触摸屏的控制系统及方法
CN205408045U (zh) * 2016-03-11 2016-07-27 苏章荣 智能终端无人自动触发接通装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493200B2 (ja) * 2000-11-06 2010-06-30 富士通テン株式会社 タッチパネル搭載機器調整装置およびタッチパネル搭載機器調整方法
CN101187685A (zh) * 2007-10-18 2008-05-28 张福尧 触摸屏测试装置及方法
CN101533326A (zh) * 2008-10-15 2009-09-16 闻泰集团有限公司 一种电阻触摸屏坐标校准的方法
CN102235954A (zh) * 2010-04-21 2011-11-09 鸿富锦精密工业(深圳)有限公司 触摸屏测试系统及方法
CN103383600A (zh) * 2012-05-03 2013-11-06 杨志沅 线性度测试装置及方法
CN103383601A (zh) * 2012-05-03 2013-11-06 杨志沅 定位装置及方法
CN103235661A (zh) * 2013-04-13 2013-08-07 北京汇冠新技术股份有限公司 一种定位点击装置和方法及触摸显示屏校准系统和方法
US20140320461A1 (en) * 2013-04-24 2014-10-30 Kabushiki Kaisha Toshiba Electronic apparatus, calibration method and storage medium
CN104714679A (zh) * 2013-12-13 2015-06-17 财团法人工业技术研究院 自动校正系统与自动校正方法
CN105975132A (zh) * 2016-05-05 2016-09-28 青岛歌尔声学科技有限公司 一种触摸屏精确度的检测方法和装置

Also Published As

Publication number Publication date
US11698407B2 (en) 2023-07-11
US20210109150A1 (en) 2021-04-15
CN110398682A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2019201335A1 (zh) 触控测试装置和触控测试方法
CN103235661B (zh) 一种定位点击装置和方法及触摸显示屏校准系统和方法
US8674958B1 (en) Method and apparatus for accurate coordinate calculation of objects in touch applications
JP2016511399A5 (zh)
JP5684136B2 (ja) 多重接触エリア回転ジェスチャ認識方法
JP2015002914A5 (ja) 運動解析方法、運動解析装置、運動解析プログラムおよび運動解析情報の表示方法
EP2752657A3 (en) System and methods for stand-off inspection of aircraft structures
JP5888848B2 (ja) ゴルフスイング分析装置
JP6144050B2 (ja) 三次元測定装置、入力方法及びプログラム
TWI543058B (zh) 位置偵測方法及應用該方法的感測裝置
JP6082394B2 (ja) 高分解能なゴースト除去ジェスチャ
JP2018185501A5 (zh)
CN103487692A (zh) 一种触摸屏的质量检测方法
JP2017004381A5 (zh)
JP2016146950A5 (zh)
JPWO2014132893A1 (ja) 操作検知装置
CN207335649U (zh) 电池测量机
CN103148825A (zh) 曲面测量装置
CN109866223A (zh) Delta机器人扭矩找零点方法
KR102156773B1 (ko) 나선형 검색 방식의 터치 감지 방법
TWI456448B (zh) 具軌跡偵測功能之觸控系統及方法
JP2009245199A5 (zh)
JP6202875B2 (ja) 画像測定装置及びその制御用プログラム
TWI794995B (zh) 具有複數向量偵測模組的滑鼠裝置
TWI521381B (zh) 物件導航裝置以及物件導航方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19787804

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19787804

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19787804

Country of ref document: EP

Kind code of ref document: A1