WO2019200908A1 - 导电结构及其制备方法、触摸屏和触摸显示装置 - Google Patents

导电结构及其制备方法、触摸屏和触摸显示装置 Download PDF

Info

Publication number
WO2019200908A1
WO2019200908A1 PCT/CN2018/116227 CN2018116227W WO2019200908A1 WO 2019200908 A1 WO2019200908 A1 WO 2019200908A1 CN 2018116227 W CN2018116227 W CN 2018116227W WO 2019200908 A1 WO2019200908 A1 WO 2019200908A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductive
touch screen
embedded
electrode
Prior art date
Application number
PCT/CN2018/116227
Other languages
English (en)
French (fr)
Inventor
季春燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18899024.6A priority Critical patent/EP3783470A4/en
Priority to US16/477,618 priority patent/US20210333905A1/en
Publication of WO2019200908A1 publication Critical patent/WO2019200908A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • Embodiments of the present disclosure relate to a conductive structure, a method of fabricating the same, a touch screen, and a touch display device.
  • Touch screen is the most simple, convenient and natural way of human-computer interaction. There are many products using touch technology, such as mobile phones, MP4 and handheld computers. There are roughly three types of mainstream touch technologies, namely resistive, capacitive and infrared.
  • Resistive touch screens are inexpensive and have high response sensitivity, and are widely used in touch screens. Whether it is a four-wire resistive touch screen or a five-wire resistive touch screen, they are a completely isolated working environment from the outside world. They are not affected by dust and moisture, and can adapt to various harsh environments and have good stability.
  • a bonding layer is formed between the substrate and the electrode, but forming a bonding layer increases process complexity and increases production cost, and uneven thickness of the bonding layer may also cause a touch position. Judging inaccuracies and other issues.
  • At least one embodiment of the present disclosure provides a conductive structure including: a substrate; a conductive layer disposed on the substrate; wherein a portion of the conductive layer is embedded in the substrate.
  • the material of the substrate is nanocellulose having a two-dimensional planar network structure.
  • the material of the conductive layer is a one-dimensional nano-conductive material.
  • the one-dimensional nano-conductive material is embedded in the nanocellulose having a two-dimensional planar network structure to form an embedded overlap region.
  • the substrate is doped with silver ions.
  • At least one embodiment of the present disclosure further provides a touch screen, the touch screen includes: a first substrate, a first electrode of the first substrate disposed adjacent to the second substrate; and a first electrode opposite to the first substrate a second substrate, a side of the second substrate adjacent to the first substrate is disposed with a second electrode, wherein a portion of the first electrode is embedded in the first substrate and/or a portion of the second electrode is embedded In the second substrate.
  • the material of the first substrate and/or the second substrate is nano cellulose having a two-dimensional planar network structure.
  • a surface of the first substrate remote from the second substrate has a concave-convex structure.
  • the material of the first electrode and/or the second electrode is a one-dimensional nano-conductive material.
  • the one-dimensional nano-conductive material includes at least one of conductive nanowires, conductive nanotubes, and conductive nanorods.
  • the first substrate and/or the second substrate are doped with silver ions.
  • a plurality of spacers are disposed between the first substrate and the second substrate.
  • At least one embodiment of the present disclosure also provides a touch display device including a display panel and the touch screen of any of the above.
  • At least one embodiment of the present disclosure also provides a method of fabricating a conductive structure, the method comprising: providing a substrate; forming a conductive layer on the substrate; wherein a portion of the conductive layer is embedded in the substrate.
  • the material of the substrate is nanocellulose having a two-dimensional planar network structure.
  • the material of the conductive layer is a one-dimensional nano-conductive material.
  • the one-dimensional nano-conductive material includes at least one of conductive nanowires, conductive nanotubes, and conductive nanorods.
  • forming a conductive layer on the substrate includes: forming a metal nanowire film having a first charge on the substrate; and having the first charge Forming a metal nanowire film on the metal nanowire film having the first charge to form a metal nanowire film having a second charge; and drying the metal nanowire film having the second charge; Wherein the first charge and the second charge have opposite electrical properties.
  • the preparation method provided by at least one embodiment of the present disclosure further includes: doping silver ions in the substrate.
  • FIG. 1 is a schematic structural view of an electrode provided on a substrate
  • FIG. 2 is a schematic cross-sectional structural view of a conductive structure according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an enlarged structure of an embedded overlap region according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional structural view of still another conductive structure according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view of a touch screen according to an embodiment of the present disclosure.
  • FIG. 6 is a partial enlarged view of a surface of a first substrate remote from a second substrate according to an embodiment of the present disclosure
  • FIG. 7 is a schematic cross-sectional view of another touch screen according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of implementing a touch function according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of a touch display device according to an embodiment of the present disclosure.
  • FIG. 10 is a flow chart of a method for preparing a conductive structure according to an embodiment of the present disclosure.
  • the rigid substrate used in the production of the touch screen includes ordinary glass, quartz glass and plexiglass
  • the flexible substrate comprises a polydimethylsiloxane film layer (PDMS) and a polyethylene terephthalate film layer (PET).
  • PDMS polydimethylsiloxane film layer
  • PET polyethylene terephthalate film layer
  • PEN polyethylene naphthalate film layer
  • PMMA polymethyl methacrylate film layer
  • PVDC polyvinylidene chloride film layer
  • FIG. 1 is a schematic view showing a structure in which an electrode is disposed on a substrate, and a bonding layer 3 is disposed between the substrate 1 and the electrode 2 to form a three-layer structure, but this adds a process, so that the process is relatively complex.
  • the applied adhesive layer 3 may be uneven, thereby affecting the flatness of the electrode 2; the adhesive layer 3 may also slip off the base substrate 1 so that the electrode 2 cannot be firmly bonded to the base substrate 1, thereby Affects the implementation of the touch screen touch function.
  • At least one embodiment of the present disclosure provides a conductive structure including: a substrate; a conductive layer disposed on the substrate; wherein a portion of the conductive layer is embedded in the substrate.
  • the conductive layer is embedded in the substrate through a part of the conductive layer, so that the conductive structure and the substrate can be well combined, thereby saving the process of making the bonding layer, reducing the process complexity, saving the production cost, and avoiding the thickness of the bonding layer.
  • the technical problem of uneven surface of the conductive structure caused by uniformity.
  • FIG. 2 is a schematic cross-sectional structural view of a conductive structure according to an embodiment of the present disclosure.
  • the conductive structure 10 includes: a substrate 11; a conductive layer 12 disposed on the substrate 11; wherein a portion of the conductive layer 12 is embedded in the substrate 11.
  • an embedding region 13 is formed at the interface where the conductive layer 12 and the substrate 11 are in contact.
  • the thickness of the intercalation region 13 is 10 nm to 30 nm.
  • the thickness of the intercalation region 13 is 10 nm, 20 nm. Or 30nm.
  • the embedded overlap region 13 a portion of the conductive layer 12 is embedded in the substrate, and the outer surface of the conductive layer 12 is exposed on the outer side (i.e., the side facing the user) to ensure that the touch function can be normally realized.
  • the formation of the embedded overlap region makes the bonding between the conductive layer 12 and the substrate 11 closer, avoiding the adhesion layer 3 in the three-layer structure formed by the substrate substrate 1, the electrode 2 and the bonding layer 3 in FIG. A technical problem of falling off from the base substrate 1.
  • the material of the substrate 11 is nanocellulose, and the nanocellulose has a two-dimensional planar network structure.
  • Nanocellulose has a hierarchical structure. After treatment, nanocellulose can obtain various properties, such as: transparent or opaque, porous or completely closed, rough or smooth surface, flexible or rigid, and brittle or tough. The nanocellulose is treated under different conditions to prepare a layer structure that meets different needs.
  • the material of the conductive layer is a one-dimensional nano-conductive material.
  • the one-dimensional nano-conductive material can be more easily bonded to a substrate formed of nanocellulose relative to conductive materials of other dimensions.
  • the one-dimensional nano-conductive material can be more easily embedded in a substrate having a two-dimensional planar network structure to form a stable embedded overlap region.
  • the one-dimensional nano-conductive material includes at least one of conductive nanowires, conductive nanotubes, and conductive nanorods.
  • the conductive nanowire is a conductive metal nanowire including at least one of a nano silver wire, a nano gold wire, and a copper nanowire.
  • the conductive nanotubes can be carbon nanotubes.
  • the conductive nanorods can be carbon nanorods.
  • the one-dimensional nano-conductive materials in the embodiments of the present disclosure include, but are not limited to, flexible bendable materials such as conductive metal nanowires, carbon nanotubes, and carbon nanorods. A slurry of these materials was deposited on paper cellulose paper by a low cost printing method to prepare a flexible conductive paper. Compared to transparent nanocellulose paper, the thickness of the conductive metal nanowires is very small, ensuring sufficient light to pass through the nanocellulose paper.
  • the one-dimensional nano-conductive material is uniformly deposited on the surface of the nanocellulose paper in a dense network.
  • the resistance of the surface of the nanocellulose paper is extremely lowered, for example, when the amount of the carbon nanotubes is 1.5 ⁇ g/cm 2 , the nanocellulose paper The surface resistance can be reduced to within 300 ⁇ /cm 2 .
  • Embodiments of the present disclosure prepare a touch screen and a touch display device using a conductive structure having a surface resistance of 200 ⁇ /cm 2 or less. Since conductive metal nanowires, carbon nanotubes, and carbon nanorods are densely networked on the surface of the cellulose paper and partially infiltrated into the interior, electrical conductivity and mechanical stability can be achieved.
  • electrostatic interaction deposition techniques can be employed to utilize the adsorption between the electrolyte and the conductive metal nanowires (such as hydrogen bonds, covalent bonds, van der Waals forces, or electrostatic interactions) to bring different electrical charges to the surface of the conductive metal nanowires.
  • the film is then deposited alternately by electrostatic interaction between the layers. Due to the action of electrostatic force, the prepared film has a regular structure, uniform dispersion, and controllable number of layers; and has good electrical conductivity, which can meet the needs of flexible development of the device.
  • the preparation method of the carbon nanotubes and the carbon nanorods can be referred to a conventional preparation process, and details are not described herein again.
  • FIG. 3 is a schematic diagram of an enlarged structure of an embedded overlap region according to an embodiment of the present disclosure.
  • the one-dimensional nano conductive material 121 is embedded in a nano cellulose 111 having a two-dimensional planar network structure.
  • An embedded overlap region 13 is formed.
  • the nano-cellulose 111 of the two-dimensional planar network structure is formed by overlapping the cross-linked cellulose, the micro-dimensional pores are not present in the two-dimensional planar network structure, and only the nano-sized pores exist, so that the one-dimensional A nano-conductive material is embedded in the nano-sized pores to form a stable structure.
  • FIG. 4 is a schematic cross-sectional structural view of another conductive structure according to an embodiment of the present disclosure. As shown in FIG.
  • the substrate 11 is doped with silver ions 14, for example, the silver ions 14 are uniformly dispersed in the substrate 11, or the intermediate portion is easier because the intermediate portion of the touch screen is touched at a higher frequency. A large amount of bacteria is produced, so that the density of silver ions can be designed to gradually decrease from the center to the periphery of the substrate.
  • silver ions may be doped into the substrate by the following method.
  • Silver nitrate and polymethacrylic acid were mixed at a molar ratio of 4:1, and reacted at room temperature to obtain silver nanoclusters having a diameter of 2 nm or less, and the cellulose paper formed above was immersed in an aqueous solution of silver nanoclusters for 10 hours. Rinse with deionized water and dry.
  • the doped silver ions can emit a fluorescence wavelength of 632 nm.
  • FIG. 5 is a cross-sectional structural diagram of a touch screen according to an embodiment of the present disclosure.
  • the touch screen 20 includes a first substrate 21 and a second substrate 22 disposed opposite to each other. A side of the first substrate 21 adjacent to the second substrate 22 is provided with a first electrode 23 and a second substrate 22 .
  • a second electrode 24 is disposed on a side of the first substrate 21, and a portion of the first electrode 23 is embedded in the first substrate 21; for example, a portion of the second electrode 24 may be embedded in the second substrate 22; for example, it may also be a portion
  • the first electrode 23 is embedded in the first substrate 21 and a portion of the second electrode 24 is embedded in the second substrate 22.
  • the first substrate 21 is embedded by the partial first electrode 23, and/or a portion of the second electrode 24 is embedded in the second substrate 22, so that the electrode and the corresponding substrate can be well combined, thereby saving
  • the process of making the bonding layer reduces the process complexity, saves the production cost, and avoids the technical problem that the surface of the first electrode and/or the second electrode is uneven due to the uneven thickness of the bonding layer.
  • the materials of the first substrate 21 and the second substrate 22 each include nanocellulose having a two-dimensional planar network structure.
  • the performance of the nanocellulose can be referred to the related description in the above, and will not be described herein.
  • the first substrate 21 is distant from the second substrate and has a concave-convex structure.
  • FIG. 6 is a partial enlarged view of a surface of the first substrate remote from the second substrate. As shown in FIG. 6 , the surface of the first substrate 21 away from the second substrate is uneven, and the first substrate 21 is away from the second substrate.
  • the surface has a uniformly distributed or unevenly distributed concave structure 211; for example, the sectional shape of the concave structure 211 may be a regular shape such as an ellipse or a circle, and may also be other irregular shapes.
  • the concave-convex structure can improve the haze of the first substrate 21.
  • the touch screen is used in combination with the display panel, the user can prevent the viewer from feeling dizzy when viewing the screen.
  • the first substrate 21 can function as a touch cover in a touch screen.
  • the materials of the first electrode 23 and the second electrode 24 are both one-dimensional nano-conductive materials.
  • the one-dimensional nano-conductive material can be more easily bonded to the first substrate 21 and/or the second substrate 22 formed of nanocellulose with respect to the conductive materials of other dimensions.
  • the one-dimensional nano-conductive material can be more easily embedded in a substrate having a two-dimensional planar network structure to form a stable embedded overlap region.
  • the first substrate and/or the second substrate are doped with silver ions, and the silver ions can function as a sterilizing agent.
  • the first substrate 21 is a touch cover, and the first substrate 21 is doped with silver ions.
  • the surface will breed a large amount of bacteria, which will adversely affect the health of the user, and the antibacterial effectiveness of the general antibacterial method will decrease with the increase of the use time, by the first The substrate 21 is doped with silver ions, which can significantly improve the antibacterial effect, and does not weaken the antibacterial property with an increase in the use time.
  • FIG. 7 is a schematic cross-sectional structural view of another touch screen according to an embodiment of the present disclosure.
  • the touch screen 20 includes a first substrate 21 and a second substrate 22 disposed opposite to each other.
  • a first electrode 23 is disposed on a side of the first substrate 21 adjacent to the second substrate 22
  • the second substrate 22 is disposed on the first substrate 21 .
  • a second electrode 24 is disposed on a side of the first substrate 21, and a portion of the first electrode 23 is embedded in the first substrate 21; for example, a portion of the second electrode 24 may be embedded in the second substrate 22; for example, it may also be a portion
  • the first electrode 23 is embedded in the first substrate 21 and a portion of the second electrode 24 is embedded in the second substrate 22.
  • a plurality of spacers 25 are disposed between the first substrate 21 and the second substrate 22.
  • the spacer 25 is a column spacer PS (Post Spacer) and has transparent and insulating properties, and the column spacer can be evenly distributed between the first substrate 21 and the second substrate 22, each spacer
  • the heights of the objects 25 are substantially the same to insulate the first electrode 23 and the second electrode 24 while maintaining the uniformity of the thickness between the first substrate 21 and the second substrate 22 to ensure the flatness of the first substrate 21 so that The touch function is more precise.
  • FIG. 8 is a schematic diagram of implementing a touch function according to an embodiment of the present disclosure. As shown in FIG. 8 , when a touch function needs to be implemented, a user may press the touch screen to implement the first electrode 23 and the second electrode 24 . Contact for precise positioning.
  • the material of the spacer 25 may be a photosensitive resin or a non-photosensitive resin.
  • the touch screen described above can also be used with any electronic device that can respond to a user's touch, such as a smart phone, a personal digital assistant (PDA), a tablet computer, a notebook computer, a desktop computer, or a vending machine.
  • PDA personal digital assistant
  • FIG. 9 is a cross-sectional structural diagram of a touch display device according to an embodiment of the present disclosure. As shown in FIG. 9 , the touch display device includes any of the above. The touch screen 20 and the display panel 30.
  • the display panel may be a liquid crystal display panel or an electroluminescent display panel.
  • FIG. 9 illustrates a liquid crystal display panel as a display panel.
  • the display panel 30 includes a color filter substrate 31 and an array substrate 32 disposed opposite to each other.
  • a liquid crystal layer 33 is disposed between the color filter substrate 31 and the array substrate 32.
  • the touch display device can simultaneously implement touch and display functions.
  • other components such as a polarizer, a thin film transistor, and the like are not shown in the drawings.
  • the four-wire resistive touch screen includes a first resistive layer and a second resistive layer.
  • the first resistive layer has a vertical bus at each of the left and right edges of the screen, that is, a bus forming an X-axis direction; and a second resistive layer.
  • the resistive touch screen works by biasing the left bus to 0V, the right bus bias to V REF , and the top or bottom bus to the analog-to-digital converter (ADC) when measuring in the X-axis direction.
  • ADC analog-to-digital converter
  • the voltage value in the X-axis direction can be measured, thereby obtaining the coordinate value in the X-axis direction; when measuring in the Y-axis direction, the bottom is required
  • the bus bias is 0V
  • the top bus is biased to V REF
  • the left or right bus is connected to the input of the ADC.
  • the Y-axis direction can be The voltage value is measured to obtain the coordinate value in the Y-axis direction.
  • FIG. 10 is a flow chart of a method for fabricating a conductive structure according to an embodiment of the present disclosure. As shown in FIG. 10, the preparation method includes:
  • the material of the substrate comprises nanocellulose, which is in a two-dimensional planar network structure.
  • Nanocellulose has a hierarchical structure. After treatment, nanocellulose can obtain various properties, such as: transparent or opaque, porous or completely closed, rough or smooth surface, flexible or rigid, and brittle or tough. The nanocellulose is treated under different conditions to prepare a layer structure that meets different needs.
  • the following is a treatment method for preparing a substrate having high transparency, high flatness, and high flexibility using a raw material.
  • the wood pulp fiber is dissolved in water to fully disperse the wood pulp fiber in water; and the wood pulp fiber is added to a strong oxidation system formed by tetramethylpiperidine, hypochlorite and bromide salt to The fiber is pretreated, for example, the mass percentage of the bromide salt in the strong oxidation system is 8-14 wt%, the mass percentage of tetramethylpiperidine is 1-2 wt%, and the mass of hypochlorite is 100.
  • the fraction is 84-92% by weight, and the whole reaction is carried out at normal temperature, and hypochlorite is added dropwise to maintain the pH at 9.5-11 for 4 hours.
  • the mass percentage of the slurry is adjusted to 0.1-0.3 wt% with distilled water, and then the slurry is homogenized by a micro-jet machine with a radio frequency of 10,000-30,000 psi, and the homogenized slurry is filtered.
  • the cellulose paper was prepared by press drying.
  • the cellulose paper prepared by the above-mentioned strong oxidation system pretreatment and micro-jet treatment has a high cellulose bulk density, because when the micro-jet machine is used for treatment, the hollow structure of cellulose will be severely collapsed to form a flat shape.
  • the cellulose the fine cellulose produced in the process, further fills the internal pores, so that the surface of the cellulose paper is almost invisible to the micropores, which reduces the scattering of the outer surface of the cellulose paper, thereby ensuring The high transparency of cellulose paper.
  • the surface of the cellulose paper prepared by the above method has an uneven surface formed by cellulose lap, thereby improving the haze of the cellulose paper.
  • the cellulose paper has flexibility and can be used to make a flexible substrate.
  • S102 forming a conductive layer on the substrate; wherein a part of the conductive layer is embedded in the substrate.
  • the material of the conductive layer is a one-dimensional nano-conductive material, and the one-dimensional nano-conductive material can be more easily formed with the cellulose paper than the conductive materials of other dimensions.
  • the substrate is bonded.
  • the one-dimensional nano-conductive material can be more easily embedded in a substrate having a two-dimensional planar network structure to form a stable embedded overlap region.
  • forming the conductive layer on the substrate includes the following steps:
  • the number of times of repeating steps 2 and 3 is 1-20 times, and the prepared conductive metal nanowire has a suspension concentration of 0.01 mg/ml to 10 mg/ml; the drying temperature is 50- 200 ° C, drying time is 1-100 minutes.
  • the suspension of the conductive metal nanowires is one or more solvents in which the above metal nanowires are dispersed in deionized water, ethanol, ethylene glycol, acetone.
  • the cationic electrolyte used includes a quaternary phosphonium salt type, a quaternary ammonium salt type, a tertiary sulfur salt type polyelectrolyte, a polyoxyalkylenated primary, secondary, tertiary fatty amine salt, and an amine.
  • the cationic electrolyte may be tetradecyltrimethylammonium bromide, cetyltrimethylammonium bromide, polydiallyldimethylammonium chloride, ethylenediamine, diethylenediamine, Triethylenediamine, 2-alkylimidazoline, cationic polyacrylamide, ethanolamine, dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethyl chloride Ammonium, tetradecyltrimethylammonium bromide, cetyltrimethylammonium chloride, octadecyltrimethylammonium chloride, dodecyldimethylbenzylammonium chloride, octadecane Trimethylammonium chloride.
  • the anionic electrolyte used comprises polyacrylic acid, polystyrenesulfonic acid, polyvinylsulfonic acid, polymethacrylic acid, polyvinyl phosphoric acid, and a carboxylate, a sulfate salt, a sulfonic acid.
  • a salt and a phosphate salt anionic surfactant having a hydrocarbyl group of the surfactant containing from 6 to 300 carbon atoms.
  • the anionic electrolyte may be a halide, acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfate, alkyl sulfate, alkyl benzene sulfonate, alkyl phosphate Esters, amino acid salts, and combinations thereof.
  • the above-mentioned conductive structure is prepared by using the interaction between the surface of the metal nanowire and the electrolyte to cause the metal nanowires to carry opposite charges, and then alternately depositing a film under the action of electrostatic force. Since the layer and the layer are combined by the action of electrostatic force, the obtained film layers are more closely packed, and the overlap between the nanowires is better, and the contact resistance is effectively reduced, so that the transmittance can be ensured while being large. Improve the conductivity of the film.
  • the preparation method is simple in operation, easy to control experimental conditions, and has no requirements on the substrate, and has high repeatability, can meet the needs of flexible development, and is suitable for mass production.
  • a part of the conductive layer is embedded in the substrate so that the conductive structure and the substrate can be well combined, thereby saving a process of forming a bonding layer, reducing process complexity, saving production cost, and avoiding bonding layer.
  • the technical problem of uneven surface of the conductive structure caused by uneven thickness.
  • the preparation method provided by at least one embodiment of the present disclosure further includes: doping silver ions into the substrate.
  • silver ions may be doped into the substrate by the following method.
  • Silver nitrate and polymethacrylic acid were mixed at a molar ratio of 4:1, and reacted at room temperature to obtain silver nanoclusters having a diameter of 2 nm or less, and the cellulose paper formed above was immersed in an aqueous solution of silver nanoclusters for 10 hours. Rinse with deionized water and dry.
  • the doped silver ions can emit a fluorescence wavelength of 632 nm.
  • the silver ions are uniformly dispersed in the substrate, or, since the intermediate portion of the touch screen is touched at a higher frequency, the intermediate portion is more likely to breed a large amount of bacteria, so that the density of the silver ions can be designed to be from the substrate.
  • the density from the center to the periphery gradually decreases.
  • the raw material of the substrate is doped with silver ions, the addition of the silver ions does not affect the performance of the substrate, and the silver ions can also significantly improve the antibacterial effect, and does not increase with the use time. The antibacterial property is weakened.
  • Embodiments of the present disclosure provide a conductive structure, a method of fabricating the same, a touch screen, and a touch display device, which have at least one of the following beneficial effects:
  • an embedded overlap region is formed between the conductive layer and the substrate, in which a part of the conductive layer is embedded in the substrate, outside the conductive layer The surface is exposed to the outside to ensure that the touch function can be normally realized.
  • the embedded overlapping region makes the bonding between the conductive layer and the substrate more tight, and the problem that the bonding layer is easily detached from the substrate is avoided.
  • the conductive structure provided by at least one embodiment of the present disclosure saves the process of manufacturing the bonding layer, reduces the process complexity, saves the production cost, and avoids the surface of the conductive structure due to the uneven thickness of the bonding layer. Uneven technical problems.
  • the conductive structure provided by at least one embodiment of the present disclosure by doping silver ions into the raw material of the substrate, the addition of the silver ions does not affect the performance of the substrate, and the silver ions can also significantly improve the antibacterial effect, and The antibacterial property will decrease as the use time increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种导电结构及其制备方法、触摸屏和触摸显示装置。该导电结构(10)包括:基板(11);和设置在基板(11)上的导电层(12);其中,部分导电层(12)嵌入基板(11)中。这样在导电层(12)和基板(11)之间形成了嵌入交叠区(13),在该嵌入交叠区(13)中,导电层(12)的一部分嵌入基板(12)中,导电层(12)的外表面暴露在外侧,以保证触摸功能能够正常实现。该嵌入交叠区(13)使得导电层(12)和基板(11)之间的粘结更紧密,避免了粘结层容易从衬底基板上脱落的问题。

Description

导电结构及其制备方法、触摸屏和触摸显示装置
相关申请的交叉引用
本申请基于并且要求于2018年4月18日递交、名称为“导电结构及其制备方法、触摸屏和触摸显示装置”的中国专利申请第201810347785.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种导电结构及其制备方法、触摸屏和触摸显示装置。
背景技术
触摸屏是最简单、方便和自然的一种人机交互方式,目前使用触摸技术的产品有很多,比如手机、MP4和掌上电脑等。而主流的触摸技术大致有三种,分别为电阻式、电容式和红外式。
电阻式触摸屏价格便宜,反应灵敏度高,其在触摸屏中得到了广泛的应用。不管是四线电阻式触摸屏还是五线电阻式触摸屏,它们都是一种相对外界完全隔离的工作环境,不会受到灰尘和水汽的干扰,能适应各种恶劣的环境,稳定性好。
通常在形成电阻式触摸屏时,会在基板和电极之间形成粘结层,但是形成粘结层会增加工艺复杂度,提高生产成本,而且,粘结层的厚度不均还会造成触摸位置的判断不精准等问题。
发明内容
本公开至少一实施例提供一种导电结构,该导电结构包括:基板;设置在所述基板上的导电层;其中,部分所述导电层嵌入所述基板中。
例如,在本公开至少一实施例提供的导电结构中,所述基板的材料为具有二维平面网络结构的纳米纤维素。
例如,在本公开至少一实施例提供的导电结构中,所述导电层的材料为 一维纳米导电材料。
例如,在本公开至少一实施例提供的导电结构中,所述一维纳米导电材料嵌入所述具有二维平面网络结构的纳米纤维素中以形成嵌入交叠区。
例如,在本公开至少一实施例提供的导电结构中,所述基板中掺杂有银离子。
本公开至少一实施例还提供一种触摸屏,该触摸屏包括:第一基板,所述第一基板的靠近所述第二基板的一侧设置有第一电极;与所述第一基板相对设置的第二基板,所述第二基板的靠近所述第一基板的一侧设置有第二电极,其中,部分所述第一电极嵌入所述第一基板中和/或部分所述第二电极嵌入所述第二基板中。
例如,在本公开至少一实施例提供的触摸屏中,所述第一基板和/或所述第二基板的材料为具有二维平面网络结构的纳米纤维素。
例如,在本公开至少一实施例提供的触摸屏中,所述第一基板的远离所述第二基板的表面具有凹凸结构。
例如,在本公开至少一实施例提供的触摸屏中,所述第一电极和/或所述第二电极的材料为一维纳米导电材料。
例如,在本公开至少一实施例提供的触摸屏中,所述一维纳米导电材料包括导电纳米线、导电纳米管和导电纳米棒中的至少一种。
例如,在本公开至少一实施例提供的触摸屏中,所述第一基板和/或所述第二基板中掺杂有银离子。
例如,在本公开至少一实施例提供的触摸屏中,所述第一基板和所述第二基板之间设置有多个隔垫物。
本公开至少一实施例还提供一种触摸显示装置,包括显示面板和上述任一项所述的触摸屏。
本公开至少一实施例还提供一种导电结构的制备方法,该制备方法包括:提供基板;在所述基板上形成导电层;其中,部分所述导电层嵌入所述基板中。
例如,在本公开至少一实施例提供的制备方法中,所述基板的材料为具有二维平面网络结构的纳米纤维素。
例如,在本公开至少一实施例提供的制备方法中,所述导电层的材料为 一维纳米导电材料。
例如,在本公开至少一实施例提供的制备方法中,所述一维纳米导电材料包括导电纳米线、导电纳米管和导电纳米棒中的至少一种。
例如,在本公开至少一实施例提供的制备方法中,在所述基板上形成导电层,包括:在所述基板上形成具有第一电荷的金属纳米线薄膜;对所述具有第一电荷的金属纳米线薄膜进行烘干处理;在所述具有第一电荷的金属纳米线薄膜上形成具有第二电荷的金属纳米线薄膜;对所述具有第二电荷的金属纳米线薄膜进行烘干处理;其中,所述第一电荷和所述第二电荷具有相反的电性。
例如,本公开至少一实施例提供的制备方法还包括:在所述基板中掺杂银离子。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种基板上设置有电极的结构示意图;
图2为本公开一实施例提供的一种导电结构的截面结构示意图;
图3为本公开一实施例提供的一种嵌入交叠区的放大结构示意图;
图4为本公开一实施例提供的再一种导电结构的截面结构示意图;
图5为本公开一实施例提供的一种触摸屏的截面结构示意图;
图6为本公开一实施例提供的第一基板的远离第二基板的表面的局部放大图;
图7为本公开一实施例提供的另一种触摸屏的截面结构示意图;
图8为本公开一实施例提供的实现触摸功能的示意图;
图9为本公开一实施例提供的一种触摸显示装置的截面结构示意图;以及
图10为本公开一实施例提供的一种导电结构的制备方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
通常,在制作触摸屏时采用的硬质基板包括普通玻璃、石英玻璃及有机玻璃,柔性基板包含聚二甲基硅氧烷薄膜层(PDMS)、聚对苯二甲酸乙二酯薄膜层(PET)、聚萘二甲酸乙二醇酯薄膜层(PEN)、聚甲基丙烯酸甲酯薄膜层(PMMA)及聚偏二氯乙烯薄膜层(PVDC),在采用上述材料制作的衬底基板上形成导电结构时,需要在衬底基板和导电结构之间设置一层粘结层,以使得导电结构和衬底基板之间能够很好的粘结。例如,图1为一种基板上设置有电极的结构示意图,在衬底基板1和电极2之间设置一层粘结层3以形成三层结构,但这样会增加一道工序,使得工艺过程较为复杂。此外,涂覆的粘结层3可能不平整,从而影响了电极2的平整度;粘结层3还可能从衬底基板1上滑落导致电极2无法牢固地结合在衬底基板1上,从而影响了触摸屏触摸功能的实现。
本公开至少一实施例提供一种导电结构,该导电结构包括:基板;设置在基板上的导电层;其中,部分导电层嵌入基板中。通过部分导电层嵌入基板中以使得导电结构和基板能够很好的结合,从而节省了制作粘结层的工序,降低了工艺复杂度,节约了生产成本,也避免了由于粘结层的厚度不均匀导致的导电结构表面不平整的技术问题。
本公开至少一实施例提供一种导电结构,例如,图2为本公开一实施例提供的一种导电结构的截面结构示意图。如图2所示,该导电结构10包括:基板11;设置在基板11上的导电层12;其中,部分导电层12嵌入基板11中。这样在导电层12和基板11相接触的界面处形成了嵌入交叠区13,例如,该嵌入交叠区13的厚度为10nm~30nm,例如,该嵌入交叠区13的厚度为10nm、20nm或者30nm。在该嵌入交叠区13中,导电层12的一部分嵌入基板中,导电层12的外表面暴露在外侧(即面向用户的一侧),以保证触摸功能能够正常实现。该嵌入交叠区的形成使得导电层12和基板11之间的粘结更紧密,避免了图1中衬底基板1、电极2和粘结层3形成的三层结构中粘结层3容易从衬底基板1上脱落的技术问题。
例如,该基板11的材料为纳米纤维素,该纳米纤维素呈二维平面网络结构。纳米纤维素具有层级结构,经处理后纳米纤维素可以获得各种不同的性能,例如:透明或不透明、多孔或完全密闭、表面粗糙或平滑、柔韧或刚性以及易碎或强韧等,可以在不同的条件下对纳米纤维素进行处理以制备出符合不同需求的层结构。
例如,该导电层的材料为一维纳米导电材料。相对于其他维度的导电材料,该一维纳米导电材料可以更容易地与纳米纤维素形成的基板进行结合。一维纳米导电材料可以更容易地嵌入具有二维平面网络结构的基板中以形成稳定的嵌入交叠区。
例如,该一维纳米导电材料包括导电纳米线、导电纳米管和导电纳米棒中的至少之一。例如,该导电纳米线为导电金属纳米线,该导电金属纳米线包括纳米银线、纳米金线和铜纳米线中的至少之一。例如,该导电纳米管可以为碳纳米管。例如,该导电纳米棒可以为碳纳米棒。
通常的导电金属氧化物,例如氧化铟锡由于脆性和高昂的制备成本难以制作成柔性显示中的电极,且电极对平整性的要求极高。本公开的实施例中的一维纳米导电材料包括但不限于导电金属纳米线、碳纳米管和碳纳米棒等柔性可弯折材料。将这些材料的浆料通过成本低廉的印刷方法沉积在纸纤维素纸上,制备得到柔性的导电纸。与透明的纳米纤维素纸相比,导电金属纳米线的厚度非常小,可以保证足够的光线通过该纳米纤维素纸。
例如,该一维纳米导电材料呈致密网络均匀沉积在纳米纤维素纸的表面。 随着一维纳米导电材料在纳米纤维素纸上的沉积量的上升,纳米纤维素纸的表面的电阻极具下降,例如,当碳纳米管的用量为1.5μg/cm2时,纳米纤维素纸的表面电阻可下降到300Ω/cm2以内。本公开的实施例采用表面电阻为200Ω/cm2以下的导电结构制备触摸屏和触摸显示装置。由于导电金属纳米线、碳纳米管和碳纳米棒等部分呈致密网络覆盖在纤维素纸的表面,部分渗入内部,因此能够兼顾导电性和机械稳定性。
例如,可以采用静电交互沉积技术,利用电解质与导电金属纳米线之间的吸附作用(如氢键、共价键、范德华力或静电作用)使导电金属纳米线表面带上不同电性的电荷,之后在层与层之间通过静电作用交互沉积成膜。由于静电力作用,制备得到的薄膜结构规整、分散均匀、层数可控;且具有较好的导电性能,能够满足器件柔性化发展的需要。
例如,碳纳米管和碳纳米棒的制备方法可以参见常规的制备工艺,在此不再赘述。
例如,图3为本公开一实施例提供的一种嵌入交叠区的放大结构示意图,如图3所示,该一维纳米导电材料121嵌入具有二维平面网络结构的纳米纤维素111中以形成嵌入交叠区13。例如,该二维平面网络结构的纳米纤维素111由纵横交叉的纤维素搭接而成,该二维平面网络结构中不存在微米尺寸的孔隙,仅仅存在纳米尺寸的孔隙,这样刚好使得一维纳米导电材料嵌入该纳米尺寸的孔隙中,以形成稳定的结构。
例如,普通的触摸屏在经过多次触摸后,其表面会滋生大量的细菌,对使用者的健康会造成不利影响,而且一般的抗菌方法的抗菌有效性会随着使用时间的增加而降低,在本公开的实施例中,基板的原材料中掺杂有银离子,该银离子的加入不会影响基板的性能,银离子同时也可以显著的提高抗菌效果,而且不会随着使用时间的增加使得抗菌性减弱。例如,图4为本公开一实施例提供的再一种导电结构的截面结构示意图。如图4所示,该基板11中掺杂有银离子14,例如,该银离子14均匀地分散于基板11中,或者,由于触摸屏的中间区域被触摸的频率较高,该中间区域更容易滋生出大量的细菌,这样可以将银离子的密度设计成从基板的中心到周边逐渐减小。
例如,在本公开的实施例中,可以采用以下方法在基板中掺杂银离子。将硝酸银和聚甲基丙烯酸以4:1的摩尔比混合,在常温下反应得到直径为2nm 以下的银纳米团簇,将上述形成的纤维素纸浸泡于银纳米团簇水溶液中10小时后用去离子水冲洗并压干。该掺杂的银离子可以发出632nm的荧光波长。
本公开至少一实施例还提供一种触摸屏,例如,图5为本公开一实施例提供的一种触摸屏的截面结构示意图。如图5所示,该触摸屏20包括:相对设置的第一基板21和第二基板22,该第一基板21的靠近第二基板22的一侧设置有第一电极23,第二基板22的靠近第一基板21的一侧设置有第二电极24,部分第一电极23嵌入第一基板21中;例如,还可以是部分第二电极24嵌入第二基板22中;例如,还可以是部分第一电极23嵌入第一基板21中以及部分第二电极24嵌入第二基板22中。
在该触摸屏20中,通过部分第一电极23嵌入插入第一基板21,和/或部分第二电极24嵌入插入第二基板22中,以使得电极和对应的基板能够很好的结合,从而节省了制作粘结层的工序,降低了工艺复杂度,节约了生产成本,也避免了由于粘结层的厚度不均匀导致的第一电极和/或第二电极表面不平整的技术问题。
例如,该第一基板21和第二基板22的材料均包括具有二维平面网络结构的纳米纤维素。例如,该纳米纤维素的性能可以参见上述中的相关描述,在此不再赘述。
例如,第一基板21的远离第二基板具有凹凸结构。例如,图6为第一基板的远离第二基板的表面的局部放大图,如图6所示,第一基板21的远离第二基板的表面凹凸不平,第一基板21的远离第二基板的表面具有均匀分布或者不均匀分布的凹陷结构211;例如,该凹陷结构211的截面形状可以是椭圆形或者圆形等规则形状,还可以是其他的不规则的形状。该凹凸结构可以提高第一基板21的雾度,当该触摸屏和显示面板结合使用时,用户观看屏幕时会防止给观看者带来眩晕的感觉。例如,第一基板21可以作为触摸屏中的触摸盖板。
例如,第一电极23和第二电极24的材料均为一维纳米导电材料。相对于其他维度的导电材料,一维纳米导电材料可以更容易地与纳米纤维素形成的第一基板21和/或第二基板22进行结合。一维纳米导电材料可以更容易地嵌入具有二维平面网络结构的基板中以形成稳定的嵌入交叠区。该一维纳米 导电材料的相关具体描述可以参见上述中的相关描述,在此不再赘述。
例如,该第一基板和/或第二基板中掺杂有银离子,该银离子可以起到杀菌的作用。例如,该第一基板21为触摸盖板,第一基板21中掺杂有银离子。当用户多次按压触摸盖板时其表面会滋生大量的细菌,对使用者的健康会造成不利影响,而且一般的抗菌方法的抗菌有效性会随着使用时间的增加而降低,通过在第一基板21中掺杂有银离子,可以显著的提高抗菌效果,而且不会随着使用时间的增加使得抗菌性减弱。
例如,图7为本公开一实施例提供的另一种触摸屏的截面结构示意图。如图7所示,该触摸屏20包括:相对设置的第一基板21和第二基板22,该第一基板21的靠近第二基板22的一侧设置有第一电极23,第二基板22的靠近第一基板21的一侧设置有第二电极24,部分第一电极23嵌入第一基板21中;例如,还可以是部分第二电极24嵌入第二基板22中;例如,还可以是部分第一电极23嵌入第一基板21中以及部分第二电极24嵌入第二基板22中,该第一基板21和第二基板22之间设置有多个隔垫物25。
例如,该隔垫物25为柱状隔垫物PS(Post Spacer)且具有透明和绝缘的性能,该柱状隔垫物可以均匀地分布在第一基板21和第二基板22之间,各个隔垫物25的高度基本相同,以使得第一电极23和第二电极24绝缘,同时维持第一基板21和第二基板22之间厚度的均一性,以保证第一基板21的平整度,以使得触摸功能更精准的实现。
例如,图8为本公开一实施例提供的实现触摸功能的示意图,如图8所示,当需要实现触摸功能时,使用者可以对触摸屏进行按压,以实现第一电极23和第二电极24接触,从而实现精准定位。
例如,该隔垫物25的材料可以为感光性的树脂,或非感光性的树脂。
例如,上述触摸屏还可以用于可响应用户的触摸的任何电子装置,例如,智能电话、个人数字助理(personal digital assistant;PDA)、平板计算机、笔记本式计算机、台式计算机或自动售货机。本公开至少一实施例还提供一种触摸显示装置,例如,图9为本公开一实施例提供的一种触摸显示装置的截面结构示意图,如图9所示,该触摸显示装置包括上述任一触摸屏20和显示面板30。
例如,该显示面板可以是液晶显示面板,也可以是电致发光显示面板。
例如,图9以显示面板为液晶显示面板为例加以说明,该显示面板30包括相对设置的彩膜基板31和阵列基板32,在彩膜基板31和阵列基板32之间设置有液晶层33。该触摸显示装置可以同时实现触摸和显示功能。出于简化目的,图9的液晶触摸显示装置中,诸如偏光片、薄膜晶体管等其他部件未在图中示出。
例如,四线电阻式触摸屏包含有第一阻性层和第二阻性层,第一阻性层在屏幕的左右边缘各有一条垂直总线,即形成X轴方向的总线;第二阻性层在屏幕的底部和顶部边缘各有一条水平总线,即形成Y轴方向的总线。该电阻式触摸屏的工作原理为:当在X轴方向进行测量时,将左侧总线偏置为0V,右侧总线偏置为V REF,同时将顶部或底部总线连接到模数转换器(ADC),当第一阻性层和第二阻性层接触时即可对X轴方向的电压值进行测量,从而得出X轴方向的坐标值;当在Y轴方向进行测量时,需将底部总线偏置为0V,顶部总线偏置为V REF,同时将左侧或右侧总线连接到ADC的输入端,当第一阻性层和第二阻性层接触时即可对Y轴方向的电压值进行测量,从而得出Y轴方向的坐标值。
本公开至少一实施例还提供一种导电结构的制备方法,例如,图10为本公开一实施例提供的一种导电结构的制备方法的流程图。如图10所示,该制备方法包括:
S101:提供基板;
例如,该基板的材料包括纳米纤维素,该纳米纤维素呈二维平面网络结构。纳米纤维素具有层级结构,经处理后纳米纤维素可以获得各种不同的性能,例如:透明或不透明、多孔或完全密闭、表面粗糙或平滑、柔韧或刚性以及易碎或强韧等,可以在不同的条件下对纳米纤维素进行处理以制备出符合不同需求的层结构。
例如,以下是采用原材料制备具有高透明度、高平整度和高柔韧性的基板的处理方法。首先,将木浆纤维加水溶解,使木浆纤维在水中充分分散;再将该木浆纤维加入四甲基哌啶、次氯酸盐和溴化盐形成的强氧化体系中,以对木浆纤维进行预处理,例如,在该强氧化体系中溴化盐的质量百分含量为8-14wt%,四甲基哌啶的质量百分含量为1-2wt%,次氯酸盐的质量百分含量为84-92wt%,整个反应在常温下进行,反应中滴加次氯酸盐使得pH值 保持在9.5-11,反应4小时。反应完毕后,用蒸馏水调节浆料的质量百分含量为0.1-0.3wt%,然后采用射频为10000-30000psi的微射流机对上述浆液进行均质处理,对均质处理后的浆液进行过滤并压干制备得到纤维素纸。采用上述强氧化体系预处理和微射流机处理制备的纤维素纸具有很高的纤维素堆积密度,因为在采用微射流机进行处理时,纤维素的中空结构会发生严重的坍塌而形成扁平状的纤维素,在此过程中产生的细小的纤维素又进一步地填充了内部的孔隙,从而使得纤维素纸的表面几乎看不到微米孔隙,减少了纤维素纸对外界光线的散射,从而保证了纤维素纸的高透明度。采用上述方法制备的纤维素纸的表面具有纤维素搭接形成的凹凸面,从而提高了纤维素纸的雾度。此外,该纤维素纸具有柔性,可以用于制作柔性基板。
S102:在基板上形成导电层;其中,部分导电层嵌入基板中。
例如,在本公开至少一实施例提供的制备方法中,该导电层的材料为一维纳米导电材料,相对于其他维度的导电材料,一维纳米导电材料可以更容易地与纤维素纸形成的基板进行结合。一维纳米导电材料可以更容易地嵌入具有二维平面网络结构的基板中以形成稳定的嵌入交叠区。该一维纳米导电材料的相关具体描述可以参见上述中的相关描述,在此不再赘述。
例如,以导电层的材料为金属纳米线为例,所述在基板上形成导电层包括以下步骤:
(1)制备两份相同的金属纳米线的悬浊液A和B,将其中一份A与阳离子电解质混合使其中的金属纳米线表面携带正电荷,另一份B与阴离子电解质充分混合,使其中的金属纳米线表面携带负电荷;
(2)取溶液A或B,在上述形成的纤维素纸上预先经旋涂法、喷涂法、刮涂法或浸渍-提拉法制备一层带正电荷或带负电荷的金属纳米线薄膜,之后充分漂洗烘干;
(3)取溶液B或A,在步骤2中所制备的A或B薄膜上表面采用旋涂法、喷涂法、刮涂法或浸渍-提拉法制备带有相反电性的金属纳米线薄膜,之后漂洗烘干;
(4)重复步骤2和步骤3,可制备得到多层导电金属纳米线。
步骤(4)中,重复步骤2和步骤3的次数为1-20次,所制得的导电金属纳米线的悬浊液浓度为0.01mg/ml-10mg/ml;烘干的温度为50-200℃,烘干时 间为1-100分钟。
例如,在本公开的实施例中,导电金属纳米线的悬浊液为上述金属纳米线分散在去离子水、乙醇、乙二醇、丙酮中的一种或多种溶剂之中。
例如,在本公开的实施例中,所用到的阳离子电解质包括季磷盐型、季胺盐型、叔硫盐型聚电解质,聚氧烯化的伯、仲、叔脂肪胺盐,带有胺根、季胺根、咪唑及三嗪的杂环类阳离子表面活性剂。
例如,该阳离子电解质可以为十四烷基三甲基溴化铵、十六烷基三甲基溴化铵、聚二烯丙基二甲基氯化铵、乙二胺、二乙烯二胺、三乙烯二胺、2-烷基咪唑啉、阳离子聚丙烯酰胺、乙醇胺、十二烷基三甲基氯化铵、十二烷基三甲基溴化铵、十四烷基三甲基氯化铵、十四烷基三甲基溴化铵、十六烷基三甲基氯化铵、十八烷基三甲基氯化铵、十二烷基二甲基苄基氯化铵、八烷基三甲基氯化铵。
例如,在本公开的实施例中,所用到的阴离子电解质包含聚丙烯酸、聚苯乙烯磺酸、聚乙烯磺酸、聚甲基丙烯酸、聚乙烯磷酸,以及羧酸盐、硫酸酯盐、磺酸盐及磷酸酯盐阴离子表面活性剂中的一种或多种,其表面活性剂的烃基基团含有6-300个碳原子。
例如,该阴离子电解质可以为卤酸盐、乙酸盐、柠檬酸盐、乳酸盐、乙醇酸盐、磷酸盐、硝酸盐、硫酸盐、烷基硫酸盐、烷基苯磺酸根、烷基磷酸酯、氨基酸盐及其组合。
上述导电结构的制备方法,通过利用金属纳米线表面与电解质的相互作用,使金属纳米线带上相反的电荷,之后在静电力的作用下交互沉积成膜。由于层与层间通过静电力的作用结合,得到的薄膜层间堆积更为紧密,纳米线间的搭接更加良好,有效的降低了接触电阻,因而能够在确保透光性的同时大幅度的提高薄膜的导电能力。此外,该制备方法操作简单,实验条件容易控制,且对基板没有要求,且重复性高,能够满足柔性化发展的需要,可适用于大规模生产。
例如,通过部分导电层嵌入基板中以使得导电结构和基板能够很好的结合,从而节省了一道形成粘结层的工序,降低了工艺复杂度,节约了生产成本,也避免了由于粘结层的厚度不均匀导致的导电结构表面不平整的技术问题。
例如,本公开至少一实施例提供的制备方法还包括:在基板中掺杂银离子。
例如,在本公开的实施例中,可以采用以下方法在基板中掺杂银离子。将硝酸银和聚甲基丙烯酸以4:1的摩尔比混合,在常温下反应得到直径为2nm以下的银纳米团簇,将上述形成的纤维素纸浸泡于银纳米团簇水溶液中10小时后用去离子水冲洗并压干。
例如,该掺杂的银离子可以发出632nm的荧光波长。
例如,该银离子均匀地分散于基板中,或者,由于触摸屏的中间区域被触摸的频率较高,该中间区域更容易滋生出大量的细菌,这样可以将该银离子的密度设计成从基板的中心到周边的密度逐渐减小。在本公开的实施例中,基板的原材料中掺杂有银离子,该银离子的加入不会影响基板的性能,银离子同时也可以显著的提高抗菌效果,而且不会随着使用时间的增加使得抗菌性减弱。
本公开的实施例提供一种导电结构及其制备方法、触摸屏和触摸显示装置,具有以下至少一项有益效果:
(1)在本公开至少一实施例提供的导电结构中,在导电层和基板之间形成了嵌入交叠区,在该嵌入交叠区中,导电层的一部分嵌入基板中,导电层的外表面暴露在外侧,以保证触摸功能能够正常实现,该嵌入交叠区使得导电层和基板之间的粘结更紧密,避免了粘结层容易从衬底基板上脱落的问题。
(2)本公开至少一实施例提供的导电结构,节省了制作粘结层的工序,降低了工艺复杂度,节约了生产成本,也避免了由于粘结层的厚度不均匀导致的导电结构表面不平整的技术问题。
(3)本公开至少一实施例提供的导电结构,通过在基板的原材料中掺杂银离子,该银离子的加入不会影响基板的性能,银离子同时也可以显著的提高抗菌效果,而且不会随着使用时间的增加使得抗菌性减弱。
有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸 如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种导电结构,包括:
    基板;和
    设置在所述基板上的导电层;
    其中,部分所述导电层嵌入所述基板中。
  2. 根据权利要求1所述的导电结构,其中,所述基板的材料为具有二维平面网络结构的纳米纤维素。
  3. 根据权利要求1或2所述的导电结构,其中,所述导电层的材料为一维纳米导电材料。
  4. 根据权利要求3所述的导电结构,其中,所述一维纳米导电材料嵌入所述具有二维平面网络结构的纳米纤维素中以形成嵌入交叠区。
  5. 根据权利要求2所述的导电结构,其中,所述基板中掺杂有银离子。
  6. 一种触摸屏,包括:
    第一基板,所述第一基板的靠近所述第二基板的一侧设置有第一电极;和
    与所述第一基板相对设置的第二基板,所述第二基板的靠近所述第一基板的一侧设置有第二电极;
    其中,部分所述第一电极嵌入所述第一基板中和/或部分所述第二电极嵌入所述第二基板中。
  7. 根据权利要求6所述的触摸屏,其中,所述第一基板和/或所述第二基板的材料为具有二维平面网络结构的纳米纤维素。
  8. 根据权利要求7所述的触摸屏,其中,所述第一基板的远离所述第二基板的表面具有凹凸结构。
  9. 根据权利要求6所述的触摸屏,其中,所述第一电极和/或所述第二电极的材料为一维纳米导电材料。
  10. 根据权利要求9所述的触摸屏,其中,所述一维纳米导电材料包括导电纳米线、导电纳米管和导电纳米棒中的至少一种。
  11. 根据权利要求6~10中任一项所述的触摸屏,其中,所述第一基板和/或所述第二基板中掺杂有银离子。
  12. 根据权利要求11所述的触摸屏,其中,所述第一基板和所述第二基板之间设置有多个隔垫物。
  13. 一种触摸显示装置,包括:
    显示面板;和
    权利要求6~12中任一项所述的触摸屏。
  14. 一种导电结构的制备方法,包括:
    提供基板;以及
    在所述基板上形成导电层;
    其中,部分所述导电层嵌入所述基板中。
  15. 根据权利要求14所述的制备方法,其中,所述基板的材料包括具有二维平面网络结构的纳米纤维素。
  16. 根据权利要求15所述的制备方法,其中,所述导电层的材料为一维纳米导电材料。
  17. 根据权利要求16所述的制备方法,其中,所述一维纳米导电材料包括导电纳米线、导电纳米管和导电纳米棒中的至少一种。
  18. 根据权利要求14所述的制备方法,其中,在所述基板上形成导电层,包括:
    在所述基板上形成具有第一电荷的金属纳米线薄膜;
    对所述具有第一电荷的金属纳米线薄膜进行烘干处理;
    在所述具有第一电荷的金属纳米线薄膜上形成具有第二电荷的金属纳米线薄膜;以及
    对所述具有第二电荷的金属纳米线薄膜进行烘干处理;其中,所述第一电荷和所述第二电荷具有相反的电性。
  19. 根据权利要求14~18中任一项所述的制备方法,还包括:在所述基板中掺杂银离子。
PCT/CN2018/116227 2018-04-18 2018-11-19 导电结构及其制备方法、触摸屏和触摸显示装置 WO2019200908A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18899024.6A EP3783470A4 (en) 2018-04-18 2018-11-19 CONDUCTIVE STRUCTURE AND METHOD FOR PREPARING IT, TOUCH SCREEN AND TOUCH DISPLAY DEVICE
US16/477,618 US20210333905A1 (en) 2018-04-18 2018-11-19 Conductive structure and manufacturing method thereof, touch screen and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810347785.8 2018-04-18
CN201810347785.8A CN110096184B (zh) 2018-04-18 2018-04-18 导电结构及其制备方法、触摸屏和触摸显示装置

Publications (1)

Publication Number Publication Date
WO2019200908A1 true WO2019200908A1 (zh) 2019-10-24

Family

ID=67443429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116227 WO2019200908A1 (zh) 2018-04-18 2018-11-19 导电结构及其制备方法、触摸屏和触摸显示装置

Country Status (4)

Country Link
US (1) US20210333905A1 (zh)
EP (1) EP3783470A4 (zh)
CN (1) CN110096184B (zh)
WO (1) WO2019200908A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210130287A (ko) * 2020-04-21 2021-11-01 삼성디스플레이 주식회사 윈도우 및 윈도우를 포함하는 표시장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367513A (zh) * 2001-01-26 2002-09-04 松下电器产业株式会社 触摸式面板
CN203338796U (zh) * 2013-05-30 2013-12-11 南昌欧菲光科技有限公司 透明导电膜
CN104040642A (zh) * 2011-08-24 2014-09-10 英诺华动力有限公司 图案化透明导体和相关制备方法
JP2014175187A (ja) * 2013-03-08 2014-09-22 Dainippon Printing Co Ltd 導電パターン形成用基材、透明導電基材、導電パターン形成用基材の製造方法および透明導電基材の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963864B (zh) * 2010-10-14 2013-03-13 北京富纳特创新科技有限公司 触摸屏
CN103902115B (zh) * 2012-12-28 2018-04-06 深圳欧菲光科技股份有限公司 触摸屏用透明导电体及其制备方法和应用
KR102251775B1 (ko) * 2014-07-18 2021-05-12 삼성전자주식회사 전극 구조체 및 이를 사용하는 접촉 감지 센서
CN104156109B (zh) * 2014-08-05 2018-09-07 京东方科技集团股份有限公司 一种导电薄膜、触摸面板及其制作方法、显示装置
EP3147316A1 (en) * 2015-09-25 2017-03-29 Samsung Electronics Co., Ltd. Electrical conductors, electrically conductive structures, and electronic devices including the same
KR102337695B1 (ko) * 2015-12-18 2021-12-09 동우 화인켐 주식회사 필름 터치 센서
CN206124366U (zh) * 2016-10-13 2017-04-26 合肥鑫晟光电科技有限公司 复合膜、触摸屏和可穿戴设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367513A (zh) * 2001-01-26 2002-09-04 松下电器产业株式会社 触摸式面板
CN104040642A (zh) * 2011-08-24 2014-09-10 英诺华动力有限公司 图案化透明导体和相关制备方法
JP2014175187A (ja) * 2013-03-08 2014-09-22 Dainippon Printing Co Ltd 導電パターン形成用基材、透明導電基材、導電パターン形成用基材の製造方法および透明導電基材の製造方法
CN203338796U (zh) * 2013-05-30 2013-12-11 南昌欧菲光科技有限公司 透明导电膜

Also Published As

Publication number Publication date
US20210333905A1 (en) 2021-10-28
CN110096184B (zh) 2021-01-22
EP3783470A1 (en) 2021-02-24
CN110096184A (zh) 2019-08-06
EP3783470A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
Yang et al. Nature degradable, flexible, and transparent conductive substrates from green and earth-abundant materials
US20140360757A1 (en) Transparent conductive film having anisotropic electrical conductivity
WO2015027608A1 (zh) 内嵌式触摸屏、其制备方法及显示装置
US20150324047A1 (en) Touch panel including patterns of mesh structures
CN105242801A (zh) 一种触摸传感器及显示装置
WO2014161242A1 (zh) 导电膜及其制备方法以及包含该导电膜的触摸屏
US10976852B2 (en) Touch panel, manufacturing method thereof, and display device
KR20190102859A (ko) 은나노와이어를 포함하는 투명전극 코팅기판 및 그의 제조 방법
CN104679361A (zh) 触控装置
WO2019200908A1 (zh) 导电结构及其制备方法、触摸屏和触摸显示装置
US9538654B2 (en) Conductive film, method for manufacturing the same, and touch screen including the same
CN108292185A (zh) 透光性导电材料
CN104881185A (zh) 触控面板及其触控电极结构
CN105355272A (zh) 一种双面导电透明导电薄膜及其制备方法
CN203179573U (zh) 导电膜以及包含该导电膜的触摸屏
US20190221689A1 (en) Transparent electrode, transparent electrode production method, display panel, and solar cell
US9089061B2 (en) Conductive film, method for making the same, and touch screen including the same
WO2021017202A1 (zh) 电子设备及其盖板
CN204203914U (zh) 一种触摸传感器及显示装置
JP2014513845A (ja) 導電性構成要素およびその準備方法
CN203179572U (zh) 导电膜以及包含该导电膜的触摸屏
CN109991772B (zh) 显示面板膜层结构及其制备工艺
CN111433614A (zh) 具有集成结构的感测薄膜
CN208722162U (zh) 一种弯曲的触摸屏
CN103576954A (zh) 用于触控面板的复合式感应电极结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899024

Country of ref document: EP

Effective date: 20201118