US20110192938A1 - Wind power generation system for lighter than air (lta) platforms - Google Patents

Wind power generation system for lighter than air (lta) platforms Download PDF

Info

Publication number
US20110192938A1
US20110192938A1 US12/702,536 US70253610A US2011192938A1 US 20110192938 A1 US20110192938 A1 US 20110192938A1 US 70253610 A US70253610 A US 70253610A US 2011192938 A1 US2011192938 A1 US 2011192938A1
Authority
US
United States
Prior art keywords
turbine
lighter
anchor
hydrogen
air platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/702,536
Inventor
Donald DiMarzio
Theodore W. Hilgeman
Alice DeBiasio
Thomas J. Hunt
Douglas R. Frei
Roy A. Charletta
Michael Melnyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Systems Corp
Original Assignee
Northrop Grumman Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Systems Corp filed Critical Northrop Grumman Systems Corp
Priority to US12/702,536 priority Critical patent/US20110192938A1/en
Assigned to NORTHROP GRUMMAN SYSTEMS CORPORATION reassignment NORTHROP GRUMMAN SYSTEMS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHARLETTA, ROY A., DEBIASIO, ALICE, DIMARZIO, DONALD, FREI, DOUGLAS R., HILGEMAN, THEODORE W., HUNT, THOMAS J., MELNYK, MICHAEL
Publication of US20110192938A1 publication Critical patent/US20110192938A1/en
Priority to US13/803,438 priority patent/US8864064B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • B64B1/50Captive balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft

Definitions

  • This invention relates to electric power generation for lighter than air (LTA) platforms.
  • LTA Lighter than air
  • LTA long endurance and low fuel consumption rates inherent in LTA systems are attractive attributes for persistent airborne ISR&C applications.
  • Current propulsion and electric power systems that rely on fossil fuels provide both limited transit range and time-on-station. The same is true for batteries as well as conventional fuel cell powered systems.
  • the full endurance potential of LTA ISR&C systems has been difficult to realize.
  • Recent LTA designs have included renewable energy sources such as solar cells (i.e., photovoltaics) to enhance both mobile LTA platform range and time-on-station performance.
  • Photovoltaic solutions can provide additional power to propulsors and payloads, but have their own limitations which include conversion efficiencies, restriction to daylight operations, and weather and weight issues.
  • the invention provides an apparatus including a lighter than air platform, a reversible propulsive/wind turbine, a deployable anchor to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine, and a generator/motor coupled to the turbine to produce electrical power when movement of the lighter than air platform is constrained.
  • the invention provides an apparatus including a lighter than air platform, a turbine, a tether to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine, a generator/motor coupled to the turbine to produce electricity when the turbine is driven by the wind, an energy storage system on the lighter than air platform for converting the electricity into stored energy, and a power management system for using the stored energy to drive the generator/motor.
  • the invention provides a method including: providing a lighter than air platform including a propulsion turbine, deploying an anchor to constrain movement of the lighter than air platform with respect to an anchor point, using the propulsion turbine to drive a generator on the lighter than air platform to produce electrical power, hoisting the anchor, storing energy generated by the wind and turbines, and using the propulsion turbine to propel the lighter than air platform.
  • FIG. 1 is a schematic representation of an LTA platform with an anchor power generation (APG) system.
  • APG anchor power generation
  • FIG. 2 is a block diagram of portions of a flying anchor system.
  • FIG. 3 is a schematic representation of an LTA platform with several optional anchor systems.
  • FIG. 4 is a graph of atmospheric wind speeds as a function of altitude.
  • FIG. 5 is a block diagram of an LTA wind turbine generator/motor system.
  • the invention employs an apparatus, referred to herein as an Anchored Power Generation (APG) system.
  • APG Anchored Power Generation
  • the APG system concept of operation begins with a tethering or anchoring of the LTA platform at an appropriate altitude.
  • an anchor line i.e., a tether
  • anchors can be used, wherein the selected type would be appropriate for either maritime operations (e.g., a sand or water drag anchor) or land operations (e.g., a grappling anchor, harpoon).
  • maritime operations e.g., a sand or water drag anchor
  • land operations e.g., a grappling anchor, harpoon
  • the APG concept includes an onboard wind turbine electric power generation system.
  • this wind turbine provides continuous power to onboard payload systems.
  • this energy can be converted and stored to provide additional power for in-transit propulsion as well as payload support.
  • the onboard wind turbine acts in reverse, serving as a propulsion system and consuming the energy that was stored while the airship was anchored.
  • electric energy generated by the wind turbine can be used to split water (e.g., captured atmospheric humidity or onboard storage) in order to generate hydrogen.
  • Hydrogen can be stored as part of the airship buoyancy system, and used to generate electricity via fuel cells to power a dual mode generator-motor propulsion system.
  • An active hydrogen generation system compensates for buoyancy gas leakage and significantly extends LTA range and lifting capability.
  • some of the stored hydrogen can be directly consumed by an internal combustion engine propulsion system that utilizes hydrogen as the propulsive energy source.
  • the APG system allows a mobile LTA airship to periodically rest, regenerate hydrogen, and store the hydrogen for energy needed for in-transit propulsion and payload requirements (e.g., communications, radar, etc.).
  • the airship When the airship is on-station it can simply lower its anchor and run all payload electrical systems directly off of the wind turbine generator.
  • An airship with the APG system has potentially unlimited range and access to operationally significant power for on-station payload support without any ground based refueling or servicing. This is especially important when persistent unmanned operations are required for civilian and military ISR&C missions.
  • FIG. 1 is a schematic representation of an LTA platform 10 with an Anchor Power Generation (APG) system.
  • the LTA platform includes at least one turbine 12 and 14 .
  • An anchor 16 system is used to constrain the movement of the LTA platform with respect to an anchor point. This limits the movement of the LTA platform with respect to winds experienced by the platform at altitude.
  • the wind can then be used to drive the turbine and the turbine can be used to drive a generator to produce electricity that can be used to power a payload and/or can be used to store energy that can be subsequently used to drive the turbine in a propulsive mode.
  • the anchor can be deployed when on-board power generation is desired.
  • the anchor can be a remote controlled, flyable anchor, that includes an airfoil and an actuator needed to control the orientation of the airfoil to direct the flight of the anchor.
  • FIG. 2 is a block diagram of portions of a flying anchor system 18 .
  • the flying anchor system includes an airfoil 20 , an actuator 22 , a receiver 24 , and a restraining device 26 .
  • the actuator and receiver are components of a control system that may be contained in a housing 28 .
  • the housing would be connected to the lighter than air platform by a tether (not shown).
  • tether not shown
  • a restraining device is a device that prevents or resists movement of the anchor system with respect to land, water or air, depending upon the type of anchor system.
  • restraining devices can include, for example, anchor rods, harpoons, grappling hooks, drogues, Danforth anchors, or parachutes.
  • FIG. 3 is a schematic representation of an LTA platform 40 with an Anchor Power Generation (APG) system.
  • the illustrated LTA platform includes at least one turbine 42 and 44 , and a plurality of alternative anchor systems 46 , 48 , 50 or 52 to constrain the movement of the LTA platform with respect to an anchor point.
  • the anchor is adapted to be deployed and retrieved when the LTA platform is at altitude.
  • FIG. 3 shows several alternative “flying anchor” systems that include a restraining device and an airfoil, and are remotely piloted to guide the restraining device to an appropriate location.
  • the flying anchor system may include a radio-controlled aerodynamic steering unit similar to an aerial-refueling “flying boom”, which effectively damps out oscillations and crosswind effects.
  • An aerodynamic deployable anchor system enables remote autonomous mooring and wind power generation and station keeping.
  • anchor system 46 includes an airfoil 54 and an anchor rod or harpoon 56 .
  • the harpoon can be housed within a housing 58 that is flown to a position over land, using the airfoil and actuators that can be remotely controlled as shown in FIG. 2 . Once the desired position is reached, the harpoon can be ejected from the housing and embedded in the land 60 to provide an anchor point.
  • the housing may contain a grappling hook that can be ejected from the housing and used to take advantage of rough terrain or fixed objects and materials on the ground by engaging such land based features.
  • Anchor system 48 includes a restraining device 62 , which may be a Danforth anchor that can be embedded in a seabed 64 to provide an anchor point.
  • Anchor system 50 includes an airfoil 66 and actuators needed to position the airfoil to direct the flight of the anchor.
  • Anchor system 50 further includes a restraining device such as a sea anchor or drogue 68 .
  • the restraining device does not provide a fixed anchor point, but rather provides a moveable anchor point which nonetheless still serves to restrain the LTA platform that is coupled to the anchor system by the tether. It is anticipated that a water drag (e.g., drogue) anchor system for maritime environments will be sufficient for many LTA designs and modes of operation.
  • Anchor 52 is an air anchor that includes an airfoil 70 and actuators needed to position the airfoil to direct the flight of the anchor.
  • a restraining device in the form of a parachute 72 can be deployed.
  • the restraining device does not provide a fixed anchor point, but rather provides a moveable anchor point that nonetheless still serves to restrain the LTA platform that is coupled to the anchor system by the tether.
  • the APG system includes a deployable anchor line system of sufficient length and strength that takes advantage of significant wind speeds found at higher altitudes, and has a reusable restraining device appropriate for either maritime, land based, or completely airborne operations.
  • the anchor system can utilize tether technology already used for aerostats with existing anchoring systems adapted for remote operation in ocean or land environments.
  • Lightweight tether strap systems are available that have both the length and strength to hold a sizable LTA platform at high attitude. For example, holding an LTA platform at 5000 ft altitude with a tether line at a 45 degree line layout would require 300 lb total of an 8000 lb rated line. For a 20,000 ft altitude the line weight is 1200 lbs.
  • LTA platform tether line capacity will depend on turbine requirements for maximum wind speeds, which varies as a function of geographic region and altitude.
  • a reusable anchoring system provides a versatile re-deployable LTA platform capability not found in current tethered (fixed) systems, which require ground support components.
  • Embodiments of the invention allow for unmanned operation in remote unprepared areas around the world.
  • the airborne wind turbine generator can also be integrated into a propulsion system.
  • Wind turbines are traditionally employed as ground based (or offshore) stationary systems for renewable power generation. Large blades that turn at moderate revolutions per minute (rpms) are employed in order to maximize power generation for the relatively slow wind speeds found near ground level. Even with low wind speeds ( ⁇ 10 knots), megawatt power levels can be obtained by individual wind turbine towers. Wind turbine power goes as the cube of wind velocity, so if a wind turbine can be operated at altitudes reached by conventional aerostats and airships, the turbine blade diameter can be greatly reduced and significant power can still be generated.
  • FIG. 4 shows average wind velocity around the globe as a function of altitude. Winds speeds rise dramatically up to an altitude of 40,000 ft, after which they drop before reaching the upper stratosphere. For example, an LTA platform operating at 20,000 ft can see maximum wind speed in excess of 80 kts for various geographic regions.
  • the APG system eliminates the need for the copper cable as power is kept onboard the LTA platform for payload consumption and propulsion. This permits the use of much longer lightweight cable materials to access higher wind speed at higher altitudes.
  • FIG. 5 A schematic of an APG wind turbine generation/propulsion system 80 is shown in FIG. 5 .
  • the generation/propulsion system 80 includes a wind turbine propulsor 82 coupled to a generator motor 84 .
  • the generator motor is electrically connected to a power management and distribution (PMAD) component 86 .
  • the PMAD component distributes electricity to on-board avionics 88 , a payload 90 , and an electrolysis system 92 .
  • the electrolysis system uses the electricity to split water from a water condenser/storage unit 94 into hydrogen and oxygen.
  • the hydrogen is delivered to a hydrogen storage/buoyancy system 96 .
  • the hydrogen can then be used to power a fuel cell 98 that produces electricity that is returned to the PMAD for further distribution.
  • the hydrogen can also be used in a hydrogen combustion engine 100 to drive a propulsor 102 .
  • Photovoltaic cells 104 can be provided to produce additional electricity that can be used to drive the generator motor or can be distributed by the PMAD.
  • Batteries 106 can be provided to store electricity produced by the generator motor or fuel cell and to supply electricity to drive the generator motor or for further distribution by the PMAD. Batteries can also be used to store electricity produced by the additional photovoltaic cells during daytime operations. While FIG. 5 shows a separate propulsor 102 , in some embodiments, the motor generator can be used to drive the wind turbine 82 to propel the LTA platform, thereby eliminating the need for a separate propulsor.
  • PMAD power management and distribution system
  • the PMAD regulates power distribution to a variety of payload applications and energy conversion and storage systems.
  • the APG system may require a series of rest and regeneration periods depending on the range, altitude and payload weight mission requirements. During the regeneration period, most of the wind turbine power is routed to an energy storage system. This could be comprised of a system of batteries as well as to a water-to-hydrogen conversion system. Hydrogen can be stored in tanks and/or serve as part of the LTA buoyancy system.
  • the LTA platform hoists its anchor and the hydrogen energy is then converted by the on-board fuel cells to electricity which subsequently powers the wind turbine generator as an electric motor, thus providing a propulsive force.
  • the stored hydrogen can be routed directly to a hydrogen burning internal combustion engine propulsion system.
  • all payload and avionics systems will run directly off of the wind turbine, thus conserving any onboard energy supplies (i.e., batteries, hydrogen, fossil fuel).
  • the power output can be calculated for a given set of LTA flight parameters including altitude, wind speed, wind turbine blade diameter, and efficiency.
  • the power generated by a wind turbine is given by Equation (1):
  • P is the power in Watts
  • A is the area defined the blade rotation
  • is the air density at altitude
  • V is the mean wind velocity at altitude
  • E is the turbine aerodynamic efficiency
  • the APG system has a significant power generation capability.
  • the available power for anchored on-station operations is sufficient to power a variety of demanding payload packages including communications, EO/IR sensors and radar. This is especially true if two turbines are used to double the power.
  • Power output can be optimized via moderate altitude adjustment depending on regional winds due to the sensitive cubic power dependence on velocity.
  • the APG system can provide power capacity for significant energy harvesting and storage for LTA propulsion.
  • the hydrogen generation and storage concept assuming sufficient onboard water collection and/or storage capacity and standard electrolysis techniques with mean winds of 80 kts at altitude, approximately 156 lb/hr (average rate per speed distribution) of hydrogen can be generated based on the use of two wind turbine propulsor systems. This is a significant energy harvesting capability that also provides buoyancy gas as needed (i.e., for leakage mitigation).
  • the invention provides an Anchor Power Generation (APG) system for LTA aerostats and airships for propulsion power and/or payload power.
  • APG Anchor Power Generation
  • the invention can be implemented as an apparatus including a lighter than air platform, a wind turbine, a tether to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine, a generator/motor coupled to the turbine to produce electricity when the turbine is driven by the wind, an energy storage system on the lighter than air platform for converting the electricity into stored energy, and a power management system for using the stored energy to drive the generator/motor.
  • the systems described above provide several advantages including: continuous wind energy harvesting; continuous power for on-station payload support; in-transit energy harvesting and storage for propulsion; long duration unmanned on-station and transit capability; multiple civil and military applications; and low cost long endurance airborne platform power system.
  • High wind speed at altitude results in significant power for small turbines.

Abstract

An apparatus includes a lighter than air platform, a reversible propulsive/wind turbine, a deployable anchor to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine, and a generator/motor coupled to the turbine to produce electrical power when movement of the lighter than air platform is constrained. A method performed by the apparatus is also provided.

Description

    FIELD OF THE INVENTION
  • This invention relates to electric power generation for lighter than air (LTA) platforms.
  • BACKGROUND OF THE INVENTION
  • Lighter than air (LTA) platforms are enjoying renewed interest in a variety of applications. In addition to traditional uses such as advertising and promotion, there is increased interest in LTA platforms for both civil and military Intelligence, Surveillance, Reconnaissance, and Communications (ISR&C) applications.
  • The long endurance and low fuel consumption rates inherent in LTA systems are attractive attributes for persistent airborne ISR&C applications. An increasing demand for LTA platforms to provide a significant time-on-station capability, whether they are tethered aerostats or mobile airships, places increasing energy demands on long term power for both its payload and propulsion energy system. Current propulsion and electric power systems that rely on fossil fuels provide both limited transit range and time-on-station. The same is true for batteries as well as conventional fuel cell powered systems. As a result of these limitations, the full endurance potential of LTA ISR&C systems has been difficult to realize. Recent LTA designs have included renewable energy sources such as solar cells (i.e., photovoltaics) to enhance both mobile LTA platform range and time-on-station performance. Photovoltaic solutions can provide additional power to propulsors and payloads, but have their own limitations which include conversion efficiencies, restriction to daylight operations, and weather and weight issues.
  • There is a need for an energy source for fixed and mobile LTA platforms that can provide significant power for both propulsion (i.e., transit and station keeping) and payload systems.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the invention provides an apparatus including a lighter than air platform, a reversible propulsive/wind turbine, a deployable anchor to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine, and a generator/motor coupled to the turbine to produce electrical power when movement of the lighter than air platform is constrained.
  • In another aspect, the invention provides an apparatus including a lighter than air platform, a turbine, a tether to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine, a generator/motor coupled to the turbine to produce electricity when the turbine is driven by the wind, an energy storage system on the lighter than air platform for converting the electricity into stored energy, and a power management system for using the stored energy to drive the generator/motor.
  • In another aspect, the invention provides a method including: providing a lighter than air platform including a propulsion turbine, deploying an anchor to constrain movement of the lighter than air platform with respect to an anchor point, using the propulsion turbine to drive a generator on the lighter than air platform to produce electrical power, hoisting the anchor, storing energy generated by the wind and turbines, and using the propulsion turbine to propel the lighter than air platform.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of an LTA platform with an anchor power generation (APG) system.
  • FIG. 2 is a block diagram of portions of a flying anchor system.
  • FIG. 3 is a schematic representation of an LTA platform with several optional anchor systems.
  • FIG. 4 is a graph of atmospheric wind speeds as a function of altitude.
  • FIG. 5 is a block diagram of an LTA wind turbine generator/motor system.
  • DETAILED DESCRIPTION OF THE INVENTION
  • One source of abundant energy that LTA platforms have is the capability of station-keeping with continual access to wind at altitude. In order to exploit this energy resource for LTA platforms, in one aspect, the invention employs an apparatus, referred to herein as an Anchored Power Generation (APG) system. The APG system concept of operation begins with a tethering or anchoring of the LTA platform at an appropriate altitude. For a mobile airship, an anchor line (i.e., a tether) is lowered from the airship with an anchor at the end. Various types of anchors can be used, wherein the selected type would be appropriate for either maritime operations (e.g., a sand or water drag anchor) or land operations (e.g., a grappling anchor, harpoon). For the case of an aerostat, it is assumed that the LTA platform is already tethered.
  • The APG concept includes an onboard wind turbine electric power generation system. For an aerostat, this wind turbine provides continuous power to onboard payload systems. For a mobile airship, however, this energy can be converted and stored to provide additional power for in-transit propulsion as well as payload support. During transit, the onboard wind turbine acts in reverse, serving as a propulsion system and consuming the energy that was stored while the airship was anchored.
  • In one embodiment, for a mobile airship mode of operation, electric energy generated by the wind turbine can be used to split water (e.g., captured atmospheric humidity or onboard storage) in order to generate hydrogen. Hydrogen can be stored as part of the airship buoyancy system, and used to generate electricity via fuel cells to power a dual mode generator-motor propulsion system. An active hydrogen generation system compensates for buoyancy gas leakage and significantly extends LTA range and lifting capability.
  • As an alternative to fuel cell energy conversion, some of the stored hydrogen can be directly consumed by an internal combustion engine propulsion system that utilizes hydrogen as the propulsive energy source. The APG system allows a mobile LTA airship to periodically rest, regenerate hydrogen, and store the hydrogen for energy needed for in-transit propulsion and payload requirements (e.g., communications, radar, etc.). When the airship is on-station it can simply lower its anchor and run all payload electrical systems directly off of the wind turbine generator.
  • An airship with the APG system has potentially unlimited range and access to operationally significant power for on-station payload support without any ground based refueling or servicing. This is especially important when persistent unmanned operations are required for civilian and military ISR&C missions.
  • Referring to the drawings, FIG. 1 is a schematic representation of an LTA platform 10 with an Anchor Power Generation (APG) system. The LTA platform includes at least one turbine 12 and 14. An anchor 16 system is used to constrain the movement of the LTA platform with respect to an anchor point. This limits the movement of the LTA platform with respect to winds experienced by the platform at altitude. The wind can then be used to drive the turbine and the turbine can be used to drive a generator to produce electricity that can be used to power a payload and/or can be used to store energy that can be subsequently used to drive the turbine in a propulsive mode. The anchor can be deployed when on-board power generation is desired.
  • The anchor can be a remote controlled, flyable anchor, that includes an airfoil and an actuator needed to control the orientation of the airfoil to direct the flight of the anchor. FIG. 2 is a block diagram of portions of a flying anchor system 18. The flying anchor system includes an airfoil 20, an actuator 22, a receiver 24, and a restraining device 26. The actuator and receiver are components of a control system that may be contained in a housing 28. The housing would be connected to the lighter than air platform by a tether (not shown). When the flying anchor is to be deployed, it can be lowered from the LTA platform on the tether. Its location can be controlled by sending control signals to the receiver through the on-board control system in the LTA platform. These control signals are then used to activate the actuators, which control the orientation of the airfoil to control the flight of the anchor system. The control signals can be supplied either wirelessly, and received by the antenna 30, or through a wire in the tether. Once the anchor has been positioned at a desired location, the restraining device 26 can be deployed. As used in this description, a restraining device is a device that prevents or resists movement of the anchor system with respect to land, water or air, depending upon the type of anchor system. In various embodiments, restraining devices can include, for example, anchor rods, harpoons, grappling hooks, drogues, Danforth anchors, or parachutes.
  • FIG. 3 is a schematic representation of an LTA platform 40 with an Anchor Power Generation (APG) system. The illustrated LTA platform includes at least one turbine 42 and 44, and a plurality of alternative anchor systems 46, 48, 50 or 52 to constrain the movement of the LTA platform with respect to an anchor point. The anchor is adapted to be deployed and retrieved when the LTA platform is at altitude. FIG. 3 shows several alternative “flying anchor” systems that include a restraining device and an airfoil, and are remotely piloted to guide the restraining device to an appropriate location. The flying anchor system may include a radio-controlled aerodynamic steering unit similar to an aerial-refueling “flying boom”, which effectively damps out oscillations and crosswind effects. An aerodynamic deployable anchor system enables remote autonomous mooring and wind power generation and station keeping.
  • For land operations, in the example of FIG. 3, anchor system 46 includes an airfoil 54 and an anchor rod or harpoon 56. The harpoon can be housed within a housing 58 that is flown to a position over land, using the airfoil and actuators that can be remotely controlled as shown in FIG. 2. Once the desired position is reached, the harpoon can be ejected from the housing and embedded in the land 60 to provide an anchor point. In an alternative embodiment, the housing may contain a grappling hook that can be ejected from the housing and used to take advantage of rough terrain or fixed objects and materials on the ground by engaging such land based features.
  • For maritime operations, the anchor will be lowered and “flown” to a position below the sea surface. Where the depth permits, a retraining device can be embedded in the seabed. For deeper water, water drag anchoring can be employed. Anchor system 48 includes a restraining device 62, which may be a Danforth anchor that can be embedded in a seabed 64 to provide an anchor point. Anchor system 50 includes an airfoil 66 and actuators needed to position the airfoil to direct the flight of the anchor. Anchor system 50 further includes a restraining device such as a sea anchor or drogue 68. In this case the restraining device does not provide a fixed anchor point, but rather provides a moveable anchor point which nonetheless still serves to restrain the LTA platform that is coupled to the anchor system by the tether. It is anticipated that a water drag (e.g., drogue) anchor system for maritime environments will be sufficient for many LTA designs and modes of operation.
  • In addition to the basic maritime and land anchoring concepts described above, another method of “fixing” the position of the LTA platform relative to the prevailing winds for efficient wind turbine operation involves the deployment of large parachutes or “air drogues” that take advantage of variation in wind speed with different altitudes. By taking advantage of the differential in wind speeds, the LTA platform may be slowed down enough to enable useful power generation for LTA system and payload support. This air-drogue concept potentially reduces tether length requirements and may allow for power generation and energy storage while the LTA platform is in-transit at reduced speeds.
  • Anchor 52 is an air anchor that includes an airfoil 70 and actuators needed to position the airfoil to direct the flight of the anchor. Once the air anchor is positioned at a desired altitude, a restraining device in the form of a parachute 72 can be deployed. In this case the restraining device does not provide a fixed anchor point, but rather provides a moveable anchor point that nonetheless still serves to restrain the LTA platform that is coupled to the anchor system by the tether.
  • In each embodiment, the APG system includes a deployable anchor line system of sufficient length and strength that takes advantage of significant wind speeds found at higher altitudes, and has a reusable restraining device appropriate for either maritime, land based, or completely airborne operations. The anchor system can utilize tether technology already used for aerostats with existing anchoring systems adapted for remote operation in ocean or land environments. Lightweight tether strap systems are available that have both the length and strength to hold a sizable LTA platform at high attitude. For example, holding an LTA platform at 5000 ft altitude with a tether line at a 45 degree line layout would require 300 lb total of an 8000 lb rated line. For a 20,000 ft altitude the line weight is 1200 lbs. LTA platform tether line capacity will depend on turbine requirements for maximum wind speeds, which varies as a function of geographic region and altitude.
  • Another benefit to having a reusable anchoring system is remote station keeping. This can help the LTA platform maintain a steady position and orientation for operation of payload systems such as radar, electro/optical/infrared (EO/IR) sensors, and communications links. The reusable anchoring system provides a versatile re-deployable LTA platform capability not found in current tethered (fixed) systems, which require ground support components. Embodiments of the invention allow for unmanned operation in remote unprepared areas around the world.
  • The airborne wind turbine generator can also be integrated into a propulsion system. Wind turbines are traditionally employed as ground based (or offshore) stationary systems for renewable power generation. Large blades that turn at moderate revolutions per minute (rpms) are employed in order to maximize power generation for the relatively slow wind speeds found near ground level. Even with low wind speeds (˜10 knots), megawatt power levels can be obtained by individual wind turbine towers. Wind turbine power goes as the cube of wind velocity, so if a wind turbine can be operated at altitudes reached by conventional aerostats and airships, the turbine blade diameter can be greatly reduced and significant power can still be generated.
  • FIG. 4 shows average wind velocity around the globe as a function of altitude. Winds speeds rise dramatically up to an altitude of 40,000 ft, after which they drop before reaching the upper stratosphere. For example, an LTA platform operating at 20,000 ft can see maximum wind speed in excess of 80 kts for various geographic regions.
  • Unlike current concepts for airborne wind turbines for power grid support that are limited by the heavy copper cables needed to get power from the ground up to the platform, the APG system eliminates the need for the copper cable as power is kept onboard the LTA platform for payload consumption and propulsion. This permits the use of much longer lightweight cable materials to access higher wind speed at higher altitudes.
  • A schematic of an APG wind turbine generation/propulsion system 80 is shown in FIG. 5. The generation/propulsion system 80 includes a wind turbine propulsor 82 coupled to a generator motor 84. The generator motor is electrically connected to a power management and distribution (PMAD) component 86. The PMAD component distributes electricity to on-board avionics 88, a payload 90, and an electrolysis system 92. The electrolysis system uses the electricity to split water from a water condenser/storage unit 94 into hydrogen and oxygen. The hydrogen is delivered to a hydrogen storage/buoyancy system 96. The hydrogen can then be used to power a fuel cell 98 that produces electricity that is returned to the PMAD for further distribution. The hydrogen can also be used in a hydrogen combustion engine 100 to drive a propulsor 102. Photovoltaic cells 104 can be provided to produce additional electricity that can be used to drive the generator motor or can be distributed by the PMAD. Batteries 106 can be provided to store electricity produced by the generator motor or fuel cell and to supply electricity to drive the generator motor or for further distribution by the PMAD. Batteries can also be used to store electricity produced by the additional photovoltaic cells during daytime operations. While FIG. 5 shows a separate propulsor 102, in some embodiments, the motor generator can be used to drive the wind turbine 82 to propel the LTA platform, thereby eliminating the need for a separate propulsor.
  • Significant wind energy can be harvested at altitudes accessible by LTA platforms. When the LTA is anchored, power from the wind turbine is routed to the power management and distribution system (PMAD). The PMAD regulates power distribution to a variety of payload applications and energy conversion and storage systems. When the LTA is in a transit mode, the APG system may require a series of rest and regeneration periods depending on the range, altitude and payload weight mission requirements. During the regeneration period, most of the wind turbine power is routed to an energy storage system. This could be comprised of a system of batteries as well as to a water-to-hydrogen conversion system. Hydrogen can be stored in tanks and/or serve as part of the LTA buoyancy system. When enough hydrogen has been generated during the rest period, the LTA platform hoists its anchor and the hydrogen energy is then converted by the on-board fuel cells to electricity which subsequently powers the wind turbine generator as an electric motor, thus providing a propulsive force. Alternatively, the stored hydrogen can be routed directly to a hydrogen burning internal combustion engine propulsion system. When “on-station”, all payload and avionics systems will run directly off of the wind turbine, thus conserving any onboard energy supplies (i.e., batteries, hydrogen, fossil fuel).
  • To quantitatively demonstrate the practicality for the power generating potential of the APG system, the power output can be calculated for a given set of LTA flight parameters including altitude, wind speed, wind turbine blade diameter, and efficiency. The power generated by a wind turbine is given by Equation (1):

  • P=½AρV 3 E  (1)
  • where P is the power in Watts, A is the area defined the blade rotation, ρ is the air density at altitude, V is the mean wind velocity at altitude, and E is the turbine aerodynamic efficiency.
  • As an example, consider an anchored altitude of 20,000 ft with an air density of approximately 0.525 kg/m3. From FIG. 4, it can be seen that from regions ranging from the South China Sea to the Persian Gulf, and out to the Sea of Japan and the Tsushima Strait, the mean wind velocities varies from 50 kt to 75 kt. In the calculation to follow the use of mean wind velocities results in an underestimate by a factor of approximately 2 of the average power output due to the atmospheric Weibull (asymmetric) distribution of wind velocities impacting the velocity cube dependence of the power. Also assume a turbine blade diameter of 8 meters (an approximate sizing for a single generator/propulsor system relative to the LTA platform volume), and a conservative (poor) turbine efficiency of E of 0.15. The resulting power output from one turbine generator in this case ranges from 38 KW to 128 KW. Doubling this due to the Weibull wind speed distribution results in a final APG system power range at 25,000 ft that ranges from 76 KW to 472 KW for a single wind turbine system. A dual wind turbine and propulsion system can be used for the LTA platform, which will effectively double this power generation capability.
  • Depending on regional wind speeds at altitude, the APG system has a significant power generation capability. The available power for anchored on-station operations is sufficient to power a variety of demanding payload packages including communications, EO/IR sensors and radar. This is especially true if two turbines are used to double the power. Power output can be optimized via moderate altitude adjustment depending on regional winds due to the sensitive cubic power dependence on velocity.
  • In addition to on-station payload support, the APG system can provide power capacity for significant energy harvesting and storage for LTA propulsion. For the hydrogen generation and storage concept, assuming sufficient onboard water collection and/or storage capacity and standard electrolysis techniques with mean winds of 80 kts at altitude, approximately 156 lb/hr (average rate per speed distribution) of hydrogen can be generated based on the use of two wind turbine propulsor systems. This is a significant energy harvesting capability that also provides buoyancy gas as needed (i.e., for leakage mitigation).
  • In various embodiments, the invention provides an Anchor Power Generation (APG) system for LTA aerostats and airships for propulsion power and/or payload power. If the anchor system described above is replaced by a fixed tether, the invention can be implemented as an apparatus including a lighter than air platform, a wind turbine, a tether to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine, a generator/motor coupled to the turbine to produce electricity when the turbine is driven by the wind, an energy storage system on the lighter than air platform for converting the electricity into stored energy, and a power management system for using the stored energy to drive the generator/motor.
  • The systems described above provide several advantages including: continuous wind energy harvesting; continuous power for on-station payload support; in-transit energy harvesting and storage for propulsion; long duration unmanned on-station and transit capability; multiple civil and military applications; and low cost long endurance airborne platform power system. High wind speed at altitude results in significant power for small turbines.
  • While the invention has been described in terms of several embodiments, it will be apparent to those skilled in the art that various changes can be made to the described embodiments without departing from the scope of the invention as set forth in the following claims.

Claims (17)

1. An apparatus comprising:
a lighter than air platform;
a turbine;
a deployable anchor to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine; and
a generator/motor coupled to the turbine to produce electrical power when movement of the lighter than air platform is constrained.
2. The apparatus of claim 1, further comprising:
an energy storage system for storing energy supplied by the motor/generator.
3. The apparatus of claim 1, wherein the energy storage system supplies energy to the generator/motor to drive the turbine and propel the lighter than air platform.
4. The apparatus of claim 1, wherein the energy storage system comprises:
a water source;
an electrolysis cell for using the electrical power to split water into hydrogen and oxygen; and
a hydrogen storage system.
5. The apparatus of claim 4, further comprising:
a second turbine; and
a hydrogen engine for using the hydrogen to drive the second turbine.
6. The apparatus of claim 1, wherein the deployable anchor comprises:
a flyable anchor.
7. The apparatus of claim 6, wherein the flyable anchor comprises:
an airfoil;
an actuator for controlling the orientation of the airfoil;
a control system for controlling the actuator in response to remote control commands; and
a restraining device.
8. The apparatus of claim 7, wherein the restraining device comprises one of:
a harpoon, a grappling hook, a sail, a drogue, and an anchor.
9. An apparatus comprising:
a lighter than air platform;
a turbine;
a tether to constrain movement of the lighter than air platform with respect to an anchor point allowing wind to drive the turbine;
a generator/motor coupled to the turbine to produce electricity when the turbine is driven by the wind;
an energy storage system on the lighter than air platform for converting the electricity into stored energy; and
a power management system for using the stored energy to drive the generator/motor.
10. The apparatus of claim 9, wherein the energy storage system comprises:
an electrolysis system for using the electricity to split water into hydrogen and oxygen; and
a hydrogen storage unit.
11. A method comprising:
providing a lighter than air platform including a propulsion turbine;
deploying an anchor to constrain movement of the lighter than air platform with respect to an anchor point;
using the propulsion turbine to drive a generator on the lighter than air platform to produce electrical power;
hoisting the anchor; and
using the propulsion turbine to propel the lighter than air platform.
12. The method of claim 11, further comprising:
using the electrical power to store energy.
13. The method of claim 12, wherein the step of using the electrical power to store energy comprises:
splitting water to generate hydrogen; and
storing the hydrogen.
14. The method of claim 13, further comprising:
using the hydrogen in a buoyancy system.
15. The method of claim 13, further comprising:
using the hydrogen to generate electricity.
16. The method of claim 13, further comprising:
using the hydrogen in an internal combustion engine in a propulsion system.
17. The method of claim 12, wherein the step of using the electrical power to store energy comprises:
charging a battery.
US12/702,536 2010-02-09 2010-02-09 Wind power generation system for lighter than air (lta) platforms Abandoned US20110192938A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/702,536 US20110192938A1 (en) 2010-02-09 2010-02-09 Wind power generation system for lighter than air (lta) platforms
US13/803,438 US8864064B2 (en) 2010-02-09 2013-03-14 Wind power generation system for lighter than air (LTA) platforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/702,536 US20110192938A1 (en) 2010-02-09 2010-02-09 Wind power generation system for lighter than air (lta) platforms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/803,438 Division US8864064B2 (en) 2010-02-09 2013-03-14 Wind power generation system for lighter than air (LTA) platforms

Publications (1)

Publication Number Publication Date
US20110192938A1 true US20110192938A1 (en) 2011-08-11

Family

ID=44352912

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/702,536 Abandoned US20110192938A1 (en) 2010-02-09 2010-02-09 Wind power generation system for lighter than air (lta) platforms
US13/803,438 Active US8864064B2 (en) 2010-02-09 2013-03-14 Wind power generation system for lighter than air (LTA) platforms

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/803,438 Active US8864064B2 (en) 2010-02-09 2013-03-14 Wind power generation system for lighter than air (LTA) platforms

Country Status (1)

Country Link
US (2) US20110192938A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120013128A1 (en) * 2010-07-19 2012-01-19 John Hincks Duke Hydrokinetic turbine for low velocity currents
US20120091274A1 (en) * 2009-06-15 2012-04-19 Vestas Wind Systems A/S Wind turbine generator installation by airship
US20120235410A1 (en) * 2011-03-15 2012-09-20 Serrano Richard J Lighter than air wind and solar energy conversion system
US20120319407A1 (en) * 2008-10-15 2012-12-20 Altaeros Energies, Inc. Lighter-than-air craft for energy-producing turbines
US20130101356A1 (en) * 2011-10-21 2013-04-25 Fred Michael Newcomer Ocean rafts for mining hydrogen
US8437891B2 (en) 2010-04-13 2013-05-07 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for parafoil guidance that accounts for ground winds
WO2014043789A1 (en) * 2012-09-19 2014-03-27 Solar Ship Inc. Hydrogen-regenerating solar-powered aircraft
US8800930B1 (en) * 2010-03-22 2014-08-12 The United States Of America As Represented By The Secretary Of The Navy Aerial delivery system with high accuracy touchdown
US8864064B2 (en) * 2010-02-09 2014-10-21 Northrop Grumman Systems Corporation Wind power generation system for lighter than air (LTA) platforms
US20140377066A1 (en) * 2013-06-25 2014-12-25 Alexander Anatoliy Anderson Portable Self-Inflating Airborne Wind Turbine System
US20140374537A1 (en) * 2013-06-25 2014-12-25 Alexander Anatoliy Anderson Portable Airborne Multi-Mission Platform
DE102013215414A1 (en) * 2013-08-06 2015-02-12 Bernd Lau Transmitting and receiving system
US20160040656A1 (en) * 2014-08-08 2016-02-11 Farouk Dakhil Wind turbine and air conditioning apparatus, method and system
US9580173B1 (en) * 2014-08-28 2017-02-28 X Development Llc Translational correction of payload-release device based on tracked position
US9777698B2 (en) 2013-11-12 2017-10-03 Daniel Keith Schlak Multiple motor gas turbine engine system with auxiliary gas utilization
US20180050797A1 (en) * 2016-08-22 2018-02-22 Harris Corporation Tethered unmanned aerial vehicle
US20180083678A1 (en) * 2015-03-03 2018-03-22 Stratospheric Platforms Limited Increasing data transfer rates
US20180083672A1 (en) * 2015-03-03 2018-03-22 Stratospheric Platforms Limited Generation and use of similar multiple beams
US10309374B2 (en) * 2016-12-01 2019-06-04 Makani Technologies Llc Energy kite winching using buoyancy
US20190193827A1 (en) * 2017-12-21 2019-06-27 X Development Llc Propulsion system for a buoyant aerial vehicle
US10427772B2 (en) 2012-09-19 2019-10-01 Solar Ship Inc. Hydrogen-regenerating solar-powered aircraft
US10689113B2 (en) 2017-12-21 2020-06-23 Wing Aviation Llc Active position control of tethered hook
WO2020247870A1 (en) * 2019-06-07 2020-12-10 Usman Irfan Ur Rab Suspended aerial vehicle system with thruster stabilization
US11009879B2 (en) 2017-09-21 2021-05-18 Loon Llc Systems and methods for controlling an aerial vehicle using lateral propulsion and vertical movement
CN115110907A (en) * 2022-06-02 2022-09-27 中国石油大学(华东) Well head quick connecting device suitable for deepwater batch drilling operation
WO2022216755A1 (en) * 2021-04-05 2022-10-13 Schmidt Howard K Skypipes for renewable water and power production

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227168B1 (en) 2010-11-03 2016-01-05 Google Inc. Wind-powered vessel for removal of carbon dioxide from seawater
CA2943731A1 (en) * 2014-03-26 2015-10-01 Sequoia Automation S.R.L. Energy charging system related to the stop of an electric vehicle
US9353033B2 (en) 2014-04-17 2016-05-31 Google Inc. Airborne rigid kite with on-board power plant for ship propulsion
US9248910B1 (en) 2014-04-17 2016-02-02 Google Inc. Airborne rigid kite with on-board power plant for ship propulsion
US20150330368A1 (en) * 2014-05-18 2015-11-19 Leonid Goldstein Airborne wind energy system with rotary wing, flying generator and optional multi-leg tether
US20180134357A1 (en) * 2015-05-07 2018-05-17 Sri International Kite-powered unmanned underwater vehicle
US11866196B1 (en) * 2021-06-03 2024-01-09 Ltag Systems Llc Payload deployment from aerostats
FR3140066A1 (en) * 2022-09-27 2024-03-29 Edmond Thuries MESOSPHERIC SENTINEL PLATFORM

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166596A (en) * 1978-01-31 1979-09-04 Mouton William J Jr Airship power turbine
US4350899A (en) * 1980-10-24 1982-09-21 Benoit William R Lighter than air wind energy conversion system utilizing a rearwardly mounted internal radial disk diffuser
US4450364A (en) * 1982-03-24 1984-05-22 Benoit William R Lighter than air wind energy conversion system utilizing a rotating envelope
US4491739A (en) * 1982-09-27 1985-01-01 Watson William K Airship-floated wind turbine
US5056447A (en) * 1988-10-13 1991-10-15 Labrador Gaudencio A Rein-deer kite
US5890676A (en) * 1997-11-21 1999-04-06 Coleman; Richard Airship with neutral buoyancy fuel bladder
US20020046569A1 (en) * 2000-07-26 2002-04-25 Faqih Abdul-Rahman Abdul-Kader M. Apparatus for the production of freshwater from extremely hot and humid air
US6527223B1 (en) * 2002-08-05 2003-03-04 Richard Warfield Mondale Platform-type airship
US20060091678A1 (en) * 2004-01-10 2006-05-04 Macedo Aleandro S Hovering Wind Turbine
US7249733B2 (en) * 2004-10-29 2007-07-31 Harris Corporation Lighter-than-air aircraft including a closed loop combustion generating system and related methods for powering the same
US20070176432A1 (en) * 2004-02-20 2007-08-02 Rolt Andrew M Power generating apparatus
US20080006743A1 (en) * 2006-07-05 2008-01-10 Miller Gerald D Long endurance hydrogen powered vehicle
US20080048453A1 (en) * 2006-07-31 2008-02-28 Amick Douglas J Tethered Wind Turbine
US20080116315A1 (en) * 2006-11-21 2008-05-22 Ron Wayne Hamburg Soaring wind turbine
US20080290665A1 (en) * 2007-05-22 2008-11-27 Lynn Potter Funneled wind turbine aircraft
US7464895B2 (en) * 2004-10-29 2008-12-16 Harris Corporation Lighter-than-air aircraft and related methods for powering the same
US7472865B2 (en) * 2005-09-15 2009-01-06 Lockheed Martin Corporation Dehumidification system for an airship
US20090127861A1 (en) * 2007-11-21 2009-05-21 Rsv Invention Enterprises Fluid-dynamic renewable energy harvesting system
US7582981B1 (en) * 2008-05-19 2009-09-01 Moshe Meller Airborne wind turbine electricity generating system
US7714457B2 (en) * 2007-11-21 2010-05-11 Ric Enterprises Wind energy harvesting system on a frozen surface
US7887007B2 (en) * 2008-02-08 2011-02-15 Mitchell Matthew P High-altitude long-endurance airship

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912204A (en) * 1973-07-27 1975-10-14 Robert B Wheat Captive airfoil apparatus
GB1585099A (en) * 1976-08-23 1981-02-25 Jones A W Ram air inflatable aerofoil structures
US4114837A (en) * 1977-03-24 1978-09-19 Skagit Corporation Air transport and lifting vehicle
US4269375A (en) * 1979-10-31 1981-05-26 Hickey John J Hybrid annular airship
US4606515A (en) * 1984-05-29 1986-08-19 Hickey John J Hybrid annular airship
US6811113B1 (en) * 2000-03-10 2004-11-02 Sky Calypso, Inc. Internet linked environmental data collection system and method
US6715712B2 (en) * 2001-05-18 2004-04-06 Information Systems Laboratories, Inc. Aerostat deployment apparatus
US6925949B1 (en) * 2002-12-31 2005-08-09 Malcolm Phillips Elevated sailing apparatus
US8157205B2 (en) * 2006-03-04 2012-04-17 Mcwhirk Bruce Kimberly Multibody aircrane
US20110192938A1 (en) * 2010-02-09 2011-08-11 Northrop Grumman Systems Corporation Wind power generation system for lighter than air (lta) platforms
US8308142B1 (en) * 2010-06-23 2012-11-13 Gaylord Olson System and method for transporting cargo utilizing an air towing system that can achieve vertical take-off and vertical landing

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166596A (en) * 1978-01-31 1979-09-04 Mouton William J Jr Airship power turbine
US4350899A (en) * 1980-10-24 1982-09-21 Benoit William R Lighter than air wind energy conversion system utilizing a rearwardly mounted internal radial disk diffuser
US4450364A (en) * 1982-03-24 1984-05-22 Benoit William R Lighter than air wind energy conversion system utilizing a rotating envelope
US4491739A (en) * 1982-09-27 1985-01-01 Watson William K Airship-floated wind turbine
US5056447A (en) * 1988-10-13 1991-10-15 Labrador Gaudencio A Rein-deer kite
US5890676A (en) * 1997-11-21 1999-04-06 Coleman; Richard Airship with neutral buoyancy fuel bladder
US20020046569A1 (en) * 2000-07-26 2002-04-25 Faqih Abdul-Rahman Abdul-Kader M. Apparatus for the production of freshwater from extremely hot and humid air
US6527223B1 (en) * 2002-08-05 2003-03-04 Richard Warfield Mondale Platform-type airship
US20060091678A1 (en) * 2004-01-10 2006-05-04 Macedo Aleandro S Hovering Wind Turbine
US7129596B2 (en) * 2004-01-10 2006-10-31 Aleandro Soares Macedo Hovering wind turbine
US7317261B2 (en) * 2004-02-20 2008-01-08 Rolls-Royce Plc Power generating apparatus
US20070176432A1 (en) * 2004-02-20 2007-08-02 Rolt Andrew M Power generating apparatus
US7464895B2 (en) * 2004-10-29 2008-12-16 Harris Corporation Lighter-than-air aircraft and related methods for powering the same
US7249733B2 (en) * 2004-10-29 2007-07-31 Harris Corporation Lighter-than-air aircraft including a closed loop combustion generating system and related methods for powering the same
US7472865B2 (en) * 2005-09-15 2009-01-06 Lockheed Martin Corporation Dehumidification system for an airship
US20080006743A1 (en) * 2006-07-05 2008-01-10 Miller Gerald D Long endurance hydrogen powered vehicle
US20080048453A1 (en) * 2006-07-31 2008-02-28 Amick Douglas J Tethered Wind Turbine
US20080116315A1 (en) * 2006-11-21 2008-05-22 Ron Wayne Hamburg Soaring wind turbine
US20080290665A1 (en) * 2007-05-22 2008-11-27 Lynn Potter Funneled wind turbine aircraft
US7786610B2 (en) * 2007-05-22 2010-08-31 Lynn Potter Funneled wind turbine aircraft
US20090127861A1 (en) * 2007-11-21 2009-05-21 Rsv Invention Enterprises Fluid-dynamic renewable energy harvesting system
US7714457B2 (en) * 2007-11-21 2010-05-11 Ric Enterprises Wind energy harvesting system on a frozen surface
US7887007B2 (en) * 2008-02-08 2011-02-15 Mitchell Matthew P High-altitude long-endurance airship
US7582981B1 (en) * 2008-05-19 2009-09-01 Moshe Meller Airborne wind turbine electricity generating system

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120319407A1 (en) * 2008-10-15 2012-12-20 Altaeros Energies, Inc. Lighter-than-air craft for energy-producing turbines
US9000605B2 (en) * 2008-10-15 2015-04-07 Altaeros Energies, Inc. Lighter-than-air craft for energy-producing turbines
US20120091274A1 (en) * 2009-06-15 2012-04-19 Vestas Wind Systems A/S Wind turbine generator installation by airship
US9022315B2 (en) * 2009-06-15 2015-05-05 Vestas Wind Systems A/S Wind turbine generator installation by airship
US8864064B2 (en) * 2010-02-09 2014-10-21 Northrop Grumman Systems Corporation Wind power generation system for lighter than air (LTA) platforms
US8800930B1 (en) * 2010-03-22 2014-08-12 The United States Of America As Represented By The Secretary Of The Navy Aerial delivery system with high accuracy touchdown
US9331773B2 (en) 2010-04-13 2016-05-03 The United States Of America, As Represented By The Secretary Of The Navy Instantaneous wireless network established by simultaneously descending parafoils
US8437891B2 (en) 2010-04-13 2013-05-07 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for parafoil guidance that accounts for ground winds
US8421260B2 (en) * 2010-07-19 2013-04-16 John Hincks Duke Hydrokinetic turbine for low velocity currents
US20120013128A1 (en) * 2010-07-19 2012-01-19 John Hincks Duke Hydrokinetic turbine for low velocity currents
US20120235410A1 (en) * 2011-03-15 2012-09-20 Serrano Richard J Lighter than air wind and solar energy conversion system
US20130101356A1 (en) * 2011-10-21 2013-04-25 Fred Michael Newcomer Ocean rafts for mining hydrogen
WO2014043789A1 (en) * 2012-09-19 2014-03-27 Solar Ship Inc. Hydrogen-regenerating solar-powered aircraft
US10427772B2 (en) 2012-09-19 2019-10-01 Solar Ship Inc. Hydrogen-regenerating solar-powered aircraft
US9527569B2 (en) 2012-09-19 2016-12-27 Solar Ship Inc. Hydrogen-regenerating solar-powered aircraft
US20140377066A1 (en) * 2013-06-25 2014-12-25 Alexander Anatoliy Anderson Portable Self-Inflating Airborne Wind Turbine System
US20140374537A1 (en) * 2013-06-25 2014-12-25 Alexander Anatoliy Anderson Portable Airborne Multi-Mission Platform
DE102013215414A1 (en) * 2013-08-06 2015-02-12 Bernd Lau Transmitting and receiving system
US9777698B2 (en) 2013-11-12 2017-10-03 Daniel Keith Schlak Multiple motor gas turbine engine system with auxiliary gas utilization
US9732967B2 (en) * 2014-08-08 2017-08-15 Farouk Dakhil Wind turbine and air conditioning apparatus, method and system
US20160040656A1 (en) * 2014-08-08 2016-02-11 Farouk Dakhil Wind turbine and air conditioning apparatus, method and system
US9580173B1 (en) * 2014-08-28 2017-02-28 X Development Llc Translational correction of payload-release device based on tracked position
US20180083678A1 (en) * 2015-03-03 2018-03-22 Stratospheric Platforms Limited Increasing data transfer rates
US20180083672A1 (en) * 2015-03-03 2018-03-22 Stratospheric Platforms Limited Generation and use of similar multiple beams
US10530445B2 (en) * 2015-03-03 2020-01-07 Stratospheric Platforms Limited Increasing data transfer rates
US10541732B2 (en) * 2015-03-03 2020-01-21 Stratospheric Platforms Limited Generation and use of similar multiple beams
US20180050797A1 (en) * 2016-08-22 2018-02-22 Harris Corporation Tethered unmanned aerial vehicle
EP3287358A1 (en) * 2016-08-22 2018-02-28 Harris Corporation Tethered unmanned aerial vehicle
US10065738B2 (en) * 2016-08-22 2018-09-04 Harris Corporation Tethered unmanned aerial vehicle
US10309374B2 (en) * 2016-12-01 2019-06-04 Makani Technologies Llc Energy kite winching using buoyancy
US11009879B2 (en) 2017-09-21 2021-05-18 Loon Llc Systems and methods for controlling an aerial vehicle using lateral propulsion and vertical movement
US10689113B2 (en) 2017-12-21 2020-06-23 Wing Aviation Llc Active position control of tethered hook
US10780969B2 (en) * 2017-12-21 2020-09-22 Loon Llc Propulsion system for a buoyant aerial vehicle
US10974831B2 (en) 2017-12-21 2021-04-13 Wing Aviation Llc Active position control of tethered hook
US20190193827A1 (en) * 2017-12-21 2019-06-27 X Development Llc Propulsion system for a buoyant aerial vehicle
US11554845B2 (en) 2017-12-21 2023-01-17 Aerostar International, Llc Propulsion system for a buoyant aerial vehicle
US11639216B2 (en) 2017-12-21 2023-05-02 Aerostar International, Llc Propulsion system for a buoyant aerial vehicle
WO2020247870A1 (en) * 2019-06-07 2020-12-10 Usman Irfan Ur Rab Suspended aerial vehicle system with thruster stabilization
US11319065B2 (en) * 2019-06-07 2022-05-03 Kyte Dynamics, Inc. Suspended aerial vehicle system with thruster stabilization
US20220363380A1 (en) * 2019-06-07 2022-11-17 Kyte Dynamics, Inc. Suspended aerial vehicle system with thruster stabilization
US11814168B2 (en) * 2019-06-07 2023-11-14 Kyte Dynamics, Inc. Suspended aerial vehicle system with thruster stabilization
WO2022216755A1 (en) * 2021-04-05 2022-10-13 Schmidt Howard K Skypipes for renewable water and power production
CN115110907A (en) * 2022-06-02 2022-09-27 中国石油大学(华东) Well head quick connecting device suitable for deepwater batch drilling operation

Also Published As

Publication number Publication date
US20130193266A1 (en) 2013-08-01
US8864064B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
US8864064B2 (en) Wind power generation system for lighter than air (LTA) platforms
US9169014B2 (en) Unmanned aerial vehicle and method of launching
US11408390B2 (en) Self-propelled buoyant energy converter and method for deploying same
EP2021625B1 (en) Atmospheric resources explorer
US7341223B2 (en) Hybrid unmanned vehicle for high altitude operations
US8944866B2 (en) Wave-powered endurance extension module for unmanned underwater vehicles
US7786610B2 (en) Funneled wind turbine aircraft
US20110121570A1 (en) System and method for controlling a tethered flying craft using tether attachment point manipulation
US20100001534A1 (en) Electric Power Generation System Using Hydro Turbine Tracted by Paraglider
CN106218849A (en) Aerial wind energy power station formula aircraft and aerial fixing aircraft device
WO2017130137A1 (en) Stratospheric drone
CN107554351A (en) To the aerogenerator device people of high electric air commercial aircraft wireless power
US20130118173A1 (en) Airborne energy generation and distribution
US10775586B2 (en) Glitter belt: atmospheric reflectors to reduce solar irradiance
JPH02161173A (en) In-air staying type wind power type power generator
Colozza PV/regenerative fuel cell high altitude airship feasibility study
Bolonkin et al. Antarctica: a southern hemisphere wind power station?
RU2506204C1 (en) Method of locating high-altitude platform and high-altitude platform
EP2916000A1 (en) Ligher-than-air device converting solar and wind energy
US20220126716A1 (en) Range Extending Platform
Adrian et al. CONCEPT OF AUTONOMOUS TEXTILE FOIL KITE-WIND ENERGY GENERATOR.
VASILESCU et al. WIND ENERGY CAPTURING DEVICES WITH POSSIBLE IMPLEMENTATION ON CONTAINER SHIPS.
Dolce et al. High-altitude, long-endurance airships for coastal surveillance
Nam et al. High Altitude Aerial Platform" Mothership" Project Vision and Progress
US20150240785A1 (en) Power generation device floating in the air

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORTHROP GRUMMAN SYSTEMS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIMARZIO, DONALD;DEBIASIO, ALICE;MELNYK, MICHAEL;AND OTHERS;REEL/FRAME:024216/0952

Effective date: 20100324

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION