WO2019198926A1 - 정렬된 3차원 다공성 구조를 갖는 사전 농축기 및 그 제조 방법 - Google Patents

정렬된 3차원 다공성 구조를 갖는 사전 농축기 및 그 제조 방법 Download PDF

Info

Publication number
WO2019198926A1
WO2019198926A1 PCT/KR2019/001943 KR2019001943W WO2019198926A1 WO 2019198926 A1 WO2019198926 A1 WO 2019198926A1 KR 2019001943 W KR2019001943 W KR 2019001943W WO 2019198926 A1 WO2019198926 A1 WO 2019198926A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional porous
trench
concentrator
base substrate
metal layer
Prior art date
Application number
PCT/KR2019/001943
Other languages
English (en)
French (fr)
Inventor
전석우
조동휘
박준용
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US17/046,042 priority Critical patent/US12070736B2/en
Publication of WO2019198926A1 publication Critical patent/WO2019198926A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0019Sample conditioning by preconcentration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40096Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by using electrical resistance heating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof

Definitions

  • the present invention relates to a pre-concentrator. More specifically, it relates to pre-concentrators and methods for their preparation that can be used for the detection of various hazardous / dangerous substances, including volatile organic compounds (VOCs), such as drugs, explosives and the like.
  • VOCs volatile organic compounds
  • the hazardous / dangerous substance may include not only volatile organic compounds but also large molecular weight substances and may be present in the form of a solid powder in the air.
  • the detection of such hazardous / dangerous substances is an important technique for evaluating the environmental impact on the human body, diagnosing diseases, determining air quality, and testing explosives.
  • the concentration of gas components is close to or below the resolution limit of current detector systems.
  • pre-concentrators are used that are designed to adsorb and / or desorb gas components.
  • the pre-concentrator may raise the detection limit of the sensor by adsorbing and concentrating the gas to be detected, and then emitting and providing the same to the sensor.
  • adsorbent a material that is surface coated with a material, often called adsorbent, inside the tube in the form of a tube.
  • a material often called adsorbent
  • porous polymers such as Tenax® TA, Carboxen®, fumed silica gel, MOFs (Metal-Organic Frameworks), Zeolites, etc. can be filled to maximize the adsorption and desorption efficiency between gas molecules and porous bodies. After forming a porous structure with a large specific surface area, it is concentrated on the principle of flowing a gaseous sample and adsorbing it on the porous body and instantaneous heating and thermal desorption.
  • One object of the present invention is to provide a pre-concentrator having an aligned three-dimensional porous structure.
  • Another object of the present invention is to provide a method for producing the preconcentrator.
  • the problem to be solved by the present invention is not limited to the above-mentioned problem, and may be variously expanded within a range without departing from the spirit and scope of the present invention.
  • the pre-concentrator includes a base substrate having a trench, a metal layer conformally disposed along the inner surface of the trench, and the metal layer inside the trench. And three-dimensional porous nanostructures disposed above and having aligned pores connected to each other in three dimensions.
  • the base substrate at least one selected from the group consisting of silicon, glass, quartz, sapphire and polymer.
  • the trench may include a concentrating part, an injecting part provided with a gas sample, a discharging part discharging a concentrated gas sample, an injection channel connecting the concentrating part and the injecting part, and the concentrating part and the discharge part An emission channel connecting the portions, wherein the three-dimensional porous nanostructure is disposed in the concentration portion.
  • the pre-concentrator concentrates the provided gas sample and provides it to a separator, which is disposed on the same base substrate as the separator.
  • the pre-concentrator is coupled to the base substrate to cover the trench, and further comprises a cover member spaced apart from the three-dimensional porous nanostructures.
  • the three-dimensional porous nanostructures, heated by the joule heat of the metal layer emits a concentrated gas sample.
  • a method of manufacturing a pre-concentrator includes: forming a three-dimensional porous mold in a trench of a base substrate, filling the pores of the three-dimensional porous mold, and forming a reverse phase filling structure, and the three-dimensional structure. Removing the porous template to form three-dimensional porous nanostructures having aligned pores connected to each other in three dimensions.
  • the forming of the three-dimensional porous mold includes forming a metal layer conformally disposed along the inner surface of the trench and forming the three-dimensional porous mold on the metal layer.
  • the step of filling the pores of the three-dimensional porous mold is performed through electroplating using the metal layer as an electrode.
  • the forming of the three-dimensional porous mold may include forming a photosensitive film in the trench, providing an optical medium member on the photosensitive film, and a phase mask having an uneven shape on the optical medium member. Arranging and providing light having a three-dimensional distribution to the photosensitive film through the phase mask and the optical medium member.
  • the phase mask and the optical medium member comprises a polymer of the same series.
  • the phase mask and the optical medium member is in a group consisting of polydimetyl siloxane (PDMS), polyurethane acrylate (PUA) and perfluoropolyether (PFPE) At least one selected.
  • PDMS polydimetyl siloxane
  • PDA polyurethane acrylate
  • PFPE perfluoropolyether
  • the optical medium member comprises glass, at least a portion of which is inserted into the trench.
  • the optical medium member comprises a refractive index matching lubricant.
  • the three-dimensional porous nanostructures cerium oxide (CeO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), zinc oxide (ZnO) and At least one selected from the group consisting of titanium nitride (TiN).
  • the three-dimensional porous nanostructure is at least selected from the group consisting of gold, silver, platinum, palladium, ruthenium, rhodium, iridium, vanadium, nickel, cobalt, copper, tungsten, molybdenum, manganese, aluminum and iron It includes one.
  • the forming of the three-dimensional porous mold may include forming a photosensitive film in the trench, contacting a phase mask having a concave-convex shape to a lower surface of the base substrate on which the trench is not formed, And providing light having a three-dimensional distribution to the photosensitive film through the phase mask and the base substrate.
  • three-dimensional porous nanostructures are used for concentration of a sample.
  • the three-dimensional porous nanostructures have a network structure connected to each other, the heat transfer is uniform and fast, and has a low weight due to high porosity. Therefore, it can be heated with low energy, and uniform heating can be performed at a fast time, thereby enabling the gas sample to be released at a high density in a short time. Thus, it is possible to increase the concentration performance of the pre-concentrator.
  • the three-dimensional porous nanostructures can minimize back-pressure.
  • the three-dimensional porous nanostructures can be quickly heated by a metal heating member, the metal heating member may be used as an electroplating electrode for forming the three-dimensional porous nanostructures.
  • FIG. 1 is a plan view illustrating a preconcentrator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
  • 3 to 8 are cross-sectional views illustrating a method of manufacturing a pre-concentrator according to an embodiment of the present invention.
  • FIG. 9 is a perspective view illustrating a step of forming a three-dimensional porous nanostructure in the pre-concentrator manufacturing method according to an embodiment of the present invention.
  • FIG. 10 is a plan view illustrating a preconcentrator and a separator according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a pre-concentrator according to one embodiment of the present invention.
  • 12 to 14 are cross-sectional views showing a method of manufacturing a pre-concentrator according to an embodiment of the present invention.
  • FIG. 1 is a plan view illustrating a preconcentrator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
  • the preconcentrator of the present invention includes a base substrate 100. Trenchs are formed in the base substrate 100.
  • the trench may include a concentrator 110, an injection unit 120, and a discharge unit 130.
  • the trench includes an injection channel 122 connecting the concentrator 110 and the injection unit 120 and an emission channel 132 connecting the concentrator 110 and the discharge unit 130. can do.
  • the base substrate 100 may include a semiconductor material such as silicon.
  • the present invention is not limited thereto, and in another embodiment, the base substrate 100 may include a transparent material such as glass, quartz, sapphire, polymer, or the like.
  • the polymer may include polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), polyamide (PA), polypropylene (PP), and the like. can do.
  • the 3D porous nanostructure 112 is disposed in the concentrating unit 110.
  • the three-dimensional porous nanostructure 112 has aligned pores connected to each other in three dimensions.
  • the 3D porous nanostructure 112 may include various materials such as metals, ceramics, semiconductors, low molecular weight organic compounds, and polymers.
  • the three-dimensional porous nanostructure 112 is gold, silver, platinum, palladium, ruthenium, rhodium, iridium, vanadium, nickel, cobalt, copper, tungsten, molybdenum, manganese, aluminum, iron or their Combinations.
  • the support constituent material usable in the present invention is not limited thereto, and various materials may be used according to the detection target material.
  • the 3D porous nanostructure 112 may be surrounded by the metal layer 114.
  • a metal layer 114 may be disposed on an inner surface of the trench, and the 3D porous nanostructure 112 may be formed on the metal layer 114.
  • the metal layer 114 may serve as a heating member.
  • the 3D porous nanostructure 112 may be heated through the metal layer 114. For example, joule heat may be generated by applying electricity to the metal layer 114.
  • the metal layer 114 may be used as a plating electrode when the 3D porous nanostructure 112 is formed through electroplating.
  • the pre-concentrator is coupled to the base substrate 100, may include a cover member 140 to cover the trench.
  • the cover member 140 and the 3D porous nanostructure 112 may be spaced apart from each other to form a gap 116.
  • the gap 116 may be used as a flow path of gas provided to the pre-concentrator.
  • the gap 116 may be for manufacturing margin of the distributor or sensor integrally formed with the pre-concentrator.
  • the three-dimensional porous nanostructure 112 may have a three-dimensional network structure in which nano-scale pores are connected to each other in three dimensions and aligned to have periodicity. That is, the three-dimensional porous nanostructure 112 may have a structure that is open to the entire surface is substantially interconnected (pore).
  • the three-dimensional porous nanostructure 112 is not composed of a plurality of particles, by having a network structure connected to each other, heat transfer is uniform, fast, and has a low weight due to high porosity. Therefore, it can be heated with low energy, and uniform heating can be performed at a fast time, thereby enabling the gas sample to be released at a high density in a short time. Thus, it is possible to increase the concentration performance of the pre-concentrator.
  • the three-dimensional porous nanostructures can minimize back-pressure.
  • 3 to 8 are cross-sectional views illustrating a method of manufacturing a pre-concentrator according to an embodiment of the present invention.
  • 9 is a perspective view illustrating a step of forming a three-dimensional porous nanostructure in the pre-concentrator manufacturing method according to an embodiment of the present invention.
  • a metal layer 114 is formed in the trench 102 of the base substrate 100.
  • the metal layer 114 may have a shape that conformally extends along the inner wall of the trench 102.
  • the metal layer 114 various metals can be used without limitation.
  • the metal layer 114 may include copper (Cu), aluminum (Al), silver (Ag), nickel (Ni), gold (Au), cobalt (Co), titanium (Ti), and chromium (Cr). , Indium tin oxide (ITO), and the like.
  • the metal layer 114 may be formed by various methods known to form a metal layer. For example, after forming a metal layer in the trench 102 and the upper surface of the base substrate 100 by sputtering, performing a polishing process to expose the upper surface of the base substrate 100, the trench The metal layer 114 disposed inside the 102 may be formed.
  • a photosensitive film 111a is formed in the trench 102.
  • the photosensitive film 111a may be formed by providing a photosensitive composition inside the trench 102 and then soft baking at a temperature ranging from about 90 ° C. to about 100 ° C.
  • the photosensitive composition for forming the photosensitive film 111a may use an epoxy-based negative-tone photoresist or a DNQ-based positive-tone photoresist.
  • the photosensitive document composition may include an organic-inorganic hybrid material, hydrogel, phenolic resin, and the like having photocrosslinkability.
  • the thickness of the photosensitive film 111a may be smaller than the thickness of the trench 102. Therefore, the height of the upper surface of the photosensitive film 111a may be lower than the height of the upper surface of the base substrate 100.
  • an optical medium member 118 is formed on the photosensitive film 111a.
  • the optical medium member 118 may serve to efficiently transfer the photosensitive film 111a in a near field nano patterning process (PnP).
  • the height of the upper surface of the photosensitive film 111a may be lower than the height of the upper surface of the base substrate 100. In this case, even when the phase mask is in close contact with the base substrate 100, a gap may occur between the phase mask and the photosensitive film 111a. When the near field nano patterning is performed in this state, the lower portion of the photosensitive film 111a may be lowered. Patterning may not be performed.
  • near-field nano patterning can be performed uniformly.
  • the optical medium member 118 may be a polymer film containing a polymer.
  • the optical medium member 118 may include a polymer of the same series as the phase mask, for example, polydimethylsiloxane (PDMS), polyurethane acrylate (PUA), purple Fluoropolyether (PFPE) and the like.
  • PDMS polydimethylsiloxane
  • PDA polyurethane acrylate
  • PFPE purple Fluoropolyether
  • the polymer composition or the monomer composition may be coated on the photosensitive film 111a and dried or cured.
  • the optical medium member 118 may comprise glass.
  • the optical medium member 118 may have a protrusion corresponding to the trench, and the protrusion may be aligned to be inserted into the trench.
  • the glass has a refractive index (1.46 or more) larger than PDMS (refractive index: 1.45), so that the refractive index is closer to the photosensitive film 111a (refractive index: 1.65 to 1.7, 1.67 for Su-8 (product name)). Can have For this reason, three-dimensional distribution light may be better transmitted to the photosensitive film 111a than in the case of using PDMS.
  • the glass may be used soda-lime glass having a larger refractive index than ordinary glass.
  • the optical medium member 118 may comprise a refractive index matching lubricant.
  • the refractive index matching lubricant may be a mixture of liquid phases and may be provided to fill the trench.
  • near-field nano patterning is performed to form a three-dimensional porous template 111b.
  • the phase mask 150 is brought into contact with the upper surface of the optical medium member 118, and light having a three-dimensional distribution is transmitted through the phase mask 150 and the optical medium member 118 to the photosensitive film ( 111a).
  • the photosensitive film 111a may be patterned by utilizing a periodic three-dimensional distribution generated from an interference phenomenon of light transmitted through a phase mask including an elastomer material.
  • a phase mask including an elastomer material For example, when the flexible elastic body-based phase mask 150 having a concave-convex grating structure on the surface is contacted on the optical medium member 118, the phase mask 150 is based on Van der Waals force.
  • the optical medium member 118 may be in close contact (eg, conformal contact).
  • a three-dimensional distribution of light may be formed by a talbot effect.
  • the crosslinking of the photoresist selectively occurs only in the portion where the light is strongly formed due to constructive interference, and the remaining portion of the relatively weak light does not have sufficient exposure dose for crosslinking. It can be dissolved and removed during developing.
  • porous polymer material in which a periodic three-dimensional structure of several hundred nanometers (nm) to several micrometers ( ⁇ m) is networked according to the wavelength of the laser and the design of the phase mask. Can be formed.
  • the pore size and periodicity of the three-dimensional porous mold 111b may be controlled by adjusting the pattern period and the wavelength of the incident light of the phase mask 150 used in the PnP method.
  • the phase mask used in the PnP method may be polydimethyl siloxane (PDMS), polyurethane acrylate (PUA), perfluoropolyether (PFPE), or the like. It may include a substance.
  • a silicon master may be fabricated by spin coating a photoresist on a silicon wafer and including a patterned photoresist pattern through an exposure and development process.
  • the silicon master surface can be surface treated with, for example, perfluorinated trichlorosilane vapor.
  • an elastomeric phase mask may be prepared by coating the PDMS layer on the silicon master and separating the cured layer.
  • the non-exposed portion may be removed by the developer and the exposed portion may remain. Accordingly, a three-dimensional porous template 111b including three-dimensional nano pores may be formed.
  • the developer for example, propylene glycol monomethyl ether acetate (PGMEA) may be used.
  • PMEA propylene glycol monomethyl ether acetate
  • the optical medium member 118 may be physically peeled off.
  • the three-dimensional porous template 111b may have a three-dimensional network structure in which nano-scale pores ranging from about 1 nm to about 2,000 nm are connected to each other in three dimensions and arranged to have periodicity.
  • the PnP method has been described above by way of example, but the present invention is not limited thereto, and may be formed using a layered self-assembly method, a particle self-assembly method, multiple interference lithography, or the like.
  • the 3D porous nanostructure 112 is formed by using the 3D porous mold 111b.
  • the three-dimensional porous mold 111b is filled to form a reverse filling structure 111c.
  • the three-dimensional porous mold 111b is removed to form a three-dimensional porous nanostructure 112 corresponding to the filling structure 111c.
  • the 3D porous nanostructure 112 may be formed through chemical vapor deposition, atomic layer deposition, electroplating, electroless plating, molten metal impregnation, or the like.
  • the three-dimensional porous nanostructure 112 may be formed by electroplating.
  • the three-dimensional porous mold 111b is surrounded by the metal layer 114. Therefore, electroplating can be performed quickly and uniformly using the metal layer 114 as an electrode.
  • the three-dimensional porous mold 111b may be removed by plasma etching, wet etching, or the like.
  • the surface of the three-dimensional porous nanostructures 112 may be coated with a reaction activation material having a reactivity with the detection target.
  • the substance to be detected is a substance having a hydrogen bond acceptor (H-bond acceptor) functional group (in the dotted line) as shown in the following formula (1-1) (coyne, heroin, morphine, metaamphetamine, ecstasy, ketamine, etc.)
  • H-bond acceptor hydrogen bond acceptor
  • Chemical Formula 1-2 a substance having a hydrogen bond donor functional group may be used as the reaction activating substance.
  • a detection object is a substance (LSD, marijuana, morphine, etc.) which has a charge-transfer donor functional group (in a dotted line), as shown to following Chemical formula 2-1, following Chemical formula 2-2 As shown in FIG. 5, a material having a charge-transfer acceptor functional group may be used as the reaction activating material.
  • the materials having a functional group of Formula 1-2 or 2-2 may be variously known.
  • FIG. 10 is a plan view illustrating a preconcentrator and a separator according to an embodiment of the present invention.
  • a sample gas may be provided to the concentrator 110 through the injection unit 120 and the injection channel 122.
  • the concentrated sample gas discharged from the concentrator 110 may be discharged through the discharge channel 132 and the discharge unit 130.
  • the concentrated concentrated sample gas may be provided to the fractionator 200 through a microfluidic channel or the like.
  • the separator 200 may be mounted or integrated on the same substrate as the base substrate 100.
  • FIG. 11 is a cross-sectional view of a pre-concentrator according to one embodiment of the present invention.
  • the pre-concentrator includes a base substrate 100 having a trench, a three-dimensional porous nanostructure 112 disposed in the trench, and a cover member covering the trench and coupled to the base substrate 100. 140 and the lower metal layer 214.
  • the metal layer is not disposed between the three-dimensional porous nanostructure 112 and the base substrate 100, the three-dimensional porous nanostructure 112, the inner wall of the base substrate 100 Can be contacted.
  • the lower metal layer 214 may be coupled to the bottom surface of the base substrate 100, and may serve as a heating member for heating the 3D porous nanostructure 112 using joule heat.
  • the three-dimensional porous nanostructure 112 may be formed through chemical vapor deposition, atomic layer deposition, electroless plating, molten metal impregnation method, in addition to electroplating. Thus, it can be formed without the metal layer inside the trench.
  • 12 to 14 are cross-sectional views showing a method of manufacturing a pre-concentrator according to an embodiment of the present invention.
  • the photosensitive film 111a is formed in the trench formed on the upper surface of the base substrate 100.
  • the phase mask 150 is brought into contact with the bottom surface of the base substrate 100, and the photosensitive film 111a is irradiated with light having a three-dimensional distribution through the phase mask 150.
  • the photosensitive film 111a When the photosensitive film 111a is formed of a negative tone photoresist, the non-exposed part may be removed by the developer and the exposed part may remain. Accordingly, a three-dimensional porous template 111b including three-dimensional nano pores may be formed.
  • the base substrate 100 may act as an optical medium between the phase mask 150 and the photosensitive film 111a, the trench may be formed in the trench without a separate optical medium member shown in FIG. 6. It is possible to form a three-dimensional porous mold 111b having high structural uniformity and reliability.
  • the base substrate 111a may include a material having high light transmittance and a high refractive index, for example, glass, quartz, sapphire, and the like, and may preferably include glass such as soda lime glass. .
  • the 3D porous nanostructure 112 is formed by using the 3D porous mold 111b.
  • the three-dimensional porous mold 111b is filled to form a reversed-fill structure.
  • the three-dimensional porous mold 111b is removed to form a three-dimensional porous nanostructure 112 corresponding to the filling structure.
  • the 3D porous nanostructure 112 may be formed through chemical vapor deposition, atomic layer deposition, electroless plating, molten metal impregnation, or the like.
  • the 3D porous nanostructure 112 may include various materials such as metals, ceramics, semiconductors, low molecular weight organic compounds, and polymers.
  • the three-dimensional porous nanostructure 112 cerium oxide (CeO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), zinc oxide (ZnO) , Titanium nitride (TiN) or a combination thereof.
  • the three-dimensional porous nanostructure 112 is gold, silver, platinum, palladium, ruthenium, rhodium, iridium, vanadium, nickel, cobalt, copper, tungsten, molybdenum, manganese, aluminum, iron or their Combinations.
  • the support constituent material usable in the present invention is not limited thereto, and various materials may be used according to the detection target material.
  • Pre-concentrators according to exemplary embodiments of the present invention can be used for the detection of various hazardous / dangerous substances such as narcotics, explosives, etc., including volatile organic compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Micromachines (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

개시된 사전 농축기는, 트렌치를 갖는 베이스 기판, 상기 트렌치 내면을 따라 콘포말하게 배치되는 금속층 및 상기 트렌치 내부에 상기 금속층 위에 배치되며, 3차원으로 서로 연결되는 정렬된 기공을 갖는 3차원 다공성 나노구조물을 포함한다. 상기 사전 농축기는, 시료의 농축 성능 및 농축된 시료의 열탈착 효율을 개선할 수 있다.

Description

정렬된 3차원 다공성 구조를 갖는 사전 농축기 및 그 제조 방법
본 발명은 사전 농축기에 관한 것이다. 보다 상세하게는, 휘발성 유기 화합물(VOCs)을 포함하여, 마약류, 폭발물 등과 같은 다양한 유해/위험 물질의 검출을 위하여 사용될 수 있는 사전 농축기 및 그 제조 방법에 관한 것이다.
최근, 휘발성 유기 화합물(Volatile Organic Compounds, VOCs)을 포함하여 마약류, 폭발물 등과 같은 다양한 유해/위험 물질의 검출 기술에 대한 필요성이 증가하고 있다. 상기 유해/위험 물질은 휘발성 유기 화합물 뿐만 아니라, 큰 분자량의 물질을 포함할 수도 있으며, 공기 중에 고형 파우더 형태로 존재할 수도 있다. 이러한 유해/위험 물질의 검출은, 인체에 대한 환경의 영향 평가, 질병의 진단, 공기 질 판단, 폭발물 검사 등에 필요한 중요한 기술이다.
예를 들어, 휘발성 유기 화합물의 검출에서 중요한 요소는, 가스 성분의 농도이다. 그러나, 많은 경우에서, 검출 대상 가스의 농도는 현재의 검출기 시스템의 분해능 한계에 가깝거나 분해능 한계 미만이다.
따라서, 낮은 농도의 가스 성분을 검출하기 위하여, 가스 성분들을 흡착 및/또는 탈착하도록 설계된 사전 농축기(pre-concentrator)가 사용되고 있다. 사전 농축기는 검출 대상 가스들을 흡착하여 농축한 후, 이를 방출하여 센서에 제공함으로써, 센서의 검출 한계를 높일 수 있다.
기존 전처리 농축 시스템의 경우, 튜브 (tube) 형태의 관 내부에 주로 흡착제 (adsorbent)로 불리는 재료로 표면 코팅되어 있다. 예컨대 Tenaxㄾ TA와 같은 다공성 폴리머 (porous polymer), Carboxenㄾ, fumed silica gel, MOFs (Metal-Organic Frameworks), 제올라이트 (Zeolite) 등과 같은 재료를 채워 넣어 gas molecule과 다공체 간의 흡ㅇ탈착 효율을 극대화 시킬 수 있는 넓은 비표면적의 다공체 구조를 형성한 뒤, 기상 시료를 흘려 주어 다공체에 흡착 시킴과 동시에 순간적으로 가열하여 열탈착 시키는 원리로 농축하게 된다. 따라서 기상 시료의 빠르게 균일한 고효율 탈착을 위하여, 빠른 시간 내에 순간적으로 다공체 구조를 균일하게 가열 하는 기술 (열시상수 관련 기술 요소), 균일한 열 전달 재료를 이용한 다공체 구조 (열전도도), 넓은 비표면적 제작을 위한 나노 구조화 기술이 필요하다. 기존의 전처리 농축 시스템의 경우, 일반적으로, 마이크론 (micron) 스케일의 비정렬 다공체 구조 (random porous structure)를 형성하기 때문에 일부 영역에서 열이 집중되어 탈착 효율 저하되는 문제점, 탈착시 기상 시료의 이동 제어 어려움 등의 문제로 전처리 농축 효율의 향상에 근본적인 기술적 제한이 있다.
[선행기술문헌]
[특허문헌]
(1) 국제출원번호 PCT/EP2015/063293
(2) 미국등록특허 US 9,316,623
[비특허문헌]
(1) Anal. Chem. 2012, 84, 6336
(2) Lab Chip, 2012, 12, 717
(3) Lab Chip, 2013, 13, 818
본 발명의 일 과제는, 정렬된 3차원 다공성 구조를 갖는 사전 농축기를 제공하는 것이다.
본 발명의 다른 과제는, 상기 사전 농축기의 제조 방법을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급된 과제에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
상술한 본 발명의 일 과제를 달성하기 위한 본 발명의 예시적인 실시예들에 따르면, 사전 농축기는, 트렌치를 갖는 베이스 기판, 상기 트렌치 내면을 따라 콘포말하게 배치되는 금속층 및 상기 트렌치 내부에 상기 금속층 위에 배치되며, 3차원으로 서로 연결되는 정렬된 기공을 갖는 3차원 다공성 나노구조물을 포함한다.
일 실시예에 따르면, 상기 베이스 기판은, 실리콘, 유리, 쿼츠, 사파이어 및 고분자로 이루어진 그룹에서 선택된 적어도 하나를 포함한다.
일 실시예에 따르면, 상기 트렌치는, 농축부, 가스 시료가 제공되는 주입부, 농축된 가스 시료를 방출하는 방출부, 상기 농축부와 상기 주입부를 연결하는 주입 채널, 및 상기 농축부와 상기 방출부를 연결하는 방출 채널을 포함하고, 상기 3차원 다공성 나노구조물은 상기 농축부에 배치된다.
일 실시예에 따르면, 상기 사전 농축기는, 제공된 가스 시료를 농축하여 분별기에 제공하며, 상기 분별기와 동일한 베이스 기판에 배치된다.
일 실시예에 따르면, 상기 사전 농축기는, 상기 베이스 기판과 결합하여 상기 트렌치를 커버하며, 상기 3차원 다공성 나노구조물과 이격된 커버 부재를 더 포함한다.
일 실시예에 따르면, 상기 3차원 다공성 나노 구조물은, 상기 금속층의 줄열에 의해 가열되어 농축된 가스 시료를 방출한다.
일 실시예에 따른 사전 농축기의 제조 방법은, 베이스 기판의 트렌치 내부에 3차원 다공성 주형을 형성하는 단계, 상기 3차원 다공성 주형의 기공을 충진하여 역상의 충진 구조를 형성하는 단계, 및 상기 3차원 다공성 주형을 제거하여 3차원으로 서로 연결되는 정렬된 기공을 갖는 3차원 다공성 나노구조물을 형성하는 단계를 포함한다.
일 실시예에 따르면, 상기 3차원 다공성 주형을 형성하는 단계는, 트렌치 내면을 따라 콘포말하게 배치되는 금속층을 형성하는 단계 및 상기 금속층 위에 상기 3차원 다공성 주형을 형성하는 단계를 포함한다.
일 실시예에 따르면, 상기 3차원 다공성 주형의 기공을 충진하는 단계는, 상기 금속층을 전극으로 이용한 전기 도금을 통하여 수행된다.
일 실시예에 따르면, 상기 3차원 다공성 주형을 형성하는 단계는, 상기 트렌치 내에 감광성 필름을 형성하는 단계, 상기 감광성 필름 위에 광학 매질 부재를 제공하는 단계, 상기 광학 매질 부재 위에 요철 형상을 갖는 위상 마스크를 배치하는 단계 및 상기 위상 마스크 및 상기 광학 매질 부재를 통하여, 상기 감광성 필름에 3차원 분포를 갖는 광을 제공하는 단계를 포함한다.
일 실시예에 따르면, 상기 위상 마스크 및 상기 광학 매질 부재는 동일한 계열의 고분자를 포함한다.
일 실시예에 따르면, 상기 위상 마스크 및 상기 광학 매질 부재는 폴리디메틸실록산(polydimetyl siloxane: PDMS), 폴리우레탄 아크릴레이트(polyurethane acrylate: PUA) 및 퍼플루오로폴리에테르(perfluoropolyether: PFPE)로 이루어진 그룹에서 선택된 적어도 하나를 포함한다.
일 실시예에 따르면, 상기 광학 매질 부재는 유리를 포함하며, 상기 트렌치에 적어도 일부가 삽입된다.
일 실시예에 따르면, 상기 광학 매질 부재는 굴절율 매칭 윤활제를 포함한다.
일 실시예에 따르면, 상기 3차원 다공성 나노구조물은, 세륨 산화물(CeO2), 알루미늄 산화물(Al2O3), 티타늄 산화물(TiO2), 지르코늄 산화물(ZrO2), 아연 산화물(ZnO) 및 티타늄 질화물(TiN)로 이루어지는 그룹에서 선택된 적어도 하나를 포함한다.
일 실시예에 따르면, 상기 3차원 다공성 나노구조물은, 금, 은, 백금, 팔라듐, 루테늄, 로듐, 이리듐, 바나듐, 니켈, 코발트, 구리, 텅스텐, 몰리브덴, 망간, 알루미늄 및 철로 이루어진 그룹에서 선택된 적어도 하나를 포함한다.
일 실시예에 따르면, 상기 3차원 다공성 주형을 형성하는 단계는, 상기 트렌치 내에 감광성 필름을 형성하는 단계, 상기 트렌치가 형성되지 않은 상기 베이스 기판의 하면에 요철 형상을 갖는 위상 마스크를 접촉시키는 단계, 및 상기 위상 마스크 및 상기 베이스 기판을 통하여, 상기 감광성 필름에 3차원 분포를 갖는 광을 제공하는 단계를 포함한다.
상술한 바와 같이 본 발명의 예시적인 실시예들에 따르면, 시료의 농축을 위하여 3차원 다공성 나노 구조물을 이용한다. 상기 3차원 다공성 나노 구조물은 서로 연결된 네트워크 구조를 가짐으로써 열전달이 균일하고 빠르고, 높은 기공율로 인하여 낮은 중량을 갖는다. 따라서, 낮은 에너지로 가열될 수 있으며, 빠른 시간에 균일한 가열이 가능함으로써, 가스 시료를 높은 밀도로 단시간에 방출할 수 있다. 따라서, 사전 농축기의 농축 성능을 증가시킬 수 있다. 또한, 상기 3차원 다공성 나노 구조물은 압력 강하(back-pressure)를 최소화할 수 있다.
또한, 상기 3차원 다공성 나노 구조물은, 금속 가열 부재에 의해 빠르게 가열될 수 있으며, 상기 금속 가열 부재는 상기 3차원 다공성 나노 구조물을 형성하기 위한 전기 도금 전극으로 이용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 사전 농축기를 도시한 평면도이다.
도 2는 도 1의 I-I' 선을 따라 도시한 단면도이다.
도 3 내지 도 8은 본 발명의 일 실시예에 따른 사전 농축기의 제조 방법을 도시한 단면도들이다.
도 9는 본 발명의 일 실시예에 따른 사전 농축기의 제조 방법에서 3차원 다공성 나노 구조물을 형성하는 단계를 도시한 사시도이다.
도 10은 본 발명의 일 실시예에 따른 사전 농축기 및 분별기(separator)를 도시한 평면도이다.
도 11은 본 발명의 일 실시예에 따른 사전 농축기의 단면도이다.
도 12 내지 14는 본 발명의 일 실시예에 따른 사전 농축기의 제조 방법을 도시한 단면도들이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 정렬된 3차원 다공성 구조를 갖는 사전농축기 및 그 제조 방법에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 실시예에 따른 사전 농축기를 도시한 평면도이다. 도 2는 도 1의 I-I' 선을 따라 도시한 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 사전 농축기는 베이스 기판(100)을 포함한다. 상기 베이스 기판(100)에는 트렌치가 형성된다. 상기 트렌치는 농축부(110), 주입부(120) 및 방출부(130)를 포함할 수 있다. 또한, 상기 트렌치는 상기 농축부(110)와 상기 주입부(120)를 연결하는 주입 채널(122)과 상기 농축부(110)와 상기 방출부(130)를 연결하는 방출 채널(132)을 포함할 수 있다.
일 실시예에 따르면, 상기 베이스 기판(100)은 실리콘 등과 같은 반도체 물질을 포함할 수 있다. 그러나, 본 발명은 이에 한정되지 않으며, 다른 실시예에서, 상기 베이스 기판(100)은, 유리, 쿼츠, 사파이어, 고분자 등과 같은 투명한 물질을 포함할 수 있다. 예를 들어, 상기 고분자는, 폴리메틸메타크릴레이트(PMMA), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리이미드(PI), 폴리아미드(PA), 폴리프로필렌(PP) 등을 포함할 수 있다.
상기 농축부(110)에는 3차원 다공성 나노구조물(112)이 배치된다. 상기 3차원 다공성 나노구조물(112)은, 3차원으로 서로 연결되는 정렬된 기공들을 갖는다. 상기 3차원 다공성 나노구조물(112)은, 금속, 세라믹, 반도체, 저분자 유기 화합물, 고분자 등과 같은 다양한 물질을 포함할 수 있다. 예를 들어, 상기 3차원 다공성 나노구조물(112)은, 세륨 산화물(CeO2), 알루미늄 산화물(Al2O3), 티타늄 산화물(TiO2), 지르코늄 산화물(ZrO2), 아연 산화물(ZnO), 티타늄 질화물(TiN) 또는 이들의 조합을 포함할 수 있다. 다른 실시예에서, 상기 3차원 다공성 나노구조물(112)은, 금, 은, 백금, 팔라듐, 루테늄, 로듐, 이리듐, 바나듐, 니켈, 코발트, 구리, 텅스텐, 몰리브덴, 망간, 알루미늄, 철 또는 이들의 조합을 포함할 수 있다. 그러나, 본 발명에서 사용 가능한 지지체 구성 물질은 이에 한정되지 않으며, 검출 대상 물질 등에 따라 다양한 물질이 사용될 수 있다.
상기 3차원 다공성 나노구조물(112)은, 금속층(114)에 의해 둘러싸여질 수 있다. 예를 들어, 상기 트렌치의 내면에 금속층(114)이 배치되고, 상기 금속층(114) 위에 상기 3차원 다공성 나노구조물(112)이 형성될 수 있다.
상기 금속층(114)은 가열 부재의 역할을 할 수 있다. 상기 3차원 다공성 나노 구조물(110)에 의해 흡착되고 농축된 시료 가스를 방출하기 위하여, 상기 금속층(114)을 통해 상기 3차원 다공성 나노구조물(112)이 가열될 수 있다. 예를 들어, 상기 금속층(114)에는 전기가 인가되어 줄열이 발생할 수 있다.
또한, 상기 금속층(114)은, 상기 3차원 다공성 나노구조물(112)을 전기도금을 통해 형성할 경우, 도금 전극으로 이용될 수 있다.
일 실시예에 따르면, 상기 사전 농축기는 베이스 기판(100)과 결합되며, 상기 트렌치를 커버하는 커버 부재(140)를 포함할 수 있다. 상기 커버 부재(140)와 상기 3차원 다공성 나노구조물(112)은 서로 이격되어 갭(116)을 형성할 수 있다. 상기 갭(116)은, 상기 사전 농축기에 제공되는 가스의 유로로 이용될 수 있다. 또한, 상기 갭(116)은, 상기 사전 농축기와 일체로 형성되는 분배기 또는 센서의 제조 마진을 위한 것일 수 있다.
일 실시예에 따르면, 상기 3차원 다공성 나노구조물(112)은, 나노 스케일의 기공들이 3차원적으로 서로 연결되며, 주기성을 갖도록 정렬된 3차원 네트워크 구조를 가질 수 있다. 즉, 상기 3차원 다공성 나노구조물(112)은 실질적으로 모든 기공이 상호 연결되어(interconnected) 전면적으로 개방된 구조(open structure)를 가질 수 있다.
따라서, 구조물 내에서 효율적인 물질 이동이 가능하며, 표면적을 최대화할 수 있으므로, 사전 농축기의 농축 성능을 증가시킬 수 있다.
또한, 상기 3차원 다공성 나노 구조물(112)은 복수의 입자로 이루어지는 것이 아니라, 서로 연결된 네트워크 구조를 가짐으로써 열전달이 균일하고 빠르고, 높은 기공율로 인하여 낮은 중량을 갖는다. 따라서, 낮은 에너지로 가열될 수 있으며, 빠른 시간에 균일한 가열이 가능함으로써, 가스 시료를 높은 밀도로 단시간에 방출할 수 있다. 따라서, 사전 농축기의 농축 성능을 증가시킬 수 있다.
또한, 상기 3차원 다공성 나노 구조물은 압력 강하(back-pressure)를 최소화할 수 있다.
도 3 내지 도 8은 본 발명의 일 실시예에 따른 사전 농축기의 제조 방법을 도시한 단면도들이다. 도 9는 본 발명의 일 실시예에 따른 사전 농축기의 제조 방법에서 3차원 다공성 나노 구조물을 형성하는 단계를 도시한 사시도이다.
도 3을 참조하면, 베이스 기판(100)의 트렌치(102) 내에, 금속층(114)을 형성한다. 상기 금속층(114)은 트렌치(102) 내벽을 따라 콘포멀하게 연장되는 형상을 가질 수 있다.
상기 금속층(114)은, 다양한 금속이 제한없이 사용될 수 있다. 예를 들어, 상기 금속층(114)은, 구리(Cu), 알루미늄(Al), 은(Ag), 니켈(Ni), 금(Au), 코발트(Co), 티타늄(Ti), 크롬(Cr), 인듐 주석 산화물(ITO) 등을 포함할 수 있다. 상기 금속층(114)은, 금속층을 형성하는 방법으로 알려진 다양한 방법에 의해 형성될 수 있다. 예를 들어, 스푸터링을 이용하여 상기 베이스 기판(100)의 트렌치(102) 내부와 상면에 금속층을 형성한 후, 상기 베이스 기판(100)의 상면이 노출되도록 연마 공정을 수행하여, 상기 트렌치(102) 내부에 배치된 금속층(114)을 형성할 수 있다.
도 4를 참조하면, 상기 트렌치(102) 내부에 감광성 필름(111a)을 형성한다. 상기 감광성 필름(111a)은, 감광성 조성물을 상기 트렌치(102) 내부에 제공한 후, 예를 들면 약 90℃ 내지 약 100℃ 범위의 온도로 소프트 베이킹(soft baking) 처리하여 형성될 수 있다.
상기 감광성 필름(111a) 형성을 위한 감광성 조성물은, 에폭시 기반의 네거티브 톤(negative-tone) 포토레지스트 또는 DNQ 기반의 포지티브 톤(positive-tone) 포토레지스트를 사용할 수 있다. 일 실시예에 있어서, 상기 감광서 조성물은 광가교성을 갖는 유-무기 하이브리드 물질, 하이드로 젤, 페놀릭 수지 등을 포함할 수 있다.
일 실시예에 따르면, 상기 감광성 필름(111a)의 두께는 상기 트렌치(102)의 두께보다 작을 수 있다. 따라서, 상기 감광성 필름(111a) 상면의 높이는, 상기 베이스 기판(100) 상면의 높이보다 낮을 수 있다.
도 5를 참조하면, 상기 감광성 필름(111a) 위에 광학 매질 부재(118)를 형성한다. 상기 광학 매질 부재(118)는, 이후의 근접장 나노 패터닝 공정(PnP)에서, 상기 감광성 필름(111a)에 효율적으로 전달하는 역할을 할 수 있다.
설명한 것과 같이, 상기 감광성 필름(111a) 상면의 높이는, 상기 베이스 기판(100) 상면의 높이보다 낮을 수 있다. 이 경우, 상기 베이스 기판(100)에 위상 마스크를 밀착시키더라도, 위상 마스크와 감광성 필름(111a) 사이에 갭이 발생할 수 있으며, 이 상태로 근접장 나노 패터닝을 진행할 경우, 감광성 필름(111a) 하부에는 패터닝이 수행되지 않을 수 있다.
본 발명의 일 실시예에 따르면, 상기와 같은 패터닝 불량을 방지하기 위하여, 위상 마스크와 감광성 필름(111a) 사이에 광학 매질 부재(118)를 제공함으로써, 근접장 나노 패터닝이 균일하게 수행될 수 있다.
일 실시예에 따르면, 상기 광학 매질 부재(118)는, 고분자를 포함하는 고분자 필름일 수 있다. 바람직하게, 상기 광학 매질 부재(118)는 위상 마스크와 동일한 계열의 고분자를 포함할 수 있으며, 예를 들어, 폴리디메틸실록산(polydimetyl siloxane: PDMS), 폴리우레탄 아크릴레이트(polyurethane acrylate: PUA), 퍼플루오로폴리에테르(perfluoropolyether: PFPE) 등을 포함할 수 있다. 상기 광학 매질 부재(118)를 형성하기 위하여, 상기 고분자의 조성물 또는 모노머 조성물을 상기 감광성 필름(111a) 위에 코팅하고 건조 또는 경화할 수 있다.
다른 실시예에 따르면, 상기 광학 매질 부재(118)는 유리를 포함할 수 있다. 예를 들어, 상기 광학 매질 부재(118)는 상기 트렌치에 대응되는 돌출부를 가질 수 있으며, 상기 돌출부가 상기 트렌치에 삽입되도록 얼라인 될 수 있다. 유리는 PDMS(굴절율: 1.45) 보다 큰 굴절율(1.46 이상)을 가짐으로써, 상기 감광성 필름(111a)(굴절율: 예를 들어, 1.65 내지 1.7, Su-8(제품명)의 경우 1.67)과 보다 가까운 굴절율을 가질 수 있다. 이로 인하여, PDMS를 사용하는 경우에 비하여 3차원 분포 광이, 상기 감광성 필름(111a)에 보다 잘 전달될 수 있다. 바람직하게, 상기 유리는 일반 유리보다 굴절율이 큰 소다라임 유리가 사용될 수 있다.
다른 실시예에 따르면, 상기 광학 매질 부재(118)는 굴절율 매칭 윤활제를 포함할 수 있다. 상기 굴절율 매칭 윤활제는 액상의 혼합물일 수 있으며, 상기 트렌치를 채우도록 제공될 수 있다.
도 6 및 도 7을 참조하면, 근접장 나노 패터닝을 수행하여 3차원 다공성 주형(111b)을 형성한다. 구체적으로, 상기 광학 매질 부재(118)의 상면에 위상 마스크(150)를 접촉시키고, 상기 위상 마스크(150) 및 상기 광학 매질 부재(118)을 통해, 3차원 분포를 갖는 광을 상기 감광성 필름(111a)에 조사한다.
상기 PnP 방법에 있어서, 예를 들면 엘라스토머(elastomer) 물질을 포함하는 위상 마스크에 투과되는 빛의 간섭 현상으로부터 발생된 주기적인 3차원 분포가 활용되어 상기 감광성 필름(111a)이 패터닝될 수 있다. 예를 들면, 표면에 요철 격자 구조가 형성된 유연한 탄성체 기반의 위상 마스크(150)를 상기 광학 매질 부재(118) 위에 접촉시키면 반 데르 발스(Van der Waals) 힘에 기반하여 상기 위상 마스크(150)가 자연적으로 상기 광학 매질 부재(118)에 밀착(예를 들면, 콘포멀(conformal) 접촉)할 수 있다.
상기 위상 마스크(150)의 격자 주기와 유사한 범위의 파장을 갖는 레이저를 상기 위상 마스크(150) 표면에 조사하면 탈봇 효과에 의해 3차원적인 빛의 분포가 형성될 수 있다. 네거티브 톤의 포토레지스트를 사용하는 경우, 보강 간섭으로 빛이 강하게 형성된 부분만 선택적으로 포토레지스트의 가교가 일어나고 상대적으로 빛이 약한 나머지 부분은 가교를 위한 노광량(exposure dose)이 충분하지 못하기 때문에 현상(developing) 과정에서 용해되어 제거될 수 있다. 최종적으로 건조(drying) 과정을 거치면 상기 레이저의 파장 및 상기 위상 마스크의 디자인에 따라 수 백 나노미터(nm) ~ 수 마이크로미터(㎛) 수준의 주기적인 3차원 구조가 네트워크로 연결된 다공성 고분자 소재가 형성될 수 있다.
예시적인 실시예들에 따르면, 상기 PnP 방법에 사용되는 위상 마스크(150)의 패턴 주기 및 입사광의 파장을 조절하여 3차원 다공성 주형(111b)의 기공 사이즈 및 주기성을 조절할 수 있다.
상기 PnP 방법에 대한 보다 상세한 내용은 본 출원에 참조로서 병합되는 논문 J. Phys. Chem. B 2007, 111, 12945-12958; Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12428; AdV. Mater. 2004, 16, 1369 또는 대한민국 공개특허공보 제2006-0109477호(공개일 2006.10.20)에 개시되어 있다.
일부 실시예들에 있어서, 상기 PnP 방법에 사용되는 상기 위상 마스크는 폴리디메틸실록산(polydimetyl siloxane: PDMS), 폴리우레탄 아크릴레이트(polyurethane acrylate: PUA), 퍼플루오로폴리에테르(perfluoropolyether: PFPE) 등의 물질을 포함할 수 있다.
예를 들면, 실리콘 웨이퍼 상에 포토레지스트를 스핀 코팅하고, 노광 및 현상 공정을 통해 패터닝된 포토레지스트 패턴을 포함하는 실리콘 마스터를 제조할 수 있다. 상기 실리콘 마스터 표면은 예를 들면, 과불소화된 트리클로로실란(perfluorinated trichlorosilane) 증기를 통해 표면 처리될 수 있다. 이후, 상기 실리콘 마스터 상에 PDMS층을 코팅하고 경화 후 분리시킴으로서 엘라스토머 위상 마스크를 제조할 수 있다.
일부 실시예들에 있어서, 감광성 필름(111a)이 네거티브 톤 포토레지스트로 형성된 경우, 현상액에 의해 비노광부가 제거되고 노광부가 잔류할 수 있다. 이에 따라, 3차원 나노 기공을 포함하는 3차원 다공성 주형(111b)이 형성될 수 있다. 상기 현상액으로서 예를 들면, 프로필렌 글리콜 모노메틸 에테르 아세테이트(propylene glycol monomethyl ether acetate: PGMEA)가 사용될 수 있다. 상기 광학 매질 부재(118)은 물리적으로 박리될 수 있다.
상기 3차원 다공성 주형(111b)은 약 1 nm 내지 약 2,000 nm 범위의 나노 스케일의 기공들이 3차원적으로 서로 연결되며, 주기성을 갖도록 정렬된 3차원 네트워크 구조를 가질 수 있다.
상기에서는 PnP 방법을 예시하여 설명하였으나, 본 발명은 이에 한정되지 않으며, 층상 자가 조립법, 파티클 자가 조립법, 다중 간섭 리소그라피 등을 이용하여 형성될 수도 있다.
도 8 및 도 9를 참조하면, 상기 3차원 다공성 주형(111b)을 이용하여, 3차원 다공성 나노구조물(112)을 형성한다.
구체적으로, 상기 3차원 다공성 주형(111b)의 기공의 적어도 일부를 충진하여 역상의 충진 구조(111c)를 형성한다. 다음으로, 상기 3차원 다공성 주형(111b)을 제거하여, 상기 충진 구조(111c)에 대응되는 3차원 다공성 나노구조물(112)을 형성한다.
예를 들어, 상기 3차원 다공성 나노구조물(112)은, 화학기상증착, 원자층 증착, 전기 도금, 무전해 도금, 용융 금속 함침법 등을 통해 형성될 수 있다.
일 실시예에 따르면, 상기 3차원 다공성 나노구조물(112)은 전기 도금에 의해 형성될 수 있다. 일 실시예에 따르면, 상기 3차원 다공성 주형(111b)은 상기 금속층(114)에 의해 둘러싸여진다. 따라서, 상기 금속층(114)을 전극으로 이용하여 전기 도금을 빠르고 균일하게 수행할 수 있다.
상기 3차원 다공성 주형(111b)은, 플라즈마 식각, 습식 식각 등에 의해 제거될 수 있다.
일 실시예에 따르면, 상기 3차원 다공성 나노구조물(112)의 검출 효과를 개선하기 위하여, 상기 3차원 다공성 나노구조물(112)의 표면에 검출 대상과 반응성을 갖는 반응 활성화 물질을 코팅할 수 있다.
상기 반응 활성화 물질로는, 검출 대상의 종류에 따라 다양한 물질이 사용될 수 있다. 예를 들어, 검출 대상이 다음의 화학식 1-1에 나타낸 것과 같이, 수소 결합 받개(H-bond acceptor) 작용기(점선 안)를 갖는 물질(코타인, 헤로인, 모르핀, 메타암페타민, 엑스타시, 케타민 등)인 경우, 다음의 화학식 1-2에 나타낸 것과 같이, 수소 결합 주개(H-bond donor) 작용기를 갖는 물질이 반응 활성화 물질로 사용될 수 있다.
<화학식 1-1>
Figure PCTKR2019001943-appb-I000001
<화학식 1-2>
Figure PCTKR2019001943-appb-I000002
또한, 검출 대상이 다음의 화학식 2-1에 나타낸 것과 같이, 전하 이동 주개(charge-transfer donor) 작용기(점선 안)를 갖는 물질(LSD, 마리화나, 모르핀 등)인 경우, 다음의 화학식 2-2에 나타낸 것과 같이, 전하 이동 받개(charge-transfer acceptor) 작용기를 갖는 물질이 반응 활성화 물질로 사용될 수 있다.
<화학식 2-1>
Figure PCTKR2019001943-appb-I000003
<화학식 2-2>
Figure PCTKR2019001943-appb-I000004
상기 화학식 1-2 또는 2-2의 작용기를 갖는 물질들은 종래에 알려진 것들이 다양하게 사용될 수 있다.
본 발명의 일 실시예에 따르면, 기판의 트렌치 내부에 3차원 다공성 나노구조를 갖는 사전 농축기를 용이하게 형성할 수 있다.
도 10은 본 발명의 일 실시예에 따른 사전 농축기 및 분별기(separator)를 도시한 평면도이다.
일 실시예에 따르면, 상기 주입부(120)와 상기 주입 채널(122)을 통해, 시료 가스가 상기 농축부(110)에 제공될 수 있다. 또한, 상기 농축부(110)에서 방출된 농축 시료 가스는 상기 방출 채널(132) 및 상기 방출부(130)를 통해 방출될 수 있다. 방출된 농축 시료 가스는, 마이크로 유체 채널 등을 통해 분별기(200)로 제공될 수 있다. 바람직하게, 상기 분별기(200)는 상기 베이스 기판(100)과 동일한 기판에 실장되거나 집적되어 형성될 수 있다.
도 11은 본 발명의 일 실시예에 따른 사전 농축기의 단면도이다.
도 11을 참조하면, 사전 농축기는, 트렌치를 갖는 베이스 기판(100), 상기 트렌치 내에 배치된 3차원 다공성 나노구조물(112), 상기 트렌치를 커버하며, 상기 베이스 기판(100)과 결합되는 커버 부재(140) 및 하부 금속층(214)을 포함할 수 있다.
일 실시예에 따르면, 상기 3차원 다공성 나노구조물(112)과 상기 베이스 기판(100) 사이에는 금속층이 배치되지 않음으로써, 상기 3차원 다공성 나노구조물(112)은, 상기 베이스 기판(100)의 내벽에 접촉할 수 있다. 상기 하부 금속층(214)은 상기 베이스 기판(100)의 하면에 결합될 수 있으며, 줄열 등을 이용하여, 상기 3차원 다공성 나노구조물(112)을 가열하는 가열 부재의 역할을 할 수 있다.
전술한 것과 같이, 상기 3차원 다공성 나노구조물(112)은 전기 도금 외에도 화학기상증착, 원자층 증착, 무전해 도금, 용융 금속 함침법 등을 통해 형성될 수 있다. 따라서, 트렌치 내부의 금속층 없이도 형성될 수 있다.
도 12 내지 14는 본 발명의 일 실시예에 따른 사전 농축기의 제조 방법을 도시한 단면도들이다.
도 12 및 13을 참조하면, 베이스 기판(100)의 상면에 형성된 트렌치 내부에 감광성 필름(111a)을 형성한다. 다음으로, 상기 베이스 기판(100)의 하면에 위상 마스크(150)를 접촉시키고, 상기 위상 마스크(150)를 통해, 3차원 분포를 갖는 광을 상기 감광성 필름(111a)에 조사한다.
상기 감광성 필름(111a)이 네거티브 톤 포토레지스트로 형성된 경우, 현상액에 의해 비노광부가 제거되고 노광부가 잔류할 수 있다. 이에 따라, 3차원 나노 기공을 포함하는 3차원 다공성 주형(111b)이 형성될 수 있다.
상기의 방법에 따를 경우, 위상 마스크(150)와 감광성 필름(111a) 사이에서 상기 베이스 기판(100)이 광학 매질의 역할을 할 수 있으므로, 도 6에 도시된 별도의 광학 매질 부재 없이, 트렌치 내에 구조적 균일성 및 신뢰성이 높은 3차원 다공성 주형(111b)를 형성할 수 있다.
일 실시예에 따르면, 상기 베이스 기판(111a)은 투광성이 높고 굴절율이 큰 물질, 예를 들어, 유리, 쿼츠, 사파이어 등을 포함할 수 있으며, 바람직하게 소다라임 유리와 같은 유리를 포함할 수 있다.
도 14를 참조하면, 상기 3차원 다공성 주형(111b)을 이용하여, 3차원 다공성 나노구조물(112)을 형성한다.
구체적으로, 상기 3차원 다공성 주형(111b)의 기공의 적어도 일부를 충진하여 역상의 충진 구조를 형성한다. 다음으로, 상기 3차원 다공성 주형(111b)을 제거하여, 상기 충진 구조에 대응되는 3차원 다공성 나노구조물(112)을 형성한다.
예를 들어, 상기 3차원 다공성 나노구조물(112)은, 화학기상증착, 원자층 증착, 무전해 도금, 용융 금속 함침법 등을 통해 형성될 수 있다.
예를 들어, 상기 3차원 다공성 나노구조물(112)은, 금속, 세라믹, 반도체, 저분자 유기 화합물, 고분자 등과 같은 다양한 물질을 포함할 수 있다. 예를 들어, 상기 3차원 다공성 나노구조물(112)은, 세륨 산화물(CeO2), 알루미늄 산화물(Al2O3), 티타늄 산화물(TiO2), 지르코늄 산화물(ZrO2), 아연 산화물(ZnO), 티타늄 질화물(TiN) 또는 이들의 조합을 포함할 수 있다. 다른 실시예에서, 상기 3차원 다공성 나노구조물(112)은, 금, 은, 백금, 팔라듐, 루테늄, 로듐, 이리듐, 바나듐, 니켈, 코발트, 구리, 텅스텐, 몰리브덴, 망간, 알루미늄, 철 또는 이들의 조합을 포함할 수 있다. 그러나, 본 발명에서 사용 가능한 지지체 구성 물질은 이에 한정되지 않으며, 검출 대상 물질 등에 따라 다양한 물질이 사용될 수 있다.
상술한 바와 같이 본 발명의 예시적인 실시예들을 참조하여 설명하였지만 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명의 예시적인 실시예들에 따른 사전 농축기는 휘발성 유기 화합물을 포함하여 마약류, 폭발물 등과 같은 다양한 유해/위험 물질의 검출에 이용될 수 있다.

Claims (18)

  1. 트렌치를 갖는 베이스 기판;
    상기 트렌치 내면을 따라 콘포말하게 배치되는 금속층; 및
    상기 트렌치 내부에 상기 금속층 위에 배치되며, 3차원으로 서로 연결되는 정렬된 기공을 갖는 3차원 다공성 나노구조물을 포함하는 사전 농축기.
  2. 제1항에 있어서, 상기 베이스 기판은, 실리콘, 유리, 쿼츠, 사파이어 및 고분자로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 사전 농축기.
  3. 제1항에 있어서, 상기 트렌치는, 농축부, 가스 시료가 제공되는 주입부, 농축된 가스 시료를 방출하는 방출부, 상기 농축부와 상기 주입부를 연결하는 주입 채널, 및 상기 농축부와 상기 방출부를 연결하는 방출 채널을 포함하고, 상기 3차원 다공성 나노구조물은 상기 농축부에 배치되는 것을 특징으로 하는 사전 농축기.
  4. 제1항에 있어서, 상기 사전 농축기는, 제공된 가스 시료를 농축하여 분별기에 제공하며, 상기 분별기와 동일한 베이스 기판에 배치되는 것을 특징으로 하는 사전 농축기.
  5. 제1항에 있어서, 상기 베이스 기판과 결합하여 상기 트렌치를 커버하며, 상기 3차원 다공성 나노구조물과 이격된 커버 부재를 더 포함하는 것을 특징으로 하는 사전 농축기.
  6. 제1항에 있어서, 상기 3차원 다공성 나노 구조물은, 상기 금속층의 줄열에 의해 가열되어 농축된 가스 시료를 방출하는 것을 특징으로 하는 사전 농축기.
  7. 베이스 기판의 트렌치 내부에 3차원 다공성 주형을 형성하는 단계;
    상기 3차원 다공성 주형의 기공을 충진하여 역상의 충진 구조를 형성하는 단계;
    및 상기 3차원 다공성 주형을 제거하여 3차원으로 서로 연결되는 정렬된 기공을 갖는 3차원 다공성 나노구조물을 형성하는 단계를 포함하는 사전 농축기의 제조 방법.
  8. 제7항에 있어서, 상기 3차원 다공성 주형을 형성하는 단계는,
    상기 트렌치 내면을 따라 콘포말하게 배치되는 금속층을 형성하는 단계; 및
    상기 금속층 위에 상기 3차원 다공성 주형을 형성하는 단계를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  9. 제8항에 있어서, 상기 3차원 다공성 주형의 기공을 충진하는 단계는,
    상기 금속층을 전극으로 이용한 전기 도금을 통하여 수행되는 것을 특징으로 하는 사전 농축기의 제조 방법.
  10. 제7항에 있어서, 상기 3차원 다공성 주형을 형성하는 단계는,
    상기 트렌치 내에 감광성 필름을 형성하는 단계;
    상기 감광성 필름 위에 광학 매질 부재를 제공하는 단계;
    상기 광학 매질 부재 위에 요철 형상을 갖는 위상 마스크를 배치하는 단계; 및
    상기 위상 마스크 및 상기 광학 매질 부재를 통하여, 상기 감광성 필름에 3차원 분포를 갖는 광을 제공하는 단계를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  11. 제10항에 있어서, 상기 위상 마스크 및 상기 광학 매질 부재는 동일한 계열의 고분자를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  12. 제11항에 있어서, 상기 위상 마스크 및 상기 광학 매질 부재는 폴리디메틸실록산(polydimetyl siloxane: PDMS), 폴리우레탄 아크릴레이트(polyurethane acrylate: PUA) 및 퍼플루오로폴리에테르(perfluoropolyether: PFPE)로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  13. 제10항에 있어서, 상기 광학 매질 부재는 유리를 포함하며, 상기 트렌치에 적어도 일부가 삽입되는 것을 특징으로 하는 사전 농축기의 제조 방법.
  14. 제10항에 있어서, 상기 광학 매질 부재는 굴절율 매칭 윤활제를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  15. 제7항에 있어서, 상기 3차원 다공성 나노구조물은, 세륨 산화물(CeO2), 알루미늄 산화물(Al2O3), 티타늄 산화물(TiO2), 지르코늄 산화물(ZrO2), 아연 산화물(ZnO) 및 티타늄 질화물(TiN)로 이루어지는 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  16. 제7항에 있어서, 상기 3차원 다공성 나노구조물은, 금, 은, 백금, 팔라듐, 루테늄, 로듐, 이리듐, 바나듐, 니켈, 코발트, 구리, 텅스텐, 몰리브덴, 망간, 알루미늄 및 철로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  17. 제7항에 있어서, 상기 3차원 다공성 주형을 형성하는 단계는,
    상기 트렌치 내에 감광성 필름을 형성하는 단계;
    상기 트렌치가 형성되지 않은 상기 베이스 기판의 하면에 요철 형상을 갖는 위상 마스크를 접촉시키는 단계; 및
    상기 위상 마스크 및 상기 베이스 기판을 통하여, 상기 감광성 필름에 3차원 분포를 갖는 광을 제공하는 단계를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법.
  18. 제17항에 있어서, 상기 베이스 기판은, 유리, 쿼츠 및 사파이어로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 사전 농축기의 제조 방법
PCT/KR2019/001943 2018-04-09 2019-02-19 정렬된 3차원 다공성 구조를 갖는 사전 농축기 및 그 제조 방법 WO2019198926A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/046,042 US12070736B2 (en) 2018-04-09 2019-02-19 Pre-concentrator with aligned three-dimensional porous structure and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180041150A KR102112031B1 (ko) 2018-04-09 2018-04-09 정렬된 3차원 다공성 구조를 갖는 사전 농축기 및 그 제조 방법
KR10-2018-0041150 2018-04-09

Publications (1)

Publication Number Publication Date
WO2019198926A1 true WO2019198926A1 (ko) 2019-10-17

Family

ID=68162939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001943 WO2019198926A1 (ko) 2018-04-09 2019-02-19 정렬된 3차원 다공성 구조를 갖는 사전 농축기 및 그 제조 방법

Country Status (3)

Country Link
US (1) US12070736B2 (ko)
KR (1) KR102112031B1 (ko)
WO (1) WO2019198926A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498882B2 (en) 2019-03-29 2022-11-15 The Government of the United States of America, as represented by the Secretary of Homeland Security Producing odorant pumice stone samples

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512747B1 (ko) 2020-06-12 2023-03-23 한국과학기술원 배향된 이종 계면을 갖는 신축성 투명도 조절 필름, 그 제조 방법 및 신축성 투명도 조정 필름을 포함하는 스마트 윈도우
US20240100505A1 (en) * 2021-08-23 2024-03-28 Korea Advanced Institute Of Science And Technology Micro-separator including 3d ordered nanoshell structure of ceramic-polymer composite for gas chromatography, method for fabricating the same and method for separating gas mixture using the same
KR20230151677A (ko) 2022-04-26 2023-11-02 한국과학기술원 3차원 나노쉘 구조의 세라믹-고분자 복합체를 갖는 마이크로 사전 농축기 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070509A (ko) * 2009-12-18 2011-06-24 서울대학교산학협력단 흡착 및 탈착 장치
KR20120021647A (ko) * 2010-08-11 2012-03-09 서강대학교산학협력단 3차원 다공성 구조체 및 이의 제조 방법
KR101391730B1 (ko) * 2013-05-29 2014-05-07 한국과학기술원 근접장 나노패터닝, 원자층 증착법 및 용액공정을 이용한 복합차원 나노구조의 금속산화물 제조방법
US20160120442A1 (en) * 2014-11-03 2016-05-05 Kookmin University Industry Academy Cooperation Foundation Gas concentration apparatus having carbon foam
KR20180028625A (ko) * 2016-09-09 2018-03-19 한국과학기술원 3차원 나노구조체, 그 제조방법 및 3차원 나노구조체를 포함하는 연료 전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572830B1 (en) * 1998-10-09 2003-06-03 Motorola, Inc. Integrated multilayered microfludic devices and methods for making the same
KR100845565B1 (ko) * 2003-12-01 2008-07-10 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 나노스케일 3차원 구조물의 제조방법 및 장치
US7273517B1 (en) * 2005-02-25 2007-09-25 Sandia Corporation Non-planar microfabricated gas chromatography column
US9434990B2 (en) * 2012-04-02 2016-09-06 Lux Bio Group, Inc. Apparatus and method for molecular separation, purification, and sensing
TWI399620B (zh) * 2009-05-05 2013-06-21 Nat Synchrotron Radiation Res Ct 立體光阻微結構的製作方法
US9316623B2 (en) 2012-01-20 2016-04-19 The Regents Of The University Of Michigan Micro-scale passive vapor preconcentrator/injector
DE102013112123B4 (de) 2013-11-04 2019-09-05 Metaldyne Gmbh Metallhülse und Verfahren zu deren Herstellung
DE102014213874A1 (de) 2014-07-16 2016-01-21 Siemens Aktiengesellschaft Prekonzentrator zum Adsorbieren und/oder Desorbieren wenigstens einer Komponente eines Gases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070509A (ko) * 2009-12-18 2011-06-24 서울대학교산학협력단 흡착 및 탈착 장치
KR20120021647A (ko) * 2010-08-11 2012-03-09 서강대학교산학협력단 3차원 다공성 구조체 및 이의 제조 방법
KR101391730B1 (ko) * 2013-05-29 2014-05-07 한국과학기술원 근접장 나노패터닝, 원자층 증착법 및 용액공정을 이용한 복합차원 나노구조의 금속산화물 제조방법
US20160120442A1 (en) * 2014-11-03 2016-05-05 Kookmin University Industry Academy Cooperation Foundation Gas concentration apparatus having carbon foam
KR20180028625A (ko) * 2016-09-09 2018-03-19 한국과학기술원 3차원 나노구조체, 그 제조방법 및 3차원 나노구조체를 포함하는 연료 전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498882B2 (en) 2019-03-29 2022-11-15 The Government of the United States of America, as represented by the Secretary of Homeland Security Producing odorant pumice stone samples
US11802091B2 (en) 2019-03-29 2023-10-31 The Government of the United States of America, as represented by the Secretary of Homeland Security Sealable devices to cause deposition of vapors into samples

Also Published As

Publication number Publication date
KR20190118033A (ko) 2019-10-17
KR102112031B1 (ko) 2020-06-04
US12070736B2 (en) 2024-08-27
US20210379561A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2019198926A1 (ko) 정렬된 3차원 다공성 구조를 갖는 사전 농축기 및 그 제조 방법
US11148139B2 (en) Microfluidic devices with flexible optically transparent electrodes
WO2019124625A1 (ko) 맥신을 이용한 케미레지스터 가스센서 및 이의 제조 방법
Lee et al. Fabrication of stable metallic patterns embedded in poly (dimethylsiloxane) and model applications in non‐planar electronic and lab‐on‐a‐chip device patterning
Lipomi et al. 7.11: soft lithographic approaches to nanofabrication
Vazquez-Mena et al. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks
WO2014010960A1 (en) Fluid analysis cartridge
WO2020204285A1 (ko) 3차원 나노구조의 고정상을 갖는 가스 크로마토그래피용 마이크로 분별기 및 그 제조 방법
WO2015156617A1 (ko) 분광 분석 센서 및 이의 제조 방법
CA2293597A1 (en) The production of microstructures for use in assays
Ben-Ishai et al. Wall-selective chemical alteration of silicon nanotube molecular carriers
WO2009136742A1 (en) Olfactory receptor-functionalized transistors for highly selective bioelectronic nose and biosensor using the same
WO2015183007A1 (ko) 입자 정렬을 이용한 코팅 방법
US20110039033A1 (en) Method of depositing a polymer micropattern on a substrate
EP2802416B1 (en) Improved patch area cell adhesion
Huang et al. Electrodes for microfluidic integrated optoelectronic tweezers
US20230341302A1 (en) Micro pre-concentrator having ceramic-polymer composite with 3d nano-shell structure and method for manufacturing the same
WO2023027331A1 (ko) 세라믹-고분자 복합체의 정렬된 3차원 나노 쉘 구조를 포함하는 가스 크로마토그래피용 마이크로 분별기, 그 제조방법 및 이를 이용한 기체 분별 방법
Martínez Rivas et al. Simplified and direct microchannels fabrication at wafer scale with negative and positive photopolymerizable polydimethylsiloxanes
KR20150117110A (ko) 랩온어칩 및 이의 제조 방법
WO2023090890A1 (ko) 대사체 분류 및 분석을 위한 유전이동 기반 다이나믹 sers 나노소자
US20220057353A1 (en) Light-activated gas sensor based on 3d nanostructure operable at low temperature with high performance and method for manufacturing the same
Suh et al. A graphene pH sensor fabrication process for a nanotechnology laboratory course
KR102061618B1 (ko) 정렬된 3차원 다공성 구조를 갖는 색변화 센서의 제조 방법
Han Chip-based patch clamp technique using novel thin films for high electrical resistance seal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784312

Country of ref document: EP

Kind code of ref document: A1