WO2019200678A1 - 光学基准点的挑选方法、系统、可读存储介质及电子设备 - Google Patents

光学基准点的挑选方法、系统、可读存储介质及电子设备 Download PDF

Info

Publication number
WO2019200678A1
WO2019200678A1 PCT/CN2018/090380 CN2018090380W WO2019200678A1 WO 2019200678 A1 WO2019200678 A1 WO 2019200678A1 CN 2018090380 W CN2018090380 W CN 2018090380W WO 2019200678 A1 WO2019200678 A1 WO 2019200678A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical reference
reference point
ordinate
corner
corner area
Prior art date
Application number
PCT/CN2018/090380
Other languages
English (en)
French (fr)
Inventor
钱胜杰
刘继硕
刘丰收
武文静
Original Assignee
上海望友信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海望友信息科技有限公司 filed Critical 上海望友信息科技有限公司
Publication of WO2019200678A1 publication Critical patent/WO2019200678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process

Definitions

  • the invention belongs to the technical field of PCB circuit boards, and relates to a selection method and system, in particular to a method, a system, a readable storage medium and an electronic device for selecting an optical reference point.
  • optical reference point also called the MARK point
  • MARK point provides a common measurable point for all steps in the assembly process, ensuring that each device used in the assembly accurately positions the circuit pattern. Therefore, optical reference points are critical to SMT production.
  • optical reference points on a PCB such as the optical reference point of the entire board and the optical reference point of the component.
  • SMT devices such as screen printers, placement machines, optical inspection machines, etc. use the entire optical reference point of the board. So how do you find the optical reference point of the entire board in so many optical reference points?
  • the existing practice is to manually complete the identification by the engineer's own experience, and there are many factors for manual intervention. The existing methods cannot achieve automatic selection, and can not meet the requirements of intelligent manufacturing.
  • an object of the present invention is to provide a method, system, readable storage medium and electronic device for selecting an optical reference point for solving the problem of selecting an optical reference point in the prior art.
  • an aspect of the present invention provides an optical reference point selection method for selecting an optimal optical reference point of a PCB board;
  • the optical reference point selection method includes: from the PCB board The surface mount components are screened out in the mounting surface, and the optimum corner area for determining the search range of the optical reference point is divided according to the coordinates of each surface mount component on the PCB;
  • the optimal corner area is composed of evenly divided angular regions; determining whether there is an optical reference point in each corner region of the optimal corner region, and if so, selecting an optical reference point existing in the corner region is optimal optics a reference point; if not, find the optical reference point closest to the angular area, and calculate the distance between the optical reference points in the diagonal direction, and select the two optical reference points corresponding to the maximum distance as the optimal optical reference point .
  • the step of dividing the optimal corner area for determining the search range of the optical reference point according to the coordinates of each surface mount component on the PCB includes: Each surface mount component finds a minimum abscissa, a maximum abscissa, a minimum ordinate, and a maximum ordinate of the surface mount component in the coordinates of the PCB board; the minimum abscissa of the surface mount component And the maximum abscissa, the minimum ordinate and the maximum ordinate are combined to divide the best corner area.
  • the optimum corner area includes a corner area at the upper left corner of the PCB board, a corner area of the lower left corner, a corner area of the lower right corner, and a corner area of the upper right corner.
  • the method for selecting the optical reference point further includes: from the PCB board Identify all optical reference points in the mounting surface; obtain the coordinates of all optical reference points, and find the maximum abscissa, minimum abscissa, maximum ordinate and minimum ordinate of the optical reference point; the maximum optical reference point through the search The abscissa, the minimum abscissa, the maximum ordinate, and the minimum ordinate reduce the search range of the optical reference point.
  • the abscissa of the search range of the reduced optical reference point
  • the ordinate of the narrowed optical reference point search range
  • the step of finding an optical reference point that is closest to the angular region further comprises: finding an optical reference point that is closest to the angular region and within a search range of the reduced optical reference point.
  • optical reference point selection system for selecting an optimal optical reference point of a PCB board;
  • the optical reference point selection system includes: a screening module for attaching from the PCB board The surface mount component is screened in the surface; the dividing module is configured to divide the optimal corner area for determining the search range of the optical reference point according to the coordinates of each surface mount component on the PCB board Wherein the optimal corner area is composed of evenly divided angular regions; and a processing module for determining whether an optical reference point exists in each corner region of the optimal corner region, and if so, selecting the existing angular region
  • the optical reference point is the optimal optical reference point; if not, find the optical reference point closest to the angular area, and calculate the distance between the optical reference points in the diagonal direction, and select the two optical references corresponding to the maximum distance
  • the point is the best optical reference point.
  • the optical reference point selection system further includes: an identification module, configured to identify all optical reference points from the mounting surface of the PCB; and obtain coordinates of all optical reference points, Find the maximum abscissa, the minimum abscissa, the maximum ordinate and the minimum ordinate of the optical reference point; reduce the optical reference point by finding the maximum abscissa, the minimum abscissa, the maximum ordinate and the minimum ordinate of the optical reference point The scope of the search.
  • an identification module configured to identify all optical reference points from the mounting surface of the PCB; and obtain coordinates of all optical reference points, Find the maximum abscissa, the minimum abscissa, the maximum ordinate and the minimum ordinate of the optical reference point; reduce the optical reference point by finding the maximum abscissa, the minimum abscissa, the maximum ordinate and the minimum ordinate of the optical reference point The scope of the search.
  • Yet another aspect of the present invention provides a readable storage medium having stored thereon a computer program that, when executed by a processor, implements the method of selecting the optical reference point.
  • the last aspect of the present invention provides an electronic device including: a processor and a memory; the memory is configured to store a computer program, the processor is configured to execute the computer program stored in the memory, to enable the electronic device to perform the The method of selecting optical reference points.
  • optical reference point selection method As described above, the optical reference point selection method, system, readable storage medium, and electronic device of the present invention have the following beneficial effects:
  • the selection method, system, readable storage medium and electronic device of the optical reference point of the invention avoid manual and human operation, and no need of human experience judgment, and solve a technical problem of automatic program production in intelligent manufacturing.
  • FIG. 1 is a flow chart showing the selection method of the optical reference point of the present invention in an embodiment.
  • Fig. 2 shows an exemplary diagram of a PCB board of the present invention.
  • Figure 3 shows an exemplary diagram of the selection of the best optical reference point on a PCB board of the present invention.
  • FIG. 4 is a schematic view showing the principle structure of the optical reference point selection system of the present invention in an embodiment.
  • the embodiment provides a method for selecting an optical reference point for selecting an optimal optical reference point of the PCB board; the method for selecting the optical reference point includes:
  • the method of selecting the optical reference point provided by the present embodiment will be described in detail below with reference to the drawings.
  • the selection method of the optical reference point in this embodiment is used to realize the optimal optical reference point for automatically selecting the entire PCB.
  • FIG. 1 a schematic diagram of a method for selecting an optical reference point in an embodiment is shown. As shown in FIG. 1 , the method for selecting the optical reference point specifically includes the following steps:
  • the optimal corner area for determining the search range of the optical reference point is divided.
  • the S12 includes the following steps:
  • the optimal corner area includes a corner area (minimum abscissa minX, maximum ordinate maxY) at the upper left corner of the PCB board, and a corner area of the lower left corner (minimum abscissa minX, minimum ordinate) minY), the corner area of the lower right corner (maximum abscissa maxX, minimum ordinate minY) and the corner area of the upper right corner (maximum abscissa maxX, maximum ordinate maxY).
  • each of the best corner regions is evenly divided to form an equally divided angular region.
  • each of the optimum corner regions is evenly divided into four corner regions, such as the 1, 2, 3, and 4 corner regions shown in FIG.
  • the abscissa of the narrowed optical reference point search range
  • the ordinate of the search range of the reduced optical reference point
  • the preset search range ratio ⁇ is set to 50%.
  • the optical reference point existing in the corner area is preferentially selected as the optimal optical reference point.
  • the optical reference point No. 1 is the best optical reference point of the selected best corner area of the upper corner.
  • S16 Find an optical reference point closest to the corner area, calculate a distance between the optical reference points in a diagonal direction, and select two optical reference points corresponding to the maximum distance as the optimal optical reference point.
  • the step of finding an optical reference point closest to the angular region further comprises: finding an optical reference point that is closest to the angular region and within a search range of the reduced optical reference point.
  • the best corner area in the upper right corner has no optical reference point
  • the optical reference point in the upper right corner 3 area search range X and the search range Y is the optical reference point 3
  • the upper right corner 1 area search There is no optical reference point in the range X and the search range Y, and there is no optical reference point in the upper right corner 2 area search range X and the search range Y, and the selection of the best optical reference point in the optimal corner area of the upper right corner is completed;
  • the best corner area in the lower right corner has no optical reference point.
  • the closest optical reference point is the 6th optical reference point, and the lower right corner 2 area search range X and the search range Y.
  • the closest optical reference point is the optical reference point No. 5, and the optical reference point closest to the distance in the lower right corner 3 area search range X and the search range Y is the optical reference point No. 2;
  • the best corner area in the lower left corner has no optical reference point.
  • the closest optical reference point is the 4th optical reference point, and the lower left corner 2 area search range X and the search range Y.
  • optical reference point No. 1 find the optical reference point No. 1 from the best corner area in the upper left corner; find the optical reference point No. 3 in the best corner area in the upper right corner, and find the optical reference point No. 6 in the best corner area in the lower right corner, No. 5
  • optical reference point, optical reference point No. 2 optimal corner area in the lower left corner to find the optical reference point No. 4.
  • the two optical reference points corresponding to the maximum distance are selected as the optimal optical reference point. As shown in FIG. 3, the distance between the optical reference point No. 1 and the optical reference point No. 5 is the largest, and the optical reference point No. 1 and the optical reference point No. 5 are the optimum optical reference points.
  • the embodiment further provides a readable storage medium (also referred to as a computer readable storage medium) on which a computer program is stored, which is implemented by the processor to implement the above-described method of selecting optical reference points.
  • a readable storage medium also referred to as a computer readable storage medium
  • the aforementioned computer program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the selection method of the optical reference point in the embodiment avoids manual and human operation, and does not require human experience judgment, and solves a technical problem of automatic program production in intelligent manufacturing.
  • the embodiment provides an optical reference point selection system for selecting an optimal optical reference point of the PCB board; the optical reference point selection system includes:
  • a screening module for screening surface mount components from the mounting surface of the PCB board
  • a dividing module configured to divide an optimal corner area for determining a search range of the optical reference point according to coordinates of each surface mount component on the PCB; wherein the optimal corner area is determined by Evenly halved angular area composition;
  • a processing module configured to determine whether an optical reference point exists in each corner area of the optimal corner area, and if so, select an optical reference point existing in the corner area as an optimal optical reference point; if not, find the closest to the corner area The optical reference point is calculated, and the distance between the optical reference points in the diagonal direction is calculated, and the two optical reference points corresponding to the maximum distance are selected as the optimal optical reference point.
  • each module of the following selection system is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the x module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device.
  • each step of the foregoing method or each of the following modules may be completed by an integrated logic circuit of hardware in a processor element or an instruction in a form of software.
  • the following modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (ASICs), or one or more microprocessors (digitalsingnal processors, referred to as DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs application specific integrated circuits
  • DSP digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the optical reference point selection system 4 includes a screening module 41, a division module 42, an identification module 43, and a processing module 44.
  • the screening module 41 is configured to screen surface mount components from the mounting surface of the PCB.
  • a dividing module 42 coupled to the screening module 41 is configured to define an optimum corner region for determining a search range of the optical reference point according to coordinates of each surface mount component on the PCB.
  • the dividing module 42 is specifically configured to find the minimum abscissa minX, the maximum abscissa maxX, and the minimum ordinate minY of the surface mount component in the coordinates of each surface mount component on the PCB board. And the maximum ordinate maxY; the minimum abscissa minX and the maximum abscissa maxX of the surface mount component, and the minimum ordinate minY and the maximum ordinate maxY are combined to divide the optimal corner area.
  • the optimal corner area includes a corner area (minimum abscissa minX, maximum ordinate maxY) at the upper left corner of the PCB board, and a corner area of the lower left corner (minimum abscissa minX, minimum ordinate) minY), the corner area of the lower right corner (maximum abscissa maxX, minimum ordinate minY) and the corner area of the upper right corner (maximum abscissa maxX, maximum ordinate maxY); uniform each of the best corner areas Divide into equal angular regions.
  • each of the optimum corner regions is evenly divided into four corner regions, such as the 1, 2, 3, and 4 corner regions shown in FIG.
  • An identification module 43 coupled to the screening module 41 and the partitioning module 42 is configured to identify all optical reference points from the mounting surface of the PCB board; acquire coordinates of all optical reference points, and find the maximum of the optical reference points
  • the abscissa of the narrowed optical reference point search range
  • the ordinate of the search range of the reduced optical reference point
  • the processing module 44 coupled to the dividing module 42 and the identifying module 43 is configured to determine whether an optical reference point exists in each corner region of the optimal corner region, and if so, the optical reference point existing in the corner region is preferentially selected as the best.
  • Optical reference point if not, find the optical reference point closest to the angular area, and calculate the distance between the optical reference points in the diagonal direction, and select the two optical reference points corresponding to the maximum distance as the optimal optical reference point. See Figure 3 for an example diagram showing the selection of the best optical reference point on the PCB.
  • the processing module 44 searches for an optical reference point closest to the angular region, specifically for finding the optical reference point closest to the angular region and within the search range of the reduced optical reference point.
  • the embodiment provides an electronic device, including: a processor, a memory, a transceiver, a communication interface, and a system bus; the memory and the communication interface are connected to the processor and the transceiver through the system bus, and complete communication with each other, and the memory is used for storing
  • the computer program, the communication interface is for communicating with other devices, and the processor and the transceiver are for running the computer program to cause the electronic device to perform the steps of the optical reference point selection method as described in the first embodiment.
  • the system bus mentioned above may be a Peripheral Pomponent Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Pomponent Interconnect
  • EISA Extended Industry Standard Architecture
  • the system bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the communication interface is used to implement communication between the database access device and other devices such as clients, read-write libraries, and read-only libraries.
  • the memory may include random access memory (RAM), and may also include non-volatile memory, such as at least one disk storage.
  • the above processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP for short), and the like; or a digital signal processor (DSP), an application specific integrated circuit (DSP). ApplicationSpecificIntegratedCircuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP digital signal processor
  • DSP application specific integrated circuit
  • ASIC ApplicationSpecificIntegratedCircuit
  • FPGA Field-Programmable Gate Array
  • the optical reference point selection method, system, readable storage medium and electronic device of the present invention avoid manual and human operation, and no need of human experience judgment, and solve a technology of automatic program production in intelligent manufacturing. problem. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种光学基准点的挑选方法,包括:从PCB板的贴装面中筛选出表面贴装元器件,并根据每一表面贴装元器件在PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域;其中,最佳边角区域由均匀等分的角区域组成;判断最佳边角区域的每一角区域内是否存在光学基准点,若是,挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。

Description

光学基准点的挑选方法、系统、可读存储介质及电子设备 技术领域
本发明属于PCB电路板技术领域,涉及一种挑选方法和系统,特别是涉及一种光学基准点的挑选方法、系统、可读存储介质及电子设备。
背景技术
光学基准点也叫MARK点,为装配工艺中的所有步骤提供共同的可测量点,保证了装配使用的每个设备能精确地定位电路图案。因此,光学基准点对SMT生产至关重要。
对于一块PCB上面设计的光学基准点可能有很多个,比如整板的光学基准点、元件的光学基准点。几乎所有SMT设备如丝网印刷机、贴片机、光学检测机等等都会用到这个整板的光学基准点。那么如何在这么多的光学基准点中找到整板的光学基准点呢?目前,现有做法是凭借工程师的自身经验手工完成识别,人工干预的因素较多,现有方法根本无法实现自动挑选,更不能满足智能制造的要求。
因此,如何提供一种光学基准点的挑选方法、系统、可读存储介质及电子设备,以解决现有技术对光学基准点的挑选无法实现自动挑选,人工干预较多等缺陷,实已成为本领域技术人家亟待解决的技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种光学基准点的挑选方法、系统、可读存储介质及电子设备,用于解决现有技术光学基准点的挑选无法实现智能制造,人工干预较多的问题。
为实现上述目的及其他相关目的,本发明一方面提供一种光学基准点的挑选方法,用于挑选PCB板的最佳光学基准点;所述光学基准点的挑选方法包括:从所述PCB板的贴装面中筛选出表面贴装元器件,并根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域;其中,所述最佳边角区域由均匀等分的角区域组成;判断最佳边角区域的每一角区域内是否存在光学基准点,若是,挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。
于本发明的一实施例中,所述根据每一表面贴装元器件在所述PCB板上的坐标,划分出 用于确定光学基准点的查找范围的最佳边角区域的步骤包括:在每一表面贴装元器件在所述PCB板上的坐标中查找出表面贴装元器件的最小横坐标、最大横坐标、最小纵坐标及最大纵坐标;将表面贴装元器件的最小横坐标和最大横坐标、与最小纵坐标和最大纵坐标两两组合,以划分出最佳边角区域。
于本发明的一实施例中,最佳边角区域包括位于PCB板左上角的边角区域、左下角的边角区域、右下角的边角区域及右上角的边角区域。
于本发明的一实施例中,在所述划分出用于确定光学基准点的查找范围的最佳边角区域的步骤之后,所述光学基准点的挑选方法还包括:从所述PCB板的贴装面中识别出所有光学基准点;获取所有光学基准点的坐标,并查找出光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标;通过查找的光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标,缩小光学基准点的查找范围。
于本发明的一实施例中,缩小的光学基准点的查找范围的横坐标=|(最大横坐标-最小横坐标)×预设查找范围比例|;缩小的光学基准点的查找范围的纵坐标=|(最大纵坐标-最小纵坐标)×预设查找范围比例|。
于本发明的一实施例中,所述查找距离此角区域最近的光学基准点的步骤进一步包括:查找距离所述角区域、且在缩小的光学基准点的查找范围内最近的光学基准点。
本发明另一方面提供一种光学基准点的挑选系统,用于挑选PCB板的最佳光学基准点;所述光学基准点的挑选系统包括:筛选模块,用于从所述PCB板的的贴装面中筛选出表面贴装元器件;划分模块,用于根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域;其中,所述最佳边角区域由均匀等分的角区域组成;处理模块,用于判断最佳边角区域的每一角区域内是否存在光学基准点,若是,挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。
于本发明的一实施例中,所述光学基准点的挑选系统还包括:识别模块,用于从所述PCB板的贴装面中识别出所有光学基准点;获取所有光学基准点的坐标,并查找出光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标;通过查找的光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标,缩小光学基准点的查找范围。
本发明又一方面提供一种可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现所述光学基准点的挑选方法。
本发明最后一方面提供一种电子设备,包括:处理器及存储器;所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述电子设备执行所述光学基准点的挑选方法。
如上所述,本发明的光学基准点的挑选方法、系统、可读存储介质及电子设备,具有以下有益效果:
本发明所述光学基准点的挑选方法、系统、可读存储介质及电子设备避免了手工和人为操作,无需人的经验判断,解决了智能制造中的自动化程序制作的一个技术问题。
附图说明
图1显示为本发明的光学基准点的挑选方法于一实施例中的流程示意图。
图2显示为本发明的PCB板的示例图。
图3显示为本发明的在PCB板挑选最佳光学基准点的示例图。
图4显示为本发明的光学基准点的挑选系统于一实施例中的原理结构示意图。
元件标号说明
4         光学基准点的挑选系统
41        筛选模块
42        划分模块
43        识别模块
44        处理模块
S11~S16  步骤
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复 杂。
本发明所提供的光学基准点的挑选方法、系统、可读存储介质及电子设备的技术原理如下:
1)筛选贴片工艺元器件,将PCB板贴装面的所有SMD贴装元件选中,并且获取所有元器件贴装的坐标,即计算所有工艺元器件坐标的X最小的坐标minX,Y最小的坐标minY。X最大的坐标maxX和Y最大的坐标maxY。得到四个角,分别为:左上角,左下角,右上角,右下角。
2)获取所有光学基准点坐标markX,markY;
3)利用1)和2)获取的两组坐标数据挑选最佳基准点。包括:
31)循环所有光学基准点坐标;
32)分别优先挑选四个角的最佳区域内的光学基准点;
33)如果这个角没有最佳区域的光学基准点,找此角不是最佳区域外的另外3个区域,将三个区域内距离此角最近的光学基准点找出来。
34)分别计算左上角找出的光学基准点和右下角找出的光学基准点距离;分别计算左下角找出的光学基准点和右上角找出的光学基准点距离。选择距离较大的一对作为最佳光学基准点。
实施例一
本实施例提供一种光学基准点的挑选方法,用于挑选PCB板的最佳光学基准点;所述光学基准点的挑选方法包括:
从所述PCB板的贴装面中筛选出表面贴装元器件,并根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域;其中,所述最佳边角区域由均匀等分的角区域组成;
判断最佳边角区域的每一角区域内是否存在光学基准点,若是,挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。
以下将结合图示对本实施例所提供的光学基准点的挑选方法进行详细描述。本实施例所述光学基准点的挑选方法用于实现自动化挑选PCB整板的最佳光学基准点。请参阅图1,显示为光学基准点的挑选方法于一实施例中的流程示意图。如图1所示,所述光学基准点的挑选方法具体包括以下几个步骤:
S11,从所述PCB板的贴装面中筛选出表面贴装元器件。请参阅图2,显示为PCB板的示例图。如图2中白色为筛选出的表面贴装元器件。
S12,根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域。
具体地,所述S12包括以下步骤:
在每一表面贴装元器件在所述PCB板上的坐标中查找出表面贴装元器件的最小横坐标minX、最大横坐标maxX、最小纵坐标minY及最大纵坐标maxY;
将表面贴装元器件的最小横坐标minX和最大横坐标maxX、与最小纵坐标minY和最大纵坐标maxY两两组合,以划分出最佳边角区域。在本实施例中,所述最佳边角区域包括位于PCB板左上角的边角区域(最小横坐标minX,最大纵坐标maxY)、左下角的边角区域(最小横坐标minX,最小纵坐标minY)、右下角的边角区域(最大横坐标maxX,最小纵坐标minY)及右上角的边角区域(最大横坐标maxX,最大纵坐标maxY)。
将每一所述最佳边角区域均匀等分,形成等分的角区域。在本实施例中,将每一个最佳边角区域均匀等分成4个角区域,如图2所示的1,2,3,4角区域。
S13,从所述PCB板的贴装面中识别出所有光学基准点;获取所有光学基准点的坐标,并查找出光学基准点的最大横坐标maxMARKX、最小横坐标minMARKX、最大纵坐标maxMARKY及最小纵坐标minMARKY;通过查找的光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标,缩小光学基准点的查找范围。如图2所示,用十字形状所示的为PCB板上的光学基准点。例如,图2中所示的1号,2号,3号,4号,5号,6号等为光学基准点。
其中,缩小的光学基准点的查找范围的横坐标=|(最大横坐标-最小横坐标)×预设查找范围比例|;
缩小的光学基准点的查找范围的横坐标X=|(maxMARKX-minMARKX)×β|;
缩小的光学基准点的查找范围的纵坐标=|(最大纵坐标-最小纵坐标)×预设查找范围比例|;
缩小的光学基准点的查找范围的纵坐标Y=|(maxMARKY-minMARKY)×β|。
在本实施例中,预设查找范围比例β设置为50%。
S14,判断最佳边角区域的每一角区域内是否存在光学基准点,若是,执行S15;若否,执行S16。请参阅图3,显示为在PCB板挑选最佳光学基准点的示例图。
S15,优先挑选该角区域内存在的光学基准点为最佳光学基准点。如图3所示,左上角最 佳边角区域内存在1号光学基准点,1号光学基准点为挑选出来的上角最佳边角区域的最佳光学基准点。
S16,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。
在本实施例中,所述查找距离此角区域最近的光学基准点的步骤进一步包括:查找距离所述角区域、且在缩小的光学基准点的查找范围内最近的光学基准点。
如图3所示,右上角最佳边角区域没有光学基准点,找出右上角3区域查找范围X和查找范围Y内距离最近的光学基准点是3号光学基准点,右上角1区域查找范围X和查找范围Y内没有光学基准点,右上角2区域查找范围X和查找范围Y内没有光学基准点,完成右上角最佳边角区域内最佳光学基准点的挑选;
右下角最佳边角区域没有光学基准点,查找右下角1区域查找范围X和查找范围Y内距离最近的光学基准点是6号光学基准点,右下角2区域查找范围X和查找范围Y内距离最近的光学基准点是5号光学基准点,右下角3区域查找范围X和查找范围Y内距离最近的光学基准点是2号光学基准点;
左下角最佳边角区域没有光学基准点,查找左下角1区域查找范围X和查找范围Y内距离最近的光学基准点是4号光学基准点,左下角2区域查找范围X和查找范围Y内距离没有光学基准点,左下角3区域查找范围X和查找范围Y内距离没有光学基准点。
因此,从左上角最佳边角区域找出1号光学基准点;右上角最佳边角区域找出3号光学基准点,右下角最佳边角区域找出6号光学基准点,5号光学基准点,2号光学基准点;左下角最佳边角区域找出4号光学基准点。
计算左上角和右下角选出的光学基准点之间的距离:
1号光学基准点和6号光学基准点之间的距离;
1号光学基准点和5号光学基准点之间的距离;
1号光学基准点和2号光学基准点之间的距离。
计算左下角和右上角选出的光学基准点距离:4号光学基准点和3号光学基准点之间的距离。若查找出多个对角光学基准点后,需分别组合计算两个对角的光学基准点之间的距离。
挑选最大距离对应的两个光学基准点为最佳光学基准点。如图3所示,1号光学基准点与5号光学基准点之间的距离最大,1号光学基准点与5号光学基准点为最佳光学基准点。
本实施例还提供一种可读存储介质(亦称为计算机可读存储介质),其上存储有计算机程序,该程序被处理器执行时实现上述光学基准点的挑选方法。本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分步骤可以通过计算机程序相关的硬件来完成。前述的计算机程序可以存储于一计算机可读存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例所述光学基准点的挑选方法避免了手工和人为操作,无需人的经验判断,解决了智能制造中的自动化程序制作的一个技术问题。
实施例二
本实施例提供一种光学基准点的挑选系统,用于挑选PCB板的最佳光学基准点;所述光学基准点的挑选系统包括:
筛选模块,用于从所述PCB板的的贴装面中筛选出表面贴装元器件;
划分模块,用于根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域;其中,所述最佳边角区域由均匀等分的角区域组成;
处理模块,用于判断最佳边角区域的每一角区域内是否存在光学基准点,若是,挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。
以下将结合图示对本实施例所提供的光学基准点的挑选系统进行详细描述。需要说明的是,应理解以下挑选系统的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,x模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以下x模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以下各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以下这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(ApplicationSpecificIntegratedCircuit,简称ASIC),或,一个或多个微处理器(digitalsingnalprocessor,简称DSP),或,一个或者多个现场可编程门阵列(FieldProgrammableGateArray,简称FPGA)等。再如,当以下某个模块通过处理元件调用程序 代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(CentralProcessingUnit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
请参阅图4,显示为光学基准点的挑选系统于一实施例中的原理结构示意图。如图4所示,所述光学基准点的挑选系统4包括:筛选模块41、划分模块42、识别模块43及处理模块44。
所述筛选模块41用于从所述PCB板的贴装面中筛选出表面贴装元器件。
与所述筛选模块41耦合的划分模块42用于根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域。
具体地,所述划分模块42具体用于在每一表面贴装元器件在所述PCB板上的坐标中查找出表面贴装元器件的最小横坐标minX、最大横坐标maxX、最小纵坐标minY及最大纵坐标maxY;将表面贴装元器件的最小横坐标minX和最大横坐标maxX、与最小纵坐标minY和最大纵坐标maxY两两组合,以划分出最佳边角区域。在本实施例中,所述最佳边角区域包括位于PCB板左上角的边角区域(最小横坐标minX,最大纵坐标maxY)、左下角的边角区域(最小横坐标minX,最小纵坐标minY)、右下角的边角区域(最大横坐标maxX,最小纵坐标minY)及右上角的边角区域(最大横坐标maxX,最大纵坐标maxY);将每一所述最佳边角区域均匀等分,形成等分的角区域。在本实施例中,将每一个最佳边角区域均匀等分成4个角区域,如图2所示的1,2,3,4角区域。
与所述筛选模块41和划分模块42耦合的识别模块43用于从所述PCB板的贴装面中识别出所有光学基准点;获取所有光学基准点的坐标,并查找出光学基准点的最大横坐标maxMARKX、最小横坐标minMARKX、最大纵坐标maxMARKY及最小纵坐标minMARKY;通过查找的光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标,缩小光学基准点的查找范围。
其中,缩小的光学基准点的查找范围的横坐标=|(最大横坐标-最小横坐标)×预设查找范围比例|;
缩小的光学基准点的查找范围的横坐标X=|(maxMARKX-minMARKX)×β|;
缩小的光学基准点的查找范围的纵坐标=|(最大纵坐标-最小纵坐标)×预设查找范围比例|;
缩小的光学基准点的查找范围的纵坐标Y=|(maxMARKY-minMARKY)×β|。
与所述划分模块42和识别模块43耦合的处理模块44用于判断最佳边角区域的每一角区 域内是否存在光学基准点,若是,优先挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。请参阅图3,显示为在PCB板挑选最佳光学基准点的示例图。
在本实施例中,所述处理模块44在查找距离此角区域最近的光学基准点具体为查找距离所述角区域、且在缩小的光学基准点的查找范围内最近的光学基准点。
实施例三
本实施例提供一种电子设备,包括:处理器、存储器、收发器、通信接口和系统总线;存储器和通信接口通过系统总线与处理器和收发器连接并完成相互间的通信,存储器用于存储计算机程序,通信接口用于和其他设备进行通信,处理器和收发器用于运行计算机程序,使电子设备执行如实施例一所述光学基准点的挑选方法的各个步骤。
上述提到的系统总线可以是外设部件互连标准(PeripheralPomponentInterconnect,简称PCI)总线或扩展工业标准结构(ExtendedIndustryStandardArchitecture,简称EISA)总线等。该系统总线可以分为地址总线、数据总线、控制总线等。通信接口用于实现数据库访问装置与其他设备(例如客户端、读写库和只读库)之间的通信。存储器可能包含随机存取存储器(RandomAccessMemory,简称RAM),也可能还包括非易失性存储器(non-volatilememory),例如至少一个磁盘存储器。
上述的处理器可以是通用处理器,包括中央处理器(CentralProcessingUnit,简称CPU)、网络处理器(NetworkProcessor,简称NP)等;还可以是数字信号处理器(DigitalSignalProcessing,简称DSP)、专用集成电路(ApplicationSpecificIntegratedCircuit,简称ASIC)、现场可编程门阵列(Field-ProgrammableGateArray,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
综上所述,本发明所述光学基准点的挑选方法、系统、可读存储介质及电子设备避免了手工和人为操作,无需人的经验判断,解决了智能制造中的自动化程序制作的一个技术问题。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种光学基准点的挑选方法,其特征在于,用于挑选PCB板的最佳光学基准点;所述光学基准点的挑选方法包括:
    从所述PCB板的贴装面中筛选出表面贴装元器件,并根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域;其中,所述最佳边角区域由均匀等分的角区域组成;
    判断最佳边角区域的每一角区域内是否存在光学基准点,若是,挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。
  2. 根据权利要求1所述的光学基准点的挑选方法,其特征在于,所述根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域的步骤包括:
    在每一表面贴装元器件在所述PCB板上的坐标中查找出表面贴装元器件的最小横坐标、最大横坐标、最小纵坐标及最大纵坐标;
    将表面贴装元器件的最小横坐标和最大横坐标、与最小纵坐标和最大纵坐标两两组合,以划分出最佳边角区域。
  3. 根据权利要求1所述的光学基准点的挑选方法,其特征在于,最佳边角区域包括位于PCB板左上角的边角区域、左下角的边角区域、右下角的边角区域及右上角的边角区域。
  4. 根据权利要求1所述的光学基准点的挑选方法,其特征在于,在所述划分出用于确定光学基准点的查找范围的最佳边角区域的步骤之后,所述光学基准点的挑选方法还包括:
    从所述PCB板的贴装面中识别出所有光学基准点;
    获取所有光学基准点的坐标,并查找出光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标;
    通过查找的光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标,缩小光学基准点的查找范围。
  5. 根据权利要求4所述的光学基准点的挑选方法,其特征在于,
    缩小的光学基准点的查找范围的横坐标= |(最大横坐标-最小横坐标)×预设查找范围比例|;
    缩小的光学基准点的查找范围的纵坐标=|(最大纵坐标-最小纵坐标)×预设查找范围比例|。
  6. 根据权利要求5所述的光学基准点的挑选方法,其特征在于,所述查找距离此角区域最近的光学基准点的步骤进一步包括:
    查找距离所述角区域、且在缩小的光学基准点的查找范围内最近的光学基准点。
  7. 一种光学基准点的挑选系统,其特征在于,用于挑选PCB板的最佳光学基准点;所述光学基准点的挑选系统包括:
    筛选模块,用于从所述PCB板的的贴装面中筛选出表面贴装元器件;
    划分模块,用于根据每一表面贴装元器件在所述PCB板上的坐标,划分出用于确定光学基准点的查找范围的最佳边角区域;其中,所述最佳边角区域由均匀等分的角区域组成;
    处理模块,用于判断最佳边角区域的每一角区域内是否存在光学基准点,若是,挑选该角区域内存在的光学基准点为最佳光学基准点;若否,查找距离此角区域最近的光学基准点,并计算处于对角方向上的该光学基准点之间的距离,挑选最大距离对应的两个光学基准点为最佳光学基准点。
  8. 根据权利要求7所述的光学基准点的挑选系统,其特征在于,所述光学基准点的挑选系统还包括:
    识别模块,用于从所述PCB板的贴装面中识别出所有光学基准点;获取所有光学基准点的坐标,并查找出光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标;通过查找的光学基准点的最大横坐标、最小横坐标、最大纵坐标及最小纵坐标,缩小光学基准点的查找范围。
  9. 一种可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至6中任一项所述光学基准点的挑选方法。
  10. 一种电子设备,其特征在于,包括:处理器及存储器;
    所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序, 以使所述电子设备执行如权利要求1至6中任一项所述光学基准点的挑选方法。
PCT/CN2018/090380 2018-04-16 2018-06-08 光学基准点的挑选方法、系统、可读存储介质及电子设备 WO2019200678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810338791.7 2018-04-16
CN201810338791.7A CN108617164B (zh) 2018-04-16 2018-04-16 光学基准点的挑选方法、系统、可读存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2019200678A1 true WO2019200678A1 (zh) 2019-10-24

Family

ID=63660394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090380 WO2019200678A1 (zh) 2018-04-16 2018-06-08 光学基准点的挑选方法、系统、可读存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN108617164B (zh)
WO (1) WO2019200678A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3912442B1 (en) * 2019-01-17 2024-04-24 Jabil Inc. Apparatus, system, and method of providing radial section identification for pick and place
CN109961067B (zh) * 2019-03-19 2021-05-28 上海望友信息科技有限公司 光学基准点的选取方法、系统、计算机存储介质及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732207A (zh) * 2015-03-12 2015-06-24 广东工业大学 高精度与高抗干扰性定位PCB板Mark点的方法及装置
CN104768334A (zh) * 2014-01-06 2015-07-08 宁波舜宇光电信息有限公司 一种动态地调整贴装位置的贴装方法及其装置
CN106485699A (zh) * 2016-09-22 2017-03-08 哈尔滨工业大学 一种基于点匹配的基准标志定位方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283504A (ja) * 2008-05-19 2009-12-03 Hitachi High-Tech Instruments Co Ltd スクリーン印刷機、電子部品装着装置及び電子部品の実装ライン
JP5798371B2 (ja) * 2011-05-09 2015-10-21 富士機械製造株式会社 基準マークモデルテンプレート作成方法
CN203984765U (zh) * 2013-09-11 2014-12-03 东莞尔来德通讯有限公司 一种具有用于贴片的识别标记的pcb板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768334A (zh) * 2014-01-06 2015-07-08 宁波舜宇光电信息有限公司 一种动态地调整贴装位置的贴装方法及其装置
CN104732207A (zh) * 2015-03-12 2015-06-24 广东工业大学 高精度与高抗干扰性定位PCB板Mark点的方法及装置
CN106485699A (zh) * 2016-09-22 2017-03-08 哈尔滨工业大学 一种基于点匹配的基准标志定位方法

Also Published As

Publication number Publication date
CN108617164A (zh) 2018-10-02
CN108617164B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2020186851A1 (zh) 光学基准点的选取方法、系统、计算机存储介质及设备
CN104690420B (zh) 基于数字ccd的fpc板边定位加工方法
CN105510348A (zh) 一种印制电路板的缺陷检测方法、装置及检测设备
WO2019200678A1 (zh) 光学基准点的挑选方法、系统、可读存储介质及电子设备
CN107356213B (zh) 滤光片同心度测量方法及终端设备
CN112288724B (zh) 缺陷检测方法及装置、电子设备和存储介质
JP2022524877A (ja) ステンシル段差の設計方法、システム、コンピュータ可読記憶媒体及びデバイス
CN114463438A (zh) 一种标定板、标定板识别方法、装置及计算机可读介质
CN109685764B (zh) 产品定位方法、装置及终端设备
US9542740B2 (en) Method for detecting defect in pattern
US20040109599A1 (en) Method for locating the center of a fiducial mark
CN115797359A (zh) 基于电路板上锡膏的检测方法、设备和存储介质
CN108984912B (zh) 一种pcb设计自动调整线段间距的方法及系统
WO2024012463A1 (zh) 一种定位方法及装置
US11880910B2 (en) Method for extracting information from a display panel, device, and electronic device
CN107644442B (zh) 双摄模组的空间位置标定方法
US20230245346A1 (en) Method and device for corner marking and parameter calibration
CN112634259A (zh) 一种键盘键帽自动建模定位方法
US20030003375A1 (en) Block mask making method, block mask and exposure apparatus
CN111598832A (zh) 一种槽孔缺陷标注方法、装置和存储介质
CN110245412B (zh) 一种pcb顶针模板自动设计方法及系统、存储介质及终端
TWI715184B (zh) 圖像中目標物體定位方法、裝置、電腦裝置及存儲介質
ES2550502T3 (es) Método y sistema para detectar ópticamente y localizar un marcador de dos dimensiones, 2D, en datos de escena 2D, y marcador para el mismo
KR20160054856A (ko) 다이 본더의 본딩 위치 보정 방법
CN112785546B (zh) 基于图像处理的端子类型识别方法、装置、终端、及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915381

Country of ref document: EP

Kind code of ref document: A1