KR20220027149A - 스러스터 안정화를 갖는 현수식 항공기 시스템 - Google Patents

스러스터 안정화를 갖는 현수식 항공기 시스템 Download PDF

Info

Publication number
KR20220027149A
KR20220027149A KR1020227000629A KR20227000629A KR20220027149A KR 20220027149 A KR20220027149 A KR 20220027149A KR 1020227000629 A KR1020227000629 A KR 1020227000629A KR 20227000629 A KR20227000629 A KR 20227000629A KR 20220027149 A KR20220027149 A KR 20220027149A
Authority
KR
South Korea
Prior art keywords
aircraft
support line
uav
length
suspended
Prior art date
Application number
KR1020227000629A
Other languages
English (en)
Other versions
KR102548185B1 (ko
Inventor
이르판-우르-랍 우스만
Original Assignee
카이트 다이나믹스, 아이앤씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 카이트 다이나믹스, 아이앤씨. filed Critical 카이트 다이나믹스, 아이앤씨.
Priority to KR1020237020977A priority Critical patent/KR20230097220A/ko
Publication of KR20220027149A publication Critical patent/KR20220027149A/ko
Application granted granted Critical
Publication of KR102548185B1 publication Critical patent/KR102548185B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/82Airborne vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/022Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/02Dropping, ejecting, or releasing articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D5/00Aircraft transported by aircraft, e.g. for release or reberthing during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • B64C2201/024
    • B64C2201/108
    • B64C2201/141
    • B64C2201/162
    • B64C2201/206
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/02Gyroplanes
    • B64C27/027Control devices using other means than the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Abstract

현수식 항공기 시스템은 스러스터 조립체를 갖는 항공기 및 항공기의 중량의 적어도 일부를 지지할 수 있는 항공기에 부착된 지지 라인을 포함한다. 지지 라인은 변할 때 그리고 항공기의 추력 특성의 변화와 조정하여 항공기의 위치를 변경할 수 있는 조정 가능한 길이를 가질 수 있다. 다른 양태도 설명 및 청구된다.

Description

스러스터 안정화를 갖는 현수식 항공기 시스템
본 출원은 2019년 6월 7일자로 출원된 미국 가출원 62/858,330호의 이익을 주장하며, 그 개시는 본원에 그 전체가 참조로 명시적으로 통합된다.
본 개시의 일 양태는 항공기, 구체적으로 지지 라인 및 스러스터(thruster) 안정화를 조정하는 항공기에 관한 것이다. 다른 양태도 설명된다.
항공 전자(Avionics)는 배터리의 최근 혁신과 프로세서와 같은 복잡한 전자 기기의 소형화로 인해 큰 이점을 얻었다. 취미 애호가와 전문적인 사용 사이에서 가장 많이 확장된 분야 중 하나의 부분은 일반적으로 드론(drone)으로 알려진 소규모 무인 항공기 분야이다. 이러한 새로운 기술은 사진, 군사, 야생 동물 보호 및 건설과 같은 다양한 분야에서 창의적인 어플리케이션을 발견했다.
장래의 어플리케이션이 개발되고 탐색되는 동안 여전히 극복될 필요가 있는 드론 기술에 대한 개발 과제가 남아 있다. 예를 들어, 드론의 이동 거리는 크기, 배터리 비용 및 소음 발생과 같은 요인 간의 상충 관계를 지속적으로 수반한다. 이러한 고려 사항은 드론이 밀집된 도시 환경을 탐색하거나 패키지 배송과 같이 먼 거리에 걸쳐 무거운 화물을 운반할 수 있는 어플리케이션에서 중요하다. 이러한 요인은 개발된 시스템이 실행 가능하고 안전하다는 것을 규제 기관에 입증할 때 특히 관련이 있다. 통상의 해결책은 계속하여 거리, 크기 및 기동성 간의 타협을 관리하는 데 중점을 둔다.
본 개시의 일 양태는 항공기에 연결된 지지 라인에 의해 추력 능력이 증대된 항공기에 관한 것이다. 스러스터 안정화를 갖는 현수식 항공기 시스템은 통상의 드론 제품에 비해 풋프린트(footprint)를 감소시키고 연장된 비행 시간 및 더 높은 화물 용량과 같은 다른 이점을 제공하는 드론 분야의 현재 문제에 대한 다목적의 해결책을 제공한다.
일 실시예에서, 지지 라인은 항공기 상의 부하-지지 지점에 부착된다. 지지 라인은 항공기의 중량을 지지할 수 있고 항공기의 중량을 항공기 외부에 위치된 "그라운딩된(grounded)" 앵커 지점으로 분배할 수 있도록 구성될 수 있다. 예를 들어, 지지 라인은 지지 라인을 감을 수 있는 윈치 시스템에 연결될 수 있으며, 따라서 지지 라인 내의 장력을 증가시키고 잠재적으로 항공기를 윈치 시스템을 향해 당길 수 있다.
항공기는 로터(rotor)와 같은 지향성 추력 발생의 형태를 가질 수 있다. 예를 들어, 항공기는 "쿼드콥터(quadcopter)" 구성일 수 있다. 제어기는 지지 라인을 감거나 빼는 윈치 시스템과 생성된 힘의 크기와 지지 라인에 대해 생성된 추력의 각도를 변화시킬 수 있는 스러스터(thruster)의 조정된 액션을 통해 항공기의 위치를 조작할 수 있다. 이러한 조정을 통해 제어기는 중력에 대항하는 데 필요할 수 있는 추력이 지지 라인에 의해 대신 상쇄될 수 있기 때문에 항공기의 위치를 이동시키거나 유지하는 데 필요한 에너지 출력을 최적화할 수 있다. 스러스터로부터 더 적은 힘의 출력이 필요한 경우, 스러스터의 크기뿐만 아니라 배터리와 같은 지지 구조체의 크기가 감소될 수 있지만, 항공기는 비행 시간 및 화물 용량과 같은 영역에서 동일하거나 더 큰 능력을 유지할 수 있다. 항공기 내의 더 작은 스러스터 및 지지 구조체는 항공기에 더 작은 풋프린트 및 소음 프로파일을 제공하여 항공기의 기동성을 증가시킨다.
윈치 시스템과 스러스터 사이의 조정은 다른 이점을 허용할 수 있다. 예를 들어, 중력이나 풍하중과 같은 환경적 힘에 대항하기 위해 스러스터의 필요성을 전환시키는 지지 라인의 능력으로 인해, 스러스터는 항공기를 효율적으로 배향시키는 데 사용될 수 있다. 예를 들어, 항공기는 지지 라인 내의 장력을 최대화하여 중력 방향에 수직으로 배향되는 동안 정적 위치를 유지할 수 있다.
일 실시예에서, 항공기는 지지 라인에 의해 다른 차량에 연결될 수 있다. 예를 들어, 차량은 "모선(mothership)" 구성의 항공기일 수 있으며, 이는 모선이 항공기 중량의 적어도 일부를 지지할 수 있게 한다. 모선은 소형 항공기가 제공하는 접근성을 유지하면서 대형 에어크래프트(aircraft)의 시스템 이점을 제공하는 장기간 비행의 효율성을 향상시키는 특성을 가질 수 있다.
시스템은 특정 기능을 위해 구성될 수 있다. 예를 들어, 항공기는 페이로드에 부착, 원격 표면의 청소, 무장 해제 또는 시스템이 제공하는 이점에 의해 가능하게 되는 다양한 기능 중 임의의 것을 수행할 수 있다.
도 1은 스러스터 안정화를 갖는 예시적인 현수식(suspended) 항공기 시스템을 도시한다.
도 2는 외부 표면에 연결된 스러스터 안정화를 갖는 예시적인 현수식 항공기 시스템을 도시한다.
도 3a 내지 도 3c는 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 4a 내지 도 4c는 정적인 영역과 관련하여 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 5는 정적인 영역과 관련하여 스러스터 안정화를 갖는 복수의 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 6은 앵커(anchor) 지점의 위치를 옮길 수 있는 시스템에 고정된 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 7은 예시적인 비행 경로 상에서 스러스터 안정화를 갖는 현수식 항공기 시스템의 위치를 도시한다.
도 8은 모선을 포함하는 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 9는 모선에 연결된 복수의 항공기를 포함하는 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 10은 모선이 유지 패턴에 있는 동안 스러스터 안정화를 갖는 예시적인 현수식 항공기 시스템을 도시한다.
도 11은 복수의 모선을 이용한 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 12는 스러스터 안정화를 갖는 현수식 항공기 시스템의 전자 구성 요소의 예시적인 개략도를 도시한다.
도 13은 스러스터 안정화를 갖는 현수식 항공기 시스템을 동작시키는 예시적인 방법을 도시한다.
도 14는 페이로드 부착과 함께 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 15는 특정 기능 활용과 함께 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 16은 광전지 어레이 시스템을 청소하는 동안 스러스터 안정화를 갖는 현수식 항공기 시스템의 예시적인 구성을 도시한다.
도 17은 스러스터 안정화를 갖는 현수식 항공기 시스템의 페이로드 전달을 위한 예시적인 방법을 도시한다.
도 18은 페이로드 전달 동안 스러스터 안정화를 갖는 예시적인 현수식 항공기 시스템을 도시한다.
본 개시의 몇몇 양태는 유사한 참조가 유사한 요소를 나타내는 첨부 도면의 도면에서 제한이 아니라 예시의 방식으로 예시된다. 본 개시에서 "어떤(an)" 또는 "하나의" 양태에 대한 참조는 반드시 동일한 양태에 대한 것은 아니며, 적어도 하나를 의미한다는 점에 유의해야 한다. 또한, 간결함을 위하여 그리고 전체 도면 수를 줄이기 위해, 주어진 도면은 본 개시의 하나 초과의 양태의 피처를 도시하는 데 사용될 수 있으며, 도면의 모든 요소가 주어진 양태에 필요한 것은 아니다.
첨부된 도면을 참조하여 본 개시의 몇몇 양태가 이제 설명된다. 설명된 부분의 형상, 상대적 위치 및 다른 양태가 명시적으로 정의되지 않을 때마다, 본 발명의 범위는 단지 예시의 목적을 위한 도시된 부분에만 제한되지 않는다. 또한, 다수의 상세 사항이 제시되지만, 본 개시의 일부 양태는 이러한 상세 사항 없이도 실시될 수 있음이 이해된다. 다른 경우에, 이러한 설명의 이해를 모호하게 하지 않기 위해 공지된 회로, 구조 및 기술은 상세히 도시되지 않았다.
본 개시의 실시예는 무엇보다도 스러스터-안정화된 현수식 항공기 시스템에 관한 것이다. 스러스터-안정화된 현수식 항공기 시스템은 지지 라인에 연결된 항공기를 포함할 수 있으며, 여기서 지지 라인은 앵커 지점에 원격으로 고정될 수 있다. 예시적인 실시예에서, 항공기 시스템은 무인 항공기(UAV: unmanned aerial vehicle)를 앵커 지점에 연결하는 지지 라인에 부착되는 무인 항공기(UAV)를 포함할 수 있어, 지지 라인의 일 단부가 UAV에 연결된다. 본 개시는 항공기에 인간 조종사가 항공기에 탑승하지 않는 어플리케이션을 논의하지만, 본 개시의 양태에서, 항공기가 본 발명의 개념을 벗어나지 않고 탑승한 조종사 또는 인간 사용자를 가질 수 있다고 생각할 수 있다. 앵커 지점은 배치되는 지지 라인 또는 윈치 라인의 길이를 동작 가능하게 변화시킬 수 있는 윈치 시스템을 포함할 수 있다. 윈치 시스템이 부착되는 앵커 지점은 어플리케이션에 따라 변할 수 있다. 예를 들어, 앵커 지점은 건물의 꼭대기와 같은 안정적인 표면 또는 제2 항공기와 같은 이동 가능한 표면일 수 있다.
윈치 시스템의 형태로 UAV에 수직 양력을 제공하는 것은 UAV의 일부 핵심 결함을 해결하면서 넓은 범위의 어플리케이션을 위한 이상적인 해결책이 되도록 UAV의 바람직한 특성을 확대한다. 윈치 시스템은 UAV가 원하는 고도를 유지하기 위해 생성할 필요가 있는 추력의 양이 감소되거나 제거되기 때문에 UAV에 의한 에너지 소비 감소를 허용한다. 충분한 양력을 생성하는 데 필요한 스러스터 크기를 줄이고 지지 라인을 통해 연결될 수 있고 필수적인 배터리 또는 제어기와 같은 UAV 구성 요소로부터 오프로딩(offloading)하는 것과 같이, UAV 자체의 풋프린트도 감소될 수 있다. 또한, UAV가 수직 방향으로 완전히 자체-지지될 필요가 없기 때문에, 다른 축(측면 및 자세 제어)에서 이용 가능한 추력/파워가 크게 증가된다.
또한, 다양한 유형의 앵커 지점 및 UAV 기능을 제공할 수 있는 시스템의 다양성은 많은 어플리케이션을 허용한다. 예를 들어, 윈치 시스템은 UAV가 비통상적인 방향으로 추력을 생성하게 하도록 할 수 있다. UAV가 윈치 시스템에 의해 능동적으로 현수될 때, UAV의 고도를 유지하기 위해 UAV 상의 스러스터가 양력을 제공할 필요가 없을 수 있다. 스러스터는 중력에 수직인 방향으로 힘을 제공하는 데 사용될 수 있다. 예를 들어, UAV가 마천루의 외부 창의 특정된 배치 지점에 데칼(decal)을 배치하는 임무를 맡은 경우, 윈치 시스템은 배치 지점 위에 고정될 수 있다. 원하는 고도에서 UAV를 지지하는 윈치 시스템으로, UAV 상의 스러스터는 창에 데칼을 부착하기에 충분한 창을 조준한 추진력을 생성할 수 있다. 또한, 윈치 시스템은 중력에 직교하는 평면에서 UAV의 횡단을 허용하기 위해 지지 라인 길이를 동적으로 조정할 수 있다.
UAV는 좁은 공역(airspace)을 효과적으로 탐색하는 UAV의 능력에 의해 가능하게 된 서비스를 수행하도록 구성될 수 있다. 예를 들어, UAV는 패키지를 발코니로 배달하여 돌출부 및 컨스트릭티브 인클로저(constrictive enclosure)를 잠재적으로 피할 수 있다. 이러한 능력은 UAV가 다르게 조밀하고 제한적인 도시 환경에서 배달을 수행할 수 있게 한다. 이러한 수단에 의해 배달될 수 있는 패키지의 예는 창고, 물류 포장 센터(fulfillment center) 또는 웨이스테이션으로부터의 책, 의류 또는 전자용품과 같은 소비재를 포함한다. 다른 예는 식품, 의료 장비 및 의약품과 같은 지점-대-지점 배달을 포함할 수 있다. 이러한 예는 UAV가 시스템에 의해 달성할 수 있는 확장된 크기 및 중량 임계값 내에 맞는 임의의 화물의 픽업 및 배달이 가능할 수 있는 것으로 생각되므로 비제한적이다.
본원에서, "무인 항공기" 및 "UAV"라는 용어는 물리적으로 존재하는 인간 조종사 없이 일부 기능을 수행할 수 있는 임의의 자율 또는 반자율 차량을 지칭한다. 비행-관련 기능의 예는 특히 환경을 감지하거나 조작자로부터의 입력에 대한 필요 없이 공중에서 동작하는 것을 포함할 수 있지만 이에 한정되지 않는다.
UAV는 자율적이거나 반자율적일 수 있다. 예를 들어, 일부 기능은 원격 인간 조작자에 의해 제어될 수 있는 반면, 다른 기능은 자율적으로 수행된다. 또한, UAV는 원격 조작자가 UAV에 의해 다르게 자율적으로 제어될 수 있는 기능을 인수할 수 있도록 구성될 수 있다. 또한, 주어진 유형의 기능은 하나의 추상 레벨에서 원격으로 제어되고 다른 추상 레벨에서 자율적으로 수행될 수 있다. 예를 들어, 원격 조작자는 UAV가 위치를 변경해야 한다고 특정하는 것과 같이 UAV에 대한 높은 레벨의 탐색 결정을 제어할 수 있는 반면, UAV의 탐색 시스템은 경로 선택, 장애물 회피 등과 같은 더욱 세밀한 탐색 결정을 자율적으로 제어한다. 다른 예도 가능하다.
UAV는 다양한 형태일 수 있다. 예를 들어, UAV는 다른 가능성 중에서, 헬리콥터 또는 멀티콥터(multicopter)와 같은 로터크래프트(rotorcraft), 고정익 에어크래프트(fixed wing aircraft), 제트 에어크래프트, 덕트 팬(ducted fan) 에어크래프트, 블림프(blimp) 또는 조종 가능한 벌룬과 같은 공기보다 가벼운 비행선, 테일-시터(tail-sitter) 에어크래프트, 글라이더 에어크래프트 및/또는 오니솝터(ornithopter)의 형태를 취할 수 있다. 또한, "드론", "무인 항공기 시스템"("UAVS(unmanned aerial vehicle system)") 또는 "무인 항공 시스템"("UAS(unmanned aerial system)")이라는 용어가 또한 UAV를 지칭하는 데 사용될 수 있다.
도 1은 본원에서 현수식 항공기 시스템으로 지칭되는 스러스터-안정화된 현수식 항공기 시스템의 예시적인 양태를 도시한다. 현수식 항공기 시스템은 UAV(104) 및 지지 라인(107)을 포함할 수 있다. 이 예시에서, UAV(104)는 4개의 로터(109)를 이용하는 스러스터 조립체(105)를 포함하는 멀티콥터의 형태를 취하지만, 5개 이상의 로터, 4개 미만의 로터뿐만 아니라 로터크래프트에 대한 로터 추력을 조정하는 데 사용되는 로터 및 액추에이터의 조합을 갖는 다른 예도 가능하다. 이전에 논의된 바와 같이, UAV(104)는 추력 생성을 위해 로터에 의존하지 않거나 배타적으로 의존하지 않는 항공기의 형태를 취할 수 있는 것으로 생각된다. 예를 들어, UAV(104)는 지향성으로 배향 가능한 스러스터를 포함할 수 있다. 스러스터는 힘을 제공하기 위해 스러스터로부터 배출되는 물질을 스러스터에 공급할 수 있는 탱크 또는 호스에 연결될 수 있다. 일부 예는 가스-유형 스러스터, 화학적 추진제 및 지향성 기류 송풍기이다. 또한, UAV(104)는 추력을 생성하기 위해 연소-스타일 모터를 이용할 수 있는 것으로 고려된다. 본 발명의 개념을 벗어나지 않고 지향성으로 포커싱된 추진력을 생성할 수 있는 스러스터의 다른 예를 생각할 수 있다. 따라서, 스러스터 조립체(105)가 본 개시의 실시예를 설명하지만, 여기서 사용된 용어인 "스러스터" 및 "추력 엔진"은 본 기술 분야에 알려진 지향성으로 배향될 수 있는 추력 발생 시스템의 임의의 형태를 지칭할 수 있다.
UAV(104)는 조종 능력을 가질 수 있어, UAV(104)의 피치(pitch), 롤(roll), 요(yaw) 및/또는 고도가 다양한 수단을 통해 조정될 수 있다. 예를 들어, 로터(109)는 UAV(104)에 대한 추진력 및 기동성을 제공한다. 보다 구체적으로, 각각의 로터(109)는 모터에 부착된 블레이드(111)를 포함한다. 이와 같이 구성된 로터(109)는 UAV(104)가 수직으로 이륙 및 착륙하고, 임의의 방향으로 기동하고/하거나 호버링(hovering)하는 것을 허용할 수 있다. 또한, 블레이드(111)의 피치는 그룹으로 및/또는 차등적으로 조정될 수 있으며, UAV(104)가 그 중에서도 거꾸로 된 호버링, 연속적인 테일-다운(tail-down) "틱-톡(tic-toc)" 루프, 피루엣(pirouettes)을 갖는 루프, 피루엣을 갖는 스톨-턴(stall-turn), 나이프-에지(knife-dge), 임멜만(immelmann), 슬래퍼(slapper) 및 트래블링 플립(traveling flip)과 같은 3차원 공중 기동을 수행할 수 있게 할 수 있다. 모든 블레이드(111)의 피치가 이러한 공중 기동을 수행하도록 조정될 때, 이는 UAV(104)의 "집합 피치"를 조정하는 것으로 지칭될 수 있다. 추가적으로 또는 대안적으로, UAV(104)는 기동하기 위해 로터(109)의 회전 속도를 집합적으로 또는 차등적으로 조정할 수 있다. 예를 들어, 3개의 로터(109)의 일정한 속도를 유지하고 네 번째 로터의 속도를 감소시킴으로써, UAV(104)는 감속을 위해 선택된 로터(109)에 따라 우측으로 롤링, 좌측으로 롤링, 전방으로 피치, 또는 후방으로 피치할 수 있다. 구체적으로, UAV(104)는 감소된 속도로 로터(109)의 방향으로 롤링될 수 있다. 다른 예로서, 모든 로터(109)의 속도를 동시에 증가 또는 감소시키는 것은 UAV(104)가 각각 그 고도를 증가시키거나 감소시키는 것으로 귀결될 수 있다. 또 다른 예로서, 동일한 방향으로 회전하는 로터(109)의 속도를 증가 또는 감소시키는 것은 UAV(104)가 좌측-요 이동 또는 우측-요 이동을 수행하는 것으로 귀결될 수 있다. 이는 로터(109)가 스피닝(spinning)하는 RPM 및/또는 방향을 독립적으로 또는 집합적으로 조정함으로써 달성될 수 있는 다양한 유형의 이동의 단지 몇몇 예이다. 추력을 위해 로터를 이용하지 않는 실시예에서 유사한 기동이 고려될 수 있다.
UAV(104)는 또한 인클로저(112)를 포함할 수 있다. 인클로저(112)는 로터(109)를 포함 및/또는 연결할 수 있고 다른 가능성 중에서 다른 필요하거나 원하는 구성 요소, 예를 들어 모터, 관성 측정 유닛(IMU: inertial measurement unit) 및/또는 전자 속도 제어기, 배터리, 다른 센서 및/또는 페이로드와 같은 제어 전자 기기를 포함할 수 있다. 도시된 UAV(104)는 2개의 인클로저(112)를 포함하며, 여기서 각각의 인클로저(112)는 2개의 로터(109)를 포함하도록 구성되고, 인클로저(112)는 액슬(axle)(117)에 의해 연결된다. 그러나, 단일 인클로저(12)가 UAV(14)의 모든 로터(109)를 포함할 수 있는 것으로 생각된다. 대안적으로, 3개 이상의 인클로저(112)가 사용될 수 있으며, 각각의 인클로저(112)는 적어도 하나의 로터(109)를 포함하고, 각각의 인클로저(112)는 UAV(104)의 일부를 형성하도록 연결된다.
액슬(117)은 액슬(117)에 연결된 각각의 인클로저(112)에 대해 독립적인 회전을 허용할 수 있어 액슬(117)의 근위 단부 상의 제1 인클로저는 제1 방향으로 회전할 수 있고 액슬(117)의 원위 단부 상의 제2 인클로저는 제2 방향으로 회전할 수 있다. 또한, 액슬(117)은 제1 인클로저가 동일한 방향으로 회전하게 할 수 있지만, 제2 인클로저가 회전되는 것과 다른 각도로 또는 다른 속도로 회전하게 할 수 있다. 액슬(117)은 또한 제1 인클로저가 정적 배향으로 유지되게 할 수 있는 반면 제2 인클로저는 제1 인클로저에 대해 회전할 수 있다. 일부 실시예에서, UAV(104)는 복수의 액슬(117)을 이용할 수 있다. 예를 들어, 액슬은 직각으로 연결될 수 있고, 각각의 액슬은 다른 액슬과 독립적으로 회전할 수 있어, 제1 액슬에 연결된 로터는 제2 액슬에 연결된 로터와 독립적인 배향을 유지할 수 있다.
추가 양태에서, UAV(104)는 로터 보호기(122)를 포함한다. 이러한 로터 보호기(122)는 손상으로부터 로터(109)를 보호하고, 손상으로부터 UAV(104) 구조체를 보호하고, 근접 물체가 로터(109)에 의해 손상되는 것으로부터 보호하는 것과 같이 복수의 목적을 제공할 수 있다. 또한, 로터 보호기(122)는 로터(109)의 고속 회전에 의해 생성된 음향을 완화하기 위해 소음 감쇠기로서의 역할을 할 수 있다. 로터 보호기(122)를 포함하지 않는 실시예도 가능하다는 것을 이해해야 한다. 또한, 본 발명의 범위를 벗어나지 않고 상이한 형상, 크기 및 기능의 로터 보호기(122)가 가능하다.
추가 양태에서, UAV(104)는 하나 이상의 통신 시스템을 포함한다. 통신 시스템은 UAV(104)가 하나 이상의 네트워크를 통해 통신할 수 있게 하는 하나 이상의 무선 인터페이스 및/또는 하나 이상의 유선 인터페이스를 포함할 수 있다. 이러한 무선 인터페이스는 블루투스, WiFi(예를 들어, IEEE 802.11 프로토콜), 롱-텀 이볼루션(LTE), WiMAX(예를 들어, IEEE 802.16 표준), 무선-주파수 ID(RFID) 프로토콜, 근거리 통신(NFC) 및/또는 다른 무선 통신 프로토콜과 같은 하나 이상의 무선 통신 프로토콜 하에서의 통신을 제공할 수 있다. 이러한 유선 인터페이스는 이더넷 인터페이스, 범용 직렬 버스(USB: Universal Serial Bus) 인터페이스, 또는 와이어, 꼬인 와이어 쌍, 동축 케이블, 광 링크, 광섬유 링크 또는 유선 네트워크에의 다른 물리적 연결을 통해 통신하기 위한 유사한 인터페이스를 포함할 수 있다.
예시적인 실시예에서, UAV(104)는 단거리 통신 및 장거리 통신 모두를 허용하는 통신 시스템을 포함할 수 있다. 예를 들어, UAV(104)는 블루투스를 사용한 단거리 통신 및 CDMA 프로토콜 하의 장거리 통신을 위해 구성될 수 있다. 이러한 실시예에서, UAV(104)는 "핫 스팟(hot spot)"으로서 기능하도록 구성될 수 있거나; 달리 말해서, 셀룰러 네트워크 및/또는 인터넷과 같은 하나 이상의 데이터 네트워크와 원격 지지 디바이스 사이의 게이트웨이 또는 프록시로서 기능하도록 구성될 수 있다. 이와 같이 구성된 UAV(104)는 원격 지원 디바이스가 자체적으로 수행할 수 없는 데이터 통신을 용이하게 할 수 있다.
예를 들어, UAV(104)는 원격 디바이스에 대한 WiFi 연결을 제공할 수 있고, UAV(104)가 예를 들어 LTE 또는 5G 프로토콜 하에서 연결할 수 있는 셀룰러 서비스 제공자의 데이터 네트워크에 대한 프록시 또는 게이트웨이로서의 역할을 할 수 있다. UAV(104)는 또한 원격 디바이스가 달리 액세스할 수 없을 수도 있는 고고도(high-altitude) 벌룬 네트워크, 위성 네트워크, 또는 이들 네트워크의 조합에 대한 프록시 또는 게이트웨이로서의 역할을 할 수 있다.
일 양태는 UAV(104)에 연결되는 지지 라인(107)에 대한 것이다. 지지 라인(107)은 지지 라인(107)의 제1 단부에서 UAV(104)에 연결될 수 있다. 지지 라인(107)은 다양한 재료로 만들어질 수 있다. 예를 들어, 지지 라인(107)이 가요성일 필요가 있는 경우, 지지 라인(107)은 높은 인장 강도의 중합체 섬유, 금속 및/또는 합성 케이블, 로프, 및 충분한 강도와 가요성을 나타내는 다른 재료를 포함할 수 있다. 다른 양태에서, 지지 라인(107)은 지지 라인(107)의 제1 단부와 지지 라인(107)의 제2 단부 사이의 거리가 실질적으로 고정되도록 강성일 수 있다. 또 다른 양태에서, 지지 라인(107)은 체인 구성 또는 텔레스코핑 로드(telescoping rod) 구성과 같은 복수의 강성 부재를 포함할 수 있다.
지지 라인(107)은 UAV(104)의 중량의 일부 또는 전부를 지지 라인(107)으로 분산시키도록 설계된 UAV(104) 상의 한 지점에 연결될 수 있다. 예를 들어, 지지 라인(107)은 액슬(117) 또는 스러스터 조립체(105)와 같은 UAV(104)의 요소에 직접 연결될 수 있다. 지지 라인(107)은 UAV(104)의 요소에 부착된 u-볼트 연결과 짝을 이룰 수 있는 지지 라인(107)의 제1 단부에 스냅(snap) 링크를 포함할 수 있지만, 유사한 부착 수단이 본 발명의 개념을 벗어나지 않고 생각될 수 있다. 대안적으로, 지지 라인(107)은 UAV(104) 상의 지점에 연결되거나 UAV(104)에 연결된 다른 부재 또는 부재들에 연결되는 특별히 설계된 지지 라인 부착 메커니즘에 연결될 수 있다. 지지 라인(107)은 현수식 항공기 시스템의 중력 및 관성 부하의 일부 또는 전체를 수용하는 능력을 유지하면서 스러스터 조립체(105)에 대해 자유 회전 자유도를 허용하는 방식으로 UAV(104)에 부착될 수 있다. 예를 들어, 예시된 바와 같이, 지지 라인(107)은 액슬(117) 상에 있는 회전 베어링(138)에 연결될 수 있다.
지지 라인(107)은 UAV(104)를 전력 또는 데이터의 소스에 연결하는 도관을 포함할 수 있다. 예를 들어, 전력 분배 시스템의 적어도 일부가 UAV(104)에 "탑재"되어 있지 않은 일 실시예에서, 도관은 UAV(104)에 대한 지지 라인(107)의 제2 단부에서와 같이, UAV(104) 외부에 위치된 전원으로부터 전력을 전달할 수 있다. 이 경우, 도관은 지지 라인(107)의 제2 단부에 있는 배터리를 UAV(104) 상의 탑재된 전력 분배 시스템에 연결하는 전기 케이블을 포함할 수 있다. 에너지 저장소는 탑재된 전력 분배 시스템 내에 위치될 수 있는 것으로 고려되며, 이 경우 도관 내의 전력 케이블은 배터리와 같은 탑재된 에너지 저장 디바이스를 충전하는 데 사용될 수 있다. 다른 예에서, 도관은 (예를 들어, 데이터-인코딩된 전기 신호를 전달하기 위한) 도전성 재료 및/또는 (예를 들어, 데이터-인코딩된 광 신호를 전달하기 위한) 광섬유 라인으로 형성된 데이터-전송 와이어를 보유할 수 있다. 지지 라인(107)의 제2 단부에 위치될 수 있는 중앙 제어기 및/또는 조작자는 신호 케이블을 통해 탑재된 프로세서를 가질 수 있는 UAV(104)로 명령을 전송함으로써 원격으로 UAV(104)의 동작을 제어할 수 있다. 마찬가지로, UAV(104)는 신호 케이블을 사용하여 센서 데이터를 중앙 제어기 및/또는 조작자에게 다시 전송할 수 있다.
도 2는 지지 라인(107)의 제2 단부가 UAV(104)의 외부에 위치하는 앵커 지점(203)에 실질적으로 연결될 수 있는 본 실시예의 일 양태를 도시한다. 앵커 지점(203)은 건물의 기둥 또는 지붕과 같은 외부 표면에 고정될 수 있어 앵커 지점(203)이 부착된 외부 표면에 대해 앵커 지점(203)이 독립적으로 위치를 변경할 수 없다. 지지 라인(107)의 제2 단부는 앵커 지점(203)에 부착될 수 있다. 예를 들어, 앵커 지점(203)은 외부 표면에 볼트로 체결되는 후크일 수 있으며, 지지 라인(107)의 제2 단부는 후크에 고정될 수 있다.
앵커 지점(203)은 지지 라인(107)의 제1 단부와 지지 라인(107)의 제2 단부 사이의 지지 라인(107)의 길이 또는 장력이 변화될 수 있게 하는 기계 디바이스를 포함할 수 있다. 이러한 기계 디바이스의 일 예는 윈치(winch) 시스템이며, 여기서 윈치 시스템은 스풀(spool)이 모터에 의해 작동될 때 지지 라인(107)을 스풀로 당기거나(감거나) 내보내는(푸는) 윈치(207)를 포함할 수 있으며, 그 예는 스너빙(snubbing) 윈치, 웨이크스케이트(wakeskate) 윈치, 글라이더(glider) 윈치 및 에어 윈치이다. 특정 실시예가 제공되었지만, "윈치 시스템"이라는 용어는 본 발명의 개념을 벗어나지 않고 생각할 수 있는 지지 라인(107)의 길이를 변화시키기 위한 임의의 다양한 시스템 및 수단을 지칭할 수 있다.
앵커 지점(203)이 윈치 시스템을 포함하는 일 실시예에서, 윈치(207)는 고정될 수 있다. 예를 들어, 윈치 시스템은 윈치 시스템을 외부 표면에 볼트로 체결하거나 윈치 시스템을 외부 표면 상에 위치된 페어링 메커니즘과 연결하는 것과 같이, 영구적으로 또는 일시적으로 앵커 지점(203) 상의 또는 그 부근의 표면에 부착될 수 있다. 현수식 항공기 시스템이 건물에 인접하여 사용되는 경우, 윈치(207)는 건물의 꼭대기 상에 또는 그 부근에 부착될 수 있다. 윈치(207)는 또한 앵커 지점(203)의 위치가 이동될 수 있게 하는 텔레스코핑 폴(telescoping pole)과 같은 이동식 지지체에 연결될 수 있다.
도 3a는 복수의 지지 라인(107)을 갖는 현수식 항공기 시스템을 포함하는 일 실시예를 도시한다. UAV(104)는 2개 이상의 지지 라인(107)에 대한 부착 지점을 가질 수 있다. 2개 이상의 지지 라인이 UAV(104)에 부착될 때, 지지 라인은 독립적으로 또는 조정되어 조작될 수 있다. 예를 들어, 제1 지지 라인은 UAV(104)의 제1 단부에 부착될 수 있고 제2 지지 라인은 UAV(104)의 제2 단부에 부착될 수 있다. UAV(104)의 제1 단부는 UAV(104)의 제2 단부에 의해 카운터밸런싱(counterbalancing)될 수 있다. 예를 들어, UAV(104)를 중력 방향과 평행하게 배향시키기 위해 제1 단부의 고도가 제2 단부의 고도와 상이하도록 UAV(104)를 기울이는 것이 바람직할 때, 제1 지지 라인의 길이는 UAV(104)의 제1 단부를 낮추거나 높임으로써 UAV(104)의 제1 단부의 고도를 조정하도록 원하는 동작을 달성하기 위해 제2 지지 라인의 길이와 조정하여 변할 수 있는 반면, 제2 지지 라인은 UAV(104)의 제1 단부에 대해 UAV(104)의 제2 단부의 고도를 유지하기 위해 실질적으로 정적일 수 있다. UAV(104)에 부착된 3개의 지지 라인은 UAV(104)의 배향에 대한 더 큰 제어를 달성할 수 있다. 각각의 지지 라인이 하나 이상의 UAV에 연결되는 복수의 지지 라인이 도 3b에서와 같이 단일 앵커 지점에 연결될 수 있음을 생각할 수 있다. 단일 윈치 시스템에 의해 모든 지지 라인이 조작될 수 있는 것으로 생각할 수 있다.
도 3c는 윈치(306)가 UAV(104)에 "탑재"되도록 윈치(306)가 지지 라인(107)의 제1 단부에 위치될 수 있는 예를 도시한다. 또한, 이용되는 복수의 윈치 시스템이 존재하는 일 실시예에서, 지지 라인(107)의 제1 단부에 또는 그 부근에 위치되는 제1 윈치(306) 및 지지 라인(107)의 제2 단부에 또는 그 부근에 위치되는 제2 윈치(307)가 있을 수 있는 것으로 생각된다. 일 예에서, 제1 윈치(306)는 지지 라인(107)의 길이의 더 거친 조정을 수행할 수 있는 제2 윈치(307)에 비해 "더 미세한" 또는 더 민감한 길이 보정을 수행할 수 있다. 본 발명의 개념을 벗어나지 않고 윈치 시스템 및 지지 라인의 추가적인 구성을 고려하는 것이 가능하다.
일 양태에서, 앵커 지점(203)은 임시적이거나, 변경 가능하거나, 그래프넬(grapnel)에 의한 것과 같이 현수식 항공기 시스템의 동작 동안 확립될 수 있다. 도 4a는 정적인 영역에 위치된 앵커 지점(203)을 도시한다. 도 4b에서, 앵커 지점(203)은 정적인 영역에 대해 단일 축을 따라 움직일 수 있는 컨베이언스(404) 상에 위치된다. 예를 들어, 컨베이언스(404)는 앵커 지점(203)을 사전 결정된 위치로 이동시킬 수 있는 트랙-기반 운송 시스템일 수 있다. 도 4c에서, 앵커 지점(203)은 정적인 영역에 대해 복수의 축을 가로질러 병진 이동할 수 있는 컨베이언스(404) 상에 위치된다. 예를 들어, 컨베이언스(404)는 2차원 또는 3차원 콘코스(concourse)를 가로질러 현수식 항공기 시스템을 차량의 범위 내의 임의의 위치로 이동할 수 있는 차량일 수 있다. 다른 예에서, 컨베이언스(404)는 갠트리(gantry) 시스템과 같은 모션 스테이지일 수 있다. 도 5에 도시된 바와 같이, 복수의 컨베이언스(404)가 정적인 영역의 부근 내에서 사용될 수 있어, 각각의 컨베이언스(404)가 동일한 작업 볼륨의 부분에 접근할 수 있고, 각각의 현수식 항공기 시스템은 도 4a 내지 도 4c에 설명된 구성 중 임의의 하나를 가질 수 있다.
도 6은 앵커 지점(203)이 앵커 지점(203)의 위치를 옮길 수 있는 시스템에 고정 연결될 수 있는 본 개시의 다른 양태를 도시한다. 도시된 시스템은 회전 베이스(603)를 텔레스코핑 아암(telescoping arm)(607)과 결합하여 앵커 지점(203)을 재배치할 수 있는 크레인(602)이다. 회전 베이스(603)는 텔레스코핑 아암(607)을 360 도까지의 임의의 배향으로 회전시킬 수 있지만, 회전 베이스(603)의 회전은 해당 범위 내로 제한되어 회전 베이스(603)에 감소된 회전 자유도를 제공할 수 있다. 텔레스코핑 아암(607)은 조정 가능한 길이를 가질 수 있어, 길이가 감소될 때 앵커 지점(203)은 회전 베이스(603)에 더 가깝게 병진 이동될 수 있고 텔레스코핑 아암(607)의 길이가 증가될 때 회전 베이스(603)로부터 더 멀리 병진 이동될 수 있다.
지지 라인(107)이 윈치 시스템에 연결된 일 실시예에서, UAV(104)의 이동은 지지 라인(107)의 길이를 변화시키고 스러스터의 추력 특성을 변화시킴으로써 최대 6 자유도를 따라 조정될 수 있다. UAV(104)의 가능한 위치 결정은 도 7에서 볼 수 있는 바와 같이, "엔벨로프"에 의해 통제될 수 있으며, 여기서 엔벨로프는 지지 라인(107)의 단부가 UAV(104)로부터 가장 멀리 떨어지도록 윈치 시스템을 둘러싸는 구의 부피로서 정의되며, 윈치 또는 앵커 지점(203)에 연결될 수 있는 UAV(104)는 구의 중심이고, 구의 반경은 지지 라인(107)의 길이이다. 구의 외부 경계는 지지 라인(107)이 모든 방향으로 연장될 수 있는 가장 먼 곳이다. 일반적으로, 지지 라인(107)의 길이를 변화시키는 것은 엔벨로프 내의 UAV(104)의 수직 위치에 영향을 미칠 수 있다. 예를 들어, 윈치 시스템이 위치 A에 있는 경우, 윈치 시스템은 스풀에 대해 더 많은 지지 라인(107)을 당길 수 있고, 이는 UAV(104)를 위치 B의 앵커 지점(203)에 대한 높이 쪽으로 이동시키도록 작용할 수 있다. UAV(104)가 위치 B에 있을 때 윈치 시스템이 스풀로부터 더 많은 지지 라인을 내보내는 경우, UAV(104)는 위치 A를 향해 이동할 수 있다. 이러한 방식으로, 윈치 시스템과 UAV(104) 사이의 거리는 UAV(104)의 중량을 지지하기 위해 능동적으로 사용되는 지지 라인의 양을 증가 또는 감소시켜 증가 또는 감소될 수 있으며, 이는 UAV(104)의 위치가 수직 축을 따라 조작될 수 있게 한다. UAV(104)의 중량을 지지하는 데 능동적으로 사용되는 지지 라인(107)의 길이는 지지 라인(107)의 길이를 변경하기 위해 선형 액추에이터를 사용하는 것과 같이 다른 수단에 의해 조정될 수 있다.
유사하게, 스러스터의 추력 특성에 대한 조정은 엔벨로프 내에서 UAV(104)를 이동시킬 수 있다. 예를 들어, UAV(104)를 위치 A로부터 위치 C의 방향으로 이동시키기 위해, 스러스터는 우측을 향한 추력을 생성하도록 배향되어 UAV(104)를 좌측을 향해 추진할 수 있다.
도 7은 또한 UAV(104)에 탑재된 스러스터에 의해 생성된 추력 특성의 변화와 조정되는 지지 라인(107)의 길이 변화를 통해 현수식 항공기 시스템이 엔벨로프 내에서 UAV(104)의 위치 결정을 달성할 수 있는 방식을 도시하며, 여기서 엔벨로프 내의 UAV(104)에 대한 위치 가용성은 엔벨로프 내의 3차원 공간의 실질적으로 모든 지점을 포함한다. 일 양태에서, UAV(104)가 엔벨로프 내의 제1 위치로부터 제2 위치로 이동하는 것이 바람직할 수 있다. 현수식 항공기 시스템은 지지 라인(107)의 길이를 스풀링하거나 언스풀링(unspooling)하도록 윈치 시스템에 지시할 수 있으며, 현수식 항공기 시스템은 UAV(104)를 조정된 방식으로 원하는 위치로 이동시키기 위해 UAV(104)에 대한 방향 및 크기로 추력을 생성하도록 스러스터에 동시에 및/또는 같은 시간에 지시할 수 있다. UAV(104)가 위치 A로부터 위치 B로 이동함에 따라, 지지 라인(107)의 길이는 UAV(104)를 위쪽으로 당기도록 감소되며, 스러스터는 UAV(104)를 우측을 향해 미는 추력을 생성할 수 있도록 UAV(104)를 배향시켜, UAV(104)가 실질적으로 대각선 방식으로 위쪽 및 우측으로 이동하게 한다. UAV(104)가 위치 A로부터 위치 C로 배치된다면, 스러스터가 UAV(104)를 좌측을 향해 미는 추력을 생성할 수 있도록 스러스터가 UAV(104)를 배향하는 동안 지지 라인(107)의 길이가 연장될 필요가 있으며, 이는 UAV(104)가 실질적으로 수평으로 이동하게 한다.
지지 라인(107)의 부하 능력으로 인한 비수직 축에서의 가변 추력 가용성과 조합하여 스러스터의 크기 및 양력 방향과 지지 라인(107)의 길이 및 각도 사이의 이러한 조정은 정밀한 위치 결정을 가능하게 한다. 예를 들어, 지지 라인(107)의 길이와 스러스터 배향의 조정된 조작을 통해, UAV(104)는 수직 위치를 변경하지 않고 수평 평면에서 병진 이동할 수 있다. 이것은 좁은 진입 창을 탐색하는 것과 같이, 비행 중 일부 또는 모든 지점에서 윈치 시스템의 위치에 대해 특정된 위치에 현수식 항공기 시스템이 UAV(104)를 배치할 수 있게 한다. UAV(104)의 스러스터는 UAV(104)의 배향을 바닥(nadir)에 대한 각도로 조정할 수 있으며, 지지 라인(107)의 길이는 UAV(104)가 바닥에 대한 지지 라인(107)의 최적 또는 원하는 각도를 유지하기 위해 진입 창에 접근함에 따라 조정될 수 있다.
도 8은 앵커 지점(203)이 차량 상에 위치된 본 개시의 일 양태를 도시한다. 차량은 다양한 육상, 바다, 공중 및 다중 모드 차량 중 임의의 것일 수 있다. 도시된 예에서, 차량은 본원에서 "모선"으로 지칭되는 항공기(808)일 수 있으며, 여기서 모선(808)이 수송 중일 때, 모선(808)은 UAV(104)의 중량의 일부 또는 전부를 지지하기에 충분히 크다. 모선(808)은 순수한 고정익 크래프트(fixed wing craft), 로터크래프트(rotorcraft) 및 비행을 달성할 수 있는 임의의 다른 크래프트일 수 있다. 예시에서, 도시된 모선(808)은 고정익 에어크래프트에 통상적인 양력 표면(811) 및 프로펠러(813)와 로터크래프트에 특징적인 스러스터(816) 모두를 갖는 결합/천이 에어크래프트이다. 도시된 모선(808) 구성은 고정익 에어크래프트의 장거리 순항 및 로터크래프트의 호버링 및 정확한 위치 결정 능력을 허용하는 이점을 갖는다. 모선(808)은 또한 로터크래프트-가능 수직 이착륙(VTOL: vertical take off and landing) 능력을 가질 수 있다.
예시에서, 앵커 지점(203)은 모선(808)의 하측 상에 위치하지만, 앵커 지점(203)에 대한 다른 위치가 가능하다. UAV(104)가 "주차"되어 있거나 비행 중이 아닐 때, UAV(104)는 모선(808)에 단단히 부착될 수 있다. 모선(808)은 UAV(104)가 비행 중이 아닐 때 UAV(104)가 상주하는 도크(dock)(미도시)를 가질 수 있다. 도크는 (UAV(104)가 모선(808) 내에 실질적으로 보관되도록) 내부, (UAV(104)가 모선(808)의 외부 표면에 부착되도록) 외부에 있을 수 있거나, 이 둘의 조합일 수 있다. 도크는 UAV(104)를 제자리에 단단히 유지하는 클립(clip)을 포함할 수 있다. UAV(104)가 비행을 위해 준비될 때 도크는 UAV(104)를 해제하여, UAV(104)가 모선(808)으로부터 나갈 수 있게 한다. 지지 라인(107)의 길이는 윈치 시스템에 의해 증가되어, 모선으로부터 UAV(104)를 낮출 수 있다. UAV(104)가 모선(808)을 벗어날 때, UAV(104)의 스러스터가 활성화되어 단독으로 또는 윈치 시스템과 조정하여 UAV(104)의 비행을 지시할 수 있다. UAV(104)가 비행을 마치고 주차할 준비가 되었을 때, UAV(104)는 모선(808)으로 복귀하여 도크에 부착될 수 있다.
도 9는 도 7에 도시된 방식과 유사한 방식으로 UAV(104)에 탑재된 스러스터에 의해 생성된 추력 특성의 변화와 조정되는 지지 라인(107)의 길이 변화를 통해 현수식 항공기 시스템이 엔벨로프 내에서 모선(808)에 대한 UAV(104)의 정확한 위치 결정을 달성할 수 있는 방식을 도시한다. 윈치 시스템과 스러스터의 조정을 통해, UAV(104)는 다양한 가능한 궤적 중 임의의 궤적을 통해 모선에 대해 위치 A로부터 위치 B로 재배치될 수 있다.
현수식 항공기 시스템에 의해 가능하게 되는 본원에 설명된 UAV(104)의 정확한 위치 결정은 모선(808)이 모선(808)의 비행 패턴 동안 위치를 변경하는 동안 UAV(104)가 정적인 위치를 유지하게 할 수 있다. 예를 들어, 도 10은 UAV(104)가 지상의 기준 표면과 같은 고정된 기준 지점에 대해 실질적으로 정적인 위치를 유지하는 동안 원형 유지 패턴으로 구성된 비행 패턴을 가질 수 있는 모선(808)을 도시한다. 추력 엔진 및 윈치 시스템의 조정된 변경은 모선(808)에 대해 UAV(104)를 재배치할 수 있다. 예를 들어, 모선(808)이 UAV(104)에 대한 고정된 기준 지점으로 취해져서 지면에 대한 모선(808)의 이동이 무시되면, UAV(104)가 도면에서 모선(808)이 나타내는 유지 패턴과 유사한 방식으로 모선(808) 아래에서 선회하는 것으로 보이며, UAV(104)가 추력 엔진의 추력 벡터를 지속적으로 조정할 수 있으며 윈치 시스템은 고정 지점에 대해 원하는 위치를 유지하기 위해 지지 라인(107)의 길이를 지속적으로 조정할 수 있음을 도시한다. UAV(104) 위치 또는 벡터의 지속적인 조정 프로세스는 예를 들어, UAV(104)와 모선(808) 모두가 역회전하도록 모선(808)이 움직이는 동안 발생할 수 있다. 따라서, UAV(104)는 모선(808)의 비행 패턴의 변경을 필요로 하지 않고 이동하는 모선(808)으로 인해 엔벨로프가 이동하는 동안 엔벨로프 내의 임의의 위치를 달성할 수 있다. UAV(104)가 고정된 기준 지점에 대해 정적인 위치를 유지하는 동안 모선(808)이 유지할 수 있는 유지 패턴의 최대 둘레는 지지 라인(107)의 최대 길이에 의해 통제될 수 있다.
도 11은 단일 UAV(104)가 복수의 모선에 연결될 수 있는 본 개시의 일 양태를 도시한다. 예시에서, UAV(104)는 제1 지지 라인(808a) 및 제2 지지 라인(808b)을 통해 각각 제1 모선(808a) 및 제2 모선(808b)에 의해 지지된다. 지지 라인(808a) 및 지지 라인(808b) 각각은 단일 윈치 시스템 또는 복수의 윈치 시스템에 의해 동작될 수 있다. 제1 지지 라인(808a) 및 제2 지지 라인(808b)의 길이는 UAV(104)의 스러스터 시스템과 조정되고 현수식 항공기 시스템의 동작 동안 제1 모선(808a) 및 제2 모선(808b)의 비행 패턴과 조정될 수 있다. UAV(104)는 모선(808a) 및 모선(808b) 각각의 엔벨로프 내에서 실질적으로 임의의 위치를 달성할 수 있다.
도 12는 UAV(104)를 엔벨로프 내의 원하는 위치 및/또는 배향에 위치시키기 위해 지지 라인(107) 및 추력 엔진(1207)의 조작을 조정할 수 있는 제어 시스템의 블록도를 도시한다. 시스템 제어기는 UAV(104)의 원하는 위치와 같은 다양한 커맨드 입력을 수신하는 제어기(1203)를 포함할 수 있다. 제어기(1203)는 UAV(104)를 초기 위치로부터 원하는 위치로 이동시키기 위해 윈치 작동부(1212) 및 추력 엔진(1207)을 통해 지지 라인(107)의 길이에 대해 이루어질 필요가 있는 필요한 조정을 결정할 수 있다. 제어기(1203)는 UAV(104)의 임의의 위치 및 배향을 달성하는 것과 같이 바람직한 방향 및 크기의 추력을 생성하도록 추력 엔진(1207) 내의 개별 스러스터 또는 스러스터 조립체에 지시할 수 있어, 제1 스러스터 또는 제2 스러스터 조립체가 제1 방향 및/또는 제1 크기를 가질 수 있고 제2 스러스터 또는 제2 스러스터 조립체가 제2 방향 및/또는 제2 크기를 가질 수 있다. 또한, UAV(104)에 대한 추력 엔진(1207)에 의해 생성된 추력의 배향은 정적일 수 있는 것으로 고려된다. UAV(104)의 배향은 UAV(104) 상의 개별 스러스터에 의해 생성된 추력을 변경함으로써 변경될 수 있을 뿐만 아니라 지지 라인(107)의 스풀링과 추력의 변화의 조합을 통해 지지 라인(107)을 통한 장력 변화를 통해 변경될 수 있다. 지지 라인(107) 내의 장력을 감소시키거나 증가시키는 것은 또한 다른 목적을 제공할 수 있다. 예를 들어, UAV(104)가 복잡한 경로를 통해 이동하는 경우, UAV(104)와 앵커 지점 사이에 직접적인 시선이 없을 수 있다. 이 경우, UAV(104)는 지지 라인(107) 내에서 더 큰 "느슨함(slack)"을 요구할 수 있고, 따라서 제어기(1203)는 지지 라인(107) 내의 장력을 감소시킬 수 있다.
현수식 항공기 시스템이 모선(808)을 포함하는 일 실시예에서, 추력 엔진(1207)은 시스템 제어기(1203)가 UAV(104) 및 모선(808)에 탑재된 스러스터를 조정 및 제어할 수 있도록 모선(808)에 탑재된 스러스터를 포함할 수 있다. 따라서, 시스템 제어기(1203)는 모선의 추력, UAV(104)의 추력, 및 지지 라인(107) 길이의 변화의 조작을 조정할 수 있다. 시스템 제어기(1203)가 지지 라인(107)의 길이 변화, 모선(808)의 추력 속성 및 UAV(104)의 추력 속성을 조정할 때, 시스템 제어기(1203)가 UAV(104) 및 모선(808) 중 적어도 하나로부터의 제로 추력 생성이 바람직한 시나리오까지 그리고 이를 포함하여 언급된 속성의 임의의 조합을 변경하지 않는 것이 바람직한 것으로 결정하는 경우, 이러한 조정은 지지 라인(107) 길이, 모선(808)의 추력 속성 및 UAV(104)의 추력 속성에 대한 변화를 만들지 않는 것을 포함할 수 있음을 이해해야 한다. 예를 들어, 시스템 제어기(1203)는 지지 라인(107)의 팽팽함을 유지하고 UAV(104)의 저킹(jerking)을 방지하기 위해 UAV(104)의 위치 변화에 응답하여 지지 라인(107) 길이를 동적으로 조작할 수 있다. 동시에 또는 동일한 시간에, 시스템 제어기(1203)는 UAV(104)의 원하는 위치 및 배향을 달성하기 위해 모선 및/또는 UAV(104)의 추력 조건을 동적으로 조작할 수 있다.
시스템 제어기(1203)는 현수식 항공기 시스템에 의한 전체 에너지 출력을 최적화하고 UAV(104)의 위치를 지정하는 동안 폐루프 제어를 수행하는 것과 같은 여러 목적 중 임의의 목적을 제공할 수 있는 센서(1216)로부터 피드백("센서 데이터")을 수신할 수 있다. 예를 들어, 센서 데이터는 사용된 지지 라인(107)의 길이의 함수로서 지지 라인(107)에 의해 생성된 양력 방향 및 크기 및/또는 지지 라인(107) 및/또는 UAV(104)의 상대 배향에 대해 추력 엔진(1207)에 의해 생성될 수 있는 최적화된 양력 방향 및 크기를 제어기(1203)가 계산하게 할 수 있다. 센서(1216)는 지지 라인(107) 장력 및 UAV(104)의 힘 프로파일 및 관성 측정값과 같은 UAV(104) 및 지지 라인(107)의 속성을 측정할 수 있다. 센서(1216)는 모선(808)의 비행 속성을 측정할 수 있다. 모선(808) 및 UAV(104)로부터의 센서 피드백은 지지 라인(107)에 의해 연결된 동안 모선(808) 및 UAV(104) 각각의 비행을 조정하기 위해 현수식 항공기 시스템의 동작 동안 사용될 수 있다. 이러한 속성은 간접적으로 측정되거나 추정될 수 있는 것으로 생각된다. 시스템 제어기(1203)는 최적의 지지 라인(107) 각도 및 추력 각도 및 크기를 결정하기 위해 다양한 입력을 사용할 수 있다. 예를 들어, 현수식 항공기 시스템은 돌풍의 방향과 크기를 계산하는 바람 센서를 포함할 수 있다. 시스템 제어기(1203)는 UAV(104)의 위치에 대한 바람의 영향을 실질적으로 무효화하기 위해 역추력을 생성하도록 추력 엔진(1207)에 지시할 수 있다. 추력 엔진(1207)이 돌풍 부하에 대한 횡방향 추력을 생성할 수 있도록 지지 라인(107)은 UAV(104)의 수직 부하의 대부분을 가정할 수 있다. 센서(1216)는 윈치 액추에이터(1212) 및 스러스터 엔진(1207)에 지시하기 위해 제어기(1203)에 의해 사용될 수 있는 시스템의 동작과 관련된 다른 데이터를 제공할 수 있다. 예를 들어, 비행 경로에 장애물이 없는지를 결정하는 데 광 센서가 사용될 수 있으며, 그렇지 않은 경우, 대안적인 비행 경로가 명확할 수 있다. 센서(1216)는 단일 센서 또는 복수의 센서로서 구현될 수 있고, 시스템 내에, 시스템에 인접하게, 또는 시스템으로부터 원격으로 위치될 수 있지만, 여전히 시스템의 동작과 관련된 속성을 측정할 수 있다.
도 13은 UAV(104)를 초기 위치로부터 원하는 위치로 재배치할 때 현수식 항공기 시스템의 동작 흐름도를 도시한다. 단계 1306에서, 제어기(1203)는 UAV(104)를 초기 위치로부터 원하는 위치로 이동시키기 위한 비행 경로를 결정할 수 있다. 제어기(1203)는 원하는 위치를 입력으로서 수신할 수 있다. 제어기(1203)는 또한 UAV(104)의 초기 위치를 수신하거나 결정할 수 있다. 비행 경로를 결정하는 것은 지지 라인(104)의 최적 길이 및 최적 추력 각도 및 크기를 결정하는 것을 포함할 수 있다.
단계 1307에서, 제어기(1203)는 조정하도록 지지 라인(107)에 지시할 수 있으며, 단계 1309에서, 제어기(1203)는 지지 라인(107) 및 추력 엔진(1207)의 길이가 조정된 방식으로 조정될 수 있도록 추력 엔진(1207)에 조정을 지시할 수 있다. 이는 단계 1315에서 스러스터의 작동 및 1312에서 지지 라인의 작동으로 이어질 수 있으며, 이는 또한 조정된 방식으로 발생할 수 있다.
단계 1319에서, 제어기(1203)는 UAV(104)가 원하는 위치에 도달한 때를 결정할 수 있고 지지 라인(107) 및 추력 엔진(1207)이 UAV(104)의 위치를 유지하기 위해 조정하도록 지시할 수 있지만, 제어기(1203)는 루프를 종료할 수 있다. 지지 라인(107) 및 추력 엔진(1207)에 대한 조정은 시간-기반으로 이루어질 수 있으며, 말하자면 제어기(1203)는 부드러운 비행 경험을 보장하거나 복잡한 비행 경로를 통해 탐색하는 것과 같이, 비행 경로를 따른 몇몇 지점 또는 실질적으로 모든 지점에서 지지 라인(107)의 최적 길이 및 스러스터 각도 및 크기를 결정할 수 있다.
단계 1331은 제어기(1203)가 센서(1216)로부터와 같이 피드백을 수신할 수 있는 방식을 도시한다. 제어기(1203)는 지지 라인(107)의 최적 길이와 추력 각도 및 크기를 "실시간"으로 결정할 수 있으며, 말하자면 제어기(1203)는 시스템으로부터의 피드백을 정기적으로 또는 지속적으로 사용하여 조정된 방식으로 현수식 항공기 시스템의 동작을 최적화할 수 있다. 예를 들어, 제어기(1203)는 UAV(104)가 수송 중일 때 최적의 비행을 결정하기 위해 센서(1216)로부터의 데이터를 사용할 수 있다. 단계 1335에서, 제어기(1203)는 제어기(1203)가 UAV(104)가 원하는 위치에 도착했다고 결정할 때까지 지지 라인(107)의 길이와 추력 각도 및 크기를 지속적으로 조정하기 위해 센서(1216)로부터의 피드백을 이용할 수 있다.
다른 유형의 피드백이 단계 1331 동안 수신될 수 있고 현수식 항공기 시스템의 동작을 지시하는 동안 제어기(1203)에 의해 이용될 수 있다. 피드백은 커맨드 센터, 제2 드론 및 트랜시버와 같이 제어기(1203)가 통신할 수 있는 임의의 수의 유선 또는 무선 소스로부터 수신될 수 있다. 예를 들어, 제어기(1203)는 현수식 항공기 시스템에 대한 비행 경로에 영향을 미칠 수 있는 날씨 데이터를 수신할 수 있다. 제어기(1203)는 새로운 비행 경로를 개발하는 데 날씨 데이터를 이용할 수 있다.
도 13은 선택 단계 1301에 도시된 바와 같이, 모선(808)을 포함하는 현수식 항공기 시스템의 동작을 위한 단계를 추가로 포함한다. 제어기(1203)는 입력으로서 UAV(104)에 대한 원하는 위치를 수신할 수 있다. 단계 1302는 제어기가 모선(808)에 대한 접근 위치를 결정할 수 있음을 나타내며, 여기서 접근 위치는 UAV(104)가 배치될 때 UAV(104)가 원하는 위치에 도달할 수 있게 하는 모선(808)의 위치이다. 제어기(1203)는 단계 1303에서 모선(808) 초기 위치로부터 접근 위치로 모선(808)을 이동시키기 위한 모선(808) 비행 경로를 결정할 수 있다. 제어기(1203)는 또한 모선(808)의 초기 위치를 수신하거나 결정할 수 있다. 모선(808) 비행 경로를 결정하는 것은 모선(808) 초기 위치와 접근 위치 사이의 최적화된 경로를 결정하는 것을 포함할 수 있다. 최적화된 경로는 이동 속도, 비행 지속 시간, 장거리 대 단거리 비행 장치의 사용, 장애물, 에너지 효율성, 원하는 진입 각도 및 모선의 비행에 영향을 미치는 다른 요인의 균형을 맞출 수 있다. 제어기(1203)는 모선(808)이 접근 위치에 실질적으로 도달했을 때 모선이 호버링 또는 선회하도록 모선에 지시할 수 있다. 그 후, 제어기(1203)는 단계 1304에 도시된 바와 같이, UAV(104)가 모선(808)으로부터 배치되도록 지시할 수 있다. UAV(104)는 또한 모선(808)의 수송 동안 임의의 지점에서 모선(808)으로부터 배치될 수 있다. 일단 배치되면, UAV(104)는 원하는 위치에 도달하기 위해 본원에 개략 설명된 방법을 사용할 수 있다.
도 13에 개략 설명된 프로세스의 상이한 양태는 한 명 이상의 인간 사용자에 의해 수행될 수 있다. 예를 들어, 원격 조작자는 모선을 원격으로 조종하는 것과 같이, 모선의 경로를 결정하고 모선의 비행을 조정할 수 있다. 유사하게, 원격 조작자는 UAV(104)의 배치, UAV(104)의 비행을 제어하고 윈치 시스템을 동작시킬 수 있다.
시스템 제어기(1203)는 적어도 부분적으로 하나 이상의 매립형 또는 범용 프로세서, 컴퓨터, 프로세싱 디바이스, 또는 메모리를 갖는 컴퓨팅 디바이스로서 구현될 수 있다. 시스템 제어기(1203)는 또한 본원에 설명된 실시예의 양태를 수행하도록 실행되거나 동작되는 다양한 기능 및/또는 로직(예를 들어, 컴퓨터 판독 가능 명령, 코드, 디바이스, 회로, 프로세싱 회로 등) 요소로서 부분적으로 구현될 수 있다. 시스템 제어기(1203)는 현수식 항공기 시스템의 임의의 부재 내에 장착 및 고정되거나 임의의 부재에 연결될 수 있다. 또한, 시스템 제어기(1203)는 시스템으로부터 원격으로 위치될 수 있고, 그렇지 않으면 시스템과 직접 또는 간접적으로 통신할 수 있다.
시스템 제어기(1203)는 프로세서, 메모리, 저장 디바이스 및 입력/출력(I/O) 디바이스를 포함할 수 있다. 일부 또는 모든 구성 요소는 시스템 버스를 통해 상호 연결될 수 있다. 프로세서는 단일 또는 다중 스레딩(threading)될 수 있으며 하나 이상의 코어를 가질 수 있다. 프로세서는 메모리 및/또는 저장 디바이스에 저장된 명령과 같은 명령을 실행할 수 있다. 정보는 하나 이상의 I/O 디바이스를 사용하여 수신 및 출력될 수 있다.
메모리는 정보를 저장할 수 있으며, 휘발성 또는 비휘발성 메모리와 같은 컴퓨터-판독 가능 매체일 수 있다. 저장 디바이스(들)는 컴퓨터 시스템에 대한 저장을 제공할 수 있고 컴퓨터-판독 가능 매체일 수 있다. 다양한 실시예에서, 저장 디바이스(들)는 플래시 메모리 디바이스, 하드 디스크 디바이스, 광 디스크 디바이스, 테이프 디바이스, 또는 임의의 다른 유형의 저장 디바이스 중 하나 이상일 수 있다.
I/O 디바이스는 컴퓨터 시스템에 대한 입력/출력 동작을 제공할 수 있다. I/O 디바이스는 키보드, 포인팅 디바이스 및/또는 마이크로폰을 포함할 수 있다. I/O 디바이스는 그래픽 사용자 인터페이스를 표시하기 위한 디스플레이 유닛, 스피커 및/또는 프린터를 추가로 포함할 수 있다. 외부 데이터는 하나 이상의 액세스 가능한 외부 데이터베이스에 저장될 수 있다.
본원에 설명된 본 실시예의 피처는 디지털 전자 회로, 및/또는 컴퓨터 하드웨어, 펌웨어, 소프트웨어 및/또는 이들의 조합으로 구현될 수 있다. 본 실시예의 피처는 프로그램 가능한 프로세서에 의한 실행을 위해 기계-판독 가능 저장 디바이스와 같은 정보 캐리어 및/또는 전파된 신호로 유형적으로 구현된 컴퓨터 프로그램 제품에서 구현될 수 있다. 본 방법 단계의 실시예는 입력 데이터에 대해 동작하고 출력을 생성함으로써 설명된 구현의 기능을 수행하기 위한 명령의 프로그램을 실행하는 프로그램 가능 프로세서에 의해 수행될 수 있다.
본원에 설명된 본 실시예의 피처는 데이터 및/또는 명령을 수신하고 데이터 및/또는 명령을 전송하기 위해 커플링된 적어도 하나의 프로그램 가능 프로세서, 데이터 저장 시스템, 적어도 하나의 입력 디바이스 및 적어도 하나의 출력 디바이스를 포함하는 프로그램 가능 시스템 상에서 실행 가능한 하나 이상의 컴퓨터 프로그램에서 구현될 수 있다. 컴퓨터 프로그램은 특정 활동을 수행하거나 특정 결과를 가져오기 위해 컴퓨터에서 직접 또는 간접적으로 사용될 수 있는 명령의 세트를 포함할 수 있다. 컴퓨터 프로그램은 컴파일링되거나 인터프리팅된 언어를 포함한 임의의 형태의 프로그래밍 언어로 작성될 수 있으며, 독립형 프로그램이나 모듈, 구성 요소, 서브루틴 또는 컴퓨팅 환경에서 사용하기에 적합한 다른 유닛을 포함하는 임의의 형태로 배포될 수 있다.
명령 프로그램의 실행에 적합한 프로세서는 예를 들어, 범용 및 특수 목적 프로세서 모두, 및/또는 단독 프로세서 또는 임의의 종류의 컴퓨터의 다중 프로세서 중 하나를 포함할 수 있다. 일반적으로, 프로세서는 판독 전용 메모리(ROM), 랜덤 액세스 메모리(RAM), 또는 둘 모두로부터 명령 및/또는 데이터를 수신할 수 있다. 이러한 컴퓨터는 명령을 실행하기 위한 프로세서 및 명령 및/또는 데이터를 저장하기 위한 하나 이상의 메모리를 포함할 수 있다.
일반적으로, 컴퓨터는 또한 데이터 파일을 저장하기 위한 하나 이상의 대용량 저장 디바이스를 포함하거나 이들과 통신하도록 동작 가능하게 커플링될 수 있다. 이러한 디바이스는 내부 하드 디스크 및/또는 이동식 디스크, 광자기 디스크 및/또는 광 디스크와 같은 자기 디스크를 포함한다. 컴퓨터 프로그램 명령 및/또는 데이터를 유형적으로 구현하기에 적합한 저장 디바이스는 예를 들어 EPROM, EEPROM 및 플래시 메모리 디바이스와 같은 반도체 메모리 디바이스, 내부 하드 디스크와 같은 자기 디스크 및 이동식 디스크, 광자기 디스크, CD-ROM 및 DVD-ROM 디스크를 포함하는 모든 형태의 비휘발성 메모리를 포함할 수 있다. 프로세서 및 메모리는 하나 이상의 ASIC(주문형 집적 회로)에 의해 보완되거나 이에 통합될 수 있다.
사용자와의 상호 작용을 제공하기 위해, 본 실시예의 피처는 사용자에게 정보를 표시하기 위한 LCD(액정 디스플레이) 모니터와 같은 표시 디바이스를 갖는 컴퓨터 상에서 구현될 수 있다. 컴퓨터는 키보드, 마우스 또는 트랙볼과 같은 포인팅 디바이스, 및/또는 사용자가 컴퓨터에 입력을 제공할 수 있는 터치스크린을 추가로 포함할 수 있다.
본 실시예의 피처는 데이터 서버와 같은 백-엔드(back-end) 구성 요소를 포함하고/포함하거나 어플리케이션 서버 또는 인터넷 서버와 같은 미들웨어 구성 요소를 포함하고/포함하거나 그래픽 사용자 인터페이스(GUI) 및/또는 인터넷 브라우저를 갖는 클라이언트 컴퓨터와 같은 프론트-엔드(front-end) 구성 요소 또는 이들의 임의의 조합을 포함하는 컴퓨터 시스템에서 구현될 수 있다. 시스템의 구성 요소는 통신 네트워크와 같은 디지털 데이터 통신의 임의의 형태 또는 매체에 의해 연결될 수 있다. 통신 네트워크의 예는 예를 들어, LAN(로컬 영역 네트워크), WAN(광역 네트워크), 및/또는 인터넷을 형성하는 컴퓨터 및 네트워크를 포함할 수 있다.
컴퓨터 시스템은 클라이언트 및 서버를 포함할 수 있다. 클라이언트와 서버는 서로로부터 원격으로 있을 수 있고 본원에 설명된 것과 같은 네트워크를 통해 상호 작용할 수 있다. 클라이언트와 서버의 관계는 각각의 컴퓨터 상에서 실행되고 서로 클라이언트-서버 관계를 갖는 컴퓨터 프로그램에 의해 발생할 수 있다.
도 14는 UAV(104)가 페이로드와 연결될 수 있도록 UAV(104)가 페이로드 부착 메커니즘(1426)을 포함할 수 있는 본 개시의 일 양태를 도시한다. 도시된 실시예에서, 페이로드 부착 메커니즘(1426)은 페이로드에 고정될 수 있는 플랫폼(1428)을 포함한다. 페이로드 부착 메커니즘(1426)은 액슬(117)이 브래킷(bracket)(1433) 내에 고정될 수 있고 플랫폼(1428)에 실질적으로 연결될 수 있도록 플랫폼(1428)에 부착될 수 있는 회전 베어링 또는 굴곡부와 같은 브래킷(1433)을 포함할 수 있다. 브래킷(1433)은 액슬(117)이 단일 축 또는 다중 축에서 플랫폼(1428)에 대해 회전하게 할 수 있다.
플랫폼(1428)은 페이로드를 그립핑(gripping)한 다음, 신호 시, 또는 해제의 다른 표시자에 따라 지정된 위치에서 페이로드를 해제하기 위한 수단을 포함할 수 있다. 예를 들어, 사용자는 플랫폼(1428)에 포함되거나 이에 연결된 걸쇠(clasp)(미도시)를 사용하여 페이로드를 플랫폼(1428)에 클립핑(clipping)할 수 있다. 걸쇠는 UAV(104)가 배송 지점에 도착했을 때 페이로드를 해제할 수 있다. 페이로드를 그립핑하는 다른 형태가 가능하다. 예를 들어, 플랫폼(1428)은 자기 부착 시스템과 같은 비접촉 부착을 위한 수단을 포함할 수 있다.
플랫폼(1428)은 메이팅(mating) 시스템을 이용할 수 있으며, 여기서 플랫폼(1428) 상의 걸쇠는 페이로드 상의 인터페이스와 맞물릴 수 있다. 메이팅 시스템은 원격으로 동작될 수 있으며, 즉, 조종사는 UAV(104)가 배송 지점에 도착한 때를 결정하고 페이로드가 UAV(104)에서 분리되어 배송 지점에 배치될 수 있도록 걸쇠를 퇴피시키도록 UAV(104)에 지시할 수 있다. 메이팅 시스템은 또한 자율적으로 동작하거나 사람의 개입 없이 동작할 수 있다. 예를 들어, UAV(104)는 UAV(104)가 GPS 위치 결정 또는 기계 비전으로부터 배송 지점에 있는 것으로 결정할 수 있고 페이로드 상의 걸쇠를 해제하여 페이로드를 배송 지점에 남겨둘 수 있다. 유사하게, UAV(104)는 UAV(104)를 특정 위치로 전송함으로써 페이로드를 회수하는 데 사용될 수 있으며, 여기서 플랫폼(1428)은 상기 페이로드를 고정할 수 있다. 일 양태에서, 플랫폼(1428)은 페이로드가 비행 전에 인클로저 내에 고정될 수 있도록 인클로저를 포함할 수 있다.
플랫폼(1428)은 UAV(104)의 액슬(117)에 연결될 수 있고, 이는 플랫폼(1428)이 UAV(104)와 독립적으로 회전하는 것을 가능하게 할 수 있다. 본 개시의 일 양태에서, 페이로드 부착 메커니즘(1426)은 페이로드에 대한 추가 회전, 위치 및/또는 병진 자유도를 달성하기 위한 수단을 추가로 포함할 수 있다. 예를 들어, 페이로드 부착 메커니즘(1426)은 플랫폼(1428)을 페이로드에 연결하는 짐벌(gimbal) 메커니즘(1436)을 포함할 수 있다. 짐벌 메커니즘(1436)은 또한 슬라이더 메커니즘일 수 있다. 플랫폼(1428)에 대한 페이로드에 대한 추가 자유도는 수동적으로 또는 능동적으로 달성될 수 있다. 페이로드 부착 메커니즘(1426)은 플랫폼(1428)과 UAV(104)가 직접 접촉하지 않을 수 있도록 플랫폼(1428)과 UAV(104)를 연결하기 위한 수단을 포함할 수 있다. 예를 들어, 제2 지지 라인은 플랫폼(1428)과 UAV(104)를 연결할 수 있어, 예를 들어, 플랫폼(1428)은 UAV(104)의 배향과 독립적으로 현수될 수 있다. 이 예시에서, UAV(104)와 페이로드 사이의 짐벌링은 조립체의 순 추력 벡터(net thrust vector)로부터 페이로드의 독립적인 정렬을 허용하여 페이로드가 UAV(104)가 기울어질 수 있는 동안 중립 배향을 유지할 수 있도록 페이로드의 정밀한 위치 결정을 가능하게 한다.
본 개시의 일 양태에서, 현수식 항공기 시스템은 특정된 기능적 이용을 위해 장착될 수 있다. UAV(104)는 현수식 항공기 시스템이 특정 작업 또는 작업 범위에 참여할 수 있도록 엔지니어링된 기능 모듈에 부착될 수 있다. 예를 들어, 현수식 항공기 시스템을 사용하여 고층 창, 풍력 터빈 블레이드 및 태양광 패널과 같이 접근하기 어려운 위치에서 청소를 수행하는 것이 바람직할 수 있다. 이 경우, 도 15에 도시된 바와 같이, 모듈은 현수식 항공기 시스템이 액세스하고 청소를 수행하는 것을 허용할 수 있는 소프트웨어, 펌웨어, 및/또는 하드웨어를 포함할 수 있다. 예를 들어, 청소 모듈은 비누 저장소, 물 저장소, 스퀴지(squeegee) 또는 압력 세척 메커니즘과 같은 다른 청소 도구와 같은 청소 하드웨어를 포함할 수 있다. 청소 모듈은 또한 UAV(104)가 선택적으로 활성화된 흡입 컵과 같이 표면과의 접촉을 유지하도록 하는 메커니즘을 포함할 수 있다. 동작 중에, UAV(104)는 지지 라인(107)과 스러스터의 조정을 통해 청소되기를 원하는 표면의 적절한 고도로 올 수 있다. 건물의 꼭대기 부근과 같이 원하는 청소 위치 위에 있는 앵커 지점(203)을 이용하는 것이 바람직할 수 있다. 도시된 예에서, 앵커 지점(203)은 건물의 꼭대기에 위치된 연장된 기둥에 고정된다. UAV(104)는 지지 라인이 UAV(104)의 필요한 양의 중량을 지지하는 동안 UAV(104)가 창 청소 모듈로 표면을 접촉하는 것을 허용하는 방향으로 힘을 생성하도록 스러스터에 지시할 수 있다. 현수식 항공기 시스템은 표면을 깨끗한 상태로 만드는 데 필요한 작업을 수행하기 위해 청소 모듈을 활성화시킬 수 있다.
기능 모듈의 다른 예는 철거 처리 모듈일 수 있다. 철거 처리 모듈은 예를 들어, 머신 비전-가능 카메라, 작동 아암 및 폭탄 무력화를 위한 수단과 같은 폭발물 제거 로봇에 사용되는 도구를 포함할 수 있다. UAV(104)는 의심되는 디바이스 위로 하강할 수 있고, 디바이스가 위협을 구성하는지 여부를 결정하고, 그렇다면 의심되는 디바이스를 무력화할 수 있다.
일부 실시예에서, UAV(104)는 플랫폼을 포함하지 않을 수 있다. 기능 모듈은 UAV(104)가 교환 가능한 기능을 제공하는 수단을 갖기보다는 특정 기능을 위해 설계될 수 있도록 UAV(104)의 다른 요소에 직접 연결될 수 있다. 예를 들어, 현수식 항공기 시스템이 화재를 진압하도록 구성된 구성에서, UAV(104)는 소방 호스에 대한 직접 및/또는 영구적 연결을 가질 수 있다.
도 16은 항공기 시스템이 광전지 어레이(PV: photovoltaic array) 시스템을 청소 및/또는 유지하도록 구성된 예를 도시한다. 모선(808)은 PV 시스템 부근에 도착하여 유지 패턴에 진입할 수 있다. 대안적으로, 앵커 지점(203)이 정적인 영역에 고정될 때와 같이 현수식 항공기 시스템이 모선(808)을 통합하지 않을 때, 현수식 항공기 시스템은 PV 시스템 위에 위치된 고정된 앵커 지점(203)을 가질 수 있다. UAV(104)는 제1 PV 패널에 배치될 수 있다. UAV(104)는 설명된 창 청소 모듈과 유사한 기능 모듈과 같은 PV 시스템 청소를 위한 기능 모듈을 포함할 수 있다. UAV(104)가 제1 PV 패널의 충분한 세척을 완료하면, UAV(104)는 제2 PV 패널로 재배치되고 제2 PV 패널 세척을 시작할 수 있다. 이 프로세스는 PV 어레이 시스템이 충분히 청소될 때까지 계속될 수 있다. 단일 모선 또는 앵커 지점(203)이 복수의 UAV에 부착되어, 복수의 UAV의 각각의 UAV가 PV 어레이 시스템을 청소하는 데 관여할 수 있다. 이는 청소에 소요되는 총 시간을 줄이며 청소의 효율성을 높이는 효과를 갖는다.
본 개시의 일 양태에서, 현수식 플랫폼이 도 17에 의해 도시된 바와 같이 페이로드 배송을 위해 이용된다. 페이로드는 UAV(104)에 부착될 수 있다. 페이로드는 플랫폼(1428)에 의해 고정될 수 있으며, 이는 수동으로 또는 자율적으로 발생할 수 있다. 페이로드는 론칭 지점에서 UAV(104)에 부착될 수 있다. 론칭 지점은 창고 또는 물류 경유지와 같이 사전 결정될 수 있다. 페이로드는 UAV(104)가 모선(808)에 도킹되어 있는 동안 지면 상의 UAV(104)에 부착될 수 있다. 일단 모선(808)이 페이로드와 함께 공중에 있으면, 도 17a에 도시된 바와 같이, 모선(808)은 하차 지점을 포함하는 경로를 순항할 수 있다.
도 17b는 모선(808)이 하차 지점 부근에 있을 때, 모선(808)이 UAV(104)를 배치할 수 있음을 도시한다. 이는 비행 모드에서 호버 모드로 천이하는 모선(808)을 포함할 수 있다. UAV(104)는 이전에 개략적으로 설명된 프로세스를 사용하여 하차 지점으로 비행할 수 있고, 도 17c에 도시된 바와 같이, 페이로드를 분리하여 페이로드를 하차 지점에 남겨둘 수 있다. UAV(104)는 모선(808)으로 회수될 수 있다.
도 17d 내지 도 17f에 의해 도시된 바와 같이, 회수 지점으로부터 페이로드를 회수하기 위해 시스템이 보내어지는 이러한 프로세스의 역전이 사용될 수 있다. 유사하게, 시스템은 회수 지점으로부터 페이로드를 회수하고 하차 지점으로 전달하는 데 사용될 수 있다.
페이로드를 전달하는 동안 좁은 공간을 탐색하는 UAV(104)의 능력이 도 18에 도시된다. 이 예에서, 현수식 항공기 시스템은 오버행에 의해서와 같이 부분적으로 또는 실질적으로 둘러싸일 수 있는 발코니로 페이로드를 전달하거나 발코니로부터 페이로드를 회수할 수 있다. 현수식 항공기 시스템은 좁은 공간에서 페이로드를 전달 및 회수하는 능력을 통해 특정 페이로드 사이트 및 소포 보관함과 같은 페이로드 저장 디바이스에 유사하게 접근할 수 있다. 페이로드 사이트 및 페이로드 저장 디바이스는 자동화, 수동, 정적 및 모바일 시스템과 관련된 특성 중 임의의 것 또는 전부일 수 있다.
본원에 제공된 기능의 이전 예는 제한되도록 의도되지 않음을 이해해야 한다. UAV(104)는 본 발명의 범위를 벗어나지 않고 다른 유형의 기능을 제공하도록 구성될 수 있다.
특정 양태가 첨부 도면에 설명되고 도시되었지만, 다양한 다른 수정이 본 기술 분야의 통상의 기술자에게 생각날 수 있기 때문에, 이는 단지 예시적인 것이며 광범위한 본 발명을 제한하지 않으며 본 발명은 도시되고 설명된 특정 구성 및 배열에 제한되지 않는다는 것이 이해되어야 한다.

Claims (37)

  1. 현수식(suspended) 항공기 시스템으로서,
    모선(mothership),
    상기 모선에 물리적으로 연결된 항공기,
    상기 모선의 추력 특성과 상기 항공기의 추력 특성을 조정하도록 구성된 제어기를 포함하는, 현수식 항공기 시스템.
  2. 제1항에 있어서,
    상기 모선은 비행할 수 있는, 현수식 항공기 시스템.
  3. 제2항에 있어서,
    상기 모선은 고정익 에어크래프트(fixed wing aircraft)의 양력 표면(lifting surface)과 로터크래프트(rotorcraft)의 특징인 스러스터(thruster)들을 갖는, 현수식 항공기 시스템.
  4. 제1항에 있어서,
    상기 항공기는 지지 라인에 의해 상기 모선에 물리적으로 연결되는, 현수식 항공기 시스템.
  5. 제4항에 있어서,
    상기 모선은 상기 지지 라인을 통해 상기 항공기의 중량의 적어도 일부를 지지하는, 현수식 항공기 시스템.
  6. 제4항에 있어서,
    상기 지지 라인은 상기 지지 라인의 길이를 조정하도록 작동할 수 있는 윈치(winch) 시스템의 일부인, 현수식 항공기 시스템.
  7. 제6항에 있어서,
    상기 제어기는 상기 윈치 시스템의 상기 작동을 조정하도록 추가로 구성되는, 현수식 항공기 시스템.
  8. 제7항에 있어서,
    상기 모선, 항공기 및 윈치 시스템을 조정하는 것은 상기 항공기에 탑재된 상기 스러스터들에 의해 생성된 상기 추력의 특성을 변화시키고, 상기 지지 라인의 길이를 변화시키고, 상기 모선의 비행 패턴을 관리하는 것을 포함하는, 현수식 항공기 시스템.
  9. 제1항에 있어서,
    상기 모선과 상기 항공기 사이를 연결하는 상기 모선 상에 위치된 도크(dock)를 더 포함하는, 현수식 항공기 시스템.
  10. 제1항에 있어서,
    상기 모선에 물리적으로 연결된 제2 항공기를 더 포함하는, 현수식 항공기 시스템.
  11. 페이로드의 운송 방법으로서,
    모선 상에 위치된 도크의 항공기를 갖는 상기 모선을 접근 위치로 보내는 단계,
    상기 항공기를 배치하는 단계, 및
    하차 지점에서 상기 항공기로부터 페이로드를 분리하거나, 상기 항공기가 픽업 지점에 있는 경우 페이로드를 픽업하는 단계를 포함하는, 페이로드의 운송 방법.
  12. 제11항에 있어서,
    상기 항공기가 상기 도크에 위치될 때까지 상기 항공기 상에 위치된 추력 엔진을 변화시키는 것과 조정하여 지지 라인의 길이를 변화시켜 상기 항공기를 상기 모선으로 회수하는 단계를 더 포함하는, 페이로드의 운송 방법.
  13. 제11항에 있어서,
    상기 항공기는 윈치 시스템에 의해 조정되는 길이를 갖는 지지 라인에 의해 상기 모선에 연결되는, 페이로드의 운송 방법.
  14. 제11항에 있어서,
    상기 항공기를 배치하는 단계는 상기 도크로부터 상기 항공기를 해제하고, 상기 항공기가 상기 하차 지점 또는 상기 픽업 지점에 위치될 때까지 상기 항공기 상에 위치된 추력 엔진을 변화시키는 것과 조정하여 상기 지지 라인의 길이를 변화시키는 단계를 포함하는, 페이로드의 운송 방법.
  15. 현수식 항공기 시스템의 제어 시스템으로서,
    모선 상에 위치된 도크의 항공기를 갖는 상기 모선을 접근 위치로 보내고,
    상기 항공기를 배치하고,
    하차 지점에서 상기 항공기로부터 페이로드를 분리하거나, 상기 항공기가 픽업 지점에 있는 경우 페이로드를 픽업하도록 구성된 제어기를 포함하는, 현수식 항공기 시스템의 제어 시스템.
  16. 제15항에 있어서,
    상기 항공기를 상기 모선으로 회수하도록 추가로 구성되는, 현수식 항공기 시스템의 제어 시스템.
  17. 제15항에 있어서,
    상기 항공기는 윈치 시스템에 의해 조정되는 길이를 갖는 지지 라인에 의해 상기 모선에 연결되는, 현수식 항공기 시스템의 제어 시스템.
  18. 제15항에 있어서,
    상기 항공기를 배치하는 것은 상기 도크로부터 상기 항공기를 해제하고, 상기 항공기가 상기 하차 지점 또는 상기 픽업 지점에 위치될 때까지 상기 항공기 상에 위치된 추력 엔진을 변화시키는 것과 조정하여 상기 지지 라인의 길이를 변화시키는 것을 포함하는, 현수식 항공기 시스템의 제어 시스템.
  19. 현수식 항공기 시스템으로서,
    지향성으로 포커싱된 추진력을 생성하도록 구성된 스러스터를 갖는 항공기, 및
    지지 라인의 제1 단부 상에서 상기 항공기 상의 부하-지지 지점에 부착되고 상기 항공기의 중량의 적어도 일부를 지지할 수 있도록 배열되는 지지 라인을 포함하는, 현수식 항공기 시스템.
  20. 제19항에 있어서,
    상기 지지 라인은 상기 지지 라인의 제2 단부 상의 앵커(anchor) 지점에 부착되는, 현수식 항공기 시스템.
  21. 제19항에 있어서,
    상기 지지 라인에 연결되고 상기 지지 라인의 길이 또는 장력이 변할 수 있도록 하는 기계 디바이스를 더 포함하는, 현수식 항공기 시스템.
  22. 제21항에 있어서,
    상기 기계 디바이스는 윈치 시스템인, 현수식 항공기 시스템.
  23. 제22항에 있어서,
    상기 윈치 시스템은 앵커 지점 부근에 위치된 윈치를 포함하는, 현수식 항공기 시스템.
  24. 제21항에 있어서,
    원하는 위치에 상기 항공기를 위치시키기 위해 상기 기계 디바이스에 의한 상기 지지 라인의 조작 및 상기 스러스터의 추진력의 조작을 지시하는 제어기를 더 포함하는, 현수식 항공기 시스템.
  25. 제24항에 있어서,
    상기 지지 라인의 조작 및 상기 스러스터의 추진력의 조작은 조정된 방식으로 수행되는, 현수식 항공기 시스템.
  26. 제19항에 있어서,
    상기 항공기는 무인 항공기인, 현수식 항공기 시스템.
  27. 제19항에 있어서,
    제2 지지 라인의 제1 단부 상에서 상기 항공기 상의 부하-지지 지점에 부착되고 상기 항공기의 중량의 적어도 일부를 지지할 수 있도록 배열되는 제2 지지 라인을 더 포함하는, 현수식 항공기 시스템.
  28. 현수식 항공기 시스템의 제어 시스템으로서,
    항공기의 원하는 위치에 대한 정보를 수신하고,
    상기 항공기에 대한 비행 경로를 결정하고,
    상기 항공기에 부착된 지지 라인의 길이에 대해 이루어질 필요가 있는 조정을 결정하고,
    상기 항공기 상의 스러스터에 대해 이루어질 필요가 있는 조정을 결정하고,
    상기 항공기를 상기 원하는 위치에 위치시키기 위해 기계 디바이스에 의한 지지 라인의 조작과 상기 스러스터의 조작을 조정하도록 구성되는 제어기를 포함하는, 현수식 항공기 시스템의 제어 시스템.
  29. 제28항에 있어서,
    상기 비행 경로는 연속적으로 결정될 수 있는, 현수식 항공기 시스템의 제어 시스템.
  30. 제29항에 있어서,
    상기 비행 경로는 상기 항공기의 현재 위치와 상기 원하는 위치 사이의 경로를 따라 일련의 증분 위치들로 구성되며, 상기 항공기에 부착된 지지 라인의 길이에 대해 이루어질 필요가 있는 상기 조정 및 상기 항공기 상의 스러스터에 대해 이루어질 필요가 있는 상기 조정은 상기 항공기를 제1 증분 위치로부터 제2 증분 위치로 이동시키는 데 필요한 조정인, 현수식 항공기 시스템의 제어 시스템.
  31. 제28항에 있어서,
    상기 비행 경로를 결정하는 것은 상기 항공기에 부착된 지지 라인의 길이에 대해 이루어질 필요가 있는 상기 조정 및 상기 항공기 상의 스러스터에 대해 이루어질 필요가 있는 상기 조정을 결정하기 위해 피드백을 정기적으로 사용하는 것을 더 포함하는, 현수식 항공기 시스템의 제어 시스템.
  32. 제28항에 있어서,
    상기 지지 라인의 조작은 상기 지지 라인의 상기 길이 또는 장력을 변경하도록 기계 디바이스에 지시하는 것을 포함하는, 현수식 항공기 시스템의 제어 시스템.
  33. 현수식 항공기의 제어 수단으로서,
    항공기에 대한 비행 경로를 결정하는 것을 포함하고, 상기 항공기에 대한 비행 경로를 결정하는 것은,
    상기 항공기에 부착된 지지 라인의 길이에 대해 이루어질 필요가 있는 조정을 결정하고,
    상기 항공기 상의 스러스터에 대해 이루어질 필요가 있는 조정을 결정하고,
    상기 항공기를 상기 원하는 위치에 위치시키기 위해 기계 디바이스에 의한 상기 지지 라인의 조작과 상기 스러스터의 조작을 조정하는 것을 포함하는, 현수식 항공기의 제어 수단.
  34. 제33항에 있어서,
    상기 비행 경로는 연속적으로 결정될 수 있는, 현수식 항공기의 제어 수단.
  35. 제34항에 있어서,
    상기 비행 경로는 상기 항공기의 현재 위치와 상기 원하는 위치 사이의 경로를 따라 일련의 증분 위치들로 구성되며, 상기 항공기에 부착된 지지 라인의 길이에 대해 이루어질 필요가 있는 상기 조정 및 상기 항공기 상의 스러스터에 대해 이루어질 필요가 있는 상기 조정은 상기 항공기를 제1 증분 위치로부터 제2 증분 위치로 이동시키는 데 필요한 조정인, 현수식 항공기의 제어 수단.
  36. 제33항에 있어서,
    상기 비행 경로를 결정하는 것은 상기 항공기에 부착된 지지 라인의 길이에 대해 이루어질 필요가 있는 상기 조정 및 상기 항공기 상의 스러스터에 대해 이루어질 필요가 있는 상기 조정을 결정하기 위해 피드백을 정기적으로 사용하는 것을 더 포함하는, 현수식 항공기의 제어 수단.
  37. 제33항에 있어서,
    상기 지지 라인의 조작은 상기 지지 라인의 상기 길이 또는 장력을 변경하도록 기계 디바이스에 지시하는 것을 포함하는, 현수식 항공기의 제어 수단.
KR1020227000629A 2019-06-07 2020-06-05 스러스터 안정화를 갖는 현수식 항공기 시스템 KR102548185B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237020977A KR20230097220A (ko) 2019-06-07 2020-06-05 스러스터 안정화를 갖는 현수식 항공기 시스템

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962858330P 2019-06-07 2019-06-07
US62/858,330 2019-06-07
PCT/US2020/036492 WO2020247870A1 (en) 2019-06-07 2020-06-05 Suspended aerial vehicle system with thruster stabilization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237020977A Division KR20230097220A (ko) 2019-06-07 2020-06-05 스러스터 안정화를 갖는 현수식 항공기 시스템

Publications (2)

Publication Number Publication Date
KR20220027149A true KR20220027149A (ko) 2022-03-07
KR102548185B1 KR102548185B1 (ko) 2023-06-28

Family

ID=73652308

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227000629A KR102548185B1 (ko) 2019-06-07 2020-06-05 스러스터 안정화를 갖는 현수식 항공기 시스템
KR1020237020977A KR20230097220A (ko) 2019-06-07 2020-06-05 스러스터 안정화를 갖는 현수식 항공기 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020237020977A KR20230097220A (ko) 2019-06-07 2020-06-05 스러스터 안정화를 갖는 현수식 항공기 시스템

Country Status (12)

Country Link
US (2) US11319065B2 (ko)
EP (1) EP3980330A4 (ko)
JP (2) JP7216845B2 (ko)
KR (2) KR102548185B1 (ko)
CN (1) CN114144353A (ko)
AU (2) AU2020287661B2 (ko)
BR (1) BR112021024619B1 (ko)
CA (1) CA3142927A1 (ko)
IL (2) IL288688B (ko)
MX (1) MX2021015023A (ko)
NZ (1) NZ783718A (ko)
WO (1) WO2020247870A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250484A1 (ja) * 2019-06-14 2020-12-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 昇降システム
CN113093809A (zh) * 2021-04-12 2021-07-09 北京理工大学 一种复合翼无人机的自抗扰控制器及其建立方法
US11939054B2 (en) * 2022-06-16 2024-03-26 HazelAero Vertical takeoff and landing aircraft surface tension compensation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267987A (en) * 1979-03-29 1981-05-19 Mcdonnell William R Helicopter airborne load systems and composite aircraft configurations
US20090152391A1 (en) * 2006-03-04 2009-06-18 Mcwhirk Bruce Kimberly Multibody aircrane
US20150314871A1 (en) * 2013-04-02 2015-11-05 Andreas H. von Flotow Helicopter-mediated system and method for launching and retrieving an aircraft
KR20160091432A (ko) * 2013-12-19 2016-08-02 구글 인코포레이티드 선회 비행 동안 전력을 보존하기 위한 방법 및 시스템
JP2017007636A (ja) * 2014-11-13 2017-01-12 ザ・ボーイング・カンパニーThe Boeing Company 展開可能空中センサアレイシステムおよび使用方法
US20190241267A1 (en) * 2018-02-08 2019-08-08 Vita Inclinata Techologies, Inc. Suspended load stability systems and methods
US10919624B2 (en) * 2018-08-06 2021-02-16 Wet UAS display system and method
US20210163151A1 (en) * 2016-08-20 2021-06-03 Modern Technology Solutions, Inc. Anchored tether for delivering personnel and cargo from a fixed-wing aircraft

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913224B2 (en) * 2003-09-29 2005-07-05 Dana R. Johansen Method and system for accelerating an object
US20110192938A1 (en) * 2010-02-09 2011-08-11 Northrop Grumman Systems Corporation Wind power generation system for lighter than air (lta) platforms
US9623949B2 (en) * 2011-03-15 2017-04-18 Stratospheric Airships, Llc Systems and methods for long endurance airship operations
IL217070A0 (en) * 2011-12-18 2012-03-29 Ofek Eshkolot Res And Dev Ltd Aircraft with fixed and tilting thrusters
DE102012002067A1 (de) * 2012-02-03 2013-08-08 Eads Deutschland Gmbh Luft-Boden-Überwachungs- und/oder Wirksystem und Verfahren zur luftgestützten Inspektion und/oder Bekämpfung von auf dem Land oder auf See befindlichen Objekten
SG194257A1 (en) * 2012-04-26 2013-11-29 Yik Hei Sia Power generating windbags and water-bags
US9346547B2 (en) * 2013-08-26 2016-05-24 Google Inc. Mechanisms for lowering a payload to the ground from a UAV
US9849981B1 (en) * 2014-08-28 2017-12-26 X Development Llc Payload-release device position tracking
US9630712B1 (en) * 2015-09-23 2017-04-25 Amazon Technologies, Inc. Using multirotor lifters to deploy fixed wing aircraft
US10933997B2 (en) * 2015-10-02 2021-03-02 Insitu, Inc. Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
IL242418B (en) * 2015-11-03 2020-05-31 Israel Aerospace Ind Ltd Drone and method for flying it
US11325702B2 (en) * 2016-08-19 2022-05-10 Motorola Solutions, Inc. Tethered aerial drone system
JP2018134242A (ja) * 2017-02-22 2018-08-30 公立大学法人大阪市立大学 消火システム、消火方法、制御装置、及び制御方法
US20180297699A1 (en) * 2017-04-18 2018-10-18 Mesa Digital, Llc Overhead tethered drone system
CN109923488A (zh) * 2017-04-27 2019-06-21 深圳市大疆创新科技有限公司 使用可移动物体生成实时地图的系统和方法
US10745107B1 (en) * 2017-05-08 2020-08-18 Government Of The United States, As Represented By The Secretary Of The Air Force Rapid flap deflection for high lift transients
CN107792371B (zh) * 2017-09-27 2020-10-13 北京航空航天大学 一种基于航空拖缆拖靶系统的无人机空基快速发射装置与方法
JP2019085104A (ja) * 2017-11-06 2019-06-06 株式会社エアロネクスト 飛行体及び飛行体の制御方法
US10884415B2 (en) * 2018-12-28 2021-01-05 Intel Corporation Unmanned aerial vehicle light flash synchronization
US20210147080A1 (en) * 2019-11-18 2021-05-20 Agco Corporation Crop-extraction system having an unmanned aerial vehicle, and related methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267987A (en) * 1979-03-29 1981-05-19 Mcdonnell William R Helicopter airborne load systems and composite aircraft configurations
US20090152391A1 (en) * 2006-03-04 2009-06-18 Mcwhirk Bruce Kimberly Multibody aircrane
US20150314871A1 (en) * 2013-04-02 2015-11-05 Andreas H. von Flotow Helicopter-mediated system and method for launching and retrieving an aircraft
KR20160091432A (ko) * 2013-12-19 2016-08-02 구글 인코포레이티드 선회 비행 동안 전력을 보존하기 위한 방법 및 시스템
JP2017007636A (ja) * 2014-11-13 2017-01-12 ザ・ボーイング・カンパニーThe Boeing Company 展開可能空中センサアレイシステムおよび使用方法
US20210163151A1 (en) * 2016-08-20 2021-06-03 Modern Technology Solutions, Inc. Anchored tether for delivering personnel and cargo from a fixed-wing aircraft
US20190241267A1 (en) * 2018-02-08 2019-08-08 Vita Inclinata Techologies, Inc. Suspended load stability systems and methods
US10919624B2 (en) * 2018-08-06 2021-02-16 Wet UAS display system and method

Also Published As

Publication number Publication date
US11814168B2 (en) 2023-11-14
AU2022203308A1 (en) 2022-06-02
EP3980330A4 (en) 2023-06-28
CA3142927A1 (en) 2020-12-10
IL288688B (en) 2022-09-01
MX2021015023A (es) 2022-02-21
NZ783718A (en) 2023-01-27
EP3980330A1 (en) 2022-04-13
AU2020287661A1 (en) 2022-01-27
KR20230097220A (ko) 2023-06-30
KR102548185B1 (ko) 2023-06-28
JP7216845B2 (ja) 2023-02-01
BR112021024619A2 (pt) 2022-03-03
CN114144353A (zh) 2022-03-04
US20210380236A1 (en) 2021-12-09
WO2020247870A1 (en) 2020-12-10
BR112021024619B1 (pt) 2023-04-11
IL288688A (en) 2022-02-01
US11319065B2 (en) 2022-05-03
IL296077A (en) 2022-11-01
JP2022528018A (ja) 2022-06-07
JP2023071646A (ja) 2023-05-23
US20220363380A1 (en) 2022-11-17
AU2020287661B2 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
US10974831B2 (en) Active position control of tethered hook
CN111684705B (zh) 无人机的多旋翼音调噪声控制
CN111527028B (zh) 由uav自动拾取运载物的系统和方法
AU2019284269B2 (en) Loading structure with tether guide for unmanned aerial vehicle
US11319065B2 (en) Suspended aerial vehicle system with thruster stabilization
US11939084B2 (en) Landing pad with charging and loading functionality for unmanned aerial vehicle
WO2023121942A1 (en) Package retrieval system with channel to engage payload retriever
RU2796698C1 (ru) Подвесная система летательного аппарата со стабилизацией создающего тягу устройства
NZ796350A (en) Suspended aerial vehicle system with thruster stabilization

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent