WO2019200497A1 - Un sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, mediante equipos autónomos no tripulados en vuelo. - Google Patents
Un sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, mediante equipos autónomos no tripulados en vuelo. Download PDFInfo
- Publication number
- WO2019200497A1 WO2019200497A1 PCT/CL2019/000017 CL2019000017W WO2019200497A1 WO 2019200497 A1 WO2019200497 A1 WO 2019200497A1 CL 2019000017 W CL2019000017 W CL 2019000017W WO 2019200497 A1 WO2019200497 A1 WO 2019200497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vant
- vam
- flight
- tasks
- supply
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 44
- 239000003973 paint Substances 0.000 claims abstract description 13
- 230000006698 induction Effects 0.000 claims description 12
- 230000033001 locomotion Effects 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 238000013473 artificial intelligence Methods 0.000 claims description 4
- 239000012636 effector Substances 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 239000000654 additive Substances 0.000 abstract description 10
- 230000000996 additive effect Effects 0.000 abstract description 10
- 230000002452 interceptive effect Effects 0.000 abstract 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 59
- 238000000034 method Methods 0.000 description 26
- 238000010276 construction Methods 0.000 description 25
- 238000010422 painting Methods 0.000 description 14
- 230000032258 transport Effects 0.000 description 14
- 230000000007 visual effect Effects 0.000 description 8
- 238000012552 review Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 244000025254 Cannabis sativa Species 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010408 sweeping Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 241000736772 Uria Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D1/00—Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
- B64D1/16—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
- B64D1/18—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/34—In-flight charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/90—Launching from or landing on platforms
- B64U70/92—Portable platforms
- B64U70/93—Portable platforms for use on a land or nautical vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U80/00—Transport or storage specially adapted for UAVs
- B64U80/80—Transport or storage specially adapted for UAVs by vehicles
- B64U80/86—Land vehicles
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/35—Extraordinary methods of construction, e.g. lift-slab, jack-block
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/08—Construction
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0047—Navigation or guidance aids for a single aircraft
- G08G5/0069—Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/12—Ground or aircraft-carrier-deck installations for anchoring aircraft
- B64F1/14—Towers or masts for mooring airships or balloons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F3/00—Ground installations specially adapted for captive aircraft
- B64F3/02—Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/25—UAVs specially adapted for particular uses or applications for manufacturing or servicing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/20—Remote controls
- B64U2201/202—Remote controls using tethers for connecting to ground station
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/002—Arrangements for cleaning building facades
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
Definitions
- TITLE A SYSTEM TO MAKE MULTIPLICITY OF POSSIBLE COMPLEX WORK ON WORKS, BY AUTONOMOUS EQUIPMENT NOT CREWED IN FLIGHT.
- the present application for invention system refers to solving a multiplicity of tasks at height which mainly comprises an autonomous unmanned aerial vehicle for multiple tasks (VAM) and autonomous unmanned flight equipment (VANT).
- the tasks are so diverse, by way of illustration and not limitation; devastate a surface, clean it of dust and apply paints.
- the tasks are solved in complex structures on a given work (moving vehicle, moving structure, building, building, structure, urban furniture, home, aeronautical hangar, shipyard, etc.) and the system is transported to it to solve, a eventual task or settle in it to live with said work and perform periodic tasks.
- it consists of at least one main VANT equipment, a set of support VANT, other ground equipment and a multiplicity of devices that are coupled to the main air vehicle.
- VANTs include at least one work adapter that stabilizes the flight at the time of solving these tasks, making the maneuver more coordinated and precise. While the main VANT has at least one robot arm that allows you to perform extremely complex, fast and precise tasks. To perform the tasks, it requires supply, following the previous example, loads power and paintings. Then, the system has a continuous supply method from land and / or air, allowing greater flight autonomy and continuity of the task.
- VANT unmanned aerial vehicle
- REPLACEMENT SHEET (Rule 26) There are several tasks that involve great skill and complexity of the maneuver, whether it is applying a paint, cutting, drilling, sucking dust, applying pressurized water, thrashing tree branches in route, etc,
- VANT systems that allow painting surfaces in height, in the case of Systems and methods for unmanned aerial painting applications US 20160082460 and Automatic painting system with drone, user interface and Computer vision US20170259920A1.
- the purpose of the present invention application refers to a team that allows to reduce the execution time of tasks at height, reducing the accident rate of the operators in various industries associated with construction or people in the home.
- the task by way of illustrative and non-limiting example, such as co-painting of complex surfaces, bracing structures, and previous tasks, threatened surface, dust cleaning, etc.
- Great advantage is a team that also solves the previous tasks, delivering a comprehensive and complete service.
- the supply is made by cable
- it has a method and devices that allow greater autonomy and continuity without the cable becoming entangled and overcoming obstacles in height, significantly speeding up the tasks of the work.
- Accomplishments that contemplate supply from a vehicle that responds to eventual tasks and realizations installed in a building in progress or already built. In the first one, it allows significant progress in the execution of work that requires maintenance and in the second one advances as a team that lives together with the work, responding to various tasks constantly. These characteristics reduce the time in the place where the task is carried out, which reduces logistics and operation costs.
- Significant progress on progress and productivity of a work. Ventája qüe is direct on an emphasis that provides these services and advantage to reduce problems in the company or entity where the task is performed. BRIEF DESCRIPTION OF THE FIGURES.
- Figure 1 It is a workflow diagram of the system, as the vehicle (400) that it transports from the control unit (1001) and the VANT (1008) evaluates the tasks on site (600 and 602) using Software (1009 ) the equipment is selected (1014) tasks are executed (1021) the task review (1025) is completed and the task end task (1026) of the following invention is completed.
- Figure 2 illustrates a side view, where the VAM (1) and VANT (3) are attached to the construction site (600), where the VAM (1) is executing a task, of the following invention.
- Figure 3 illustrates a side and broken view, showing partially interior, where the VAM (1) and VANT (3) are attached to the construction site (600), where the VAM (1) is executing a task, of the following invention.
- Figure 4 illustrates a top section view "A", where a robot arm (1.7) of the VAM (1), of the following invention can be seen.
- Figure 5 illustrates a top section view "A", where two robot arm (1.7) can be seen in angular displacements with respect to the VAM (1), of the following invention.
- Figure 6 illustrates a side view, where the VAM (1) and VANT (3) are attached to work (600), where the VAM (1) is executing a task in a lower work zone (600), of the following invention.
- Figure 7 illustrates a side view, where the VAM (1) and VANT (3) are attached to Work (600), where the VAM (1) is executing a task in a work uria (600) opposite the fixing direction, of the following invention
- Figure 8 illustrates a side view, where the VAM (1) and VANT (3) are attached to the construction site (600), where the VAM (1) is executing a task between own work structures (600) and it is also illustrated that Fixation (1.6) are in the air, of the following invention.
- Figure 9 illustrates a side view, where the VAM (1) and VANT (3) are attached to the construction site (600), where the VAM (1) is executing a lower task between own work structures (600) and it is also illustrated that Lower Landing Fixation (1.6) is supported by another construction structure (600), of the following invention.
- Figure 10 illustrates a side view, where the VAM (1) is in flight in front of the work (600), and is executing a task on the work (600), while VANT (3) is attached to the work (600) , of the following invention.
- Figure 11 illustrates a side view, where the VAM (1) is in landing mode, of the following invention.
- Figure 12 illustrates a rear view, where the VAM (1) is in landing mode, of the following invention.
- FIG. 13 illustrates a top view, where the VAM (1) is in flight mode, of the following invention.
- Figure 14 illustrates a perspective view, where the VAM (1) is in flight mode, of the following invention.
- Figure 15 illustrates a top perspective view, where the VAM (1) is in flight mode, of the following invention.
- Figure 16 illustrates a perspective view, where the VAM (1) is in landing mode, of the following invention.
- Figure 17 Illustrates a side view, of a suction device for suction cup structure (1.5.100), of the following invention.
- Figure 18 illustrates a side view of a lever press structure fixing device (1.5.200) of the following invention.
- Figure 19 illustrates a side view of a press structure fixing device (1.5.300) of the following invention.
- Figure 20 illustrates a side view, of types of tools, devices of the following invention.
- Figure 21 illustrates a side view of the special tool device (110) being introduced in a narrow place, of the following invention.
- Figure 22 illustrates a side view of the special tool device (110) painting in a narrow place of the following invention.
- Figure 23 illustrates a side view of the special tool device (110) with multi-nozzles painting in a narrow place, of the following invention.
- FIG 24 illustrates a side view of the method of cable supply and power load supply by air contact.
- VAM (1) is attached and is performing a task on the construction site (600)
- VANT (3) is attached to the construction site (600)
- VANT (4) is continuously supplying
- VANT (2) performs visual support and review of the task to be executed, of the following invention.
- VANT (5) obtains power charge from vehicle (400).
- FIG 25 Illustrates a side view of the method of cable supply and air wireless power charging.
- VAM (1) is attached and is performing a task on the construction site (600)
- VANT (3) is attached to the construction site (600)
- VANT (4) is continuously supplying
- VANT (2) performs visual support and review of the task to be executed, of the following invention.
- VANT (6) obtains charge power from vehicle (400).
- Figure 26 illustrates a side view of the method of cable supply and power load supply also by cable.
- VAM (1) is attached and is executing a task on the work (600)
- VANT (3) is attached to.
- VANT (4) is continuously supplying
- VANT (2) performs visual support and review of the task to be executed, of the following invention.
- Vehicle (400) delivers supplies continuously.
- Figure 27 illustrates a partial side view of a centralized mobile reel unit (700) of the following invention.
- Figure 28 illustrates a partial side view, cable supply method and power load supply also by cable, of centralized mobile reel unit (700) installed on glazed building (602), of the following invention.
- Figure 29 illustrates a top view, cable supply method and power load supply also by cable, of centralized mobile reel unit (700) installed on glazed building (602), of the following invention.
- Figure 30 Illustrates a front view of section "B" of the previous figure, station (900) on a glazed building (602), of the following invention.
- an operator of a VANT can remotely direct or pilot a VANT to move near a structure, and control the connected supply subsystem to perform a task accurately.
- the skill of the operator who controls the VANT is important because the VANT must be kept at an optimal distance from the structure so that the task can be executed optimally avoiding damaging the arm or components of the equipment.
- a VAM may include sensors that are capable of determining a precise location of a VANT with respect to a structure.
- a programmable computer can operate a VANT to fly along a predetermined flight path while maintaining a precise position of the VANT in relation to the structure by automatically adjusting the flight control elements of the VANT in response to changing wind conditions and position temporarily using the removable fixing device.
- a programmable computer based on location information, can also control the supply system attached to the VANT to apply additive fluids or subtractive fluids accurately to the site in the desired manner.
- This communication is processed by Software (1009) and / or stored in Cloud (1010) and / or assisted by Artificial Intelligence (1011).
- a system (1000) includes a VANT and supply depots that are connected to the VAM (1), specifically close to the robot arm (6 freedom axes) and connected to the tool and configured to remain on the ground while the VANT is in flight.
- one or more pumps can be used to supply and / or suction a certain fluid that is held in the supply tank to a tool.
- VAM (1) or other VANT that supports it next to it and also in flight, which provides the optimum pressure for fluid delivery from the nozzle.
- the fluid is supplied to the nozzle through an umbilical cord that can include one or more flexible tubes.
- each of the flexible tubes can supply different fluids to the VAM nozzle (1).
- an umbilical may optionally include a light power cable to supply power (electrical) power to the VANT and / or the fluid supply subsystem, although in most cases the power necessary to operate the VANT can be provided and / or the fluid subsystem by a battery that is carried on board the VANT.
- system (1000) includes a VAM (1) and a supply depot that carries at least one other VANT while the VAM (1) is in flight, with no wired connection to ground.
- the VAM (1) is supported by at least one VANT carrying the supply provides the optimum pressure and / or suction for the delivery of additive fluid as a subtractive fluid from the supply reservoir of certain fluid that is conducted to the VAM tool (1).
- VAM (1) that executes the task is recharged energetically by another VANT in flight continuously.
- the VANT that carries the fluid supply is supported by another VANT that is coupled in flight and recharges it energetically.
- system (1000) includes a VAM (1) that has a supply bladder that carries at least one VANT while the VAM (1) is in flight.
- the VAM (1) includes a smaller and lighter pump transported by the VANT that provides the optimum pressure and / or suction for the delivery of additive fluid as a subtractive fluid from the supply subsystem tool.
- a supply bladder can be separated from the VANT so that empty bladders can be exchanged for filled bladders relatively easily. Because the fluid chamber and the amount of fluid that can be stored in these embodiments are necessarily limited due to the lifting capacity of the VANT, these embodiments are ideal for smaller tasks where the number of refills required is limited, since that the replacement of a supply bladder would normally be performed by a human VANT operator in the transport vehicle, station on site or simply on the ground.
- the tube that supplies the additive fluid as a subtractive fluid from the supply bladder to the nozzle of the fluid supply subsystem is also preferably separated from the VAM and VANT that supports it so that different fluid from different can be applied characteristics without contamination between them.
- the system (1000) provides a VAM (1) and the VANT equipment, which includes a cable carrier that is installed in a work which is in process or is already finished.
- the cable carrier allows continuous delivery. This can also be telecommanded by an operator or operated by an application software.
- This equipment carries cables, has a rail that allows greater perimeter scope to the work in order not to entangle cables to the equipment in flight. It also has a station to store the VANT and cables.
- VAM a VAM
- VANT equipment which includes a cable carrier that is installed in a work which is in process or is already finished.
- the VANT can be recharged by induction.
- the VAM (1) is of an eight "octocopter” type rotors, but may have four rotors ("quad helicopter").
- Other VANTs suitable for use with other embodiments may have a different number of rotors, such as six rotors ("hexacopter").
- a VANT with more rotors is capable of producing more lift, but also requires more energy to power the rotors.
- VAM the applications described in this document, a VANT must generate sufficient elevation for allow both himself and any payload he can carry to be transported in the air.
- Weight and lift considerations such as these are normal flight engineering problems that are well known to those skilled in the art, and will not be explained in more detail herein.
- Figure 1 is a flow chart of how the invention system (1000), from a the control unit (1001) or company carries out a transport and storage (1029) which comprises two instances control unit (1001), one where the equipment is transported in a vehicle (400) to a structure (600) or It is transported to a station (900) and lives in a glazed building (602).
- the equipment available equipment (1002) logically has two instances, one already in work (1003) and another send to work (1004). On site, both structure (600) and glazed building (602) VANT (1008) VANT (2) is sent.
- the censored information and images probed by VANT (2) are evaluated and processed by requirements diagnosis and solution (1005), so a solution can be a known, pre-established routine (1006) or there are no precedents of known requirements and by which there is no known solution to solve (1007).
- This diagnosis is processed, and assisted by Software (1009) that evaluates, and the solutions are shared and compared with other experiences or cases stored in the Cloud (1010) that is processed by Artificial Intelligence (1011).
- the requirements solutions can be carried out by an operator through remote control via remote control (1012). These routes must define types of tasks and actions (1013), which will make the choice of equipment (1014) appropriate to perform the task in a given work.
- the choice of equipment (1014) implies choice of VANT (1015), choice of quantity and type of arm (1016), choice of fixation (1017), choice of tools (1018), choice of supplies (1019), choice of suppliers (1020).
- the chosen equipment (1021) for both the equipment already on site (1003) and / or send to work (1004) the execution of tasks (1022) and delivery of supplies by suppliers (1023) are carried out from vehicle (400) or centralized mobile reel unit (700).
- the energy recharge (1024) constantly provides VAM, VANT (1026) and also supported by VANT charger and supply (1025).
- VANT (2) The revision of the task (1027) is carried out by VANT (2) if it is not under compliance "N" tasks must be re-executed (1022) together with Software (1009), and if it is under conformity ⁇ "it is terminated task (1028) whereby transport and storage is given (1029) and / or returned to control unit (1001) as appropriate.
- the control unit (1001) must be understood as the control instance from any enabled point, from a company, home, mobile device, remote manual control, etc.
- Figure 2 In this figure it is observed, the system (1000), comprises the VAM (1) and VANT (3) are attached to the construction site (600), where the VAM (1) is executing a task, of the following invention.
- At least one VANT (3) is able to attach structures (600) to a specific place in the construction site, which ensures a point of reliability for flight maneuvers, maneuvers for the execution of one task and the operations of others.
- VANT or associated equipment This is achieved since the VANT (3) censuses its environment and obtains position data, such as height ⁇ "or depth" D ", said VANT emits via radio transmitter (510), first signals, via link (500 ) Wireless radio, which VAM (1) will process and perform convenient maneuvers.
- Both teams have a link device (522) that allows them to position at will on structures (600).
- VAM has different fixing devices, which is why it is only illustrated here and in no case is it limited.
- the VANT equipment comprises a VAM, a subsystem common to them, which is composed of a circular body (1.1), of which four arms of each other two arm (1.2) are arranged horizontally and distributed radially around the body circumference ( 1.1) at whose outer end motors (1.3), a camera (1.8), and a controller (1.4) are preferably located in the center of the body (1.1).
- the controller (1.4) that includes a battery (not shown) to provide power and a wireless receiver (not shown) to receive wireless flight control signals from one ground control station control unit (1001) and from the other VANT.
- the VANT to recognize their environment and position, has a multiplicity of sensors, GPS, and LIDAR light detection and measurement unit (not shown), with which they measure distances, determine the surface finish of the works. Which are conveniently located in each VANT. By way of illustration and not limitation, they can determine if a metal surface is oxidized. Likewise, level, flow, and pressure sensors around supply tanks monitor the capabilities, delivery and performance of supplies.
- the VANTs have microcontrollers, RFI emitters, DC / DC load converter modules, battery storage, emission, reception, transmission and load power management modules (not shown) from sources of supply, preferably located close to controller (1.4) and controller (701.1) respectively.
- the system (1000), The VAM (1) especially comprises of at least one robot arm (1.7) robot that allows performing the complex maneuvers of a certain task to which tool (100) is coupled, according to the determined task, then in this figure shows a tool (109) which is coupled by union (104) which is conveniently easy to join for an operator or to another major tool holder device.
- Said tool (100) comprises a pump (101) which allows the necessary pressure of additive fluids or subtractive fluids to be delivered through a doubt (1.10) to a spray nozzle (103) of necessary characteristics according to ejected fluid (105) such as; jet, spray, etc.
- the doubt (1.10) is guided wrapped and protected to a guide (1.9) beyond the perimeter capable of the rotors (1.3) and at its end an elbow (1.12) allows adequate flexion or nidirectional without strangling the cable and achieving that no there are dangers due to entanglement of both power and fluid power supply cables.
- the doubtful supply (1.10) includes ring (421) that is arranged equidistant and homogeneously along this, allowing the VAM and software to know spatial position and prevent any collision of them with VANT equipment in flight or maneuvers to order them on the ground. The maneuvers and execution of tools are monitored by front camera (102) and also by the support VANT, at least one VANT (2).
- VANT (3) have fixing means that are articulated and extended to reach structures (600) by upper fixing (1.5) and lower fixing (1.6) which is achieved by electromagnetic link (522).
- the system (1000) comprises the VAM (1) and VANT (3) are attached to the construction site (600), where the VAM (1) is executing a task, of the following invention, At least two fixing subsystems (1.5) to structures (600).
- This fixing subsystem (1.5) comprises a rather cylindrical body body (1.5.1) of which is located rotation unit (1.5.2) of which cylinder (1.5.3) is connected capable of conveniently pivoting downwards. From the inside of the cylinder (1.5.3), the rod (1.5.4) is extended and at its outermost end is located union (1.5.5). From this connection, other fixing devices according to the surface are shown, which are shown in Fig. 17, Fig.
- a body capable of absorbing impacts or mechanical differences shock absorber (1.5.6) is integral to an omnidirectional joint ball (1.5.7) that allows to replace oblique surfaces in relation to the desired horizontality of the VANT as both a flexible and also articulated adapter surface (1.5.8) is able to adapt to structures with profiles of different geometric sections.
- an electromagnetic plate (1.5.9) that directly touches the work (600).
- the fixation (1.5) can have another of equal parallel to it, only that the body (1.5.1) contains means to move them away from each other at the convenience of the maneuvers.
- a cylindrical body shaft (1,100) is integral with body (1.1) and at the other end to the body (1.6.1) a connector (1,102) joins a bushing (1,101) allows it to be removable relative to the shaft, among which body (1.5.1) and body (1.7.1) are arranged.
- a connector (1,102) joins a bushing (1,101) allows it to be removable relative to the shaft, among which body (1.5.1) and body (1.7.1) are arranged.
- hub (1,106) coaxial and continuously in order to reduce friction between them, known self-lubricating materials plastics.
- a rotor (1,103) is coupled, which transmits the necessary power by means of gear (1,104) to a rack (1,105) that is integral to the body (1.6.1), allowing the convenient rotation control.
- gear (1,104) gear
- a rack (1,105) that is integral to the body (1.6.1
- the own power and drive cables communicate with the controller (1.4).
- the mechanical technique allows today without greater effort to achieve control of hundredths of a millimeter and high performance power through; actuators, servomotors, hydraulic motors, etc.). It is desirable that these actuators have a maintenance and lubrication door (not shown) and that they are considered in the embodiments.
- Figures 4 and 5 Both are a sectional view "A", where a robot arm (1.7) is observed in the VAM (1) of the system (1000). Particularly Figure 5, shows two versions of robot arm (1.7) connected to VAM (1). This combination is established by the choice of quantity and type of arm (1016) and choice of tools (1018) different tools (100). This is achieved since the body (1.7.1) has several embodiments. Within the embodiments we can achieve that an opening angle is generated between the one robot arm (1.7) of one type and another. This independent angular movement between the different robot arms (1.7) is desirable since it allows different and simultaneous tasks to be performed. The mechanical technique allows today without greater effort to achieve the independent angular movement of each robot arm (1.7).
- system (1000) comprises the VANT (3) is attached to work (600). While in Figures 6, 7 and 9 the VAM (1) is attached to work (600) by fixing (1.5) and fixing (1.6), in Figure 8 it is attached to work (600) only by fixing (1.5) while in Figure 10 it is in flight.
- VANT (3) is the local reference to the work (600).
- VANT (3) sends first link signals (500) through transmitter (510).
- FIG 6 shows VAM (1) performs lower tasks, since it includes a robot arm (1.7) capable of turning and accommodating tool (100) with the maneuvers that the robot arm (1.7) allows.
- Figure 7 the tool (100) is able to reach the opposite side.
- Figure 8 shows VAM (1) performs frontal tasks, is attached to work (600) only by fixing (1.5), it is also shown that the tool (100) maneuvers between 2 structures of the work (600), since it comprises robot arm (1.7) capable of turning and accommodating tool (110) with the maneuvers that the robot arm allows robot (1.7).
- FIG. 9 shows VAM (1) performs lower tasks and is attached to work (600) by fixing (1.6) and fixing (1.5), it is also shown that the tool (100) performs lower maneuvers between 2 structures of the work (600) ), since it includes a robot arm (1.7) capable of turning and accommodating tool (110) with the maneuvers that the robot arm robot (1.7) allows.
- FIG. 10 shows VAM (1) performs frontal tasks, is not attached to work (600) is in full flight, it is also shown that the tool (100) makes maneuvers frontal to the structures of the work (600), it is shown besides that fixation (1.6) is rather horizontal, since it is able to rotate and articulate.
- FIG 11 and Figure 12 shows VAM (1) is in landing mode, fixation (1.5) and fixation (1.6) are grounded, capable of stabilizing the equipment as a whole.
- This articulatory movement and extensions are arranged to achieve a distance such that the limbs are reached an equal lower distance.
- fixing (1.5) comprises a body (1.5.1) of which a rotation unit (1.5.2) of which cylinder (1.5.3) is connected capable of conveniently pivoting downwards, from the inside is located of the cylinder (1.5.3) extends rod (1.5.4).
- Figure 13 shows VAM (1) in top view, in flight, where the duct (1.10) is protected and guided by a guide (1.9) beyond the capable radius comprising the arrangement of rotors (1.3). It is also appreciated that electromagnetic plate (1.5.9) is also beyond the tool (100).
- FIG 14 and 15 shows VAM (1) in perspective view, in flight. It can be seen that it has a curved tool for painted structures (110) connected to the robot arm (1.7).
- Figure 16 shows VAM (1) in perspective view, in landing mode. You can see what has tool (110) connected to robot arm (1.7).
- Figure 17 shows a detail in side view of a type of fixing to structure, which is connected to fixing (1.5) and / or fixing (1.6) of the VAM (1). Then, to fixation (1.5) suction cup is connected (1.5.100) which is able to be fixed to
- Figure 18 shows a detail in side and top view of a type of fixing to structure, which is connected to fixing (1.5) and / or fixing (1.6) of the VAM (1).
- fixation (1.5) support (1.5.200) that is able to be fixed to straight or truncated conical columns of different work sections (600), for this it comprises a body that by one end projects a rectangular section in an aligned direction
- the longitudinal axis of the fixing (1.5) and ends at a more extensive flat face where connection (1.5.5) is connected and at the other end, lower and upper bodies are projected perpendicularly with the same rectangular section, which have threaded holes in where they stay; in the upper threaded bore a threaded upper extension cylinder (1.5.203) that is integral and perpendicular to the upper stop (1.5.204) which also cylinder coated with non-stick material and which is capable of absorbing differences and surface texture, while in the lower threaded bore a threaded lower extension cylinder (1.5.201) that is integral and per
- the upper extension (1.5.203) is conveniently moved at the will of VAM (1) by motor (1.5.205) which is located in the upper support portion (1.5.200).
- the control, power connection, wired or wireless drive, motor power and the technical characteristics to achieve that this type of fixation fulfills its objective in relation to the requirements of the VAM (1), the work (600) and the task to be carried out, because the mechanical technique allows today without much effort to achieve.
- Figure 19 shows a detail in side view of a type of fixing to structure, which is connected to fixing (1.5) and / or fixing (1.6) of the VAM (1). Then, to fixation (1.5), support (1.5.300) is connected, which is capable of being fixed to straight or truncated conical columns of different work sections (600), for this it comprises a body that projects a rectangular section in one direction.
- a body capable of absorbing shock absorber (1.5.6) is projected, from where the body is projected with two flattened portions that decrease in size and that have a perforation and pin in common axis (1.5,301) coaxial to this and from this other body that grows to a rectangular support section (1.5.300), always parallel to work (600), is integral and covers the rectangular face with a certain covered thickness (1.5.302) rests directly on work (600).
- shock absorber (1.5.6) it is projected perpendicularly with the same rectangular section with a superior support body (1.5.303) that have threaded perforation where the threaded cylinder extension (1.5.304) is housed, which is larger than the roof dimensions (1.5.302) plus the dimensions of the construction structure (600) a rectangular perpendicular support body (1.5.307) is projected to which another body of the same section that attaches support (1.5.305) is followed by another body that is solidary and covers the rectangular face with a certain covered thickness (1.5,306).
- shock absorber 1.5.6 is made up of memory material, a device that can conform to springs or elastomers of certain geometry known in the art.
- On support (1.5.303) is an engine (1.5.308) that is capable of moving extension (1.5.304) conveniently at the will of VAM (1).
- cover (1.5,302) and cover (1.5,306) are able to absorb differences in texture and work surface (600) and also that the equipment does not slip.
- FIG 20 shows a detail in side view of a type of team performing a task on site (600) or glass (601) and below the arrow a series of tools.
- VAM (1) has a tool (109) connected to the robot arm (1.7).
- This particular tool is capable of applying paint to complex work surfaces (600), for this, from the robot arm (1.7), it comprises a matrix of front camera CCD cameras (102) capable of collecting image data and understanding its surroundings.
- the tool (109), at its end comprises a spray nozzle (103) from which expelled fluid (105) is expelled which has been driven by a pump (1.11) to a pump (101).
- the pump (101) and spray nozzle (103) are controlled by controller (1.4) capable of spraying.
- One that is capable of drilling drill (200) mainly comprises a body that houses a motor and a cylindrical body that starts chip.
- Other that is capable of roughing roughing (201) mainly comprises a body that houses a motor and an abrasive disk.
- Another that is capable of sweeping particles and small surpluses of sweeping material (202), mainly comprises a body that houses a motor, a disk that has a series of filaments perpendicularly arranged to it, preferably dense and that has a conduit that sucks the particles and small surpluses.
- Another capable of cutting and matching grass trimmer grass (203) mainly comprises a body that houses a motor and a folded filament.
- Another capable of sawing sawmill (204) mainly comprises a body that houses a motor and a disc that has a series of teeth that rough a body by continuous chip removal.
- Another capable of sweeping surfaces such as glass and ridding of feather water (205) mainly comprises a body that houses a rotor motor (205.1) a filament folded as a "L" support link (205.2) of which a body is coupled elongated sheet laminate (205.3), capable of rotating in relation to the support link axis (205.2).
- Figure 21 In relation to Figures 20, 21, 22 and 23, in which it implies a tool (110), it can be seen as in Figure 20, a general description is made, Figure 21, it is shown as a tour to enter between two work structures (600), while in Figure 22, it is shown how he has entered the narrow place and in Figure 23, he is performing the task. Tool description (110) will be made, where
- the number and distribution of spray nozzle (103) and chamber (111) are defined by the task.
- FIG. 1 shows an illustrative diagram in side view of the aerial method of cable supply and power load contact load.
- VAM (1) is attached and is executing a task on the construction site (600)
- VANT (3) is attached to the construction site (600)
- VANT (4) is continuously delivering supplies
- VANT (2) performs visual support and review of the task to be executed
- VANT (5) of the following invention.
- At least one VANT (5) is then able to supply power to the VANT of the equipment that continuously moves between them and transport and supply vehicle (400), for this the transport and supply vehicle (400) comprises a platform where the VANT lands on a wired platform (451) in such a close position that there is an automatic connection of two electromagnetic link cables (523), at the outer end of the flexible cable in the VANT flexible conduit (420) has a surface which is operated by this VANT capable of exerting, at convenience, an electromagnetic attraction such that the flexible cable of the flexible duct landing platform (452) which is achieved because this flexible cable at its end comprises a ferrous type metal plate which attracts. Internally it is produced by contact of known power contacts and the charging and / or recharging of the VANT is achieved. Once the charge is made, the VANT disconnects the electromagnetic property and is released from the other flexible cable.
- the position of the VANT equipment on a wired platform (451) of transport and supply vehicle (400) is achieved as it has visual means, graphic marks, lights, color patterns or defined shapes that the VANT identifies.
- the electromagnetic link is achieved since the controller (1.4) sends an electrical signal and impulse to the coil that composes the electromagnet at the end of the cable, thereby attracting the end of the other cable that has the ferrous body in this condition. they line the internal contacts that allow the passage of power power.
- the delivery of power from the battery (not shown) in the transport and supply vehicle (400) is done because the VANT is positioned and with it the platform by means of a pressure or infrared sensor, as the equipment lands it activates and transfers through power supply charge management power (not shown).
- VAM (1) the recharge of energy by contact made in flight link (523) since the VAM (1) in guide (1.9) has a guide fork (1.9.1) which has at its end a capable terminal of reaching the flexible duct end (420) of the VANT (5).
- the flexible conduit stiffness (420) is convenient within the perimeter of the rotors and more external to this conveniently flexible.
- the length of flexible conduit (420) is such as to absorb distances of small turbulence and flight synchronization dissonances.
- the electromagnet has such force that it is released according to a certain separation force produced by one of the VANT, this ensures that in case of possible bad maneuvers or turbulence between them the contact terminals are released without generating danger of thrust from one over the other and they move to become entangled with duct cables (1.10) or collide with a construction structure (600), and on the contrary it ensures that there is no attraction between them causing collision.
- the VANTs have constant communication of the emission of first signals and response of second link signals (500) transmitting information from sensing means and global position and distance between them, which is capable of achieving flight synchronization such that it allows to maintain a suitable position for transmission of energy per contact.
- the contact connection is simply by magnet on the end face the cable of a VANT and on the other a ferrous metal plate. With the simple fact of approaching they attract and to release a certain force exerted by the displacement of the VANT.
- VANT (5) should be considered to be obviously lighter due to their requirements.
- its performance after charging power where its certain battery (not shown) is charged, can go from the transport and supply vehicle (400) to reach a VANT to spend 20% of energy, on the load By air itself, spend 10% of energy and return to recharge 20% of energy, which can effectively charge your 50%.
- VAM (1) makes higher energy requirements, because if a VANT (5) provides it with only 25%, it relies on as many recharges as necessary in flight to continue its work.
- VANT devices are charged by a VANT (5) after another VANT recharge (5) and so on, and continuously as required.
- Figure 24, 25, 26 and 28 contemplates method to obtain position and monitor supply cables between the VANT of the equipment, centralized mobile reel unit (700) and transport or supply vehicle (400), since cable (418) comprises along this one a bull body of revolution coupled ring (421) which is distributed homogeneously as many times as required by the long cable (418).
- Ring (421) is powered by load power energy, with a cable line parallel to cable (418) that supplies it.
- the ring (421) has a radio emitter inside it that emits signals to VANT devices, e! Software (1009) processes the position as points in the coordinate space, whereby the cable can be constantly monitored and proximity decisions are made regarding the equipment, nearby structures and maneuvers performed.
- a curve can be synthesized by three points in space, the more ring (421) are arranged along the cable (418), the greater the accuracy of the path. In this way the cable is free of entanglement and risky maneuvers for the VANT equipment, the environment and tasks and even collisions.
- FIG 25 shows an illustrative diagram in side view of the aerial method of cable supply and wireless power charging.
- VAM (1) is attached and is executing a task on the construction site (600)
- VANT (3) is attached to the construction site (600)
- VANT (4) is continuously delivering supplies
- VANT (2) performs visual support and review of the task to be executed
- VANT (6) of the following invention.
- At least one VANT (6) is then capable of supplying wireless power to the VANTs of the equipment, which continuously moves between them and vehicle (400), for this the vehicle (400) comprises a platform where the VANT lands induction platform (450) on and in a position such and close that a link induction (521) occurs.
- At least one VANT (6) delivers via radio frequency link (520), induction charges power to the other VANT.
- VANT have their own energy requirements, as said the VAM (1) has subsystems that require more energy and therefore requires a higher frequency of re-charging in flight. In all cases it should be considered that the VANT, VANT (6) are obviously lighter because of their requirements. Illustratively, its performance after charging power, where its certain battery is charged (not shown), can go from the vehicle (400) to reach a VANT to spend 20% of energy, in the air cargo itself 10% of energy and on the return to reload 20% of energy, with which you can make effective charge of your 50%. VAM (1) makes higher energy requirements, because if a VANT (6) provides it with only 25%, it will support as many recharges as necessary in flight to continue its work. VANT devices are charged by a VANT (6) after another VANT recharge (6) and so on, and continuously as required.
- the position of the VANT equipment on the induction platform (450) of the vehicle (400) is achieved since it has visual means, graphic marks, lights, color patterns or defined shapes that the VANT identifies.
- the power transmission based on electromagnetic induction corresponds to power transmission between a primary coil and a secondary coil. A magnet moves around a coil, generating an induced current. Then, a transmitter generates a magnetic field, and a current is induced in a receiver due to a change in the magnetic field, creating energy.
- the delivery of power from the battery (not shown) in the vehicle (400) is done because the VANT is positioned and with it the platform by means of a pressure or infrared sensor, as the equipment lands it is activated and transferred by means of supply management Charging power power (not shown).
- FIGS 24 and 25 can also be seen that the load supplied to VAM (1) is carried out in flight by at least one VANT (4).
- VANT (4) each can deliver different supply, one VANT (4) comprises supply tank (411) and pump (413), while the other VANT (4) comprises another supply tank (412) and another pump (414).
- This parallel arrangement allows you to perform equally parallel tasks.
- there are 2 robot arm (1.7) in one one an additive fluid is delivered and in the other one a subtractive fluid is delivered. Also in a robot arm (1.7) additive fluids and subtractive fluids are delivered, depending on the task.
- FIG 26 shows an illustrative diagram in side view of the cable supply method and wired power supply from the ground.
- VANT (7) At least for each VANT a VANT (7) is then able to supply power load to VANT (2) and VANT (3), from vehicle (400) via cable (418).
- At least one VANT (7) is capable of delivering fluid supply and supplying power charge for each VAM (1), from vehicle (400) via cable (418).
- the VANT (7) is capable of delivering fluid supply and supplying power charge power because it comprises cable (418) from vehicle (400), which comprises of wired distributor reel (417) that is capable of delivering as far as required the necessary cables. It also includes a supply tank (410) in which a pump (415) drives or sucks the fluid, additive fluids or subtractive fluids, depending on the task. It also includes a continuous power energy tank (416), capable of delivering to VANT.
- the VANT (7) is also cable spliced (418) by means of a fork. Said splice respects guide (1.9), duct (1.10), the free fall and constitution of the cable (418) and the various pressures that are characteristic of the fluid.
- This VANT holds the cable (418) by means of a ring that is connected and from which it connects to the undercarriage support cable (419).
- centralized mobile reel unit (700) that is installed on a work in construction or a construction work already finished, work that can be fixed or moving, where the supply to VANT is from this.
- a glazed building (602) has been installed centralized mobile reel unit (700) previously transported by vehicle (424).
- VAM (1) is attached to a glazed building (602) which includes a suction cup (1.5,100) in fixation (1.5) and in fixation (1.6), in addition, in a robot arm (1.7) it has a pen connected (205). With which it is capable, within one of the tasks is to clean glass in a glazed building, periodically.
- vehicle (424) is a vehicle driven by an operator or an autonomous vehicle.
- VAM (1) is supported by VANT (8) which is capable of ordering supply cables. These VANT are stored and recharged at station (900) which is also previously installed on a glazed building (602) per vehicle (424). VANT (8) is recharged by induction.
- FIG 27 is a side view illustrates centralized mobile reel unit (700) that is installed on a construction site or a completed construction work, work that can be fixed or moving.
- the centralized mobile reel unit (700) allows cable to be delivered to a VANT for this it comprises a cylindrical body that is limited in its major faces by two major reel discs (701) in whose cylindrical body cable (418) is previously wound, from the Reel center (701) extends rectangular section bodies that contain other bodies of similar section that extend towards the front telescopic arm (703) at whose end another perimetrically concave pulley disk (703.1) allows cable (418) to be directed down.
- a reel motor (701.2) Aligned and concentric to a reel (701), a reel motor (701.2) is available which, according to the VANT, requires cable (418), motor power to advance and pick up, driven by controller (701.1) which is in communication link (500) to VANT, control unit (1001), and / or remote control (1012).
- rotating support (704) extends and a tank (430) is located, which contains, by way of example, paint or water with glass cleaning emulsion, inside which there is a pump (431).
- a tank also contains a Suction pump (433), by way of example sucking air.
- an energy storage device is available in case of a power cut-off Accumulator (432).
- Reel (701) is at a certain height that is supported by reel support (702) which is integral with a circular rotating support body (704).
- the latter in its center has a perforation whose upper face is bushing (705.3).
- a cylindrical body with a larger cylindrical body threaded bolt (705.1) disposed at the lower end of the base (711) is aligned to rotary support bore (704) where beyond to upper face of bushing (705.3) nut ( 705.2) that unites them.
- rotary support bore (704) Between rotating support (704) and base (711) is radially distributed bearing (706) and bearing (706.1).
- Solidarity with rotating support (704) a vertical support laminar body (710) supports and connects a driving means arranged vertically in the downward direction of the motor (707) at which end the gear housing (708) is housed.
- solidarity and concentric base (71 1) is located rack (709). Then, when the motor is driven (707) the base rotates and with it all the upper components of course reel (701), which gives horizontal orientation to the cable (418).
- Support-carriage (712) that connects them to connect (716).
- Carriage support (712) is integral with a plate folded in its lower part towards the inside of the support equipment (713).
- Carriage support (712) is integral with a plate folded in its lower part towards the inside of the support equipment (713).
- a support (713) connects cylindrical bodies polines (714) by means of elongated coaxial cylindrical bodies connect (715).
- Inside and under base (711) there is an inverted and horizontal motor (711.1) where it is connected with gear (717).
- Gear (717) and rack (719) are aligned, then, when motor (711.1) is driven, base (711) and reel (701), that is, all the equipment is set in motion on rail (718).
- a glazed building for the centralized mobile reel unit (700) to obtain sufficient supplies, it is connected to the own supply lines that the glazed building has (602) since it comprises a supply (801) of the main pipes of the building of a rotatable connection (803), a flexible (804) and a connection (802) that connects to a tank (430) and accumulator (432)
- This supply line (800) has the flexibility and lengths, in relation to the size of the glazed building (602) and the rail circuit (718).
- the size of the deposit tanks (430) and accumulator (432) are given by the type requirements of additive fluids or subtractive fluids, the periodicity with which VANT teams are required to perform the task and the surface, size and wingspan of glazed building (602).
- Vehicle (424) that carries centralized mobile reel unit (700) and the VANT, in the same way transported to station (900).
- Vehicle (424) comprises and is integral to this support in transport vehicle (425) which is connected to centralized mobile reel unit (700)
- the VANTs have a power supply that they charge from an induction platform or by contact wiring and easy connection and it is also illustrated that a vehicle directly supplies them with wires
- the VANT can be provided by other techniques such as solar panel energy. That is, both VANT and ground supplies, vehicles or facilities may have other sources of charge.
- the VANT additionally contemplate connection to solar panels, which allows to give more autonomy to the equipment in flight.
- Figure 29 is a top view and it can be seen that, rail (718) is rectangular with the proper radii to allow the rotation of centralized mobile reel unit (700).
- the glazed building (602) is a simplified scheme of the work whereby the rail route depends on the type of work. Then, there are so many forms of rails and geometries, in addition here horizontal rail (718) is illustrated and it is also built with height, that is, I stand out since it is necessary to deviate by change of height of a certain obstacle of the work, teams, architecture , etc.
- FIG 30 is a front view of section "B” and it is appreciated that the station (900) is installed on a glazed building (602), in which the VANTs are stored. Where station (900) is connected by connecting ( 720) a cup or structural element of a glazed building (602) The station (900) comprises four pillars in the corners and some crossbars both in its base and in its roof structure (901), at whose base induction platform is arranged ( 450) with which the VANT are able to charge power power.On station (900) there is a solar panel (902) that allows to obtain power power for power supply power, autonomous of glazed building (602), power additional power in case of contingency supply cut by glazed building (602).
- a solar panel 902 that allows to obtain power power for power supply power, autonomous of glazed building (602), power additional power in case of contingency supply cut by glazed building (602).
- in station (900) there is an induction platform (450), since the VANT (8) charges energy power by induction, because if another type of VANT tas is used than compose the present invention wired platform (451) or a platform without power should be used since the supply is also delivered by cable (418).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Remote Sensing (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Architecture (AREA)
- Artificial Intelligence (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Pest Control & Pesticides (AREA)
- Primary Health Care (AREA)
- Radar, Positioning & Navigation (AREA)
- General Business, Economics & Management (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Computational Linguistics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mathematical Analysis (AREA)
- Mechanical Engineering (AREA)
- Molecular Biology (AREA)
- Transportation (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
Abstract
Existe una necesidad en la industria de efectuar multiplicidad de tareas complejas posibles en obras; de manera segura, aumentando duración de ejecución y vuelo, y permitiendo precisión y estabilidad. Un sistema (1000), que comprende; una unidad de control (1001) para ser operado, un vehiculo aereo autonomo no tripulado para multiples tareas (VAM) el que es apoyado; por equipos autonomos no tripulados en vuelo (VANT) y por una unidad centralizada carrete móvil (700) que entrega cables y mangueras para suministros de multiplicidad de fluidos aditivos y sustractivos (por ej. pintura, succión de aire, etc.) y carga energia poder; donde cables y mangueras cuentan con un dispositivo que permite predecir trayectorias del trazado sin que estos interfiera con maniobras de vuelo o el entorno. El VAM, comprende; de un brazo robot con herramientas particulares que permite, ej. pintar enrejados; y de un dispositivo que permite fijarse a distintas superficies.
Description
TITULO: UN SISTEMA PARA EFECTUAR MULTIPLICIDAD DE TAREAS COMPLEJAS POSIBLES SOBRE OBRAS, MEDIANTE EQUIPOS AUTÓNOMOS NO TRIPULADOS EN VUELO.
MEMORIA DESCRIPTIVA.
La presente solicitud de invención sistema (1000), se refiere a resolver una multiplicidad de tareas en altura el que comprende principalmente de un vehículo aéreo autónomo no tripulado para múltiples tareas (VAM) y equipos autónomos no tripulados en vuelo (VANT). Las tareas son tan diversas, a modo de ejemplo ilustrativo y no limitativo; devastar una superficie, limpiarla de polvo y aplicar pinturas. Las tareas se resuelven en estructuras complejas sobre una determinada obra (vehículo en movimiento, estructura en movimiento, edificación, edificio, estructura, mobiliario urbano, hogar, hangar aeronáutico, astillero, etc.) y el sistema se transporta a esta para resolver ,una tarea eventual o instalarse en ella para habitar con dicha obra y realizar tareas periódicas. Entonces, consta de a lo menos un equipo principal VANT, un conjunto de VANT de apoyo, otros equipos terrestres y una multiplicidad de dispositivos que se acoplan al vehículo aéreo principal. Ciertos VANT contemplan de a lo menos un dispositivo adaptador a obra que estabiliza el vuelo en el momento de resolver dichas tareas, haciendo la maniobra más coordinada y precisa. Mientras que el VANT principal cuenta con a lo menos un brazo robot que permite realizar tareas extremadamente complejas, rápidas y precisas. Para efectuar las tareas, requiere de suministro, siguiendo el ejemplo anterior, carga energía poder y pinturas. Entonces, el sistema cuenta con un método de suministro continuo desde tierra y/o por aire, permitiendo una mayor autonomía de vuelo y continuidad de la tarea. El campo de aplicación de la invención pertenece, por tanto VANT (vehículo aéreo no tripulado).
ANTECEDENTES DE LA INVENCIÓN - ESTADO DE LA TÉCNICA.
Hoy en día existen una gran cantidad de tareas que implican un riesgo para trabajadores o personas en el hogar, la tendencia es disminuir tareas en altura. En la construcción de edificios implica grandes costes para las empresas que contratan personal que realizan tareas en altura, implican contratación de seguros especiales. Además las tareas en altura implica desviar la logística que ocurre bajo estas, por ejemplo el pintado de estructuras amostradas en la vía publica significa desviar el peatón y desviar el tráfico. Estos desvíos de transito significan costes para libre tránsito en grandes avenidas, el municipio y la ciudad. En la limpieza de estructuras, paradas de autobuses implica incomodidades para los transeúntes y peligros para aquellos trabajadores que pueden resbalar de escaleras en dichas mantenciones. En la construcción de edificios se pone en riesgos a los trabajadores, por ejemplo en librar de polvo los muros de concreto exteriores para posteriormente poder añadir pintura. En los edificios ya entregados existen diversas tareas de mantención periódica, por ejemplo la limpieza de fachadas vidriadas donde se pone en peligro el equipo de limpieza como el transeúnte.
1
HOJA DE REEMPLAZO (Regla 26)
Hay diversas tareas que implican gran destreza y complejidad de la maniobra, ya sea en aplicar una pintura, cortar, perforar, succionar polvo, aplicar agua a presión, tronzar ramas de árboles en ruta, etc,
En la actualidad, existen sistemas VÁNT que permiten pintar en altura superficies, es el caso de Systems and methods for unmanned aerial painting applications US 20160082460 y Automatic painting system with drone, user interface and Computer visión US20170259920A1.
Sin embargo, se restringen a pintado de ataque frontal, o sea perpendicular a la estructura, y a resolver superficies planas, o sea poseen gran facilidad de pintar una gran extensión en una dirección, pero que no resuelven el pintado de vértices agudos caras entre dos vigas o perfiles, estructuras que poseen riostras, refuerzos y vigas, estructuras complejas, estructuras empalizadas, donde la herramienta debe moverse y entrar a espacios que requieren de un ataque oblicuo lateral o perpendicular respecto a la superficie principa! Por ejemplo las estructuras que poseen travesaños a modo de“X" con perfiles“L" los sistemas actuales no pueden pintar por los cantos no visibles desde el exterior. También no resuelven el pintado de superficies tronco cónicas ya que la herramienta de pintado no es apta para tales superficies. En cuanto a superficies complejas no poseen un buen control, por ejemplo las superficies de alas de avión o aerodinámicas implican un buen control de maniobra tanto de ataque frontal, como superior.
Además no consideran las diversas tareas que comprende el pintado, por ejemplo cuando haces mantención a una estructura, debes desbastar el área de superficie oxidada, o bien hacer una limpieza general por condiciones ambientales, polvo, capas de tierra, etc. en el caso de postes de alumbrado público, estas se encuentran sobre pasto, arena, tierra y cemento, por lo cual los trabajos previos de pintura son necesarios. Solamente pensando en cortar el pasto en la base de la brida del poste do alumbrado las maniobras perimetrales a la brida son complejas ya que se debe considerar el análisis de la geometría a intervenir y luego rodear con la herramienta sin que la maniobra afecte la herramienta o el equipo.
Dichos VANT actuales o equipos también, en el caso de VANT pintador, tienden a desperdiciar la pintura y solo están diseñadas para pintar con trayectorias horizontales y / o verticales. Cubrir un objeto por completo, especialmente si tiene contornos complejos, requiere movimientos en profundidad y movimientos laterales. El uso de uná nYuñeca es significativo, ya que a menudo es necesario la maniobra un operador incline una determinada herramienta de uná manera particular para lograr un propósito en una superficie muy curvada o que está detrás de una que impide un normal alcance.
Además los VANT que riegan edificios, no tienen resuelto como la manguera de suministro se va desenrollando conforme se requiere para alcanzar una determinada altura, se observan enredos que producen riesgos de la operación.
Todavía existe una necesidad en la industria de diversos trabajos en altura, de realizar maniobras más estables, complejas, precisas y con alto grado de autonomía, un equipo que permíta hacer varias tareas previas y herramientas que logren dar una solución, con el fin de reducir tiempos de intervención en los lugares donde se efectúa la tarea u obra.
OBJETIVOS DE LA INVENCION.
El propósito de la presente solicitud de invención se refiere a un equipo que permite disminuir tiempo de ejecución de tareas en altura, disminuyendo la accidentabilidad de los operarios en diversas industrias asociadas a la construcción o personas en el hogar. La tarea, a modo de ejemplo ilustrativo y no limitativo, tales co o pintado de superficies complejas, estructuras arriostradas, y las tareas previas, devastado de superficie, limpieza de polvo, etc. Gran ventaja es un equipo que resuelve además las tareas previas, entregando un servicio integral y completo. Al tener sistemas de fijación a estructuras de la obra permite que las turbulencias del vuelo queden minimizadas y gracias a que posee a lo menos un brazo del tipo robot (6 ejes de libertad), como lo son los robots KUKA, que permite realizar tareas muy complejas y de precisión complementadas con una multiplicidad de herramientas que se acoplan y/o conectan a esta y logran a si mismo concretar eficientemente una multiplicidad de tareas. Una maniobra más estable y precisa, permiten que el proceso de cualquier tarea
sea con menos energía total que se gasta; y mejoran la calidad, a su vez, da como resultado una reducción en los costos de materiales y mano de obra. En las realizaciones donde el suministro se realiza mediante cable cuenta con un método y dispositivos que permiten mayor autonomía y continuidad sin que dicho cable se enrede y sobrepasando obstáculos en altura agilizando notablemente las tareas propias de la obra. Realizaciones que contemplan suministro desde un vehículo que responde a tareas eventuales y realizaciones instalados en una edificación en progreso o ya construida. En la primera permite avances significativos en la realización de obra que requieren mantención y en la segundá avances como un equipo que habita junto con la obra respondiendo a diversas tareas constantemente. Estas características logran disminuir el tiempo en el lugar donde se efectúa lá tarea, pór lo cual reduce costos dé logística y operación. Avances significativos sobre avances y productividad de una obra. Ventája qüe es directa sobre una énfpresá que preste estos servicios y ventaja para reducir problemas en la empresa o entidad donde se realiza la tarea.
BREVE DESCRIPCIÓN DE LAS FIGURAS.
Otras características y ventajas de la invención se pondrán de manifiesto a partir de la descripción que sigue de su realización preferida, dada únicamente a título de ejemplo ilustrativo y no limitativo, con referencia a los dibujos que se acompañan, en los que:
Figura 1 : es un diagrama de flujo de trabajo del sistema, como opera desde la unidad de control (1001) el Vehículo (400) que transporta y el VANT (1008) evalúa las tareas en obra (600 y 602) mediante Software (1009) se selecciona el equipamiento (1014) se ejecutan tareas (1021) se efectúa la revisión tarea (1025) y finaliza la tarea fin tarea (1026), de la siguiente invención.
Figura 2: ilustra una vista lateral, donde el VAM (1) y VANT (3) están adosado a obra (600), donde el VAM (1) está ejecutando una tarea, de la siguiente invención.
Figura 3: ilustra una vista lateral y en rompimiento, mostrando parcialmente interior, donde el VAM (1) y VANT (3) están adosado a obra (600), donde el VAM (1) está ejecutando una tarea, de la siguiente invención.
Figura 4: ilustra una vista en sección superior“A”, donde se aprecia un brazo robot (1.7) del VAM (1), de la siguiente invención.
Figura 5: ilustra una vista en sección superior“A”, donde se aprecian dos brazo robot (1.7) en desplazamientos angulares respecto del VAM (1), de la siguiente invención.
Figura 6: ilustra una vista lateral, donde el VAM (1) y VANT (3) están adosado a obra (600), donde el VAM (1) está ejecutando una tarea en una zona inferior de obra (600), de la siguiente invención.
Figura 7: ilustra una vista lateral, donde el VAM (1) y VANT (3) están adosado a Obra (600), donde el VAM (1) está ejecutando una tarea en uria Obra (600) opuesta a la dirección de fijación, de la siguiente invención;
Figura 8: ilustra una vista lateral, donde el VAM (1 ) y VANT (3) están adosado a obra (600), donde el VAM (1) está ejecutando una tarea entre estructuras propias de obra (600) además se ilustra que Fijación (1.6) están en el aire, de la siguiente invención.
Figura 9: ilustra una vista lateral, donde el VAM (1) y VANT (3) están adosado a obra (600), donde el VAM (1) está ejecutando una tarea inferior entre estructuras propias de obra (600) además se ilustra que Fijación Aterrizaje Inferior (1.6) está apoyada en otra estructura de obra (600), de la siguiente invención.
Figura 10: ilustra una vista lateral, donde el VAM (1 ) está en vuelo frente a obra (600), y está ejecutando una tarea sobre la obra (600), mientras que VANT (3) esta adosado en la obra (600), de la siguiente invención.
Figura 11 : ilustra una vista lateral, donde el VAM (1) está en modo aterrizaje, de la siguiente invención.
Figura 12: ilustra una vista posterior, donde el VAM (1) está en modo aterrizaje, de la siguiente invención.
Figura 13: ilustra una vista superior, donde el VAM (1) está en modo vuelo, de la siguiente invención.
Figura 14: ilustra una vista en perspectiva, donde el VAM (1) está en modo vuelo, de la siguiente invención.
Figura 15: ilustra una vista en perspectiva superior, donde el VAM (1) está en modo vuelo, de la siguiente invención.
Figura 16: ilustra una vista en perspectiva, donde el VAM (1) está en modo aterrizaje, de la siguiente invención.
Figura 17: ilustra una vista lateral, de dispositivo de fijación a estructura ventosa (1.5.100), de la siguiente invención.
Figura 18: ilustra una vista lateral, de dispositivo de fijación a estructura prensa palanca (1.5.200), de la siguiente invención.
Figura 19: ilustra una vista lateral, de dispositivo de fijación a estructura prensa (1.5.300), de la siguiente invención.
Figura 20: ilustra una vista lateral, de tipos de herramientas, dispositivos de la siguiente invención.
Figura 21 : ilustra una vista lateral, del dispositivo especial herramienta (110) introduciéndose en lugar estrecho, de la siguiente invención.
Figura 22: ilustra una vista lateral, del dispositivo especial herramienta (110) pintando en lugar estrecho, de la siguiente invención.
Figura 23: ilustra una vista lateral, del dispositivo especial herramienta (110) con multi-boquillas pintando en lugar estrecho, de la siguiente invención.
Figura 24: ilustra una vista lateral, del método de suministro por cable y suministro carga poder por contacto aéreo. Donde el VAM (1) está adosado y está ejecutando una tarea sobre la obra (600), VANT (3) esta adosado en la obra (600), VANT (4) está suministrando continuamente, y VANT (2) realiza apoyo visual y revisión de la tarea a ejecutar, de la siguiente invención. VANT (5) obtiene carga energía poder desde vehículo (400).
Figura 25: ilustra una vista lateral, del método de suministro por cable y suministro carga poder inalámbrico aéreo. Donde el VAM (1) está adosado y está ejecutando una tarea sobre la obra (600), VANT (3) esta adosado en la obra (600), VANT (4) está suministrando continuamente, y VANT (2) realiza apoyo visual y revisión de la tarea a ejecutar, de la siguiente invención. VANT (6) obtiene carga energía poder desde vehículo (400).
Figura 26: ilustra una vista lateral, del método de suministro por cable y suministro carga poder también por cable. Donde el VAM (1) está adosado y está ejecutando una tarea sobre la obra (600), VANT (3) esta adosado en. la obra (600), VANT (4) está suministrando continuamente, y VANT (2) realiza apoyo visual y revisión de la tarea a ejecutar, de la siguiente invención. Vehículo (400) entrega suministros continuamente.
Figura 27: ilustra una vista lateral parcial, de unidad centralizada carrete móvil (700), de la siguiente invención.
Figura 28: ilustra una vista lateral parcial, método de suministro por cable y suministro carga poder también por cable, de unidad centralizada carrete móvil (700) instalado sobre edificio vidriado (602), de la siguiente invención.
Figura 29: ilustra una vista superior, método de suministro por cable y suministro carga poder también por cable, de unidad centralizada carrete móvil (700) instalado sobre edificio vidriado (602), de la siguiente invención.
Figura 30: ilustra una vista frontal de sección“B" de la figura anterior, estación (900) sobre edificio vidriado (602), de la siguiente invención.
DESCRIPCIÓN DETALLADA DE LA REALIZACION PREFERIDA:
En la siguiente descripción detallada, varias realizaciones de ejemplo de un sistema (1000) se describirán en detalle.
Como este Sistema funciona.
Control, comunicación, almacenamiento y toma de decisiones.
En estas realizaciones, un operador de un VANT puede dirigir o pilotar remotamente un VANT para desplazarse cerca de una estructura, y controlar el subsistema de suministro conectado para realizar una tarea de forma precisa. En estas realizaciones, la habilidad del operador que controla el VANT es importante porque el VANT debe mantenerse a una distancia óptima de la estructura para que la tarea se pueda ejecutar de manera óptima evitando estropear el brazo o componentes del equipo.
En otras realizaciones de la presente divulgación, puede controlarse automáticamente mediante una computadora programable a través de una aplicación de software. En estas realizaciones, un VAM puede incluir sensores que son capaces de determinar una ubicación precisa de un VANT con respecto a una estructura. Una computadora programable puede operar un VANT para volar a lo largo de una trayectoria de vuelo predeterminada mientras se mantiene una posición precisa del VANT con relación a la estructura ajustando automáticamente los elementos de control de vuelo del VANT en respuesta a las cambiantes condiciones del viento y posicionarse temporalmente mediante el dispositivo de fijación removible. En estas realizaciones, una computadora programable, basada en la información de ubicación, también puede controlar el sistema de suministro unido al VANT para aplicar fluidos aditivos o fluidos sustractivos con precisión a la obra de la manera deseada.
Los equipos que componen el sistema (1000), se comunican mediante primeras señales de emisión, segundas señales de recepción y terceras señales de control, enlace (500) de radio inalámbricos, ya sea entre sí o bien con unidad de control (1001), telecomando (1012), vehículo (400), unidad centralizada carrete móvil (700) y estación (900). Ya que comprenden multiplicidad de sensores, GPS, unidades de detección y medición de luz LIDAR, y antenas que entregan primeras y segundas señales que los módulos de transmisión de datos e imágenes (no mostrados), generalmente ubicados en la unidad de control de los VANT y equipos en tierra, controlador (14) y controlador (701.1) respectivamente. Esta comunicación es procesada por Software (1009) y/o almacenada en Nube (1010) y/o asistida por Inteligencia Artificial (1011). La toma de decisiones, como ya se mencionó puede ser realizada por un operador mediante dispositivos de control manual móviles; Smartphones,
Tablets, Notebooks, y Joistick, telecomando (1012) a través del Software (1009) y/o Inteligencia Artificial (1011). Tanto el Software (1009) consta de rutinas según tareas o bien que la Nube (1010) ya posee y son descargadles para realizar nuevas maniobras. Asi mismo desde Software (1009) se pueden subir a Nube (1010) nuevas maniobras.
Suministros.
En otras formas de realización más de la presente divulgación, un sistema (1000), incluye un VANT y depósitos de suministros que están conectado al VAM (1), específicamente próximo al brazo robot (6 ejes de libertad) y conectado a la herramienta y configurado para permanecer en el suelo mientras el VANT está en vuelo. En estas realizaciones, se pueden usar una o más bombas para suministrar y/o succionar un determinado fluido que se mantiene en el depósito de suministro a una herramienta. Puede haber bombas más grandes, más pesadas, con base en tierra que están conectadas al depósito de suministro que realizan la tarea de conducir el fluido al VAM (1) en el aire, y una bomba más pequeña y ligera que es transportada por el propio VAM (1) u otro VANT que lo apoya próximo a este y también en vuelo, que proporciona la presión óptima para la entrega de fluido desde la boquilla. En estas realizaciones, el fluido se suministra a la boquilla a través de un cordón umbilical que puede incluir uno o más tubos flexibles. En algunas realizaciones, cada uno de los tubos flexibles puede suministrar fluidos diferentes a la boquilla del VAM (1). En otras realizaciones, un umbilical puede incluir opcionalmente un cable de alimentación ligero para suministrar energía poder (eléctrica) al VANT y/o al subsistema de suministro de fluido, aunque en la mayoría de los casos puede proporcionarse la potencia necesaria para operar el VANT y/o el subsistema de fluido por una batería que se lleva a bordo del VANT.
En algunas realizaciones de la presente divulgación, sistema (1000), incluyen un VAM (1) y un depósito de suministro que lleva a lo menos otro VANT mientras el VAM (1) está en vuelo, sin conexión alámbrica a tierra. En estas realizaciones, el VAM (1) es apoyado por a lo menos un VANT que porta el suministro proporciona la presión y/o succión óptima para la entrega de fluido aditivo como fluido sustractivo desde el depósito de suministro de determinado fluido que se conduce a la herramienta del VAM (1). En estas realizaciones, VAM (1) que ejecuta la tarea es recargado energéticamente por otro VANT en vuelo continuamente. Así mismo el VANT que transporta el suministro de fluidos es apoyado por otro VANT que se acopla en vuelo y lo recarga energéticamente. El rendimiento energético, relación peso carga y uso energético en un VANT que solo transporta la recarga energética, es mayor a un equipo VAM y VANT que transporta el suministro. Este VANT que realiza la recarga en vuelo de los otros equipos, se recarga en un vehículo o estación en tierra, ya sea por medios de inducción o bien por contacto. La entrega del suministro en vuelo permite mayor tiempo en vuelo para efectuar tareas en VAM (1) y VANT que transporta el suministro de fluidos.
En algunas realizaciones de la presente divulgación, sistema (1000), incluyen un VAM (1 ) que posee una vejiga de suministro que lleva a lo menos un VANT mientras el VAM (1) está en vuelo. En estas realizaciones, el VAM (1) incluye una bomba más pequeña y más ligera transportada por el VANT que proporciona la presión y/o succión óptima para la entrega de fluido aditivo como fluido sustractivo desde la herramienta del subsistema de suministro. En estas realizaciones, una vejiga de suministro puede separarse del VANT de modo que las vejigas vacias pueden intercambiarse para vejigas llenas de manera relativamente fácil. Debido a que la cámara de fluido y la cantidad de fluido que puede almacenar en estas realizaciones están necesariamente limitadas debido a la capacidad de elevación del VANT, estas realizaciones son ideales para tareas más pequeños en las que el número de recargas requeridas es limitado, ya que el reemplazo de una vejiga de suministro normalmente seria realizada por un operador humano del VANT en el vehículo de transporte, estación en obra o simplemente en tierra. En estas realizaciones, el tubo que suministra el fluido aditivo como fluido sustractivo desde la vejiga de suministro a la boquilla del subsistema de suministro de fluido también es preferiblemente separada del VAM y de VANT que lo apoya de modo que se puede aplicar distintos fluido de diferentes características sin contaminación entre ellos.
En otras realizaciones de la presente divulgación el sistema (1000), proporcionan un VAM (1) y los equipos VANT, que incluye un equipo porta cables que se instala en una obra la cual está en proceso o bien esta ya terminada. El equipo porta cables permite entregar suministro continuo. Asi mismo este puede ser telecomandado por un operador o bien accionado por un software aplicación. Este equipo porta cables, posee un riel que le permite mayor alcance perimetral a la obra con el fin de no enredar cables hacia los equipos en vuelo. Además cuenta con una estación para guardar los VANT y cables.
En otras realizaciones de la presente divulgación sistema (1000), proporcionan un VAM (1) y los equipos VANT, que incluye un equipo porta cables que se instala en una obra la cual está en proceso o bien esta ya terminada. En dicha estación los VANT se pueden recargar energéticamente mediante inducción.
Configuración de VANT.
Debido a que el que los equipos VANT que componen el sistema (1000), tienen diferentes cantidades de rotores ya que efectúan diferentes tareas y soportan diferentes peso. El VAM (1), es de un tipo ocho rotores "octo- copter", pero puede poseer cuatro rotores ("helicóptero cuádruple"). Otros VANT adecuados para su uso con otras realizaciones pueden tener un número diferente de rotores, tales como seis rotores ("hexacopter"). En términos generales, si el tamaño de los rotores es igual, un VANT con más rotores es capaz de producir más sustentación, pero también requiere más energía para alimentar los rotores. En las realizaciones de ejemplo de VAM las aplicaciones que se describen en este documento, un VANT debe generar suficiente elevación para
permitir que tanto él mismo como cualquier carga útil que pueda transportar se transporte en el aire. Las consideraciones de peso y sustentación tales como éstas son problemas de ingeniería de vuelo normales que son bien conocidos por los expertos en la materia, y no se explicarán con más detalle en el presente documento.
Descripción detallada según figuras.
Para llevar a cabo la descripción detallada de la realización preferida del dispositivo de la invención, se hará referencia continua a las Figuras de los dibujos, de las que La Figura 1 es un diagrama de flujo de cómo la invención sistema (1000), desde una la unidad de control (1001) o empresa se efectúa un transporte y almacenaje (1029) el cual comprende dos instancias unidad de control (1001), una donde los equipos son transportada en un vehículo (400) a una estructura (600) o bien se transporta a una estación (900) y convive en un edificio vidriado (602). El equipo equipamiento disponible (1002) lógicamente tiene dos instancias, una que ya en obra (1003) y otra enviar a obra (1004). A obra, tanto estructura (600) como a edificio vidriado (602) se envía VANT (1008) VANT (2). La información censada e imágenes sondeadas por VANT (2) se evalúa y procesa mediante diagnóstico de requerimientos y solución (1005), entonces una solución puede ser una rutina conocida, pre-establecida (1006) o bien no existen precedentes de requerimientos conocidos y por lo cual no hay solución conocida a resolver (1007). Este diagnóstico es procesado, y asistido por Software (1009) que evalúa, y las soluciones son compartidas y comparadas con otras experiencias o casos almacenados en la Nube (1010) que es procesada por Inteligencia Artificial (1011). Así mismo las soluciones de requerimientos pueden ser realizados por un operador mediante el control a distancia vía telecomando (1012). Estas vías deberán definir tipos de tareas y acciones (1013) con lo cual se realizará la elección de equipamiento (1014) adecuado para realizar la tarea en una determinada obra. La elección de equipamiento (1014) implica elección de VANT (1015), elección cantidad y tipo de brazo (1016), elección de fijación (1017), elección de herramientas (1018), elección de los suministros (1019), elección de los suministradores (1020). Ya definido el equipamiento elegido (1021) tanto para el equipamiento ya en obra (1003) y/o enviar a obra (1004), se realiza la ejecución tareas (1022) y entrega de suministros por los suministradores (1023) se realizan desde vehículo (400) o unidad centralizada carrete móvil (700). La recarga energética (1024) provee constantemente a VAM, VANT (1026) y también apoyados por recargador y suministro VANT (1025). La revisión de la tarea (1027) es realizada por VANT (2) si no está bajo conformidad“N" debe efectuarse nuevamente ejecución tareas (1022) junto con Software (1009), y si está bajo conformidad Ύ" se da por terminada fin tarea (1028) con lo cual se da transporte y almacenaje (1029) y/o se retorna a unidad de control (1001) según convenga. La unidad de control (1001), se debe entender como la instancia de control desde cualquier punto habilitado, desde una empresa, hogar, dispositivo móvil, control manual a distancia, etc.
Figura 2: En dicha figura se observa, el sistema (1000), comprende el VAM (1) y VANT (3) están adosado a obra (600), donde el VAM (1 ) está ejecutando una tarea, de la siguiente invención. A lo menos un VANT (3) es capaz de adosarse a un lugar específico de la obra estructuras (600) con lo cual asegura un punto de confiabilidad para las maniobras de vuelo, maniobras para la ejecución de una tarea y las operaciones de los otros VANT o equipos asociados. Esto se logra ya que el VANT (3) censa su entorno y obtiene datos de posición, tales como altura Ή” o profundidad“D”, dicho VANT emite mediante emisor (510) de radio, primeras señales, a través de enlace (500) de radio inalámbricos, que VAM (1) procesará y que realizará maniobras convenientes. Ambos equipos cuentan con un dispositivo de enlace (522) que los permite posicionar a voluntad sobre estructuras (600). VAM posee distintos dispositivos de fijación por lo cual aquí solo se ilustra y en ningún caso es limitativo. Los equipos VANT comprenden un VAM, subsistema común a ellos, que se compone de un cuerpo circular cuerpo (1.1), del cual se extienden cuatro brazos de cada cual otros dos brazo (1.2) dispuestos horizontal y distribuidos radialmente alrededor de la circunferencia cuerpo (1.1) en cuyo extremo exterior se disponemrotores (1.3), una cámara (1.8), y un controlador (1.4) ubicado preferentemente en el centro de cuerpo (1.1). El controlador (1.4) que incluye una batería (no mostrada) para proporcionar potencia y un receptor inalámbrico (no mostrada) para recibir señales inalámbricas de control de vuelo desde una estación de control terrestre unidad de control (1001) y desde los otros VANT.
Los VANT para reconocer su entorno y posicionarse, posee una multiplicidad de sensores, GPS, y unidad de detección y medición de luz LIDAR (no mostrados), con los cuales miden distancias, determinan el acabado superficial de las obras. Los cuales están ubicados convenientemente en cada VANT. A modo ilustrativo y no limitativo, pueden determinar si una superficie metálica esta oxidada. Así mismo, sensores de nivel, caudal, y presión en torno a depósitos de suministro, monitorean las capacidades, entrega y rendimiento de los suministros.
Para comunicar dicho entorno, y entre los VANT poseen emisor (510) mediante antenas (no mostradas) establecen enlace (500) mediante módulos de transmisión y gestión de datos e imágenes inalámbricos (no mostrados).
Así mismo, para transmitir y gestionar suministro energía poder los VANT poseen microcontroladores, emisores dé radiofrecuencia RFI, módulos convertidores carga DC/DC, almacenador de batería, módulos de emisión, recepción, transmisión y gestión de carga poder (no mostrados) desde las fuentes de suministro, ubicados preferentemente próximos en controlador ( 1.4) y controlador (701.1) respectivamente.
El sistema (1000), El VAM (1) comprende especialmente de a lo menos un brazo robot (1.7) robot que permite realizár las complejas maniobras de una determinada tarea al cual se acopla herramienta (100), según la determinada tarea, entonces en esta figura se muestra una herramienta (109) la cual se acopla mediante unión
(104) que es convenientemente fácil de unir para un operador o a otro dispositivo mayor porta herramientas. Dicha herramienta (100) comprende una bomba (101) que permite entregar la presión necesaria de fluidos aditivos o fluidos sustractivos a través de un dudo (1.10) hasta una boquilla aspersión (103) de características necesarias según fluido expulsado (105) tales como; chorro, pulverizado, etc.
El dudo (1.10) es guiado envuelto y protegido a una guía (1.9) más allá del perímetro capaz de los rotores (1.3) y en su extremo un codo (1.12) permite una flexión o nidireccional adecuada sin estrangular el cable y logrando que no exista peligros por enredo de cables tanto de suministro energía poder como de fluidos. El dudo alimentación (1.10) incluye anillo (421) que está dispuesto equidistante y homogéneamente a lo largo de este, permitiendo que el VAM y software conozcan posición espacial e impidan cualquier colisión de ellos con equipos VANT en vuelo o maniobras para ordenarlos en tierra. Las maniobras y ejecución de herramientas son monitoreadas por cámara frontal (102) y además por los VANT de apoyo, a lo menos un VANT (2). Los equipos de VAM que consideran adosarse a estructuras (600), como son VAM (1) VANT (3) poseen medios de fijación que se articulan y se extienden para poder alcanzar a estructuras (600) mediante fijación superior (1.5) y fijación inferior (1.6) el cual se logra mediante enlace (522) electromagnético.
Figura 3: En dicha figura se observa, el sistema (1000), comprende el VAM (1) y VANT (3) están adosado a obra (600), donde el VAM (1) está ejecutando una tarea, de la siguiente invención, A lo menos dos subsistemas de fijación (1.5) a estructuras (600). El cual en esta realización funciona tanto como sistema de fijación y que al articularse, funciona como tren de aterrizaje. Este subsistema de fijación (1.5) comprende un cuerpo más bien cilindrico cuerpo (1.5.1) del cual se ubica unidad de rotación (1.5.2) de la cual se conecta cilindro (1.5.3) capaz de pivotar convenientemente hacia abajo. Desde el interior del cilindro (1.5.3) se prolonga vástago (1.5.4) y en su extremo más exterior se ubica unión (1.5.5). Desde esta unión se acoplan otros dispositivos de fijación según superficie que se muestran en Fig.17, Fig.18 y Fig.19. Para efectos de esta realización y de esta Figura, entonces a continuación de unión (1.5.5) un cuerpo capaz de absorber impactos o diferencias mecánicas amortiguador (1.5.6) es solidario a una articulación omnidireccional rotula (1.5.7) que permite suplir superficies oblicuas en relación a la horizontalidad deseada del VANT en tanto una superficie flexible y también articulada adaptador (1.5.8) es capaz de adaptarse a estructuras con perfiles de diferentes secciones geométricas. En las porciones planas de adaptador (1.5.8) se dispone una plancha electromagnética (1.5.9) que toca directamente obra (600). La fijación (1.5) puede contar con otra de igual paralela a ella, solo que el cuerpo (1.5.1) contiene medios para alejarlos entre ellos a conveniencia de las maniobras. La técnica mecánica permite hoy sin mayor esfuerzo lograr ángulos o movimientos de cilindro (1.5.3) en relación a cuerpo (1.5.1) y el desplazamiento de vástago (1.5.4) a lo largo de este, mediante motor de pertinente torque, engranajes, tornillos sin fin acma, movimientos de carrera de potencia también neumáticos hidráulica, etc. así mismo la acción del electroimán es conocida. De igual forma es el funcionamiento de fijación (1.6).
Se puede observar además, el detalle interior, donde fijación (1 ,5), brazo robot (1.7) y fijación (1.6) son capaces de girar, permitiendo mayor campo de maniobras y operaciones funcionales que a través de las figuras que prosiguen se muestran. El giro de los subsistemas se logra ya que los cuerpos bases de cada subsistema giran en torno a un eje y luego una serie de motores, engranajes y cremalleras, permiten el control de los cuerpos independientemente. Entonces, un cuerpo cilindrico eje (1.100) es solidario a cuerpo (1.1) y en el otro extremo al cuerpo (1.6.1) un conector (1.102) une a buje (1.101) permite que sea removibles respectos al eje, entre los cuales se disponen cuerpo (1.5.1) y cuerpo (1.7.1). Entre dichos cuerpos se disponen buje (1.106) coaxiales y de forma continua con el fin de disminuir la fricción entre ellos, de materiales auto-lubricación conocidos plásticos. En cuerpo (1.7.1) se acopla rotor (1.103) que transmite potencia necesaria mediante engranaje (1.104) a cremallera (1.105) que se encuentra solidaria a cuerpo (1.6.1), permitiendo el control conveniente de giro. De igual manera el cuerpo (1.1) con cuerpo (1.5.1) y este con cuerpo (1.7.1). Internamente los cables propios de energía y accionamiento se comunican con controlador (1.4). La técnica mecánica permite hoy sin mayor esfuerzo lograr control de centésimas milimétricas y potencia de alto desempeño mediante; actuadores, servomotores, motores hidráulicos, etc.). Es deseable que estos actuadores posen una puerta de mantención y lubricación (no mostrado) y que se consideran en las realizaciones.
Figura 4 y 5: Ambas son una vista en sección“A”, en donde se observa, un brazo robot (1.7) en del VAM (1) del sistema (1000). Particularmente la Figura 5, muestra dos versiones de brazo robot (1.7) conectado a VAM (1 ). Esta combinación se establece por la elección cantidad y tipo de brazo (1016) y elección de herramientas (1018) diferentes herramienta (100). Esto se logra ya que cuerpo (1.7.1) posee diversas realizaciones. Dentro de las realizaciones podemos lograr que se genere un ángulo de abertura entre la un brazo robot (1.7) de un tipo y otro. Es deseable este movimiento independiente angular entre los distintos brazo robot (1.7) ya que permite realizar tareas distintas y simultaneas. La técnica mecánica permite hoy sin mayor esfuerzo lograr el movimiento independiente angular de cada brazo robot (1.7).
Figura 6, 7, 8, 9, 10: En dichas figuras se observa, sistema (1000), comprende el VANT (3) está adosado a obra (600). Mientras que en las Figuras 6, 7 y 9 el VAM (1) está adosado a obra (600) por fijación (1.5) y fijación (1.6), en las Figura 8 está adosado a obra (600) solo por fijación (1.5) mientras que en Figura 10 está en vuelo. La confianza de tomar una tarea, maniobrar y no perder posición relativa ni absoluta de la posición de vuelo es gracias a que VANT (3) es la referencia local frente a la obra (600). VANT (3) envía primeras señales enlace (500) mediante emisor (510).
Figura 6 se observa VAM (1) efectúa tareas inferiores, ya que comprende brazo robot (1.7) capaz de girar y acomodar herramienta (100) con las maniobras que permite el brazo robot (1.7). Así mismo Figura 7, la herramienta (100) es capaz de alcanzar el lado opuesto.
Figura 8 se observa VAM (1) efectúa tareas frontal, está adosado a obra (600) solo por fijación (1.5), se muestra además que la herramienta (100) hace maniobras entre 2 estructuras de la obra (600), ya que comprende brazo robot (1.7) capaz de girar y acomodar herramienta (110) con las maniobras que permite el robot brazo robot (1.7).
Figura 9 se observa VAM (1) efectúa tareas inferiores y está adosado a obra (600) mediante fijación (1.6) y fijación (1.5), se muestra además que la herramienta (100) hace maniobras inferiores entre 2 estructuras de la obra (600), ya que comprende brazo robot (1.7) capaz de girar y acomodar herramienta (110) con las maniobras que permite el robot brazo robot (1.7).
Figura 10 se observa VAM (1) efectúa tareas frontal, no está adosado a obra (600) se encuentra en pleno vuelo, se muestra además que la herramienta (100) hace maniobras frontal a la estructuras de la obra (600), se muestra además que fijación (1.6) se encuentra más bien horizontal, ya que es capaz de girar y articularse.
Figura 11 y Figura 12 se observa VAM (1) se encuentra en modo aterrizaje, fijación (1.5) y fijación (1.6) se encuentran orientadas a tierra, capaces de estabilizar el equipo en su totalidad. Este movimiento articulatorio y extensiones se acomodan para lograr una distancia tal que las extremidades se alcanzan una igual distancia inferior. Esto se logra ya que fijación (1.5) comprende un cuerpo (1.5.1 ) del cual se ubica unidad de rotación (1.5.2) de la cual se conecta cilindro (1.5.3) capaz de pivotar convenientemente hacia abajo, desde el interior del cilindro (1.5.3) se prolonga vástago (1.5.4). Las fijaciones a estructuras tanto plancha electromagnético (1.5.9), ventosa (1.5.100), soporte (1.5.200), soporte (1.5.300), permiten el apoyo directo a suelo. Asi mismo para fijación (1.6).
Figura 13 se observa VAM (1) en vista superior, en vuelo, donde el ducto (1.10) se encuentra protegido y guiado por guía (1.9) más allá del radio capaz que comprende la disposición de rotores (1.3). Se aprecia además que plancha electromagnético (1.5.9) también se encuentra más allá de la herramienta (100).
Figura 14 y 15 se observa VAM (1 ) en vista perspectiva, en vuelo. Se puede apreciar que posee herramienta curva para pintado estructuras (110) conectada a brazo robot (1.7).
Figura 16 se observa VAM (1) en vista perspectiva, en modo aterrizaje. Se puede apreciar qué posee herramienta (110) conectada a brazo robot (1.7).
Figura 17 se observa un detalle en vista lateral, de un tipo de fijación a estructura, que se conecta a fijación (1.5) y/o de fijación (1.6) del VAM (1). Entonces, a fijación (1.5) se conecta ventosa (1.5.100) que es capaz fijarse a
Figura 18 se observa un detalle en vista lateral y superior, de un tipo de fijación a estructura, que se conecta a fijación (1.5) y/o de fijación (1.6) del VAM (1). Entonces, a fijación (1.5) se conecta soporte (1.5.200) que es capaz fijarse a columnas rectas o troncocónicas de diferentes secciones obra (600), para ello comprende de un cuerpo que por un extremo se proyecta de sección rectangular en dirección alineada a eje longitudinal del fijación (1.5) y termina por una cara plana más extensa en donde se conecta unión (1.5.5) y por el otro extremo, se proyectan perpendicularmente con igual sección rectangular cuerpos inferior y superiormente, que disponen de perforaciones roscadas en donde se alojan; en la perforación roscada superior un cilindro roscado extensión superior (1.5.203) que es solidaria y perpendicular a tope superior (1.5.204) el cual también cilindro recubierto de material antiadherente y que es capaz de absorber diferencias y textura superficial, mientras que en la perforación roscada inferior un cilindro roscado extensión inferior (1.5.201) que es solidaria y perpendicular a tope inferior (1.5.202), de igual forma que tope superior (1.5.204).
La extensión superior (1.5.203) se desplaza convenientemente a voluntad de VAM (1) mediante motor (1.5.205) que se ubica en la porción superior de soporte (1.5.200). El control, conexionado de energía, accionamiento cableado o inalámbrico, potencia motora y las características técnicas para lograr que este tipo de fijación cumple su objetivo en relación a los requerimientos del VAM (1), la obra (600) y la tarea a efectuar, pues la técnica mecánica permite hoy sin mayor esfuerzo lograr.
Figura 19 se observa un detalle en vista lateral, de un tipo de fijación a estructura, que se conecta a fijación (1.5) y/o de fijación (1.6) del VAM (1). Entonces, a fijación (1.5) se conecta soporte (1.5.300) que es capaz de fijarse a columnas rectas o troncocónicas de diferentes secciones obra (600), para ello comprende de un cuerpo que por un extremo se proyecta de sección rectangular en dirección alineada a eje longitudinal del fijación aterrizaje superior (1.5) y termina por una cara plana más extensa en donde se conecta unión (1.5.5) y por el extremo
contrario se proyecta un cuerpo capaz de absorber impactos amortiguador (1.5.6) desde donde se proyecta cuerpo con dos porciones aplanadas que decrecen en tamaño y que poseen una perforación y pasador en común eje (1.5.301) coaxial a este y desde este otro cuerpo que crece a una sección rectangular soporte (1.5.300), siempre paralelo a obra (600), es solidario y recubre la cara rectangular con determinado espesor cubierta (1.5.302) se apoya directamente sobre obra (600). Además, desde amortiguador (1.5.6) se proyecta perpendicularmente con igual sección rectangular cuerpo superiormente soporte (1.5.303) que disponen de perforación roscada en donde se aloja cilindro roscado extensión (1.5.304) el cual más extenso que las dimensiones de cubierta (1.5.302) más la dimensiones de la estructura de obra (600) se proyecta un cuerpo rectangular perpendicular soporte (1.5.307) al cual otro cuerpo de igual sección que se acopla soporte (1.5.305) lo sigue otro cuerpo que es solidario y recubre la cara rectangular con determinado espesor cubierta (1.5.306).
La absorción de impactos se logra porque amortiguador (1.5.6) está constituido de material con memoria, dispositivo que puede ser conforme resortes o elastómeros de cierta geometría conocidos en la técnica.
Sobre soporte (1.5.303) se encuentra motor (1.5.308) que es capaz de mover extensión (1.5.304) convenientemente a voluntad de VAM (1).
El espesor y material de cubierta (1.5.302) y de cubierta (1.5.306) es capaz de absorber diferencias de textura y de superficie de obra (600) y además que el equipo no resbale.
El control, conexionado de energía, accionamiento cableado o inalámbrico, potencia motora y las características técnicas para lograr que este tipo de fijación cumple su objetivo en relación a los requerimientos del VAM (1), la obra (600) y la tarea a efectuar, pues la técnica mecánica permite hoy sin mayor esfuerzo lograr.
Figura 20 se observa un detalle en vista lateral, de un tipo del equipo realizando una tarea sobre obra (600) o vidrio (601) y más debajo de flecha una serie de herramientas. Donde, a modo ilustrativo y no limitativo de las tareas que se pueden realizar y las herramientas que componen la siguiente invención, VAM (1) tiene conectada una herramienta (109) en brazo robot (1.7). Esta herramienta en particular es capaz de aplicar pintura a superficies complejas obra (600), para ello desde brazo robot (1.7) comprende de matriz de cámaras CCD cámara frontal ( 102) capaz de recoger datos de imagen y comprender su entorno.
La herramienta (109), en su extremo comprende una boquilla aspersión (103) de la cual sale fluido expulsado (105) el cual se ha conducido por conduelo (1.11) a bomba (101). La bomba (101) y boquilla aspersión (103) son controladas por controlador (1.4) capaces de pulverizar.
Así mismo, se acoplan y conectan diferentes tipos de herramientas. Uno que es capaz de taladrar taladro (200) principalmente comprende un cuerpo que aloja un motor y un cuerpo cilindrico que arranca viruta. Otro que es
capaz de desbastar desbastadora (201) principalmente comprende un cuerpo que aloja un motor y un disco abrasivo. Otro que es capa2 de barrer partículas y pequeños excedentes de material barredora (202), principalmente comprende un cuerpo que aloja un motor, un disco que posee una serie de filamentos perpendicularmente dispuestos a este, preferentemente denso y que posee un conducto que succiona las partículas y pequeños excedentes.
Otro capaz de cortar y emparejar pasto cortadora pasto (203) principalmente comprende un cuerpo que aloja un motor y un filamento doblado.
Otro capaz de aserrar aserradora (204) principalmente comprende un cuerpo que aloja un motor y un disco que posee una serie de dientes que desbastan un cuerpo mediante el continuo arranque de viruta.
Otro capaz de barrer superficies como lo es el vidrio y librar de agua pluma (205) principalmente comprende un cuerpo que aloja un motor rotor (205.1) un filamento doblado a modo de“L" vinculo soporte (205.2) del cual se acopla un cuerpo laminar alargado lamina (205.3), capaces de girar en relación a eje de vinculo soporte (205.2).
En relación a las Figura 20, 21 , 22 y 23, en lo que implica a herramienta (110), se puede apreciar como en Figura 20, se hace una descripción general, Figura 21 , se muestra como gira para ingresar entre dos estructuras obra (600), mientras que en Figura 22, se muestra como este ha ingresado al lugar estrecho y en Figura 23, se encuentra ejerciendo la tarea. Se hará descripción de herramienta (110), donde
El número y distribución de boquilla aspersión (103) y cámara (111) están definidos por la tarea.
Particularmente el giro de herramienta (110) es realizado por movimiento de muñeca de brazo robot (1.7). Otros movimientos necesarios o posibles extensiones para lograr tarea son perfectamente resueltos por dispositivos adicionales. Además, las herramientas descritas son un ejemplo del campo de dispositivos que se pueden acoplar a VAM. El control, conexionado de energía, accionamiento cableado o inalámbrico, potencia motora y las características técnicas para lograr que este tipo de herramientas cumpla una determinada tarea en relación a los requerimientos del VAM (1), la obra (600), la técnica mecánica permite hoy sin mayor esfuerzo lograr.
Figura 24 se observa un diagrama ilustrativo en vista lateral, del método aéreo de suministro por cable y suministro carga poder por contacto. Donde el VAM (1) está adosado y está ejecutando una tarea sobre la obra (600), VANT (3) esta adosado en la obra (600), VANT (4) está entregando suministro continuamente, VANT (2) realiza apoyo visual y revisión de la tarea a ejecutar, y VANT (5) de la siguiente invención.
A lo menos un VANT (5) es capaz entonces de suministrar carga poder a los VANT del equipo que continuamente se desplaza entre estos y vehículo de transporte y suministro (400), para ello el vehículo de transporte y suministro (400) comprende de una plataforma donde el VANT aterriza sobre plataforma cableada (451) en una posición tal y próxima que se produce una conexión automática de dos cables enlace (523) electromagnético, en el extremo exterior del cable flexible en el VANT conducto flexible (420) posee una superficie que se acciona por este VANT capaz de ejercer, a conveniencia, una atracción electromagnética tal que el cable también flexible de la plataforma de aterrizaje conducto flexible (452) la cual se logra porque este cable flexible en su extremo comprende una placa metálica del tipo ferrosa la cual atrae. Internamente se produce por contacto de conocidos contactos de energía poder y se logre la carga y/o recarga del VANT. Ya realizada la carga el VANT desconecta la propiedad electromagnética y se libera del otro cable flexible.
La posición del equipo VANT sobre plataforma cableada (451) de vehículo de transporte y suministro (400) se logra ya que cuenta con medios visuales, marcas gráficas, luces, patrón de colores o formas definidas que el VANT identifica.
El enlace electromagnético se logra ya que el controlador (1.4) envía una señal e impulso eléctrico a la bobina que compone el electroimán en el extremo del cable, con lo cual se atrae el extremo del otro cable que posee el cuerpo ferroso en esta condición se alinean los contactos internos que permiten el paso de energía poder.
La entrega de energía poder desde la batería (no mostrado) en el vehículo de transporte y suministro (400), se realiza porque el VANT se posiciona y con ello la plataforma mediante sensor de presión o infrarrojo, conforme aterriza el equipo se activa y transfiere mediante gestión de suministro de carga energía poder (no mostrado).
Así mismo en el aire la recarga de energía por contacto enlace (523) electromagnético, entre VANT VANT (4) y VANT (5) ya que el VANT (4) desde su cuerpo principal se proyecta con conducto flexible (420) y se produce conexión con el extremo del conducto flexible (420) del VANT (5)
Igualmente, en VAM (1) la recarga de energía por contacto realizada en vuelo enlace (523) ya que el VAM (1) en guia (1.9) posee una bifurcación guia (1.9.1) el cual posee en su extremo un terminal capaz de alcanzar el extremo de conducto flexible (420) del VANT (5).
Para obtener posiciones correspondientes en el aire y lograr el contacto los VANT prolongan más allá del radio capaz máximo de los rotores, la rigidez de conducto flexible (420) es conveniente dentro perímetro de los rotores y más exterior a esta convenientemente flexible. El largo de conducto flexible (420) es tal de absorber distancias de pequeñas turbulencias y disonancias de sincronización de vuelo.
El electroimán posee tal fuerza que se suelta conforme determinada fuerza de separación producida por uno de los VANT, esto asegura que en caso de posibles malas maniobras o turbulencias entre ellos se suelten los terminales de contacto sin generar peligro de empuje de uno sobre el otro y se desplacen a enredarse con cables ducto (1.10) o chocar con una estructura de obra (600), y por el contrario se asegura que no exista una atracción entre ellos provocando colisión.
Los VANT poseen comunicación constante de emisión de primeras señales y respuesta de segundas señales enlace (500) transmitiendo información de medios sensores y posición global y distanciamiento entre ellos, que es capaz de lograr sincronización de vuelo tal que permite mantener una posición adecuada para la trasmisión de energía por contacto.
En otras realizaciones la conexión de contacto es simplemente por imán por la cara del extremo el cable de un VANT y en el otro una placa metálica ferrosa. Con el simple hecho de acercarse se atraen y para soltarse una determinada fuerza ejercida por el desplazamiento de los VANT.
En todos los casos se debe considerar que los VANT (5) son evidentemente más livianos por sus requerimientos. A comprender ilustrativamente, su rendimiento luego de realizar carga poder, donde se carga su determinada batería (no mostrada), puede ir desde el vehículo de transporte y suministro (400) en llegar a un VANT a gastar 20% de energía, en la carga aérea propiamente tal gastar 10% de energía y en el regreso a recarga 20% de energía, con lo cual puede hacer carga efectiva de su 50%. VAM (1) hace requerimientos de energía mayores, pues si un VANT (5) lo provee solo de 25% se apoya de cuantas re-cargas sean necesarias en vuelo para hacer continuo su trabajo. Los equipos VANT reciben carga de un VANT (5) tras otra recarga de VANT (5) y así sucesivamente, y continuamente conforme lo requiera.
Figura 24, 25, 26 y 28 contempla método para Obtener posición y monitorear cables de suministro entre los VANT del equipo, unidad centralizada carrete móvil (700) y vehículo de transporte o suministro (400), ya que cable (418) comprende a lo largo de éste un cuerpo toro de revolución acoplado anillo (421) el cual se distribuye en forma homogénea cuantas veces requiera el largo cable (418). Anillo (421) se alimenta por carga energía poder, con una línea de cable paralela a cable (418) que lo suministra. El anillo (421) posee en su interior radio emisor que emite señales a los equipos VANT, e! Software (1009) procesa la posición a modo de puntos en el
espacio coordenados, con lo cual el cable puede ser moniloreado constantemente y se toman decisiones de proximidad respectos a los equipos, estructuras próximas y maniobras que se realizan. Una curva puede ser sintetizada por tres puntos en el espacio, entre más anillo (421) sean dispuestos a lo largo de cable (418), mayor será la precisión del trazado. De esta manera el cable está libre de enredo y maniobras riesgosas para los equipos VANT el entorno y tareas e inclusive colisiones.
Software (1009) con información cruzada del entorno, estructuras colindantes, radio de curvatura de características y propiedades de los cables involucrados, fluido que se transmite, y las posiciones relativas de los VANT del equipo, predice y muestra campos de riesgo, y alertar de posiciones fuera de peligro. Por tanto, es capaz de predecir rutas seguras.
Figura 25 se observa un diagrama ilustrativo en vista lateral, del método aéreo de suministro por cable y suministro carga poder inalámbrico. Donde el VAM (1) está adosado y está ejecutando una tarea sobre la obra (600), VANT (3) esta adosado en la obra (600), VANT (4) está entregando suministro continuamente, VANT (2) realiza apoyo visual y revisión de la tarea a ejecutar, y VANT (6) de la siguiente invención.
A lo menos un VANT (6) es capaz entonces de suministrar carga poder inalámbricamente a los VANT del equipo, el cual continuamente se desplaza entre estos y vehículo (400), para ello el vehículo (400) comprende de una plataforma donde el VANT aterriza plataforma de inducción (450) sobre y en una posición tal y próxima que se produce una inducción enlace (521).
Así mismo en vuelo, a lo menos un VANT (6) entrega mediante radio frecuencia enlace (520), inducción carga energía poder a los otros VANT.
Los VANT tienen requisitos de energía propios, ya dicho el VAM (1) posee subsistemas que requieren mayor energía por lo cual requiere de mayor frecuencia de re-carga en vuelo. En todos los casos se debe considerar que los VANT, VANT (6) son evidentemente más livianos por sus requerimientos. A comprender ilustrativamente, su rendimiento luego de realizar carga poder, donde se carga su determinada batería (no mostrada), puede ir desde el vehículo (400) en llegar a un VANT a gastar 20% de energía, en la carga aérea propiamente tal gastar 10% de energía y en el regreso a re-carga 20% de energía, con lo cual puede hacer carga efectiva de su 50%. VAM (1) hace requerimientos de energía mayores, pues si un VANT (6) lo provee solo de 25% se apoyare cuantas re-cargas sean necesarias en vuelo para hacer continuo su trabajo. Los equipos VANT reciben carga de un VANT (6) tras otra recarga de VANT (6) y así sucesivamente, y continuamente conforme lo requiera.
La posición del equipo VANT sobre plataforma de inducción (450) de vehículo (400) se logra ya que cuenta con medios visuales, marcas gráficas, luces, patrón de colores o formas definidas que el VANT identifica.
La transmisión de potencia basada en inducción electromagnética corresponde a transmisión de potencia entre una bobina primaria y una bobina secundaria. Un imán se mueve alrededor de una bobina, generando una corriente inducida. Entonces, un transmisor genera un campo magnético, y una corriente es inducida en un receptor debido a un cambio en el campo magnético, creando energía.
La entrega de energía poder desde la batería (no mostrado) en el vehículo (400), se realiza porque el VANT se posiciona y con ello la plataforma mediante sensor de presión o infrarrojo, conforme aterriza el equipo se activa y transfiere mediante gestión de suministro de carga energía poder (no mostrado).
Figura 24 y 25 se puede apreciar además que la carga suministro a VAM (1) se realiza en vuelo por a lo menos un VANT (4). Acá mostrados, dos VANT (4), cada cual puede entregar distinto suministro, un VANT (4) comprende depósito suministro (411) y bomba (413), mientras el otro VANT (4) comprende otro deposito suministro (412) y otra bomba (414). Esta disposición en paralelo permite realizar tareas igualmente paralelas. En algunas realizaciones se tienen 2 brazo robot (1.7), en uno se entrega un fluidos aditivos y en el otro se entrega un fluidos sustractivos. También en un brazo robot (1.7) se entregar fluidos aditivos y fluidos sustractivos, según tarea.
Figura 26 se observa un diagrama ilustrativo en vista lateral, del método de suministro por cable y suministro carga poder alámbrico desde tierra. Donde el VAM (1) está adosado y está ejecutando una tarea sobre la obra (600), VANT (3) esta adosado en la obra (600), VANT (2) realiza apoyo visual y revisión de la tarea a ejecutar, y VANT (7) de la siguiente invención.
A lo menos por cada VANT un VANT (7) es capaz entonces de suministrar carga energía poder a VANT (2) y a VANT (3), desde vehículo (400) mediante cable (418).
Además, A lo menos un VANT (7) es capaz de entregar suministro de fluidos y suministrar carga energía poder por cada VAM (1), desde vehículo (400) mediante cable (418).
El VANT (7) es capaz de entregar suministro de fluidos y suministrar carga energía poder porque comprende de cable (418) desde vehículo (400), el cual comprende de carrete distribuidor alámbrico (417) que es capaz de entregar en la medida de lo requerido los cables necesarios. Comprende además de un depósito suministro (410) en el cual una bomba (415) impulsa o succiona, el fluido, fluidos aditivos o fluidos sustractivos, según la tarea. Además comprende de depósito energía poder continua (416), capaz de entregar a VANT.
El VANT (7) además está empalmado a cable (418) mediante una bifurcación. Dicho empalme respeta guia (1.9), ducto (1.10), la libre caída y constitución del cable (418) y las diversas presiones que son propias del fluido.
Este VANT sostiene a cable (418) mediante un anillo que está conectado y del cual se conecta a tren de aterrizaje soporte cable (419).
Para llevar a cabo la descripción detallada de otra realización preferida del dispositivo de la invención, se hará referencia continua a las Figuras de los dibujos, de las que Figura 27, 28, 29 y 30, unidad centralizada carrete móvil (700) que está instalado sobre una obra en construcción o una obra edificación ya terminada, obra que puede estar fija o en movimiento, donde el suministro a VANT es desde este. Para ejemplificar una tarea en particular se hace referencia a un suministro en forma alámbrica. A edificio vidriado (602) se ha instalado unidad centralizada carrete móvil (700) transportado previamente por vehículo (424). VAM (1) esta adosado a edificio vidriado (602) el cual comprende ventosa (1.5.100) en fijación (1.5) y en fijación (1.6), además, en brazo robot (1.7) tiene conectado pluma (205). Con lo cual es capaz, dentro de una de las tareas es limpiar vidrios en una edificación vidriada, periódicamente. Donde vehículo (424), es un vehículo conducido por un operador o bien un vehículo autónomo.
VAM (1) es apoyado por VANT (8) el cual es capaz de ordenan cables de suministro. Estos VANT se guardan y recargan en estación (900) que también es instalada previamente sobre edificio vidriado (602) por vehículo (424). VANT (8) se recarga por inducción.
Figura 27, es una vista lateral ilustra unidad centralizada carrete móvil (700) que está instalado sobre una obra en construcción o una obra edificación ya terminada, obra que puede estar fija o en movimiento. La unidad centralizada carrete móvil (700) permite entregar cable a un VANT para ello comprende de un cuerpo cilindrico que está limitado en sus caras mayores por dos discos mayores carrete (701) en cuyo cuerpo cilindrico se enrolla previamente cable (418), desde el centro del carrete (701) se prolongan cuerpos de sección rectangular que contienen otros cuerpos de similar sección que se prolongas hacia el frente brazo telescópico (703) en cuyo extremo otro disco perimetralmente cóncava polea (703.1) permite dirigir cable (418) hacia abajo.
Alineado y concéntrico a carrete (701) se dispone motor carrete (701.2) el cuál permite conforme el VANT requiere de cable (418), potencia motora para avance y recoger, accionada por controlador (701.1) que se encuentra en comunicación enlace (500) a VANT, unidad de control (1001), y/o telecomando (1012).
Sobre cuerpo circular soporte giratorio (704) se extiende y se ubica un depósito (430) el cual contiene a modo de ejemplo pintura o agua con emulsión de limpieza para vidrios, en cuyo interior se dispone bomba (431).
Igualmente otro deposito contiene bomba Succión (433), a modo de ejemplo succionar aire. A su vez, se dispone un almacenador de energía en caso de corte de suministro Acumulador (432).
Carrete (701) está a una altura determinada que es sostenido por soporte carrete (702) el cual es solidario a un cuerpo circular soporte giratorio (704). Este último, en su centro posee una perforación de cuya cara superior se aloja buje (705.3). Mas inferiormente se encuentra un cuerpo rectangular base (711) que también posee una perforación. Entonces un cuerpo cilindrico con un cuerpo cilindrico mayor roscado perno (705.1) dispuesto en el extremo inferior de base (711) se alinea a perforación de soporte giratorio (704) en donde más allá a cara superior de buje (705.3) se aloja tuerca (705.2) que los une. Entre soporte giratorio (704) y base (711) se encuentra radialmente distribuido rodamiento (706) y rodamiento (706.1).
Solidario a soporte giratorio (704) un cuerpo laminar vertical soporte (710) soporta y se conecta un medio motriz dispuesto vertical en dirección hacia abajo motor (707) en cuyo extremo se aloja engranaje (708). Por el otro lado, solidario y concéntrico a base (71 1) se ubica cremallera (709). Entonces, cuando es accionado motor (707) gira la base y con ello todo los componentes superiores evidentemente carrete (701) con lo cual se da orientación horizontal a cable (418).
Bajo base (711) se ubica soporte-carro (712) que los une conectar (716). Soporte-carro (712) es solidario a una placa doblada en su parte inferior en dirección hacia el interior del equipo soporte (713). En edificio vidriado (602) se dispone riel (718) cuya sección es preferiblemente a modo de“I girada horizontalmente la que se conecta mediante conectar (720). A soporte (713) se conecta cuerpos cilindricos polines (714) mediante cuerpos alargados cilindricos coaxiales conectar (715). Sobre riel (718) en forma continua cremallera (719). Al interior y bajo base (711 ) se dispone invertido y horizontal motor (711.1 ) donde se conecta con engranaje (717).
Engranaje (717) y cremallera (719) se encuentran alineados, entonces, cuando motor (711.1) es accionado, base (711) y carrete (701), o sea, todo el equipo se pone en movimiento sobre riel (718).
En edificio vidriado (602) para que unidad centralizada carrete móvil (700) consiga los suministros suficientes se conecta a las líneas de suministro propias con que cuenta edificio vidriado (602) ya que comprende de un suministro (801) línea cañerías propias del edificio de un conectar girable (803), un flexible (804) y a un conectar (802) que se conecta a un deposito (430) y acumulador (432)
Esta linea de suministro (800) posee la flexibilidad y los largos, en relación a la envergadura de edificio vidriado (602) y del circuito del riel (718).
Las envergaduras de los depósitos deposito (430) y acumulador (432) están dados por los requerimientos de tipo de fluidos aditivos o fluidos sustractivos, la periodicidad con la cual se requiere que los equipos de VANT realicen la tarea y la superficie, tamaño y envergadura de edificio vidriado (602).
Figura 28, vista lateral en la cual se puede apreciar vehículo (424) que transporta unidad centralizada carrete móvil (700) y los VANT, de la misma forma transporta a estación (900). Vehículo (424) comprende y es solidario a este soporte en vehículo de transporte (425) el cual es conectado a unidad centralizada carrete móvil (700)
Si bien es cierto Figura 24, 25, 26 y 28, particularmente se ilustra que los VANT posee un suministro de energía poder que cargan desde una plataforma por inducción o por cableado de contacto y conexión fácil y además se ilustra que un vehículo los provee directamente con cables. En otras realizaciones los VANT pueden ser proveídos por otras técnicas como energía de paneles solares. O sea, tanto los VANT como los suministros en tierra, vehículos o instalaciones pueden tener otras fuentes de carga poder. En otras realizaciones los VANT, contemplan adicionalmente conexión a paneles solares, lo cual permite dar más autonomía a los equipos en vuelo.
Figura 29, es una vista superior y se puede apreciar que, riel (718) es rectangular con los debidos radios para permitir el giro de unidad centralizada carrete móvil (700). El edificio vidriado (602) es un esquema simplificado de la obra por lo cual el recorrido de· riel depende del tipo de obra. Entonces, existen tantas formas de rieles y geometrías, además acá se ilustra riel (718) horizontal y se construye también con altura, o sea, resalto ya que es necesario desviarse por cambio de altura de un determinado obstáculo de la obra, quipos, arquitectura, etc.
Figura 30, es una vista frontal de la sección“B" y se aprecia que, la estación (900) está instalada sobre edificio vidriado (602), en la cual se almacenan los VANT. Donde estación (900) está conectada mediante conectar (720) a taza o elemento estructural de edificio vidriado (602). La estación (900) comprende cuatro pilares en las esquinas y unos travesaños tanto en su base como en su techo estructura (901), en cuya base se dispone plataforma de inducción (450) con la cual los VANT son capaces de cargarse energía poder. Sobre estación (900) se dispone panel solar (902) que permite conseguir energía poder para suministro energía poder, autónomo de edificio vidriado (602), energía poder adicional en caso de corte de suministro de imprevistos por edificio vidriado (602).
En las Figura 27, 28, 29 y 30, como se ha dicho es un ejemplo de una aplicación en particular e ilustrativo, de la tarea a realizar, por lo cual no debe limitarse que en estación (900) se dispone de plataforma de inducción (450), ya que el VANT (8) carga energía poder mediante inducción, pues si se usa otro tipo de tas VANT que
componen la presente invención se debe usar plataforma cableada (451) o bien una plataforma sin energía ya que también el suministro lo entrega cable (418).
Los expertos en la materia entenderán que lo que antecede se refiere únicamente a una realización preferida de la invención, cuya descripción se centra en lo medular del sistema, métodos y dispositivos, por lo cual existen una serie de detalles no mostrados y ciertamente omitidos que la técnica mecánica, electrónica e informática, permite hoy sin mayor esfuerzo lograr, son problemas de ingeniería normales que son bien conocidos por los expertos en la materia, y no se explicarán con más detalle en el presente documento.
Los expertos en la materia entenderán, además que lo que antecede se refiere únicamente a una realización preferida de la invención, la cual es susceptible de modificaciones sin que ello suponga apartarse del alcance de la invención, definido por las reivindicaciones que siguen.
Claims
1.- Un sistema (1000) para efectuar multiplicidad de tareas complejas posibles sobre obras, mediante equipos autónomos no tripulados en vuelo (VANT), CARACTERIZADO porque comprende:
a) a lo menos vehículo aéreo autónomo no tripulado para múltiples tareas (VAM) (1), que cuenta con a lo menos un brazo robot (1.7) con varios grados de libertad configurado especialmente con herramientas funcionales y operativas para ejecutar a lo menos una tarea específica asignada y predefinida, de múltiples tareas posibles en una obra, en donde el a lo menos un brazo robot (1.7) comprende, a lo menos una fijación superior (1.5), y a lo menos una fijación inferior (1.6) para adosarse a una estructura de la obra, para permitir precisión y estabilidad; b) a lo menos una unidad de control (1001) para la operación del sistema (1000) para controlar el a lo menos VAM (1), mediante señales de comando en comunicación y coordinación con una pluralidad VANT (2, 3, 4, 5, 6, 7, 8), en donde el VANT (2) está configurado para supervisar e inspeccionar tareas ejecutadas por VAM (1); en donde el VANT (3) está configurado para adosarse a la estructura de la obra durante las tareas ejecutadas por el VAM (1), para sensar y escanear el lugar de dicha tarea y comunicar dichos resultados a la unidad de control (1001); en donde el VANT (4) está configurado para suministrar o extraer en vuelo, fluidos mediante cables o mangueras de suministros a los efectores del brazo robot (1.7); en donde el VANT (5) y VANT (6) están configurados para la entrega de energía carga poder en vuelo; en donde los VANT (7,8) están configurados para mantener los cables y mangueras suspendidos en el aire;
c) los suministros de fluidos mediante cables o mangueras de suministros se realizan desde una unidad centralizada carrete móvil (700) que incluye un carrete (417) que distribuye cables y mangueras (418) conforme a las maniobras en vuelo, en donde dicha unidad centralizada carrete móvil (700) puede estar ubicada en tierra, en aire, cercana o instalada en la obra;
d) en donde, los cables y mangueras (418) comprende, una pluralidad de cuerpo anillo sensor (421) que están dispuesto equidistante y homogéneamente a lo largo de estos cables y mangueras (418), y configurados para monitorear su posición, movimiento y emitir señales a la unidad de control (1001);
e) en donde la a lo menos una unidad de control (1001) para la operación del sistema (1000) está configurada para las maniobras de vuelo, comunicación, monitóreo, operación de tareas y control del sistema; y f) un enlace Wi Fi, que permite enviar datos a la nube y mejorar las operaciones mediante inteligencia artificial.
2.- El sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, según la reivindicación 1 , CARACTERIZADO porque el brazo robot (1.7), comprende una cámara de video omnidireccional (1.8).
3.- El sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, según la reivindicación 1 , CARACTERIZADO porque el brazo robot (1.7) comprende un sistema LIDAR.
4.- El sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, según la reivindicación 1 , CARACTERIZADO porque el brazo robot (1.7) comprende una bomba para fluidos (101), para el suministro de pintura que se realiza mediante una herramienta curva para pintado estructuras (110), que en su extremo comprende a lo menos una boquilla aspersión (103), distribuida sobre un cuerpo cilindrico que posee una curva preferentemente de radio determinado (112) que se empalma con el brazo robot (1.7) y que dispone de una matriz de cámaras (111).
5.- El sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, según la reivindicación 1 , CARACTERIZADO porque el suministro o extracción en vuelo del VANT (4), puede ser pintura o aire desde una boquilla de aspersión (103).
6.- El sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, según la reivindicación 1 , CARACTERIZADO porque el VANT (5) entrega la energía carga poder en vuelo a todos los VANT y VAM (1) a través de un cable eléctrico, mediante un contacto magnético.
7 El sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, según la reivindicación 1, CARACTERIZADO porque el VANT (6) entrega la energía carga poder en vuelo a todos los VANT y VAM (1), mediante inducción.
8.- El sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, según la reivindicación 6, CARACTERIZADO porque la pluralidad VANT (2, 3, 4, 5, 6, 7, 8), que reciben energía a través de un cable eléctrico, están conectados a la unidad centralizada carrete móvil (700).
9.- El sistema aéreo no tripulado para efectuar multiplicidad de tareas complejas sobre obras, según la reivindicación 1 , CARACTERIZADO porque la unidad centralizada carrete móvil (700), permite entregar o quitar cable (418) a todos los VANT y VAM (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/048,907 US11891175B2 (en) | 2018-04-18 | 2019-04-17 | System for performing multiple possible complex tasks on work sites using unmanned aerial devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CL999-2018 | 2018-04-18 | ||
CL2018000999A CL2018000999A1 (es) | 2018-04-18 | 2018-04-18 | Sistema de equipos autónomos transportables y/o instalables en obra que permiten multiplicidad de tareas de construcción; equipos uav (vehículo aéreo no tripulado), dispositivos de adosamiento removible que se fija a obra, brazo robot y herramientas para efectuar tareas complejas. método suministro de carga poder, fluidos continuos y cable de suministros seguro en vuelo y tierra. software, inteligencia artificial y dispositivos. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019200497A1 true WO2019200497A1 (es) | 2019-10-24 |
Family
ID=64900148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CL2019/000017 WO2019200497A1 (es) | 2018-04-18 | 2019-04-17 | Un sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, mediante equipos autónomos no tripulados en vuelo. |
Country Status (3)
Country | Link |
---|---|
US (1) | US11891175B2 (es) |
CL (1) | CL2018000999A1 (es) |
WO (1) | WO2019200497A1 (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114901554A (zh) * | 2019-12-23 | 2022-08-12 | 东洋制罐株式会社 | 无人机及其控制方法 |
EP3978362A4 (en) * | 2019-05-29 | 2023-06-07 | Hitachi, Ltd. | FLYING OBJECT, FLYING OBJECT SYSTEM AND METHOD FOR PAINTING AN OBJECT TO BE PAINTED |
CN117302518A (zh) * | 2023-11-29 | 2023-12-29 | 中影智能技术发展(福建)有限公司 | 一种物资投送用载重无人直升机 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6674976B2 (ja) * | 2018-06-26 | 2020-04-01 | 三菱重工業株式会社 | 検査対象物の検査装置及び検査方法 |
JP7017815B2 (ja) * | 2018-12-05 | 2022-02-09 | 株式会社ナイルワークス | 移動体 |
CN113226025B (zh) * | 2019-01-23 | 2022-11-08 | 株式会社尼罗沃克 | 无人机系统 |
US11957085B2 (en) * | 2019-05-24 | 2024-04-16 | AES Gener S.A. | Tree trimming with drone |
CN112110391A (zh) * | 2019-06-20 | 2020-12-22 | 杭州孚亚科技有限公司 | 一种作业系统 |
CN113445771B (zh) * | 2020-03-27 | 2022-07-08 | 广东博鼎建筑科技有限公司 | 一种孔洞封堵装置及孔洞封堵机器人 |
CN111659566B (zh) * | 2020-06-16 | 2021-07-23 | 合肥工业大学 | 一种绳索牵引式打磨清洗涂装一体化作业机器人 |
US20220026397A1 (en) * | 2020-07-21 | 2022-01-27 | Voliro Ag | Structural wall inspection system using drones to perform nondestructive testing (ndt) |
US12012208B2 (en) * | 2020-12-23 | 2024-06-18 | Osmose Utilities Services, Inc. | Systems and methods for inspecting structures with an unmanned aerial vehicle |
CN113448352B (zh) * | 2021-09-01 | 2021-12-03 | 四川腾盾科技有限公司 | 一种大型无人机指挥控制站的双机控制系统 |
CL2021002458A1 (es) * | 2021-09-22 | 2022-01-28 | Miguel Angel Mura Yanez | Sistema de equipos autónomos que permiten multiplicidad de tareas posibles sobre obras en: aire, tierra, mar y submarino |
KR102409997B1 (ko) * | 2021-12-31 | 2022-06-22 | 한국전력기술 주식회사 | 페인팅 드론 시스템 및 페인팅 드론 시스템을 이용한 도장 방법 |
CN114394238A (zh) * | 2022-02-08 | 2022-04-26 | 山西工程职业学院 | 无人机投放智能注油机器人及方法 |
GB202208761D0 (en) * | 2022-06-15 | 2022-07-27 | Agco Int Gmbh | Method and control system for controlling a wired vehicle fleet |
CN115162216B (zh) * | 2022-07-26 | 2024-06-11 | 东南大学 | 一种基于无人机搭载的桥梁体外自预应力加固装置和方法 |
WO2024057262A1 (en) * | 2022-09-14 | 2024-03-21 | Husqvarna Ab | Robotic work tool for tree maintenance |
NO20221115A1 (en) * | 2022-10-18 | 2024-04-19 | Ktv Working Drone As | System and method for projecting a solution onto a façade of a structure |
KR102688753B1 (ko) * | 2022-11-02 | 2024-07-25 | 송병규 | 가로등 등기구 청소드론 |
CN116495216B (zh) * | 2023-05-18 | 2023-10-31 | 广东高德星光智能科技有限公司 | 一种具备应急通信保障功能的无人直升机 |
CN116639288B (zh) * | 2023-07-24 | 2023-11-10 | 国网四川省电力公司成都供电公司 | 一种无人机智能移动机场及其自动升降平台 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016198775A1 (fr) * | 2015-06-08 | 2016-12-15 | Asma & Clement Aerial Advanced Technologies | Système de travail à distance |
US20160371984A1 (en) * | 2015-06-16 | 2016-12-22 | Here Global B.V. | Air Space Maps |
US20170278030A1 (en) * | 2016-03-22 | 2017-09-28 | Hexagon Technology Center Gmbh | Method and system for a construction site management and support system with a marking robot |
US20170345320A1 (en) * | 2016-05-31 | 2017-11-30 | Dronomy Ltd. | Monitoring a Construction Site Using an Unmanned Aerial Vehicle |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9087451B1 (en) * | 2014-07-14 | 2015-07-21 | John A. Jarrell | Unmanned aerial vehicle communication, monitoring, and traffic management |
US11235890B1 (en) * | 2016-10-25 | 2022-02-01 | Working Drones, Inc. | Unmanned aerial vehicle having an elevated surface sensor |
JP6683587B2 (ja) * | 2016-11-07 | 2020-04-22 | 株式会社荏原製作所 | 有線式ドローン群 |
NL2019523B1 (en) * | 2017-09-11 | 2019-03-19 | Ronik Inspectioneering B V | Unmanned aerial vehicle for positioning against a wall |
JP6867924B2 (ja) * | 2017-10-05 | 2021-05-12 | 本田技研工業株式会社 | 空中散布装置、無人飛行体システム及び無人飛行体 |
JP7214446B2 (ja) * | 2018-04-25 | 2023-01-30 | 株式会社荏原製作所 | ドローンを用いた消火システム |
-
2018
- 2018-04-18 CL CL2018000999A patent/CL2018000999A1/es unknown
-
2019
- 2019-04-17 WO PCT/CL2019/000017 patent/WO2019200497A1/es active Application Filing
- 2019-04-17 US US17/048,907 patent/US11891175B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016198775A1 (fr) * | 2015-06-08 | 2016-12-15 | Asma & Clement Aerial Advanced Technologies | Système de travail à distance |
US20160371984A1 (en) * | 2015-06-16 | 2016-12-22 | Here Global B.V. | Air Space Maps |
US20170278030A1 (en) * | 2016-03-22 | 2017-09-28 | Hexagon Technology Center Gmbh | Method and system for a construction site management and support system with a marking robot |
US20170345320A1 (en) * | 2016-05-31 | 2017-11-30 | Dronomy Ltd. | Monitoring a Construction Site Using an Unmanned Aerial Vehicle |
Non-Patent Citations (1)
Title |
---|
AEROARMS: "New Drone Technology Wins Innovation Radar Prize", AEROARMS PROJECT, 11 January 2018 (2018-01-11), XP054979919, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=YF30SAyxh-s> [retrieved on 20190731] * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3978362A4 (en) * | 2019-05-29 | 2023-06-07 | Hitachi, Ltd. | FLYING OBJECT, FLYING OBJECT SYSTEM AND METHOD FOR PAINTING AN OBJECT TO BE PAINTED |
CN114901554A (zh) * | 2019-12-23 | 2022-08-12 | 东洋制罐株式会社 | 无人机及其控制方法 |
US20220411055A1 (en) * | 2019-12-23 | 2022-12-29 | Toyo Seikan Co., Ltd. | Unmanned aerial vehicle and control method of the same |
CN117302518A (zh) * | 2023-11-29 | 2023-12-29 | 中影智能技术发展(福建)有限公司 | 一种物资投送用载重无人直升机 |
CN117302518B (zh) * | 2023-11-29 | 2024-03-08 | 中影智能技术发展(福建)有限公司 | 一种物资投送用载重无人直升机 |
Also Published As
Publication number | Publication date |
---|---|
US11891175B2 (en) | 2024-02-06 |
CL2018000999A1 (es) | 2018-05-18 |
US20210155344A1 (en) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019200497A1 (es) | Un sistema para efectuar multiplicidad de tareas complejas posibles sobre obras, mediante equipos autónomos no tripulados en vuelo. | |
US9975632B2 (en) | Aerial vehicle system | |
US11235890B1 (en) | Unmanned aerial vehicle having an elevated surface sensor | |
EP3505444B1 (en) | An aircraft with a ground manipulation system and ground fixing system | |
CN105739524B (zh) | 一种系留无人旋翼飞行器集群平台系统及液体连续喷洒系统 | |
US10011352B1 (en) | System, mobile base station and umbilical cabling and tethering (UCAT) assist system | |
EP3599175B1 (en) | Gravity compensation for self-propelled robotic vehicles crawling on non-level surfaces | |
JP6268659B2 (ja) | Uavエネルギー交換ステーション | |
US11284040B2 (en) | Surveillance unit with removable modules | |
CN109311533B (zh) | 飞行器行走系统的系统和方法 | |
JP6395835B2 (ja) | Uavのバッテリー電源バックアップシステムおよび方法 | |
JP6390022B2 (ja) | エネルギー提供ステーション | |
KR20210110301A (ko) | 해제식 크롤러를 구비한 착지 uav | |
WO2017147188A1 (en) | Systems and methods for unmanned aerial vehicles | |
US20220247347A1 (en) | Drone systems for cleaning solar panels and methods of using the same | |
US20090314883A1 (en) | Uav launch and recovery system | |
US20180133741A1 (en) | Propeller Lift Suspension Boom Truss Spray Combination Module System | |
CN103963043A (zh) | 一种用于电站巡检和维修的智能机器人及其控制系统 | |
JP6791561B2 (ja) | Uavにエネルギーを供給する方法、及び装置 | |
KR20220027149A (ko) | 스러스터 안정화를 갖는 현수식 항공기 시스템 | |
CN210377157U (zh) | 探测系统 | |
WO2019040008A1 (en) | TECHNOLOGICAL EQUIPMENT FOR WORKING AT HEIGHT | |
JP2024534256A (ja) | 建物エンベロープアクセスシステム | |
CN219503063U (zh) | 一种城市桥梁喷涂机器人 | |
ES1223632U (es) | Aparato para el tratamiento automatico de fachadas de edificios y grandes superficies. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19789359 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19789359 Country of ref document: EP Kind code of ref document: A1 |