WO2019201314A1 - 处理含油含水物质的方法和装置 - Google Patents

处理含油含水物质的方法和装置 Download PDF

Info

Publication number
WO2019201314A1
WO2019201314A1 PCT/CN2019/083291 CN2019083291W WO2019201314A1 WO 2019201314 A1 WO2019201314 A1 WO 2019201314A1 CN 2019083291 W CN2019083291 W CN 2019083291W WO 2019201314 A1 WO2019201314 A1 WO 2019201314A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
oil
separation
water
liquid
Prior art date
Application number
PCT/CN2019/083291
Other languages
English (en)
French (fr)
Inventor
张卫华
夏激扬
刘春杰
贺璐
陈锐
周卫静
Original Assignee
北京中科国通环保工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科国通环保工程技术股份有限公司 filed Critical 北京中科国通环保工程技术股份有限公司
Publication of WO2019201314A1 publication Critical patent/WO2019201314A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/04Combinations of filters with settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/04Combinations of filters with settling tanks
    • B01D36/045Combination of filters with centrifugal separation devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil

Definitions

  • the invention relates to the technical field of separation of mixtures, in particular to a method and a device for treating oily aqueous substances using a solvent.
  • Oily sludge generated during crude oil extraction, storage, transportation, and processing including drilling cuttings, water-based mud, oil-based mud, ground oil spills, floor sludge, oilfield produced water, tank bottom sludge, clear tank sludge,
  • the “three muds” of the refinery, the soil contaminated by oil, etc., the solid, oil and water are mixed and the composition is complex.
  • the solid content, oil content, water content and viscosity are very different, and the treatment is difficult. Long-term accumulation, pollution of surrounding soil, water and air, endangering the movement of animals and plants and humans.
  • Oil sands are also oily water-containing substances. They are made up of clastic materials on the surface of the earth's crust or rocks mixed with water and oil contained in them. The process of extracting oil or bitumen from oil sands is mostly complicated and uneconomical.
  • the cutting fluid used in the machining process is a stable emulsion.
  • impurities such as fine chips, abrasive chips, grinding wheels and dust are mixed, and the oil leaks from the machine tool causes the lubricating oil to fall into the cutting fluid.
  • the quality of the cutting fluid is lowered, the service life is shortened, and it is very difficult to process the cutting fluid waste containing solid residue, water, and oil.
  • food waste also known as kitchen waste
  • kitchen waste is a general term for leftover food, table waste and kitchen scrap. It has high moisture content and oil content, pollutes the environment and endangers human health, and urgently needs effective treatment.
  • Various municipal sludges, sewage treatment plant sludges, etc. also require scientifically and effectively reduced and harmless treatment methods.
  • the present invention provides a method and corresponding apparatus for treating oily aqueous materials.
  • embodiments of the invention relate to a method of treating an oily aqueous material comprising: mixing a first oily aqueous material with a solvent at a first temperature to provide a first mixture comprising a solid material and a liquid material, the liquid
  • the substance comprises the solvent, the oil and the water; the first mixture is subjected to a first separation treatment to obtain the solid substance and the liquid substance; and at the second temperature, the liquid substance obtained by the first separation treatment is subjected to a second time Separating treatment to obtain an aqueous phase containing the solvent and the oil; and a third separation treatment of the organic phase to obtain a separated solvent and an isolated oil, wherein the solvent and the water are
  • the mutual solubility at the first temperature is higher than the mutual solubility of the solvent and water at the second temperature.
  • the mutual solubility of the solvent and water used varies with temperature, and specifically, the solvent has high miscibility with water at the first temperature, at the second temperature.
  • the lower mutual solubility with water, the first temperature may be higher or lower than the second temperature.
  • the solvent used in the method of treating an oil-containing aqueous substance of the present invention includes one or more selected from the group consisting of alcohols, phenols, ethers, amines, and ketones.
  • the first temperature is in the range of 50 ° C to 85 ° C, preferably in the range of 55 ° C to 80 ° C; the second temperature is in the range of 0 ° C to 45 ° C Within the range, preferably, it is in the range of 5 ° C to 40 ° C.
  • the solvent used in the method of treating an oil-containing aqueous substance of the present invention includes one or more selected from the group consisting of methyl ethyl ketone, methyl ethyl ketone, isopropyl alcohol, and isopropyl ether.
  • the first temperature is in the range of 0 ° C to 45 ° C, preferably in the range of 5 ° C to 40 ° C; and the second temperature is in the range of 50 ° C to 85 ° C Within the range, preferably, it is in the range of 55 ° C to 80 ° C.
  • the solvent used in the method for treating an oily aqueous substance of the present invention includes diisopropylamine or triethylamine.
  • the method for treating an oil-containing aqueous substance of the present invention further comprises: mixing a solid substance obtained by the first separation treatment with a solvent at a second temperature to obtain a second mixture; and performing solid-liquid separation on the second mixture; Obtaining the separated solid and liquid mixture; and mixing the liquid mixture with the organic phase and performing a third separation treatment, whereby the solid material can be further deoiled to obtain an oil content and a water content. Both are lower isolated solids.
  • the solvent used in the method for treating an oil-containing aqueous substance of the present invention is mixed with the treated first oil-containing aqueous substance in a certain weight ratio.
  • the weight ratio of solvent to the first oily aqueous material is less than 10:1, preferably, the weight ratio is less than 8:1.
  • the method of treating an oily aqueous material of the present invention further comprises mixing at least a portion of the organic phase obtained by the second separation treatment with the second oily aqueous material for treating the second oily aqueous material.
  • the method of treating an oil-containing aqueous substance of the present invention further comprises mixing at least a portion of the separated solvent obtained by the third separation treatment with the third oil-containing aqueous substance for treating the third oil-containing aqueous substance.
  • the method of treating an oil-containing aqueous substance of the present invention further comprises one or more of the following steps: removing residual solvent in the solid matter obtained by the first separation unit; removing the aqueous phase obtained by the second separation unit a residual solvent; and a residual solvent, residual water or at least one oily substance is separated from the separated oil.
  • embodiments of the invention relate to an apparatus for treating an oily aqueous material, comprising:
  • a first mixing unit comprising an oily aqueous substance inlet, a solvent inlet and a first mixture outlet, the mixing unit for mixing the oily aqueous substance with the solvent at a first temperature to obtain a first mixture comprising a solid substance and a liquid substance,
  • the liquid substance comprises the solvent, oil and water;
  • a first separation unit comprising a first mixture inlet, a solid material outlet, and a liquid material outlet, wherein the first mixture inlet is connected to the first mixture outlet of the first mixing unit, and the first separation unit is used Performing a first separation treatment on the first mixture to obtain the solid substance and the liquid substance;
  • a second separation unit comprising a liquid substance inlet, an aqueous phase outlet, and an organic phase outlet, wherein the liquid substance inlet is connected to the liquid substance outlet of the first separation unit, and the second separation unit is used in the At a second temperature, the liquid material obtained in the first separation treatment is subjected to a second separation treatment to obtain an aqueous phase and an organic phase, the organic phase comprising the solvent and the oil;
  • a third separation unit comprising an inlet, a separated solvent outlet, and a separated oil outlet, wherein the inlet is connected to the organic phase outlet of the second separation unit, the third separation unit is configured to The organic phase is subjected to a third separation treatment to obtain a separated solvent and an isolated oil.
  • the first mixing unit further includes a first temperature control element for controlling the operating temperature of the mixing unit to be at the first temperature.
  • the first mixing unit further includes a stirring element.
  • the first separation unit further includes a member selected from the group consisting of a gravity sedimentation element, a cyclone separation element, a membrane separation element, a pressure filtration element, a pressure reduction filter element, a centrifugal separation element, and a plate.
  • a frame filter element and a cartridge filter element One or more of a frame filter element and a cartridge filter element.
  • the second separation unit further includes a second temperature control element for controlling the operating temperature of the second separation unit to be at the second temperature.
  • the second separation unit further includes one or more selected from the group consisting of a gravity separation element, a centrifugal separation element, and a cyclone separation element.
  • the third separation unit further includes an evaporation element.
  • the apparatus for treating an oily aqueous substance of the present invention further comprises a first reflux unit comprising a conduit connecting the organic phase outlet of the second separation unit to the solvent inlet of the mixing unit, and the organic phase separating the second separation unit. At least a portion of the reflux is returned to the mixing unit.
  • the apparatus for treating an oily aqueous substance of the present invention further includes a second reflux unit including a conduit connecting the separated solvent outlet of the third separation unit and the solvent inlet of the mixing unit for separating the third separation unit. At least a portion of the separated solvent is refluxed to the mixing unit.
  • the apparatus for treating an oily aqueous substance of the present invention further comprises:
  • a second mixing unit comprising a solid matter inlet, a solvent inlet, and a second mixture outlet, wherein the solid matter inlet is connected to the solid matter outlet of the first separation unit for solid matter and solvent generated by the first separation unit Mixing to obtain a second mixture;
  • a solid-liquid separation unit comprising a second mixture inlet, a separated solids outlet, and a liquid mixture outlet, wherein the second mixture inlet is connected to the second mixture outlet of the second mixing unit for solidifying the second mixture Liquid separation;
  • a connecting pipe for connecting the outlet of the liquid mixture with the inlet of the third separating unit for introducing the liquid mixture into the third separating unit for processing.
  • the second mixing unit, the solid-liquid separation unit, and the connecting pipe can further treat the solid matter to obtain a separated solid having a low oil content and a low water content.
  • the apparatus for treating an oily aqueous material of the present invention further comprises one or more of the following units:
  • a solid aftertreatment unit comprising an inlet and a solvent reduced solids outlet, the inlet of the solid aftertreatment unit being coupled to a solids outlet of the first separation unit or a solids outlet of a solid-liquid separation unit for removal a residual solvent in the solid matter;
  • a water aftertreatment unit comprising an aqueous phase inlet and a solvent reduced aqueous phase outlet connected to a water phase outlet of a second separation unit for removing the aqueous phase obtained by the second separation unit Residual solvent in;
  • An oil aftertreatment unit comprising a separated oil inlet and a solvent reduced oil outlet, the separated oil inlet being connected to the separated oil outlet of the third separation unit, the oil aftertreatment unit being used for the separated oil
  • the residual solvent, residual water or at least one oily substance is separated.
  • the oily aqueous material treated in the method and apparatus for treating an oily aqueous material of the present invention such as a first oily aqueous material, a second oily aqueous material or a third oily aqueous material, including, by weight, oil content A substance greater than 1% and having a water content greater than 3%.
  • the oily aqueous material comprises a rock mud, a water-based drilling mud, an oil-based drilling mud, a ground oil spill, a ground oil sludge, an oil field produced water, a tank bottom sludge, a clear tank sludge, and a refinery "three muds". ", oil sands, oil sand tailings, oil contaminated soil, cutting fluid waste, food waste, municipal sludge, sewage treatment plant sludge, animal and plant and microbes.
  • the water content in the solid matter obtained by the method and apparatus for treating an oily aqueous substance according to the present invention is generally not more than 60% by weight, preferably not more than 40%, more preferably, Not higher than 30%.
  • the weight percentage of the separated solid matter in the treated oily water content is called the percentage reduction.
  • the percentage reduction is related to two factors, one is the solid matter content in the treated oily water content, and the other is the separated solid state.
  • the water content in the material, the method and apparatus for treating an oily aqueous material of the present invention can increase the percentage reduction by reducing the water content in the separated solid matter.
  • the mutual solubility of the solvent and water used varies with temperature. Unlike conventional treatments that use demulsification as a first step, the method of treating an oily aqueous material of the present invention first separates the solids from the oily aqueous material, thereby reducing the risk of solids clogging the pipeline and subsequent steps.
  • the separation and recovery of water is not subjected to a phase change, but is directly obtained by liquid-liquid separation, so that the energy consumption is low; since the separated solvent can be recycled, the number is greatly reduced.
  • the method and apparatus for treating oily aqueous substances of the present invention do not use inorganic acid and alkali, and do not need to adjust the pH of the system, thereby reducing the corrosion protection requirements for the equipment. Accordingly, the present invention provides a method and corresponding apparatus for economically and efficiently treating oily aqueous materials.
  • FIG. 1 is a schematic structural view of an apparatus 100 for treating an oily aqueous substance according to an embodiment of the present invention
  • FIG. 2 is a flow chart of the application of an apparatus 100 for treating oily aqueous materials to treat oily aqueous materials in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic structural view of an apparatus 200 for treating an oily aqueous substance according to an embodiment of the present invention
  • FIG. 4 is a flow diagram of the application of an apparatus 200 for treating oily aqueous materials to treat oily aqueous materials in accordance with an embodiment of the present invention.
  • Approximating terms used in the present application are used to modify the quantity, and the invention is not limited to the specific number, and includes a modified portion that is close to the quantity and that does not cause a change in the related basic function.
  • a numerical value is modified by "about”, “about”, “about”, and the like, meaning that the invention is not limited to the precise value.
  • the approximation may correspond to the accuracy of the instrument that measures the value.
  • the numerical ranges in the present invention may be combined and/or interchanged, and the numerical range includes all numerical sub-ranges that are encompassed.
  • the terms "or”, “or” do not mean exclusive, but rather mean that there is at least one of the referenced items (e.g., ingredients) and includes the case where a combination of items may be present.
  • references to "some embodiments" and the like in this specification are meant to indicate that a particular element (such as a feature, structure, and / or feature) that is associated with the present invention is included in at least one embodiment described herein, possibly or It is not possible to appear in other embodiments. Additionally, it is to be understood that the inventive elements may be combined in any suitable manner.
  • FIG. 1 is a schematic structural view of an apparatus 100 for treating an oily aqueous substance according to an embodiment of the present invention
  • FIG. 2 is a flow chart of processing an oily aqueous substance by using an apparatus 100 for treating an oily aqueous substance according to an embodiment of the present invention
  • FIG. 3 is a flow chart according to the present invention.
  • FIG. 4 is a flow chart for treating an oily aqueous substance by using an apparatus 200 for treating an oily aqueous substance according to an embodiment of the present invention.
  • the apparatus of the embodiment of the present invention may perform continuous treatment on the oily aqueous substance or may perform intermittent operation.
  • oil refers to hydrophobic materials that are liquid at ambient temperatures, the composition of which includes hydrocarbons or silicones.
  • the oil present in the oily aqueous material may be one or more of, including but not limited to, any one or more of petroleum, asphalt, animal oil, vegetable oil, silicone oil, or lubricating oil.
  • oil aqueous material or like terms means a substance containing components such as oil, water and solids, which are present in solid, slurry, viscous liquid, suspended solids, or liquid form, among which solids, oils, and
  • the water content is generally in percentage by weight, for example, a substance having an oil content of more than 1% and a water content of more than 3%.
  • the oily aqueous material includes drilling cuttings, water-based drilling mud, oil-based drilling mud, ground oil spills, oil sludge, oil field produced in the process of crude oil production, storage, transportation, processing, and use.
  • the refinery “three muds” includes the grease trap bottom mud, flotation tank scum and residual activated sludge.
  • the oily aqueous material includes natural sand-rich sedimentary sand in the natural world, called oil sand or tar sand.
  • the method and apparatus for treating oily aqueous materials of the present invention can be used for oil sand mining or oil sand tailings. Processing.
  • the oil-containing aqueous material includes cutting fluid waste produced during metal processing.
  • the oily aqueous material includes food waste, municipal sludge, animal and plant, microorganism, etc., wherein the animal and plant body may include meat, fur, nuts, spiced crops, traditional Chinese medicine, etc., microorganisms For example algae.
  • first oily aqueous material means different oily aqueous materials, which may be different batches of the same oily aqueous material, The same or similar components may be different types of oil-containing aqueous substances, for example, one or more selected from the above-listed species, respectively.
  • the mutual solubility of the solvent and water used in the examples of the present invention at the first temperature is higher than the mutual solubility of the solvent and water at the second temperature.
  • the solvent is miscible or miscible with water, and no liquid stratification occurs; at a second temperature different from the first temperature, the mutual solubility of the solvent and water is lowered due to Liquid stratification occurs when solvent and water density are different.
  • the solvent is miscible with at least one of the oily aqueous materials at both the first temperature and the second temperature, preferably, is miscible with the two or more oils.
  • the solvent is both liquid at both the first temperature and the second temperature.
  • the solvent comprises one or more selected from the group consisting of alcohols, phenols, ethers, amines, and ketones.
  • first temperature and second temperature referred to in the present application, each of which may be a specific temperature value, may also be a certain temperature range, for example, from 20 ° C to 30 ° C.
  • the first temperature is higher than the second temperature, for example, the first temperature is in the range of 50 ° C to 85 ° C, preferably in the range of 55 ° C to 80 ° C, and the second temperature is in the range of 0 ° C to 45 ° C Within the range, preferably, it is in the range of 5 ° C to 40 ° C.
  • the solvent includes one or more selected from the group consisting of methyl ethyl ketone, methyl ethyl ketone, isopropyl alcohol, and isopropyl ether.
  • the second temperature is higher than the first temperature, for example, the first temperature is in the range of 0 ° C to 45 ° C, preferably in the range of 5 ° C to 40 ° C, and the second temperature is in the range of 50 ° C to 85 ° C Within the range, preferably, it is in the range of 55 ° C to 80 ° C.
  • the solvent includes diisopropylamine or triethylamine.
  • solvent may be a fresh solvent purchased, or may be a separated solvent or a recovered solvent produced in the method and apparatus of the present invention.
  • an apparatus 100 for treating an oily aqueous material includes a mixing unit 151 including an oily aqueous material inlet, a solvent inlet, and a mixture outlet; a first separation unit 153 including a mixture inlet, a solid material outlet, and a liquid state a material outlet, wherein the mixture inlet is connected to the mixture outlet of the mixing unit 151; the second separation unit 155 includes a liquid substance inlet, a water phase outlet, and an organic phase outlet, wherein the liquid substance inlet and the first separation unit The liquid material outlet of 153 is connected; and the third separation unit 157 includes an organic phase inlet, a separated solvent outlet, and a separated oil outlet, wherein the organic phase inlet and the organic phase outlet of the second separation unit 155 connection.
  • the apparatus 100 for treating an oily aqueous material further includes a first reflux unit 161 including a conduit connecting the organic phase outlet of the second separation unit 155 to the solvent inlet of the mixing unit 151.
  • the apparatus 100 for treating an oily aqueous material further includes a second reflux unit 162 including a conduit connecting the separated solvent outlet of the third separation unit 157 with the solvent inlet of the mixing unit 151.
  • the apparatus 100 for treating an oily aqueous material further comprises one or more of the following units: a solid aftertreatment unit 154 comprising a solids inlet and a solvent reduced solids outlet, wherein the solids inlet is first The solid material outlet of the separation unit 153 is connected; the water post-treatment unit 156 includes a water phase inlet and a solvent-reduced water phase outlet, wherein the water phase inlet is connected to the water phase outlet of the second separation unit 155; and oil post-treatment The unit 158 includes a separated oil inlet and a solvent reduced oil outlet, wherein the separated oil inlet is connected to the separated oil outlet of the third separation unit 157.
  • a method of treating an oily aqueous material using the present invention can effectively treat the first oily aqueous material 101 using apparatus 100 for treating oily aqueous materials.
  • the mixing unit 151 is used to mix the first oil-containing aqueous substance 101 with the solvent 103 to obtain a mixture 105 comprising a solid substance and a liquid substance, wherein the liquid substance comprises a solvent 103, oil and water; and the first separation unit 153
  • the mixture 105 is separated to obtain a solid substance 107 and a liquid substance 111;
  • a second separation unit 155 is used to separate the liquid substance 111 to obtain an aqueous phase 113 and an organic phase 117, wherein the organic phase 117 comprises a solvent 103 and an oil;
  • the separation unit 157 is for separating the organic phase 117 to obtain the separated solvent 123 and the separated oil 119.
  • the first oil-containing aqueous substance 101 is contacted with the solvent 103 in the mixing unit 151 to obtain a mixture 105 comprising a solid substance and a liquid substance, wherein the liquid substance contains the solvent 103 and the oil extracted from the first oil-containing aqueous substance 101 by the above contact. And water.
  • the mixing unit 151 is capable of bringing the first oil-containing aqueous substance 101 into sufficient contact with the solvent 103 such that the oil and water in the first oil-containing aqueous substance 101 and the solvent 103 are mutually soluble to form a liquid mixture.
  • the mixing unit 151 includes heating elements or cooling elements for increasing and decreasing the temperature of the substance in the mixing unit 151, respectively.
  • the heating element or cooling element comprises a jacket heating device, a coil heating device or an electric heating device, wherein the heating medium in the jacket and the coil may take one or more of water, oil and steam.
  • the mixing unit 151 includes a first temperature control element that is capable of controlling the substance in the mixing unit 151 to be at a first temperature.
  • the first temperature control element includes a temperature controller.
  • the mixing unit 151 includes a container or element capable of mixing the first oil-containing aqueous substance 101 with the solvent 103, for example, a stirring element for promoting mixing between the first oil-containing aqueous substance 101 and the solvent 103.
  • agitating elements include, but are not limited to, any one or more of propulsion, paddle, turbine, frame, screw, and anchor.
  • the first oil-containing aqueous substance 101 and the solvent 103 are contact-mixed in the mixing unit 151 in a certain weight ratio.
  • the weight ratio of solvent 103 to first oily aqueous material 101 is less than 10:1; for example, the weight ratio of solvent 103 to first oily aqueous material 101 is less than 8:1.
  • the first oil-containing aqueous substance 101 and the solvent 103 are each continuously injected into the mixing unit 151 at a certain speed.
  • the first oil-containing aqueous substance 101 and the solvent 103 are intermittently injected into the mixing unit 151 at a certain weight ratio at a certain time interval, for example, the first oil-containing aqueous substance 101 and the solvent 103 are A weight ratio of 5:1 is injected into the mixing unit 151 once per hour.
  • each injection may be a rapid total injection in a short time interval, or may be an injection for a period of time, for example, continuously injecting a required amount of the first oil in 15 minutes.
  • Aqueous substance 101 and solvent 103 may be a rapid total injection in a short time interval, or may be an injection for a period of time, for example, continuously injecting a required amount of the first oil in 15 minutes.
  • the first separation unit 153 separates the solid matter 107 and the liquid substance 111 in the mixture 105.
  • the first separating unit 153 includes a first separating element capable of achieving solid-liquid separation for realizing separation of all or part of the solid matter 107 and the liquid substance 111.
  • the first separation element of the first separation unit 153 includes, but is not limited to, a gravity sedimentation element, a cyclone separation element, a membrane separation element, a pressure filtration element, a pressure reduction filter element, and a centrifugal separation element. Any one or more of a plate and frame filter element and a cartridge filter element.
  • a small amount of solid matter residue may still be contained in the separated liquid substance 111, and a small amount of liquid substance residue may still be contained in the separated solid substance 107.
  • the mixing unit 151 and the first separating unit 153 are two separately disposed units, such that the two operations of mixing and solid-liquid separation are performed in the mixing unit 151 and the first separating unit 153, respectively.
  • the mixing unit 151 and the first separating unit 153 are integrally disposed, and are embodied as an integrated device having a mixing function and a solid-liquid separation function, so that both the mixing and the solid-liquid separation are integrated in the integration. Completed in the device.
  • the separated solid material 107 can be directly landfilled or incinerated.
  • the residual solvent content in the separated solid material 107 is relatively high, and the residual solvent is removed therefrom.
  • the apparatus 100 for treating the oily aqueous material further includes a solid post-processing unit 154 for The residual solvent in the separated solid matter 107 is removed, thereby obtaining a solid matter 109 having a reduced solvent content.
  • the residual solvent in the solid material 107 is volatilized by heating or depressurization
  • the solid post-processing unit 154 includes, but is not limited to, any one of a heating element, a decompression element, a vacuum drying element, and a steam drying element. Kind or more.
  • the steam drying element is a method of purging and washing a solid substance using steam.
  • the residual solvent in the solid material 107 is removed by a solvent wash
  • the solid post-treatment unit 154 includes a solvent wash element
  • the separated solid is washed one or more times using the fresh solvent 102 or the separated solvent 123.
  • the substance 107, the washed solid is volatilized by heating or decompression, the washing liquid and the volatile solvent are collected, and the liquid and liquid are separated at a second temperature to obtain a solvent and water, thereby recovering the solvent used for washing.
  • the solvent washing element can not only remove the residual solvent in the solid matter 107, but also further reduce the water content in the solid matter 107, further achieving the reduction.
  • the second separation unit 155 separates the separated liquid substance 111 to obtain an aqueous phase 113 and an organic phase 117.
  • the second separation unit 155 separates water from the liquid substance 111 by utilizing a property of low solubility of the solvent and water at the second temperature.
  • the second separation unit 155 includes a heating element or a cooling element for increasing and decreasing the temperature of the substance in the second separation unit 155, respectively.
  • the heating element or cooling element comprises a jacket heating device, a coil heating device or an electric heating device, wherein the heating medium in the jacket and the coil may take one or more of water, oil and steam.
  • the second separation unit 155 includes a second temperature control element
  • the second temperature control element includes a temperature controller capable of controlling the substance in the mixing unit 151 to be at a second temperature to achieve mutual solubility of water and solvent. Lowering produces liquid stratification, specifically, the lower density is located in the lower layer, and the lower density is located in the upper layer. Since the oil and the solvent have good mutual solubility and do not change much with temperature, the oil and the solvent are present in the organic phase 117.
  • the liquid substance 111 is left to stand in two layers: the upper layer is an organic phase, which is triethylamine and A mixture of oils, the lower layer being the aqueous phase.
  • the second separation unit 155 includes an element capable of achieving liquid-liquid separation to effect separation of the aqueous phase 113 and the organic phase 117.
  • Some embodiments of the second separation unit 155 include, but are not limited to, any one or more of a gravity separation element, a centrifugal separation element, and a cyclonic separation element.
  • a small amount of solvent may still be present in the aqueous phase 113, and a small amount of water may still be contained in the organic phase 117.
  • the apparatus 100 for treating an oily aqueous material further includes a residual solids removal unit (not shown) disposed prior to the second separation unit 155 for further removing a small amount of solid matter entrained in the liquid substance 111.
  • the residual solids removal unit includes, but is not limited to, any one or more of a gravity sedimentation element, a centrifugal separation element, and a cyclone separation element.
  • the residual solid removal unit and the second separation unit 155 may be two separately arranged units, or may be integrally provided.
  • the residual solid removal unit When the residual solid removal unit is integrally provided with the second separation unit 155, it is embodied as an integrated device having both a function of removing residual solids and a function of separating liquid and liquid, such that residual solids, aqueous phases, and organic substances in the liquid substance 111 The three are separated in the integrated device.
  • the first separation unit 153 and the second separation unit 155 are two separately disposed units, such that the two operations of solid-liquid separation and liquid-liquid separation are respectively performed in the first separation unit 153 and the second separation unit 155. get on.
  • the first separation unit 153 and the second separation unit 155 are integrated, and are embodied as an integrated device having both a solid-liquid separation function and a liquid-liquid separation function, such that solid-liquid separation and liquid-liquid separation Two operations are completed in the integrated device.
  • the apparatus 100 for treating oily aqueous materials includes a water aftertreatment unit 156 for removing the aqueous phase 113.
  • the solvent was left to obtain water 115 having a reduced solvent content.
  • the water aftertreatment unit 156 includes a stripping element that is directly contacted with water vapor or a hot gas, such as air or nitrogen, to diffuse the residual solvent into the gas phase, thereby reducing solvent content. Water 115.
  • the water aftertreatment unit 156 includes an evaporation element that can be vaporized in a variety of ways, such as changing the temperature or pressure of the aqueous phase 113.
  • the evaporation element comprises a flash element or a thermal evaporation element.
  • the water aftertreatment unit 156 also includes a liquefaction element for liquefying the evaporated residual solvent.
  • the liquefaction unit includes, but is not limited to, a pressurizing element or a condensing element.
  • the water aftertreatment unit 156 includes an evaporation element and a liquefaction element that are integrally disposed, such as a distillation column or a rectification column.
  • the water aftertreatment unit 156 includes an extraction column that removes the solvent in the aqueous phase by extraction, such as using octane as the extractant, and in the first step, the solubility of the residual solvent in the extractant is greater.
  • the characteristic is that the residual solvent in the water phase 113 is transferred to the extractant; in the second step, the solvent is separated from the extractant through the rectification column.
  • the apparatus 100 for treating an oily aqueous material further includes a first reflux unit 161 for refluxing at least a portion of the organic phase 117 to the mixing unit 151 to effect at least a portion of the organic phase 117 with the second oily aqueous material. Mixing, treating the second oily aqueous material as a solvent.
  • the first reflow unit 161 includes a conduit for recirculating at least a portion of the organic phase 117 to the mixing unit 151.
  • the first reflow unit 161 includes a pump for injecting at least a portion of the organic phase 117 into the mixing unit 151.
  • the first reflow unit 161 includes a flow meter for monitoring the flow of the returned organic phase 117. Reflowing at least a portion of the organic phase 117 for treating the second oil-containing aqueous material can reduce the amount of processing of the subsequent third separation unit 157, while reducing the amount of fresh solvent to some extent, thereby saving processing costs.
  • the third separation unit 157 separates the organic phase 117 containing the solvent and the oil to obtain the separated solvent 123 and the separated oil 119.
  • the third separation unit 157 separates the solvent and the oil by the difference in boiling points.
  • the third separation unit 157 includes an evaporation element that is capable of evaporating solvent or oil from the organic phase 117 to effect separation of the solvent and oil.
  • the evaporation element can be vaporized in a number of ways, such as changing the temperature or pressure of the organic phase 117.
  • the evaporation element comprises a flash element or a thermal evaporation element.
  • the third separation unit 157 further includes a liquefaction element for liquefying the evaporated solvent or oil to obtain a liquid separated solvent 123 or a liquid separated oil 119.
  • the liquefaction element may liquefy the evaporated solvent or oil in a variety of ways, such as a pressurization or condensation operation, wherein the third separation unit 157 may also correspondingly when the liquefaction element liquefies the evaporated solvent or oil by pressurization.
  • a cooling element is included to cool the solvent or oil that has increased in temperature due to pressurization.
  • the third separation unit 157 includes an evaporation element and a liquefaction element that are integrally disposed, such as a distillation column or a rectification column.
  • the oil contained in the first oil-containing aqueous substance 101 contains two or more oil substances of different boiling points, such that the organic phase 117 contains a solvent and two or more different boiling points. Oily substances.
  • the third separation unit 157 is capable of separating at least one oil species in the organic phase 117. In some embodiments, the third separation unit 157 is capable of separating two or more different boiling oil species in the organic phase 117. In some embodiments, the third separation unit 157 includes a rectification column to effect separation of the solvent and oils of different boiling points.
  • a small amount of oil may still be contained in the separated solvent 123, and a small amount of solvent may still be contained in the separated oil 119.
  • the separated oil 119 can be sold directly as a product or returned directly to the refinery without any treatment.
  • the separated oil 119 may include a plurality of ingredients.
  • various liquid components in the separated oil 119 such as residual solvent, residual water, and different kinds of oily substances, various methods such as evaporation, extraction or stripping, adsorption, standing stratification, etc. may be employed.
  • At least one of the components may be separated; for the residual solid matter in the separated oil 119, it may be removed by various methods such as natural sedimentation, centrifugation, cyclone separation, membrane separation, and the like.
  • the apparatus 100 for treating an oily aqueous material further includes an oil aftertreatment unit 158 for separating residual solvent, residual water, or at least one oily substance from the separated oil 119.
  • the oil aftertreatment unit 158 can separate the oily substance 121 from the separated oil 119.
  • the oily substance 121 can be sold directly as a product or applied to a particular field.
  • the oil aftertreatment unit 158 includes a rectification column to effect separation of the different components.
  • the oil aftertreatment unit 158 includes a plurality of mutually independent subunits for separating different components of the separated oil 119, respectively.
  • the separated solvent 123 is stored in a recovery solvent storage unit (not shown) for later use, or in other processes or equipment, or reused to treat oily aqueous materials.
  • the subsequently added oily aqueous material is processed in apparatus 100.
  • the apparatus 100 for treating an oily aqueous material further includes a second reflux unit 162 for refluxing at least a portion of the separated solvent 123 to the mixing unit 151 for mixing with the third oily aqueous material to treat the third Oily watery substance.
  • the second reflow unit 162 includes a conduit for recirculating at least a portion of the separated solvent 123 to the mixing unit 151.
  • the second reflow unit 162 includes a pump for injecting the separated solvent 123 into the mixing unit 151.
  • the second reflow unit 162 includes a flow meter for monitoring the flow of the separated separated solvent 123.
  • the solvent required for the mixing unit 151 is mainly derived from the fresh solvent 102.
  • the solvent required for the mixing unit 151 will mainly come from The solvent 123 after separation, but the mixing unit 151 may still need to inject a small amount of fresh solvent 102 to supplement the solvent lost during the treatment.
  • the third separation unit 157 and the second reflow unit 162 are each separately disposed such that the separation operation of the solvent and the oil and the reflow operation of the separated solvent 123 are performed at the third separation unit 157 and the second reflow unit, respectively.
  • the third separation unit 157 is integrally provided with the second reflow unit 162 and integrated in one apparatus such that the separation operation of the solvent and the oil and the operation of the solvent 123 after the reflux separation are performed in the apparatus. .
  • Embodiments of the present invention are also directed to a method corresponding to the process of treating an oily aqueous material illustrated in Figure 2, the method comprising the steps of:
  • the organic phase 117 is subjected to a third separation treatment to obtain a separated solvent 123 and a separated oil 119.
  • the first oil-containing aqueous substance 101 is brought into contact with the solvent 103, and the temperature is maintained at the first temperature to obtain a mixture 105 of the solid substance and the liquid substance which is easy to perform solid-liquid separation; in the step (2) Separating the solid-liquid mixture 105 to obtain the solid matter 107 and the liquid substance 111, since the solid matter in the first oil-containing aqueous substance 101 is first separated, reducing the risk of solids clogging the pipeline and subsequent units; in step (3) Maintaining the temperature of the liquid substance 111 at the second temperature, since the solvent and water are less miscible at the second temperature, the liquid substance 111 forms two liquid phases: an organic phase 117 containing a solvent and an oil, and an aqueous phase 113, And separating the two liquid phases by the difference in density between the organic phase 117 and the aqueous phase 113, such that most of the water in the first oil-containing aqueous material 101 is separated; in the step (4), the organic phase 117 is separated
  • the method of treating an oily aqueous material further comprises: mixing at least a portion of the organic phase 117 with a second oily aqueous material, and treating the second oily aqueous material by the method of the present invention for treating an oily aqueous material, the organic At least a portion of the phase 117 is used as a solvent.
  • the amount of organic phase 117 processed in the step can be reduced, resulting in cost savings.
  • the method of treating an oily aqueous material further comprises the step (5): mixing at least a portion of the separated solvent 123 with a second oily aqueous material, and treating the second oil with the method of treating an oily aqueous material of the present invention.
  • the aqueous substance, at least a part of the separated solvent 123 is used as a solvent.
  • the separated solvent 123 is recycled, which reduces the amount of fresh solvent used in the treatment of the second oily aqueous material, thereby saving costs.
  • the method of treating the oil-containing aqueous material further comprises: removing the residual solvent in the solid matter 107 obtained in the step (2) to obtain a solid matter 109 having a reduced solvent content.
  • the specific method may volatilize the residual solvent in the solid matter 107 by heating or decompression.
  • the reduced solids content 109 can achieve solid landfill requirements or incineration requirements.
  • the method of treating an oily aqueous material further comprises: removing the residual solvent in the aqueous phase 113 obtained in step (3) to obtain water 115 having a reduced solvent content.
  • the specific method may employ stripping or evaporation, wherein the evaporation includes azeotropic method.
  • the reduced solvent content of water 115 can be directly discharged or sent to a sewage treatment plant for processing.
  • the method of treating an oily aqueous material further comprises separating residual solvent, residual water, or at least one oily material from the separated oil 119.
  • the oily material 121 is separated from the separated oil 119.
  • the oily material 121 can be sold directly as a product or applied to a particular field.
  • the specific separation method may employ distillation or rectification.
  • the apparatus 200 for treating an oily aqueous substance shown in FIG. 3 includes a first mixing unit 251 including an oily aqueous substance inlet, a solvent inlet, and a first mixture outlet; a first separation unit 253 including a mixture inlet, a solid material outlet, and a liquid substance An outlet, wherein the mixture inlet is connected to the first mixture outlet of the first mixing unit 251; the second separation unit 255 includes a liquid substance inlet, a water phase outlet, and an organic phase outlet, wherein the liquid substance inlet is separated from the first The liquid substance outlet of the unit 251 is connected; the third separation unit 257 includes an organic phase inlet, a separated solvent outlet, and a separated oil outlet, wherein the organic phase inlet and the organic phase outlet of the second separation unit 255 Connecting; the second mixing unit 263 includes a solid matter inlet, a solvent inlet, and a second mixture outlet, the solid matter inlet is connected to the solid matter outlet of the first separation unit 253; and the solid-liquid separation unit 265
  • FIG. 4 is a flow chart showing the treatment of an oily aqueous material by means of a device 200, in which, in particular, a first oily aqueous material 201 is mixed with a solvent 203 in a first mixing unit 251 to obtain a mixture 205 comprising a solid substance and a liquid substance.
  • the liquid substance comprises a solvent 203, oil and water;
  • the first separation unit 253 is for separating the mixture 205 to obtain a solid substance 207 and a liquid substance 211;
  • the second separation unit 255 is for separating the liquid substance 211 to obtain an aqueous phase 213.
  • an organic phase 217 wherein the organic phase 217 comprises a solvent 203 and an oil; and a third separation unit 257 is used to separate the organic phase 217 to obtain a separated solvent 223 and a separated oil 219.
  • the apparatus 200 uses an amine solvent such as diisopropylamine or triethylamine.
  • This type of solvent is mixed with the oily aqueous material to be treated at a first temperature, the first temperature being in the range of 0 °C to 45 °C.
  • the first temperature of the actual operation is low, for example, in the range of 0 ° C to 20 ° C, the solvent is miscible with water when mixed with the oily aqueous substance, and the miscibility with the oil is low, resulting in the first separation.
  • the solid matter obtained in unit 253 has a higher oil content. In this case, the solid matter obtained by the first separation unit 253 can be introduced into the second mixing unit 263 for further processing.
  • the solid matter is mixed with a solvent to obtain a second mixture, and the second mixture is subjected to solid-liquid separation in the solid-liquid separation unit 265 to obtain a separated solid 207 and a liquid mixture 227.
  • the main components of the liquid mixture 227 are a solvent and an oil, and the liquid mixture 227 is introduced into a third separation unit for separation to obtain a separated solvent and a separated oil.
  • device 200 optionally includes one of first reflow unit 261, second reflow unit 262, solid post-processing unit 254, water post-processing unit 256, and oil post-processing unit 258 or Multiple.
  • first reflow unit 261, second reflow unit 262, solid post-processing unit 254, water post-processing unit 256, and oil post-processing unit 258 or Multiple The settings and functions of each of the above units are similar to those described in the apparatus 100.
  • Embodiments of the present invention are also directed to a method of treating an oily aqueous material corresponding to the process illustrated in Figure 4, comprising the steps of:
  • the solid substance 207 is mixed with the solvent 231 to obtain a second mixture 225, wherein the solvent 231 is substantially the same as the solvent 203, and may be a fresh solvent or a recovered solvent;
  • the second mixture 225 is subjected to a solid-liquid separation treatment to obtain a separated solid 207 and a liquid mixture 227;
  • the processing method including the above (1) to (6) can be applied to the device 200.
  • the processing method including the above (1)-(6) is also applicable to the apparatus 100 shown in FIG. 1, for example, the first mixing unit and the second mixing unit are combined into the same device, and the first separating unit It is combined with the solid-liquid separation unit into the same equipment, and the operations of the above steps (1)-(6) are realized by valve control.
  • the method for treating an oily aqueous substance of the present invention separates solid, oil and water in an oily aqueous substance by using a solvent which is compatible with water and which changes with temperature. Specifically, after mixing the solvent with the substance to be treated at the first temperature, first separating the solid substance from the mixture of the oily aqueous substance and the solvent by solid-liquid separation; secondly, making the water and the solvent and the oil at the second temperature The mixture is separated by density, and separated by liquid-liquid separation to obtain an separated aqueous phase. Third, the oil and solvent are separated to obtain a separated oil and a separated solvent. In the process of treatment, since the separation of water does not undergo a phase change, the method and its corresponding device have low energy consumption and are economical and practical.
  • the scum sludge was treated with a small device with a sample throughput of 100 g per batch, using triethylamine as a solvent.
  • the water content, oil content and ash content of the scum sludge are shown in Table 1.
  • ash refers to an inorganic substance other than water in the sample.
  • a mixer having a stirring function 100 g of scum sludge and 200 g of triethylamine were added under normal pressure at 30 ° C and stirred for 5 minutes for mixing.
  • the mixture in the mixer is drained to a filter for filtration, the filter cloth has a pore size of 5 ⁇ m, pressurized to 5 bar with compressed air or compressed nitrogen, and the separated solid is collected on the filter cloth, and the filtered, contained
  • the liquid substance of triethylamine, water and oil is introduced into the liquid-liquid separator.
  • the liquid-liquid separator keep the pressure at normal pressure, raise the temperature of the mixture of triethylamine, water and oil to 80 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is a mixture of triethylamine and oil.
  • the lower layer is the water phase.
  • the lower aqueous phase is introduced into the stripper for evaporation, and the residual triethylamine in the aqueous phase forms an azeotrope with water to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation.
  • Water A mixture of triethylamine and oil was introduced into the distiller, and the separated solvent was collected at an evaporation temperature of 85 ° C to obtain an isolated oil.
  • Table 1 The composition of the separated solid, water and oil is shown in Table 1.
  • the scum sludge after the solvent treatment was reduced by 98.0%.
  • the separated solid is loose, the particles are obvious, the water content is less than 20%, the oil content is about 50%, the ash content is about 33%, and the calorific value is about 16.72 MJ/kg (about 4000 kcal/kg), which can be supplemented less.
  • Part of the fuel is further incinerated.
  • the separated water has a low oil content and a low ash content, and the turbidity is about 669 NTU, which can be sent to a wastewater treatment system for further processing.
  • the separated oil has a moisture content of about 5% and a low ash content, which can be transported to the refinery for use or further processed.
  • the scum sludge is pretreated and dehydrated, and the pre-dewatering is dehydrated by pressure filtration.
  • the filter cloth with a pore size of 5 ⁇ m is used under 4 standard atmospheric pressures.
  • the water phase obtained by filtration is clear and transparent, and oil components and ash are not detected. .
  • the scum sludge after pre-dewatering is relatively dry, and the reduction is more than 90%.
  • the water content, oil content and ash content of the pre-dewatered scum sludge are shown in Table 2.
  • the pre-dewatered scum sludge was treated with a small device with a sample throughput of 100 g per batch and triethylamine as a solvent.
  • a mixer having a stirring function 100 g of pre-dewatered scum sludge and 200 g of triethylamine were added under normal pressure at 30 ° C and stirred for 5 minutes for mixing. Next, the mixture in the mixer is drained to a filter for filtration.
  • the filter cloth has a pore size of 5 ⁇ m, is pressurized to 5 bar with compressed air or compressed nitrogen, and is filtered for about 5 minutes, and the separated solid is collected on the filter cloth.
  • the filtered liquid substance containing triethylamine, water and oil is introduced into the liquid-liquid separator.
  • the liquid-liquid separator keep the pressure at normal pressure, raise the temperature of the mixture of triethylamine, water and oil to 80 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is a mixture of triethylamine and oil.
  • the lower layer is the water phase.
  • the lower aqueous phase is introduced into the stripper for evaporation, and the residual triethylamine in the aqueous phase forms an azeotrope with water to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation.
  • Water A mixture of triethylamine and oil was introduced into the distiller, and the solvent was recovered at an evaporation temperature of 85 ° C to obtain an isolated oil.
  • Table 2 The composition of the separated solid, water and oil is shown in Table 2.
  • the scum sludge after the solvent treatment was further reduced by 85.3%.
  • two steps of pre-dehydration and solvent separation are used to treat oily aqueous substances with high water content, which can greatly reduce the amount of solvent and save costs.
  • the tank bottom sludge was treated with triethylamine as a solvent in a small unit with a sample throughput of 100 g per batch.
  • the water content, oil content and ash content of the bottom sludge were as shown in Table 3.
  • a mixer having a stirring function 100 g of bottom sludge and 500 g of triethylamine were added under normal pressure at 30 ° C and stirred for 5 minutes for mixing.
  • the mixture in the mixer is drained to a filter for filtration, the filter cloth has a pore size of 50 ⁇ m, pressurized to 5 bar with compressed air or compressed nitrogen, and the separated solid is collected on the filter cloth, and the filtered, contained
  • the liquid substance of triethylamine, water and oil is introduced into the liquid-liquid separator.
  • the liquid-liquid separator keep the pressure at normal pressure, raise the temperature of the mixture of triethylamine, water and oil to 80 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is a mixture of triethylamine and oil.
  • the lower layer is the water phase.
  • the lower aqueous phase is introduced into the stripper for evaporation, and the residual triethylamine in the aqueous phase forms an azeotrope with water to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation.
  • Water A mixture of triethylamine and oil was introduced into the distiller, and the solvent was recovered at an evaporation temperature of 85 ° C to obtain an isolated oil.
  • Table 3 The composition of the separated solid, water and oil is shown in Table 3.
  • the amount of sludge at the bottom of the tank after solvent treatment was reduced by 94.9%.
  • the separated solid is loose, the particles are obvious, the water content is less than 10%, the oil content is about 75%, the ash content is about 17%, and the calorific value is about 29.79 MJ/kg (about 7127 kcal/kg), which is equivalent to the standard.
  • the calorific value of coal can be directly used as fuel incineration.
  • the separated water has a low oil content, a low ash content, and a turbidity of about 447 NTU, which can be sent to a wastewater treatment system for further processing.
  • the separated oil has a moisture content of less than 5% and a low ash content, which can be transported to a refinery for use or further processed for reuse.
  • the drilling cuttings were treated with a small device with a sample throughput of 100 g per batch and isopropanol as a solvent.
  • the water content, oil content and ash content of the drilling cuttings are shown in Table 4.
  • a mixer having a stirring function 100 g of drilling cuttings and 200 g of isopropyl alcohol were added under normal pressure at 80 ° C and stirred for 5 minutes for mixing. Next, the mixture in the mixer is drained to a filter for filtration, the filter cloth has a pore size of 5 ⁇ m, pressurized to 4 bar with compressed air or compressed nitrogen, and the separated solid is collected on the filter cloth, and the filtered, contained A liquid substance of isopropyl alcohol, water and oil is introduced into the liquid-liquid separator.
  • the liquid-liquid separator keep the normal pressure, adjust the temperature of the mixture of isopropyl alcohol, water and oil to 40 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is isopropyl alcohol and the oil phase, the lower layer For the water phase.
  • the lower aqueous phase is introduced into the stripper for evaporation, and the residual isopropanol in the aqueous phase forms an azeotrope with water to evaporate.
  • the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation. Water.
  • a mixture of isopropyl alcohol and oil was introduced into the distiller, and the solvent was recovered at an evaporation temperature of 85 ° C to obtain an isolated oil.
  • the composition of the separated solid, water and oil is shown in Table 4.
  • the amount of drilling debris after solvent treatment was reduced by 15%.
  • the separated solid is loose, the particles are obvious, and the water content is only 1%.
  • the cutting fluid waste liquid was treated with diisopropylamine as a solvent in a small device with a sample throughput of 100 g per batch.
  • the water content, oil content and ash content of the cutting fluid are shown in Table 5.
  • a mixer having a stirring function 100 g of a cutting fluid waste liquid and 200 g of diisopropylamine were added under normal pressure at 40 ° C and stirred for 5 minutes to carry out mixing.
  • the mixture in the mixer is drained to a filter for filtration, the filter cloth has a pore size of 5 ⁇ m, and is pressurized to 5 bar with compressed air or compressed nitrogen, and the separated solid is collected on the filter cloth, and the filtered, contained A liquid substance of diisopropylamine, water and oil is introduced into the liquid-liquid separator.
  • the liquid-liquid separator keep the normal pressure, raise the temperature of the mixture of diisopropylamine, water and oil to 80 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is diisopropylamine and the oil phase.
  • the lower layer is the water phase.
  • the lower aqueous phase is introduced into a stripper for evaporation, and the residual diisopropylamine in the aqueous phase forms an azeotrope with water to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation.
  • Water A mixture of diisopropylamine and oil was introduced into the distiller, and the solvent was recovered at an evaporation temperature of 85 ° C to obtain an isolated oil.
  • the composition of the separated solid, water and oil is shown in Table 5.
  • the amount of cutting fluid waste liquid after solvent treatment was reduced to 99.2%.
  • the oil sands were treated with a small device with a sample throughput of 100 g per batch and diisopropylamine as a solvent.
  • the water content, oil content and ash content of the oil sands are shown in Table 6.
  • the mixture in the mixer is drained to a filter for filtration, the filter cloth has a pore size of 5 ⁇ m, pressurized to 4 bar with compressed air or compressed nitrogen, and the solid obtained after the second liquid-solid separation is collected on the filter cloth.
  • the filtrate obtained by the first liquid-solid separation (liquid substance containing diisopropylamine, water and oil) was introduced into the liquid-liquid separator.
  • the liquid-liquid separator keep the normal pressure, raise the temperature of the mixture of diisopropylamine, water and oil to 80 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is diisopropylamine and the oil phase. The lower layer is the water phase.
  • the lower aqueous phase is introduced into a stripper for evaporation, and the residual diisopropylamine in the aqueous phase forms an azeotrope with water to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation.
  • the liquid phase obtained after the second liquid-solid separation is mixed with the upper layer separated from the liquid-liquid separator, and the obtained mixture contains diisopropylamine and oil, which is introduced into a distiller, and the solvent is recovered at an evaporation temperature of 85 ° C. And the separated oil is obtained.
  • the solids obtained by the first liquid-solid separation, the solid, water and oil components obtained by the second liquid-solid separation are shown in Table 6.
  • the residual oil content in the solid obtained after the first liquid-solid separation is as high as 5.5%, and the solid is continued at a higher temperature.
  • the oil content in the solid obtained after the second liquid-solid separation was remarkably lowered to 0.5%.
  • the oil recovery rate of the solvent-treated oil sands was 95.9%.
  • the oilfield produced water was treated with a small device with a sample throughput of 100 g per batch, using triethylamine as a solvent.
  • the water content, oil content and ash content of the oil produced water were as shown in Table 7.
  • the atmospheric pressure is maintained, the temperature of the mixture of triethylamine, water and oil is raised to 80 ° C, stabilized for about 10 minutes, and divided into upper and lower layers: the upper layer is triethylamine and the oil phase.
  • the lower layer is the water phase.
  • the lower aqueous phase is introduced into the stripper for evaporation, and the residual triethylamine in the aqueous phase forms an azeotrope with water to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation.
  • Water A mixture of triethylamine and oil was introduced into the distiller, and the solvent was recovered at an evaporation temperature of 85 ° C to obtain an isolated oil.
  • Table 7 The composition of the separated solid, water and oil is shown in Table 7.
  • the oilfield produced water was treated with a small device with a sample throughput of 100 g per batch, using methyl ethyl ketone as a solvent.
  • the water content, oil content and ash content of the oil produced water were as shown in Table 8.
  • the liquid-liquid separator keep the normal pressure, reduce the temperature of the mixture of methyl ethyl ketone, water and oil to 40 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is methyl ethyl ketone and the oil phase, and the lower layer is water box.
  • the lower aqueous phase is introduced into the stripper for evaporation, and the residual butanone in the aqueous phase forms an azeotrope with water to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining water for separation. water.
  • a mixture of methyl ethyl ketone and oil was introduced into the distiller, and the solvent was recovered at an evaporation temperature of 80 ° C to obtain an isolated oil.
  • Table 8 The composition of the separated solid, water and oil is shown in Table 8.
  • Oilfield produced water Separated solid Separated water Separated oil
  • the oilfield produced water was treated with a small device with a sample throughput of 100 g per batch, and isopropanol and isopropyl ether were used as solvents.
  • the water content, oil content and ash content of the oil produced water were as shown in Table 9.
  • the liquid-liquid separator keep the normal pressure, reduce the temperature of the mixture of isopropanol, diisopropyl ether, water and oil to 40 ° C, stabilize for about 10 minutes, and divide it into two layers: the upper layer is isopropanol. , isopropyl ether, and oil phase, the lower layer is the aqueous phase.
  • the lower aqueous phase is introduced into a stripper for evaporation, and the residual isopropanol, diisopropyl ether and water in the aqueous phase form an azeotrope to evaporate, and the azeotrope is liquefied and refluxed to the liquid-liquid separator to collect the remaining Water is separated water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种处理含油含水物质的方法,包括:在第一温度下,将第一含油含水物质(101,102)与溶剂(103,203)混合,得到包含固态物质(107,207)和液态物质(111,211)的第一混合物(105,205),液态物质包含溶剂(103,203)、油和水;对第一混合物(105,205)进行第一次分离处理,得到固态物质(107,207)和液态物质(111,211);在第二温度下,对第一次分离处理得到的液态物质(111,211)进行第二次分离处理,得到水相(113,213)和有机相(117,217),有机相(117,217)包含溶剂(103,203)和油;以及对有机相(117,217)进行第三次分离处理,得到分离后的溶剂(123,223)和分离后的油(119,219),其中,溶剂(103,203)与水在第一温度下的互溶性高于溶剂(103,203)与水在第二温度下的互溶性。还公开了相应的处理装置。该处理含油含水物质的方法中,对水的分离和回收不经过相变,而是经过液液分离得到,能够有效降低能耗。

Description

处理含油含水物质的方法和装置 技术领域
本发明涉及混合物的分离技术领域,具体涉及一种使用溶剂处理含油含水物质的方法和装置。
背景技术
原油开采、存储、运输、以及加工等过程中产生的含油污泥,包括钻井岩屑、水基泥浆、油基泥浆、地面溢油、落地油泥、油田采出水、罐底油泥、清罐油泥、炼厂“三泥”、被油污染的土壤等,固体、油、水混合存在,成分复杂,根据含油污泥的来源不同,含固量、含油量、含水量、粘度相差很大,处理困难,长期堆积,污染周围的土壤、水体和空气,危害动植物和人类生存。处理含油污泥常用的方法有生物修复法、焚烧法、热裂解/焦化法、热水洗法、稳定化\固化法等,但目前还没有令人满意的、普遍适用的处理方法,可以有效地脱除含油污泥中的水分,减少固体废弃物的排放,同时回收含油污泥中的油类物质。
油砂也是一种含油含水物质,是由地壳表层的碎屑物或岩石与其中所含的水和油混合而成,从油砂中提取石油或沥青的工艺大多繁杂,且多不经济。
机械加工过程中使用的切削液是一种性质稳定的乳化液,在切削液使用过程中,由于混入细切屑、磨屑、砂轮末和灰尘等杂质,以及机床漏油使润滑油落入切削液中,导致切削液质量下降、使用周期缩短,处理含有固体残渣、水、油的切削液废液非常困难。
另外,餐饮废弃物,也称餐厨垃圾,是剩饭菜、餐桌废弃物及厨房下角料的总称,具有很高的含水率和油脂含量,污染环境和危害人类健康,急需有效 处理方法。各种市政污泥、污水处理厂污泥等也需要科学有效地减量化和无害化的处理方法。
所以,需要一种能够更经济有效地处理含油含水物质的方法和装置。
发明内容
本发明提供一种处理含油含水物质的方法和相应装置。
一方面,本发明的实施例涉及一种处理含油含水物质的方法,包括:在第一温度下,将第一含油含水物质与溶剂混合,得到包含固态物质和液态物质的第一混合物,该液态物质包含该溶剂、油和水;对该第一混合物进行第一次分离处理,得到该固态物质和该液态物质;在第二温度下,对第一次分离处理得到的液态物质进行第二次分离处理,得到水相和有机相,该有机相包含该溶剂和该油;以及对该有机相进行第三次分离处理,得到分离后的溶剂和分离后的油,其中,该溶剂与水在第一温度下的互溶性高于该溶剂与水在第二温度下的互溶性。
在本发明的处理含油含水物质的方法中,所使用的溶剂与水的互溶性随温度变化而发生变化,具体地,该溶剂在第一温度下与水的互溶性较高,在第二温度下与水的互溶性较低,第一温度可以高于或低于第二温度。
进一步地,本发明的处理含油含水物质的方法中所使用的溶剂包括选自醇类、酚类、醚类、胺类和酮类中的一种或多种。
当第一温度高于第二温度时,作为一种实施方式,第一温度在50℃到85℃范围内,优选地,在55℃到80℃范围内;第二温度在0℃到45℃范围内,优选地,在5℃到40℃范围内。在该情况下,本发明的处理含油含水物质的方法中所使用的溶剂包括选自甲基乙基酮、丁酮、异丙醇和异丙醚中的一种或多种。
当第一温度低于第二温度时,作为一种实施方式,第一温度在0℃到45℃ 范围内,优选地,在5℃到40℃范围内;第二温度在50℃到85℃范围内,优选地,在55℃到80℃范围内。在该情况下,本发明的处理含油含水物质的方法中所使用的溶剂包括二异丙胺或三乙胺。进一步地,本发明的处理含油含水物质的方法还包括:在第二温度下,将第一次分离处理得到的固态物质与溶剂混合,得到第二混合物;对所述第二混合物进行固液分离,得到分离后的固体和液体混合物;以及将所述液体混合物与所述有机相混合,并进行第三次分离处理,由此,能够对固态物质进行进一步脱油处理,得到油含量、水含量均较低的分离后的固体。
进一步地,本发明的处理含油含水物质的方法中所使用的溶剂与所处理的第一含油含水物质以一定重量比例进行混合。一般地,溶剂与该第一含油含水物质的重量比小于10:1,优选地,该重量比小于8:1。
进一步地,本发明的处理含油含水物质的方法还包括将第二分离处理得到的有机相的至少一部分与第二含油含水物质混合,用于处理该第二含油含水物质。
进一步地,本发明的处理含油含水物质的方法还包括将第三分离处理得到的分离后的溶剂的至少一部分与第三含油含水物质混合,用于处理该第三含油含水物质。
进一步地,本发明的处理含油含水物质的方法还包括以下步骤中的一个或多个:除去由第一分离单元得到的固态物质中的残余溶剂;除去由第二分离单元得到的水相中的残余溶剂;以及从分离后的油中分离出残余溶剂、残余水或至少一种油类物质。
另一方面,本发明的实施例涉及一种处理含油含水物质的装置,包括:
第一混合单元,包括含油含水物质入口、溶剂入口和第一混合物出口,该混合单元用于在第一温度下,将含油含水物质与溶剂混合,得到包含固态物质和液态物质的第一混合物,该液态物质包含该溶剂、油和水;
第一分离单元,包括第一混合物入口、固态物质出口和液态物质出口,其 中,所述第一混合物入口与所述第一混合单元的所述第一混合物出口相连接,该第一分离单元用于对所述第一混合物进行第一次分离处理,得到该固态物质和该液态物质;
第二分离单元,包括液态物质入口、水相出口和有机相出口,其中,所述液态物质入口与所述第一分离单元的所述液态物质出口相连接,该第二分离单元用于在第二温度下,对第一次分离处理得到的液态物质进行第二次分离处理,得到水相和有机相,该有机相包含该溶剂和该油;以及
第三分离单元,包括入口、分离后的溶剂出口和分离后的油出口,其中,所述入口与所述第二分离单元的所述有机相出口相连接,该第三分离单元用于对该有机相进行第三次分离处理,得到分离后的溶剂和分离后的油。
进一步地,本发明的处理含油含水物质的装置中,第一混合单元还包括第一温度控制元件,用于控制混合单元的操作温度处于第一温度下。
进一步地,本发明的处理含油含水物质的装置中,第一混合单元还包括搅拌元件。
进一步地,本发明的处理含油含水物质的装置中,第一分离单元还包括选自重力沉降元件、旋流分离元件、膜分离元件、加压过滤元件、减压过滤元件、离心分离元件、板框过滤元件和筒式过滤元件中的一种或多种。
进一步地,本发明的处理含油含水物质的装置中,第二分离单元还包括第二温度控制元件,用于控制第二分离单元的操作温度处于第二温度下。
进一步地,本发明的处理含油含水物质的装置中,第二分离单元还包括选自重力分离元件、离心分离元件和旋流分离元件中的一种或多种。
进一步地,本发明的处理含油含水物质的装置中,第三分离单元还包括蒸发元件。
进一步地,本发明的处理含油含水物质的装置还包括第一回流单元,包括连接第二分离单元的有机相出口与混合单元的溶剂进口的管道,用于将第二分 离单元分离出的有机相的至少一部分回流至混合单元。
进一步地,本发明的处理含油含水物质的装置还包括第二回流单元,包括连接第三分离单元的分离后的溶剂出口与混合单元的溶剂进口的管道,用于将第三分离单元分离出的分离后的溶剂的至少一部分回流至混合单元。
进一步地,本发明的处理含油含水物质的装置还包括:
第二混合单元,包括固态物质入口、溶剂入口和第二混合物出口,其中,所述固态物质入口与第一分离单元的固态物质出口相连接,用于将由第一分离单元产生的固态物质与溶剂混合得到第二混合物;
固液分离单元,包括第二混合物入口、分离后的固体出口和液体混合物出口,其中,所述第二混合物入口与第二混合单元的第二混合物出口相连接,用于将第二混合物进行固液分离;以及
连接管道,用于连接所述液体混合物出口与第三分离单元的入口,用于将液体混合物引入第三分离单元中进行处理。
上述第二混合单元、固液分离单元和连接管道能够对固态物质进行进一步处理,得到油含量、水含量均较低的分离后的固体。
更进一步地,本发明的处理含油含水物质的装置还包括以下单元中的一个或多个:
固体后处理单元,包括入口和溶剂减少的固态物质出口,该固体后处理单元的入口与第一分离单元的固态物质出口或固液分离单元的固体出口相连接,该固体后处理单元用于除去固态物质中的残余溶剂;
水后处理单元,包括水相入口和溶剂减少的水相出口,该水相入口与第二分离单元的水相出口相连接,该水后处理单元用于除去由第二分离单元得到的水相中的残余溶剂;以及
油后处理单元,包括分离后的油入口和溶剂减少的油出口,该分离后的油 入口与第三分离单元的分离后的油出口相连接,该油后处理单元用于从分离后的油中分离出残余溶剂、残余水或至少一种油类物质。
进一步地,本发明的处理含油含水物质的方法和装置中所处理的含油含水物质,例如第一含油含水物质、第二含油含水物质或第三含油含水物质,包括,按重量百分比计,含油量大于1%,含水量大于3%的物质。作为一种实施方式,含油含水物质包括选自钻井岩屑、水基钻井泥浆、油基钻井泥浆、地面溢油、落地油泥、油田采出水、罐底油泥、清罐油泥、炼厂“三泥”、油砂、油砂尾矿、被油污染的土壤、切削液废液、餐饮废弃物、市政污泥、污水处理厂污泥、动植物体和微生物体中的一种或多种。
进一步地,按照本发明的处理含油含水物质的方法和装置分离得到的固态物质中的含水量,以重量百分比计,一般不高于60%,优选地,不高于40%,更优地,不高于30%。分离出的固态物质占所处理的含油含水物质的重量百分比称为减量百分比,减量百分比与两个因素有关,一是所处理的含油含水物质中的固体物质含量,二是分离出的固态物质中的含水量,本发明的处理含油含水物质的方法和装置能够通过降低分离出的固态物质中的含水量,提高减量百分比。
本发明的处理含油含水物质的方法和装置中,所采用的溶剂与水的互溶性随温度变化而发生变化。与以破乳作为第一步的传统处理方法不同,本发明的处理含油含水物质方法首先将固体从含油含水物质中分离出来,从而减少固体堵塞管道及后续步骤的风险。另外,本发明的处理含油含水物质的方法中,对水的分离和回收不经过相变,而是直接经过液液分离得到,因而能耗较低;由于分离后的溶剂能够循环利用,大大降低了处理成本;另外,本发明的处理含油含水物质的方法和装置中不使用无机酸碱,不需要对体系的pH值进行调节,降低了对于设备的防腐要求。因此,本发明提供了一种经济有效地处理含油含水物质的方法和相应的装置。
附图说明
附图以及下面的详细描述用于帮助理解本发明的特征和优点,其中:
图1为依据本发明实施例的处理含油含水物质的装置100的结构示意图;
图2为依据本发明实施例的应用处理含油含水物质的装置100处理含油含水物质的流程图;
图3为依据本发明实施例的处理含油含水物质的装置200的结构示意图;
图4为依据本发明实施例的应用处理含油含水物质的装置200处理含油含水物质的流程图。
具体实施方式
除非本申请中清楚地另行定义,所用到的科学和技术术语的含义为本申请所述技术领域的技术人员通常所理解的含义。本申请中使用的“包括”、“包含”、“具有”或“含有”以及类似的词语是指除了列于其后的项目及其等同物外,其他的项目也可在范围以内。
本申请中的近似用语用来修饰数量,表示本发明并不限定于所述具体数量,还包括与所述数量接近的、可接受的、不会导致相关基本功能的改变的修正的部分。相应的,用“大约”、“约”、“左右”等修饰一个数值,意为本发明不限于所述精确数值。在某些实施例中,近似用语可能对应于测量数值的仪器的精度。本发明中的数值范围可以合并及/或互换,除非另行清楚说明,数值范围包括其所涵盖的所有数值子范围。
在说明书和权利要求中,除非清楚地另行指出,所有项目的单复数不加以限制。本申请说明书及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的材料或实施例等。
除非上下文另外清楚地说明,术语“或”、“或者”并不意味着排他,而是指 存在提及项目(例如成分)中的至少一个,并且包括提及项目的组合可以存在的情况。
本说明书中提及“一些实施例”等,表示所述与本发明相关的一种特定要素(例如特征、结构和/或特点)被包含在本说明书所述的至少一个实施例中,可能或不可能出现于其它实施例中。另外,需要理解的是,所述发明要素可以以任何适当的方式结合。
以下结合附图说明本发明的实施方式。图1为依据本发明实施例的处理含油含水物质的装置100的结构示意图,图2为依据本发明实施例的应用处理含油含水物质的装置100处理含油含水物质的流程图,图3为依据本发明实施例的处理含油含水物质的装置200的结构示意图,图4为依据本发明实施例的应用处理含油含水物质的装置200处理含油含水物质的流程图。本发明实施例的装置可以对含油含水物质进行连续处理,也可以进行间歇操作处理。
本申请提及的“油”指常温下为液体的憎水性物质,其组分包括碳氢化合物或硅氧化合物。在一些实施例中,存在于含油含水物质中的油可以是一种或多种,包括但不限于:石油、沥青、动物油、植物油、硅油或润滑油中的任意一种或多种。
本申请提及的“含油含水物质”或类似用语是指含有油、水和固体等成分的物质,以固态、浆态、粘稠液体、悬浮物、或液态形式存在,其中的固体、油和水的含量一般以重量百分比计,例如,含油量大于1%,含水量大于3%,的物质。在一些实施例中,含油含水物质包括原油生产、储存、运输、加工以及使用等过程中产生的钻井岩屑、水基钻井泥浆、油基钻井泥浆、地面溢油、落地油泥、油田采出水、罐底油泥、清罐油泥、炼厂“三泥”、被油污染的土壤等,其中,炼厂“三泥”包括隔油池底泥,浮选池浮渣和剩余活性污泥。在一些实施例中,含油含水物质包括自然界中富含天然沥青的沉积砂,称为油砂或沥青砂,本发明的处理含油含水物质的方法和装置能够用于油砂开采或油砂尾矿的处理。在一些实施例中,含油含水物质包括金属加工过程中产生的切削液废液。在另外一些实施例中,含油含水物质包括餐饮废弃物、市政污泥、动植 物体、微生物体等,其中,动植物体可以包括肉类、毛皮、坚果、含香料作物、中药等,微生物体例如藻类。本申请中所提及的“第一含油含水物质”、“第二含油含水物质”和“第三含油含水物质”表示不同的含油含水物质,它们可以是同一种含油含水物质的不同批次,具有相同或类似的成分,也可以是不同种类的含油含水物质,例如分别独立地选自上述所列举的种类中的一种或多种。
本发明实施例中所使用的溶剂与水在第一温度下的互溶性高于该溶剂与水在第二温度下的互溶性。作为一种实施方式,在第一温度下,该溶剂与水互溶或混溶,不发生液体分层现象;在不同于第一温度的第二温度下,该溶剂与水的互溶性降低,由于溶剂和水密度不同而发生液体分层现象。在一些实施例中,该溶剂在第一温度和第二温度下均能与含油含水物质中的至少一种油互溶,优选地,能够与两种或两种以上的油互溶。在一些实施例中,该溶剂在第一温度和第二温度下均为液态。在一些实施例中,该溶剂包括包括选自醇类、酚类、醚类、胺类和酮类中的一种或多种。
本申请提及的“第一温度”和“第二温度”,它们各自可以是某一具体温度值,也可以是某一温度范围,例如从20℃到30℃范围内。
在一些实施例中,第一温度高于第二温度,例如,第一温度在50℃到85℃范围内,优选地,在55℃到80℃范围内,第二温度在0℃到45℃范围内,优选地,在5℃到40℃范围内。在该情况下,溶剂包括选自甲基乙基酮、丁酮、异丙醇和异丙醚中的一种或多种。
在一些实施例中,第二温度高于第一温度,例如,第一温度在0℃到45℃范围内,优选地,在5℃到40℃范围内,第二温度在50℃到85℃范围内,优选地,在55℃到80℃范围内。在该情况下,溶剂包括二异丙胺或三乙胺。
本申请中提及的“溶剂”可以是采购的新鲜溶剂,也可以是本发明的方法和装置中产生的分离后的溶剂或回收的溶剂。
在一些实施例中,参照图1,处理含油含水物质的装置100包括:混合单元151,包括含油含水物质入口、溶剂入口和混合物出口;第一分离单元153, 包括混合物入口、固态物质出口和液态物质出口,其中,所述混合物入口与混合单元151的混合物出口相连接;第二分离单元155,包括液态物质入口、水相出口和有机相出口,其中,所述液态物质入口与第一分离单元153的液态物质出口相连接;以及第三分离单元157,包括有机相入口、分离后的溶剂出口和分离后的油出口,其中,所述有机相入口与第二分离单元155的有机相出口相连接。在一些实施例中,处理含油含水物质的装置100还包括第一回流单元161,包括连接第二分离单元155的所述有机相出口与混合单元151的溶剂进口的管道。
在一些实施例中,处理含油含水物质的装置100还包括第二回流单元162,包括连接第三分离单元157的分离后的溶剂出口与混合单元151的溶剂进口的管道。
在一些实施例中,处理含油含水物质的装置100还包括以下单元中的一个或多个:固体后处理单元154,包括固态物质入口和溶剂减少的固态物质出口,其中,固态物质入口与第一分离单元153的固态物质出口相连接;水后处理单元156,包括水相入口和溶剂减少的水相出口,其中,水相入口与第二分离单元155的水相出口相连接;以及油后处理单元158,包括分离后的油入口和溶剂减少的油出口,其中,分离后的油入口与第三分离单元157的分离后的油出口相连接。
参照图2,采用本发明处理含油含水物质的方法,使用处理含油含水物质的装置100能够有效地处理第一含油含水物质101。在处理过程中:混合单元151用于将第一含油含水物质101与溶剂103混合,得到包含固态物质和液态物质的混合物105,其中液态物质包含溶剂103、油和水;第一分离单元153用于将混合物105分离,得到固态物质107和液态物质111;第二分离单元155用于将液态物质111分离,得到水相113和有机相117,其中有机相117包含溶剂103和油;以及第三分离单元157用于将有机相117分离,得到分离后的溶剂123和分离后的油119。第一含油含水物质101与溶剂103在混合单元151中接触,得到包含固态物质和液态物质的混合物105,其中该液态物质包含溶 剂103和通过上述接触从第一含油含水物质101中提取出的油和水。在一些实施例中,混合单元151能够使第一含油含水物质101与溶剂103充分接触,从而使第一含油含水物质101中的油和水与溶剂103互溶形成液体混合物。
在一些实施例中,混合单元151包括加热元件或冷却元件,分别用于提高和降低混合单元151中的物质的温度。加热元件或冷却元件包括夹套加热设备、盘管加热设备或电加热设备,其中夹套和盘管中的加热介质可采用水、油和蒸汽中的一种或多种。
在一些实施例中,混合单元151包括第一温度控制元件,能够控制混合单元151中的物质处于第一温度下。第一温度控制元件包括温度控制器。
在一些实施例中,混合单元151包括能够使第一含油含水物质101与溶剂103混合的容器或元件,例如,搅拌元件,用以促进第一含油含水物质101与溶剂103之间的混合。搅拌元件的类型包括但不限于:推进式、桨式、涡轮式、框式、螺杆式和锚式中的任意一种或多种。
在一些实施例中,第一含油含水物质101和溶剂103以一定的重量比例在混合单元151中接触混合。例如,溶剂103与第一含油含水物质101重量比小于10:1;又例如,溶剂103与第一含油含水物质101的重量比小于8:1。
在一些实施例中,第一含油含水物质101和溶剂103各自以一定的速度连续注入混合单元151中。在另外一些实施例中,第一含油含水物质101和溶剂103以一定的重量比按照一定的时间间隔、间歇性地被注入到混合单元151中,例如,第一含油含水物质101和溶剂103以5:1的重量比每小时一次注入至混合单元151中。进一步地,在该间歇性注入方式中,每次注入可以是在较短时间间隔内迅速全部注入,也可以是持续一段时间的注入,例如,在15分钟内持续注入所需重量的第一含油含水物质101和溶剂103。
第一分离单元153将混合物105中的固态物质107和液态物质111分离。其中,第一分离单元153包括能够实现固液分离的第一分离元件,用以实现固态物质107和液态物质111的全部或部分分离。本发明一些实施例中,第一分 离单元153的所述第一分离元件包括但不限于:重力沉降元件、旋流分离元件、膜分离元件、加压过滤元件、减压过滤元件、离心分离元件、板框过滤元件和筒式过滤元件中的任意一种或多种。在一些实施例中,分离后的液态物质111中仍可能包含少量固态物质残留,分离后的固态物质107中仍可能包含少量液态物质残留。
一些实施例中,混合单元151与第一分离单元153为两个单独设置的单元,这样,混合与固液分离两个操作分别在混合单元151与第一分离单元153中进行。一些实施例中,混合单元151与第一分离单元153为一体化设置,体现为兼具混合功能和固液分离功能的一体化设备,这样,混合与固液分离两个操作均在该一体化设备中完成。
一些实施例中,分离后的固态物质107可以直接填埋处理或焚烧处理。在另外一些实施例中,分离后的固态物质107中的残余溶剂含量较高,需进一步处理除去其中的残余溶剂,相应地,处理含油含水物质的装置100还包括固体后处理单元154,用于除去分离得到的固态物质107中的残余溶剂,从而得到溶剂含量降低的固态物质109。一些实施例中,采用加热或减压的方式使固态物质107中的残余溶剂挥发,固体后处理单元154包括但不限于:加热元件、减压元件、真空干燥元件和蒸汽干燥元件中的任意一种或多种。其中,所述蒸汽干燥元件是使用蒸汽对固态物质进行吹扫和洗涤。在另外一些实施例中,采用溶剂洗涤的方法除去固态物质107中的残余溶剂,固体后处理单元154包括溶剂洗涤元件,使用新鲜溶剂102或分离后的溶剂123一次或多次洗涤分离得到的固态物质107,将洗涤后的固体采用加热或减压的方式使残余溶剂挥发,将洗涤液和挥发的溶剂收集起来,在第二温度下进行液液分离得到溶剂和水,从而回收洗涤所用的溶剂。溶剂洗涤元件不仅可以去除固态物质107中的残余溶剂,还可以进一步降低固态物质107中的含水量,进一步实现减量化。
在第二温度下,第二分离单元155将分离得到的液态物质111分离得到水相113和有机相117。第二分离单元155利用在第二温度下溶剂与水的互溶性较低的特性,将水从液态物质111中分离出来。在一些实施例中,第二分离单 元155包括加热元件或冷却元件,分别用于提高和降低第二分离单元155中的物质的温度。加热元件或冷却元件包括夹套加热设备、盘管加热设备或电加热设备,其中夹套和盘管中的加热介质可采用水、油和蒸汽中的一种或多种。在一些实施例中,第二分离单元155包括第二温度控制元件,第二温度控制元件包括温度控制器,能够控制混合单元151中的物质处于第二温度下,以实现水和溶剂因互溶性降低而产生液体分层,具体地,密度较大的位于下层,密度较小的位于上层。由于油与溶剂的互溶性较好,且随温度变化不大,油与溶剂存在于有机相117中。例如,当使用三乙胺作为溶剂时,控制第二分离单元155的操作温度在50℃到85℃范围时,液态物质111静置后分为两层:上层为有机相,是三乙胺和油的混合物,下层为水相。第二分离单元155包括能够实现液液分离的元件,以实现水相113和有机相117的分离。第二分离单元155的一些实施例包括但不限于:重力分离元件、离心分离元件和旋流分离元件中的任意一种或多种。在一些实施例中,经过第二分离单元155分离后,水相113中仍可能包含少量溶剂,有机相117中仍可能包含少量水。
在一些实施例中,处理含油含水物质的装置100还包括残余固体去除单元(未图示),设置在第二分离单元155之前,用于进一步除去液态物质111中夹带的少量固态物质。该残余固体去除单元包括但不限于:重力沉降元件、离心分离元件和旋流分离元件中的任意一种或多种。该残余固体去除单元与第二分离单元155可以是两个单独设置的单元,也可以为一体化设置。当该残余固体去除单元与第二分离单元155一体化设置时,体现为兼具去除残余固体功能和液液分离功能的一体化设备,这样,液态物质111中的的残余固体、水相、有机相三者在该一体化设备中得到分离。
一些实施例中,第一分离单元153和第二分离单元155为两个单独设置的单元,这样,固液分离与液液分离两个操作分别在第一分离单元153和第二分离单元155中进行。在另一些实施例中,第一分离单元153和第二分离单元155为一体化设置,体现为兼具固液分离功能和液液分离功能的一体化设备,这样,固液分离与液液分离两个操作该一体化设备中完成。
水相113如果达到所在地区的排放标准,可以直接排放,或传输至污水处理厂再处理。在一些实施例中,水相113中残余溶剂含量较高,需要进一步处理除去其中的残余溶剂,相应地,处理含油含水物质的装置100包括水后处理单元156,用于除去水相113中的残余溶剂,得到溶剂含量降低的水115。在一些实施例中,水后处理单元156包括汽提元件,通过使水相113与水蒸汽或者热的气体,比如空气或氮气,直接接触,使残余溶剂扩散到气相中,从而得到溶剂含量降低的水115。在另外一些实施例中,水后处理单元156包括蒸发元件,蒸发单元可通过多种方式进行蒸发,例如改变水相113的温度或压强。在一些实施例中,蒸发元件包括闪蒸元件或热蒸发元件。在一些实施例中,水后处理单元156还包括液化元件,用于液化蒸发出的残余溶剂。在一些实施例中,液化单元包括但不限于加压元件或冷凝元件。在一些实施例中,水后处理单元156包括一体化设置的蒸发元件和液化元件,例如蒸馏塔或精馏塔。在一些实施例中,水后处理单元156包括萃取塔,将水相中的溶剂通过萃取的方式去除,例如使用辛烷作为萃取剂,第一步,利用残余溶剂在萃取剂中的溶解度更大的特性,将水相113中残余的溶剂转移到萃取剂中;第二步,经过精馏塔,将溶剂与萃取剂分离。
在一些实施例中,处理含油含水物质的装置100还包括第一回流单元161,用于将有机相117的至少一部分回流至混合单元151,实现将有机相117的至少一部分与第二含油含水物质混合,作为溶剂处理第二含油含水物质。在一些实施例中,第一回流单元161包括用于将有机相117的至少一部分回流至混合单元151的管道。在一些实施例中,第一回流单元161包括用于将有机相117的至少一部分注入混合单元151中的泵。在一些实施例中,第一回流单元161包括用于监测所回流的有机相117的流量的流量计。将有机相117的至少一部分回流用于处理第二含油含水物质,能够减少后续第三分离单元157的处理量,同时能够在一定程度上减少新鲜溶剂的用量,从而节省处理成本。
第三分离单元157将包含溶剂和油的有机相117分离得到分离后的溶剂123和分离后的油119。在一些实施例中,第三分离单元157通过沸点的差异来分离溶剂和油。在一些实施例中,第三分离单元157包括蒸发元件,该蒸发 元件能够将溶剂或油从有机相117中蒸发出来,以实现溶剂和油的分离。蒸发元件能通过多种方式进行蒸发,例如改变有机相117的温度或压强。一些实施例中,蒸发元件包括闪蒸元件或热蒸发元件。在一些实施例中,第三分离单元157还包括液化元件,用于液化蒸发出的溶剂或油,得到液态的分离后的溶剂123或液态的分离后的油119。液化元件可以采用多种方式对蒸发出的溶剂或油进行液化,例如加压或冷凝操作,其中,当液化元件通过加压来液化蒸发的溶剂或油时,第三分离单元157还可以相应地包括冷却元件,用以对因加压而温度升高的溶剂或油进行冷却。在一些实施例中,第三分离单元157包括一体化设置的蒸发元件和液化元件,例如蒸馏塔或精馏塔。
在一些实施例中,第一含油含水物质101中所包含的油,含有两种或两种以上不同沸点的油类物质,这样,有机相117中包含溶剂和两种或两种以上不同沸点的油类物质。在一些实施例中,第三分离单元157能够将有机相117中的至少一种油类物质分离出来。在一些实施例中,第三分离单元157能够将有机相117中的两种或两种以上不同沸点的油类物质分离出来。一些实施例中,第三分离单元157包括精馏塔,以实现溶剂和不同沸点的油类物质的分离。
在一些实施例中,经过第三分离单元157分离后,分离后的溶剂123中仍可能包含少量油,分离后的油119中仍可能包含少量溶剂。
在一些实施例中,分离后的油119可以不经过任何处理,直接作为产品出售,或者直接返回至炼油厂。分离后的油119可能包括多种成分。对于分离后的油119中的各种液体成分,例如残余溶剂、残余的水和不同种类的油类物质,可以采用多种方式,如蒸发、萃取或反萃取、吸附、静置分层等,将其中至少一种成分分离出来;对于分离后的油119中的残余固态物质,也可以采用多种方式,如自然沉降、离心分离、旋流分离、膜分离等,进行除去。
在一些实施例中,处理含油含水物质的装置100还包括油后处理单元158,用于从分离后的油119中分离出残余溶剂、残余水或至少一种油类物质。例如,如图1所示,油后处理单元158能够从分离后的油119中分离出油类物质121。在一些实施例中,油类物质121可以直接作为产品出售或应用于某一特定领域。 一些实施例中,油后处理单元158包括包括精馏塔以实现不同成分的分离。一些实施例中,油后处理单元158包括多个相互独立的子单元,分别用于将分离后的油119中的不同成分分离出来。
在一些实施例中,分离后的溶剂123被存储在回收溶剂储存单元(未图示)中,以供后续需要时使用,或用于其它工艺或设备中,或再次应用于处理含油含水物质的装置100中处理后续加入的含油含水物质。
在一些实施例中,处理含油含水物质的装置100还包括第二回流单元162,用于将至少一部分分离后的溶剂123回流至混合单元151,与第三含油含水物质混合,以处理该第三含油含水物质。在一些实施例中,第二回流单元162包括用于将分离后的溶剂123的至少一部分回流至混合单元151的管道。在一些实施例中,第二回流单元162包括用于将分离后的溶剂123注入混合单元151中的泵。在一些实施例中,第二回流单元162包括用于监测所回流的分离后的溶剂123的流量的流量计。这样,在处理含油含水物质的装置100启动初期,混合单元151所需的溶剂主要来自于新鲜溶剂102,当处理含油含水物质的装置100运行一定时间之后,混合单元151所需的溶剂将主要来自于分离后的溶剂123,但混合单元151仍可能需要注入少量新鲜溶剂102,以对在处理过程中损耗的溶剂进行补充。
在一些实施例中,第三分离单元157与第二回流单元162各自单独设置,这样,溶剂和油的分离操作和分离后的溶剂123的回流操作分别在第三分离单元157和第二回流单元162中进行。在一些实施例中,第三分离单元157与第二回流单元162一体化设置,集成在一个设备中,这样,溶剂和油的分离操作和回流分离后的溶剂123的操作均在该设备中完成。
本发明的实施例还涉及对应于图2所示的处理含油含水物质的流程的方法,该方法包括以下步骤:
(1)在第一温度下,将第一含油含水物质101与溶剂103混合,得到包含固态物质和液态物质的混合物105,其中,该液态物质包含溶剂103、油和 水;
(2)对混合物105进行第一次分离处理,得到固态物质107和液态物质111;
(3)在第二温度下,对液态物质111进行第二次分离处理,得到水相113和有机相117,有机相117包含溶剂103和油;以及
(4)对有机相117进行第三次分离处理,得到分离后的溶剂123和分离后的油119。
具体地,在步骤(1)中,第一含油含水物质101与溶剂103相接触,维持温度处于第一温度下,得到容易进行固液分离的固态物质和液态物质的混合物105;在步骤(2)中,分离固液混合物105得到固态物质107和液态物质111,由于第一含油含水物质101中的固态物质首先被分离出来,减少了固体堵塞管道及后续单元的风险;在步骤(3)中,维持液态物质111的温度在第二温度下,由于在第二温度下溶剂与水的互溶性较低,液态物质111形成两个液相:含有溶剂和油的有机相117与水相113,并通过有机相117与水相113的密度差,将两个液相分离,这样,第一含油含水物质101中的大部分水即被分离出来;在步骤(4)中,分离有机相117得到分离后的溶剂123和分离后的油119,例如可以通过沸点的差异进行分离。通过以上四个步骤,最终实现了第一含油含水物质101中固体、油、水三者的分离。
在一些实施例中,处理含油含水物质的方法还包括:将有机相117的至少一部分与第二含油含水物质混合,采用本发明处理含油含水物质的方法处理该第二含油含水物质,所述有机相117的至少一部分作为溶剂使用。将有机相117的至少一部分回用,可以降低步骤中有机相117的处理量,节省成本。
在一些实施例中,处理含油含水物质的方法还包括步骤(5):将分离后的溶剂123的至少一部分与第二含油含水物质混合,采用本发明处理含油含水物质的方法处理该第二含油含水物质,所述分离后的溶剂123的至少一部分作为溶剂使用。这样,将分离后的溶剂123进行循环使用,降低了在第二含油含水 物质处理过程中新鲜溶剂的用量,节省了成本。
在一些实施例中,处理含油含水物质的方法还包括:除去步骤(2)得到的固态物质107中的残余溶剂,得到溶剂含量降低的固态物质109。具体的方法可以采用加热或减压的方式使固态物质107中的残余溶剂挥发。在一些实施例中,该溶剂含量降低的固态物质109能够达到固体填埋要求或焚烧要求。
在一些实施例中,处理含油含水物质的方法还包括:除去步骤(3)得到的水相113中的残余溶剂得到溶剂含量降低的水115。具体方法可以采用汽提或蒸发,其中蒸发包括共沸的方法。在一些实施例中,该溶剂含量降低的水115可以直接排放或输送至污水处理厂进行处理。
在一些实施例中,处理含油含水物质的方法还包括:从分离后的油119中分离出残余溶剂、残余水或至少一种油类物质。例如,如图1所示,从分离后的油119中分离出油类物质121,在一些实施例中,油类物质121可以直接作为产品出售或应用于某一特定领域。具体分离方法可以采用蒸馏或精馏。
图3所示的处理含油含水物质的装置200包括:第一混合单元251,包括含油含水物质入口、溶剂入口和第一混合物出口;第一分离单元253,包括混合物入口、固态物质出口和液态物质出口,其中,所述混合物入口与第一混合单元251的第一混合物出口相连接;第二分离单元255,包括液态物质入口、水相出口和有机相出口,其中,液态物质入口与第一分离单元251的液态物质出口相连接;第三分离单元257,包括有机相入口、分离后的溶剂出口和分离后的油出口,其中,所述有机相入口与第二分离单元255的有机相出口相连接;第二混合单元263,包括固态物质入口、溶剂入口和第二混合物出口,所述固态物质入口与第一分离单元253的固态物质出口相连接;以及固液分离单元265,包括第二混合物入口、液体混合物出口和固体出口,其中,所述第二混合物入口与第二混合单元263的出口相连接,液体混合物出口与第三分离单元257的有机相入口相连接。
图4所示为采用装置200处理含油含水物质的流程图,该流程中,具体地, 第一含油含水物质201与溶剂203在第一混合单元251混合,得到包含固态物质和液态物质的混合物205,其中液态物质包含溶剂203、油和水;第一分离单元253用于将混合物205分离,得到固态物质207和液态物质211;第二分离单元255用于将液态物质211分离,得到水相213和有机相217,其中有机相217包含溶剂203和油;以及第三分离单元257用于将有机相217分离,得到分离后的溶剂223和分离后的油219。
与装置100及其流程不同,装置200使用胺类溶剂,例如二异丙胺、三乙胺。这类溶剂在第一温度下与待处理含油含水物质进行混合,第一温度在0℃到45℃范围内。当实际操作的第一温度较低时,例如,在0℃到20℃范围内时,溶剂与含油含水物质混合时与水的互溶性好,而与油的互溶性较低,导致第一分离单元253得到的固态物质中油含量较高。在这种情况下,可以将第一分离单元253得到的固态物质导入第二混合单元263中进行再次处理。在第二混合单元263中,固态物质与溶剂混合,得到第二混合物,将第二混合物在固液分离单元265中进行固液分离,得到分离后的固体207和液体混合物227。液体混合物227的主要成分是溶剂和油,将液体混合物227导入第三分离单元中进行分离,得到分离后的溶剂和分离后的油。
在一些实施例中,与装置100类似,装置200可选地包括第一回流单元261、第二回流单元262、固体后处理单元254、水后处理单元256和油后处理单元258中的一个或多个。其中,上述每一个单元的设置与功能与装置100中所描述的类似。
本发明的实施例还涉及对应于图4所示的流程的处理含油含水物质的方法,包括如下步骤:
(1)在第一温度下,将第一含油含水物质201与溶剂203混合,得到包含固态物质和液态物质的第一混合物205,其中,该液态物质包含溶剂203、油和水;
(2)对第一混合物205进行第一次分离处理,得到固态物质207和液态 物质211;
(3)在第二温度下,将得到固态物质207与溶剂231混合,得到第二混合物225,其中溶剂231与溶剂203成分大致相同,可以是新鲜溶剂也可以是回收的溶剂;
(4)对第二混合物225进行固液分离处理,得到分离后的固体207和液体混合物227;
(5)在第二温度下,对液态物质211进行第二次分离处理,得到水相213和有机相217,有机相217包含溶剂203和油;以及
(6)将液体混合物227和有机相217混合,进行第三次分离处理,得到分离后的溶剂223和分离后的油219。
包含上述(1)-(6)的处理方法可应用于装置200。而在一些实施例中,包含上述(1)-(6)的处理方法也可应用于图1所示的装置100,例如第一混合单元与第二混合单元合并为同一设备,第一分离单元与固液分离单元合并为同一设备,并通过阀门控制实现上述步骤(1)-(6)的操作。
本发明处理含油含水物质的方法通过使用一种与水的互溶性随温度变化的溶剂,将含油含水物质中的固体、油、水三者分离开来。具体地,将溶剂与待处理物质在第一温度下混合后,首先通过固液分离,将固态物质从含油含水物质和溶剂的混合物中分离出来;其次在第二温度下使水与溶剂和油的混合物因密度不同而分层,通过液液分离,得到分离后的水相;第三,分离油和溶剂,得到分离后的油和分离后的溶剂。在处理的过程中,由于水的分离没有经过相变,因此该方法及其相应的装置能耗较低,经济实用。
实验示例
以下提供本发明的一些实验示例。下述实验示例可以为本领域中具有一般技能的人实施本发明提供参考。这些示例并不限制权利要求的范围。
示例一
采用每批次样品处理量100g的小型装置,以三乙胺作为溶剂,对浮渣油泥进行处理,浮渣油泥的含水量、含油量和灰分含量如表1中所示。其中,灰分是指样品中除水以外的无机物。
在具有搅拌功能的混合器中,常压、30℃条件下,加入100g浮渣油泥和200g三乙胺并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩空气或压缩氮气加压至5bar,在滤布上收集分离出的固体,将过滤出的、包含三乙胺、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将三乙胺、水和油的混合物的温度升至80℃,稳定10分钟左右,使其分为上下两层:上层为三乙胺和油的混合物,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的三乙胺与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将三乙胺和油的混合物引入蒸馏器,在蒸发温度为85℃时收集分离出的溶剂,并得到分离出的油。分离出的固体、水和油的成分如表1中所示。
溶剂处理后的浮渣油泥减量达98.0%。分离出的固体松散,颗粒明显,含水量低于20%,含油量约为50%,灰分含量在33%左右,其热值约16.72MJ/kg(约4000千卡/公斤),可以补充少部分燃料进一步焚烧处理。分离出的水含油量、灰分含量很低,浊度约为669NTU,可输送至废水处理系统进行进一步处理。分离出的油含水率约5%左右,灰分含量较低,可输送至炼油厂使用,或进一步处理后再利用。
表1
  浮渣油泥 分离出的固体 分离出的水 分离出的油
含水量(%) 97.58 17.05 99.71 5.20
含油量(%) 1.60 49.20 0.16 94.75
灰分含量(%) 0.82 33.75 0.13 0.05
示例二
首先将浮渣油泥进行预处理脱水,预脱水采用加压过滤脱水,采用孔径为5微米的滤布在4个标准大气压下进行,过滤所得的水相清澈透明,未检测出油类成分和灰分。预脱水后的浮渣油泥较为干燥,减量化在90%以上。预脱水后的浮渣油泥的含水量、含油量和灰分含量如表2中所示。
采用每批次样品处理量100g的小型装置,以三乙胺作为溶剂,对预脱水后的浮渣油泥进行处理。
在具有搅拌功能的混合器中,常压、30℃条件下,加入100g预脱水后的浮渣油泥和200g三乙胺并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩空气或压缩氮气加压至5bar,大约5分钟过滤完毕,在滤布上收集分离出的固体,将过滤出的、包含三乙胺、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将三乙胺、水和油的混合物的温度升至80℃,稳定10分钟左右,使其分为上下两层:上层为三乙胺和油的混合物,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的三乙胺与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将三乙胺和油的混合物引入蒸馏器,在蒸发温度为85℃时回收溶剂,并得到分离出的油。分离出的固体、水和油的成分如表2中所示。
溶剂处理后的浮渣油泥进一步减量达85.3%。本示例中采用预脱水和溶剂分离两步来处理含水量高的含油含水物质,能够大大减少溶剂用量,节约成本。
表2
Figure PCTCN2019083291-appb-000001
示例三
采用每批次样品处理量100g的小型装置,以三乙胺作为溶剂,对罐底油泥进行处理,罐底油泥的含水量、含油量和灰分含量如表3中所示。
在具有搅拌功能的混合器中,常压、30℃条件下,加入100g罐底油泥和500g三乙胺并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为50微米,采用压缩空气或压缩氮气加压至5bar,在滤布上收集分离出的固体,将过滤出的、包含三乙胺、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将三乙胺、水和油的混合物的温度升至80℃,稳定10分钟左右,使其分为上下两层:上层为三乙胺和油的混合物,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的三乙胺与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将三乙胺和油的混合物引入蒸馏器,在蒸发温度为85℃时回收溶剂,并得到分离出的油。分离出的固体、水和油的成分如表3中所示。
溶剂处理后的罐底油泥减量达94.9%。分离出的固体松散,颗粒明显,含水量低于10%,含油量约为75%,灰分含量在17%左右,其热值约29.79MJ/kg(约7127千卡/公斤),相当于标准煤的热值水平,可直接用做燃料焚烧。分离出的水含油量、灰分含量很低,浊度约为447NTU,可输送至废水处理系统进行进一步处理。分离出的油含水率低于5%,灰分含量较低,可输送至炼油厂使用,或进一步处理后再利用。
表3
  罐底油泥 分离出的固体 分离出的水 分离出的油
含水量(%) 69.2 7.65 99.69 3.60
含油量(%) 29.9 75.20 0.30 96.35
灰分含量(%) 0.9 17.15 0.01 0.05
示例四
采用每批次样品处理量100g的小型装置,以异丙醇作为溶剂,对钻井岩屑进行处理,钻井岩屑的含水量、含油量和灰分含量如表4中所示。
在具有搅拌功能的混合器中,常压、80℃条件下,加入100g钻井岩屑和200g异丙醇并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩空气或压缩氮气加压至4bar,在滤布上收集分离出的固体,将过滤出的、包含异丙醇、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将异丙醇、水和油的混合物的温度调至40℃,稳定10分钟左右,使其分为上下两层:上层为异丙醇和油相,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的异丙醇与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将异丙醇和油的混合物引入蒸馏器,在蒸发温度为85℃时回收溶剂,并得到分离出的油。分离出的固体、水和油的成分如表4中所示。
溶剂处理后的钻井岩屑减量达15%。分离出的固体松散,颗粒明显,含水量仅1%。
表4
  钻井岩屑 分离出的固体 分离出的水 分离出的油
含水量(%) 6.00 1.08 99.88 0.40
含油量(%) 14.00 4.81 0.10 99.52
灰分含量(%) 80.00 94.11 0.02 0.08
示例五
采用每批次样品处理量100g的小型装置,以二异丙胺作为溶剂,对切削液废液进行处理,切削液的含水量、含油量和灰分含量如表5中所示。
在具有搅拌功能的混合器中,常压、40℃条件下,加入100g切削液废液和200g二异丙胺并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩空气或压缩氮气加压至5bar, 在滤布上收集分离出的固体,将过滤出的、包含二异丙胺、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将二异丙胺、水和油的混合物的温度升至80℃,稳定10分钟左右,使其分为上下两层:上层为二异丙胺和油相,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的二异丙胺与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将二异丙胺和油的混合物引入蒸馏器,在蒸发温度为85℃时回收溶剂,并得到分离出的油。分离出的固体、水和油的成分如表5中所示。
溶剂处理后的切削液废液减量达99.2%。
表5
  切削液废液 分离出的固体 分离出的水 分离出的油
含水量(%) 91.22 13.58 97.11 4.45
含油量(%) 8.62 69.70 2.88 95.43
灰分含量(%) 0.16 16.72 0.01 0.12
示例六
采用每批次样品处理量100g的小型装置,以二异丙胺作为溶剂,对油砂进行处理,油砂的含水量、含油量和灰分含量如表6中所示。
在具有搅拌功能的混合器中,常压、40℃条件下,加入100g油砂和150g二异丙胺并搅拌5分钟进行混合,接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩空气或压缩氮气加压至4bar,在滤布上收集第一次液固分离后得到的固体,将收集到的固体加入带搅拌功能的混合器中,再加入70℃的二异丙胺150克,并保持在70℃下搅拌5分钟。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩空气或压缩氮气加压至4bar,在滤布上收集第二次液固分离后得到的固体,将第一次液固分离得到的滤液(包含二异丙胺、水和油的液态物质)引入液液分离器。在液液分离器中,保持常压,将二异丙胺、水和油的混合物的温度升至80℃,稳定10分钟左右,使其分为上下两层:上层为二异丙胺和油相, 下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的二异丙胺与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将第二次液固分离后得到的液相与从液液分离器分离出的上层混合,得到的混合物含有二异丙胺和油,将其引入蒸馏器,在蒸发温度为85℃时回收溶剂,并得到分离出的油。第一次液固分离得到的固体、第二次液固分离得到的固体、水和油的成分如表6中所示。
对于油砂这样的含沥青质的混合物,在较低温度下与溶剂混合,第一次液固分离后得到固体中残余的含油量较高,达5.5%,继续将该固体在较高温度下与溶剂混合,经第二次液固分离后得到固体中的油含量显著降低至0.5%。
溶剂处理后的油砂的油的回收率达95.9%。
表6
Figure PCTCN2019083291-appb-000002
示例七
采用每批次样品处理量100g的小型装置,以三乙胺作为溶剂,对油田采出水进行处理,油田采出水的含水量、含油量和灰分含量如表7中所示。
在具有搅拌功能的混合器中,常压、30℃条件下,加入100g油田采出水和150g三乙胺并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩空气或压缩氮气加压至4bar,在滤布上收集分离出的固体,将过滤出的、包含三乙胺、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将三乙胺、水和油的混合物的温度升至80℃,稳定10分钟左右,使其分为上下两层:上层为三乙胺和油相,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的三乙胺与水形 成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将三乙胺和油的混合物引入蒸馏器,在蒸发温度为85℃时回收溶剂,并得到分离出的油。分离出的固体、水和油的成分如表7中所示。
溶剂处理后的油田采出水减量达74%。
表7
  油田采出水 分离出的固体 分离出的水 分离出的油
含水量(%) 70.0 3.2 99.4 4.6
含油量(%) 10.2 20.6 0.55 95.32
灰分含量(%) 19.8 76.2 0.05 0.08
示例八
采用每批次样品处理量100g的小型装置,以丁酮作为溶剂,对油田采出水进行处理,油田采出水的含水量、含油量和灰分含量如表8中所示。
在具有搅拌功能的混合器中,常压、80℃条件下,加入40g油田采出水和80g丁酮并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩氮气加压至4bar,在滤布上收集分离出的固体,将过滤出的、包含丁酮、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将丁酮、水和油的混合物的温度降至40℃,稳定10分钟左右,使其分为上下两层:上层为丁酮和油相,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的丁酮与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将丁酮和油的混合物引入蒸馏器,在蒸发温度为80℃时回收溶剂,并得到分离出的油。分离出的固体、水和油的成分如表8中所示。
溶剂处理后的油田采出水减量达70.7%。
表8
  油田采出水 分离出的固体 分离出的水 分离出的油
含水量(%) 70.0 12.54 99.58 4.6
含油量(%) 10.2 20.08 0.55 95.32
灰分含量(%) 19.8 67.38 0.05 0.08
示例九
采用每批次样品处理量100g的小型装置,以异丙醇和异丙醚作为溶剂,对油田采出水进行处理,油田采出水的含水量、含油量和灰分含量如表9中所示。
在具有搅拌功能的混合器中,常压、70℃条件下,加入40g油田采出水、40g异丙醇和40g异丙醚并搅拌5分钟进行混合。接着,将混合器中的混合物引流到过滤器中进行过滤,滤布孔径为5微米,采用压缩氮气加压至4bar,在滤布上收集分离出的固体,将过滤出的、包含异丙醇、异丙醚、水和油的液态物质引入液液分离器。在液液分离器中,保持常压,将异丙醇、异丙醚、水和油的混合物的温度降至40℃,稳定10分钟左右,使其分为上下两层:上层为异丙醇、异丙醚、和油相,下层为水相。将下层的水相引入汽提器进行蒸发,水相中残余的异丙醇、异丙醚与水形成共沸物蒸发出来,将该共沸物液化后回流到液液分离器,收集剩余的水为分离出的水。将异丙醇、异丙醚、和油的混合物引入蒸馏器,在蒸发温度为80℃时回收溶剂,并得到分离出的油。分离出的固体、水和油的成分如表9中所示。
溶剂处理后的油田采出水减量达73.5%。
表9
  油田采出水 分离出的固体 分离出的水 分离出的油
含水量(%) 70.0 7.66 99.35 5.10
含油量(%) 10.2 17.74 0.58 94.83
灰分含量(%) 19.8 74.60 0.07 0.07
以上的处理含油含水物质的装置及方法仅是本发明的优选实施方式,应当 指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (20)

  1. 一种处理含油含水物质的方法,包括:
    在第一温度下,将第一含油含水物质与溶剂混合,得到包含固态物质和液态物质的第一混合物,所述液态物质包含所述溶剂、油和水;
    对所述第一混合物进行第一次分离处理,得到所述固态物质和所述液态物质;
    在第二温度下,对所述第一次分离处理得到的所述液态物质进行第二次分离处理,得到水相和有机相,所述有机相包含所述溶剂和所述油;以及
    对所述有机相进行第三次分离处理,得到分离后的溶剂和分离后的油,
    其中,所述溶剂与水在所述第一温度下的互溶性高于所述溶剂与水在所述第二温度下的互溶性。
  2. 根据权利要求1所述的方法,其中,所述溶剂包括选自醇类、酚类、醚类、胺类和酮类中的一种或多种。
  3. 根据权利要求1所述的方法,其中,所述溶剂与水在所述第一温度下的互溶性高于所述溶剂与水在所述第二温度下的互溶性,所述第一温度在50℃到85℃范围内,所述第二温度在0℃到45℃范围内。
  4. 根据权利要求3所述的方法,其中,所述溶剂包括选自甲基乙基酮、丁酮、异丙醇和异丙醚中的一种或多种。
  5. 根据权利要求1所述的方法,其中,所述溶剂与水在所述第一温度下的互溶性高于所述溶剂与水在所述第二温度下的互溶性,所述第一温度在0℃到45℃范围内,所述第二温度在50℃到85℃范围内。
  6. 根据权利要求5所述的方法,其中,所述溶剂包括二异丙胺或三乙胺。
  7. 根据权利要求5所述的方法,还包括:
    在第二温度下,将第一次分离处理得到的固态物质与溶剂混合,得到第二混合物;
    对所述第二混合物进行固液分离,得到分离后的固体和液体混合物;以及
    将所述液体混合物与所述有机相混合,并进行第三次分离处理。
  8. 根据权利要求1所述的方法,其中,所述溶剂与所述第一含油含水物质的重量比小于10:1。
  9. 根据权利要求1所述的方法,还包括将所述有机相的至少一部分与第二含油含水物质混合。
  10. 根据权利要求1所述的方法,还包括将所述分离后的溶剂的至少一部分与第三含油含水物质混合。
  11. 根据权利要求1所述的方法,其中,所述含油含水物质包括选自钻井岩屑、水基钻井泥浆、油基钻井泥浆、地面溢油、落地油泥、油田采出水、罐底油泥、清罐油泥、炼厂“三泥”、油砂、油砂尾矿、被油污染的土壤、切削液废液、餐饮废弃物、市政污泥、污水处理厂污泥、动植物体和微生物体中的一种或多种。
  12. 一种处理含油含水物质的装置,用于进行如权利要求1-11中任一项所述的方法,包括:
    第一混合单元,包括含油含水物质入口、溶剂入口和第一混合物出口;
    第一分离单元,包括第一混合物入口、固态物质出口和液态物质出口,其中,所述第一混合物入口与所述第一混合单元的所述第一混合物出口相连接;
    第二分离单元,包括液态物质入口、水相出口和有机相出口,其中,所述液态物质入口与所述第一分离单元的所述液态物质出口相连接;以及
    第三分离单元,包括入口、分离后的溶剂出口和分离后的油出口,其中,所述入口与所述第二分离单元的所述有机相出口相连接。
  13. 根据权利要求12所述的装置,其中,所述第一混合单元还包括第一温度控制元件。
  14. 根据权利要求12所述的装置,其中,所述第一混合单元还包括搅拌元件。
  15. 根据权利要求12所述的装置,其中,所述第一分离单元还包括选自重力沉降元件、旋流分离元件、膜分离元件、加压过滤元件、减压过滤元件、离心分离元件、板框过滤元件和筒式过滤元件中的一种或多种。
  16. 根据权利要求12所述的装置,其中,所述第二分离单元还包括第二温度控制元件。
  17. 根据权利要求12所述的装置,其中,所述第二分离单元还包括选自重力分离元件、离心分离元件和旋流分离元件中的一种或多种。
  18. 根据权利要求12所述的装置,还包括:
    第一回流单元,包括连接所述第二分离单元的所述有机相出口与所述混合单元的所述溶剂进口的管道。
  19. 根据权利要求12所述的装置,还包括:
    第二回流单元,包括连接所述第三分离单元的所述分离后的溶剂出口与所述混合单元的所述溶剂进口的管道。
  20. 根据权利要求12所述的装置,还包括:
    第二混合单元,包括固态物质入口、溶剂入口和第二混合物出口,其中,所述固态物质入口与第一分离单元的固态物质出口相连接;
    固液分离单元,包括第二混合物入口、分离后的固体出口和液体混合物出口,其中,所述第二混合物入口与第二混合单元的第二混合物出口相连接;以及
    连接管道,用于连接所述液体混合物出口与第三分离单元的入口。
PCT/CN2019/083291 2018-04-19 2019-04-18 处理含油含水物质的方法和装置 WO2019201314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810352320.1 2018-04-19
CN201810352320.1A CN110395857A (zh) 2018-04-19 2018-04-19 处理含油含水物质的方法和装置

Publications (1)

Publication Number Publication Date
WO2019201314A1 true WO2019201314A1 (zh) 2019-10-24

Family

ID=68239244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083291 WO2019201314A1 (zh) 2018-04-19 2019-04-18 处理含油含水物质的方法和装置

Country Status (2)

Country Link
CN (1) CN110395857A (zh)
WO (1) WO2019201314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956431A (zh) * 2022-06-27 2022-08-30 深圳康纳环保有限公司 废乳化液,餐厨垃圾处理再生利用车

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004926A (zh) * 2019-12-19 2021-06-22 北京中科环通工程科技有限公司 使用溶剂萃取含油物质中的油并回收溶剂的方法及装置
CN113060884B (zh) * 2021-03-25 2022-11-25 中汇金源(北京)科技发展有限公司 一种石化含油污水及油泥净化回用系统
CN113336402B (zh) * 2021-06-04 2022-11-08 上海交通大学 用于从含油污泥回收油的制剂组合物、回收工艺和设备
CN114479899B (zh) * 2022-02-24 2023-06-27 陕西延长石油(集团)有限责任公司 一种含油含水固体混合物的资源化处理装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899419A (en) * 1972-09-13 1975-08-12 Resources Conservation Co Method for chemical fractionation, defatting and dewatering of solids and suspensions
US3925201A (en) * 1973-08-03 1975-12-09 Resources Conservation Co Method of dewatering material containing solid matter and bound and unbound water
US4002562A (en) * 1975-09-18 1977-01-11 Resources Conservation Co. Oil emulsion processing
US4056466A (en) * 1973-08-03 1977-11-01 Resources Conservation Co. Method of dewatering material containing solid matter and bound and unbound water
CN103693834A (zh) * 2012-09-28 2014-04-02 中国石油天然气股份有限公司 一种含油污泥的资源化联合处理方法
CN105018124A (zh) * 2015-07-15 2015-11-04 太原市金浦顺化工有限公司 一种煤焦油废渣萃取分离方法
CN106477831A (zh) * 2016-09-30 2017-03-08 华东理工大学 一种污泥分级转化生产液体燃料的工艺方法
CN208234731U (zh) * 2018-04-19 2018-12-14 北京中科国通环保工程技术股份有限公司 处理含油含水物质的装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2040173A1 (en) * 1990-04-23 1991-10-24 Stephen C. Paspek Process for separating extractable organic material from compositions comprising oil-in-water emulsions comprising said extractable organic material and solids
CA2789822C (en) * 2012-09-13 2019-06-04 General Electric Company Produced water treatment and solids precipitation from thermal treatment blowdown
CN104178202B (zh) * 2014-09-05 2016-02-17 张国柱 油砂萃取分离工艺方法
CN106552520A (zh) * 2015-09-28 2017-04-05 通用电气公司 利用溶剂提取溶质的装置和方法
CN107857457A (zh) * 2016-09-22 2018-03-30 北京中科国通环保工程技术股份有限公司 用于降低含水和固体的物质中的水含量的方法和系统
CN112694409B (zh) * 2019-10-23 2022-10-11 中国石油化工股份有限公司 一种回收废水中三乙胺的方法和装置
CN216273519U (zh) * 2021-12-06 2022-04-12 丰益表面活性材料(连云港)有限公司 用于akd生产的三乙胺盐酸盐废水预处理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899419A (en) * 1972-09-13 1975-08-12 Resources Conservation Co Method for chemical fractionation, defatting and dewatering of solids and suspensions
US3925201A (en) * 1973-08-03 1975-12-09 Resources Conservation Co Method of dewatering material containing solid matter and bound and unbound water
US4056466A (en) * 1973-08-03 1977-11-01 Resources Conservation Co. Method of dewatering material containing solid matter and bound and unbound water
US4002562A (en) * 1975-09-18 1977-01-11 Resources Conservation Co. Oil emulsion processing
CN103693834A (zh) * 2012-09-28 2014-04-02 中国石油天然气股份有限公司 一种含油污泥的资源化联合处理方法
CN105018124A (zh) * 2015-07-15 2015-11-04 太原市金浦顺化工有限公司 一种煤焦油废渣萃取分离方法
CN106477831A (zh) * 2016-09-30 2017-03-08 华东理工大学 一种污泥分级转化生产液体燃料的工艺方法
CN208234731U (zh) * 2018-04-19 2018-12-14 北京中科国通环保工程技术股份有限公司 处理含油含水物质的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956431A (zh) * 2022-06-27 2022-08-30 深圳康纳环保有限公司 废乳化液,餐厨垃圾处理再生利用车
CN114956431B (zh) * 2022-06-27 2023-05-12 深圳康纳环保有限公司 废乳化液,餐厨垃圾处理再生利用车

Also Published As

Publication number Publication date
CN110395857A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2019201314A1 (zh) 处理含油含水物质的方法和装置
CN208234731U (zh) 处理含油含水物质的装置
KR101142928B1 (ko) 음식물 쓰레기 탈리액으로부터 유분 및 슬러지를 분리하는 장치
US20090126719A1 (en) Method for processing sugar cane filter cake mud and extracting component products
CN103420532A (zh) 一种使用膜蒸发器处理油田污水的方法
CN202898176U (zh) 一种砂质含油污泥资源化处理装置
JPH02273502A (ja) 固体および水と混合した抽出可能有機物質を含む組成物から抽出可能有機物質を分離する方法
WO2020233510A1 (zh) 一种常年污染深度含油和水的污泥、废渣或自然油矿中的油砂的处理方法及其处理系统
JP2008229576A (ja) 焼却灰の処理方法
US20210032145A1 (en) Method and device for treating water-containing substance
CN108798569A (zh) 一种废油基泥浆回收利用方法
CN101543834B (zh) 一种连续处理中高浓度石油烃污染土壤的系统及方法
CA2842372A1 (en) Method and system for removal of dissolved organic compounds in process water
CN107265799B (zh) 含油固废物综合处理工艺及装置
CN106977064A (zh) 一种生物萃取剂处理含油污泥的方法及其应用
KR101075415B1 (ko) 음식물쓰레기에서의 지방성분 분리 공정 응용 방법
CN208562091U (zh) 一种含油污泥的资源化回收处理装置
CN207294540U (zh) 含油固废物综合处理装置
JP2003290604A (ja) 廃水からの油脂分の回収方法およびその再利用方法
CN208234750U (zh) 处理含水物质的装置
KR20170046501A (ko) 계면활성화와 에어를 이용한 원유오염 토양 정화 시설 및 방법
CN110845099A (zh) 一种处理混有油基式润滑剂的钻井油泥的方法
CN113004926A (zh) 使用溶剂萃取含油物质中的油并回收溶剂的方法及装置
RU2772332C1 (ru) Способ переработки обводненных нефтесодержащих отходов
CA2355676C (en) Removal of oil and chloride from oil contaminated material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789272

Country of ref document: EP

Kind code of ref document: A1