WO2019200936A1 - 空间光调制器的检测方法 - Google Patents

空间光调制器的检测方法 Download PDF

Info

Publication number
WO2019200936A1
WO2019200936A1 PCT/CN2018/118830 CN2018118830W WO2019200936A1 WO 2019200936 A1 WO2019200936 A1 WO 2019200936A1 CN 2018118830 W CN2018118830 W CN 2018118830W WO 2019200936 A1 WO2019200936 A1 WO 2019200936A1
Authority
WO
WIPO (PCT)
Prior art keywords
light modulator
image
spatial light
pixel
detecting
Prior art date
Application number
PCT/CN2018/118830
Other languages
English (en)
French (fr)
Inventor
郭祖强
鲁宁
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019200936A1 publication Critical patent/WO2019200936A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • H04N5/70Circuit details for electroluminescent devices

Definitions

  • the invention relates to a method of detecting a spatial light modulator.
  • Existing projection systems generally include a light source device, a spatial light modulator (such as an LCOS spatial light modulator or a DMD spatial light modulator), and a projection lens, the light source device emitting three colors of light such as red, green and blue, and the spatial light modulator is based on Image data modulating light emitted by the light source device, the projection lens projecting image light output by the spatial light modulator to display a projected image, however, existing projection systems may have a low contrast condition. It is necessary to improve.
  • a spatial light modulator such as an LCOS spatial light modulator or a DMD spatial light modulator
  • the spatial light modulator directly determines the projected picture effect as a signal modulation component.
  • the commonly used spatial light modulators are LCD and DMD.
  • each microstructure unit such as liquid crystal or micro mirror on the spatial light modulator corresponds to one pixel on the screen, and the control circuit is controlled.
  • Each structural unit modulates the display content of each pixel point with respect to the transmittance or reflectance of the illumination light, thereby loading and displaying the entire picture information.
  • the spatial light modulator has a quality problem, it affects the brightness and color of the projected picture, which is characterized by low brightness, uneven brightness, and uneven color.
  • the image display modulated by the spatial light modulator exhibits an overall luminance error, thereby The phenomenon that the brightness of the displayed image is low is displayed.
  • the response of the corresponding structural unit of each pixel point on the spatial light modulator is relatively completely consistent with the same driving signal.
  • the corresponding pixel of the structural unit is abnormal.
  • the display abnormality of the pixel level appears as uneven brightness and color unevenness of the display screen.
  • FIG. 1 is a flow chart for finding a cause according to a display screen problem.
  • the brightness reduction and color impure in a large range caused by the spatial light modulator can often point to multiple devices, in order to determine the error caused. The reason is that the spatial light modulator needs to detect every device that may have an impact, which is cumbersome and costs a lot of unnecessary labor.
  • a device that causes brightness and color unevenness on the order of pixel points is a spatial light modulator.
  • the modulation unit on the spatial light modulator has a one-to-one correspondence with the pixel points of the display picture.
  • the number of modulation units of the spatial light modulator reaches millions or more, so the modulator It is difficult to ensure the uniformity of illumination modulation of each modulation unit during the preparation process. Then, when brightness and color unevenness occur, it is difficult to ensure the reliability of the projection apparatus merely by replacing the spatial light modulator.
  • the laser light source or the laser fluorescence hybrid light source has a smaller optical expansion than the bulb light source, so the projection lens can collect the projection beam with a smaller aperture, and at the same time reduce the loss of divergent light energy and the influence of stray light, thereby improving the projection picture.
  • Brightness and contrast have become the main direction of the development of current projection technology.
  • the angle of light collection of the lens decreases, and the degree of brightness and color unevenness also has a certain influence.
  • the light collected by the lens is as shown in FIG.
  • the transmittance of the liquid crystal light valve to the illumination light indicates the brightness of the corresponding pixel on the display screen, when the liquid crystal transmittance is relatively standard.
  • the light collected by the lens will be deviated, and the deviation is insensitive to the optical expansion amount, that is, the optical expansion amount has no difference in brightness unevenness.
  • the aperture of the lens becomes smaller, the contrast parameter of the projected picture is increased.
  • the principle of lens light collection with different optical expansion is shown in Fig. 3.
  • the deflection angle value of the micro mirror indicates the brightness of the corresponding pixel on the display screen.
  • the detection of the spatial light modulator during the production process of the projection device has an important practicality in understanding the degree of brightness and color unevenness caused by the spatial light modulator.
  • the large flip angle means that the F number of the lens (ie, F#) becomes smaller (that is, the emission angle of the lens becomes larger), so the projector contrast (about 600) with the LED as the light source is poor.
  • the illumination light angle can be made smaller (ie, the emission angle is smaller), and the F-number of the lens can be made larger, so that a higher contrast can be obtained ( About 3500).
  • the projection device of the non-laser light source (light bulb or LED) is not sensitive to the abnormal phenomenon of these pixel points due to the low contrast, and the spatial light modulator can be considered to be working normally.
  • the contrast ratio of the laser or laser fluorescence projection system is very high, and some pixel point anomalies will lead to more obvious image unevenness, that is, the spatial light modulator does not meet the product requirements. Therefore, for a high contrast projection system, it is very important to propose a reliable method of detecting a spatial light modulator.
  • the present invention provides a method of detecting a spatial light modulator.
  • a method for detecting a spatial light modulator comprising the steps of:
  • a spatial light modulator receives the illumination light to generate image light, the spatial light modulator comprising a plurality of modulation units;
  • a deviation angle of a plurality of modulation units of the spatial light modulator is analyzed based on the captured image.
  • a plurality of modulation units of the spatial light modulator may be known. Deviating the angle to understand the degree of brightness and/or color unevenness caused by the spatial light modulator, and thereby determining whether the spatial light modulator can be used or which projection system is applicable to achieve the spatial light modulator The purpose of effective use.
  • Figure 1 is a flow chart for finding the cause based on the display screen problem.
  • FIG. 2 is a schematic diagram of the light collected by the lens in the case where the LCD is used as a spatial light modulator.
  • FIG. 3 is a schematic diagram of a lens light-receiving principle with different optical expansion amounts in the case where DMD is used as a spatial light modulator.
  • FIG. 4 is a flow chart of a method of detecting a spatial light modulator of the present invention.
  • Fig. 5 is a view showing the configuration of a detecting device using the detecting method shown in Fig. 4.
  • Fig. 6 is a schematic flow chart and principle diagram of the steps of preprocessing.
  • FIG. 7 is a schematic diagram of a specific logic flow of the detection method of the present invention.
  • Fig. 8 is a view showing the process and principle of judging the unevenness using the detecting device shown in Fig. 5.
  • 9 and 10 are schematic diagrams of image illumination distribution obtained according to the captured image of two embodiments.
  • FIG. 11 is a schematic diagram showing the process and principle when the resolution of the photographing device is smaller than the resolution of the projected image using the detecting device shown in FIG. 5.
  • the method used by the device for detecting a spatial light modulator proposed by the invention can be used for detecting a spatial light modulator on a laser fluorescent projection device production line, and the detection of the spatial light modulator reduces the probability of occurrence of a problem of the projection device, thereby improving the projection. Product reliability.
  • FIG. 4 is a flowchart of a method for detecting a spatial light modulator of the present invention
  • FIG. 5 is a schematic structural diagram of a detecting device 100 using the detecting method shown in FIG.
  • the detecting device 100 includes a light source 101, an illumination system 102, a spatial light modulator 103, a projection lens 104, a screen 105, a photographing device 106, and a data processing device 107.
  • the detection method includes the following steps S1-S5.
  • step S1 illumination light is provided.
  • the light source 101 is used to emit light from the source.
  • the illumination system 102 is located on the optical path of the source light for converting the source light into the illumination light.
  • the light source 101 can be a laser light source, such as a blue laser light source.
  • the illumination system 102 can include a wavelength conversion device, a relay lens, a light homogenizing device, etc., and the wavelength conversion device can be a color wheel for receiving a portion of the blue laser light emitted by the light source and A laser light (such as red fluorescent light and green fluorescent light or yellow fluorescent light) is generated, and another portion of the blue laser light and the received laser light are supplied to the spatial light modulator 103 as the illumination light.
  • the illumination system may not include a wavelength conversion device, but may include optical components such as a relay lens and a light homogenizing device.
  • the blue, red, and green three-color lasers are used as the illumination light and are supplied to the spatial light modulator 103.
  • the spatial light modulator 103 receives the illumination light to generate image light, and the spatial light modulator 103 includes a plurality of modulation units. Specifically, the spatial light modulator 103 is located on the optical path where the illumination light is located, thereby receiving the illumination light to generate image light. It can be understood that when the spatial light modulator is a DMD chip, the modulation unit is a DMD. Micromirror.
  • Step S3 projecting the image light to generate a projected image, wherein a plurality of pixel points of the projected image are in one-to-one correspondence with the plurality of modulation units.
  • the projection lens 104 is configured to project image light emitted by the spatial light modulator 103 to generate the projected image on the screen 105.
  • the projected image is captured to generate a captured image.
  • the photographing device 106 is configured to capture the projected image to generate the captured image, and the photographing device 106 may be a CCD camera. It can be understood that since the resolution of the CCD camera can be higher than the resolution of the projection system composed of the light source 101, the illumination system 102, the spatial light modulator 103, the projection lens 104, and the screen 105, The captured image can obtain an illuminance value and a color tristimulus value for each pixel on the projected image.
  • Step S5 analyzing a deviation angle of the plurality of modulation units of the spatial light modulator 103 according to the captured image.
  • the data processing device 107 is configured to receive the captured image, and analyze the quality of the projected image according to the captured image, thereby obtaining a deviation angle of the plurality of modulation units of the spatial light modulator 103.
  • the data processing device 107 may be a computer program (instruction) stored in a storage medium and operable on a processor, such as a terminal control program or the like, and may of course include other hardware components such as a screen, a button, and a communication device. Etc., I will not repeat them here.
  • the storage medium may be a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), a Secure Digital (SD) card, a flash card, or at least one disk storage device. Pieces, flash memory devices, or other volatile solid state storage device components are not limited to the above.
  • the processor may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an off-the-shelf device.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • the detection method further comprises the steps of installing the spatial light modulator 103 prior to step S2 and the step of pre-treating the illumination light prior to installation of the spatial light modulator 103.
  • FIG. 6 is a schematic flowchart of the steps of the pre-processing.
  • the step of pre-processing includes the following steps:
  • the image projected by the photographed illumination light is subjected to uniformity detection.
  • the data processing device 107 or the image in which the photographed illumination light is projected may be visually detected using the naked eye. If the image to be projected by the illumination light is uniform, perform the mounting of the spatial light modulator 103 and subsequent steps S2-S5, if the image of the captured illumination light is projected Non-uniform, replacing the light source 101 that emits the illumination light, the optical element between the illumination light and the projection image (such as the optical component in the illumination system 102: lens, light homogenizing device, etc.; projection lens 104; or at least one of the projection screen 105) and the photographing device 106 until the image projected by the illumination light is uniform.
  • the optical element between the illumination light and the projection image such as the optical component in the illumination system 102: lens, light homogenizing device, etc.; projection lens 104; or at least one of the projection screen 105
  • the purpose of the above pre-processing steps is to ensure that the illumination light received by the spatial light modulator 103 is uniform and the projection lens 104 and/or the imaging device does not have an influence on the detection method. defect.
  • the step of installing the spatial light modulator 103 may be performed to further perform the steps S2-S5. If uniform illumination light cannot be obtained due to experimental conditions, the illuminance and color tristimulus values for each pixel of the projected illumination light can be recorded for use in the data processing analysis of step S5.
  • step S5 if the spatial light modulator 103 is determined to be defective according to the captured image (eg, a deviation angle and/or illumination of a certain number of modulation units exceeds a predetermined value) And determining that the detection result of the spatial light modulator 103 is unsatisfactory; if the detection result of the spatial light modulator is determined to be qualified according to the captured image under the projection lens 104 of the current F number (such as a certain number of The detecting method further includes: adjusting the F number of the projection lens 104 or replacing the projection lens 104 of a different F number, and repeating the detecting method, wherein the deviation angle and/or the illuminance of the modulating unit is within a predetermined value range) Each of the steps S1 - S5, thereby determining again whether the detection result of the spatial light modulator 103 different from the F number is acceptable.
  • the F number is gradually increased.
  • a specific logic flow of the detection method may be as shown in FIG. 7.
  • F number represents the aperture number of the lens, and is generally referred to as F#, such as F3.5, F5.6, etc., specifically, the F number of one lens is equal to the focal length f' of the lens and the aperture diameter of the lens.
  • the ratio of D, that is, f'/D, therefore, the F-number of the projection lens 104 is the number of apertures of the projection lens 104, and is equal to the ratio of the focal length of the projection lens 104 to the aperture diameter of the projection lens 104. .
  • the first use in the detection process The projection lens 104 having a relatively small F number (such as F#1.7) is imaged (i.e., a projection image is obtained), and it is judged whether there is a problem in the photographing device 106 in this case, and if the screen is uniform, the spatial light modulator 103 is confirmed to be light-receiving. It works well when the angle is large (that is, the launch angle is large).
  • the projection lens 104 having a large F number (such as F#3.5) is replaced, and the detection system is used again to image, and then the image frame is detected to have a pixel defect. If the pixel defect occurs after the projection lens 104 is replaced (that is, the detection result is unqualified), it proves that the spatial light modulator 103 does not satisfy the projection system in the case where the light receiving angle is small (that is, the emission angle is large). Claim.
  • the detection method employed may include the following steps:
  • the optical radiation field L of the image light formed by the illumination light after passing through the plurality of modulation units of the spatial light modulator 103 The spatial angles ⁇ , ⁇ of the diffracted beams corresponding to each modulation unit conform to the following formula:
  • ⁇ 0 is an incident angle
  • is a wavelength of light
  • an integral range of the spatial angles ⁇ , ⁇ is given by an F number
  • the above formula is for the wavelength ⁇ and the spatial angles ⁇ , ⁇
  • the integral obtains the relationship between the brightness of each pixel and the spatial angle f( ⁇ , ⁇ ); when the deflection angle of a modulation unit appears ( ⁇ , ⁇ ), the spatial angle ⁇ , ⁇ of the diffracted beam has an angular translation with respect to the normal value.
  • the detecting method may further include the step of calculating a flip angle of the plurality of modulation units of the spatial light modulator according to the captured image and using a reflection law.
  • the detection method can be used for detecting the spatial light modulator on the projection device production line, and the parameters that need to be paid attention to during the detection of the spatial light modulator include: the efficiency of the spatial light modulator and the spatial light modulator The extent to which unevenness is caused.
  • the following describes how the detection apparatus 100 and the detection method used thereof further describe the specific scheme steps of the spatial light modulator 103 efficiency, luminance unevenness, color unevenness, and detection using the different resolution imaging apparatus 106.
  • the step of pre-processing may further include: recording the original illuminance and the color tristimulus value of each pixel of the image projected by the illumination light, and according to the photographing The image projected by the illumination light obtains the original illuminance of each pixel and calculates the average original illuminance of all the pixels.
  • the detection method may further comprise the following steps performed by the data processing device 107:
  • the efficiency E(%) is compared to a preset value to determine if the efficiency of the spatial light modulator is up to standard.
  • i n is the actual illuminance of any one pixel
  • N is the number of pixels.
  • the unevenness of the projected image picture caused by the spatial light modulator 103 appears to be abnormal for display of certain pixel points.
  • the process of determining the unevenness by using the detecting device 100 is as shown in FIG. 8.
  • the pre-processing step has already projected the image of the captured illumination light.
  • the original illuminance and the color tristimulus value of each pixel are recorded to detect the brightness unevenness of the spatial light modulator 103; after the spatial light modulator 103 to be tested is installed in the detecting device 100, the projection is obtained on the screen.
  • the image is then obtained by the photographing device 106 obtaining the illuminance distribution of the image and the color tristimulus value of each pixel to judge the luminance unevenness and the color unevenness caused by the spatial light modulator 103.
  • the detecting method may further include the following steps performed by the data processing device 107:
  • i k is the actual illuminance value of each pixel
  • N is the number of pixels
  • is the average illuminance of all pixels.
  • a schematic diagram of an image illuminance distribution obtained according to the captured image is as shown in FIG. 9. Since the structural light corresponding to some pixel points in the spatial light modulator 103 has an error in modulation of illumination light, The projected image will therefore produce some pixel anomalies that are randomly located. The generation of pixel anomalies affects the brightness uniformity of the image. The degree of brightness non-uniformity is reflected in the following aspects: the number of pixel anomalies M, the density of pixel anomalies, and the apparent degree of a single pixel anomaly. The apparent degree C (%) of the pixel anomaly point is measured by the ratio of the root mean square to the average value of the illuminance values of all the pixels (ie, the formula for calculating C (%)).
  • the number of pixel anomalies has a major influence on the brightness non-uniformity. It is assumed that the number of pixel anomalies required in the entire projection picture is limited to m.
  • M>m the degree of brightness non-uniformity is considered to be obvious, and the projection system requirements are not satisfied.
  • M ⁇ m the distribution density of abnormal pixel points is the main factor affecting the brightness unevenness phenomenon. As shown in FIG.
  • the spatial light modulator 103 causes the degree of color unevenness of the projected image to be difficult to judge by direct observation, and the color tristimulus value (X k , Y k , Z k of each pixel can be obtained according to the captured image. ), and calculate the degree of color unevenness of the projected image.
  • the detecting method further includes the following steps:
  • the color coordinates (x k , y k ) of each pixel are calculated according to the color tristimulus values (X k , Y k , Z k ) of each pixel, and the color coordinates (x k , y k ) satisfy the following formula :
  • step S4 of the detecting method when the resolution of the photographing device 106 is smaller than the resolution of the projected image, the photographing device may be used to photograph different regions of the projected image at least twice, The images taken at least twice are subjected to image synthesis to produce the captured images.
  • the resolution of a projected image is getting higher and higher, and it is difficult to always ensure that the resolution of the imaging device 106 is higher than the resolution of the projected image.
  • a method of capturing the local information of different positions of the projected image multiple times and synthesizing the overall image of the projected image by image data processing may be adopted, and then in the above embodiment Based on the measured illuminance and color tristimulus values of each pixel of the projected image, and determining whether the spatial light modulator to be tested meets the requirements of the projection system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种空间光调制器(103)的检测方法。该检测方法包括以下步骤:提供照明光(S1);空间光调制器(103)接收照明光产生图像光,空间光调制器(103)包括多个调制单元(S2);投影图像光产生投影图像,其中投影图像的多个像素点与多个调制单元一一对应(S3);拍摄投影图像产生拍摄图像(S4);及依据拍摄图像分析空间光调制器(103)的多个调制单元的偏差角度(S5)。

Description

空间光调制器的检测方法 技术领域
本发明涉及一种空间光调制器的检测方法。
背景技术
现有投影系统一般包括光源装置、空间光调制器(如LCOS空间光调制器或DMD空间光调制器)及投影镜头,所述光源装置射出如红绿蓝三色光,所述空间光调制器依据图像数据对所述光源装置发出的光进行图像调制,所述投影镜头对所述空间光调制器输出的图像光进行投影以显示投影图像,然而,现有投影系统可能存在对比度较低的情形,有必要改善。
投影系统中,空间光调制器作为信号调制元件直接决定了投影的画面效果。目前常用的空间光调制器是LCD和DMD,从空间光调制器的工作原理出发,空间光调制器上每一个微结构单元如液晶或微型反射镜对应于屏幕上一个像素点,控制电路通过控制每一个结构单元对照明光的透过率或反射率来调制每一个像素点的显示内容,从而加载显示整个画面信息。当空间光调制器出现质量问题时,它对投影画面的亮度和颜色产生影响,具体表现为亮度偏低、亮度不均匀和颜色不均匀。当空间光调制器由于材料或结构上出现问题(如液晶材料透过率和微型反射镜反射率出现较大误差)时,经由空间光调制器调制的图像显示就会出现整体的亮度误差,从而出现显示图像亮度偏低的现象。空间光调制器上每一个像素点对应的结构单元相对同样的驱动信号的响应结果很难达到完全一致,当某些结构单元的响应结果误差较大时该结构单元对应的像素显示异常,这种像素点量级的显示异常就表现为显示画面的亮度不均匀和颜色不均匀现象。
然而投影设备的生产过程中,一直缺乏有效手段对空间光调制器 的质量好坏做出检测。设备生产完成后,测试过程中才能发现空间光调制器是否存在问题,如果存在问题需要将投影设备拆开由生产线更换空间光调制器。其中,如图1所示,图1是根据显示画面问题查找原因流程图,空间光调制器引起的较大范围内的亮度降低和颜色不纯现象往往能够指向多个器件,为确定引起误差的原因在于空间光调制器需要对每个可能产生影响的器件进行检测,过程繁琐并花费许多不必要的人工成本。一般情况下,引起像素点量级的亮度和颜色不均匀现象的器件是空间光调制器。空间光调制器上调制单元与显示画面的像素点一一对应,随着目前显示分辨率越来越高,空间光调制器的调制单元的数量达到数百万或千万以上,因此,调制器的制备过程中难以保证每个调制单元对照明光调制的一致性。那么当出现亮度和颜色不均匀现象时,仅仅通过更换空间光调制器难以保证投影设备的可靠性。
此外,随着投影显示技术的发展,对投影画面的亮度、颜色和对比度要求越来越高。目前,激光光源或激光荧光混合光源的光学扩展量比灯泡光源小,所以投影镜头能够以更小的光圈收集投影光束,同时减少了发散光能量的损失和杂散光的影响,提升了投影画面的亮度和对比度,成为目前投影技术发展的主要方向。但是随着光学扩展量减小,镜头收光角度随之减小,对亮度和颜色不均匀现象的明显程度也有一定的影响。其中,以LCD作为空间光调制器的情况下,镜头收集光情况如图2所示,液晶光阀对照明光的透过率表示显示画面上对应像素点的亮度,当液晶透过率相对标准值出现误差时,镜头收集到的光随之出现偏差,该偏差对光学扩展量不敏感,即光学扩展量不同亮度不均匀现象基本无差别。但是由于镜头光圈变小,投影画面的对比度参数提升。以DMD作为空间光调制器的情况下,不同光学扩展量的镜头收光原理如图3所示,以DMD作为空间光调制器时,微型反射镜的偏转角度值表示显示画面对应像素点的亮暗,当反射镜偏转角度相对标准值出现一定误差α时,衍射光束相应偏转2α,同时,衍射光束的移动使得镜头收集不同波长光的损失出现差别,所以当镜 头收光角度小时,对此误差更敏感,即光学扩展量小的情况下亮度和颜色不均匀现象更明显。因此,投影设备的生产过程中对空间光调制器进行检测,了解空间光调制器引起的亮度和颜色不均匀现象程度有很重要的实用性。
更为重要的问题在于,随着DMD翻转角度从±12°提升为±17°,DMD能够容纳的光束角度变大。但是大的翻转角度意味着镜头的F数(即F#)随之变小(即镜头的发射角则变大),因此以LED作为光源的投影仪对比度(约600)很差。以激光或激光荧光作为光源的投影设备采用同样规格的DMD时其照明光角度可以做到比较小(即发射角较小),镜头F数可以随之做大,因此能够得到较高的对比度(约为3500)。当空间光调制器中某些像素点调制过程出现异常时,非激光光源(灯泡或LED)的投影设备由于对比度低,对于这些像素点级的异常现象不敏感,可认为空间光调制器工作正常;而激光或激光荧光的投影系统中对比度非常高,某些像素点的异常就会导致较为明显的画面不均匀现象,即空间光调制器不符合产品需求。因此,对于高对比度的投影系统,提出可靠的检测空间光调制器的方法具有非常重要的意义。
发明内容
为了解空间光调制器引起的亮度及/或颜色不均匀现象程度,本发明提供一种空间光调制器的检测方法。
一种空间光调制器的检测方法,其包括以下步骤:
提供照明光;
空间光调制器接收所述照明光产生图像光,所述空间光调制器包括多个调制单元;
投影所述图像光产生投影图像,其中所述投影图像的多个像素点与所述多个调制单元一一对应;
拍摄所述投影图像产生拍摄图像;及
依据所述拍摄图像分析所述空间光调制器的多个调制单元的偏 差角度。
相较于现有技术,所述检测方法中,通过拍摄及分析所述空间光调制器调制所述照明光产生的投影图像的拍摄图像,可以获知所述空间光调制器的多个调制单元的偏差角度,从而了解所述空间光调制器引起的亮度及/或颜色不均匀现象程度,进而可确定所述空间光调制器是否可以使用或者适用何种投影系统,达到对所述空间光调制器有效使用的目的。
附图说明
图1是根据显示画面问题查找原因流程图。
图2是以LCD作为空间光调制器的情况下的镜头收集光情况示意图。
图3是以DMD作为空间光调制器的情况下的不同光学扩展量的镜头收光原理示意图。
图4是本发明空间光调制器的检测方法的流程图。
图5是使用图4所示的检测方法的检测装置的结构示意图。
图6是预处理的步骤的简要流程及原理示意图。
图7是本发明检测方法的具体逻辑流程示意图。
图8是使用图5所示检测装置判断不均匀现象的过程及原理示意图。
图9及图10是两种实施例的依据所述拍摄图像获得的图像照度分布示意图。
图11是使用图5所示检测装置在拍摄装置的分辨率小于所述投影图像的分辨率时的过程及原理示意图。
主要元件符号说明
检测装置    100
光源        101
照明系统    102
空间光调制器  103
投影镜头      104
屏幕          105
拍摄装置      106
数据处理装置  107
步骤          S1-S5
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
本发明提出的检测空间光调制器的装置使用的方法能够用于激光荧光投影设备生产线上空间光调制器的检测,通过对空间光调制器的检测减少了投影设备出现问题的几率,提升了投影产品的可靠性。
请参阅图4及图5,图4是本发明空间光调制器的检测方法的流程图,图5是使用图4所示的检测方法的检测装置100的结构示意图。所述检测装置100包括光源101、照明系统102、空间光调制器103、投影镜头104、屏幕105、拍摄装置106、及数据处理装置107。
所述检测方法包括以下步骤S1-S5。
步骤S1,提供照明光。其中,所述光源101用于发出光源光。所述照明系统102位于所述光源光的光路上,用于将所述光源光转换为所述照明光。可以理解,所述光源101可以为激光光源,如蓝色激光光源。在一种实施例中,所述照明系统102可以包括波长转换装置、中继透镜、匀光装置等,所述波长转换装置可以为色轮,用于接收所述光源发出的一部分蓝色激光并产生受激光(如红色荧光与绿色荧光或者黄色荧光),另一部分的蓝色激光及所述受激光共同作为所述照明光被提供至所述空间光调制器103。在一种实施例中,所述光源包括蓝色、红色及绿色三色的激光光源时,所述照明系统也可以不包括波长转换装置,但可以包括中继透镜、匀光装置等光学元件,所述蓝色、红色及绿色三色激光作为所述照明光且被提供至所述空间光调制器103。
步骤S2,所述空间光调制器103接收所述照明光产生图像光,所述空间光调制器103包括多个调制单元。具体地,所述空间光调制器103位于所述照明光所在的光路上,从而接收所述照明光产生图像光,可以理解,所述空间光调制器为DMD芯片时,所述调制单元为DMD微镜。
步骤S3,投影所述图像光产生投影图像,其中所述投影图像的多个像素点与所述多个调制单元一一对应。具体地,所述投影镜头104用于对所述空间光调制器103发出的图像光进行投影从而在所述屏幕105上产生所述投影图像。
步骤S4,拍摄所述投影图像产生拍摄图像。其中,所述拍摄装置106用于拍摄所述投影图像产生所述拍摄图像,所述拍摄装置106可以为CCD相机。可以理解,由于CCD相机的分辨率可以比所述光源101、所述照明系统102、所述空间光调制器103、所述投影镜头104及所述屏幕105构成的投影系统分辨率高,因此通过所述拍摄图像可以得到投影图像上每一个像素点的照度值和颜色三刺激值。
步骤S5,依据所述拍摄图像分析所述空间光调制器103的多个调制单元的偏差角度。具体地,所述数据处理装置107用于接收所述拍摄图像,并依据所述拍摄图像分析所述投影图像的质量,从而获得所述空间光调制器103的多个调制单元的偏差角度。所述数据处理装置107可以是存储在存储介质中并可以在处理器上运行的计算机程序(指令),例如终端控制程序等等,当然还可以包括其他的硬件部分,例如屏幕、按键、通信装置等,在此不再赘述。其中,所述存储介质可以为硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储装置件、闪存器件、或其他易失性固态存储装置件并不以上述为限。所述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array, FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,且不以上述为限。
可以理解,所述检测方法还包括在步骤S2之前的安装所述空间光调制器103的步骤、以及在安装所述空间光调制器103之前进行的对所述照明光进行预处理的步骤。
具体地,请参阅图6,图6是所述预处理的步骤的流程及原理示意图。所述预处理的步骤包括以下步骤:
使用所述投影镜头104对接收所述照明光进行投影;
使用所述拍摄装置106对所述照明光进行投影的图像进行拍摄;
对所述拍摄的所述照明光进行投影的图像进行均匀性检测。具体地,可以使用所述数据处理装置107或者肉眼对所述拍摄的所述照明光进行投影的图像进行均匀性检测。若所述拍摄的所述照明光进行投影的图像是均匀的,则进行所述安装所述空间光调制器103及后续步骤S2-S5,若所述拍摄的所述照明光进行投影的图像是不均匀的,则更换发出所述照明光的光源101、所述照明光至所述投影图像之间的光学元件(如所述照明系统102中的光学元件:透镜、匀光装置等;投影镜头104;或投影屏幕105)及所述拍摄装置106中的至少一个,直至所述照明光进行投影的图像是均匀的。
可以理解,上述预处理的步骤的目的是为了保证所述空间光调制器103接收到的照明光是均匀的且所述投影镜头104及/或拍摄装置不会具有对所述检测方法造成影响的缺陷。当经过所述预处理的步骤后发现所述照明光是均匀的,则可以进行安装所述空间光调制器103的步骤,从而进一步进行所述步骤S2-S5。如果受实验条件限制不能得到均匀照明光,那么可以记录投射照明光每个像素点的照度和颜色三刺激值供步骤S5的数据处理分析中使用。
更进一步地,在一种实施例中,所述步骤S5中,若依据所述拍摄图像判断所述空间光调制器103存在缺陷(如一定数量的调制单元的偏差角度及/或照度超过预定值),则判断所述空间光调制器103的检测结果为不合格;若依据当前F数的投影镜头104下的所述拍摄图 像判断所述空间光调制器的检测结果为合格(如一定数量的调制单元的偏差角度及/或照度在预定值范围内),则所述检测方法还包括:调整所述投影镜头104的F数或更换不同F数的投影镜头104,并重复所述检测方法的各步骤S1-S5,从而再次判断不同于F数下所述空间光调制器103的检测结果是否为合格。其中,所述调整所述投影镜头104的F数或更换不同F数的投影镜头104的步骤中,所述F数逐渐增大。具体地,按照上述步骤,所述检测方法的具体逻辑流程可以如图7所示。可以理解,术语F数代表镜头的光圈数,通常记作F#,如F3.5、F5.6等,具体地,一个镜头的F数等于所述镜头的焦距f’与所述镜头的光圈直径D的比值,即f’/D,因此,所述投影镜头104的F数即所述投影镜头104的光圈数,且等于所述投影镜头104的焦距与所述投影镜头104的光圈直径的比值。
进一步地,上述步骤中,主要是考虑到不同的投影系统所用的投影镜头的F数不同,为保证检测结果能够准确判断待测空间光调制器103是否符合投影系统要求,在检测过程中首先使用F数比较小(如F#1.7)的投影镜头104成像(即获得投影图像),判断这种情况下所述拍摄装置106拍摄画面是否存在问题,若画面均匀则证明空间光调制器103收光角度大(即发射角度较大)的情况下可以正常工作。在此前提下,更换F数较大(如F#3.5)的投影镜头104,再次使用检测系统成像,然后检测成像画面是否存在像素缺陷。若更换投影镜头104后出现较明显像素缺陷(即检测结果为不合格的请款),则证明在收光角度较小(即发射角度较大)的情况下空间光调制器103不满足投影系统要求。
进一步地,对于不同投影系统,可接受的空间光调制器103的调制单元的偏转角度偏离标准值的大小存在差异,在一种实施例中,定量分析空间光调制器103的调制单元的偏差角度采用的检测方法可以包括以下步骤:
使用所述光源101及所述照明系统102提供具有平行的照明光束的所述照明光;
调整所述投影镜头104的F数或更换不同F数的投影镜头104至所述投影图像的至少一个像素点完全变暗;及
使用拍摄装置106对所述至少一个像素点变暗的投影图像进行图像拍摄,并依据所述至少一个像素点变暗的投影图像的拍摄图像分析所述至少一个像素点对应的至少一个调制单元的偏差角度。
具体地,上述定量分析空间光调制器103的调制单元的偏差角度的步骤中,所述照明光经由所述空间光调制器103的多个调制单元后形成的所述图像光的光辐射场L与每个调制单元对应的衍射光束的空间角α、β的符合以下公式:
Figure PCTCN2018118830-appb-000001
L(α,β-β 0)=0,α 22≥1。
其中,上述公式中,β 0为入射角,λ为光的波长,所述空间角α、β的积分范围由F数给出,将以上公式对所述波长λ和所述空间角α、β积分获得每个像素点亮度与空间角的关系f(α,β);当一个调制单元的偏转角度出现偏差(Δα,Δβ)时,衍射光束空间角α、β相对于正常值存在一个角度平移量,那么对于出现偏差的所述调制单元对应的像素点亮度与空间角关系就变为f(α+Δα,β+Δβ),带入测量数据拟合得到Δα和Δβ的值,那么所述调制单元的偏差复合角度δ表示为cosδ=cosΔαcosΔβ。
在另一种实施例中,所述检测方法还可以包括:依据所述拍摄图像并利用反射定律计算所述空间光调制器的多个调制单元的翻转角度的步骤。
可以理解,所述检测方法可以用于投影设备生产线上的空间光调制器的检测,而且对空间光调制器的检测过程中还需要关注的参数包括:空间光调制器的效率和空间光调制器引起不均匀现象的程度。以下对所述检测装置100及其使用的检测方法如何进一步对空间光调制器103效率、亮度不均匀现象、颜色不均匀现象和使用不同分辨率拍 摄装置106的检测的具体方案步骤进行说明。
(一)对所述空间光调制器103效率的检测
可以理解,所述预处理的步骤还可以包括:对所述拍摄的所述照明光进行投影的图像的每个像素点的原始照度及颜色三刺激值进行记录的步骤以及依据所述拍摄的所述照明光进行投影的图像获得每个像素点的原始照度并计算所有像素点的平均原始照度
Figure PCTCN2018118830-appb-000002
的步骤。对应地,为实现对所述空间光调制器103效率的检测,所述检测方法还可以包括由所述数据处理装置107执行的以下各步骤:
依据所述拍摄图像获得每个像素点的实际照度;
依据每个像素点的实际照度计算所述拍摄图像所有像素点的平均照度
Figure PCTCN2018118830-appb-000003
依据所述平均照度与所述平均原始照度计算所述空间光调制器的效率E(%);
将所述效率E(%)与预设值进行比较以判断所述空间光调制器的效率是否达标。
可以理解,所述平均照度
Figure PCTCN2018118830-appb-000004
及所述效率E(%)分别符合以下公式:
Figure PCTCN2018118830-appb-000005
Figure PCTCN2018118830-appb-000006
其中,i n为任意一个像素点的实际照度,N为像素点的数量。
一般情况下,考虑到为保证空间光调制器103能够完全接收到照明光,照明光光斑尺寸略大于空间光调制器103尺寸,此时空间光调制器103的效率约为60%/0.85=70.6%,当计算得到被测空间光调制器103的效率低于这一数值且差值较大的情况下(如低于50%,具体可以依据实际需要设定),认为被测空间光调制器103质量不达标,即效率的检测结果不合格。
(二)对所述空间光调制器103亮度不均匀现象的检测
一般来说,所述空间光调制器103引起的投影图像画面的不均匀 现象表现为某些像素点的显示异常。使用所述检测装置100判断不均匀现象的过程如图8所示,未安装所述空间光调制器103时,所述预处理的步骤已经对所述拍摄的所述照明光进行投影的图像的每个像素点的原始照度及颜色三刺激值进行记录为检测所述空间光调制器103亮度不均匀现象;所述检测装置100中安装好待测空间光调制器103后,在屏幕上得到投影图像,然后通过拍摄装置106获取图像的照度分布和每个像素点的颜色三刺激值来判断由空间光调制器103引起的亮度不均匀和颜色不均匀现象。
具体地,所述检测方法还可以包括由所述数据处理装置107执行的以下各步骤:
依据所述拍摄图像获取每个像素点的实际照度及/或颜色三刺激值;
依据所述每个像素点的实际照度及/或颜色三刺激值来计算像素异常点的数目M、像素异常点分布密度及/或单个像素异常点的明显程度C(%);及
依据所述像素异常点的数目M、像素异常点分布密度及/或单个像素异常点的明显程度来判断所述空间光调制器的投影画面是否满足均匀性的要求,其中,所述单个像素异常点C(%)的明显程度满足以下公式:
Figure PCTCN2018118830-appb-000007
i k是每个像素点的实际照度值,N为像素点的数量,μ为所有像素点的平均照度。
在一种实施例中,依据所述拍摄图像获得的图像照度分布示意图如图9所示,由于所述空间光调制器103中对应于某些像素点的结构单元对照明光的调制出现误差,投影图像就会因此产生一些位置随机的像素异常点。像素异常点的产生影响了图像的亮度均匀性。亮度不均匀现象的程度体现在以下几个方面:像素异常点的数目M、像素异 常点分布密度和单个像素异常点的明显程度。像素异常点的明显程度C(%)以所有像素点的照度值求取均方根和平均值的比值进行衡量(即计算C(%)的公式)。
依据上述可知,C值越大像素异常点越明显。当单个像素异常点的明显程度较小可以忽略不计的情况下,像素异常点的数目对亮度不均匀现象产生主要影响。假设在整个投影画面中要求像素异常点的数目限制在m以内,当M>m时,认为亮度不均匀程度明显,不满足投影系统要求。当M<m时,异常像素点的分布密度是影响亮度不均匀现象的主要因素。如图9所示,当像素异常点分布相对分散,不存在多个像素集中的情况下,可认为亮度不均匀现象不明显,满足投影系统要求。如图10所示,当像素异常点分布集中时,认为亮度不均匀程度明显,不满足投影系统要求。
(三)对所述空间光调制器103颜色不均匀现象的检测
可以理解,所述空间光调制器103引起投影图像的颜色不均匀现象程度难以通过直接观察进行判断,可以依据所述拍摄图像获得每个像素的颜色三刺激值(X k,Y k,Z k),并计算投影图像的颜色不均匀程度。具体地,所述检测方法还包括以下步骤:
依据每个像素点的颜色三刺激值(X k,Y k,Z k)计算得到每个像素的色坐标(x k,y k),所述色坐标(x k,y k)满足以下公式:
Figure PCTCN2018118830-appb-000008
Figure PCTCN2018118830-appb-000009
比较相邻像素件的色坐标差值来判断所述空间光调制器的颜色均匀性符合要求。
(四)使用不同分辨率拍摄装置106的检测
在所述检测方法的步骤S4中,当所述拍摄装置106的分辨率小于所述投影图像的分辨率时,可以使用所述拍摄装置至少两次拍摄所述投影图像的不同区域,对所述至少两次拍摄的图像进行图像合成从而产生所述拍摄图像。
具体来说,随着投影技术的不断发展,投影图像的分辨率越来越高,难以一直保证所述拍摄装置106的分辨率高于投影图像分辨率。如图11所示,当所述拍摄装置106分辨率小于投影设备时,可以采取多次拍摄投影图像不同位置局部信息,并通过图像数据处理合成投影图像的整体画面方法,然后在以上实施例的基础上测得投影图像每个像素的照度和颜色三刺激值,并判断待测空间光调制器是否符合投影系统要求。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种空间光调制器的检测方法,其特征在于:所述检测方法包括
    提供照明光;
    空间光调制器接收所述照明光产生图像光,所述空间光调制器包括多个调制单元;
    投影所述图像光产生投影图像,其中所述投影图像的多个像素点与所述多个调制单元一一对应;
    拍摄所述投影图像产生拍摄图像;及
    依据所述拍摄图像分析所述空间光调制器的多个调制单元的偏差角度。
  2. 如权利要求1所述的空间光调制器的检测方法,其特征在于:所述投影所述图像光产生投影图像的步骤中,通过投影镜头对所述空间光调制器发出的图像光进行投影从而产生所述投影图像,所述投影镜头具有当前F数,所述依据所述拍摄图像分析所述空间光调制器的多个调制单元的偏差角度的步骤中,若依据当前F数的投影镜头下的所述拍摄图像判断所述空间光调制器的检测结果为合格,则所述检测方法还包括:调整所述投影镜头的F数或更换不同F数的投影镜头,并重复所述检测方法的各步骤,从而再次判断不同于F数下所述空间光调制器的检测结果是否为合格,其中,所述调整所述投影镜头的F数或更换不同F数的投影镜头的步骤中,所述F数逐渐增大。
  3. 如权利要求2所述的空间光调制器的检测方法,其特征在于:所述检测方法还包括:
    提供具有平行的照明光束的所述照明光;
    调整所述投影镜头的F数或更换不同F数的投影镜头至所述投影图像的至少一个像素点完全变暗;及
    依据所述至少一个像素点变暗的投影图像的拍摄图像分析所述至少一个像素点对应的至少一个调制单元的偏差角度。
  4. 如权利要求3所述的空间光调制器的检测方法,其特征在于: 所述照明光经由所述空间光调制器的多个调制单元后形成的所述图像光的光辐射场L与每个调制单元对应的衍射光束的空间角α、β的符合如下公式:
    Figure PCTCN2018118830-appb-100001
    L(α,β-β 0)=0,α 22≥1;
    其中,β 0为入射角,λ为光的波长,所述空间角α、β的积分范围由F数给出,将以上公式对所述波长λ和所述空间角α、β积分获得每个像素点亮度与空间角的关系f(α,β);
    当一个调制单元的偏转角度出现偏差(Δα,Δβ)时,衍射光束空间角α、β相对于正常值存在一个角度平移量,那么对于出现偏差的所述调制单元对应的像素点亮度与空间角关系就变为f(α+Δα,β+Δβ),带入测量数据拟合得到Δα和Δβ的值,那么所述调制单元的偏差复合角度δ表示为cosδ=cosΔαcosΔβ。
  5. 如权利要求1所述的空间光调制器的检测方法,其特征在于:所述检测方法包括:
    依据所述拍摄图像并利用反射定律计算所述空间光调制器的多个调制单元的翻转角度。
  6. 如权利要求1所述的空间光调制器的检测方法,其特征在于:所述检测方法还包括在所述空间光调制器接收所述照明光产生图像光的步骤之前的安装所述空间光调制器的步骤。
  7. 如权利要求6所述的空间光调制器的检测方法,其特征在于:所述检测方法还包括在安装所述空间光调制器之前进行的对所述照明光进行预处理的步骤,所述预处理的步骤包括以下步骤:
    接收所述照明光进行投影;
    对所述照明光进行投影的图像进行拍摄;
    对所述拍摄的所述照明光进行投影的图像进行均匀性检测,若所述拍摄的所述照明光进行投影的图像是均匀的,则进行所述安装所述 空间光调制器及后续步骤,若所述拍摄的所述照明光进行投影的图像是不均匀的,则更换发出所述照明光的光源、所述照明光至所述投影图像之间的光学元件及所述拍摄装置中的至少一个,直至所述照明光进行投影的图像是均匀的。
  8. 如权利要求6所述的空间光调制器的检测方法,其特征在于:所述检测方法还包括在安装所述空间光调制器之前进行的对所述照明光进行预处理的步骤,所述预处理的步骤包括以下步骤:
    接收所述照明光进行投影;
    对所述照明光进行投影的图像进行拍摄;
    对所述拍摄的所述照明光进行投影的图像的每个像素点的原始照度进行记录;及
    依据所述拍摄的所述照明光进行投影的图像获得每个像素点的原始照度并计算所有像素点的平均原始照度
    Figure PCTCN2018118830-appb-100002
  9. 如权利要求8所述的空间光调制器的检测方法,其特征在于:所述检测方法还包括:
    依据所述拍摄图像获得每个像素点的实际照度;
    依据每个像素点的实际照度计算所述拍摄图像所有像素点的平均照度
    Figure PCTCN2018118830-appb-100003
    依据所述平均照度与所述平均原始照度计算所述空间光调制器的效率E(%),所述效率E(%)符合以下公式:
    Figure PCTCN2018118830-appb-100004
    将所述效率E(%)与预设值进行比较以判断所述空间光调制器的效率是否达标。
  10. 如权利要求1所述的空间光调制器的检测方法,其特征在于:所述检测方法还包括:
    依据所述拍摄图像获取每个像素点的实际照度及/或颜色三刺激值;
    依据所述每个像素点的实际照度及/或颜色三刺激值来计算像素 异常点的数目M、像素异常点分布密度及/或单个像素异常点的明显程度C(%);及
    依据所述像素异常点的数目M、像素异常点分布密度及/或单个像素异常点的明显程度来判断所述空间光调制器的投影画面是否满足均匀性的要求,
    其中,所述单个像素异常点C(%)的明显程度满足以下公式
    Figure PCTCN2018118830-appb-100005
    i k是每个像素点的实际照度值,N为像素点的数量,μ为所有像素点的平均照度。
  11. 如权利要求10所述的空间光调制器的检测方法,其特征在于:所述检测方法还包括:
    依据每个像素点的颜色三刺激值(X k,Y k,Z k)计算得到每个像素的色坐标(x k,y k),所述色坐标(x k,y k)满足以下公式:
    Figure PCTCN2018118830-appb-100006
    Figure PCTCN2018118830-appb-100007
    比较相邻像素件的色坐标差值来判断所述空间光调制器的颜色均匀性符合要求。
  12. 如权利要求1所述的空间光调制器的检测方法,其特征在于:拍摄所述投影图像产生拍摄图像的步骤中,使用拍摄装置拍摄所述图像,当所述拍摄装置的分辨率小于所述投影图像的分辨率时,使用所述拍摄装置至少两次拍摄所述投影图像的不同区域,对所述至少两次拍摄的图像进行图像合成从而产生所述拍摄图像。
  13. 如权利要求1所述的空间光调制器的检测方法,其特征在于:所述空间光调制器为DMD芯片,所述调制单元为DMD微镜。
PCT/CN2018/118830 2018-04-16 2018-12-03 空间光调制器的检测方法 WO2019200936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810338661.3 2018-04-16
CN201810338661.3A CN110389020B (zh) 2018-04-16 2018-04-16 空间光调制器的检测方法

Publications (1)

Publication Number Publication Date
WO2019200936A1 true WO2019200936A1 (zh) 2019-10-24

Family

ID=68240455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118830 WO2019200936A1 (zh) 2018-04-16 2018-12-03 空间光调制器的检测方法

Country Status (2)

Country Link
CN (1) CN110389020B (zh)
WO (1) WO2019200936A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405775A (zh) * 2020-03-16 2021-09-17 瑞鼎科技股份有限公司 光学机台检验方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654721A (zh) * 2011-03-01 2012-09-05 三菱电机株式会社 投影式显示装置
JP2015071554A (ja) * 2013-10-02 2015-04-16 ロート製薬株式会社 オロパタジン含有点眼剤
CN104977304A (zh) * 2015-06-26 2015-10-14 清华大学 具有子像素结构的空间光调制器缺陷检测的装置及方法
CN104977154A (zh) * 2015-06-26 2015-10-14 清华大学 具有子像素结构的空间光调制器缺陷分类方法
CN105578179A (zh) * 2016-01-04 2016-05-11 厦门理工学院 检测dmd显示帧率的系统和方法
CN105915888A (zh) * 2016-04-08 2016-08-31 长春长光天辰光电科技有限公司 一种对于数字微镜阵列的硬件故障和数据传输异常的检测方法
CN105913438A (zh) * 2016-04-21 2016-08-31 清华大学 空间光调制器缺陷检测中保护膜损伤的提取方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723054A (zh) * 2012-06-18 2012-10-10 西安电子科技大学 Led显示屏非均匀性在线校正系统和校正方法
DE112014002681T5 (de) * 2013-06-06 2016-03-17 Hamamatsu Photonics K.K. Verfahren zur Erfassung eines Winkelversatzes für adaptives Optiksystem, Verfahren zur Erfassung einer Abbildungsvergrößerung für adaptives Optiksystem und adaptives Optiksystem
ES2604684B2 (es) * 2015-09-08 2018-01-09 Universidad Miguel Hernández Procedimiento de calibración de moduladores espaciales de luz
CN106123807B (zh) * 2016-06-30 2018-09-07 苏州图锐智能科技有限公司 一种产品3d检测系统及相应检测方法
KR20180030297A (ko) * 2016-09-12 2018-03-22 삼성디스플레이 주식회사 마이크로 렌즈 어레이의 특성 측정 장치 및 그 장치를 이용한 마이크로 렌즈 어레이의 특성 측정 방법
CN106685700B (zh) * 2016-12-06 2019-09-06 海信集团有限公司 一种dmd数据故障检测方法、设备及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654721A (zh) * 2011-03-01 2012-09-05 三菱电机株式会社 投影式显示装置
JP2015071554A (ja) * 2013-10-02 2015-04-16 ロート製薬株式会社 オロパタジン含有点眼剤
CN104977304A (zh) * 2015-06-26 2015-10-14 清华大学 具有子像素结构的空间光调制器缺陷检测的装置及方法
CN104977154A (zh) * 2015-06-26 2015-10-14 清华大学 具有子像素结构的空间光调制器缺陷分类方法
CN105578179A (zh) * 2016-01-04 2016-05-11 厦门理工学院 检测dmd显示帧率的系统和方法
CN105915888A (zh) * 2016-04-08 2016-08-31 长春长光天辰光电科技有限公司 一种对于数字微镜阵列的硬件故障和数据传输异常的检测方法
CN105913438A (zh) * 2016-04-21 2016-08-31 清华大学 空间光调制器缺陷检测中保护膜损伤的提取方法

Also Published As

Publication number Publication date
CN110389020B (zh) 2021-11-30
CN110389020A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
TW201602556A (zh) 具有投影光源的攝像方法及其攝像裝置
TWI484283B (zh) 影像計算量測方法、影像計算量測裝置及影像檢查裝置
JP2008203034A (ja) 欠陥検出装置および欠陥検出方法
KR20120109915A (ko) 발광소자 검사 장치 및 그 검사 방법
CN109813435B (zh) 静态光反射显微热成像方法、装置及终端设备
JP2006292421A (ja) 蛍光検出装置
TW200806976A (en) Apparatus for inspecting substrate and method of inspecting substrate using the same
US20130258324A1 (en) Surface defect detecting apparatus and method of controlling the same
EP3080568B1 (en) Apparatus and method for profiling a beam of a light emitting semiconductor device
US9377673B2 (en) Closed loop verification of rendered content
US20080151194A1 (en) Method and System for Illumination Adjustment
JP2011164599A (ja) マイクロミラーデバイスの選別方法、マイクロミラーデバイス選別装置およびマスクレス露光装置
WO2019200936A1 (zh) 空间光调制器的检测方法
KR20200081541A (ko) 촬상 장치 및 이의 구동 방법
JP6236764B2 (ja) 画像投射装置評価方法、画像投射装置、画像投射装置の製造方法および画像投射装置の評価システム
WO2020042570A1 (zh) 基于激光光源成像系统、其调制方法及存储介质
CN107843335B (zh) 靶面杂光光照度测量装置及测量方法
US11037316B2 (en) Parallax calculation apparatus, parallax calculation method, and control program of parallax calculation apparatus
JP2013113828A (ja) 検査用の照明装置およびこれを備えた検査システム
CN110823916A (zh) 显示面板检查设备
JP2012042254A (ja) レンズ欠陥の検査方法
JP7413907B2 (ja) 光学測定装置および光学測定方法
JP5200599B2 (ja) スクリーン、光学特性測定システム、および光学特性測定方法
JP7459525B2 (ja) 三次元形状計測装置、三次元形状計測方法及びプログラム
JP2006275704A (ja) 膜厚ムラ検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915282

Country of ref document: EP

Kind code of ref document: A1