WO2019200816A1 - 信息传输方法、装置及飞行器 - Google Patents

信息传输方法、装置及飞行器 Download PDF

Info

Publication number
WO2019200816A1
WO2019200816A1 PCT/CN2018/104011 CN2018104011W WO2019200816A1 WO 2019200816 A1 WO2019200816 A1 WO 2019200816A1 CN 2018104011 W CN2018104011 W CN 2018104011W WO 2019200816 A1 WO2019200816 A1 WO 2019200816A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
interference
channels
adjacent
distance
Prior art date
Application number
PCT/CN2018/104011
Other languages
English (en)
French (fr)
Inventor
冯银华
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019200816A1 publication Critical patent/WO2019200816A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an information transmission method, apparatus, and aircraft.
  • unmanned aerial vehicles or unmanned aerial vehicles have become more and more widely used.
  • the drone can transmit information through the communication link and the control device.
  • the drone randomly selects one target channel from a plurality of channels, and establishes a communication link with the control device through the target channel for information transmission.
  • the interference of the target channel selected in the related art may be large, which may result in poor information transmission quality.
  • the embodiment of the present application provides an information transmission method, device, and aircraft, which improve information transmission quality.
  • an embodiment of the present application provides an information transmission method, including:
  • Information transmission is performed by the target channel and the control device.
  • the acquiring the interference amount corresponding to the at least two channels respectively includes:
  • the acquiring the same-frequency interference amount corresponding to the channel includes:
  • a co-channel interference amount corresponding to the channel according to a co-channel interference coefficient, a safety channel distance, and signal strength information of at least one co-channel interference channel corresponding to the channel; wherein the safety channel distance refers to the channel and The minimum channel distance between other channels that does not interfere with each other.
  • the determining, by the co-channel interference coefficient, the safety channel distance, and the signal strength information of the at least one co-channel interference channel corresponding to the channel, the co-channel interference amount corresponding to the channel including:
  • Equation (1) determines the amount of co-channel interference corresponding to the channel
  • V 1 represents the same-frequency interference amount corresponding to the channel
  • represents the same-frequency interference coefficient of the channel
  • c represents the safety channel distance of the channel
  • R j represents the j- th co-channel interference corresponding to the channel.
  • the signal strength information of the channel c 0 represents a preset constant
  • n represents the number of co-channel interference channels corresponding to the channel
  • n is an integer greater than 0.
  • the acquiring the amount of adjacent-channel interference corresponding to the channel includes:
  • the channel distance coefficient corresponding to each of the adjacent frequency interference channels refers to a difference between a safety channel distance of the channel and an absolute value channel distance, where the absolute value channel distance refers to the channel and the neighbor The absolute value of the channel distance between the frequency interference channels; the safety channel distance refers to the minimum channel distance between the channel and other channels that does not interfere with each other.
  • the signal strength information of each of the adjacent interfering interference channels in the at least one adjacent frequency interference channel corresponding to the channel according to an adjacent frequency interference coefficient, and each of the adjacent frequency interferences The channel distance coefficient corresponding to the channel determines the adjacent channel interference amount corresponding to the channel, including:
  • Equation (2) determines the amount of adjacent channel interference corresponding to the channel
  • V 2 represents the adjacent frequency interference amount corresponding to the channel
  • represents the adjacent frequency interference coefficient of the channel
  • R k represents the signal strength information of the kth adjacent frequency interference channel corresponding to the channel
  • d k represents the The channel distance coefficient of the kth adjacent frequency interference channel
  • m represents the number of adjacent channel interference channels corresponding to the channel
  • m is an integer greater than 0.
  • the co-channel interference amount and the adjacent-channel interference amount corresponding to the channel are acquired, determining the channel according to the co-channel interference amount and the adjacent-channel interference amount corresponding to the channel.
  • the corresponding amount of interference including:
  • Determining an interference amount corresponding to the channel is a sum of the co-channel interference amount and the adjacent-channel interference amount.
  • the selecting, according to the interference amount corresponding to the at least two channels, the target channel from the at least two channels including:
  • the target channel is selected from the at least two channels according to the interference amount respectively corresponding to the at least two channels, and further includes: :
  • a first channel is randomly selected from the at least two first channels as the target channel.
  • the preset scanning condition includes any one of the following: a current establishment process of the communication connection, a signal strength of the current communication channel is less than or equal to a preset intensity threshold, and a distance from the control device. Below the preset distance.
  • an information transmission apparatus including:
  • a scanning module configured to perform channel scanning when the preset scanning condition is met
  • An acquiring module configured to acquire, if the scanning module scans at least two channels, an interference amount corresponding to the at least two channels respectively;
  • a selecting module configured to select a target channel from the at least two channels according to the interference amount corresponding to the at least two channels respectively;
  • a transmission module configured to perform information transmission with the control device by using the target channel.
  • the acquiring module includes:
  • An acquiring unit configured to acquire, for each of the channels, a co-channel interference amount and/or an adjacent-channel interference amount corresponding to the channel;
  • a determining unit configured to determine, according to the co-channel interference amount and/or the adjacent-channel interference amount corresponding to the channel, an interference amount corresponding to the channel.
  • the acquiring unit is specifically configured to:
  • a co-channel interference amount corresponding to the channel according to a co-channel interference coefficient, a safety channel distance, and signal strength information of at least one co-channel interference channel corresponding to the channel; wherein the safety channel distance refers to the channel and The minimum channel distance between other channels that does not interfere with each other.
  • the acquiring unit is specifically configured to:
  • Equation (1) determines the amount of co-channel interference corresponding to the channel
  • V 1 represents the same-frequency interference amount corresponding to the channel
  • represents the same-frequency interference coefficient of the channel
  • c represents the safety channel distance of the channel
  • R j represents the j- th co-channel interference corresponding to the channel.
  • the signal strength information of the channel c 0 represents a preset constant
  • n represents the number of co-channel interference channels corresponding to the channel
  • n is an integer greater than 0.
  • the acquiring unit is specifically configured to:
  • the channel distance coefficient corresponding to each of the adjacent frequency interference channels refers to a difference between a safety channel distance of the channel and an absolute value channel distance, where the absolute value channel distance refers to the channel and the neighbor The absolute value of the channel distance between the frequency interference channels; the safety channel distance refers to the minimum channel distance between the channel and other channels that does not interfere with each other.
  • the acquiring unit is specifically configured to:
  • Equation (2) determines the amount of adjacent channel interference corresponding to the channel
  • V 2 represents the adjacent frequency interference amount corresponding to the channel
  • represents the adjacent frequency interference coefficient of the channel
  • R k represents the signal strength information of the kth adjacent frequency interference channel corresponding to the channel
  • d k represents the The channel distance coefficient of the kth adjacent frequency interference channel
  • m represents the number of adjacent channel interference channels corresponding to the channel
  • m is an integer greater than 0.
  • the determining unit is specifically configured to:
  • Determining an interference amount corresponding to the channel is a sum of the co-channel interference amount and the adjacent-channel interference amount.
  • the selecting module includes:
  • a first determining unit configured to determine, from the at least two channels, that the first channel whose interference amount is less than a preset interference amount threshold is the target channel.
  • the selecting module further includes:
  • a second determining unit configured to select, as the target channel, the first channel with the smallest interference amount from the at least two first channels;
  • a first channel is randomly selected from the at least two first channels as the target channel.
  • the preset scanning condition includes any one of the following: a current establishment process of the communication connection, a signal strength of the current communication channel is less than or equal to a preset intensity threshold, and a distance from the control device. Below the preset distance.
  • an embodiment of the present application provides an aircraft, including: a processor and a memory;
  • memory is used to store program instructions
  • the processor configured to invoke and execute program instructions stored in the memory, to implement the method of any of the above first aspects.
  • the information transmission method, device, and aircraft provided by the embodiments of the present application perform channel scanning when the preset scanning conditions are met; further, if at least two channels are scanned, the interference amounts corresponding to at least two channels are acquired, and The target channel is selected from at least two channels according to the interference amount corresponding to each of the at least two channels; further, information transmission is performed through the target channel. It can be seen that the target channel with a small interference amount is selected from the at least two channels according to the interference amount corresponding to the at least two channels, so that the information transmission is performed through the target channel, thereby improving the information transmission quality.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart diagram of an information transmission method according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart diagram of an information transmission method according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an information transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an aircraft according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system provided by the embodiment of the present application may include an aircraft and a control device; of course, the communication system provided by the embodiment of the present application may further include other devices, which is not limited in the embodiment of the present application.
  • the aircraft involved in the embodiments of the present application may include, but is not limited to, a drone or a manned aircraft or the like. It should be noted that, in the following embodiments of the present application, an information transmission scheme provided by an embodiment of the present application is described by taking an aircraft as an unmanned aerial vehicle as an example. When the aircraft is another type of aircraft, the specific implementation manner may refer to The related content of the man-machine is not repeated here.
  • the drones involved in the embodiments of the present application may include, but are not limited to, a power system, a flight control system, and a communication system.
  • the communication system is configured to establish a communication link with the control device, perform a communication connection based on the established communication link, receive a control instruction of the control device, or send data such as an image to the control device. Further, the communication system may send a control command of the control device to the flight control system, and the flight control system may control the power system according to the control command, so that the power system provides flight power for the drone, and the drone is implemented according to the control command. Fly.
  • the information transmission device involved in the embodiment of the present application may be an aircraft or a device in an aircraft, which is not limited in the embodiment of the present application.
  • the control device involved in the embodiment of the present application may include, but is not limited to, a remote controller, a terminal, or a device such as a ground station combined with the two.
  • the wireless network on which the UAV and the control device establish a communication link includes but is not limited to any one of the following: WIreless-Fidelity (WIFI), Long Term Evolution (LTE), Point-to-point networks, digital broadcast networks, etc.
  • WIFI WIreless-Fidelity
  • LTE Long Term Evolution
  • Point-to-point networks digital broadcast networks, etc.
  • one-to-many communication can be realized by WIFI, digital broadcasting, LTE, that is, the drone can communicate with multiple control devices, and the drone establishes a communication link with each of the plurality of control devices, Realize the communication connection between the drone and the control device.
  • a point-to-point network link can implement one-to-one communication, that is, a drone can communicate with a control device, and the drone communicates with the control device through a channel.
  • one or more communication links may be included in one channel.
  • the drone can establish a plurality of communication links using one channel, and each communication link is used to implement communication between the drone and a control device.
  • the drone can utilize a channel to establish a communication link for communicating between the drone and a control device.
  • a drone and a corresponding control device can establish a communication link using a channel to implement communication between the drone and the control device.
  • another drone can also use the channel to establish a communication link between its corresponding control device.
  • one implementation is:
  • the drone scans the channel, selects a channel from the scanned channels, and sends a request for establishing a connection to the control device through the channel, and after receiving the request for establishing the connection, the control device may send the request for the connection.
  • the connection is responded, and the drone and the control device establish a communication link on the channel to communicate with each other.
  • the information involved in the embodiments of the present application may include but is limited to at least one of the following: flight data, video data, picture data, instructions, files, and the like.
  • the co-channel interference coefficient involved in the embodiment of the present application is used to indicate that a variable is used to calculate the co-channel interference amount.
  • the adjacent frequency interference coefficient involved in the embodiment of the present application is used to indicate that a variable is used to calculate the amount of adjacent frequency interference.
  • the co-channel interference channel corresponding to any channel involved in the embodiment of the present application refers to a channel whose bandwidth ranges completely overlap.
  • the adjacent frequency interference channel corresponding to any channel involved in the embodiment of the present application refers to a channel whose bandwidth ranges partially overlap.
  • the secure channel distance corresponding to any channel involved in the embodiment of the present application refers to the minimum channel distance between the channel and other channels that does not interfere with each other.
  • the frequency difference can be used to indicate the channel distance.
  • the security channel distance of each communication link may be determined by the corresponding communication device manufacturer, or determined by other means, which is not limited in the embodiment of the present application.
  • WIFI is taken as an example for description: it is assumed that there are channels 1 to 11 under the WIFI network, wherein the channel distance exceeds a preset bandwidth, such as 20 MHz, and there is no adjacent channel interference between the above channels, and each channel only has the same frequency. If you interfere, you can determine the following:
  • the interference channel of channel 1 includes: channel 1 - channel 5;
  • the interference channel of channel 2 includes: channel 1 - channel 6;
  • the interference channel of channel 3 includes: channel 1 - channel 7;
  • the interference channel of channel 4 includes: channel 1 - channel 8;
  • the interference channel of channel 5 includes: channel 1 - channel 9;
  • the interference channel of channel 6 includes: channel 2 - channel 10;
  • the interference channel of channel 7 includes: channel 3 - channel 11;
  • the interference channel of channel 8 includes: channel 4 - channel 11;
  • the interference channel of channel 9 includes: channel 5 - channel 11;
  • the interference channel of channel 10 includes: channel 6 - channel 11;
  • the interference channel of channel 11 includes: channel 7 - channel 11.
  • channel number for example, channel 1 or channel 2, etc.
  • the number represents a channel index
  • the bandwidth of the channel is different, and/or the number of channels is different, and the interference received by each channel may also be different.
  • the channel distance coefficient of each adjacent interference channel corresponding to any channel involved in the embodiment of the present application refers to a difference between a safety channel distance and an absolute value channel distance of the channel, and an absolute value channel distance is the channel and the The absolute value of the channel distance between adjacent frequency interference channels.
  • the channel distance coefficient of the kth adjacent channel interference channel corresponding to any channel may be determined by other variants or equivalent formulas of the foregoing formula, which is not limited in this embodiment.
  • the signal strength information involved in the embodiment of the present application may include, but is not limited to, a Received Signal Strength Indication (RSSI).
  • RSSI Received Signal Strength Indication
  • the drone randomly selects one target channel from a plurality of channels, and establishes a communication link with the control device through the target channel for information transmission.
  • the interference of the target channel selected in the related art may be large, which may result in poor information transmission quality.
  • the information transmission method, device and aircraft provided in the embodiments of the present application select a target channel from at least two channels according to the interference amount corresponding to at least two channels, and the selected target channel can ensure a small interference amount. In order to transmit information through the target channel, the quality of information transmission can be improved.
  • FIG. 2 is a schematic flowchart diagram of an information transmission method according to an embodiment of the present application. As shown in FIG. 2, the method in this embodiment of the present application may include:
  • Step S201 When the preset scanning condition is met, the channel scanning is performed.
  • the preset scanning condition includes but is not limited to any one of the following: the current establishment process of the communication connection, the signal strength of the current communication channel is lower than the preset intensity threshold, and the distance between the drone and the control device is lower than Preset distance.
  • the drone when the drone determines that it is currently in the process of establishing a communication connection, the drone performs a channel scan. For example, the drone can determine that the drone is to establish a communication link with the control device when the communication interface is activated, or when the built-in transmitting device is activated, ie, it is determined that the communication connection is currently in the process of being established.
  • the drone determines that the signal strength of the current communication channel is lower than the preset intensity threshold, the drone performs channel scanning to select a suitable channel for information transmission from at least two of the scanned channels. For example, if the drone establishes a communication link with the control device using the current communication channel, the drone can monitor the signal strength of the current communication channel in real time or periodically during the communication with the control device, when monitoring When the signal strength is below the preset intensity threshold, a channel scan is performed to prepare for switching the channel. Further, when the monitored signal strength is lower than the preset intensity threshold, the UAV can further monitor the duration of the current signal strength lower than the preset intensity threshold. If the duration is greater than or equal to the preset duration threshold, the channel scan is performed. .
  • the preset scanning condition may also be a combination of the above conditions.
  • the drone determines that the signal strength of the current communication channel is lower than the preset intensity threshold, and the distance between the drone and the control device is lower than the preset distance
  • the drone performs channel scanning to facilitate subsequent follow-up Among the at least two channels scanned, an appropriate channel is selected for information transmission.
  • the drone starts the channel scan, which can prevent the unmanned The channel scan is performed when the distance between the machine and the control device is greater than the preset distance (ie, the signal strength of each channel may be relatively low), thereby saving power resources of the drone.
  • channel scanning mode may refer to the channel scanning mode in the related art, which is not limited in the embodiment of the present application.
  • Step S202 If at least two channels are scanned, the interference amount corresponding to each of the at least two channels is obtained.
  • the drone acquires the interference amount corresponding to each of the at least two channels.
  • the unmanned aircraft determines the interference amount corresponding to each channel by using an interference coefficient according to each channel, a safety channel distance, and a corresponding interference channel.
  • each channel acquire the same-frequency interference quantity and/or the adjacent-frequency interference quantity corresponding to the channel; further, determine the channel corresponding according to the same-frequency interference quantity and/or the adjacent-frequency interference quantity corresponding to the channel. The amount of interference.
  • the UAV can acquire the co-channel interference amount corresponding to the channel, and determine that the interference amount corresponding to the channel is the same The amount of frequency interference.
  • the UAV can acquire the adjacent channel interference amount corresponding to the channel, and determine the interference amount corresponding to the channel as the corresponding The amount of adjacent frequency interference.
  • the UAV can acquire the co-channel interference amount and the adjacent-channel interference amount corresponding to the channel, and determine that the interference amount corresponding to the channel is The sum of the co-channel interference amount and the adjacent channel interference amount corresponding to the channel.
  • the drone may be based on Equation (1) determines the amount of co-channel interference corresponding to the channel; where V 1 represents the amount of co-channel interference corresponding to the channel, ⁇ represents the co-channel interference coefficient of the channel, c represents the safe channel distance of the channel, and R j represents The signal strength information of the jth co-channel interference channel corresponding to the channel, c 0 represents a preset constant (for example, 100), and n represents the number of co-channel interference channels corresponding to the channel (optionally, n is greater than 0) Integer).
  • V 1 represents the amount of co-channel interference corresponding to the channel
  • represents the co-channel interference coefficient of the channel
  • c represents the safe channel distance of the channel
  • R j represents The signal strength information of the jth co-channel interference channel corresponding to the channel
  • c 0 represents a preset constant (for example, 100)
  • n represents the number of co-channel interference channels corresponding to the channel (optionally, n is greater than
  • the same-frequency interference corresponding to the channel can be determined by other variants or equivalent formulas of the above formula (1), which is not limited in the embodiment of the present application.
  • the UAV can obtain the same-frequency interference corresponding to any channel in other achievable manners, which is not limited in this embodiment.
  • the channel distance coefficient corresponding to each adjacent frequency interference channel refers to a difference between a safety channel distance of the channel and an absolute value channel distance, where the absolute value channel distance refers to the channel and the adjacent frequency interference channel.
  • the absolute value of the channel distance refers to the channel and the adjacent frequency interference channel.
  • the drone may be based on Equation (2) determines the adjacent channel interference amount corresponding to the channel; wherein V 2 represents the adjacent channel interference amount corresponding to the channel, ⁇ represents the adjacent channel interference coefficient of the channel, and R k represents the kth adjacent frequency channel corresponding to the channel
  • the signal strength information of the interference channel d k represents the channel distance coefficient of the kth adjacent frequency interference channel, and m represents the number of adjacent frequency interference channels corresponding to the channel (optionally, m is an integer greater than 0).
  • d k c -
  • in the above formula (2) represents a channel distance coefficient of the kth adjacent frequency interference channel corresponding to the channel, and correspondingly, the above formula (2) can wait Effect Formula (3).
  • the amount of adjacent-channel interference corresponding to the channel can be determined by other variants or equivalent formulas of the above formula (2), which is not limited in the embodiment of the present application.
  • the UAV can obtain the amount of adjacent channel interference corresponding to any channel in other implementation manners, which is not limited in this embodiment.
  • the UAV can determine the amount of interference corresponding to each channel by other means, which is not limited in this embodiment.
  • Step S203 Select a target channel from the at least two channels according to the interference amount corresponding to each of the at least two channels.
  • the drone selects a target channel with a small interference amount from the at least two channels according to the interference amount corresponding to the at least two channels, thereby ensuring information transmission quality.
  • the first channel that determines that the interference amount is less than the preset interference amount threshold from the at least two channels is the target channel.
  • the UAV can determine, from the at least two channels, that the first channel whose interference amount is less than the preset interference amount threshold is the target channel, so as to ensure information transmission quality.
  • the drone can select the first channel with the smallest interference amount from the at least two first channels as the target channel, so that the information transmission quality can be further improved.
  • the drone may randomly select a first channel from the at least two first channels as a target channel for further information transmission.
  • the drone can also select a target channel from the at least two channels according to the interference amount corresponding to the at least two channels by other means (for example, the drone can be based on each channel of at least two channels) Corresponding the amount of interference, sorting at least two channels, and selecting a target channel according to the sorting result; or, the drone may according to the interference amount corresponding to each channel in at least two channels, and the signal strength of each channel In order to select a target channel, etc., this is not limited in the embodiment of the present application.
  • the drone can also select the target channel by using different selection methods after determining that the different scanning conditions are met.
  • the target channel can be selected according to the sorting result based on the magnitude of the interference amount
  • the drone may select a channel whose interference amount corresponding to the channel is less than the preset interference amount threshold as the target channel.
  • the preset interference amount threshold may be determined based on the interference amount of the current communication channel, or determined based on other factors, and is not limited herein.
  • Step S204 Perform information transmission with the control device through the target channel.
  • the specific manner of establishing a new communication link between the UAV and the control device through the target channel, or switching the current communication link to the target channel, and then performing information transmission may refer to the transmission method in the related art. This embodiment of the present application does not limit this.
  • the information transmission between the drone and the control device through the target channel may include:
  • the drone performs channel switching through the target channel; and/or,
  • Video data, picture data, flight data, instructions, and/or files are transmitted through the target channel.
  • the information transmission between the UAV and the control device through the target channel may also include:
  • Video data, picture data, flight data, instructions, and/or files are transmitted through the target channel.
  • the interference amount corresponding to the channel may be acquired. If the UAV communicates with the control device by using the current communication channel, the interference amount corresponding to the channel may be further compared with the current communication channel. The amount of interference can be determined based on the comparison result as to whether the channel needs to be the target channel. For example, if the interference amount corresponding to the channel is smaller than the interference amount corresponding to the current communication channel, the scanned channel is used as the target channel.
  • the channel scanning is performed. Further, if at least two channels are scanned, the interference amounts corresponding to the at least two channels are respectively obtained, and according to the at least two channels respectively. Corresponding interference quantity, selecting a target channel from the at least two channels; further, performing information transmission through the target channel. It can be seen that the target channel with a small interference amount is selected from the at least two channels according to the interference amount corresponding to the at least two channels, so that the information transmission is performed through the target channel, thereby improving the information transmission quality.
  • FIG. 3 is a schematic flowchart diagram of an information transmission method according to another embodiment of the present application.
  • the information transmission method provided by the embodiment of the present application is introduced in conjunction with the UAV and the control device.
  • the method in this embodiment of the present application may include:
  • step S301 the drone is started.
  • Step S302 If it is determined that the current connection establishment process is performed, the drone performs channel scanning.
  • Step S303 If at least two channels are scanned, the drone acquires the interference amount corresponding to each of the at least two channels.
  • Step S304 The UAV selects a target channel from the at least two channels according to the interference amount corresponding to the at least two channels respectively.
  • the interference amount of the target channel is lower than a preset interference amount threshold.
  • Step S305 the drone and the control setting establish a communication connection through the target channel, and transmit the information through the target channel.
  • FIG. 4 is a schematic flowchart diagram of an information transmission method according to another embodiment of the present application.
  • the information transmission method provided by the embodiment of the present application is introduced in conjunction with the UAV and the control device.
  • the method in this embodiment of the present application may include:
  • Step S401 If it is determined that the signal strength of the current communication channel is lower than the preset intensity threshold, and the distance between the UAV and the control device is lower than the preset distance, the UAV performs channel scanning.
  • Step S402 If at least two channels are scanned, the drone acquires the interference amount corresponding to each of the at least two channels.
  • Step S403 The UAV selects a target channel from the at least two channels according to the interference amount corresponding to the at least two channels respectively.
  • the interference amount of the target channel is lower than a preset interference amount threshold.
  • Step S404 the drone performs channel switching through the target channel. For example, a drone switches a communication channel from a current channel to a target channel.
  • Step S405 The drone and the control set establish a communication connection through the target channel, and transmit information through the target channel.
  • FIG. 5 is a schematic structural diagram of an information transmission apparatus according to an embodiment of the present disclosure.
  • the information transmission apparatus 50 provided in this embodiment may include: a scanning module 501, an obtaining module 502, a selecting module 503, and a transmitting module 504.
  • the scanning module 501 is configured to perform channel scanning when the preset scanning condition is met;
  • the obtaining module 502 is configured to: if the scanning module 501 scans at least two channels, acquire interference amounts corresponding to the at least two channels respectively;
  • the selecting module 503 is configured to select a target channel from the at least two channels according to the interference amount corresponding to the at least two channels respectively;
  • the transmission module 504 is configured to perform information transmission with the control device by using the target channel.
  • the obtaining module 502 includes:
  • An acquiring unit configured to acquire, for each of the channels, a co-channel interference amount and/or an adjacent-channel interference amount corresponding to the channel;
  • a determining unit configured to determine, according to the co-channel interference amount and/or the adjacent-channel interference amount corresponding to the channel, an interference amount corresponding to the channel.
  • the obtaining unit is specifically configured to:
  • a co-channel interference amount corresponding to the channel according to a co-channel interference coefficient, a safety channel distance, and signal strength information of at least one co-channel interference channel corresponding to the channel; wherein the safety channel distance refers to the channel and The minimum channel distance between other channels that does not interfere with each other.
  • the obtaining unit is specifically configured to:
  • Equation (1) determines the amount of co-channel interference corresponding to the channel
  • V 1 represents the same-frequency interference amount corresponding to the channel
  • represents the same-frequency interference coefficient of the channel
  • c represents the safety channel distance of the channel
  • R j represents the j-th co-channel interference corresponding to the channel.
  • the signal strength information of the channel c 0 represents a preset constant
  • n represents the number of co-channel interference channels corresponding to the channel
  • n is an integer greater than 0.
  • the obtaining unit is specifically configured to:
  • the channel distance coefficient corresponding to each of the adjacent frequency interference channels refers to a difference between a safety channel distance of the channel and an absolute value channel distance, where the absolute value channel distance refers to the channel and the neighbor The absolute value of the channel distance between the frequency interference channels; the safety channel distance refers to the minimum channel distance between the channel and other channels that does not interfere with each other.
  • the obtaining unit is specifically configured to:
  • Equation (2) determines the amount of adjacent channel interference corresponding to the channel
  • V 2 represents the adjacent frequency interference amount corresponding to the channel
  • represents the adjacent frequency interference coefficient of the channel
  • R k represents the signal strength information of the kth adjacent frequency interference channel corresponding to the channel
  • d k represents the The channel distance coefficient of the kth adjacent frequency interference channel
  • m represents the number of adjacent channel interference channels corresponding to the channel
  • m is an integer greater than 0.
  • the determining unit is specifically configured to:
  • Determining an interference amount corresponding to the channel is a sum of the co-channel interference amount and the adjacent-channel interference amount.
  • the selecting module 503 includes:
  • a first determining unit configured to determine, from the at least two channels, that the first channel whose interference amount is less than a preset interference amount threshold is the target channel.
  • the selecting module 503 further includes:
  • a second determining unit configured to select, as the target channel, the first channel with the smallest interference amount from the at least two first channels;
  • a first channel is randomly selected from the at least two first channels as the target channel.
  • the preset scanning condition includes any one of the following: the current establishment process of the communication connection, the signal strength of the current communication channel is less than or equal to the preset intensity threshold, and the distance between the control device and the control device is lower than the preset distance. .
  • the information transmission device of this embodiment may be used to implement the corresponding technical solution in the foregoing embodiment of the information transmission method of the present application, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of an aircraft according to an embodiment of the present application. As shown in FIG. 6, the aircraft 60 provided in this embodiment may include a processor 601, a memory 602, and a communication interface 603.
  • the specific connection medium between the processor 601, the memory 602 and the communication interface 603 is not limited in the embodiment of the present application.
  • the processor 601, the memory 602, and the communication interface 603 are connected by a bus 604 as an example; for convenience of representation, only one thick line is shown in FIG. 6, but it does not mean only
  • a bus or a type of bus is shown in FIG. 6, but it does not mean only
  • the bus 604 can be divided into an address bus, a data bus, a control bus, and the like.
  • the memory 602 is used to store program instructions.
  • the processor 601 is configured to invoke and execute program instructions stored in the memory 602 to implement the following steps:
  • the channel scan is performed; further, if at least two channels are scanned, the interference amounts corresponding to the at least two channels are respectively acquired, and the interference amounts respectively corresponding to the at least two channels are respectively
  • the target channel is selected from the at least two channels.
  • the communication interface 603 is configured to perform information transmission by using the target channel.
  • the processor 601 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component. Or the methods, steps, and logic blocks disclosed in the embodiments of the present application are executed.
  • a general purpose processor can be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the memory 602 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or may be a volatile memory.
  • a random access memory (RAM) may also be a circuit or any other device that can implement a storage function.
  • Memory 602 can also be any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the communication interface 603 may include a wired communication interface and a wireless communication interface.
  • the wireless communication interface can implement wireless communication with the control device.
  • the foregoing processor 601 may be integrated in the wireless communication interface, or may be independent of the wireless communication interface, to implement the foregoing method;
  • the communication interface 603 can be a circuit, a transceiver, or other device, which is not limited in this application.
  • communication interface 603 can be a transceiver for communicating information with other devices (e.g., control devices) over the target channel.
  • the aircraft may also include a communication system, such as an image transmission system, or a device such as a transceiver capable of communicating to implement the above method.
  • a communication system such as an image transmission system
  • a device such as a transceiver capable of communicating to implement the above method.
  • the embodiment of the present application further provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the technical solution of the unmanned aerial vehicle in the embodiment of the above information transmission method of the present application, and the implementation principle and technical effect thereof are similar. , will not repeat them here.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions, when it is run on a computer, causing the computer to execute the technology related to the drone in the embodiment of the information transmission method of the present application.
  • the computer readable storage medium stores instructions, when it is run on a computer, causing the computer to execute the technology related to the drone in the embodiment of the information transmission method of the present application.
  • the implementation principle and technical effect of the scheme are similar, and will not be described here.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods described in various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法、装置及飞行器。该方法包括:当符合预设扫描条件时,则进行信道扫描;进一步地,若扫描出至少2个信道,获取所述至少2个信道分别对应的干扰量,并根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道;进一步地,通过目标信道进行信息传输。可见,通过根据至少2个信道分别对应的干扰量,从所述至少2个信道中选择出干扰量较小的目标信道,以便通过目标信道进行信息传输,从而可以提高信息传输质量。

Description

信息传输方法、装置及飞行器
申请要求于2018年4月17日申请的、申请号为201810341810.1、申请名称为“信息传输方法、装置及飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法、装置及飞行器。
背景技术
随着飞行技术的发展,无人驾驶飞机或称之为无人机(Unmanned Aerial Vehicle,UAV)得到了越来越广泛地应用。无人机在飞行过程中,可以通过通信链路与控制设备进行信息传输。
相关技术中,无人机从多个信道中随机选择一个目标信道,并通过目标信道与控制设备建立通信链路以进行信息传输。
但相关技术中所选择的目标信道的干扰可能较大,会导致信息传输质量较差。
发明内容
本申请实施例提供一种信息传输方法、装置及飞行器,提高了信息传输质量。
第一方面,本申请实施例提供一种信息传输方法,包括:
当符合预设扫描条件时,则进行信道扫描;
若扫描出至少2个信道,获取所述至少2个信道分别对应的干扰量;
根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道;
通过所述目标信道与控制设备进行信息传输。
在一种可能的实现方式中,所述获取所述至少2个信道分别对应的干扰量,包括:
针对每个所述信道,获取所述信道对应的同频干扰量和/或邻频干扰量;
根据所述信道对应的所述同频干扰量和/或所述邻频干扰量,确定所述信道对应的干扰量。
在一种可能的实现方式中,所述获取所述信道对应的同频干扰量,包括:
根据同频干扰系数、安全信道距离以及所述信道对应的至少一个同频干扰信道的信号强度信息,确定所述信道对应的同频干扰量;其中,所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
在一种可能的实现方式中,所述根据同频干扰系数、安全信道距离以及所述信道对应的至少一个同频干扰信道的信号强度信息,确定所述信道对应的同频干扰量,包括:
通过
Figure PCTCN2018104011-appb-000001
公式(1)确定所述信道对应的同频干扰量;
其中,V 1代表所述信道对应的同频干扰量,α代表所述信道的同频干扰系数,c代表所述信道的安全信道距离,R j代表所述信道对应的第 j个同频干扰信道的信号强度信息,c 0代表预设常数,n代表所述信道对应的同频干扰信道的个数,n为大于0的整数。
在一种可能的实现方式中,所述获取所述信道对应的邻频干扰量,包括:
根据邻频干扰系数、所述信道对应的至少一个邻频干扰信道中每个所述邻频干扰信道的信号强度信息,以及每个所述邻频干扰信道对应的信道距离系数,确定所述信道对应的邻频干扰量;
其中,每个所述邻频干扰信道对应的信道距离系数是指所述信道的安全信道距离与绝对值信道距离之间的差值,所述绝对值信道距离是指所述信道与所述邻频干扰信道之间的信道距离的绝对值;所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
在一种可能的实现方式中,所述根据邻频干扰系数、所述信道对应的至少一个邻频干扰信道中每个所述邻频干扰信道的信号强度信息,以及每个所述邻频干扰信道对应的信道距离系数,确定所述信道对应的邻频干扰量,包括:
通过
Figure PCTCN2018104011-appb-000002
公式(2)确定所述信道对应的邻频干扰量;
其中,V 2代表所述信道对应的邻频干扰量,β代表所述信道的邻频干扰系数,R k代表所述信道对应的第k个邻频干扰信道的信号强度信息,d k代表所述第k个邻频干扰信道的信道距离系数,m代表所述信道对应的邻频干扰信道的个数,m为大于0的整数。
在一种可能的实现方式中,若获取所述信道对应的同频干扰量和邻频干扰量,根据所述信道对应的所述同频干扰量和所述邻频干扰量,确定所述信道对应的干扰量,包括:
确定所述信道对应的干扰量为所述同频干扰量与所述邻频干扰量之和。
在一种可能的实现方式中,所述根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道,包括:
从所述至少2个信道中确定干扰量小于预设干扰量阈值的第一信道为所述目标信道。
在一种可能的实现方式中,若存在至少2个所述第一信道,所述根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道,还包括:
从所述至少2个第一信道中选择出干扰量最小的第一信道作为所述目标信道;或者,
从所述至少2个第一信道中随机选择出一个第一信道作为所述目标信道。
在一种可能的实现方式中,所述预设扫描条件包括以下任一项:当前处于通信连接的建立过程、当前通信信道的信号强度小于或等于预设强度阈值、与控制设备之间的距离低于预设距离。
第二方面,本申请实施例提供一种信息传输装置,包括:
扫描模块,用于当符合预设扫描条件时,则进行信道扫描;
获取模块,用于若所述扫描模块扫描出至少2个信道,获取所述至少2个信道分别对应的干扰量;
选择模块,用于根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道;
传输模块,用于通过所述目标信道与控制设备进行信息传输。
在一种可能的实现方式中,所述获取模块,包括:
获取单元,用于针对每个所述信道,获取所述信道对应的同频干扰量和/或邻频干扰量;
确定单元,用于根据所述信道对应的所述同频干扰量和/或所述邻频干扰量,确定所述信道对应的干扰量。
在一种可能的实现方式中,所述获取单元具体用于:
根据同频干扰系数、安全信道距离以及所述信道对应的至少一个同频干扰信道的信号强度信息,确定所述信道对应的同频干扰量;其中,所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
在一种可能的实现方式中,所述获取单元具体用于:
通过
Figure PCTCN2018104011-appb-000003
公式(1)确定所述信道对应的同频干扰量;
其中,V 1代表所述信道对应的同频干扰量,α代表所述信道的同频干扰系数,c代表所述信道的安全信道距离,R j代表所述信道对应的第 j个同频干扰信道的信号强度信息,c 0代表预设常数,n代表所述信道对应的同频干扰信道的个数,n为大于0的整数。
在一种可能的实现方式中,所述获取单元具体用于:
根据邻频干扰系数、所述信道对应的至少一个邻频干扰信道中每个所述邻频干扰信道的信号强度信息,以及每个所述邻频干扰信道对应的信道距离系数,确定所述信道对应的邻频干扰量;
其中,每个所述邻频干扰信道对应的信道距离系数是指所述信道的安全信道距离与绝对值信道距离之间的差值,所述绝对值信道距离是指所述信道与所述邻频干扰信道之间的信道距离的绝对值;所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
在一种可能的实现方式中,所述获取单元具体用于:
通过
Figure PCTCN2018104011-appb-000004
公式(2)确定所述信道对应的邻频干扰量;
其中,V 2代表所述信道对应的邻频干扰量,β代表所述信道的邻频干扰系数,R k代表所述信道对应的第k个邻频干扰信道的信号强度信息,d k代表所述第k个邻频干扰信道的信道距离系数,m代表所述信道对应的邻频干扰信道的个数,m为大于0的整数。
在一种可能的实现方式中,若所述获取单元用于获取所述信道对应的同频干扰量和邻频干扰量,所述确定单元具体用于:
确定所述信道对应的干扰量为所述同频干扰量与所述邻频干扰量之和。
在一种可能的实现方式中,所述选择模块包括:
第一确定单元,用于从所述至少2个信道中确定干扰量小于预设干扰量阈值的第一信道为所述目标信道。
在一种可能的实现方式中,若存在至少2个所述第一信道,所述选择模块,还包括:
第二确定单元,用于从所述至少2个第一信道中选择出干扰量最小的第一信道作为所述目标信道;或者,
从所述至少2个第一信道中随机选择出一个第一信道作为所述目标信道。
在一种可能的实现方式中,所述预设扫描条件包括以下任一项:当前处于通信连接的建立过程、当前通信信道的信号强度小于或等于预设强度阈值、与控制设备之间的距离低于预设距离。
第三方面,本申请实施例提供一种飞行器,包括:处理器和存储器;
其中,所述存储器,用于存储程序指令;
所述处理器,用于调用并执行所述存储器中存储的程序指令,实现如上述第一方面中任一项所述的方法。
本申请实施例提供的信息传输方法、装置及飞行器,当符合预设扫描条件时,则进行信道扫描;进一步地,若扫描出至少2个信道,获取至少2个信道分别对应的干扰量,并根据至少2个信道分别对应的干扰量,从至少2个信道中选择出目标信道;进一步地,通过目标信道进行信息传输。可见,通过根据至少2个信道分别对应的干扰量,从至少2个信道中选择出干扰量较小的目标信道,以便通过目标信道进行信息传输,从而可以提高信息传输质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请实施例提供的通信系统示意图;
图2为本申请一实施例提供的信息传输方法的流程示意图;
图3为本申请另一实施例提供的信息传输方法的流程示意图;
图4为本申请另一实施例提供的信息传输方法的流程示意图;
图5为本申请一实施例提供的信息传输装置的结构示意图;
图6为本申请一实施例提供的飞行器的结构示意图。
具体实施方式
首先,对本申请实施例所涉及的通信系统和部分词汇进行介绍。
图1为本申请实施例提供的通信系统示意图。如图1所示,本申请实施例提供的通信系统可以包括飞行器和控制设备;当然,本申请实施例提供的通信 系统还可以包括其它设备,本申请实施例中对此并不作限制。
本申请实施例中涉及的飞行器可以包括但不限于:无人机或者载人飞机等。需要说明的是,本申请下述实施例中以飞行器为无人机为例,对本申请实施例提供的信息传输方案进行说明;当飞行器为其它类型的飞行器时,具体的可实现方式可以参考无人机对应的相关内容,此处不再一一赘述。
本申请实施例中涉及的无人机可以包括但不限于:动力系统、飞行控制系统、通信系统。其中,通信系统用于与控制设备建立通信链路,并基于建立的通信链路进行通信连接,接收控制设备的控制指令,或者向控制设备发送图像等数据。进一步地,通信系统可以将控制设备的控制指令发送至飞行控制系统,飞行控制系统可以根据该控制指令控制动力系统,以使动力系统为无人机提供飞行动力,实现无人机根据该控制指令进行飞行。
本申请实施例中涉及的信息传输装置可以是飞行器,也可以是飞行器中的装置,本申请实施例中对此并不作限制。
本申请实施例中涉及的控制设备可以包括但不限于:遥控器、终端或二者结合的地面站等设备。
本申请实施例中无人机与控制设备建立通信链路所基于的无线网络包括但不限于以下任一项:无线保真(WIreless-Fidelity,WIFI)、长期演进(Long Term Evolution,LTE)、点对点网络、数字广播网络等。其中,通过WIFI、数字广播、LTE可以实现一对多通信,即无人机可以与多个控制设备进行通信,无人机与多个控制设备中的每个控制设备建立一个通信链路,以实现无人机与控制设备之间的通信连接。点对点网络链路可以实现一对一通信,即无人机可以与一个控制设备进行通信,无人机与该控制设备通过一个信道进行通信。
其中,一个信道中可以包括一个或多个通信链路。
当实现一对多通信时,无人机可以利用一个信道建立多个通信链路,每个通信链路用于实现该无人机与一个控制设备之间的通信。或者,无人机可以利用一个信道建立一个通信链路,该通信链路用于实现该无人机与一个控制设备之间的通信。
当实现一对一通信时,一个无人机与对应的一个控制设备可以利用一个信道建立一个通信链路,以实现该无人机与该控制设备之间的通信。同时,另一个无人机也可以利用该信道建立与其对应的控制设备之间的通信链路。
对于无人机与控制设备建立通信链路,一种实现方式为:
无人机对信道进行扫描,从扫描出的信道中选取一个信道,并通过该信道 将建立连接的请求发送给控制设备,控制设备在该信道接收到建立连接的请求后,可以针对该请求发送连接响应,进而无人机与控制设备在该信道上建立通信链路,以实现相互通信。
本申请实施例中涉及的信息可以包括但限于以下至少一项:飞行数据、视频数据、图片数据、指令、文件等。
本申请实施例中涉及的同频干扰系数用于指示一个变量用于计算同频干扰量。
本申请实施例中涉及的邻频干扰系数用于指示一个变量用于计算邻频干扰量。
本申请实施例中涉及的任一信道对应的同频干扰信道是指带宽范围完全重叠的信道。
本申请实施例中涉及的任一信道对应的邻频干扰信道是指带宽范围部分重叠的信道。
本申请实施例中涉及的任一信道对应的安全信道距离是指该信道与其他信道之间互不干扰的最小信道距离。在此,频率差可以用于表示信道距离。示例性地,各通信链路的安全信道距离可以由对应的通信设备厂商确定,或者通过其它方式确定,本申请实施例中对此并不作限制。
示例性地,以WIFI为例进行说明:假设WIFI网络下存在信道1~11,其中,信道距离超过预设带宽,如20MHz,以上的信道之间不存在邻频干扰,各信道只存在同频干扰,则可以确定出如下内容:
信道1的干扰信道包括:信道1—信道5;
信道2的干扰信道包括:信道1—信道6;
信道3的干扰信道包括:信道1—信道7;
信道4的干扰信道包括:信道1—信道8;
信道5的干扰信道包括:信道1—信道9;
信道6的干扰信道包括:信道2—信道10;
信道7的干扰信道包括:信道3—信道11;
信道8的干扰信道包括:信道4—信道11;
信道9的干扰信道包括:信道5—信道11;
信道10的干扰信道包括:信道6—信道11;
信道11的干扰信道包括:信道7—信道11。
需要说明的是,本申请实施例中涉及的信道数字(例如,信道1或信道2 等),其中的数字代表信道索引。
需要说明的是,信道的带宽不一样,和/或信道个数不一样,会导致每个信道受到的干扰也可能不一样。
本申请实施例中涉及的任一信道对应的每个邻频干扰信道的信道距离系数是指该信道的安全信道距离与绝对值信道距离之间的差值,绝对值信道距离为该信道与该邻频干扰信道之间的信道距离的绝对值。
示例性地,可以通过公式d k=c-|X 0-Y k|确定任一信道对应的第k个邻频干扰信道的信道距离系数;其中,d k代表该第k个邻频干扰信道的信道距离系数,c代表该任一信道的安全信道距离,X 0代表该任一信道的信道索引,Y k代表该第k个邻频干扰信道的信道索引。当然,还可以通过上述公式的其它变形或等效公式确定任一信道对应的第k个邻频干扰信道的信道距离系数,本申请实施例中对此并不作限制。
本申请实施例中涉及的信号强度信息可以包括但不限于:接收信号强度指示(Received Signal Strength Indication,RSSI)。
相关技术中,无人机从多个信道中随机选择一个目标信道,并通过目标信道与控制设备建立通信链路以进行信息传输。但相关技术中所选择的目标信道的干扰可能较大,会导致信息传输质量较差。
本申请实施例中提供的信息传输方法、装置及飞行器,通过根据至少2个信道分别对应的干扰量,从至少2个信道中选择出目标信道,所选择出的目标信道可以保证干扰量较小,以便通过目标信道进行信息传输,从而可以提高信息传输质量。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图2为本申请一实施例提供的信息传输方法的流程示意图。如图2所示,本申请实施例的方法可以包括:
步骤S201、当符合预设扫描条件时,则进行信道扫描。
本步骤中,预设扫描条件包括但不限于以下任一项:当前处于通信连接的建立过程、当前通信信道的信号强度低于预设强度阈值、无人机与控制设备之间的距离低于预设距离。
示例性地,当无人机确定当前处于通信连接的建立过程时,则无人机进行信道扫描。例如,无人机可以在启动通信接口、或在启动内置的发送装置时, 确定无人机欲与控制设备建立通信链路,即确定当前处于通信连接的建立过程中。
或者,当无人机确定当前通信信道的信号强度低于预设强度阈值时,则无人机进行信道扫描,以便于后续从扫描到的至少2个信道中选择出合适的信道进行信息传输。例如,无人机在利用当前通信信道与控制设备建立有通信链路的情况下,无人机可以在与控制设备进行通信的过程中,实时或周期地监测当前通信信道的信号强度,当监测到信号强度低于预设强度阈值时,则进行信道扫描,以准备切换信道。进一步地,无人机还可以在监测到信号强度低于预设强度阈值时,进一步监测当前信号强度低于预设强度阈值的时长,若该时长大于或等于预设时长阈值,则进行信道扫描。
进一步地,预设扫描条件还可以是上述条件的结合。
例如,当无人机确定当前通信信道的信号强度低于预设强度阈值,且无人机与控制设备之间的距离低于预设距离时,则无人机进行信道扫描,以便于后续从扫描到的至少2个信道中选择出合适的信道进行信息传输。另外,通过在确定当前通信信道的信号强度低于预设强度阈值,且无人机与控制设备之间的距离低于预设距离时,无人机才开始进行信道扫描,可以防止在无人机与控制设备之间的距离大于预设距离(即各信道的信号强度可能都比较低)时还进行信道扫描,从而节省了无人机的电能资源。
需要说明的是,具体的信道扫描方式可以参考相关技术中的信道扫描方式,本申请实施例中对此并不作限制。
步骤S202、若扫描出至少2个信道,获取该至少2个信道分别对应的干扰量。
本步骤中,若在步骤S201中扫描出至少2个信道,则无人机分别获取该至少2个信道中每个信道对应的干扰量。可选地,无人机通过根据每个信道的干扰系数、安全信道距离以及对应的干扰信道等,分别确定每个信道对应的干扰量。
可选地,针对每个信道,获取该信道对应的同频干扰量和/或邻频干扰量;进一步的,根据该信道对应的同频干扰量和/或邻频干扰量,确定该信道对应的干扰量。
示例性地,假设任一信道具有同频干扰信道,且不具有邻频干扰信道,则无人机可以获取该信道对应的同频干扰量,并确定该信道对应的干扰量为该对应的同频干扰量。
又一示例性地,假设任一信道不具有同频干扰信道,且具有邻频干扰信道,则无人机可以获取该信道对应的邻频干扰量,并确定该信道对应的干扰量为该对应的邻频干扰量。
又一示例性地,假设任一信道具有同频干扰信道和邻频干扰信道,则无人机可以获取该信道对应的同频干扰量和邻频干扰量,并确定该信道对应的干扰量为该信道对应的同频干扰量与邻频干扰量之和。
本申请下述实施例对获取任一信道对应的同频干扰量的一种可实现方式进行描述:
根据同频干扰系数、安全信道距离以及该信道对应的至少一个同频干扰信道的信号强度信息,确定该信道对应的同频干扰量。
本申请实施例中,示例性地,无人机可以根据
Figure PCTCN2018104011-appb-000005
公式(1)确定该信道对应的同频干扰量;其中,V 1代表该信道对应的同频干扰量,α代表该信道的同频干扰系数,c代表该信道的安全信道距离,R j代表该信道对应的第j个同频干扰信道的信号强度信息,c 0代表预设常数(例如100),n代表该信道对应的同频干扰信道的个数(可选的,n为大于0的整数)。
当然,还可以通过上述公式(1)的其它变形或等效公式确定该信道对应的同频干扰量,本申请实施例中对此并不作限制。
当然,无人机还可以通过其它可实现方式获取任一信道对应的同频干扰量,本申请实施例中对此并不作限制。
本申请下述实施例对获取任一信道对应的邻频干扰量的一种可实现方式进行描述:
根据邻频干扰系数、该信道对应的至少一个邻频干扰信道中每个邻频干扰信道的信号强度信息,以及每个邻频干扰信道对应的信道距离系数,确定该信道对应的邻频干扰量;
其中,每个邻频干扰信道对应的信道距离系数是指该信道的安全信道距离与绝对值信道距离之间的差值,该绝对值信道距离是指该信道与该邻频干扰信道之间的信道距离的绝对值。
本申请实施例中,示例性地,无人机可以根据
Figure PCTCN2018104011-appb-000006
公式(2)确定该信道对应的邻频干扰量;其中,V 2代表该信道对应的邻频干扰量,β代表 该信道的邻频干扰系数,R k代表该信道对应的第k个邻频干扰信道的信号强度信息,d k代表第k个邻频干扰信道的信道距离系数,m代表该信道对应的邻频干扰信道的个数(可选的,m为大于0的整数)。
示例性地,上述公式(2)中的d k=c-|X 0-Y k|代表该信道对应的第k个邻频干扰信道的信道距离系数,对应地,上述公式(2)可以等效为
Figure PCTCN2018104011-appb-000007
公式(3)。
当然,还可以通过上述公式(2)的其它变形或等效公式确定该信道对应的邻频干扰量,本申请实施例中对此并不作限制。
当然,无人机还可以通过其它可实现方式获取任一信道对应的邻频干扰量,本申请实施例中对此并不作限制
当然,无人机还可通过其它方式确定每个信道对应的干扰量,本申请实施例中对此并不作限制。
步骤S203、根据该至少2个信道分别对应的干扰量,从该至少2个信道中选择出目标信道。
本步骤中,无人机根据该至少2个信道分别对应的干扰量,从该至少2个信道中选择出干扰量较小的目标信道,从而可以保证信息传输质量。
本申请下述实施例中,对无人机根据该至少2个信道分别对应的干扰量,从该至少2个信道中选择出目标信道的可实现方式进行介绍:
可选地,从该至少2个信道中确定干扰量小于预设干扰量阈值的第一信道为所述目标信道。
本实现方式中,无人机可以从该至少2个信道中确定干扰量小于预设干扰量阈值的第一信道为目标信道,以保证信息传输质量。
示例性地,若存在至少2个第一信道,则无人机可以从该至少2个第一信道中选择出干扰量最小的第一信道作为目标信道,从而可以进一步提高信息传输质量。
又一示例性地,若存在至少2个第一信道,则无人机可以从该至少2个第一信道中随机选择出一个第一信道作为目标信道,以便进一步进行信息传输。当然,无人机还可以通过其它方式,实现根据该至少2个信道分别对应的干扰量,从该至少2个信道中选择出目标信道(例如,无人机可以根据至少2个信道中各信道对应的干扰量的大小,对至少2个信道进行排序,并根据排序结果, 选择出目标信道;或者,无人机可以根据至少2个信道中各信道对应的干扰量,以及各信道的信号强度,来选择出目标信道等),本申请实施例中对此并不作限制。
进一步地,无人机还可以在确定符合不同的扫描条件后,利用不同的选择方式选取出目标信道。
例如,无人机在确定当前正在建立通信的过程中时,则可以根据基于干扰量大小的排序结果,选取出目标信道;
或者,无人机在确定当前通信信道的信号强度小于或等于(即低于)预设强度阈值时,可以选取出信道对应的干扰量小于预设干扰量阈值的信道作为目标信道。其中,预设干扰量阈值可以基于当前通信信道的干扰量确定,或者是基于其他因素确定,在此不予限定。
步骤S204、通过目标信道与控制设备进行信息传输。
本步骤中,无人机与控制设备之间通过目标信道建立新的通信链路,或将当前通信链路切换至该目标信道,进而进行信息传输的具体方式,可以参考相关技术中的传输方式,本申请实施例中对此并不作限制。
示例性地,无人机与控制设备之间通过目标信道进行信息传输可以包括:
无人机通过目标信道进行信道切换;和/或,
通过目标信道传输视频数据、图片数据、飞行数据、指令和/或文件等。
又一示例性地,无人机与控制设备之间通过目标信道进行信息传输也可以包括:
无人机与控制设备之间通过目标信道建立通信连接;和/或,
通过目标信道传输视频数据、图片数据、飞行数据、指令和/或文件等。
具体地建立通信连接的方式可以参考相关中的连接方式,本申请实施例中对此并不作限制。
可选地,若扫描出一个信道,则可以获取该信道对应的干扰量,若无人机利用当前通信信道与控制设备进行通信,则可以进一步比较该信道对应的干扰量与当前通信信道对应的干扰量,可以根据比较结果,判断是否需要将该信道作为目标信道。例如,若该信道对应的干扰量小于当前通信信道对应的干扰量,则将该扫描出的信道作为目标信道。
本申请实施例中,当符合预设扫描条件时,则进行信道扫描;进一步地,若扫描出至少2个信道,获取该至少2个信道分别对应的干扰量,并根据该至少2个信道分别对应的干扰量,从该至少2个信道中选择出目标信道;进一步 地,通过目标信道进行信息传输。可见,通过根据至少2个信道分别对应的干扰量,从至少2个信道中选择出干扰量较小的目标信道,以便通过目标信道进行信息传输,从而可以提高信息传输质量。
图3为本申请另一实施例提供的信息传输方法的流程示意图。本申请实施例中结合无人机与控制设备对本申请实施例提供的信息传输方法进行介绍。如图3所示,本申请实施例的方法可以包括:
步骤S301、无人机启动。
步骤S302、若确定当前处于通信连接的建立过程,则无人机进行信道扫描。
步骤S303、若扫描出至少2个信道,则无人机获取该至少2个信道分别对应的干扰量。
步骤S304、无人机根据该至少2个信道分别对应的干扰量,从该至少2个信道中选择出目标信道;可选地,目标信道的干扰量低于预设干扰量阈值。
步骤S305、无人机与控制设置通过目标信道建立通信连接,并通过目标信道传输信息。
需要说明的是,本申请实施例中各步骤的实现方式可以参考上述实施例中的相关内容,本申请实施例中此处不再赘述。
图4为本申请另一实施例提供的信息传输方法的流程示意图。本申请实施例中结合无人机与控制设备对本申请实施例提供的信息传输方法进行介绍。如图4所示,本申请实施例的方法可以包括:
步骤S401、若确定当前通信信道的信号强度低于预设强度阈值,且无人机与控制设备之间的距离低于预设距离,则无人机进行信道扫描。
步骤S402、若扫描出至少2个信道,则无人机获取该至少2个信道分别对应的干扰量。
步骤S403、无人机根据该至少2个信道分别对应的干扰量,从该至少2个信道中选择出目标信道;可选地,目标信道的干扰量低于预设干扰量阈值。
步骤S404、无人机通过目标信道进行信道切换。例如,无人机将通信信道从当前信道切换至目标信道。
步骤S405、无人机与控制设置通过目标信道建立通信连接,并通过目标信道传输信息。
需要说明的是,本申请实施例中各步骤的实现方式可以参考上述实施例中 的相关内容,本申请实施例中此处不再赘述。
图5为本申请一实施例提供的信息传输装置的结构示意图。如图5所示,本实施例提供的信息传输装置50可以包括:扫描模块501、获取模块502、选择模块503以及传输模块504。
其中,扫描模块501,用于当符合预设扫描条件时,则进行信道扫描;
获取模块502,用于若所述扫描模块501扫描出至少2个信道,获取所述至少2个信道分别对应的干扰量;
选择模块503,用于根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道;
传输模块504,用于通过所述目标信道与控制设备进行信息传输。
可选地,所述获取模块502,包括:
获取单元,用于针对每个所述信道,获取所述信道对应的同频干扰量和/或邻频干扰量;
确定单元,用于根据所述信道对应的所述同频干扰量和/或所述邻频干扰量,确定所述信道对应的干扰量。
可选地,所述获取单元具体用于:
根据同频干扰系数、安全信道距离以及所述信道对应的至少一个同频干扰信道的信号强度信息,确定所述信道对应的同频干扰量;其中,所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
可选地,所述获取单元具体用于:
通过
Figure PCTCN2018104011-appb-000008
公式(1)确定所述信道对应的同频干扰量;
其中,V 1代表所述信道对应的同频干扰量,α代表所述信道的同频干扰系数,c代表所述信道的安全信道距离,R j代表所述信道对应的第j个同频干扰信道的信号强度信息,c 0代表预设常数,n代表所述信道对应的同频干扰信道的个数,n为大于0的整数。
可选地,所述获取单元具体用于:
根据邻频干扰系数、所述信道对应的至少一个邻频干扰信道中每个所述邻频干扰信道的信号强度信息,以及每个所述邻频干扰信道对应的信道距离系数,确定所述信道对应的邻频干扰量;
其中,每个所述邻频干扰信道对应的信道距离系数是指所述信道的安全信 道距离与绝对值信道距离之间的差值,所述绝对值信道距离是指所述信道与所述邻频干扰信道之间的信道距离的绝对值;所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
可选地,所述获取单元具体用于:
通过
Figure PCTCN2018104011-appb-000009
公式(2)确定所述信道对应的邻频干扰量;
其中,V 2代表所述信道对应的邻频干扰量,β代表所述信道的邻频干扰系数,R k代表所述信道对应的第k个邻频干扰信道的信号强度信息,d k代表所述第k个邻频干扰信道的信道距离系数,m代表所述信道对应的邻频干扰信道的个数,m为大于0的整数。
可选地,若所述获取单元用于获取所述信道对应的同频干扰量和邻频干扰量,所述确定单元具体用于:
确定所述信道对应的干扰量为所述同频干扰量与所述邻频干扰量之和。
可选地,所述选择模块503包括:
第一确定单元,用于从所述至少2个信道中确定干扰量小于预设干扰量阈值的第一信道为所述目标信道。
可选地,若存在至少2个所述第一信道,所述选择模块503,还包括:
第二确定单元,用于从所述至少2个第一信道中选择出干扰量最小的第一信道作为所述目标信道;或者,
从所述至少2个第一信道中随机选择出一个第一信道作为所述目标信道。
可选地,所述预设扫描条件包括以下任一项:当前处于通信连接的建立过程、当前通信信道的信号强度小于或等于预设强度阈值、与控制设备之间的距离低于预设距离。
本实施例的信息传输装置,可以用于执行本申请上述信息传输方法实施例中的相应技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本申请一实施例提供的飞行器的结构示意图。如图6所示,本实施例提供的飞行器60可以包括:处理器601、存储器602和通信接口603。
本申请实施例中不限定上述处理器601、存储器602和通信接口603之间的具体连接介质。示例性地,图6中以所述处理器601、所述存储器602和通信接口603之间通过总线604连接为例;为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。可选地,所述总线604可以分为 地址总线、数据总线、控制总线等。
其中,所述存储器602用于存储程序指令。
所述处理器601,用于调用并执行所述存储器602中存储的程序指令,以实现以下步骤:
当符合预设扫描条件时,则进行信道扫描;进一步地,若扫描出至少2个信道,获取所述至少2个信道分别对应的干扰量,并根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道;具体参见本申请上述方法实施例中的详细描述,此处不做赘述。
所述通信接口603用于通过所述目标信道进行信息传输;具体参见本申请上述方法实施例中的详细描述,此处不做赘述。
在本申请实施例中,处理器601可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器602可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM),还可以是电路或者其它任意可以实现存储功能的装置。存储器602还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
在本申请实施例中,该通信接口603可以包括有线通信接口和无线通信接口。其中,无线通信接口可以实现与控制设备进行无线通信。示例性地,上述处理器601可以集成在无线通信接口中,或者可以独立于无线通信接口,以实现上述方法;本申请实施例中对此并不作限制。
示例性地,通信接口603可以是电路、收发器或者其它装置,本申请不做限制。示例性地,通信接口603可以是收发器,用于通过所述目标信道与其它装置(例如,控制设备)进行信息传输。
可选地,飞行器还可以包括通信系统,例如,图像传输系统,或者收发器等能够实现通信的装置,以实现上述方法。
当然,飞行器上还可以包括其他通用系统或组件,在此不一一描述。
本申请实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请上述信息传输方法实施例中关于无人机的技术方案,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请上述信息传输方法实施例中关于无人机的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者 对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (21)

  1. 一种信息传输方法,其特征在于,包括:
    当符合预设扫描条件时,则进行信道扫描;
    若扫描出至少2个信道,获取所述至少2个信道分别对应的干扰量;
    根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道;
    通过所述目标信道与控制设备进行信息传输。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述至少2个信道分别对应的干扰量,包括:
    针对每个所述信道,获取所述信道对应的同频干扰量和/或邻频干扰量;
    根据所述信道对应的所述同频干扰量和/或所述邻频干扰量,确定所述信道对应的干扰量。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述信道对应的同频干扰量,包括:
    根据同频干扰系数、安全信道距离以及所述信道对应的至少一个同频干扰信道的信号强度信息,确定所述信道对应的同频干扰量;
    其中,所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
  4. 根据权利要求3所述的方法,其特征在于,所述根据同频干扰系数、安全信道距离以及所述信道对应的至少一个同频干扰信道的信号强度信息,确定所述信道对应的同频干扰量,包括:
    通过
    Figure PCTCN2018104011-appb-100001
    确定所述信道对应的同频干扰量;
    其中,V 1代表所述信道对应的同频干扰量,α代表所述信道的同频干扰系数,c代表所述信道的安全信道距离,R j代表所述信道对应的第j个同频干扰信道的信号强度信息,c 0代表预设常数,n代表所述信道对应的同频干扰信道的个数,n为大于0的整数。
  5. 根据权利要求2所述的方法,其特征在于,所述获取所述信道对应的邻频干扰量,包括:
    根据邻频干扰系数、所述信道对应的至少一个邻频干扰信道中每个所述邻频干扰信道的信号强度信息,以及每个所述邻频干扰信道对应的信道距离系数,确定所述信道对应的邻频干扰量;
    其中,每个所述邻频干扰信道对应的信道距离系数是指所述信道的安全信道距离与绝对值信道距离之间的差值,所述绝对值信道距离是指所述信道与所述邻频干扰信道之间的信道距离的绝对值;所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
  6. 根据权利要求5所述的方法,其特征在于,所述根据邻频干扰系数、所述信道对应的至少一个邻频干扰信道中每个所述邻频干扰信道的信号强度信息,以及每个所述邻频干扰信道对应的信道距离系数,确定所述信道对应的邻频干扰量,包括:
    通过
    Figure PCTCN2018104011-appb-100002
    确定所述信道对应的邻频干扰量;
    其中,V 2代表所述信道对应的邻频干扰量,β代表所述信道的邻频干扰系数,R k代表所述信道对应的第k个邻频干扰信道的信号强度信息,d k代表所述第k个邻频干扰信道的信道距离系数,m代表所述信道对应的邻频干扰信道的个数,m为大于0的整数。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,若获取所述信道对应的同频干扰量和邻频干扰量,根据所述信道对应的所述同频干扰量和所述邻频干扰量,确定所述信道对应的干扰量,包括:
    确定所述信道对应的干扰量为所述同频干扰量与所述邻频干扰量之和。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道,包括:
    从所述至少2个信道中确定干扰量小于预设干扰量阈值的第一信道为所述目标信道。
  9. 根据权利要求8所述的方法,其特征在于,若存在至少2个所述第一信道,所述根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道,还包括:
    从所述至少2个第一信道中选择出干扰量最小的第一信道作为所述目标信道;或者,
    从所述至少2个第一信道中随机选择出一个第一信道作为所述目标信道。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述预设扫描条件包括以下任一项:
    当前处于通信连接的建立过程、当前通信信道的信号强度小于或等于预设强度阈值、与控制设备之间的距离低于预设距离。
  11. 一种信息传输装置,其特征在于,包括:
    扫描模块,用于当符合预设扫描条件时,则进行信道扫描;
    获取模块,用于若所述扫描模块扫描出至少2个信道,获取所述至少2个信道分别对应的干扰量;
    选择模块,用于根据所述至少2个信道分别对应的干扰量,从所述至少2个信道中选择出目标信道;
    传输模块,用于通过所述目标信道与控制设备进行信息传输。
  12. 根据权利要求11所述的装置,其特征在于,所述获取模块,包括:
    获取单元,用于针对每个所述信道,获取所述信道对应的同频干扰量和/或邻频干扰量;
    确定单元,用于根据所述信道对应的所述同频干扰量和/或所述邻频干扰量,确定所述信道对应的干扰量。
  13. 根据权利要求12所述的装置,其特征在于,所述获取单元具体用于:
    根据同频干扰系数、安全信道距离以及所述信道对应的至少一个同频干扰信道的信号强度信息,确定所述信道对应的同频干扰量;其中,所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
  14. 根据权利要求13所述的装置,其特征在于,所述获取单元具体用于:
    通过
    Figure PCTCN2018104011-appb-100003
    确定所述信道对应的同频干扰量;
    其中,V 1代表所述信道对应的同频干扰量,α代表所述信道的同频干扰系数,c代表所述信道的安全信道距离,R j代表所述信道对应的第j个同频干扰信道的信号强度信息,c 0代表预设常数,n代表所述信道对应的同频干扰信道的个数,n为大于0的整数。
  15. 根据权利要求12所述的装置,其特征在于,所述获取单元具体用于:
    根据邻频干扰系数、所述信道对应的至少一个邻频干扰信道中每个所述邻频干扰信道的信号强度信息,以及每个所述邻频干扰信道对应的信道距离系数,确定所述信道对应的邻频干扰量;
    其中,每个所述邻频干扰信道对应的信道距离系数是指所述信道的安全信道距离与绝对值信道距离之间的差值,所述绝对值信道距离是指所述信道与所述邻频干扰信道之间的信道距离的绝对值;所述安全信道距离是指所述信道与其他信道之间互不干扰的最小信道距离。
  16. 根据权利要求15所述的装置,其特征在于,所述获取单元具体用于:
    通过
    Figure PCTCN2018104011-appb-100004
    确定所述信道对应的邻频干扰量;
    其中,V 2代表所述信道对应的邻频干扰量,β代表所述信道的邻频干扰系数,R k代表所述信道对应的第k个邻频干扰信道的信号强度信息,d k代表所述第k个邻频干扰信道的信道距离系数,m代表所述信道对应的邻频干扰信道的个数,m为大于0的整数。
  17. 根据权利要求12-16中任一项所述的装置,其特征在于,若所述获取单元用于获取所述信道对应的同频干扰量和邻频干扰量,所述确定单元具体用于:
    确定所述信道对应的干扰量为所述同频干扰量与所述邻频干扰量之和。
  18. 根据权利要求12-17中任一项所述的装置,其特征在于,所述选择模块包括:第一确定单元,用于从所述至少2个信道中确定干扰量小于预设干扰量阈值的第一信道为所述目标信道。
  19. 根据权利要求18所述的装置,其特征在于,若存在至少2个所述第一信道,所述选择模块,还包括:
    第二确定单元,用于从所述至少2个第一信道中选择出干扰量最小的第一信道作为所述目标信道;或者,
    从所述至少2个第一信道中随机选择出一个第一信道作为所述目标信道。
  20. 根据权利要求11-19中任一项所述的装置,其特征在于,所述预设扫描条件包括以下任一项:
    当前处于通信连接的建立过程、当前通信信道的信号强度小于或等于预设强度阈值、与控制设备之间的距离低于预设距离。
  21. 一种飞行器,其特征在于,包括:处理器和存储器;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,实现如权利要求1至10中任一项所述的方法。
PCT/CN2018/104011 2018-04-17 2018-09-04 信息传输方法、装置及飞行器 WO2019200816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810341810.1 2018-04-17
CN201810341810.1A CN108521312B (zh) 2018-04-17 2018-04-17 信息传输方法、装置及飞行器

Publications (1)

Publication Number Publication Date
WO2019200816A1 true WO2019200816A1 (zh) 2019-10-24

Family

ID=63428777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104011 WO2019200816A1 (zh) 2018-04-17 2018-09-04 信息传输方法、装置及飞行器

Country Status (2)

Country Link
CN (1) CN108521312B (zh)
WO (1) WO2019200816A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383950A (zh) * 2020-10-26 2021-02-19 深圳Tcl新技术有限公司 信道选择方法、装置、终端设备及可读存储介质
CN113727407A (zh) * 2021-08-30 2021-11-30 歌尔光学科技有限公司 一种数据传输方法、装置、电子设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784256B (zh) * 2019-11-01 2021-11-16 重庆市亿飞智联科技有限公司 存储介质、频点切换方法、装置、通信节点及系统
WO2021217393A1 (zh) * 2020-04-28 2021-11-04 深圳市大疆创新科技有限公司 一种信道频点处理方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102119571A (zh) * 2008-10-17 2011-07-06 密克罗奇普技术公司 无线节点进行的用于改善操作范围的自适应性信道选择
US9642070B2 (en) * 2014-05-21 2017-05-02 Electronics And Telecommunications Research Institute Method for avoiding interference in wireless local area network system and apparatus for performing the same
CN106793131A (zh) * 2016-12-30 2017-05-31 深圳市吉祥腾达科技有限公司 一种无线路由器的信道选择方法及系统
CN107395297A (zh) * 2017-07-07 2017-11-24 广州视源电子科技股份有限公司 一种WiFi热点的信道选择方法、系统及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130005280A1 (en) * 2011-06-28 2013-01-03 Hong Kong Applied Science and Technology Research Institute Company Limited Method for constructing a wireless communication device to achieve motion sensing function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102119571A (zh) * 2008-10-17 2011-07-06 密克罗奇普技术公司 无线节点进行的用于改善操作范围的自适应性信道选择
US9642070B2 (en) * 2014-05-21 2017-05-02 Electronics And Telecommunications Research Institute Method for avoiding interference in wireless local area network system and apparatus for performing the same
CN106793131A (zh) * 2016-12-30 2017-05-31 深圳市吉祥腾达科技有限公司 一种无线路由器的信道选择方法及系统
CN107395297A (zh) * 2017-07-07 2017-11-24 广州视源电子科技股份有限公司 一种WiFi热点的信道选择方法、系统及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383950A (zh) * 2020-10-26 2021-02-19 深圳Tcl新技术有限公司 信道选择方法、装置、终端设备及可读存储介质
CN112383950B (zh) * 2020-10-26 2024-01-19 深圳Tcl新技术有限公司 信道选择方法、装置、终端设备及可读存储介质
CN113727407A (zh) * 2021-08-30 2021-11-30 歌尔光学科技有限公司 一种数据传输方法、装置、电子设备及存储介质
CN113727407B (zh) * 2021-08-30 2024-06-07 歌尔科技有限公司 一种数据传输方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN108521312A (zh) 2018-09-11
CN108521312B (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2019200816A1 (zh) 信息传输方法、装置及飞行器
KR102196727B1 (ko) 무선 통신 시스템에서 pucch 자원을 구성하는 방법 및 장치
US10104708B2 (en) Methods for initial channel setting and connection establishment in unmanned aircraft systems (UAS) control and non-payload communication (CNPC)
JP6935520B2 (ja) パラメータ構成選択方法、装置及びシステム
US20210099847A1 (en) Terminal device, method, and recording medium
US11206610B2 (en) Method and apparatus for mutually exclusive access to network slices in wireless communication system
WO2018145628A1 (zh) 一种资源池确定方法及相关设备
JP5989904B2 (ja) キャリアアグリゲーション処理方法及び装置
US11323951B2 (en) Information transmission method and device, storage medium and processor
CN114039682A (zh) 一种无人机的通信方法、通信装置及无人机
WO2019242551A1 (zh) 数据传输方法、装置及系统、飞行器和控制设备
CN105407532B (zh) 一种d2d通信方法及装置
CN110062423B (zh) 一种面向超密集无线网应用场景的小区虚拟化方法
US11115987B2 (en) Method and apparatus for controlling network devices providing network services for a plurality of over-the-air areas
CN114390581A (zh) 信道状态信息的报告方法、装置及终端
JP7343591B2 (ja) 端末及び通信方法
WO2020243929A1 (en) Method and apparatus for application services over a cellular network
US20200162882A1 (en) Partition a radio into chains to scan channels
JP2023551643A (ja) 構成の指示
US10721138B2 (en) Providing differentiated QoS by dynamically segregating voice and video clients into different BSSIDs
JP6192783B2 (ja) キャリアアグリゲーション処理方法及び装置
WO2024051659A1 (zh) 随机接入方法和通信装置
WO2023045766A1 (zh) 接入网络的方法和通信装置
CN116762408B (zh) 用于空中操作的蜂窝小区选择、网络选择、跟踪区域管理和寻呼
EP3697164B1 (en) Signal transmission method, corresponding equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915401

Country of ref document: EP

Kind code of ref document: A1