WO2021217393A1 - 一种信道频点处理方法和装置 - Google Patents

一种信道频点处理方法和装置 Download PDF

Info

Publication number
WO2021217393A1
WO2021217393A1 PCT/CN2020/087387 CN2020087387W WO2021217393A1 WO 2021217393 A1 WO2021217393 A1 WO 2021217393A1 CN 2020087387 W CN2020087387 W CN 2020087387W WO 2021217393 A1 WO2021217393 A1 WO 2021217393A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
frequency point
communication quality
quality parameter
preset
Prior art date
Application number
PCT/CN2020/087387
Other languages
English (en)
French (fr)
Inventor
孟凡淦
高建南
赵巍
林星森
张志鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/087387 priority Critical patent/WO2021217393A1/zh
Publication of WO2021217393A1 publication Critical patent/WO2021217393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Definitions

  • the present invention relates to the field of communication technology, in particular to a channel frequency point processing method and a channel frequency point processing device.
  • the present invention provides a channel frequency point processing method and a channel frequency point processing device, so as to solve the problem that the communication on the downlink channel is interfered when encountering sudden strong interference.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides a channel frequency processing method, which is applied to a remote control device of a movable platform, and the movable platform sends communication data to the remote control device through a downlink channel, and the downlink channel Is configured to work on a preset frequency band, the preset frequency band includes a plurality of frequency points, and the method includes:
  • the embodiment of the present invention also provides a channel frequency point processing method, which is applied to a movable platform that sends communication data to the remote control device through a downlink channel, and the downlink channel is configured To work on a preset frequency band, the preset frequency band includes multiple frequency points, and the method includes:
  • Receive frequency reference information sent by the remote control device where the frequency reference information includes a first reference frequency, where the communication quality parameter of the remote control device at the current working frequency of the downlink channel satisfies the preset When setting the communication quality parameter condition, it is determined from the multiple frequency points; wherein, the first reference frequency point is different from the current operating frequency point;
  • the first reference frequency point is selected as the working frequency point of the downlink channel.
  • the embodiment of the present invention also provides a channel frequency point processing device, which is applied to a remote control device of a movable platform.
  • the movable platform sends communication data to the remote control device through a downlink channel, and the downlink channel is Configured to work on a preset frequency band, the preset frequency band includes a plurality of frequency points, the channel frequency point processing device includes a computer-readable storage medium and a processor; the processor is configured to perform the following operations:
  • the communication quality parameter When the communication quality parameter satisfies the preset communication quality parameter condition, select a first reference frequency point from the multiple frequency points; wherein the first reference frequency point is different from the current operating frequency point;
  • the embodiment of the present invention also provides a channel frequency point processing device, which is applied to a movable platform, and the movable platform sends communication data to the remote control device through a downlink channel, and the downlink channel is configured to work.
  • the preset frequency band includes multiple frequency points
  • the channel frequency point processing device includes a computer-readable storage medium and a processor; the processor is configured to perform the following operations:
  • Receive frequency reference information sent by the remote control device where the frequency reference information includes a first reference frequency, where the communication quality parameter of the remote control device at the current working frequency of the downlink channel satisfies the preset When setting the communication quality parameter condition, it is determined from the multiple frequency points; wherein, the first reference frequency point is different from the current operating frequency point;
  • the first reference frequency point is selected as the working frequency point of the downlink channel.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following operations are implemented:
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following operations are implemented:
  • Receive frequency reference information sent by the remote control device where the frequency reference information includes a first reference frequency, where the communication quality parameter of the remote control device at the current working frequency of the downlink channel satisfies the preset When setting the communication quality parameter condition, it is determined from the multiple frequency points; wherein, the first reference frequency point is different from the current operating frequency point;
  • the first reference frequency point is selected as the working frequency point of the downlink channel.
  • the remote control device can determine whether the communication quality parameter of the current working frequency point of the downlink channel meets the preset communication quality parameter condition; when the preset communication quality parameter condition is satisfied, select from multiple frequency points in the preset frequency band Selecting the first reference frequency point; sending to the mobile platform frequency reference information for instructing the mobile platform to select the first reference frequency point as the working frequency point of the downlink channel.
  • the frequency selection mechanism of the remote control device when the remote control device encounters strong interference and other situations that affect the downlink communication, it can provide the mobile platform with a frequency point that can reduce the interference, and the mobile platform can immediately switch to the new downlink channel to work Frequency points to reduce interference.
  • FIG. 1 is a flowchart of the steps of Embodiment 1 of a channel frequency point processing method of the present invention
  • Embodiment 2 is a flowchart of the steps of Embodiment 2 of a channel frequency processing method of the present invention
  • Embodiment 3 is a flowchart of the steps of Embodiment 3 of a method for processing channel frequency points of the present invention
  • Embodiment 4 is a flowchart of the steps of Embodiment 4 of a channel frequency processing method of the present invention.
  • FIG. 5 is a block diagram of a channel frequency point processing device provided by an embodiment of the present invention.
  • FIG. 6 is a block diagram of another channel frequency point processing device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the hardware structure of a device for implementing various embodiments of the present invention.
  • FIG. 8 is a block diagram of a computing processing device provided by an embodiment of the present invention.
  • Fig. 9 is a block diagram of a portable or fixed storage unit provided by an embodiment of the present invention.
  • the movable platform can jump to other frequency points by frequency hopping to reduce signal interference.
  • the physical layer of the remote control device scans the frequency to identify the interference on the frequency band and reports the frequency sweep value to the mobile platform.
  • the wireless resource management layer of the mobile platform selects clean frequency points according to the frequency sweep value. ; Notify the selected clean frequency point to the remote control.
  • the movable platform may be an aircraft, such as a multi-rotor drone and a fixed-wing drone. It can also be a movable platform such as unmanned vehicles, boats, and submarines.
  • the mobile platform often has a relatively complex working environment, and its communication link with the remote control will encounter sudden and strong interference in the environment, which will affect the data transmission from the mobile platform to the remote control.
  • the existing adaptive frequency hopping strategy is difficult to reduce the interference received by the downlink channel, and it may still cause problems such as image transmission jams, black screens, and loss of control.
  • the frequency bandwidth of the downlink channel is selected by the movable platform and notified to the remote control device through the downlink control channel.
  • the remote control device needs to report the frequency sweep value to the mobile platform. If the uplink is poor, the remote control device reports the frequency sweep value sparsely. For example, after 4 rounds of frequency sweeping, it is reported to the mobile platform once.
  • the frequency sweep value obtained by the aircraft has a certain loss in timeliness. It is easy to cause the remote control device to be unable to jump out of the interfered frequency point in time when it is subjected to some sudden interference, which affects the downlink communication performance.
  • the embodiment of the present invention proposes a mechanism for a remote control device to trigger frequency selection.
  • the remote control device sends the selected frequency points to the mobile platform, and the mobile platform can select the remote control device.
  • the provided frequency point is used as the working frequency point of the downlink channel.
  • Embodiment 1 of a channel frequency point processing method of the present invention there is shown a step flow chart of Embodiment 1 of a channel frequency point processing method of the present invention.
  • the method is applied to a remote control device of a movable platform, and the movable platform sends communication data to the remote control device through a downlink channel.
  • the downlink channel is configured to work on a preset frequency band, and the preset frequency band includes multiple frequency points.
  • the method may specifically include the following steps:
  • Step 101 Obtain a communication quality parameter of a current operating frequency point of a downlink channel, where the current operating frequency point is one of the multiple frequency points.
  • the remote control device can obtain the communication quality parameter of the current operating frequency of the downlink channel, and the communication quality parameter can indicate the quality of receiving communication data at the current operating frequency.
  • Step 102 Determine whether the communication quality parameter meets a preset communication quality parameter condition.
  • the preset communication quality parameter condition may be a condition used to determine whether the remote control device encounters strong interference or other conditions that affect downlink communication.
  • Step 103 When the communication quality parameter satisfies the preset communication quality parameter condition, select a first reference frequency point from the multiple frequency points; wherein, the first reference frequency point is different from the current operating frequency point .
  • the remote control device may select the first reference frequency point from multiple frequency points of the preset frequency band, and the first reference frequency point is a frequency point other than the current operating frequency point.
  • the preset frequency band may be a pre-configured working frequency band, such as 2.4 GHz and 5.8 GHz frequency bands.
  • Step 104 Send frequency reference information to the mobile platform, where the frequency reference information is used to instruct the mobile platform to select the first reference frequency as the working frequency of the downlink channel.
  • the remote control device may generate frequency point reference information according to the first reference frequency point, and send the frequency point reference information to the movable platform through an uplink channel.
  • the frequency reference information is only a suggestion. It is the movable platform that ultimately determines the working frequency of the downlink channel.
  • the movable platform can choose to use the first reference frequency as the working frequency of the downlink channel, or choose other frequencies. As the working frequency of the downlink channel.
  • the remote control device can determine whether the communication quality parameter of the current working frequency point of the downlink channel meets the preset communication quality parameter condition; when the preset communication quality parameter condition is satisfied, the first reference is selected from multiple frequency points Frequency point; and then send to the movable platform frequency reference information used to instruct the movable platform to select the first reference frequency point as the working frequency point of the downlink channel.
  • the frequency selection mechanism of the remote control device when the remote control device encounters strong interference and other situations that affect the downlink communication, it can provide the mobile platform with a frequency point that can reduce the interference, and the mobile platform can immediately switch to the new downlink channel to work Frequency points to reduce interference.
  • FIG. 2 there is shown a flow chart of the second embodiment of a channel frequency processing method of the present invention.
  • the method is applied to a remote control device of a movable platform.
  • the movable platform sends communication data to the remote control device through a downlink channel.
  • the downlink channel is configured to work on a preset frequency band, and the preset frequency band includes multiple frequency points.
  • the method may specifically include the following steps:
  • Step 201 Obtain a communication quality parameter of a current operating frequency point of a downlink channel, where the current operating frequency point is one of the multiple frequency points.
  • the remote control device receives communication data of the downlink channel through an antenna.
  • the downlink channel may include: a downlink data channel (PDSCH, Physical Downlink Shared Channel) and a downlink control channel (PDCCH, Physical Downlink Control Channel).
  • PDSCH downlink data channel
  • PDCCH downlink control channel
  • a Hybrid Automatic Repeat reQuest (HARQ) mechanism is adopted between the remote control device and the mobile platform.
  • HARQ Hybrid Automatic Repeat reQuest
  • the communication quality parameter includes at least one of the following: the received signal strength value of the received communication data, the packet error rate of the downlink data channel for multiple time periods, and the number of consecutive retransmissions for the downlink data channel , The number of consecutive retransmissions for the downlink control channel.
  • the signal strength value can be the RSRP (Reference Signal Receiving Power) of the antenna.
  • the remote control device has multiple antennas, and each antenna has a corresponding received RSRP.
  • the value can be the largest RSRP As the received signal strength value of the received communication data.
  • the remote control device has two receiving antennas, and the received RSRPs are RS0 and RS1 respectively, and the maximum value of RS0 and RS1 can be determined as the received signal strength value of the received communication data.
  • the packet error rate of the downlink data channel in multiple time periods may be the packet error rate of the downlink data channel in multiple time periods of a short length closest to the current moment.
  • the packet error rate of the downlink data channel in multiple time windows obtained by sliding window statistics can be used. For example, the packet error rate of every 64, 24, and 8 most recent downlink PDSCH subframes can be counted by sliding window.
  • Step 202 Determine whether the communication quality parameter meets a preset communication quality parameter condition.
  • the remote control device may determine whether the communication quality parameter meets the preset communication quality parameter condition according to the first preset detection period.
  • the first preset detection period can be preset or adjusted according to actual needs, for example, according to the environment where the remote control device is located. The shorter the first preset detection period, the shorter the frequency selection period for the remote control device to trigger, so that the shorter the switching frequency point period of the movable platform may be, which may cause too many invalid switching. Conversely, the longer the first preset detection period, the longer the switching frequency point period of the movable platform, which may result in the failure to switch the working frequency point of the downlink channel in time. In an example, the first preset detection period may be 30-50 ms, and within this range, interference can be effectively avoided.
  • the preset communication quality parameter conditions may be determined based on the communication quality parameters.
  • the preset communication quality parameter conditions may include judgment conditions for each communication quality parameter; when the judgment conditions for each communication quality parameter are all When it is satisfied, it is considered that the preset communication quality parameter condition is satisfied.
  • the preset communication quality parameter condition may include the received signal strength value based on the received communication data And the judgment condition for the number of consecutive retransmissions performed on the downlink data channel.
  • the step of determining whether the communication quality parameter satisfies the preset communication quality parameter condition may include: determining whether the communication quality parameter is within the corresponding preset parameter range; if the communication quality parameter is within the corresponding preset parameter range, It is determined that the preset communication quality parameter conditions are met.
  • each communication quality parameter may correspond to a preset parameter range.
  • the corresponding preset parameter range may be greater than zero and less than the preset signal strength threshold.
  • the corresponding preset parameter range may be greater than or equal to the preset packet error rate threshold. For example, the packet error rate of every 64, 24, and 8 recent downlink PDSCH subframes are respectively counted. If the number of the latest 64 PDSCH error packets is greater than 24 or the number of the latest 24 PDSCH error packets is greater than 12 or the latest 8 PDSCH errors If the number of packets is greater than 6, it is considered that the packet error rate is high.
  • the principle of setting the packet error rate threshold is: sparse weak interference will cause certain error packets, but these error packets do not need to be resolved by switching frequency points, through the downlink modulation and coding strategy MCS (Modulation and Coding Scheme) and physical
  • MCS Modulation and Coding Scheme
  • the HARQ retransmission of the layer can be solved, and only a large number of error packets, that is, meeting the packet error rate threshold, need to be solved by switching frequency points.
  • the corresponding preset parameter range may be greater than or equal to the first number threshold.
  • the number of consecutive retransmissions for the downlink data channel is greater than or equal to 4 times.
  • the corresponding preset parameter range may be greater than or equal to the second number threshold.
  • the number of consecutive retransmissions for the downlink control channel is greater than or equal to one.
  • Step 203 When the communication quality parameter satisfies the preset communication quality parameter condition, select a first reference frequency point from the multiple frequency points; wherein, the first reference frequency point is different from the current operating frequency point .
  • the step of selecting the first reference frequency point from a plurality of frequency points may include: when the communication quality parameter satisfies the preset communication quality parameter condition, The candidate frequency point set is determined from the multiple frequency points; the first reference frequency point is selected from the candidate frequency point set.
  • the candidate frequency point set is a set of frequency points that can be selected by the remote control device.
  • the candidate frequency point set may be a preset frequency point set or a periodically updated frequency point set.
  • the remote control device can periodically scan the interference signal power spectrum density of multiple frequency points on the available working frequency bands (such as 2.4GHz and 5.8GHz frequency bands). .
  • the step of selecting the first reference frequency point from the candidate frequency point set may include: obtaining the used frequency point range; from the candidate frequency point set, selecting the first reference frequency point outside the used frequency point range Reference frequency.
  • the used frequency point range may be a range of frequency points that have been used as working frequency points in the current candidate frequency point set.
  • the previously used downlink channel operating frequency and the corresponding bandwidth can be obtained; the previously used downlink channel operating frequency and the frequency range of the corresponding bandwidth are regarded as the used frequency range.
  • the time for the physical layer to complete a complete frequency sweep can be 100ms-150ms. If the remote control device triggers the frequency selection more frequently, the sweep value has not yet been completely refreshed. , The selected new frequency point may still be the frequency point currently being interfered with, so it is necessary to select the frequency outside the range of the used frequency point.
  • the remote control device may not be refreshed completely for a long time due to the abnormal frequency sweep of the physical layer, and the set of candidate frequency points may not be refreshed for a long time. If a large number of the first reference frequency points outside the used frequency point range are selected from the candidate frequency point set, it may cause the candidate frequency point set to belong to the used frequency point range, and it is impossible to further select the used frequency points.
  • the step of selecting the first reference frequency point outside the range of the used frequency point may include: obtaining the first reference frequency point selected from the candidate frequency point set. If the number of first reference frequency points selected in advance is less than the preset number, select the first reference frequency point outside the range of used frequency points from the candidate frequency point set.
  • the remote control device currently triggers frequency selection, you can select the set of candidate frequency points and select the used frequency point. Use the first reference frequency outside the frequency range.
  • the remote control device can clear the used frequency point range and clear the number of the first reference frequency points selected from the candidate frequency point set.
  • the number of the first reference frequency points outside the used frequency point range selected from the candidate frequency point set can be recorded by the counter, and the counter is cleared after the candidate frequency point set is updated.
  • the remote control device after the remote control device switches to the current working frequency of the downlink channel, it can determine the current working frequency and the corresponding bandwidth of the downlink channel; record the current working frequency and the corresponding bandwidth to the historical frequency bandwidth set.
  • the remote control device can obtain the historical frequency bandwidth set, and obtain the previously used downlink channel operating frequency and corresponding bandwidth from the historical frequency bandwidth set. After the candidate frequency point set is updated, the remote control device can clear the previously used downlink channel operating frequency points and the corresponding bandwidth recorded in the historical frequency point bandwidth set, thereby clearing the used frequency point range.
  • Step 204 Send frequency reference information to the mobile platform, where the frequency reference information is used to instruct the mobile platform to select the first reference frequency as the working frequency of the downlink channel.
  • the step of sending frequency reference information to the movable platform may include: increasing the sending priority of the frequency reference information, and the sending priority represents the priority of sending the information to be sent to the movable platform; For the sending priority of the point reference information, add the frequency point reference information to the uplink frame; send the uplink frame containing the frequency point reference information to the mobile platform.
  • the remote control device when it sends information to the mobile platform, it can obtain the information to be sent from the preset queue, and add the information to be sent to the uplink frame according to the sending priority of the information to be sent. In order to improve the timeliness and accuracy of frequency reference information transmission through the uplink data channel, the remote control device can increase the priority of frequency reference information transmission.
  • whether the remote control device sends frequency reference information to the movable platform may be determined according to the topology structure of the communication connection between the remote control device and the movable platform.
  • the topological structure of the communication connection between the remote control device and the mobile platform may include: point-to-point P2P (point 2 point) and point-to-multipoint P2MP (point 2 multiple point) topologies.
  • P2P topology refers to a mobile platform that only communicates with one remote control device;
  • P2MP structure refers to a mobile platform that communicates with multiple remote control devices.
  • the mobile platform only receives communication data sent by one remote control device; the remote control device can report the first reference frequency point to the mobile platform for use.
  • the mobile platform can receive communication data sent by multiple remote control devices. If multiple remote control devices all send the first reference frequency point to the mobile platform, the mobile platform cannot decide which remote control device to use the first reference frequency point reported. Therefore, when the topology is P2MP, the remote control device will not send frequency reference information to the movable platform.
  • the method of the embodiment of the present invention may further include: before sending the frequency reference information to the movable platform, determining whether there is one remote control device communicatively connected with the movable platform; wherein, the frequency reference information is sent to the movable platform.
  • the steps may include: if there is one remote control device communicatively connected with the movable platform, sending frequency reference information to the movable platform.
  • the remote control device when the topology is P2MP, the remote control device does not trigger frequency selection, that is, the remote control device does not perform any of the steps 201-204.
  • Step 205 Obtain multiple interference signal power spectral densities IPSD corresponding to the multiple frequency points.
  • the remote control device After the remote control device completes the frequency sweep, it can obtain the IPSD corresponding to multiple frequency points in the preset frequency band.
  • the remote control device may not report the IPSD to the mobile platform immediately after each sweep is completed, but wait for the completion of multiple sweeps before reporting to the mobile platform.
  • the remote control device can obtain multiple IPSDs corresponding to multiple frequency points obtained by multiple sweeps.
  • Step 206 Determine the largest IPSD among the multiple IPSDs corresponding to the multiple frequency points.
  • the remote control device can averagely filter multiple IPSDs, and then send the filtered IPSDs to the mobile platform.
  • this method may cause the IPSDs to be inaccurate and weaken the interference from physical layer scanning.
  • the remote control device does not perform average filtering on multiple IPSDs, but determines that among multiple IPSDs Report the maximum IPSD corresponding to the frequency point to the mobile platform.
  • Step 207 Send the maximum IPSD corresponding to the multiple frequency points to the movable platform.
  • the step of sending the maximum IPSD corresponding to the multiple frequency points to the mobile platform may include: obtaining the communication quality parameter of the current working frequency point of the uplink channel; determining the communication quality parameter suitable for the current working frequency point of the uplink channel Configured coding parameters; use coding parameters to compress the maximum IPSD corresponding to multiple frequency points; send the compressed maximum IPSD corresponding to multiple frequency points to the mobile platform.
  • the coding parameter determines the accuracy of quantization and compression.
  • the fixed accuracy is no longer used, but the uplink interference condition can be determined according to the communication quality parameter of the current operating frequency of the uplink channel, so as to select the adaptation
  • the coding parameters of, make quantization and compression to obtain data of different precision.
  • the greater the interference level the higher the compression accuracy; the smaller the interference level, the lower the compression accuracy.
  • the compression accuracy can be 4dB.
  • the compression accuracy can be 1dB.
  • the remote control device can determine whether the communication quality parameter of the current working frequency point of the downlink channel meets the preset communication quality parameter condition; when the preset communication quality parameter condition is satisfied, select from multiple frequency points in the preset frequency band. Selecting the first reference frequency point; sending to the mobile platform frequency reference information for instructing the mobile platform to select the first reference frequency point as the working frequency point of the downlink channel.
  • the frequency selection mechanism of the remote control device when the remote control device encounters strong interference and other situations that affect the downlink communication, it can provide the mobile platform with a frequency point that can reduce the interference, and the mobile platform can immediately switch to the new downlink channel to work Frequency points to reduce interference.
  • FIG. 3 there is shown a flow chart of the third embodiment of a channel frequency processing method of the present invention.
  • the method is applied to a movable platform.
  • the movable platform sends communication data to a remote control device through a downlink channel, and the downlink channel is configured.
  • the preset frequency band includes multiple frequency points, and the method may specifically include the following steps:
  • Step 301 Receive frequency reference information sent by the remote control device, where the frequency reference information includes a first reference frequency, and the first reference frequency is determined by the communication quality of the remote control device at the current operating frequency of the downlink channel When the parameter satisfies the preset communication quality parameter condition, it is determined from the multiple frequency points; wherein, the first reference frequency point is different from the current operating frequency point.
  • the method for generating the first reference frequency point can refer to the above-mentioned embodiment described from the perspective of the remote control device, and details are not described herein.
  • Step 302 Select the first reference frequency point as the working frequency point of the downlink channel.
  • the remote control device can send frequency reference information to the movable platform through the uplink channel.
  • the frequency reference information is equivalent to the suggestion. It is the movable platform that ultimately determines the working frequency of the downlink channel.
  • the movable platform can choose to use the first reference frequency as the working frequency of the downlink channel, or choose other frequencies as the downlink channel. The operating frequency of the channel.
  • the movable platform may receive the first reference frequency point provided by the remote control device, and select the first reference frequency point as the working frequency point of the downlink channel.
  • the first reference frequency point is the first reference frequency point selected by the remote control device from a plurality of frequency points of the preset frequency band when judging that the communication quality parameter of the current working frequency point of the downlink channel meets the preset communication quality parameter condition.
  • FIG. 4 there is shown a flow chart of the fourth embodiment of a channel frequency processing method of the present invention.
  • the method is applied to a movable platform.
  • the movable platform sends communication data to a remote control device through a downlink channel, and the downlink channel is configured
  • the preset frequency band includes multiple frequency points, and the method may specifically include the following steps:
  • Step 401 Receive frequency reference information sent by the remote control device, where the frequency reference information includes a first reference frequency, and the first reference frequency is determined by the communication quality of the remote control device at the current operating frequency of the downlink channel When the parameter satisfies the preset communication quality parameter condition, it is determined from the multiple frequency points; wherein, the first reference frequency point is different from the current operating frequency point.
  • the method for generating the first reference frequency point can refer to the above-mentioned embodiment described from the perspective of the remote control device, and details are not described herein.
  • Step 402 Obtain the communication quality parameter of the current working frequency of the downlink channel fed back by the remote control device.
  • the remote control device can obtain the communication quality parameter of the current working frequency of the downlink channel and feed it back to the movable platform.
  • the communication quality parameter includes at least one of the following: the received signal strength value of the communication data received by the remote control, the packet error rate of the downlink data channel for multiple time periods, and continuous retransmission for the downlink data channel The number of times of continuous retransmission for the downlink control channel.
  • Step 403 Determine whether the communication quality parameter meets a preset communication quality parameter condition.
  • the movable platform may determine whether the communication quality parameter meets the preset communication quality parameter condition according to the second preset detection period.
  • the second preset detection period may be preset or adjusted according to actual needs, for example, according to the environment where the movable platform is located. The shorter the second preset detection period is, the shorter the triggering frequency selection period of the movable platform is, so that the shorter the switching frequency point period of the movable platform is, which may cause too many invalid switching. Conversely, the longer the second preset detection period, the longer the switching frequency point period of the movable platform, which may result in the failure to switch the working frequency point of the downlink channel in time. In an example, the second preset detection period may be 30ms-50ms, and within this range, interference can be effectively avoided.
  • the preset communication quality parameter conditions may be determined based on the communication quality parameters.
  • the preset communication quality parameter conditions may include judgment conditions for each communication quality parameter; when the judgment conditions for each communication quality parameter are all When it is satisfied, it is considered that the preset communication quality parameter condition is satisfied.
  • the step of determining whether the communication quality parameter satisfies the preset communication quality parameter condition may include: determining whether the communication quality parameter is within the corresponding preset parameter range; if the communication quality parameter is within the corresponding preset parameter range, It is determined that the preset communication quality parameter conditions are met.
  • each communication quality parameter may correspond to a preset parameter range.
  • the corresponding preset parameter range may be greater than zero and less than the preset signal strength threshold.
  • the corresponding preset parameter range may be greater than or equal to the preset packet error rate threshold.
  • the corresponding preset parameter range may be greater than or equal to the first number threshold.
  • the corresponding preset parameter range may be greater than or equal to the second number threshold.
  • Step 404 When the communication quality parameter satisfies the preset communication quality parameter condition, select a second reference frequency point from the multiple frequency points; wherein, the second reference frequency point is different from the current operating frequency point .
  • the mobile platform triggers frequency selection.
  • the movable platform can select the second reference frequency point from a plurality of frequency points of the preset frequency band.
  • the step of selecting the second reference frequency point from the multiple frequency points may include: waiting when the communication quality parameter satisfies the preset communication quality parameter condition Preset time; if the frequency point reference information sent by the remote control device is not received within the waiting time, the second reference frequency point is selected from a plurality of frequency points.
  • the movable platform may wait for the preset time instead of selecting the frequency immediately. If the frequency reference information reported by the remote control device is not received within the preset waiting time, the movable platform will perform frequency selection. If the frequency reference information reported by the remote control device is received within the preset waiting time, the movable platform may not perform frequency selection.
  • whether the remote control device sends frequency reference information to the movable platform may be determined according to the topology structure of the communication connection between the remote control device and the movable platform.
  • the mobile platform only receives communication data sent by one remote control device; the remote control device can report the first reference frequency point to the mobile platform for use.
  • the mobile platform can receive communication data sent by multiple remote control devices. If multiple remote control devices all send the first reference frequency point to the mobile platform, the mobile platform cannot decide which remote control device to use the first reference frequency point reported. Therefore, when the topology is P2MP, the remote control device will not send frequency reference information to the movable platform.
  • the movable platform can also determine the topology structure information of the communication connection between the movable platform and the remote control device; send the topology structure information to the remote control device, and the topology structure information is used to indicate that the remote control device is in point-to-many topology.
  • the frequency reference information is suspended.
  • the step of selecting the second reference frequency point from the multiple frequency points may include: when the topology information is P2MP, when the communication quality parameter satisfies When the communication quality parameter conditions are preset, the second reference frequency point is selected from a plurality of frequency points.
  • the step of waiting for the preset time may include: when the topology information is peer-to-peer P2P, when the communication quality parameter satisfies the preset communication quality parameter When the condition is met, wait for the preset time.
  • the step of selecting the second reference frequency point from a plurality of frequency points may include: when the communication quality parameter satisfies the preset communication quality parameter condition, The candidate frequency point set is determined from the multiple frequency points; the second reference frequency point is selected from the candidate frequency point set.
  • the candidate frequency point set of the mobile platform may be a preset frequency point set or a periodically updated frequency point set.
  • the mobile platform can periodically scan the interference signal power spectral density IPSD (also called the sweep value) of multiple frequency points on the available working frequency bands (such as 2.4G and 5.8G frequency bands), and record the frequency of multiple frequency points. IPSD.
  • IPSD interference signal power spectral density
  • the mobile platform can determine the set of candidate frequency points according to the IPSD of the recorded multiple frequency points.
  • the mobile platform can receive the interference signal power spectrum density IPSD corresponding to the frequency point sent by the remote control device; obtain the IPSD corresponding to the frequency point recorded in the mobile platform; if the IPSD sent by the remote control device is greater than that recorded in the mobile platform IPSD, the IPSD sent by the remote control device is recorded as the IPSD of the movable platform; if the IPSD sent by the remote control device is smaller than the IPSD recorded in the movable platform, the IPSD sent by the remote control device and the IPSD recorded in the movable platform are used for noise reduction Process and record the IPSD obtained by noise reduction as the IPSD of the movable platform.
  • the remote control device can send multiple frequency points in the preset frequency band and the corresponding IPSD to the mobile platform.
  • the IPSD corresponding to each frequency point can be the largest IPSD among the multiple IPSDs obtained by the remote control device in multiple rounds of frequency scanning. . If the IPSD provided by the remote control device is greater than the IPSD recorded in the movable platform, the movable platform directly replaces the original record with the IPSD provided by the remote control device. If the IPSD provided by the remote control device is smaller than the IPSD recorded in the movable platform, the movable platform can use the IPSD sent by the remote control device and the recorded IPSD to perform noise reduction processing (such as alpha filtering) to preserve historical interference to a certain extent.
  • noise reduction processing such as alpha filtering
  • the step of selecting the second reference frequency point from the candidate frequency point set may include: obtaining the used frequency point range; from the candidate frequency point set, selecting the second reference frequency point outside the used frequency point range Reference frequency.
  • the used frequency point range may be a range of frequency points that have been used as working frequency points in the current candidate frequency point set.
  • the previously used downlink channel operating frequency and the corresponding bandwidth can be obtained; the previously used downlink channel operating frequency and the frequency range of the corresponding bandwidth are regarded as the used frequency range.
  • the mobile platform may not be refreshed completely for a long time due to the abnormal frequency sweep of the physical layer, and the set of candidate frequency points has not been refreshed for a long time. If you select a large number of second reference frequency points outside the range of used frequency points from the candidate frequency point set first, it may cause the candidate frequency point set to belong to the used frequency point range, and it is impossible to further select the used frequency points.
  • the step of selecting a second reference frequency point outside the range of the used frequency point may include: obtaining the first selected frequency point set from the candidate frequency point set of the movable platform. 2. The number of reference frequency points; if the number of second reference frequency points selected earlier is less than the preset number, select the second frequency point outside the range of used frequency points from the candidate frequency point set of the movable platform Reference frequency.
  • the number of second reference frequency points outside the range of used frequency points is less than 3 from the candidate frequency point set, then when the mobile platform is currently triggering frequency selection, you can select from the candidate frequency point set The second reference frequency point outside the used frequency point range.
  • the movable platform can clear the used frequency point range, and clear the number of second reference frequency points selected from the candidate frequency point set of the movable platform.
  • the mobile platform after the mobile platform switches to the current working frequency of the downlink channel, it can determine the current working frequency and the corresponding bandwidth of the downlink channel; record the current working frequency and the corresponding bandwidth to the historical frequency bandwidth set.
  • the movable platform can obtain the historical frequency bandwidth set, and obtain the previously used downlink channel operating frequency and corresponding bandwidth from the historical frequency bandwidth set.
  • the mobile platform can clear the previously used downlink channel operating frequency points and the corresponding bandwidth recorded in the historical frequency point bandwidth set, thereby clearing the used frequency point range.
  • Step 405 Select the first reference frequency point or the second reference frequency point as the working frequency point of the downlink channel.
  • the movable platform can select the first reference frequency point provided by the remote control device, or select the second reference frequency point determined by itself as the working frequency point of the downlink channel.
  • the movable platform may wait for a preset time; in this example, the first reference frequency point or the second reference frequency point is selected as the downlink channel
  • the step of working frequency may include: if the frequency reference information sent by the remote control device is not received within a preset time, selecting the second reference frequency as the working frequency of the downlink channel.
  • the step of selecting the first reference frequency point as the working frequency point of the downlink channel may include: judging whether the first reference frequency point is a non-working frequency point in the preset protocol specification; if the first reference frequency point is not To preset a non-operating frequency point in the protocol specification, the first reference frequency point is selected as the operating frequency point of the downlink channel.
  • the mobile platform may decide to switch to the first reference frequency point as the downlink after receiving the frequency point reference information of the remote control device The operating frequency of the channel.
  • the movable platform can determine whether it is in the frequency bandwidth switching period; if it is not in the frequency bandwidth switching period, it switches to the first reference frequency as the working frequency of the downlink channel; if it is in the frequency bandwidth switching period , After the frequency bandwidth switching is completed, switch to the first reference frequency as the working frequency of the downlink channel.
  • the movable platform when the movable platform decides to switch to a certain frequency point, the movable platform needs to notify the remote control device first, and the movable platform can send switching control information to the remote control device within a time window (for example, 10ms-20ms).
  • This time window is the frequency point bandwidth switching period.
  • the frequency point is not allowed to be switched.
  • the mobile platform may also determine the frequency point type of the new operating frequency point after switching to the new downlink channel operating frequency point; if the frequency point type of the new operating frequency point is the preset type, Acquire the duration at the operating frequency point; before the duration at the operating frequency point reaches the preset duration threshold, if the frequency point reference information sent by the remote control device is received, switch to the first reference frequency point;
  • the frequency point type may refer to the type of trigger selection of the operating frequency point.
  • the mobile platform can trigger frequency selection in a variety of ways, for example, periodic frequency selection, frequency selection based on the DAA mechanism, and HARQ frequency selection based on the downlink channel communication quality information fed back by the remote control device.
  • the frequency point type of the new frequency point is a preset type (for example, periodic trigger or HARQ trigger selected)
  • the protection period is used for the physical layer to complete the switching of the new frequency bandwidth and the performance verification of the new frequency bandwidth. If the mobile platform receives the frequency reference information within the protection period, it immediately informs the physical layer to use the first reference frequency.
  • the new frequency point type of the new frequency point is the first reference frequency point selected by the remote control device, after switching to the new frequency point, except for the DAA trigger, the new frequency point needs to be replaced immediately, and the frequency points selected by other triggers are within the protection period Will not use it.
  • the mobile platform can select operating frequency points from a variety of frequency point types, not limited to the first reference frequency point and the frequency point selected by the DAA trigger.
  • the step of selecting the first reference frequency point or the second reference frequency point as the working frequency point of the downlink channel may include: after the time length of the working frequency point reaches the preset time length threshold, if the remote control device is received For the transmitted frequency reference information, the first reference frequency or the second reference frequency is selected as the working frequency of the downlink channel.
  • the movable platform can receive the first reference frequency point provided by the remote control device, and the movable platform can determine whether the communication quality parameter of the current working frequency point of the downlink channel meets the preset communication quality parameter conditions; In the communication quality parameter condition, the second reference frequency is selected from multiple frequency points of the preset frequency band; then, the first reference frequency or the second reference frequency is selected as the working frequency of the downlink channel.
  • the first reference frequency point is the first reference frequency point selected by the remote control device from a plurality of frequency points of the preset frequency band when judging that the communication quality parameter of the current working frequency point of the downlink channel meets the preset communication quality parameter condition.
  • the remote control device By triggering the frequency selection mechanism of the remote control device, when the remote control device encounters strong interference and other situations that affect the downlink communication, it can provide the mobile platform with a frequency point that can reduce the interference, and the mobile platform can immediately switch to the new downlink channel to work Frequency points to reduce interference.
  • Fig. 5 is a block diagram of a channel frequency processing apparatus provided by an embodiment of the present invention.
  • the apparatus 50 may include: a first obtaining module 501, configured to obtain communication quality parameters of the current working frequency of the downlink channel, and the current working frequency The point is one of multiple frequency points; the first judgment module 502 is used to judge whether the communication quality parameter meets the preset communication quality parameter conditions; the selection module 503 is used when the communication quality parameter meets the preset communication quality In the parameter condition, the first reference frequency point is selected from a plurality of frequency points; wherein, the first reference frequency point is different from the current operating frequency point; the first sending module 504 is configured to send to the movable platform Frequency reference information, where the frequency reference information is used to instruct the mobile platform to select the first reference frequency as the working frequency of the downlink channel.
  • the selection module 503 is specifically configured to determine a set of candidate frequency points from the plurality of frequency points when the communication quality parameter satisfies a preset communication quality parameter condition; A reference frequency point. .
  • the communication quality parameter includes at least one of the following: the received signal strength value of the received communication data, the packet error rate of the downlink data channel for multiple time periods, and the number of consecutive retransmissions for the downlink data channel, The number of consecutive retransmissions for the downlink control channel.
  • the preset communication quality parameter condition is determined based on the communication quality parameter.
  • the first judging module 502 is specifically configured to judge whether the communication quality parameter is within the corresponding preset parameter range; if the communication quality parameter is within the corresponding preset parameter range, it is determined to satisfy Preset communication quality parameter conditions.
  • the device may further include: a second determining module, configured to determine whether there is only one remote control device communicatively connected to the movable platform before sending the frequency reference information to the movable platform;
  • the module is specifically configured to send frequency reference information to the movable platform if there is one remote control device communicatively connected with the movable platform.
  • the selection module 503 is specifically configured to obtain a used frequency point range; from the candidate frequency point set, select a first reference frequency point outside the used frequency point range.
  • the selection module 503 is specifically configured to obtain the previously used downlink channel operating frequency and the corresponding bandwidth; and the previously used downlink channel operating frequency and the corresponding bandwidth frequency range , As the used frequency range.
  • the selection module 503 is specifically configured to obtain a historical frequency point bandwidth set, where the historical frequency point bandwidth set includes previously used operating frequency points and corresponding bandwidths.
  • the selection module 503 is specifically configured to obtain the number of the first reference frequency points previously selected from the candidate frequency point set; if the number of the first reference frequency points previously selected is less than the preset number , Select the first reference frequency point outside the range of the used frequency point from the set of candidate frequency points.
  • the device may further include: a first determining module, configured to determine the current operating frequency point and corresponding bandwidth of the downlink channel; and a first recording module, configured to record the current operating frequency point and corresponding bandwidth in the The historical frequency point bandwidth set.
  • a first determining module configured to determine the current operating frequency point and corresponding bandwidth of the downlink channel
  • a first recording module configured to record the current operating frequency point and corresponding bandwidth in the The historical frequency point bandwidth set.
  • the device may further include: a clearing module, configured to clear the used frequency point range after the candidate frequency point set is updated, and to clear the first reference from the candidate frequency point set. The number of frequency points.
  • a clearing module configured to clear the used frequency point range after the candidate frequency point set is updated, and to clear the first reference from the candidate frequency point set. The number of frequency points.
  • the first sending module 504 is specifically configured to increase the sending priority of frequency reference information; the sending priority characterizes the priority of sending the information to be sent to the mobile platform; according to the frequency reference
  • the information transmission priority is to add the frequency reference information to an uplink frame; and send the uplink frame containing the frequency reference information to the mobile platform.
  • the device may further include: a second acquiring module, configured to acquire multiple interference signal power spectral densities IPSD corresponding to the multiple frequency points; and a second determining module, configured to determine the multiple frequency points corresponding to the The largest IPSD among the multiple IPSDs; the second sending module is configured to send the largest IPSD corresponding to the multiple frequency points to the movable platform.
  • a second acquiring module configured to acquire multiple interference signal power spectral densities IPSD corresponding to the multiple frequency points
  • a second determining module configured to determine the multiple frequency points corresponding to the The largest IPSD among the multiple IPSDs
  • the second sending module is configured to send the largest IPSD corresponding to the multiple frequency points to the movable platform.
  • the second sending module is specifically configured to obtain communication quality parameters of the current operating frequency of the uplink channel; determine coding parameters adapted to the communication quality parameters of the current operating frequency of the uplink channel; and adopt the coding Parameters, compress the maximum IPSD corresponding to the multiple frequency points; and send the compressed maximum IPSD corresponding to the multiple frequency points to the mobile platform.
  • Fig. 6 is a block diagram of another channel frequency processing apparatus provided by an embodiment of the present invention.
  • the apparatus 60 may include: a first receiving module 601, configured to receive frequency reference information sent by the remote control device.
  • the reference information includes a first reference frequency point, the first reference frequency point is determined from multiple frequency points when the communication quality parameter of the current operating frequency point of the downlink channel of the remote control device satisfies a preset communication quality parameter condition; wherein , The first reference frequency point is different from the current operating frequency point; the first selection module 602 is configured to select the first reference frequency point as the operating frequency point of the downlink channel.
  • the device may further include: a first obtaining module, configured to obtain the communication quality parameter of the current operating frequency of the downlink channel fed back by the remote control device; a first determining module, configured to determine whether the communication quality parameter satisfies Preset communication quality parameter conditions; a second selection module, configured to select a second reference frequency point from a plurality of frequency points when the communication quality parameter satisfies the preset communication quality parameter condition; wherein, the second reference frequency The point is different from the current operating frequency point; the first selection module is specifically configured to select the first reference frequency point or the second reference frequency point as the operating frequency point of the downlink channel.
  • a first obtaining module configured to obtain the communication quality parameter of the current operating frequency of the downlink channel fed back by the remote control device
  • a first determining module configured to determine whether the communication quality parameter satisfies Preset communication quality parameter conditions
  • a second selection module configured to select a second reference frequency point from a plurality of frequency points when the communication quality parameter satisfies the preset communication quality parameter
  • the second selection module is specifically configured to determine a set of candidate frequency points from the plurality of frequency points when the communication quality parameter meets a preset communication quality parameter condition; from the set of candidate frequency points Select the second reference frequency point in.
  • the communication quality parameter includes at least one of the following: the received signal strength value of the communication data received by the remote control, the packet error rate of the downlink data channel for multiple time periods, and the continuous repetition of the downlink data channel
  • the number of transmissions is the number of continuous retransmissions for the downlink control channel.
  • the preset communication quality parameter condition is determined based on the communication quality parameter.
  • the first judgment module is specifically configured to judge whether the communication quality parameter is within the corresponding preset parameter range; if the communication quality parameter is within the corresponding preset parameter range, it is determined that the preset parameter is satisfied. Set the communication quality parameter conditions.
  • the second selection module is specifically configured to wait for a preset time when the communication quality parameter satisfies the preset communication quality parameter condition; if the message sent by the remote control device is not received within the waiting time Frequency reference information, the second reference frequency point is selected from the multiple frequency points.
  • the first selection module 601 is specifically configured to select the second reference frequency as the downlink channel if the frequency reference information sent by the remote control device is not received within the preset time.
  • Working frequency is specifically configured to select the second reference frequency as the downlink channel if the frequency reference information sent by the remote control device is not received within the preset time.
  • the device may further include: a first determining module, configured to determine topological structure information of the communication connection between the movable platform and the remote control device; and a first sending module, configured to send all information to the remote control device.
  • the topology structure information is used to instruct the remote control device to suspend sending the frequency reference information when the topology structure information is point-to-multipoint P2MP.
  • the second selection module is specifically configured to wait for a preset time when the communication quality parameter meets a preset communication quality parameter condition when the topology structure information is peer-to-peer P2P.
  • the second selection module is specifically configured to select from the multiple frequency points when the communication quality parameter satisfies a preset communication quality parameter condition when the topology structure information is P2MP The second reference frequency point.
  • the first selection module 602 is specifically configured to determine whether the first reference frequency point is a non-operating frequency point within a preset protocol specification; if the first reference frequency point is not a preset protocol specification If the non-operating frequency point in the internal, the first reference frequency point is selected as the operating frequency point of the downlink channel.
  • the device may further include: a second determining module, configured to determine whether it is during the frequency bandwidth switching period; a first switching module, configured to switch to the first reference if it is not during the frequency bandwidth switching period The frequency point is used as the working frequency point of the downlink channel; the second switching module is used to switch to the first reference frequency point as the working frequency point of the downlink channel after the frequency point bandwidth switching is completed if it is during the frequency point bandwidth switching period Frequency.
  • a second determining module configured to determine whether it is during the frequency bandwidth switching period
  • a first switching module configured to switch to the first reference if it is not during the frequency bandwidth switching period The frequency point is used as the working frequency point of the downlink channel
  • the second switching module is used to switch to the first reference frequency point as the working frequency point of the downlink channel after the frequency point bandwidth switching is completed if it is during the frequency point bandwidth switching period Frequency.
  • the device may further include: a third determining module, configured to determine the frequency point type of the new working frequency point after switching to the new downlink channel working frequency point; and the second acquiring module, configured to: If the frequency point type of the new working frequency point is a preset type, the time length at the working frequency point is acquired; the third switching module is used for receiving if the time length at the working frequency point reaches the preset time length threshold.
  • a third determining module configured to determine the frequency point type of the new working frequency point after switching to the new downlink channel working frequency point
  • the second acquiring module configured to: If the frequency point type of the new working frequency point is a preset type, the time length at the working frequency point is acquired; the third switching module is used for receiving if the time length at the working frequency point reaches the preset time length threshold.
  • the first selection module 602 is specifically configured to select the first selection module if the frequency reference information sent by the remote control device is received after the duration of the operating frequency reaches a preset duration threshold.
  • the reference frequency point, or the second reference frequency point, is used as the working frequency point of the downlink channel.
  • the device may further include: a second receiving module, configured to receive the interference signal power spectrum density IPSD corresponding to the frequency point sent by the remote control device; and a third acquiring module, configured to acquire records in the movable platform The IPSD corresponding to the frequency point; the first recording module is used to record the IPSD sent by the remote control device as movable if the IPSD sent by the remote control device is greater than the IPSD recorded in the movable platform The IPSD of the platform; the second recording module is used for if the IPSD sent by the remote control device is smaller than the IPSD recorded in the movable platform, then the IPSD sent by the remote control device and the IPSD recorded in the movable platform are used to perform Noise reduction processing, and the IPSD obtained by noise reduction is recorded as the IPSD of the movable platform.
  • a second receiving module configured to receive the interference signal power spectrum density IPSD corresponding to the frequency point sent by the remote control device
  • a third acquiring module configured to acquire records in the movable platform The IPSD corresponding to the frequency
  • the second selection module is specifically configured to obtain a used frequency point range; from the candidate frequency point set, select a second reference frequency point outside the used frequency point range.
  • the second selection module is specifically configured to obtain the previously used downlink channel operating frequency and the corresponding bandwidth; and the previously used downlink channel operating frequency and the corresponding bandwidth frequency Range, as the used frequency range.
  • the second selection module is specifically configured to obtain a historical frequency point bandwidth set, where the historical frequency point bandwidth set includes a previously used operating frequency point and a corresponding bandwidth.
  • the second selection module is specifically configured to obtain the number of second reference frequency points previously selected from the set of candidate frequency points; if the number of second reference frequency points previously selected is less than a preset number Then, from the set of candidate frequency points, a second reference frequency point outside the range of the used frequency points is selected.
  • the device may further include: a fourth determining module, configured to determine the current operating frequency point and corresponding bandwidth of the downlink channel; and a third recording module, configured to record the current operating frequency point and corresponding bandwidth in the The historical frequency point bandwidth set.
  • a fourth determining module configured to determine the current operating frequency point and corresponding bandwidth of the downlink channel
  • a third recording module configured to record the current operating frequency point and corresponding bandwidth in the The historical frequency point bandwidth set.
  • the device may further include: a clearing module, configured to clear the used frequency point range after the candidate frequency point set is updated, and for clearing before selecting a second reference from the candidate frequency point set The number of frequency points.
  • a clearing module configured to clear the used frequency point range after the candidate frequency point set is updated, and for clearing before selecting a second reference from the candidate frequency point set The number of frequency points.
  • FIG. 7 is a schematic diagram of the hardware structure of a device for implementing various embodiments of the present invention.
  • the device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, User input unit 707, interface unit 708, memory 709, processor 710, power supply 711 and other components.
  • a radio frequency unit 701 for implementing various embodiments of the present invention.
  • the device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, User input unit 707, interface unit 708, memory 709, processor 710, power supply 711 and other components.
  • the structure of the device shown in FIG. 7 does not constitute a limitation on the device, and the device may include more or less components than those shown in the figure, or combine certain components, or arrange different components.
  • devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted devices, wearable devices, and pedometers.
  • the radio frequency unit 701 can be used for receiving and sending signals during information transmission or communication, receiving downlink data from the base station, and processing it to the processor 710; and sending uplink data to the base station.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the device provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 can convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into an audio signal and output it as sound. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the device 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • GPU graphics processing unit
  • the graphics processing unit 7041 is used to capture images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the device 700 further includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 7061 and/or the backlight when the device 700 is moved to the ear.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the device's posture (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the user input unit 707 can be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the device.
  • the user input unit 707 includes a touch panel 7041 and other input devices 7072.
  • the touch panel 7041 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7041 or near the touch panel 7041. operate).
  • the touch panel 7041 may include two parts: a touch detection device and a touch controller. Among them, the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7041 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7041 can be overlaid on the display panel 7061. When the touch panel 7041 detects a touch operation on or near it, it transmits it to the processor 710 to determine the type of the touch event, and then the processor 710 determines the type of touch event according to the touch. The type of event provides corresponding visual output on the display panel 7061.
  • the interface unit 708 is an interface for connecting an external device and the device 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the device 700 or can be used to communicate between the device 700 and the external device. Transfer data between.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the device. It uses various interfaces and lines to connect various parts of the entire device. Various functions and processing data of the equipment, so as to monitor the equipment as a whole.
  • the processor 710 may include one or more processing units; preferably, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs.
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the device 700 may also include a power source 411 (such as a battery) for supplying power to various components.
  • a power source 411 such as a battery
  • the power source 711 may be logically connected to the processor 410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. Function.
  • the device 700 includes some functional modules that are not shown, which will not be repeated here.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • FIG. 8 is a block diagram of a computing processing device provided by an embodiment of the present invention. As shown in FIG. 8, FIG.
  • the computing processing device traditionally includes a processor 810 and a computer program product in the form of a memory 820 or a computer readable medium.
  • the memory 820 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 820 has a storage space 830 for executing program codes of any method steps in the above methods.
  • the storage space 830 for program codes may include various program codes respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 9.
  • the storage unit may have storage segments, storage spaces, etc., arranged similarly to the memory 820 in the computing processing device of FIG. 8.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes, that is, codes that can be read by, for example, a processor such as 810. These codes, when run by a computing processing device, cause the computing processing device to perform each of the methods described above. step.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道频点处理方法和装置,所述方法包括:获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的一个;判断通信质量参数是否满足预设通信质量参数条件;当通信质量参数满足预设通信质量参数条件时,从多个频点中选择第一参考频点;其中,第一参考频点与当前工作频点不同;向可移动平台发送频点参考信息,频点参考信息用于指示可移动平台选择第一参考频点作为下行信道的工作频点。通过遥控设备触发选频的机制,可以在遥控设备遇到强干扰等影响下行通信的情况时,向可移动平台提供能降低干扰的频点,由可移动平台即时切换到新的下行信道工作频点从而降低干扰。

Description

一种信道频点处理方法和装置 技术领域
本发明涉及通信技术领域,特别是涉及一种信道频点处理方法和一种信道频点处理装置。
背景技术
对于便携式可移动平台,通常需要专门的遥控设备与可移动平台通信,并且向可移动平台发送指令;同时可移动平台响应指令进行运动并且回传例如由机载相机拍摄的图传信号,从而达到运动控制与构图的交互。
在城市环境下,有大量的通信设备在ISM(Industrial Scientific Medical,工业、科学的、医学的)频段上工作,这些通信设备会对同样工作在ISM频段上的可移动平台造成信号干扰;在生产测试、质量测试这种多机环境下,存在多架可移动平台之间的相互干扰。这些干扰将限制可移动平台的图传、下载、遥控等性能,如降低图传清晰度、降低下载速率、遥控不顺畅。
发明内容
本发明提供一种信道频点处理方法和一种信道频点处理装置,以便解决在遇到突发性的强干扰时,在下行信道的通信受干扰的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种信道频点处理方法,该方法应用于可移动平台的遥控设备,所述可移动平台通过下行信道向所述遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,所述方法包括:
获取下行信道当前工作频点的通信质量参数;
判断所述通信质量参数是否满足预设通信质量参数条件;
当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同;
向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
第二方面,本发明实施例还提供了一种信道频点处理方法,该方法应用于可移动平台,所述可移动平台通过下行信道向所述遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,所述方法包括:
接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同;
选择所述第一参考频点作为下行信道的工作频点。
第三方面,本发明实施例还提供了一种信道频点处理装置,应用于可移动平台的遥控设备,所述可移动平台通过下行信道向所述遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上, 所述预设频段包括多个频点,所述信道频点处理装置包括计算机可读存储介质及处理器;所述处理器用于执行以下操作:
获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的一个;
判断所述通信质量参数是否满足预设通信质量参数条件;
当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中,选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同;
向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
第四方面,本发明实施例还提供了一种信道频点处理装置,应用于可移动平台,所述可移动平台通过下行信道向所述遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,所述信道频点处理装置包括计算机可读存储介质及处理器;所述处理器用于执行以下操作:
接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同;
选择所述第一参考频点作为下行信道的工作频点。
第五方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以下操作:
获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的一个;
判断所述通信质量参数是否满足预设通信质量参数条件;
当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同;
向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
第六方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以下操作:
接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同;
选择所述第一参考频点作为下行信道的工作频点。
在本发明实施例中,遥控设备可以判断下行信道当前工作频点的通信质量参数是否满足预设通信质量参数条件;当满足预设通信质量参数条件时,从预设频段的多个频点中选择第一参考频点;向可移动平台发送用于指示可移动平台选择所述第一参考频点作为下行信道的工作频点的频点参考 信息。通过遥控设备触发选频的机制,可以在遥控设备遇到强干扰的等影响下行通信的情况时,向可移动平台提供能降低干扰的频点,由可移动平台即时切换到新的下行信道工作频点从而降低干扰。
附图说明
图1是本发明的一种信道频点处理方法实施例一的步骤流程图;
图2是本发明的一种信道频点处理方法实施例二的步骤流程图;
图3是本发明的一种信道频点处理方法实施例三的步骤流程图;
图4是本发明的一种信道频点处理方法实施例四的步骤流程图;
图5是本发明实施例提供的一种信道频点处理装置的框图;
图6是本发明实施例提供的另一种信道频点处理装置的框图;
图7为实现本发明各个实施例的一种设备的硬件结构示意图;
图8是为本发明实施例提供的一种计算处理设备的框图;
图9是为本发明实施例提供的一种便携式或者固定存储单元的框图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
若遇到的干扰情况下,可移动平台可以通过跳频的方式跳转到其他频点,以降低信号干扰。现有的自适应跳频策略,由遥控设备物理层扫频识别频带上的干扰并上报扫频值给可移动平台,由可移动平台的无线资源管理层根据扫频值挑选出干净的频点;将选出的干净频点通知给遥控器使用。
可移动平台可以是飞行器,比如多旋翼无人机、固定翼无人机。也可以是无人车、船、潜艇等可移动平台。
可移动平台往往具有较为复杂的工作环境,其与遥控器的通讯链路会遭遇环境中的突发性强干扰,进而影响可移动平台到遥控器的数据传输。
但是对于突发性的强干扰,现有的自适应跳频策略,难以降低下行信道受到的干扰,仍然可能会造成图传卡顿甚至黑屏、失控等问题。
下行信道的频点带宽是由可移动平台选择后通过下行控制信道通知遥控设备。可移动平台选择频点带宽时,需要让遥控设备将扫频值上报给可移动平台,若上行链路比较差,遥控设备上报扫频值比较稀疏。例如,经过4轮扫频,才向可移动平台上报一次。飞机拿到的扫频值在时效性有一定损失。容易造成遥控设备在受到一些突发干扰时,因不能及时跳出被干扰的频点,影响到下行通信性能。
针对该问题,本发明实施例提出一种遥控设备触发选频的机制,可以在遇到强干扰的时候,由 遥控设备将选频得到频点发送到可移动平台,可移动平台可以选择遥控设备提供的频点作为下行信道工作频点。
以下首先从遥控设备的角度,对本发明实施例进行说明。
参照图1,示出了本发明的一种信道频点处理方法实施例一的步骤流程图,该方法应用于可移动平台的遥控设备,可移动平台通过下行信道向遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,该方法具体可以包括如下步骤:
步骤101,获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的一个。
遥控设备可以获取下行信道当前工作频点的通信质量参数,通信质量参数可以表示在当前工作频点接收通信数据的质量。
步骤102,判断所述通信质量参数是否满足预设通信质量参数条件。
预设通信质量参数条件可以是用于判断遥控设备是否遇到强干扰的等影响下行通信的情况的条件。
步骤103,当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同。
当通信质量参数满足预设通信质量参数条件时,可以表示遥控设备遇到强干扰的等影响下行通信的情况。遥控设备可以从预设频段的多个频点中选择第一参考频点,第一参考频点是当前工作频点之外的频点。预设频段可以为预先配置的工作频段,例如2.4GHz和5.8GHz频段。
步骤104,向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
遥控设备可以根据所述第一参考频点生成频点参考信息,通过上行信道向可移动平台发送频点参考信息。频点参考信息仅作为一种建议,最终决定下行信道的工作频点的还是可移动平台,可移动平台可以选择将第一参考频点作为下行信道的工作频点,也可以选择将其他频点作为下行信道的工作频点。
在本发明实施例中,遥控设备可以判断下行信道当前工作频点的通信质量参数是否满足预设通信质量参数条件;当满足预设通信质量参数条件时,从多个频点中选择第一参考频点;然后向可移动平台发送用于指示可移动平台选择第一参考频点作为下行信道的工作频点的频点参考信息。通过遥控设备触发选频的机制,可以在遥控设备遇到强干扰的等影响下行通信的情况时,向可移动平台提供能降低干扰的频点,由可移动平台即时切换到新的下行信道工作频点从而降低干扰。
参照图2,示出了本发明的一种信道频点处理方法实施例二的步骤流程图,该方法应用于可移动平台的遥控设备,可移动平台通过下行信道向遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,该方法具体可以包括如下步骤:
步骤201,获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的 一个。
遥控设备通过天线接收下行信道的通信数据,下行信道可以包括:下行数据信道(PDSCH,Physical Downlink Shared Channel)和下行控制信道(PDCCH,Physical Downlink Control Channel)。
遥控设备与可移动平台之间采用混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)机制,在遥控设备接收通信数据失败或者解析通信数据失败的情况下,遥控设备可以请求可移动平台重传通信数据。
在本发明实施例中,通信质量参数包括以下至少一种:接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
信号强度值可以为天线的RSRP(Reference Signal Receiving Power,参考信号接收功率),在一种示例中,遥控设备具有多根天线,每根天线都具有对应的接收到的RSRP,可以将数值最大RSRP作为接收到的通信数据的接收信号强度值。例如,遥控设备具有两根接收天线,接收到RSRP分别为RS0和RS1,可以确定RS0和RS1中的最大值作为接收到的通信数据的接收信号强度值。
多个时间段的下行数据信道的误包率,可以是与当前时刻最近的多个不多长度的时间段内下行数据信道的误包率。可以采用滑窗统计得到的多个时间窗口内的下行数据信道的误包率。例如,可以滑窗式统计最近的每64、24、8个下行PDSCH子帧的误包率。
在实际中,本领域技术人员还可以选择其他参数作为通信质量参数,本发明实施例对此不做限定。
步骤202,判断所述通信质量参数是否满足预设通信质量参数条件。
在本发明实施例中,遥控设备可以按照第一预设检测周期,判断通信质量参数是否满足预设通信质量参数条件。第一预设检测周期可以预先设定,也可以根据实际需要调整,例如,根据遥控设备的所在的环境调整。第一预设检测周期越短,遥控设备触发选频周期越短,从而使得可移动平台切换频点周期越短,可能造成过多无效切换。反之,第一预设检测周期越长,可移动平台切换频点周期越长,可能导致无法及时切换下行信道工作频点。在一种示例中,第一预设检测周期可以为30-50ms,在此范围内,能够有效的躲避干扰。
预设通信质量参数条件可以基于通信质量参数确定,在通信质量参数包括多个时,预设通信质量参数条件可以包括分别针对各个通信质量参数的判断条件;在针对各个通信质量参数的判断条件都满足时,才认为满足预设通信质量参数条件。
例如,若通信质量参数包括:接收到的通信数据的接收信号强度值和针对下行数据信道连续执行重传的次数,则预设通信质量参数条件可以包括基于接收到的通信数据的接收信号强度值和针对下行数据信道连续执行重传的次数的判断条件。
在一种示例中,判断通信质量参数是否满足预设通信质量参数条件的步骤可以包括:判断通信质量参数是否在对应的预设参数范围内;若通信质量参数在对应的预设参数范围内,则判断为满足 预设通信质量参数条件。
具体的,对于每一种通信质量参数,可以对应一种预设参数范围。
对于接收到的通信数据的接收信号强度值,对应预设参数范围可以为大于零且小于预设信号强度阈值。
对于多个时间段的下行数据信道的误包率,对应的预设参数范围可以大于或等于预设误包率阈值。例如,分别统计最近的每64、24、8个下行PDSCH子帧的误包率,如果最近64个PDSCH错包数大于24个或最近24个PDSCH错包数大于12个或最近8个PDSCH错包数大于6个,认为误包率高。其中,误包率阈值的设定的原则是:稀疏的弱干扰会造成一定的错包,但这些错包不必通过切换频点解决,通过下行调制与编码策略MCS(Modulation and Coding Scheme)和物理层的HARQ重传能解决,只有大量的错包,即满足误包率阈值,才需要通过切换频点来解决。
对于针对下行数据信道连续执行重传的次数,对应的预设参数范围可以大于或等于为第一次数阈值。例如,对于针对下行数据信道连续执行重传的次数大于或等于4次。
对于针对下行控制信道连续执行重传的次数,对应的预设参数范围可以大于或等于为第二次数阈值。例如,对于针对下行控制信道连续执行重传的次数大于或等于1次。
步骤203,当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同。
在本发明实施例中,当通信质量参数满足预设通信质量参数条件时,从多个频点中选择第一参考频点的步骤可以包括:当通信质量参数满足预设通信质量参数条件时,从多个频点中确定候选频点集合;从候选频点集合中选择第一参考频点。
候选频点集合是可供遥控设备选择频点的集合,候选频点集合可以是预先设定的频点集合,也可以是周期性更新的频点集合。例如遥控设备可以周期性在可用工作频段上(如2.4GHz和5.8GHz频段)扫描多个频点的干扰信号功率谱密度IPSD(可以称为扫频值),根据IPSD选择可用的候选频点集合。
在本发明实施例中,从候选频点集合中选择第一参考频点的步骤可以包括:获取已用频点范围;从候选频点集合中,选择在已用频点范围之外的第一参考频点。
具体的,已用频点范围可以是当前的候选频点集合中,已作为工作频点使用过的频点的范围。可以获取在先已经使用的下行信道工作频点和对应的带宽;将在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
在遥控设备的工作频段为2.4G&5.8G双频时,物理层完成一次完整的扫频的时间可以为100ms-150ms,如果遥控设备触发选频比较频繁,由于扫频值还未完成完整的刷新,选出的新频点可能还是已使用的当前受干扰的频点,因此需要从已用频点范围之外选频。
在实际中,遥控设备可能因为物理层扫频异常,导致扫频值长时间未能完整刷新,候选频点集合长时间未刷新。若在先从候选频点集合中,选取已用频点范围之外的第一参考频点的个数较多, 可能会导致候选频点集合都属于已用频点范围,无法进一步选取已用频点范围之外的第一参考频点。对此,本发明实施例中,从候选频点集合中,选择在已用频点范围之外的第一参考频点的步骤可以包括:获取在先从候选频点集合选取第一参考频点的个数;若在先选取第一参考频点的个数小于预设个数,则从候选频点集合中,选择在已用频点范围之外的第一参考频点。
例如,若在先从候选频点集合,选择已用频点范围之外的第一参考频点的个数小于3,则在遥控设备当前触发选频时,可以从候选频点集合,选择已用频点范围之外的第一参考频点。
在遥控设备的候选频点集合更新后,遥控设备可以清零已用频点范围,以及清零在先从候选频点集合选取第一参考频点的个数。在先从候选频点集合中选择已用频点范围之外的第一参考频点的个数可以通过计数器记录,在候选频点集合更新后,清零计数器。
在一种示例,遥控设备在切换到下行信道当前工作频点后,可以确定下行信道当前工作频点和对应的带宽;将当前工作频点和对应的带宽,记录到历史频点带宽集合。
在触发选频时,遥控设备可以获取历史频点带宽集合,从历史频点带宽集合获取在先已经使用的下行信道工作频点和对应的带宽。在候选频点集合更新后,遥控设备可以清除历史频点带宽集合记录的在先已经使用的下行信道工作频点和对应的带宽,从而清零已用频点范围。
步骤204,向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
在本发明实施例中,向可移动平台发送频点参考信息的步骤可以包括:提高频点参考信息的发送优先级,发送优先级表征将待发送信息向可移动平台发送的优先级;按照频点参考信息的发送优先级,将频点参考信息添加到上行帧;向可移动平台发送包含频点参考信息的上行帧。
具体的,遥控设备在向可移动平台发送信息时,可以从预设队列中获取待发送信息,根据待发送信息的发送优先级,将待发送信息添加到上行帧中。为了提高频点参考信息通过上行数据信道发送的及时性和准确性,遥控设备可以提高频点参考信息的发送优先级。
本发明实施例中,遥控设备是否向可移动平台发送频点参考信息,可以根据遥控设备与可移动平台之间通信连接的拓扑结构来决定。遥控设备与可移动平台通信连接的拓扑结构可以包括:点对点P2P(point 2 point)和点对多点P2MP(point 2 multiple point)两种拓扑结构。P2P拓扑结构,指一个可移动平台只与一个遥控设备通信连接;P2MP结构,指一个可移动平台与多个遥控设备通信连接。
在P2P拓扑结构下,可移动平台只接收一个遥控设备发送的通信数据;遥控设备可以上报第一参考频点给可移动平台使用。在P2MP拓扑结构下,可移动平台可以接收到多个遥控设备发送的通信数据。若多个遥控设备都给可移动平台发送第一参考频点,可移动平台无法决定使用哪个遥控设备上报的第一参考频点。因此,可以在拓扑结构为P2MP的情况下,使得遥控设备不会向可移动平台发送频点参考信息。
本发明实施例的方法还可以包括:在向可移动平台发送频点参考信息之前,判断与可移动平台 通信连接的遥控设备是否为一个;其中,向可移动平台发送所述频点参考信息的步骤可以包括:若与可移动平台通信连接的遥控设备为一个,则向可移动平台发送频点参考信息。
在一种示例,当拓扑结构为P2MP时,遥控设备不触发选频,即遥控设备不执行上述201-204的任一步骤。
步骤205,获取所述多个频点对应的多个干扰信号功率谱密度IPSD。
遥控设备在扫频完成后,可以得到预设频段中多个频点对应的IPSD。遥控设备可以不是在每次扫频完成后,马上向可移动平台上报IPSD,而是等待完成多次扫频后,才向可移动平台上报。遥控设备可以获取多次扫频得到的多个频点对应的多个IPSD。
步骤206,确定所述多个频点对应的多个IPSD中的最大IPSD。
遥控设备可以将多个IPSD进行平均滤波后,向可移动平台发送滤波后得到的IPSD,但这种方式可能会导致IPSD不够准确,弱化物理层扫描得到的干扰。
考虑到在实际中,某个频点在多个扫频时刻可能不都是存在干扰的,因此,在本发明实施例中,遥控设备不对多个IPSD进行平均滤波,而是确定多个IPSD中的最大IPSD,向可移动平台上报频点对应的最大IPSD。
步骤207,向所述可移动平台发送所述多个频点对应的最大IPSD。
受限于上行带宽小,遥控设备需要对上报的IPSD进行量化压缩。在本发明实施例中,向可移动平台发送多个频点对应的最大IPSD的步骤可以包括:获取上行信道当前工作频点的通信质量参数;确定与上行信道当前工作频点的通信质量参数适配的编码参数;采用编码参数,压缩多个频点对应的最大IPSD;向可移动平台发送压缩后的多个频点对应的最大IPSD。
编码参数决定了量化压缩的精度,在本发明实施例中,不再使用固定的精度,而是可以根据上行信道当前工作频点的通信质量参数,确定上行链路的干扰情况,从而选择适配的编码参数,使得量化压缩得到不同精度的数据。干扰水平越大,压缩精度越高;干扰水平越小,压缩精度越低。例如,当上行信道的干扰水平在区间[-120,-56]时,压缩精度可以是4dB。当上行信道的干扰水平在[-120,-104]时,压缩精度可以为1dB。
在本发明实施例中,遥控设备可以判断下行信道当前工作频点的通信质量参数是否满足预设通信质量参数条件;当满足预设通信质量参数条件时,从预设频段的多个频点中选择第一参考频点;向可移动平台发送用于指示可移动平台选择所述第一参考频点作为下行信道的工作频点的频点参考信息。通过遥控设备触发选频的机制,可以在遥控设备遇到强干扰的等影响下行通信的情况时,向可移动平台提供能降低干扰的频点,由可移动平台即时切换到新的下行信道工作频点从而降低干扰。
以下从可移动平台的角度,对本发明实施例进行说明。
参照图3,示出了本发明的一种信道频点处理方法实施例三的步骤流程图,该方法应用于可移动平台,可移动平台通过下行信道向遥控设备发送通信数据,下行信道被配置为工作在预设频段上, 预设频段包括多个频点,该方法具体可以包括如下步骤:
步骤301,接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同。
在本发明实施例中,第一参考频点的生成方式可以参见上述从遥控设备角度描述的实施例,在此不做赘述。
步骤302,选择所述第一参考频点作为下行信道的工作频点。
遥控设备可以通过上行信道向可移动平台发送频点参考信息。频点参考信息相当于建议,最终决定下行信道的工作频点的还是可移动平台,可移动平台可以选择将第一参考频点作为下行信道的工作频点,也可以选择将其他频点作为下行信道的工作频点。
在本发明实施例中,可移动平台可以接收遥控设备提供的第一参考频点,选择第一参考频点作为下行信道的工作频点。第一参考频点是由遥控设备在判断下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从预设频段的多个频点中选择的第一参考频点。通过遥控设备触发选频的机制,可以在遥控设备遇到强干扰的等影响下行通信的情况时,向可移动平台提供能降低干扰的频点,由可移动平台即时切换到新的下行信道工作频点从而降低干扰。
参照图4,示出了本发明的一种信道频点处理方法实施例四的步骤流程图,该方法应用于可移动平台,可移动平台通过下行信道向遥控设备发送通信数据,下行信道被配置为工作在预设频段上,预设频段包括多个频点,该方法具体可以包括如下步骤:
步骤401,接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同。
在本发明实施例中,第一参考频点的生成方式可以参见上述从遥控设备角度描述的实施例,在此不做赘述。
步骤402,获取所述遥控设备反馈的下行信道当前工作频点的通信质量参数。
遥控设备可以获取下行信道当前工作频点的通信质量参数,并向可移动平台反馈。在本发明实施例中,通信质量参数包括以下至少一种:遥控器接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
步骤403,判断所述通信质量参数是否满足预设通信质量参数条件。
在本发明实施例中,可移动平台可以按照第二预设检测周期,判断通信质量参数是否满足预设通信质量参数条件。第二预设检测周期可以预先设定,也可以根据实际需要调整,例如,根据可移动平台的所在的环境调整。第二预设检测周期越短,可移动平台触发选频周期越短,从而使得可移动平台切换频点周期越短,可能造成过多无效切换。反之,第二预设检测周期越长,可移动平台切 换频点周期越长,可能导致无法及时切换下行信道工作频点。在一种示例中,第二预设检测周期可以为30ms-50ms,在此范围内,能够有效的躲避干扰。
预设通信质量参数条件可以基于通信质量参数确定,在通信质量参数包括多个时,预设通信质量参数条件可以包括分别针对各个通信质量参数的判断条件;在针对各个通信质量参数的判断条件都满足时,才认为满足预设通信质量参数条件。
在一种示例中,判断通信质量参数是否满足预设通信质量参数条件的步骤可以包括:判断通信质量参数是否在对应的预设参数范围内;若通信质量参数在对应的预设参数范围内,则判断为满足预设通信质量参数条件。
具体的,对于每一种通信质量参数,可以对应一种预设参数范围。对于接收到的通信数据的接收信号强度值,对应预设参数范围可以为大于零且小于预设信号强度阈值。对于多个时间段的下行数据信道的误包率,对应的预设参数范围可以大于或等于预设误包率阈值。对于针对下行数据信道连续执行重传的次数,对应的预设参数范围可以大于或等于为第一次数阈值。对于针对下行控制信道连续执行重传的次数,对应的预设参数范围可以大于或等于为第二次数阈值。
步骤404,当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点;其中,所述第二参考频点与所述当前工作频点不同。
当通信质量参数满足预设通信质量参数条件时,可移动平台触发选频。可移动平台可以从预设频段的多个频点中选择第二参考频点。在一种示例中,当通信质量参数满足预设通信质量参数条件时,从多个频点中选择第二参考频点的步骤可以包括:当通信质量参数满足预设通信质量参数条件时,等待预设时间;若在等待时间内未接收到遥控设备发送的频点参考信息,则从多个频点中选择第二参考频点。
在可移动平台与遥控设备之间,由于遥控设备向可移动平台上报扫频值具有一定的时延,可移动平台触发选频时,可能使用了至少几百毫秒以前的扫频值,选出的频点有可能是已经受到干扰的频点。相对于可移动平台而言,遥控设备更新扫频值更加频繁,选出的第一参考频点可信度更高,更加能避开干扰。为了配合可信度更高的第一参考频点,在本示例中,在判断通信质量参数满足预设通信质量参数条件后,可移动平台可以等待预设时间,而不是马上选频。如果在等待的预设时间内没有接收到遥控设备上报的频点参考信息,可移动平台才执行选频。如果在等待的预设时间内接收到遥控设备上报的频点参考信息,可移动平台可以不执行选频。
本发明实施例中,遥控设备是否向可移动平台发送频点参考信息,可以根据遥控设备与可移动平台之间通信连接的拓扑结构来决定。在P2P拓扑结构下,可移动平台只接收一个遥控设备发送的通信数据;遥控设备可以上报第一参考频点给可移动平台使用。在P2MP拓扑结构下,可移动平台可以接收到多个遥控设备发送的通信数据。若多个遥控设备都给可移动平台发送第一参考频点,可移动平台无法决定使用哪个遥控设备上报的第一参考频点。因此,可以在拓扑结构为P2MP的情况下,使得遥控设备不会向可移动平台发送频点参考信息。
在一种示例中,可移动平台还可以确定可移动平台与遥控设备的通信连接的拓扑结构信息;向遥控设备发送拓扑结构信息,拓扑结构信息用于指示遥控设备在拓扑结构信息为点对多点P2MP的情况下,暂停发送频点参考信息。
在该示例中,当通信质量参数满足预设通信质量参数条件时,从多个频点中选择第二参考频点的步骤可以包括:在拓扑结构信息为P2MP的情况下,当通信质量参数满足预设通信质量参数条件时,从多个频点中选择第二参考频点。
在另一种示例中,当通信质量参数满足预设通信质量参数条件时,等待预设时间的步骤可以包括:在拓扑结构信息为点对点P2P的情况下,当通信质量参数满足预设通信质量参数条件时,等待预设时间。
在本发明实施例中,当通信质量参数满足预设通信质量参数条件时,从多个频点中选择第二参考频点的步骤可以包括:当通信质量参数满足预设通信质量参数条件时,从多个频点中确定候选频点集合;从候选频点集合中选择第二参考频点。
可移动平台的候选频点集合可以是预先设定的频点集合,也可以是周期性更新的频点集合。例如可移动平台可以周期性在可用工作频段上(如2.4G和5.8G频段)扫描多个频点的干扰信号功率谱密度IPSD(也可以称为扫频值),并记录多个频点的IPSD。可移动平台可以根据记录的多个频点的IPSD确定候选频点集合。
可移动平台可以接收遥控设备发送的与频点对应的干扰信号功率谱密度IPSD;获取可移动平台中记录的与该频点对应的IPSD;若遥控设备发送的IPSD的大于可移动平台中记录的IPSD,则将遥控设备发送的IPSD记录为可移动平台的IPSD;若遥控设备发送的IPSD小于可移动平台中记录的IPSD,则采用遥控设备发送的IPSD和可移动平台中记录的IPSD进行降噪处理,并将降噪得到的IPSD记录为可移动平台的IPSD。
具体的,遥控设备可以向可移动平台发送预设频段中多个频点和对应的IPSD,每个频点对应的IPSD,可以是遥控设备在多轮扫频得到的多个IPSD中的最大IPSD。如果遥控设备提供的IPSD大于可移动平台中记录的IPSD,则可移动平台直接采用遥控设备提供的IPSD替换原来的记录。如果遥控设备提供的IPSD小于可移动平台中记录的IPSD,则可移动平台可以采用遥控设备发送的IPSD和记录的IPSD进行降噪处理(例如alpha滤波),以一定程度的保留历史干扰。
在本发明实施例中,从候选频点集合中选择第二参考频点的步骤可以包括:获取已用频点范围;从候选频点集合中,选择在已用频点范围之外的第二参考频点。
具体的,已用频点范围可以是当前的候选频点集合中,已作为工作频点使用过的频点的范围。可以获取在先已经使用的下行信道工作频点和对应的带宽;将在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
在实际中,可移动平台可能因为物理层扫频异常,导致扫频值长时间未能完整刷新,候选频点集合长时间未刷新。若在先从候选频点集合中,选取已用频点范围之外的第二参考频点的个数较 多,可能会导致候选频点集合都属于已用频点范围,无法进一步选取已用频点范围之外的第二参考频点。对此,本发明实施例中,从候选频点集合中,选择在已用频点范围之外的第二参考频点的步骤可以包括:获取在先从可移动平台的候选频点集合选取第二参考频点的个数;若在先选取第二参考频点的个数小于预设个数,则从可移动平台的候选频点集合中,选择在已用频点范围之外的第二参考频点。
例如,若在先从候选频点集合,选择已用频点范围之外的第二参考频点的个数小于3,则在可移动平台当前触发选频时,可以从候选频点集合,选择已用频点范围之外的第二参考频点。
在候选频点集合更新后,可移动平台可以清零已用频点范围,以及清零在先从可移动平台的候选频点集合选取第二参考频点的个数。
在一种示例,可移动平台在切换到下行信道当前工作频点后,可以确定下行信道当前工作频点和对应的带宽;将当前工作频点和对应的带宽,记录到历史频点带宽集合。
在触发选频时,可移动平台可以获取历史频点带宽集合,从历史频点带宽集合获取在先已经使用的下行信道工作频点和对应的带宽。
在候选频点集合更新后,可移动平台可以清除历史频点带宽集合记录的在先已经使用的下行信道工作频点和对应的带宽,从而清零已用频点范围。
步骤405,选择所述第一参考频点或所述第二参考频点作为下行信道的工作频点。
可移动平台可以选择由遥控设备提供的第一参考频点,或选择自身确定的第二参考频点作为下行信道的工作频点。
在一种示例中,在判断通信质量参数满足预设通信质量参数条件后,可移动平台可以等待预设时间;在该示例中,选择第一参考频点或第二参考频点作为下行信道的工作频点的步骤可以包括:若在预设时间内未接收到遥控设备发送的频点参考信息,则选择第二参考频点作为下行信道的工作频点。
在欧盟CE区域DAA(感知和避让)机制的限制下,一些频点可能会不满足协议的规定,被列入协议规定的非工作频点。例如,若工作频点的干扰水平超过预设阈值,则将该工作频点列为被一定期限内被禁用的频点。在一种示例中,选择第一参考频点作为下行信道的工作频点的步骤可以包括:判断第一参考频点是否为预设协议规范内的非工作频点;若第一参考频点不为预设协议规范内的非工作频点,则选择第一参考频点作为下行信道的工作频点。
在一种示例中,考虑到遥控设备提供的第一参考频点的可信度更高,可移动平台可以在接收到遥控设备的频点参考信息后,决定切换至第一参考频点作为下行信道的工作频点。
在该示例中,可移动平台可以确定是否处于频点带宽切换期间;若不处于频点带宽切换期间,则切换至第一参考频点作为下行信道的工作频点;若处于频点带宽切换期间,则在频点带宽切换完成后,切换至第一参考频点作为下行信道的工作频点。
具体的,在可移动平台决定要切换到某个频点时,可移动平台需要首先通知遥控设备,可移动 平台可以在一个时间窗口(例如10ms-20ms)内向遥控设备发送切换控制信息。这个时间窗口即频点带宽切换期间,在频点带宽切换期间内,不允许切换频点。
在本发明实施例中,可移动平台还可以在切换到新的下行信道工作频点后,确定新的工作频点的频点类型;若新的工作频点的频点类型为预设类型,则获取处于该工作频点的时长;在处于该工作频点的时长达到预设时长阈值之前,若接收到遥控设备发送的频点参考信息,则切换至第一参考频点;
具体的,频点类型可以是指触发选择该工作频点的类型。可移动平台触发选频的方式可以包括多种,例如,周期性选频,基于DAA机制的选频,基于遥控设备反馈的下行信道通信质量信息的HARQ选频。
如果新频点的频点类型是预设类型(例如周期性触发或HARQ触发选出),切换到新频点后,如果可移动平台没有收到频点参考信息,则新频点需要在保护期(如200ms)滞留,保护期用于物理层完成新频点带宽的切换和新频点带宽的性能验证。若可移动平台在保护期内收到了频点参考信息,那么立即通知物理层使用第一参考频点。
如果新频点的频点类型是遥控设备选出的第一参考频点,在切换到新频点后,除了DAA触发需要立即更换到新频点,其他触发选出的频点在保护期内不会使用。
在保护期结束后,可移动平台可以从多种频点类型的频点中选择工作频点,而不限于第一参考频点和DAA触发选择的频点。
在一种示例,选择第一参考频点,或第二参考频点作为下行信道的工作频点的步骤可以包括:在处于该工作频点的时长达到预设时长阈值之后,若接收到遥控设备发送的频点参考信息,则选择第一参考频点,或第二参考频点作为下行信道的工作频点。
在本发明实施例中,可移动平台可以接收遥控设备提供的第一参考频点,可移动平台可以判断下行信道当前工作频点的通信质量参数是否满足预设通信质量参数条件;当满足预设通信质量参数条件时,从预设频段的多个频点中选择第二参考频点;之后选择第一参考频点或第二参考频点作为下行信道的工作频点。第一参考频点是由遥控设备在判断下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从预设频段的多个频点中选择的第一参考频点。通过遥控设备触发选频的机制,可以在遥控设备遇到强干扰的等影响下行通信的情况时,向可移动平台提供能降低干扰的频点,由可移动平台即时切换到新的下行信道工作频点从而降低干扰。
图5是本发明实施例提供的一种信道频点处理装置的框图,该装置50可以包括:第一获取模块501,用于获取下行信道当前工作频点的通信质量参数,所述当前工作频点为多个频点中的一个;第一判断模块502,用于判断所述通信质量参数是否满足预设通信质量参数条件;选择模块503,用于当所述通信质量参数满足预设通信质量参数条件时,从多个频点中选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同;第一发送模块504,用于向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
可选的,选择模块503,具体用于当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定候选频点集合;从所述候选频点集合中选择第一参考频点。。
可选的,所述通信质量参数包括以下至少一种:接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
可选的,所述预设通信质量参数条件基于所述通信质量参数确定。
可选的,所述第一判断模块502,具体用于判断所述通信质量参数是否在对应的预设参数范围内;若所述通信质量参数在对应的预设参数范围内,则判断为满足预设通信质量参数条件。
可选的,该装置还可以包括:第二判断模块,用于在向所述可移动平台发送频点参考信息之前,判断与所述可移动平台通信连接的遥控设备是否为一个;第一发送模块,具体用于若与所述可移动平台通信连接的遥控设备为一个,则向所述可移动平台发送频点参考信息。
可选的,所述选择模块503,具体用于获取已用频点范围;从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点。
可选的,所述选择模块503,具体用于获取在先已经使用的下行信道工作频点和对应的带宽;将所述在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
可选的,所述选择模块503,具体用于获取历史频点带宽集合,所述历史频点带宽集合包括在先使用过的工作频点和对应的带宽。
可选的,所述选择模块503,具体用于获取在先从所述候选频点集合选取第一参考频点的个数;若在先选取第一参考频点的个数小于预设个数,则从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点。
可选的,该装置还可以包括:第一确定模块,用于确定下行信道当前工作频点和对应的带宽;第一记录模块,用于将所述当前工作频点和对应的带宽,记录到所述历史频点带宽集合。
可选的,该装置还可以包括:清零模块,用于在候选频点集合更新后,清零所述已用频点范围,以及清零在先从所述候选频点集合选取第一参考频点的个数。
可选的,所述第一发送模块504,具体用于提高频点参考信息的发送优先级;所述发送优先级表征将待发送信息向可移动平台发送的优先级;按照所述频点参考信息的发送优先级,将所述频点参考信息添加到上行帧;向所述可移动平台发送包含所述频点参考信息的所述上行帧。
可选的,该装置还可以包括:第二获取模块,用于获取所述多个频点对应的多个干扰信号功率谱密度IPSD;第二确定模块,用于确定所述多个频点对应的多个IPSD中的最大IPSD;第二发送模块,用于向所述可移动平台发送所述多个频点对应的最大IPSD。
可选的,所述第二发送模块,具体用于获取上行信道当前工作频点的通信质量参数;确定与所述上行信道当前工作频点的通信质量参数适配的编码参数;采用所述编码参数,压缩所述多个频点对应的最大IPSD;向所述可移动平台发送压缩后的所述多个频点对应的最大IPSD。
图6是本发明实施例提供的另一种信道频点处理装置的框图,该装置60可以包括:第一接收模块601,用于接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同;第一选择模块602,用于选择所述第一参考频点作为下行信道的工作频点。
可选的,该装置还可以包括:第一获取模块,用于获取所述遥控设备反馈的下行信道当前工作频点的通信质量参数;第一判断模块,用于判断所述通信质量参数是否满足预设通信质量参数条件;第二选择模块,用于当所述通信质量参数满足预设通信质量参数条件时,从多个频点中选择第二参考频点;其中,所述第二参考频点与所述当前工作频点不同;所述第一选择模块,具体用于选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点。
可选的,所述第二选择模块,具体用于当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定候选频点集合;从所述候选频点集合中选择第二参考频点。
可选的,所述通信质量参数包括以下至少一种:所述遥控器接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
可选的,所述预设通信质量参数条件基于所述通信质量参数确定。
可选的,所述第一判断模块,具体用于判断所述通信质量参数是否在对应的预设参数范围内;若所述通信质量参数在对应的预设参数范围内,则判断为满足预设通信质量参数条件。
可选的,所述第二选择模块,具体用于当所述通信质量参数满足预设通信质量参数条件时,等待预设时间;若在所述等待时间内未接收到所述遥控设备发送的频点参考信息,则从所述多个频点中选择第二参考频点。
可选的,所述第一选择模块601,具体用于若在所述预设时间内未接收到所述遥控设备发送的频点参考信息,则选择所述第二参考频点作为下行信道的工作频点。
可选的,该装置还可以包括:第一确定模块,用于确定所述可移动平台与所述遥控设备的通信连接的拓扑结构信息;第一发送模块,用于向所述遥控设备发送所述拓扑结构信息,所述拓扑结构信息用于指示所述遥控设备在所述拓扑结构信息为点对多点P2MP的情况下,暂停发送所述频点参考信息。
可选的,所述第二选择模块,具体用于在所述拓扑结构信息为点对点P2P的情况下,当所述通信质量参数满足预设通信质量参数条件时,等待预设时间。
可选的,所述第二选择模块,具体用于在所述拓扑结构信息为P2MP的情况下,当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点。
可选的,所述第一选择模块602,具体用于判断所述第一参考频点是否为预设协议规范内的非工作频点;若所述第一参考频点不为预设协议规范内的非工作频点,则选择所述第一参考频点作为下行 信道的工作频点。
可选的,该装置还可以包括:第二确定模块,用于确定是否处于频点带宽切换期间;第一切换模块,用于若不处于所述频点带宽切换期间,则切换至第一参考频点作为下行信道的工作频点;第二切换模块,用于若处于所述频点带宽切换期间,则在所述频点带宽切换完成后,切换至第一参考频点作为下行信道的工作频点。
可选的,该装置还可以包括:第三确定模块,用于在切换到新的下行信道工作频点后,确定所述新的工作频点的频点类型;第二获取模块,用于若所述新的工作频点的频点类型为预设类型,则获取处于该工作频点的时长;第三切换模块,用于在处于该工作频点的时长达到预设时长阈值之前,若接收到所述遥控设备发送的频点参考信息,则切换至所述第一参考频点。
可选的,所述第一选择模块602,具体用于在处于该工作频点的时长达到预设时长阈值之后,若接收到所述遥控设备发送的频点参考信息,则选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点。
可选的,该装置还可以包括:第二接收模块,用于接收所述遥控设备发送的频点对应的干扰信号功率谱密度IPSD;第三获取模块,用于获取所述可移动平台中记录的与所述频点对应的IPSD;第一记录模块,用于若所述遥控设备发送的IPSD的大于所述可移动平台中记录的IPSD,则将所述遥控设备发送的IPSD记录为可移动平台的IPSD;第二记录模块,用于若所述遥控设备发送的IPSD小于所述可移动平台中记录的IPSD,则采用所述遥控设备发送的IPSD和所述可移动平台中记录的IPSD进行降噪处理,并将降噪得到的IPSD记录为可移动平台的IPSD。
可选的,所述第二选择模块,具体用于获取已用频点范围;从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点。
可选的,所述第二选择模块,具体用于获取在先已经使用的下行信道工作频点和对应的带宽;将所述在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
可选的,所述第二选择模块,具体用于获取历史频点带宽集合,所述历史频点带宽集合包括在先使用过的工作频点和对应的带宽。
可选的,所述第二选择模块,具体用于获取在先从所述候选频点集合选取第二参考频点的个数;若在先选取第二参考频点的个数小于预设个数,则从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点。
可选的,该装置还可以包括:第四确定模块,用于确定下行信道当前工作频点和对应的带宽;第三记录模块,用于将所述当前工作频点和对应的带宽,记录到所述历史频点带宽集合。
可选的,该装置还可以包括:清零模块,用于在候选频点集合更新后,清零所述已用频点范围,以及清零在先从所述候选频点集合选取第二参考频点的个数。
图7为实现本发明各个实施例的一种设备的硬件结构示意图,该设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单 元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的设备结构并不构成对设备的限定,设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载设备、可穿戴设备、以及计步器等。应理解的是,射频单元701可用于收发信息或通话过程中,信号的接收和发送,将来自基站的下行数据接收后,给处理器710处理;将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。设备通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与设备700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获设备(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。设备700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在设备700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。用户输入单元707可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7041以及其他输入设备7072。触控面板7041,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7041上或在触控面板7041附近的操作)。触控面板7041可包括触摸检测设备和触摸控制器两个部分。其中,触摸检测设备检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测设备上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外, 可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7041。除了触控面板7041,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。进一步的,触控面板7041可覆盖在显示面板7061上,当触控面板7041检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然触控面板7041与显示面板7061是作为两个独立的部件来实现设备的输入和输出功能,但是在某些实施例中,可以将触控面板7041与显示面板7061集成而实现设备的输入和输出功能,具体此处不做限定。接口单元708为外部设备与设备700连接的接口。例如,外部设备可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的设备的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部设备的输入(例如,数据信息、电力等等)并且将接收到的输入传输到设备700内的一个或多个元件或者可以用于在设备700和外部设备之间传输数据。存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。处理器710是设备的控制中心,利用各种接口和线路连接整个设备的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行设备的各种功能和处理数据,从而对设备进行整体监控。处理器710可包括一个或多个处理单元;优选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。设备700还可以包括给各个部件供电的电源411(比如电池),优选的,电源711可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。另外,设备700包括一些未示出的功能模块,在此不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形 式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。例如,图8为本发明实施例提供的一种计算处理设备的框图,如图8所示,图8示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备传统上包括处理器810和以存储器820形式的计算机程序产品或者计算机可读介质。存储器820可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器820具有用于执行上述方法中的任何方法步骤的程序代码的存储空间830。例如,用于程序代码的存储空间830可以包括分别用于实现上面的方法中的各种步骤的各个程序代码。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图9所述的便携式或者固定存储单元。该存储单元可以具有与图8的计算处理设备中的存储器820类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码,即可以由例如诸如810之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (76)

  1. 一种信道频点处理方法,其特征在于,应用于可移动平台的遥控设备,所述可移动平台通过下行信道向所述遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,所述方法包括:
    获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的一个;
    判断所述通信质量参数是否满足预设通信质量参数条件;
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同;
    向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
  2. 根据权利要求1所述的方法,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点,包括:
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定候选频点集合;
    从所述候选频点集合中选择第一参考频点。
  3. 根据权利要求1所述的方法,其特征在于,所述通信质量参数包括以下至少一种:接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
  4. 根据权利要求3所述的方法,其特征在于,所述预设通信质量参数条件基于所述通信质量参数确定。
  5. 根据权利要求4所述的方法,其特征在于,所述判断所述通信质量参数是否满足预设通信质量参数条件,包括:
    判断所述通信质量参数是否在对应的预设参数范围内;
    若所述通信质量参数在对应的预设参数范围内,则判断为满足预设通信质量参数条件。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    在向所述可移动平台发送频点参考信息之前,判断与所述可移动平台通信连接的遥控设备是否为一个;
    所述向所述可移动平台发送频点参考信息,包括:
    若与所述可移动平台通信连接的遥控设备为一个,则向所述可移动平台发送频点参考信息。
  7. 根据权利要求2所述的方法,其特征在于,所述从所述候选频点集合中选择第一参考频点,包括:
    获取已用频点范围;
    从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点。
  8. 根据权利要求7所述的方法,其特征在于,所述获取已用频点范围,包括:
    获取在先已经使用的下行信道工作频点和对应的带宽;
    将所述在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
  9. 根据权利要求8所述的方法,其特征在于,所述获取在先使用过的工作频点和对应的带宽,包括:
    获取历史频点带宽集合,所述历史频点带宽集合包括在先使用过的工作频点和对应的带宽。
  10. 根据权利要求8所述的方法,其特征在于,所述从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点,包括:
    获取在先从所述候选频点集合选取第一参考频点的个数;
    若在先选取第一参考频点的个数小于预设个数,则从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点。
  11. 根据权利要求9所述的方法,其特征在于,还包括:
    确定下行信道当前工作频点和对应的带宽;
    将所述当前工作频点和对应的带宽,记录到所述历史频点带宽集合。
  12. 根据权利要求10所述的方法,其特征在于,还包括:
    在候选频点集合更新后,清零所述已用频点范围,以及清零在先从所述候选频点集合选取第一参考频点的个数。
  13. 根据权利要求1所述的方法,其特征在于,所述向所述可移动平台发送频点参考信息,包括:
    提高频点参考信息的发送优先级;所述发送优先级表征将待发送信息向可移动平台发送的优先级;
    按照所述频点参考信息的发送优先级,将所述频点参考信息添加到上行帧;
    向所述可移动平台发送包含所述频点参考信息的所述上行帧。
  14. 根据权利要求1所述的方法,其特征在于,还包括:
    获取所述多个频点对应的多个干扰信号功率谱密度IPSD;
    确定所述多个频点对应的多个IPSD中的最大IPSD;
    向所述可移动平台发送所述多个频点对应的最大IPSD。
  15. 根据权利要求14所述的方法,其特征在于,所述向所述可移动平台发送所述多个频点对应的最大IPSD,包括:
    获取上行信道当前工作频点的通信质量参数;
    确定与所述上行信道当前工作频点的通信质量参数适配的编码参数;
    采用所述编码参数,压缩所述多个频点对应的最大IPSD;
    向所述可移动平台发送压缩后的所述多个频点对应的最大IPSD。
  16. 一种信道频点处理方法,其特征在于,应用于可移动平台,所述可移动平台通过下行信道向遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,所述方法包括:
    接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同;
    选择所述第一参考频点作为下行信道的工作频点。
  17. 根据权利要求16所述的方法,其特征在于,还包括:
    获取所述遥控设备反馈的下行信道当前工作频点的通信质量参数;
    判断所述通信质量参数是否满足预设通信质量参数条件;
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点;其中,所述第二参考频点与所述当前工作频点不同;
    所述选择所述第一参考频点作为下行信道的工作频点,包括:
    选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点。
  18. 根据权利要求17所述的方法,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点,包括:
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定候选频点集合;
    从所述候选频点集合中选择第二参考频点。
  19. 根据权利要求17所述的方法,其特征在于,所述通信质量参数包括以下至少一种:所述遥控器接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
  20. 根据权利要求19所述的方法,其特征在于,所述预设通信质量参数条件基于所述通信质量参数确定。
  21. 根据权利要求20所述的方法,其特征在于,所述判断所述通信质量参数是否满足预设通信质量参数条件,包括:
    判断所述通信质量参数是否在对应的预设参数范围内;
    若所述通信质量参数在对应的预设参数范围内,则判断为满足预设通信质量参数条件。
  22. 根据权利要求17所述的方法,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点,包括:
    当所述通信质量参数满足预设通信质量参数条件时,等待预设时间;
    若在所述等待时间内未接收到所述遥控设备发送的频点参考信息,则从所述多个频点中选择第二参考频点。
  23. 根据权利要求22所述的方法,其特征在于,所述选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点,包括:
    若在所述预设时间内未接收到所述遥控设备发送的频点参考信息,则选择所述第二参考频点作为下行信道的工作频点。
  24. 根据权利要求22所述的方法,其特征在于,还包括:
    确定所述可移动平台与所述遥控设备的通信连接的拓扑结构信息;
    向所述遥控设备发送所述拓扑结构信息,所述拓扑结构信息用于指示所述遥控设备在所述拓扑结构信息为点对多点P2MP的情况下,暂停发送所述频点参考信息。
  25. 根据权利要求24所述的方法,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,等待预设时间,包括:
    在所述拓扑结构信息为点对点P2P的情况下,当所述通信质量参数满足预设通信质量参数条件时,等待预设时间。
  26. 根据权利要求24所述的方法,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点,包括:
    在所述拓扑结构信息为P2MP的情况下,当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点。
  27. 根据权利要求16所述的方法,其特征在于,所述选择所述第一参考频点作为下行信道的工作频点,包括:
    判断所述第一参考频点是否为预设协议规范内的非工作频点;
    若所述第一参考频点不为预设协议规范内的非工作频点,则选择所述第一参考频点作为下行信道的工作频点。
  28. 根据权利要求16所述的方法,其特征在于,还包括:
    确定是否处于频点带宽切换期间;
    若不处于所述频点带宽切换期间,则切换至第一参考频点作为下行信道的工作频点;
    若处于所述频点带宽切换期间,则在所述频点带宽切换完成后,切换至第一参考频点作为下行信道的工作频点。
  29. 根据权利要求17所述的方法,其特征在于,还包括:
    在切换到新的下行信道工作频点后,确定所述新的工作频点的频点类型;
    若所述新的工作频点的频点类型为预设类型,则获取处于该工作频点的时长;
    在处于该工作频点的时长达到预设时长阈值之前,若接收到所述遥控设备发送的频点参考信息,则切换至所述第一参考频点。
  30. 根据权利要求29所述的方法,其特征在于,所述选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点,包括:
    在处于该工作频点的时长达到预设时长阈值之后,若接收到所述遥控设备发送的频点参考信息,则选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点。
  31. 根据权利要求16所述的方法,其特征在于,还包括:
    接收所述遥控设备发送的频点对应的干扰信号功率谱密度IPSD;
    获取所述可移动平台中记录的与所述频点对应的IPSD;
    若所述遥控设备发送的IPSD的大于所述可移动平台中记录的IPSD,则将所述遥控设备发送的IPSD记录为可移动平台的IPSD;
    若所述遥控设备发送的IPSD小于所述可移动平台中记录的IPSD,则采用所述遥控设备发送的IPSD和所述可移动平台中记录的IPSD进行降噪处理,并将降噪得到的IPSD记录为可移动平台的IPSD。
  32. 根据权利要求18所述的方法,其特征在于,所述从所述候选频点集合中选择第二参考频点,包括:
    获取已用频点范围;
    从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点。
  33. 根据权利要求32所述的方法,其特征在于,所述获取已用频点范围,包括:
    获取在先已经使用的下行信道工作频点和对应的带宽;
    将所述在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
  34. 根据权利要求33所述的方法,其特征在于,所述获取在先使用过的工作频点和对应的带宽,包括:
    获取历史频点带宽集合,所述历史频点带宽集合包括在先使用过的工作频点和对应的带宽。
  35. 根据权利要求33所述的方法,其特征在于,所述从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点,包括:
    获取在先从所述候选频点集合选取第二参考频点的个数;
    若在先选取第二参考频点的个数小于预设个数,则从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点。
  36. 根据权利要求34所述的方法,其特征在于,还包括:
    确定下行信道当前工作频点和对应的带宽;
    将所述当前工作频点和对应的带宽,记录到所述历史频点带宽集合。
  37. 根据权利要求35所述的方法,其特征在于,还包括:
    在候选频点集合更新后,清零所述已用频点范围,以及清零在先从所述候选频点集合选取第二参考频点的个数。
  38. 一种信道频点处理装置,其特征在于,应用于可移动平台的遥控设备,所述可移动平台通 过下行信道向所述遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,所述信道频点处理装置包括计算机可读存储介质及处理器;所述处理器用于执行以下操作:
    获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的一个;
    判断所述通信质量参数是否满足预设通信质量参数条件;
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中,选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同;
    向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
  39. 根据权利要求38所述的装置,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点,包括:
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定候选频点集合;
    从所述候选频点集合中选择第一参考频点。
  40. 根据权利要求38所述的装置,其特征在于,所述通信质量参数包括以下至少一种:接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
  41. 根据权利要求40所述的装置,其特征在于,所述预设通信质量参数条件基于所述通信质量参数确定。
  42. 根据权利要求41所述的装置,其特征在于,所述判断所述通信质量参数是否满足预设通信质量参数条件,包括:
    判断所述通信质量参数是否在对应的预设参数范围内;
    若所述通信质量参数在对应的预设参数范围内,则判断为满足预设通信质量参数条件。
  43. 根据权利要求38所述的装置,其特征在于,所述处理器还用于执行以下操作:
    在向所述可移动平台发送频点参考信息之前,判断与所述可移动平台通信连接的遥控设备是否为一个;
    所述向所述可移动平台发送频点参考信息,包括:
    若与所述可移动平台通信连接的遥控设备为一个,则向所述可移动平台发送频点参考信息。
  44. 根据权利要求39所述的装置,其特征在于,所述从所述候选频点集合中选择第一参考频点,包括:
    获取已用频点范围;
    从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点。
  45. 根据权利要求44所述的装置,其特征在于,所述获取已用频点范围,包括:
    获取在先已经使用的下行信道工作频点和对应的带宽;
    将所述在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
  46. 根据权利要求45所述的装置,其特征在于,所述获取在先使用过的工作频点和对应的带宽,包括:
    获取历史频点带宽集合,所述历史频点带宽集合包括在先使用过的工作频点和对应的带宽。
  47. 根据权利要求45所述的装置,其特征在于,所述从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点,包括:
    获取在先从所述候选频点集合选取第一参考频点的个数;
    若在先选取第一参考频点的个数小于预设个数,则从所述候选频点集合中,选择在所述已用频点范围之外的第一参考频点。
  48. 根据权利要求46所述的装置,其特征在于,所述处理器还用于执行以下操作:
    确定下行信道当前工作频点和对应的带宽;
    将所述当前工作频点和对应的带宽,记录到所述历史频点带宽集合。
  49. 根据权利要求47所述的装置,其特征在于,所述处理器还用于执行以下操作:
    在候选频点集合更新后,清零所述已用频点范围,以及清零在先从所述候选频点集合选取第一参考频点的个数。
  50. 根据权利要求38所述的装置,其特征在于,所述向所述可移动平台发送频点参考信息,包括:
    提高频点参考信息的发送优先级;所述发送优先级表征将待发送信息向可移动平台发送的优先级;
    按照所述频点参考信息的发送优先级,将所述频点参考信息添加到上行帧;
    向所述可移动平台发送包含所述频点参考信息的所述上行帧。
  51. 根据权利要求38所述的装置,其特征在于,所述处理器还用于执行以下操作:
    获取所述多个频点对应的多个干扰信号功率谱密度IPSD;
    确定所述多个频点对应的多个干扰信号功率谱密度IPSD中的最大IPSD;
    向所述可移动平台发送所述多个频点对应的最大IPSD。
  52. 根据权利要求51所述的装置,其特征在于,所述向所述可移动平台发送所述多个频点对应的最大IPSD,包括:
    获取上行信道当前工作频点的通信质量参数;
    确定与所述上行信道当前工作频点的通信质量参数适配的编码参数;
    采用所述编码参数,压缩所述多个频点对应的最大IPSD;
    向所述可移动平台发送压缩后的所述多个频点对应的最大IPSD。
  53. 一种信道频点处理装置,其特征在于,应用于可移动平台,所述可移动平台通过下行信道 向遥控设备发送通信数据,所述下行信道被配置为工作在预设频段上,所述预设频段包括多个频点,所述信道频点处理装置包括计算机可读存储介质及处理器;所述处理器用于执行以下操作:
    接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同;
    选择所述第一参考频点作为下行信道的工作频点。
  54. 根据权利要求53所述的装置,其特征在于,所述处理器还用于执行以下操作:
    获取所述遥控设备反馈的下行信道当前工作频点的通信质量参数;
    判断所述通信质量参数是否满足预设通信质量参数条件;
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中,选择第二参考频点;其中,所述第二参考频点与所述当前工作频点不同;
    所述选择所述第一参考频点作为下行信道的工作频点,包括:
    选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点。
  55. 根据权利要求54所述的装置,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点,包括:
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定候选频点集合;
    从所述候选频点集合中,选择第二参考频点。
  56. 根据权利要求54所述的装置,其特征在于,所述通信质量参数包括以下至少一种:所述遥控器接收到的通信数据的接收信号强度值,多个时间段的下行数据信道的误包率,针对下行数据信道连续执行重传的次数,针对下行控制信道连续执行重传的次数。
  57. 根据权利要求56所述的装置,其特征在于,所述预设通信质量参数条件基于所述通信质量参数确定。
  58. 根据权利要求57所述的装置,其特征在于,所述判断所述通信质量参数是否满足预设通信质量参数条件,包括:
    判断所述通信质量参数是否在对应的预设参数范围内;
    若所述通信质量参数在对应的预设参数范围内,则判断为满足预设通信质量参数条件。
  59. 根据权利要求54所述的装置,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点,包括:
    当所述通信质量参数满足预设通信质量参数条件时,等待预设时间;
    若在所述等待时间内未接收到所述遥控设备发送的频点参考信息,则从所述多个频点中选择第二参考频点。
  60. 根据权利要求59所述的装置,其特征在于,所述选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点,包括:
    若在所述预设时间内未接收到所述遥控设备发送的频点参考信息,则选择所述第二参考频点作为下行信道的工作频点。
  61. 根据权利要求59所述的装置,其特征在于,所述处理器还用于执行以下操作:
    确定所述可移动平台与所述遥控设备的通信连接的拓扑结构信息;
    向所述遥控设备发送所述拓扑结构信息,所述拓扑结构信息用于指示所述遥控设备在所述拓扑结构信息为点对多点P2MP的情况下,暂停发送所述频点参考信息。
  62. 根据权利要求61所述的装置,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,等待预设时间,包括:
    在所述拓扑结构信息为点对点P2P的情况下,当所述通信质量参数满足预设通信质量参数条件时,等待预设时间。
  63. 根据权利要求61所述的装置,其特征在于,所述当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点,包括:
    在所述拓扑结构信息为P2MP的情况下,当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第二参考频点。
  64. 根据权利要求53所述的装置,其特征在于,所述选择所述第一参考频点作为下行信道的工作频点,包括:
    判断所述第一参考频点是否为预设协议规范内的非工作频点;
    若所述第一参考频点不为预设协议规范内的非工作频点,则选择所述第一参考频点作为下行信道的工作频点。
  65. 根据权利要求53所述的装置,其特征在于,所述处理器还用于执行以下操作:
    确定是否处于频点带宽切换期间;
    若不处于所述频点带宽切换期间,则切换至第一参考频点作为下行信道的工作频点;
    若处于所述频点带宽切换期间,则在所述频点带宽切换完成后,切换至第一参考频点作为下行信道的工作频点。
  66. 根据权利要求54所述的装置,其特征在于,所述处理器还用于执行以下操作:
    在切换到新的下行信道工作频点后,确定所述新的工作频点的频点类型;
    若所述新的工作频点的频点类型为预设类型,则获取处于该工作频点的时长;
    在处于该工作频点的时长达到预设时长阈值之前,若接收到所述遥控设备发送的频点参考信息,则切换至所述第一参考频点。
  67. 根据权利要求66所述的装置,其特征在于,所述选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点,包括:
    在处于该工作频点的时长达到预设时长阈值之后,若接收到所述遥控设备发送的频点参考信息,则选择所述第一参考频点,或所述第二参考频点作为下行信道的工作频点。
  68. 根据权利要求53所述的装置,其特征在于,所述处理器还用于执行以下操作:
    接收所述遥控设备发送的频点对应的干扰信号功率谱密度IPSD;
    获取所述可移动平台中记录的与所述频点对应的IPSD;
    若所述遥控设备发送的IPSD的大于所述可移动平台中记录的IPSD,则将所述遥控设备发送的IPSD记录为可移动平台的IPSD;
    若所述遥控设备发送的IPSD小于所述可移动平台中记录的IPSD,则采用所述遥控设备发送的IPSD和所述可移动平台中记录的IPSD进行降噪处理,并将降噪得到的IPSD记录为可移动平台的IPSD。
  69. 根据权利要求55所述的装置,其特征在于,所述从所述候选频点集合中,选择第二参考频点,包括:
    获取已用频点范围;
    从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点。
  70. 根据权利要求69所述的装置,其特征在于,所述获取已用频点范围,包括:
    获取在先已经使用的下行信道工作频点和对应的带宽;
    将所述在先已经使用的下行信道工作频点和对应的带宽的频点范围,作为已用频点范围。
  71. 根据权利要求70所述的装置,其特征在于,所述获取在先使用过的工作频点和对应的带宽,包括:
    获取历史频点带宽集合,所述历史频点带宽集合包括在先使用过的工作频点和对应的带宽。
  72. 根据权利要求70所述的装置,其特征在于,所述从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点,包括:
    获取在先从所述候选频点集合选取第二参考频点的个数;
    若在先选取第二参考频点的个数小于预设个数,则从所述候选频点集合中,选择在所述已用频点范围之外的第二参考频点。
  73. 根据权利要求71所述的装置,其特征在于,所述处理器还用于执行以下操作:
    确定下行信道当前工作频点和对应的带宽;
    将所述当前工作频点和对应的带宽,记录到所述历史频点带宽集合。
  74. 根据权利要求72所述的装置,其特征在于,所述处理器还用于执行以下操作:
    在候选频点集合更新后,清零所述已用频点范围,以及清零在先从所述候选频点集合选取第二参考频点的个数。
  75. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以下操作:
    获取下行信道当前工作频点的通信质量参数,所述当前工作频点为所述多个频点中的一个;
    判断所述通信质量参数是否满足预设通信质量参数条件;
    当所述通信质量参数满足预设通信质量参数条件时,从所述多个频点中选择第一参考频点;其中,所述第一参考频点与所述当前工作频点不同;
    向所述可移动平台发送频点参考信息,所述频点参考信息用于指示所述可移动平台选择所述第一参考频点作为下行信道的工作频点。
  76. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以下操作:
    接收所述遥控设备发送的频点参考信息,所述频点参考信息包括第一参考频点,所述第一参考频点由所述遥控设备在下行信道当前工作频点的通信质量参数满足预设通信质量参数条件时,从所述多个频点中确定;其中,所述第一参考频点与所述当前工作频点不同;
    选择所述第一参考频点作为下行信道的工作频点。
PCT/CN2020/087387 2020-04-28 2020-04-28 一种信道频点处理方法和装置 WO2021217393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087387 WO2021217393A1 (zh) 2020-04-28 2020-04-28 一种信道频点处理方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087387 WO2021217393A1 (zh) 2020-04-28 2020-04-28 一种信道频点处理方法和装置

Publications (1)

Publication Number Publication Date
WO2021217393A1 true WO2021217393A1 (zh) 2021-11-04

Family

ID=78373260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087387 WO2021217393A1 (zh) 2020-04-28 2020-04-28 一种信道频点处理方法和装置

Country Status (1)

Country Link
WO (1) WO2021217393A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585031A (zh) * 2022-03-18 2022-06-03 珠海优特电力科技股份有限公司 频点的切换方法和系统、存储介质及电子装置
CN114900205A (zh) * 2022-03-28 2022-08-12 安克创新科技股份有限公司 自适应跳频方法、装置、存储介质及电子设备
CN115079237A (zh) * 2022-08-16 2022-09-20 长沙金维信息技术有限公司 基于频点选择的rtk定位方法及导航方法
CN116684046A (zh) * 2023-07-03 2023-09-01 国广顺能(上海)能源科技有限公司 一种低通信质量下数据上传异常处理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170086112A1 (en) * 2015-09-17 2017-03-23 Qualcomm Incorporated Techniques for wireless communication channel management in shared frequency bands
CN106559152A (zh) * 2015-09-28 2017-04-05 联芯科技有限公司 通信频点的动态切换方法、自组网节点及无人机遥控系统
CN108390748A (zh) * 2018-02-09 2018-08-10 深圳市道通智能航空技术有限公司 数据传输方法、装置及系统
CN108521312A (zh) * 2018-04-17 2018-09-11 深圳市道通智能航空技术有限公司 信息传输方法、装置及飞行器
CN109983708A (zh) * 2017-05-05 2019-07-05 深圳市大疆创新科技有限公司 用于跳频集选择的方法和系统
CN110392437A (zh) * 2019-07-29 2019-10-29 上海载德信息科技有限公司 一种终端工作频点的切换方法、装置、终端及存储介质
CN110784256A (zh) * 2019-11-01 2020-02-11 重庆市亿飞智联科技有限公司 存储介质、频点切换方法、装置、通信节点及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170086112A1 (en) * 2015-09-17 2017-03-23 Qualcomm Incorporated Techniques for wireless communication channel management in shared frequency bands
CN106559152A (zh) * 2015-09-28 2017-04-05 联芯科技有限公司 通信频点的动态切换方法、自组网节点及无人机遥控系统
CN109983708A (zh) * 2017-05-05 2019-07-05 深圳市大疆创新科技有限公司 用于跳频集选择的方法和系统
CN108390748A (zh) * 2018-02-09 2018-08-10 深圳市道通智能航空技术有限公司 数据传输方法、装置及系统
CN108521312A (zh) * 2018-04-17 2018-09-11 深圳市道通智能航空技术有限公司 信息传输方法、装置及飞行器
CN110392437A (zh) * 2019-07-29 2019-10-29 上海载德信息科技有限公司 一种终端工作频点的切换方法、装置、终端及存储介质
CN110784256A (zh) * 2019-11-01 2020-02-11 重庆市亿飞智联科技有限公司 存储介质、频点切换方法、装置、通信节点及系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585031A (zh) * 2022-03-18 2022-06-03 珠海优特电力科技股份有限公司 频点的切换方法和系统、存储介质及电子装置
CN114585031B (zh) * 2022-03-18 2024-03-15 珠海优特电力科技股份有限公司 频点的切换方法和装置、存储介质及电子装置
CN114900205A (zh) * 2022-03-28 2022-08-12 安克创新科技股份有限公司 自适应跳频方法、装置、存储介质及电子设备
CN115079237A (zh) * 2022-08-16 2022-09-20 长沙金维信息技术有限公司 基于频点选择的rtk定位方法及导航方法
CN115079237B (zh) * 2022-08-16 2023-01-06 长沙金维信息技术有限公司 基于频点选择的rtk定位方法及导航方法
CN116684046A (zh) * 2023-07-03 2023-09-01 国广顺能(上海)能源科技有限公司 一种低通信质量下数据上传异常处理系统

Similar Documents

Publication Publication Date Title
WO2021217393A1 (zh) 一种信道频点处理方法和装置
JP7258041B2 (ja) サイドリンクの伝送方法及び端末
CN108011686B (zh) 信息编码帧丢失恢复方法和装置
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
KR20200112933A (ko) 다운링크 채널의 수신 방법, 송신 방법, 단말 및 기지국
CN110166206B (zh) 一种harq-ack码本的确定方法和终端
CN109819450B (zh) 一种信号接收的方法、装置和终端
CN108881990A (zh) 音频播放方法、终端及计算机存储介质
EP4084374A1 (en) Transmission processing method and device
JP2022501920A (ja) サイドリンクのリンク障害検出方法及び端末
US20220022085A1 (en) Method for radio link monitoring, terminal, base station, and storage medium
CN109697008B (zh) 一种内容分享方法、终端及计算机可读存储介质
CN111277361B (zh) 传输块大小确定方法和通信设备
CN107678698B (zh) 缓存数据清理方法、服务器、终端及计算机可读存储介质
CN112788676B (zh) 小区管理方法、小区管理配置方法、终端和网络侧设备
CN107748756A (zh) 数据采集方法、移动终端及可读存储介质
KR102495209B1 (ko) 통신 범위 정보의 처리 방법 및 단말
WO2019238027A1 (zh) 链路质量监测方法及终端
WO2021209031A1 (zh) 资源确定方法及设备
CN112492340B (zh) 直播音频采集方法、移动终端及计算机可读存储介质
CN110087267A (zh) 网络切换方法、装置、电子设备及可读存储介质
CN109240881A (zh) 一种应用程序闪退处理方法、设备及计算机可读存储介质
CN111836307B (zh) 映射类型的确定方法及终端
CN110167146B (zh) 一种sdu的处理方法和通信设备
WO2019157915A1 (zh) Csi资源类型的确定方法、终端和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933283

Country of ref document: EP

Kind code of ref document: A1