WO2019198678A1 - 新規ラクトン化合物及び新規エーテル化合物 - Google Patents

新規ラクトン化合物及び新規エーテル化合物 Download PDF

Info

Publication number
WO2019198678A1
WO2019198678A1 PCT/JP2019/015363 JP2019015363W WO2019198678A1 WO 2019198678 A1 WO2019198678 A1 WO 2019198678A1 JP 2019015363 W JP2019015363 W JP 2019015363W WO 2019198678 A1 WO2019198678 A1 WO 2019198678A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmr
mhz
cdcl
group
mmol
Prior art date
Application number
PCT/JP2019/015363
Other languages
English (en)
French (fr)
Inventor
央徳 伊藤
崇司 松本
睦 原田
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to JP2020513263A priority Critical patent/JP7401426B2/ja
Priority to EP19785255.1A priority patent/EP3778581A4/en
Priority to US17/044,080 priority patent/US11427554B2/en
Priority to CA3096241A priority patent/CA3096241A1/en
Priority to CN201980025074.1A priority patent/CN111954665B/zh
Publication of WO2019198678A1 publication Critical patent/WO2019198678A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2052Heterocyclic compounds having oxygen or sulfur as the only hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/82Benzo [b] furans; Hydrogenated benzo [b] furans with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/83Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/74Benzo[b]pyrans, hydrogenated in the carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0069Heterocyclic compounds
    • C11B9/0073Heterocyclic compounds containing only O or S as heteroatoms
    • C11B9/0076Heterocyclic compounds containing only O or S as heteroatoms the hetero rings containing less than six atoms
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0069Heterocyclic compounds
    • C11B9/0073Heterocyclic compounds containing only O or S as heteroatoms
    • C11B9/008Heterocyclic compounds containing only O or S as heteroatoms the hetero rings containing six atoms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/56Flavouring or bittering agents

Definitions

  • the present invention relates to a novel compound capable of imparting a novel fragrance and a fragrance composition containing them.
  • fragrances representing the fragrance of flowers and fruity fragrances representing the fragrance of fruits
  • peach-like and jasmine-like fragrance compounds are particularly useful.
  • Most of the conventional techniques are lactone type compounds, and ⁇ -nonalactone, ⁇ -decalactone, ⁇ -decalactone and ⁇ -undecalactone have been widely used as perfumes having a peach-like aroma.
  • lactones having a double bond such as jasmine lactone (ZEON Corporation) and jasmolactone (Firmenich SA), flutonyl (Givaudan SA) having a structure different from lactone, and nectaryl (Givaudan S) are also included.
  • A.) and other fragrance compounds have been developed and used as compositions for peach-like and jasmine-like fragrances.
  • any of the perfume compounds has a problem in sustainability, and it becomes difficult to feel the odor within a few hours to 1 day under dilution conditions and within 1 to 2 weeks under neat conditions, or it is different from the original scent. There was a problem that it changed to an incense tone.
  • an object of the present invention is to provide a novel compound capable of imparting a pure peach-like or jasmine-like fragrance that satisfies the above requirements, and a fragrance composition containing them.
  • the present inventors have intensively studied, and as a result, synthesized bicyclic lactone and ether type compounds, and these compounds have a strong peach-like or jasmine-like odor, and are useful fragrances.
  • the present invention has been completed by finding that it can be used as an agent. That is, the present invention includes the following claims [1] to [5].
  • a lactone compound represented by the following general formula (A) [1] A lactone compound represented by the following general formula (A).
  • R is a hydrogen atom or the following R1;
  • R ′ is R1 below, the carbon bond (1) is a single bond or a double bond, and the carbon bond (2) is a single bond.
  • R ′ is a hydrogen atom or R1 below, and carbon bonds (1) and (2) are both single bonds, or either one is a double bond and the other is a single bond. It is.
  • R1 An alkyl group which may have a substituent having 1 to 8 carbon atoms, an alkenyl group which may have a substituent having 2 to 8 carbon atoms, or a substituent which has 2 to 8 carbon atoms
  • R ′′ is an alkyl group which may have a substituent having 1 to 8 carbon atoms, an alkenyl group which may have a substituent having 2 to 8 carbon atoms, or a substituent having 2 to 8 carbon atoms. Represents an alkynyl group or an aryl group which may have a substituent; n is 0 or 1.
  • a method for improving the fragrance of a fragrance comprising adding the compound described in [1] or [2] to the fragrance.
  • the lactone compound and ether compound which are the compounds according to the present invention, are very useful fragrance materials having a strong, peach-like fragrance or jasmine-like fragrance that is comfortable and durable.
  • a perfume composition with high palatability can be provided.
  • the lactone compound according to the present invention is a lactone compound represented by the following general formula (A).
  • R is a hydrogen atom or the following R1;
  • R ′ is R1 below, the carbon bond (1) is a single bond or a double bond, and the carbon bond (2) is a single bond.
  • R ′ is a hydrogen atom or R1 below, and carbon bonds (1) and (2) are both single bonds, or either one is a double bond and the other is a single bond. It is.
  • R1 An alkyl group which may have a substituent having 1 to 8 carbon atoms, an alkenyl group which may have a substituent having 2 to 8 carbon atoms, or a substituent which has 2 to 8 carbon atoms An alkynyl group or an aryl group; In addition, when carbon bond (2) is a double bond, R 'does not exist. n is 0 or 1. ]
  • R has a hydrogen atom, an alkyl group which may have a substituent having 1 to 8 carbon atoms, an alkenyl group which may have a substituent having 2 to 8 carbon atoms, or a substituent which has 2 to 8 carbon atoms. It may be an alkynyl group or an aryl group.
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, Examples thereof include n-pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group and the like.
  • the alkyl group having 1 to 8 carbon atoms represented by R may be a cyclic alkyl, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the alkenyl group having 2 to 8 carbon atoms represented by R include a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 2-methyl-2-butenyl group, 3-methyl-2-butenyl group, 2-methyl-3-butenyl group, 3-methyl-3 -Butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group and the like can be exemplified.
  • the alkenyl group having 2 to 8 carbon atoms represented by R may be a cyclic alkenyl group, such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, a cyclohexadienyl group, a cycloheptenyl group, a cycloheptadienyl group. Group, cyclooctenyl group, cyclooctadienyl group and the like.
  • alkynyl group having 2 to 8 carbon atoms represented by R examples include ethynyl group, 1-propargyl group, 1-butynyl group, 2-butynyl group, 2-pentyl group, 3-hexynyl group, 1-heptynyl group, 2 -Octynyl group and the like.
  • Examples of the substituent that R may have include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • Alkyl groups having 1 to 6 carbon atoms such as methoxy groups, methoxy groups, ethoxy groups, n-purpoxy groups, isopropoxy groups, n-butoxy groups, isobutoxy groups, sec-butoxy groups, tert-butoxy groups, methylenedioxy groups, etc.
  • an alkoxy group having 1 to 4 carbon atoms such as methoxy groups, methoxy groups, ethoxy groups, n-purpoxy groups, isopropoxy groups, n-butoxy groups, isobutoxy groups, sec-butoxy groups, tert-butoxy
  • R ′ has a hydrogen atom, an alkyl group which may have a substituent having 1 to 8 carbon atoms, an alkenyl group which may have a substituent having 2 to 8 carbon atoms, or a substituent having 2 to 8 carbon atoms. It may be an alkynyl group or an aryl group.
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R ′ include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the alkyl group having 1 to 8 carbon atoms represented by R ′ may be a cyclic alkyl, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the alkenyl group having 2 to 8 carbon atoms represented by R ′ include a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group.
  • 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 2-methyl-2-butenyl group, 3-methyl-2-butenyl group, 2-methyl-3-butenyl group, 3-methyl- Examples include 3-butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, and the like.
  • Examples of the alkynyl group having 2 to 8 carbon atoms represented by R ′ include ethynyl group, 1-propargyl group, 1-butynyl group, 2-butynyl group, 2-pentyl group, 3-hexynyl group, 1-heptynyl group, Examples thereof include 2-octynyl group.
  • the alkenyl group having 2 to 8 carbon atoms represented by R ′ may be a cyclic alkenyl group, for example, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, a cyclohexadienyl group, a cycloheptenyl group, a cycloheptadi group, and the like. Examples include an enyl group, a cyclooctenyl group, and a cyclooctadienyl group.
  • R ′ examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, C1-C6 alkyl group such as hexyl group, methoxy group, ethoxy group, n-purpoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, methylenedioxy group
  • Examples thereof include an alkoxy group having 1 to 4 carbon atoms.
  • R may be a hydrogen atom only when the carbon bond (2) is a single bond and R ′ is other than a hydrogen atom. That is, in the formula (A), when the carbon bond (1) is a single bond or a double bond, the carbon bond (2) is a single bond, and R and R ′ are hydrogen atoms, 1) is a single bond, carbon bond (2) is a double bond, R is a hydrogen atom, and R ′ is R1 described above.
  • the ether compound according to the present invention is an ether compound represented by the following general formula (B).
  • R ′′ is an alkyl group which may have a substituent having 1 to 8 carbon atoms, an alkenyl group which may have a substituent having 2 to 8 carbon atoms, or a substituent having 2 to 8 carbon atoms.
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R ′′ include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the alkyl group having 1 to 8 carbon atoms represented by R may be a cyclic alkyl, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the alkenyl group having 2 to 8 carbon atoms represented by R ′′ include, for example, vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group.
  • 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 2-methyl-2-butenyl group, 3-methyl-2-butenyl group, 2-methyl-3-butenyl group, 3-methyl- Examples include 3-butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, and the like.
  • the alkenyl group having 2 to 8 carbon atoms represented by R ′′ may be a cyclic alkenyl group, for example, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, a cyclohexadienyl group, a cycloheptenyl group, a cycloheptadi group, and the like. Examples include an enyl group, a cyclooctenyl group, and a cyclooctadienyl group.
  • Examples of the alkynyl group having 2 to 8 carbon atoms represented by R ′′ include ethynyl group, 1-propargyl group, 1-butynyl group, 2-butynyl group, 2-pentyl group, 3-hexynyl group, 1-heptynyl group, Examples include 2-octynyl group.
  • R ′′ may have include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, C1-C6 alkyl group such as hexyl group, methoxy group, ethoxy group, n-purpoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, methylenedioxy group
  • Examples thereof include an alkoxy group having 1 to 4 carbon atoms.
  • lactone compound represented by the general formula (A) and the ether compound represented by the general formula (B) of the present invention include, but are not limited to, the following compounds. .
  • an intermediate (a) which is a citronellal derivative is obtained by reacting citral with, for example, butyl lithium or butyl magnesium halide in the presence of monovalent copper halide as a catalyst.
  • the intermediate (b) which is an isobregor derivative is obtained from the intermediate (a) by the ring-closing reaction described in 5817-5825.
  • the intermediate (c), which is a paramentane derivative, is obtained from the intermediate (b) by the technique of 11897-11900.
  • the lactone derivative (d) is obtained from the intermediate (c) by the method described in 6429-6436.
  • the reaction of (V) is, for example, a dehydration cyclization reaction using an acid catalyst, or ChemSusChem, 2012, 5, P.A.
  • the ether derivative (e) is obtained from the intermediate (c) by the procedure described in 1578-1586.
  • the reaction of (VI) is described in, for example, Tetrahedron 1993, 49, 29, P.M.
  • the lactone derivative (f) is obtained from the lactone derivative (d) by the method described in 6429-6436.
  • cyclization is carried out from the intermediate (b) via ozonolysis, for example, by the method described in CA29997950A1 to obtain the lactone derivative (f).
  • the carbon bond (1) is a double bond
  • the carbon bond (2) is a single bond
  • R is an n-butyl group
  • R ′ is a hydrogen atom
  • n is 0
  • the lactone derivative is synthesized by the following method (Scheme 2), but the synthesis method is not limited to the following method.
  • an intermediate (g) can be obtained from methyl acetoacetate according to the method of International Publication No. 2012/165164.
  • a conjugate addition reaction is carried out by allowing the intermediate (g) to react with, for example, butyl lithium or butyl magnesium halide and a monovalent copper halide to obtain the lactone derivative (h).
  • the carbon bond (1) is a single bond
  • the carbon bond (2) is a single bond
  • R and R ′′ are n-butyl groups
  • R ′ is a hydrogen atom.
  • the lactone derivative and the ether derivative in which n is 1 are synthesized by, for example, the following method (Scheme 3), but the synthesis method is not limited to the following method.
  • the carbon bond (1) is a single bond
  • the carbon bond (2) is a single bond
  • R is a hydrogen atom
  • R ′ is an n-butyl group
  • n is 0.
  • the lactone derivative is synthesized by, for example, the following method (Scheme 4), but the synthesis method is not limited to the following method.
  • the lactone derivative (l) in the reaction of (XIII), for example, by reacting lithium diisopropylamide and an alkyl halide, the lactone derivative (l) can be obtained from the lactone compound (k).
  • the compound of the present invention thus obtained can be isolated and purified as necessary.
  • isolation and purification methods include column chromatography, vacuum distillation and the like, and these can be performed alone or in combination.
  • the compounds represented by the formulas (A) and (B) contained in the fragrance composition of the present invention have optical activity and diastereomeric stereoisomerism, respectively, depending on the 1, 3, 4, and 8 positions of the paramentane skeleton. There is a body. All of these isomers have a good aroma.
  • a racemate may be used, but an optically active substance may be used.
  • the optical purity is 20% ee to 99.9% ee, preferably 50% ee to 99.9% ee.
  • stereoisomers such as diastereomers
  • the isomer purity is 20% de to 99.9% de, preferably 50% de to 99.9% de.
  • the optical purity and isomer ratio can be measured by, for example, NMR and / or various chromatography using a column (or chiral column).
  • the perfume composition of the present invention contains at least one compound represented by the formulas (A) and (B).
  • the compounding amount of the compounds represented by the formulas (A) and (B) in the fragrance composition is not particularly limited, but is 0.01 to 60% by weight, particularly 0.1 to 40% by weight, based on the fragrance composition. It is preferable that
  • flavor composition of this invention can mix
  • the fragrance composition obtained in this way can provide fragrance imparting with high palatability.
  • the product that can be perfumed using the fragrance composition containing the lactone compound and the ether compound represented by the general formulas (A) and (B) of the present invention is not particularly limited.
  • beverages or foods include, but are not limited to, beverages such as fruit juices, fruit liquors, milk beverages, carbonated beverages, soft drinks, drinks; ice creams, sherbets, Frozen desserts such as popsicles; desserts such as jelly and pudding; Western confections such as cakes, cookies, chocolate, and chewing gum; Japanese confectionery such as buns, sheepskin and willow; jams; , Black tea, persimmon leaf tea, chamomile tea, kumazasa tea, mulberry tea, dokudami tea, puer tea, mate tea, rooibos tea, gymnema tea, guava tea, coffee, coffee, cocoa or other beverages; Japanese-style soup, Soups such as Western-style soup and Chinese soup; flavor seasonings; various instant drinks and foods; various snack foods; teeth Come, may be mentioned oral cleanser, mouthwashes, troches, and the like oral compositions such as chewing gum.
  • fragrance products More specifically, -Perfume, eau de perfume, eau de toilette, eau de cologne, etc. as fragrance products;
  • For basic cosmetics, facial cleansing cream, vanishing cream, cleansing cream, cold cream, massage cream, milky lotion, lotion, serum, pack, makeup remover, etc .;
  • For finished cosmetics, foundation, powder powder, solid powder, talcum powder, lipstick, lip balm, blusher, eyeliner, mascara, eye shadow, eyebrow, eye pack, nail enamel, enamel rim bar, etc .
  • hair cosmetics mention: pomade, brilantin, set lotion, hair stech, hair solid, hair oil, hair treatment, hair cream, hair art, hair liquid, hair spray, bundling, hair nourishing agent, hair dye, etc. Can do.
  • medicated cosmetics include antiperspirants, after shaving lotions and gels, permanent wave agents, medicated soaps, medicated shampoos, medicated skin cosmetics, etc .
  • -Hair care products include shampoo, rinse, rinse-in shampoo, conditioner, treatment, hair pack, etc .
  • -As bath preparations bath salts (bath salts, bath tablets, bath liquids, etc.), foam baths (bubble baths, etc.), bath oils (bath perfumes, bath capsules, etc.), milk baths, bath jelly, bath cubes, etc .; -Detergents include heavy laundry detergents, light laundry detergents, liquid detergents, laundry soaps, compact detergents, powdered soaps, and the like.
  • -Softeners such as softeners and furniture cares; ⁇ Cleaners, house cleaners, toilet cleaners, bathroom cleaners, glass cleaners, mold removers, drainpipe cleaners, etc .; ⁇ As kitchen detergent, kitchen soap, kitchen soap, dishwashing detergent, etc .; ⁇ As bleaching agents, oxidized bleaches (chlorine bleaches, oxygen bleaches, etc.), reduced bleaches (sulfur bleaches, etc.), optical bleaches, etc .; ⁇ As aerosols, spray type, powder spray, etc .; ⁇ As deodorant and fragrance, solid type, gel type, liquid type, etc .; ⁇ For miscellaneous goods, tissue paper, toilet paper, etc .; Can be mentioned.
  • the pharmaceutical agent include, but are not limited to, topical skin preparations such as haps and ointments, and oral preparations.
  • the dosage form of the product that can be fragranced using the fragrance composition containing the lactone compound and the ether compound represented by the general formulas (A) and (B) can take the shape of the mixture itself.
  • Other dosage forms include, for example, liquids dissolved in alcohols, polyhydric alcohols such as propylene glycol, glycerin and dipropylene glycol, and esters such as triethyl citrate, benzyl benzoate and diethyl phthalate; gum arabic and gum tragacanth Natural gums such as emulsions emulsified with emulsifiers such as glycerin fatty acid esters and sucrose fatty acid esters; natural gums such as gum arabic; powders coated with excipients such as gelatin and dextrin; Surfactants such as nonionic surfactants, anionic surfactants, cation Solubilized or dispersed solubilized or dispersed using surfactants, amphoteric surfactants, etc .
  • the fragrance composition may be stabilized and sustained-released by inclusion in an inclusion agent such as cyclodextrin.
  • an inclusion agent such as cyclodextrin.
  • the palatability is higher and high humidity can be improved to a better fragrance. It is also possible to suppress unfavorable fragrance in the fragrance.
  • the compound may be added directly or the clathrates mentioned above may be used.
  • Example 1 Synthesis of 3-methylcitronellal This reaction was carried out in a nitrogen atmosphere. A 1 L four-necked flask with a dropping funnel was prepared, and copper iodide (27.3 g, 1.05 eq) and diethyl ether (200 ml) were added to the flask, and the system was stirred to 0-5 ° C. Cooled down. A methyllithium ether solution (1.13 mol / L, 260 ml, 2.05 eq. Vs CuI) was added to the dropping funnel, and dripped over 1 hour and a half.
  • Example 2 Synthesis of 3-ethylcitronellal In the same manner as in Example 1, except that ethyllithium was used in place of methyllithium, citral (3.70 g, 24.3 mmol) was synthesized from 3-ethylcitronal. Neral was obtained (3.01 g, 16.7 mmol, 67% yield).
  • Example 3 Synthesis of 3-butylcitronellal This reaction was carried out in a nitrogen atmosphere. A 1 L four-necked flask with a dropping funnel was prepared, and copper iodide (45.7 g, 1.05 eq) and diethyl ether (200 ml) were added to the flask, and the system was stirred to 0 to 5 ° C. Cooled down. An n-butyllithium ether solution (1.6 mol / L, 300 ml, 2.10 eq vs CuI) was added to the dropping funnel, and dripped over 1 hour and a half.
  • copper iodide 45.7 g, 1.05 eq
  • diethyl ether 200 ml
  • Example 4 Synthesis of 3-phenylcitronellal Citral (14.8 g, 97.1 mmol) was synthesized from citral (14.8 g, 97.1 mmol) in the same manner as in Example 3 except that phenyllithium was used instead of n-butyllithium. Phenyl citronellal was obtained (18.2 g, 79.0 mmol, 81% yield).
  • Example 6 Synthesis of 3-ethylcitronellal In the same manner as in Example 5 except that ethylmagnesium chloride was used instead of butylmagnesium chloride, citral (10.0 g, 65.7 mmol) was synthesized from 3- Ethyl citronellal (12.1 g) was obtained as a crude product.
  • Example 7 Synthesis of 3-isopropylcitronellal
  • citral (10.0 g, 65.7 mmol) was synthesized from 3- Isopropyl citronellal (17.2 g) was obtained as a crude product.
  • Example 8 Synthesis of 3-propylcitronellal In the same manner as in Example 5 except that propylmagnesium chloride was used in place of butylmagnesium chloride, citral (15.0 g, 98.5 mmol) was synthesized from 3- Propyl citronellal (6.58 g, 34% yield) was obtained.
  • Example 9 Synthesis of 3-iso-butylcitronellal From citral (21.8 g, 143 mmol) in the same manner as in Example 5 except that iso-butylmagnesium chloride was used instead of butylmagnesium chloride. 3-iso-butylcitronellal (30.9 g) was obtained as a crude product.
  • Example 10 Synthesis of 3-sec-butylcitronellal Citral (10.0 g, 65.7 mmol) was prepared in the same manner as in Example 5 except that sec-butylmagnesium chloride was used instead of butylmagnesium chloride. ) Gave 3-sec-butylcitronellal (15.9 g) as a crude product.
  • Example 11 Synthesis of 3-n-pentylcitronellal Citral (15.0 g, 98.5 mmol) was prepared in the same manner as in Example 5 except that n-pentylmagnesium bromide was used instead of butylmagnesium chloride. ) Gave 3-n-pentylcitronellal (29.0 g) as a crude product.
  • Example 12 Synthesis of 3- (3-pentyl) citronellal Citral (12.9 g, 84.6 mmol) was prepared in the same manner as in Example 5 except that 3-pentylmagnesium chloride was used instead of butylmagnesium chloride. ) Gave 3- (3-pentyl) citronellal (4.01 g, 17.9 mmol, 21% yield) as an isolated and purified product by column chromatography.
  • Example 13 Synthesis of 3-n-hexylcitronellal Citral (15.0 g, 98.5 mmol) was prepared in the same manner as in Example 5 except that n-hexylmagnesium chloride was used instead of butylmagnesium chloride. ) Gave 3-n-hexylcitronellal (24.0 g) as a crude product.
  • Example 14 Synthesis of 3-cyclohexylcitronellal From citral (13.8 g, 90.9 mmol) in the same manner as in Example 5 except that n-cyclohexylmagnesium chloride was used instead of butylmagnesium chloride. 3-Cyclohexyl citronellal (18.0 g) was obtained as a crude product.
  • Example 15 Synthesis of 3-n-heptylcitronellal Citral (13.8 g, 90.9 mmol) was prepared in the same manner as in Example 5 except that n-heptylmagnesium bromide was used instead of butylmagnesium chloride. ) Gave 3-n-heptylcitronellal (21.7 g) as a crude product.
  • Example 16 Synthesis of 3-n-octylcitronellal Citral (12.0 g, 78.8 mmol) was prepared in the same manner as in Example 5 except that n-octylmagnesium chloride was used instead of butylmagnesium chloride. ) To give 3-n-octylcitronellal (5.87 g, 28% yield).
  • Example 18 Synthesis of optically active (+)-5-methylisopulegol Example 1 was prepared in the same manner as Example 17 except that (S) -BINOL was used instead of (R) -BINOL. Optically active (+)-5-methylisopulegol (896 mg, 90% yield) was obtained from 3-methylcitronellal (1.00 g, 5.94 mmol) obtained in (1).
  • Example 19 Synthesis of optically active (-)-5-butylisopulegol 3-Butylcitronellal obtained in Example 3 (5.00 g, 23.8 mmol) instead of 3-methylcitronellal
  • the optically active ( ⁇ )-5-butylisopulegol was obtained in the same manner as in Example 17 except that was used (4.41 g, 90% yield).
  • Example 20 Synthesis of optically active (+)-5-butylisopulegol (S) -BINOL was used instead of (R) -BINOL, Example 3 was used instead of 3-methylcitronellal Optically active (+)-5-butylisopulegol was obtained in the same manner as in Example 17 except that the obtained 3-butylcitronellal (5.00 g, 23.8 mmol) was used (4 .86 g, 97% yield).
  • Example 21 Synthesis of 5-ethylisopulegol This reaction was performed in a nitrogen atmosphere. In a 300 mL reactor with a condenser, the crude 3-ethylcitronellal mixture obtained in Example 6 (7.90 g), toluene (40 mL) and zinc chloride or zinc bromide (395 mg, 5 wt%) and decanoic acid (237 mg) , 3 wt%) was added, and the mixture was heated and stirred at 100 ° C for 1 hour. After completion of the reaction was confirmed by GC, post-treatment was performed. The solution was cooled to room temperature, washed twice with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was isolated and purified by silica gel column chromatography to obtain 1.99 g of the desired 5-ethylisopulegol (2 steps, 33% yield).
  • Example 22 Synthesis of 5-methylisopulegol Except that 3-methylcitronellal (10.0 g, 59.4 mmol) obtained in Example 1 was used instead of 3-ethylcitronellal In the same manner as in Example 21, 5-methylisopulegol was obtained (8.71 g, 87% yield).
  • Example 23 Synthesis of 5-propylisopulegol Example 21 was used except that 3-propylcitronellal (6.00 g) obtained in Example 8 was used instead of 3-ethylcitronellal. In the same manner, more 5-propylisopulegol was obtained (5.04 g, 84% yield).
  • Example 24 Synthesis of 5-isopropylisopulegol In the same manner as in Example 21, except that the crude 3-isopropylcitronellal obtained in Example 7 was used instead of 3-ethylcitronellal. 5-isopropylisopulegol was obtained from 3-isopropylcitronellal (17.2 g) (3.17 g, 2 steps 27% yield).
  • Example 25 Synthesis of 5-butylisopulegol The same procedure as in Example 21 except that the crude 3-butylcitronellal mixture obtained in Example 5 was used instead of 3-ethylcitronellal Thus, 5-butylisopulegol was obtained from 3-butylcitronellal (30.9 g) (8.34 g, 2 steps 28% yield).
  • Example 26 Synthesis of 5- (1 ⁇ , 2 ⁇ , 5 ⁇ ) -butylisopulegol 5-butylisopulegol (22.1 g) obtained in Example 25 was further isolated and purified, and 5- (1 ⁇ , 2 ⁇ , 5 ⁇ ) -Butylisopulegol was obtained (751 mg).
  • Example 27 Synthesis of 5-iso-butylisopulegol
  • Example 21 was used except that the crude 3-iso-butylcitronellal obtained in Example 9 was used instead of 3-ethylcitronellal.
  • 5-iso-butylisopulegol was obtained from 3-iso-butylcitronellal (30.9 g) (13.4 g, 2 steps 50% yield).
  • Example 28 Synthesis of 5-sec-butylisopulegol Example except that 3-sec-butylcitronellal crude product obtained in Example 10 was used instead of 3-ethylcitronellal In the same manner as in No. 21, 5-sec-butylisopulegol was obtained from 3-sec-butylcitronellal (15.9 g) (2.03 g, 2 steps 15% yield).
  • Example 29 Synthesis of 5-n-pentylisopulegol Example except that 3-n-pentylcitronellal crude product obtained in Example 11 was used instead of 3-ethylcitronellal In the same manner as in Example 21, 5-n-pentylisopulegol was obtained from the crude 3-n-pentylcitronellal product (19.7 g) (3.21 g, 2 steps 23% yield).
  • Example 30 Synthesis of 5- (3-pentyl) isopulegol 3- (3-pentyl) citronellal (2.70 g, 13.8 mmol) obtained in Example 12 was used instead of 3-ethylcitronellal. Except for the above, 5- (3-pentyl) isopulegol was obtained in the same manner as in Example 21 (2.27 g, 76% yield).
  • Example 31 Synthesis of 5-n-hexylisopulegol Example 3 except that the 3-n-hexylcitronellal crude product obtained in Example 13 was used instead of 3-ethylcitronellal In the same manner as in No. 21, 5-n-hexylisopulegol was obtained from 3-n-hexylcitronellal (24.0 g) (6.02 g, 2 steps 26% yield).
  • Example 32 Synthesis of 5-cyclohexylisopulegol Similar to Example 21 except that the crude 3-cyclohexylcitronellal product obtained in Example 14 was used instead of 3-ethylcitronellal.
  • 5-cyclohexyl isopulegol was obtained from 3-cyclohexyl citronellal (18.0 g) (7.63 g, 2 steps 39% yield).
  • Example 33 Synthesis of 5-n-heptylisopulegol Example 3 except that the 3-n-heptylcitronellal crude product obtained in Example 15 was used instead of 3-ethylcitronellal. In the same manner as in Example 21, 5-n-heptylisopulegol was obtained from 3-n-heptylcitronellal (21.7 g) (6.89 g, 2 steps 31% yield).
  • Example 34 Synthesis of 5-n-octylisopulegol Except that 3-n-octylcitronellal (5.50 g) obtained in Example 16 was used instead of 3-ethylcitronellal. In the same manner as in Example 21, 5-n-octylisopulegol was obtained (4.29 g, 78% yield).
  • Example 35 Synthesis of 5-phenylisopulegol Except that 3-phenylcitronellal (2.00 g, 8.68 mmol) obtained in Example 4 was used instead of 3-ethylcitronellal. In the same manner as in Example 21, 5-phenylisopulegol was obtained (1.58 g, 85% yield).
  • Example 36 Synthesis of 1-butylparamentane-3,9-diol This reaction was carried out in a nitrogen atmosphere. 5-Butylisopulegol (3.40 g, 16.2 mmol) obtained in Example 25 and THF (5 mL) were added to a 100 mL reactor having an addition funnel, and a borane / THF / THF solution (1 0.0 mol / L, 24.2 mL, 1.5 eq.) was added. The system was cooled to 0-5 ° C. with stirring, and the borane solution was added dropwise in about 45 minutes.
  • the reaction solution was added to heptane / 1N hydrochloric acid, and the oil layer was separated.
  • the aqueous layer was extracted with heptane, and the obtained oil layers were combined and washed 3 times with saturated brine.
  • the oil layer was dried over anhydrous magnesium sulfate and concentrated by filtration to obtain a crude product.
  • the product was isolated and purified by column chromatography to give the desired 1-butylparamentane-3,9-diol as a colorless oil (2.21 g, 9.69 mmol, 60% yield).
  • Example 37 Synthesis of 1-methylparamentane 3,9-diol Using 5-methylisopulegol (5.38 g, 32.0 mmol) obtained in Example 22 instead of 5-butylisopulegol Except that, 1-methylparamentane-3,9-diol was obtained as a colorless oil in the same manner as in Example 36 (3.85 g, 65% yield).
  • Example 38 Synthesis of (3R, 4S) -1-methylparamentane-3,9-diol Optically active (-)-5-methylisopropylene obtained in Example 17 instead of 5-butylisopulegol Optical activity (3R, 4S)-was prepared in the same manner as in Example 36, except that pregoal ((-)-1R, 2S-5-methylisopulegol) (3.00 g, 17.8 mmol) was used.
  • pregoal ((-)-1R, 2S-5-methylisopulegol) (3.00 g, 17.8 mmol) was used.
  • 1-Methylparamentane-3,9-diol was obtained as a colorless oil (3.03 g, 91% yield).
  • Example 39 Synthesis of (3S, 4R) -1-methylparamentane-3,9-diol Optically obtained in Example 18 instead of 5-butylisopulegol in the same manner as in Example 36 In the same manner as in Example 36 except that active (+)-5-methylisopulegol ((+)-1S, 2R-5-methylisopulegol) (2.70 g, 16.0 mmol) was used. Optically active (3S, 4R) -1-methylparamentane-3,9-diol was obtained as a colorless oil (2.47 g, 81% yield).
  • Example 40 Synthesis of 1-ethylparamentane-3,9-diol 5-ethylisopulegol (3.50 g, 19.2 mmol) obtained in Example 21 was used instead of 5-butylisopulegol. 1-ethylparamentane-3,9-diol was obtained in the same manner as in Example 36 except that it was used (3.10 g, 15.5 mmol, 81% yield).
  • Example 41 Synthesis of 1-isopropylparamentane-3,9-diol 5-isopropylisopulegol (2.80 g, 14.3 mmol) obtained in Example 24 was used instead of 5-butylisopulegol.
  • 1-Isopropylparamentane-3,9-diol was obtained as a crude product in the same manner as in Example 36 except that it was used (2.81 g, 10.8 mmol, 92% yield). This compound was used in the next reaction without purification.
  • Example 42 Synthesis of 1-propylparamentane-3,9-diol 5-Propylisopulegol (3.82 g, 19.5 mmol) obtained in Example 23 was used instead of 5-butylisopulegol. 1-propylparamentane-3,9-diol was obtained in the same manner as in Example 36 except that it was used (3.68 g, 88% yield).
  • Example 43 Synthesis of 1-iso-butylparamentane-3,9-diol 5-iso-butylisopulegol (6.00 g, 28) obtained in Example 27 instead of 5-butylisopulegol 1-iso-butylparamentane-3,9-diol was obtained as a crude product (6.02 g, 26.4 mmol, 93% yield) in the same manner as in Example 36, except that 0.5 mmol) was used. ). This compound was used in the next reaction without purification.
  • Example 44 Synthesis of 1-sec-butylparamentane-3,9-diol 5-sec-butylisopulegol (1.81 g, 8) obtained in Example 28 instead of 5-butylisopulegol 1-sec-butylparamentane-3,9-diol was obtained as a crude product in the same manner as in Example 36 except that .60 mmol) was used (1.69 g, 7.41 mmol, 86% yield). ). This compound was used in the next reaction without purification.
  • Example 45 Synthesis of optically active 1-butylparamentane-3,9-diol (-)-5-butylisopulegol (1.50 g) obtained in Example 19 instead of 5-butylisopulegol , 7.13 mmol) was used in the same manner as in Example 36 to obtain optically active 1-butylparamentane-3,9-diol as a colorless oil (1.48 g, 91% yield).
  • Example 46 Synthesis of optically active 1-butylparamentane-3,9-diol (+)-5-butylisopulegol (1.50 g) obtained in Example 20 instead of 5-butylisopulegol , 7.13 mmol) was used in the same manner as in Example 36 to obtain optically active 1-butylparamentane-3,9-diol as a colorless oil (1.48 g, 91% yield).
  • Example 47 Synthesis of 1-butylparamentane-3,9-diol single isomer 5-Butylisopulegol (1 ⁇ , 2 ⁇ , 5 ⁇ obtained in Example 26 instead of 5-butylisopulegol) ) (500 mg, 2.38 mmol) was used in the same manner as in Example 36 to obtain a 1-butylparamentane-3,9-diol single isomer as a colorless oil (511 mg, 94%). yield).
  • Example 48 Synthesis of 1-n-pentylparamentane-3,9-diol 5-n-pentylisopulegol (2.35 g) obtained in Example 29 was used instead of 5-butylisopulegol. 1-n-pentylparamentane-3,9-diol was obtained in the same manner as in Example 36 except for using (2.49 g). This compound was used for the next reaction as it was without purification.
  • Example 49 Synthesis of 1- (3-pentyl) paramentane-3,9-diol 5- (3-pentyl) isopulegol (2.10 g, obtained in Example 30 instead of 5-butylisopulegol) 1- (3-pentyl) paramentane-3,9-diol was obtained in the same manner as in Example 36 except that 9.36 mmol) was used (2.29 g, quant.).
  • Example 50 Synthesis of 1-n-hexylparamentane-3,9-diol 5-n-hexylisopulegol (3.01 g) obtained in Example 31 was used instead of 5-butylisopulegol.
  • 1-n-Hexylparamentane-3,9-diol was obtained in the same manner as in Example 36 except that it was used (3.21 g). This compound was used for the next reaction as it was without purification.
  • Example 51 Synthesis of 1-cyclohexylparamentane-3,9-diol Except for using 5-cyclohexylisopulegol (6.00 g) obtained in Example 32 instead of 5-butylisopulegol In the same manner as in Example 36, 1-cyclohexylparamentane-3,9-diol was obtained (6.30 g). This compound was used for the next reaction as it was without purification.
  • Example 52 Synthesis of 1-heptylparamentane-3,9-diol
  • the 5-n-heptylisopulegol (3.08 g) obtained in Example 33 was used instead of 5-butylisopulegol. Except for this, 1-n-heptylparamentane-3,9-diol was obtained in the same manner as in Example 36 (3.44 g). This compound was used for the next reaction as it was without purification.
  • Example 53 Synthesis of 1-n-octylparamentane-3,9-diol 5-n-octylisopulegol (2.20 g) obtained in Example 34 was used instead of 5-butylisopulegol. 1-n-octylparamentane-3,9-diol was obtained in the same manner as in Example 36 except for using (2.04 g). This compound was used for the next reaction as it was without purification.
  • Example 54 Synthesis of 1-phenylparamentane-3,9-diol 5-phenylisopulegol (1.00 g, 4.31 mmol) obtained in Example 35 was used instead of 5-butylisopulegol.
  • 1-Phenylparamentane-3,9-diol was obtained in the same manner as in Example 36 except that it was used (0.83 g, 77% yield). This compound was used in the next reaction without purification.
  • Example 55 Synthesis of paramenthane-3,9-diol
  • L-isopulegol (15.0 g, 97.2 mmol) was used instead of 5-butylisopulegol.
  • Paramentane-3,9-diol was obtained (12.6 g, 72.9 mmol, 75% yield).
  • Example 56 Synthesis of 1-butyl-2H-mint lactone (Exemplary Compound Bu-1aa) This reaction was conducted according to Tetrahedron 1993, 49, 29, p. 6429-6436.
  • 1-Butylparamentane 3,9-diol 200 mg, 0.876 mmol obtained in Example 36 and silver carbonate celite supported (1.06 g, 50 wt% loading, 2) in a 100 mL flask having a dean-stark condenser. 2 eq) and toluene (30 mL) were added, and the mixture was stirred at reflux for 3 hours.
  • Example 57 Synthesis of 1-butyl-2H-mint lactone (Exemplary Compound Bu-1ab)
  • Exemplified Compound Bu-1aa 100 mg, 0.446 mmol obtained in Example 56 was dissolved in sodium t-butoxide (100 mg, 0.446 mmol) in toluene. 100 mg) under reflux and post-treatment was carried out by a conventional method to obtain 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1ab) (58 mg, 58% yield).
  • Example 58 Synthesis of Optically Active 1-Butyl-2H-Mintlactone (Exemplary Compound Bu1-be) Optically Active 5-Butylparaffin Obtained in Example 45 Instead of 1-Butylparamentane 3,9-diol Optically active 1-butyl-2H-mintlactone (0.361 g, 74% yield) was obtained using the same procedure as in Example 56 except that menthane 3,9-diol (0.500 g, 2.19 mmol) was used. Obtained as the exemplified compound Bu1-be.
  • Example 59 Synthesis of Optically Active 1-Butyl-2H-Mintlactone (Exemplary Compound Bu-1ce) Optically Active 1-Butylparaffin Obtained in Example 46 Instead of 1-Butylparamentane 3,9-diol Optically active 1-butyl-2H-mint lactone (1.59 g, 90% yield) was obtained using the same procedure as in Example 56 except that menthane 3,9-diol (1.80 g, 7.88 mmol) was used. Obtained as the exemplified compound Bu-1ce.
  • Example 60 Synthesis of 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1af) 1-Butylparamentane 3 obtained in Example 47 instead of 1-butylparamentane 3,9-diol , 9-diol (280 mg, 1.23 mmol) was used in the same manner as in Example 56, and 1-butyl-2H-mintlactone isomer (140 mg, 51% yield) was used as the exemplified compound Bu-1af. Obtained.
  • Example 61 Synthesis of 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1ae)
  • Exemplified Compound Bu-1aa (312 mg, 1.56 mmol) obtained in Example 56 was isolated by column chromatography. Purification gave 1-butyl-2H-mintlactone isomer (21 mg, 7% yield) as exemplified compound Bu-1ae.
  • Example 62 Synthesis of 1-butyl-2H-mintlactone isomer (exemplary compound Bu-1ad)
  • 1-butyl-2H-mintlactone isomer (exemplary compound Bu-1af) 200 mg obtained in Example 60 , 0.892 mmol) was added potassium t-butoxide (100 mg, 1.0 eq.), And the mixture was heated and stirred at 150 ° C. for 8 hours.
  • the reaction solution was dissolved in toluene, washed with tap water, the oil layer was dried over anhydrous magnesium sulfate, concentrated and filtered, and 1-butyl-2H-mintlactone isomer (145 mg, 73% yield) was converted to the exemplified compound Bu-1ad. Got as.
  • Example 63 Synthesis of 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1ac) Obtained in Example 61 instead of 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1af) 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1ae) (50 mg, 0.223 mmol) was used in the same manner as in Example 62 except that 1-butyl-2H-mintlactone isomer was used. The product (32 mg, 64% yield) was obtained as exemplified compound Bu-1ac.
  • Example 64 The exemplified compounds Bu-1ac, Bu-1ad, Bu-1ae, Bu-1af were mixed and the incense tone was confirmed. As a result, the same incense tone as the compound Bu-1aa obtained in Example 56 was obtained.
  • Example 65 Synthesis of optically active 1-butyl-2H-mintlactone (Exemplary Compound Bu-1bf) Obtained in Example 58 instead of 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1af)
  • the optically active 1-butyl-2H-mint was prepared in the same manner as in Example 62 except that optically active 1-butyl-2H-mintlactone (Exemplary Compound Bu1-be) (150 mg, 0.669 mmol) was used.
  • the lactone isomer (102 mg, 68% yield) was obtained as Exemplified Compound Bu-1bf.
  • Example 66 Synthesis of Optically Active 1-Butyl-2H-Mintlactone (Exemplary Compound Bu-1cf) Obtained in Example 59 instead of 1-butyl-2H-mintlactone isomer (Exemplary Compound Bu-1af)
  • the optically active 1-butyl-2H-mint was prepared in the same manner as in Example 62 except that optically active 1-butyl-2H-mintlactone (Exemplary Compound Bu-1ce) (300 mg, 1.34 mmol) was used.
  • the lactone isomer (281 mg, 94% yield) was obtained as exemplary compound Bu-1cf.
  • Example 67 Synthesis of 1-methyl-2H-mintlactone (Exemplary Compound Me-1a) 1-Methylparamentane 3,9 obtained in Example 37 instead of 1-butylparamentane 3,9-diol Using the same procedure as in Example 56 except that diol (1.00 g, 5.37 mmol) was used, 1-methyl-2H-mintlactone (694 mg, 3.81 mmol, 71% yield) was converted to the exemplified compound Me Obtained as -1a.
  • Example 68 Synthesis of (1R, 2S) -5-methyl-2H-mint lactone (Exemplary Compound Me-1b) Obtained in Example 38 instead of 1-butylparamentane 3,9-diol (1R , 2S) -1-methylparamentane 3,9-diol (1.50 g, 8.05 mmol) was used in the same manner as in Example 56 except that (1R, 2S) -1-methyl-2H -Mint lactone (1.327 g, 7.28 mmol, 90% yield) was obtained as exemplary compound Me-1b.
  • Example 69 Synthesis of (1S, 2R) -1-methyl-2H-mint lactone (Exemplary Compound Me-1c) Obtained in Example 39 instead of 1-butylparamentane 3,9-diol (1S , 2R) -1-methylparamentane 3,9-diol (1.50 g, 8.05 mmol) was used in the same manner as in Example 56 except that (1S, 2R) -1-methyl-2H -Mint lactone (1.192 g, 6.54 mmol, 81% yield) was obtained as exemplary compound Me-1c.
  • Example 70 Synthesis of 1-ethyl-2H-mint lactone (Exemplary Compound Et-1a) 1-ethylparamentane 3,9 obtained in Example 40 instead of 1-butylparamentane 3,9-diol
  • 1-ethyl-2H-mintlactone (1.17 g, 6.09 mmol, 61% yield) using the same procedure as in Example 56 except that diol (2.00 g, 9.98 mmol) was used. Obtained as compound Et-1a.
  • Example 71 Synthesis of 1-isopropyl-2H-mint lactone (Exemplary Compound iPr-1a) 1-isopropylparamentane 3,9 obtained in Example 41 instead of 1-butylparamentane 3,9-diol Using the same procedure as in Example 56, except that the diol (1.60 g, 7.46 mmol) was used, the target 1-isopropyl-2H-mint lactone (890 mg, 57% yield) was converted to the exemplified compound iPr-1a. Got as.
  • Example 72 Synthesis of 1-propyl-2H-mintlactone (Exemplary Compound Pr-1a) 1-Propylparamentane 3,9 obtained in Example 42 instead of 1-butylparamentane 3,9-diol Using the same procedure as in Example 56 except that diol (2.22 g, 10.3 mmol) was used, 1-propyl-2H-mintlactone (1.44 g, 67% yield) was used as an example compound Pr-1a Got as.
  • Example 73 Synthesis of 1-iso-butyl 2H-mint lactone (Exemplary Compound iBu-1a) 1-iso-Butylparamentane obtained in Example 43 instead of 1-butylparamentane 3,9-diol
  • the target 1-iso-butyl 2H-mint lactone (1.91 g, 71% yield) was used in the same manner as in Example 56 except that 3,9-diol (2.73 g, 12.0 mmol) was used.
  • 3,9-diol (2.73 g, 12.0 mmol) was used.
  • Example 74 Synthesis of 1-sec-butyl-2H-mintlactone (Exemplary Compound sBu-1a)
  • 1-sec-Butylparaffin obtained in Example 44 instead of 1-butylparamentane 3,9-diol 1-sec-butyl-2H-mintlactone (0.258 g, 75% yield) was used in the same manner as in Example 56 except that menthane 3,9-diol (0.350 g, 1.53 mmol) was used.
  • menthane 3,9-diol (0.350 g, 1.53 mmol
  • Example 75 Synthesis of 1-n-pentyl-2H-mint lactone (Exemplary Compound Pe-1a) 5-n-pentylparaffin obtained in Example 48 instead of 1-butylparamentane 3,9-diol 1-pentyl-2H-mint lactone (0.367 g, 30% yield) was obtained using the same procedure as in Example 56 except that menthane-3,9-diol (1.23 g, 5.07 mmol) was used. Obtained as Exemplified Compound Pe-1a.
  • Example 76 Synthesis of 1- (3-pentyl) -2H-mint lactone (Exemplary Compound 3Pe-1a) 1- (3 obtained in Example 49 instead of 1-butylparamentane 3,9-diol Using the same procedure as in Example 56 except that -pentyl) paramentane-3,9-diol (330 mg, 1.36 mmol) was used, the target 1- (3-pentyl) -2H-mint lactone (212 mg, 0.791 mmol, 58% yield) was obtained as Exemplified Compound 3Pe-1a.
  • Example 77 Synthesis of 1-n-hexyl-2H-mint lactone (Exemplary Compound Hx-1a) 1-n-Hexylpara obtained in Example 50 instead of 1-butylparamentane 3,9-diol 1-n-hexyl-2H-mintlactone (0.400 g, 76% yield) was used in the same manner as in Example 56 except that menthane-3,9-diol (0.530 g, 2.09 mmol) was used. ) was obtained as Exemplified Compound Hx-1a.
  • Example 78 Synthesis of 1-cyclohexyl-2H-mintlactone (Exemplary Compound Cy-1a) 1-cyclohexylparamentane-3 obtained in Example 51 instead of 1-butylparamentane 3,9-diol Except that 9-diol (3.00 g, 2.09 mmol) was used, 1-cyclohexyl-2H-mintlactone (0.400 g, 76% yield) was converted to the exemplified compound Cy— using the same procedure as in Example 56. Obtained as 1a.
  • Example 79 Synthesis of 1-n-heptyl-2H-mint lactone (Exemplary Compound Hp-1a)
  • 1-n-Heptylparaform obtained in Example 52 instead of 1-butylparamentane 3,9-diol 1-n-heptyl-2H-mint lactone (0.367 g, 30% yield) was used in the same manner as in Example 56 except that menthane-3,9-diol (1.23 g, 5.07 mmol) was used.
  • menthane-3,9-diol (1.23 g, 5.07 mmol
  • Example 80 Synthesis of 1-n-octyl-2H-mint lactone (Exemplary Compound Oc-1a) 1-n-Octylparaform obtained in Example 53 instead of 1-butylparamentane 3,9-diol 1-n-octyl-2H-mint lactone (0.530 g, 39% yield) was used in the same manner as in Example 56 except that menthane-3,9-diol (1.37 g, 4.816 mmol) was used. ) was obtained as Exemplified Compound Oc-1a.
  • Example 81 Synthesis of 1-phenyl-2H-mintlactone (Exemplary Compound Ph-1a) 1-Phenylparamentane-3 obtained in Example 54 instead of 1-butylparamentane 3,9-diol Except that 9-diol (800 mg, 3.223 mmol) was used, 1-phenyl-2H-mintlactone (531 mg, 2.177 mmol, 68% yield) was converted to the exemplified compound Ph— using the same procedure as in Example 56. Obtained as 1a.
  • Example 82 Synthesis of 2H-mint lactone Paramentane-3,9-diol (5.00 g, 29.0 mmol) obtained in Example 55 was used in place of 1-butylparamentane 3,9-diol. Except for the above, 2H-mint lactone (4.62 g, 27.5 mmol, 95% yield) was obtained in the same manner as in Example 56.
  • Example 83 Synthesis of methyl-2- (4-methyl-2-oxocyclohex-3-en-1-yl) propanate To a 500 mL four-necked flask with a condenser was added 32 mL of methanol in a nitrogen atmosphere, and sodium was added. Methoxide (16.3 g, 1.0 eq.) was gradually added while cooling to 0-10 ° C. Further, methyl acetoacetate (32.3 mL, 300 mmol) was added dropwise and stirred for 1 hour, and then methyl 2-bromopropionate (50.0 g, 1.0 eq.) Was added.
  • Example 84 Synthesis of 6-isopropyl-3,6-dimethyl-3a, 4,5,6-tetrahydrobenzofuran-2 (3H) -one (Exemplary Compound iPr-3) This reaction was carried out under a nitrogen atmosphere. It was. To a 200 mL four-necked flask with a dropping funnel, copper bromide / dimethyl sulfide complex (78.6 mg, 5 mol%), DMI (1.7 mL, 2 eq.), THF (20 mL) were added, and the system was stirred. The inside was cooled to around ⁇ 10 ° C.
  • Example 85 Bromination / Mink lactonization>
  • Example 85 Synthesis of 8-bromo-1-methyl-2H-mint lactone This reaction was conducted according to Tetrahedron 1993, 49, 29, p. 6429-6436. This reaction was performed in a nitrogen atmosphere.
  • the exemplified compound Me-1a (1.14 g, 5.10 mmol) obtained in Example 67 and THF (15 mL) were added to a 100 mL flask, and the mixture was cooled to ⁇ 70 ° C. or lower with stirring.
  • N-bromosuccinimide (1.18 g, 6.63 mmol, 1.3 eq.) was added to the flask, stirred for 1 hour while maintaining the temperature, and stirred for 3 hours while gradually returning to room temperature.
  • the obtained solution was washed and extracted with toluene and tap water, dried and concentrated, and the resulting residue was purified by column chromatography to obtain the desired 8-bromo-1-methyl-2H-mint lactone. (820 mg, 2.704 mmol, 53% yield). This compound was used in the next reaction without purification.
  • Example 86 Synthesis of 8-bromo-1-butyl-2H-mint lactone Exemplified compound Bu-1aa (1.14 g, 5.10 mmol) obtained in Example 56 was used instead of exemplified compound Me-1a. Except that, 8-bromo-1-butyl-2H-mint lactone (820 mg, 53% yield) was obtained as a crude product in the same manner as in Example 85. This compound was used in the next reaction without purification.
  • Example 87 Synthesis of 1-methylmintlactone (Exemplary Compound Me-2) This reaction was conducted according to Tetrahedron 1993, 49, 29, p. 6429-6436. 8-Bromo-1-methyl-2H-mintlactone obtained in Example 85 (820 mg, 2.704 mmol) and 1,8-diazabicyclo [5.4.0] -7-undecene (0.40 mL, 2. 704 mmol, 1.0 eq.) And toluene (10 mL) were added to a 100 mL flask and refluxed with stirring for 3 hours.
  • Example 88 Synthesis of 1-butylmintlactone (Exemplary Compound Bu-2) 8-Bromo-1-butyl-2H obtained in Example 86 instead of 8-bromo-1-methyl-2H-mintlactone 1-Butyl lactone (285 mg, 1.28 mmol, 47% yield) was obtained as Exemplified Compound Bu-2 in the same manner as in Example 87 except that mint lactone (820 mg, 2.70 mmol) was used. .
  • Example 89 Synthesis of 8-allyl-2H-mintlactone (Exemplary Compound N-1-Ay) This reaction was carried out under a nitrogen atmosphere. To a 100 mL reactor having a dropping funnel, 2H-mint lactone (1.26 g, 7.488 mmol) obtained in Example 82 and THF (10 mL) were added and stirred while cooling to ⁇ 50 ° C. or lower.
  • Example 90 Synthesis of 8-butyl-2H-mint lactone (Exemplary Compound N-1-Bu) 1.00 g (Example 1) was prepared in the same manner as in Example 89 except that butyl iodide was used instead of allyl bromide. 5.942 mmol) of 2H-mint lactone gave 8-butyl-2H-mint lactone as exemplary compound N-1-Bu (650 mg, 2.90 mmol, 49% yield).
  • Example 91 Synthesis of 1-Isopropyltetrahydromentfuran (Exemplary Compound iPr-4) This reaction was conducted according to Chem Sus Chem, 2012, 5, P.A. 1578-1586. In a 100 mL reactor having a condenser, 1-isopropylparamentane-3,9-diol (500 mg, 2.333 mmol) obtained in Example 41, potassium t-butoxide (393 mg, 1.5 eq., 3.50 mmol) and Dimethyl carbonate (7.8 mL) was added, and the mixture was stirred at reflux for 2 hours.
  • Example 92 Synthesis of 1-methyltetrahydromentfuran (Exemplary Compound Me-4) 1-Methylparamentane-3,9 obtained in Example 37 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91, except that diol (631 mg, 3.39 mmol) was used, 1-methyltetrahydromentfuran (320 mg, 1.90 mmol, 56% yield) was obtained as exemplary compound Me-4. It was.
  • Example 93 Synthesis of 1-ethyltetrahydromentfuran (Exemplary Compound Et-4) 1-ethylparamentane-3,9 obtained in Example 40 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that diol (500 mg, 2.50 mmol) was used, 1-ethyltetrahydromentfuran (398 mg, 2.18 mmol, 88% yield) was obtained as Exemplified Compound Et-4. It was.
  • Example 94 Synthesis of 1-propyltetrahydromentfuran (Exemplary Compound Pr-4) 1-Propylparamentane-3,9 obtained in Example 42 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that the diol (1.90 g, 8.86 mmol) was used, the target 1-propyltetrahydromentfuran was obtained as the exemplified compound Pr-4 (868 mg, 50% yield). ).
  • Example 95 Synthesis of 1-butyltetrahydromentfuran (Exemplary Compound Bu-4a) 1-Butylparamentane-3,9 obtained in Example 36 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that the diol (1.08 g, 4.73 mmol) was used, the target 1-butyltetrahydromentfuran was obtained as the exemplified compound Bu-4a (0.512 g, 52 % Yield).
  • Example 96 Synthesis of 1-butyltetrahydromentfuran isomer (Exemplary Compound Bu-4c) Instead of 1-isopropylparamentane-3,9-diol, a borane solution was dropped at 25 ° C in Example 36 and reacted. The reaction was carried out using the same procedure as in Example 91 except that the obtained 1-butylparamentane-3,9-diol (3.00 g, 13.1 mmol) was used. -Butyltetrahydromentfuran isomer was obtained as exemplary compound Bu-4c (0.221 g, 8% yield).
  • Example 97 Illustrative compound Bu-4a and Illustrative compound Bu-4c, which are isomers, were mixed and the fragrance was confirmed, and the same fragrance as that of exemplary compound Bu-4a was obtained from the mixture.
  • Example 98 Synthesis of 1-iso-butyltetrahydromentfuran (Exemplary Compound iBu-4a) 1-iso-Butylparamentane obtained in Example 43 instead of 1-isopropylparamentane-3,9-diol 1-iso-butyltetrahydromentfuran (596 mg, 2.83 mmol, 51% yield) was used in the same manner as in Example 91, except that ⁇ 3,9-diol (1.26 g, 5.517 mmol) was used.
  • Example 98 Synthesis of 1-iso-butyltetrahydromentfuran (Exemplary Compound iBu-4a) 1-iso-Butylparamentane obtained in Example 43 instead of 1-isopropylparamentane-3,9-diol 1-iso-butyltetrahydromentfuran (596 mg, 2.83 mmol, 51% yield) was used in the same manner as in Example 91, except that
  • Example 99 Synthesis of 1-n-pentyltetrahydromentfuran (Exemplary Compound Pe-4a) 1-n-pentylparamentane obtained in Example 48 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that ⁇ 3,9-diol (1.23 g, 5.07 mmol) was used, the target 5-pentyltetrahydromentfuran was obtained as exemplified compound Pe-4a (367 mg). , 30% yield).
  • Example 100 Synthesis of 1-n-hexyltetrahydromentfuran (Exemplary Compound Hx-4a) 1-n-Hexylparamentane obtained in Example 50 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that ⁇ 3,9-diol (246 mg, 0.9601 mmol) was used, the target 1-n-hexyltetrahydromentfuran was obtained as the exemplified compound Hx-4a (94 .1 mg, 41% yield).
  • Example 101 Synthesis of 1-n-heptyltetrahydromentfuran (Exemplary Compound Hp-4a) 1-n-Heptylparamentane obtained in Example 52 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that ⁇ 3,9-diol (2.00 g, 7.94 mmol) was used, the target 1-heptyltetrahydromentfuran was obtained as the exemplified compound Hp-4a (367 mg). , 30% yield).
  • Example 102 Synthesis of 1-n-octyltetrahydromentfuran (Exemplary Compound Oc-4a) 1-n-Octylparamentane obtained in Example 53 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that ⁇ 3,9-diol (1.40 g, 4.92 mmol) was used, the target 1-n-octyltetrahydromentfuran was obtained as the exemplified compound Oc-4a. (724 mg, 55% yield).
  • Example 103 Synthesis of 1-phenyltetrahydromentfuran (exemplary compound Ph-4a) 1-phenylparamentane-3,9 obtained in Example 54 instead of 1-isopropylparamentane-3,9-diol Using the same procedure as in Example 91 except that diol (400 mg, 1.61 mmol) was used, 1-phenyltetrahydromentfuran (360 mg, 1.56 mmol, 97% yield) was obtained as exemplary compound Ph-4a. It was.
  • Example 104 Confirmation of perfume persistence 30 ⁇ L each of the comparative compounds ⁇ -nonalactone, ⁇ -decalactone, ⁇ -undecalactone, nectaryl and the exemplified compound Bu-1aa obtained in Example 56 in a blotter. It was added and the persistence of the aroma was confirmed. As a result, all of the comparative compounds did not feel any odor within 3 weeks, but the odor of the example compound Bu-1aa lasted for 4 months, and its fragrance was almost unchanged compared to when the blotter was added. It was.
  • Example 105 Synthesis of 1- (4-butyl-2-hydroxy-4-methylcyclohexyl) ethane-1-one
  • 5-Butylisopulegol (1.20 g, 1.20 g, obtained in Example 25) was added to a 100 mL reaction flask. 5.70 mmol) and 1-butanol (10 mL) were added, the system was stirred at 10 ° C. or lower, and ozone gas was blown from an ozone generator to cause reaction. Blowing was stopped after 2 hours, and 5% aqueous sodium bicarbonate was added dropwise to terminate the reaction.
  • Example 106 Synthesis of 1- (4-butyl-2-((t-butyldimethylsilyl) oxy) -4-methylcyclohexyl) ethane-1-one This reaction was carried out in a nitrogen atmosphere. In a 50 mL flask, 1- (4-butyl-2-hydroxy-4-methylcyclohexyl) ethane-1-one (3.00 g, 14.1 mmol) obtained in Example 105, dimethyl tbutylsilyl chloride (3.19 g) was obtained. , 1.5 eq.), Imidazole (1.92 g, 2.0 eq.) And DMF (9 mL) were added, and the mixture was stirred at a bath temperature of 30 ° C. for 1.5 hours.
  • Example 108 Synthesis of ethyl-3- (4-butyl-2-((t-butyldimethylsilyl) oxy) -4-methylcyclohexyl) butanoate Ethyl-3-obtained in Example 107 in a 100 mL autoclave (4-Butyl-2-((t-butyldimethylsilyl) oxy) -4-methylcyclohexyl) -2-butenoate (1.64 g, 4.13 mmol), palladium on carbon (5% Pd wet, 10 mg), ethanol (5 mL) was added, and the mixture was heated and stirred at 80 ° C. with a hydrogen pressure of 1 MPa.
  • Example 109 Synthesis of 7-butyl-4,7-dimethyloctahydro-2H-chromen-2-one (Exemplary Compound Bu-5) This reaction was carried out under a nitrogen atmosphere. In a 50 mL reactor, ethyl-3- (4-butyl-2-((t-butyldimethylsilyl) oxy) -4-methylcyclohexyl) butanoate (1.58 g, 3.96 mmol) obtained in Example 108, tetrabutyl Ammonium fluoride / THF solution (1 mol / L, 24 mL, 6.0 eq.) was added, and the mixture was stirred at 50 ° C. for 24 hours. The resulting solution was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated by filtration. The resulting residue was purified by column chromatography to obtain the target exemplified compound Bu-5 (57 mg, 6% yield).
  • Example 110 Fragrance composition Exemplified compound Bu-1 / Bu-1aa / Pr-1a or iBu-1a synthesized above according to the formulation shown in Table 2 below, or a compound of nectaryl or ⁇ -decalactone instead of the exemplified compound was used to prepare a perfume composition.
  • the sensory evaluation was conducted by four expert panelists who have experienced more than 5 years.
  • the floral green tone fragrance composition containing the exemplified compound is a floral containing a compound of nectaryl or ⁇ -decalactone in any composition.
  • Example 111 Fragrance Composition A fragrance composition for perfume was prepared according to the formulation shown in Table 3 below using the exemplified compound Bu-1 / Bu-1aa / Pr-1a or iBu-1a synthesized above. Sensory evaluation is carried out by four expert panelists who have experienced more than 5 years. As a result, the orange flower-like fragrance composition containing the exemplified compounds has high palatability and excellent fragrance in any composition. All four judged.
  • Example 112 Shampoo A shampoo (100 g) in which 1.0% of the fragrance composition of Example 110 was perfumed was prepared according to the formulation shown in Table 4 below. The sensory evaluation of this product was conducted by four specialist panelists who had experienced for more than 5 years, and the fragrance composition using the exemplified compound had higher palatability than the fragrance composition using the comparative compound. All four judged that the result was excellent.
  • Example 113 Body Shampoo A body shampoo (100 g) in which the fragrance composition of Example 111 was scented was prepared according to the formulation shown in Table 5 below. The sensory evaluation of this was carried out by four expert panelists who had experienced for more than 5 years, and all four persons judged that the marine tone with a clean feeling could be clearly recognized, the taste was high, and the result was excellent in fragrance.
  • the compound according to the present invention has a strong peach-like or jasmine-like fragrance, it is useful as a flavoring agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Fats And Perfumes (AREA)
  • Cosmetics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Seasonings (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、下記一般式(A)で表されるラクトン化合物または下記一般式(B)で表されるエーテル化合物に関する。 [式(A)中、Rは水素原子または下記R1であり、Rが水素原子である場合、R'は下記R1であり、炭素結合(1)は単結合または二重結合であり、炭素結合(2)は単結合である。Rが下記R1である場合、R'は水素原子または下記R1であり、炭素結合(1)および(2)はともに単結合であるか、またはいずれか一方が二重結合でもう一方が単結合である。 式(B)中、R"は下記R1である。R1:炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基、またはアリール基。式(A)及び(B)中、nは0または1である。]

Description

新規ラクトン化合物及び新規エーテル化合物
 本発明は、新規な香気を付与することのできる新規化合物とそれらを含有する香料組成物に関する。
 香料の製造において、花の香調を表すフローラル調の香料や、果物の香調を表すフルーティ調の香料は幅広く需要があり、特にピーチ様・ジャスミン様の香料化合物は非常に有用である。従来技術としてその多くはラクトン型の化合物であり、γ-ノナラクトン、γ-デカラクトン、δ-デカラクトンやγ-ウンデカラクトンがピーチ様香気を有する香料として広く用いられてきた。また近年は、ジャスミンラクトン(ZEON Corporation)やジャスモラクトン(Firmenich  S.A.)といった二重結合を有するラクトンや、ラクトンとは異なる構造を有するフルトニル(Givaudan S.A.)やネクタリル(Givaudan S.A.)などの香料化合物が開発され、ピーチ様およびジャスミン様香料の組成物として用いられている。
 しかしながら、既存の化合物は、主香調とは別のココナッツ様・フルーツ様・フローラル様などの異なる香調を同時に有し、純粋なピーチ様、もしくはジャスミン様などの香調を再現しているとは言いがたかった。また、いずれの香料化合物も持続性に問題があり、希釈条件においては数時間~1日以内、ニートにおいても1~2週間程で匂いを感じることが困難になる、もしくは本来の香調と異なる香調に変化してしまうという問題点があった。
 近年、各種香粧品、保健衛生材料、医薬品等の製品の多様化に伴い、香粧品及び保健衛生材料用香料、更には医薬品用香料において、独特な香質で、嗜好性が高く、保留性が強く、安定性が良く、かつ安全性が高い香料物質の開発が従来にもまして要求されている。特に、ピーチ様の香調を有する香料素材に関しては、このような要求を満足する香料素材が不足しており、従来公知の香料物質に加え、さらに上記特性を満たす新たな香料素材の開発が期待されている。
 従って、本発明の目的は上記要求を満たす、純粋なピーチ様・あるいはジャスミン様の香気を付与することのできる新規化合物とそれらを含有する香料組成物を提供することにある。
 このような実情において本発明者らは鋭意研究を行った結果、二環式ラクトン、エーテル型化合物を合成し、これらの化合物が強いピーチ様・あるいはジャスミン様の香気を有し、有用な付香剤となり得ることを見出し、本発明を完成した。すなわち、本発明は下記請求項[1]~[5]を包含する。
[1] 下記一般式(A)で表されるラクトン化合物。
Figure JPOXMLDOC01-appb-C000003
[上記式中、Rは水素原子または下記R1であり、
 Rが水素原子である場合、R’は下記R1であり、炭素結合(1)は単結合または二重結合であり、炭素結合(2)は単結合である。
 Rが下記R1である場合、R’は水素原子または下記R1であり、炭素結合(1)および(2)はともに単結合であるか、またはいずれか一方が二重結合でもう一方が単結合である。
R1:炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基、またはアリール基。
 nは0または1である。]
[2] 下記一般式(B)で表されるエーテル化合物。
Figure JPOXMLDOC01-appb-C000004
[上記式中、R”は炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基またはアリール基を表す;nは0または1である。]
[3] 上記[1]または[2]に記載の化合物を含有する香料組成物。
[4] 上記[3]に記載の香料組成物を配合してなることを特徴とする飲料、食品、香粧品、トイレタリー製品、エアケア製品、日用・雑貨品、口腔用組成物、ヘアケア製品、スキンケア製品、ボディケア製品、衣料用洗剤、衣料用柔軟仕上げ剤、医薬部外品又は医薬品。
[5] 香料の香気を改善する方法であって、上記[1]または[2]に記載の化合物を香料に添加することを特徴とする方法。
 本発明に係る化合物であるラクトン化合物およびエーテル化合物は、心地よく持続性のある、強いピーチ様の香気もしくはジャスミン様の香気を有する非常に有用な香料素材である。これら本発明の化合物を配合することにより、嗜好性の高い香料組成物を提供することができる。
 以下、本発明について詳細に説明する。
<ラクトン化合物>
 本発明に係るラクトン化合物は、下記一般式(A)で表されるラクトン化合物である。
Figure JPOXMLDOC01-appb-C000005
[上記式中、Rは水素原子または下記R1であり、
 Rが水素原子である場合、R’は下記R1であり、炭素結合(1)は単結合または二重結合であり、炭素結合(2)は単結合である。
 Rが下記R1である場合、R’は水素原子または下記R1であり、炭素結合(1)および(2)はともに単結合であるか、またはいずれか一方が二重結合でもう一方が単結合である。
R1:炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基、またはアリール基。
 なお、炭素結合(2)が二重結合である場合、R’は存在しない。
 nは0または1である。]
 Rは水素原子、炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基、またはアリール基である。
 Rで表される炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、等を例示することができる。
 Rで表される炭素数1~8のアルキル基としては、環状アルキルでもよく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 Rで表される炭素数2~8のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-ブテニル基、3-メチル-1-ブテニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-3-ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、等を例示することができる。
 Rで表される炭素数2~8のアルケニル基としては、環状アルケニル基でもよく、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基、シクロヘプテニル基、シクロヘプタジエニル基、シクロオクテニル基、シクロオクタジエニル基等が挙げられる。
 Rで表される炭素数2~8のアルキニル基としては、エチニル基、1-プロパルギル基、1-ブチニル基、2-ブチニル基、2-ペンチル基、3-ヘキシニル基、1-ヘプチニル基、2-オクチニル基等が挙げられる。
 Rが有してもよい置換基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの炭素数1~6のアルキル基、メトキシ基、エトキシ基、n-プルポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、メチレンジオキシ基などの炭素数1~4のアルコキシ基等が挙げられる。
 R’は水素原子、炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基、またはアリール基である。
 R’で表される炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、等を例示することができる。
 R’で表される炭素数1~8のアルキル基としては、環状アルキルでもよく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 R’で表される炭素数2~8のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-ブテニル基、3-メチル-1-ブテニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-3-ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、等を例示することができる。
 R’で表される炭素数2~8のアルキニル基としては、エチニル基、1-プロパルギル基、1-ブチニル基、2-ブチニル基、2-ペンチル基、3-ヘキシニル基、1-ヘプチニル基、2-オクチニル基等を例示することができる。
 R’で表される炭素数2~8のアルケニル基としては、環状アルケニル基でもよく、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基、シクロヘプテニル基、シクロヘプタジエニル基、シクロオクテニル基、シクロオクタジエニル基等が挙げられる。
 R’が有してもよい置換基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの炭素数1~6のアルキル基、メトキシ基、エトキシ基、n-プルポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、メチレンジオキシ基などの炭素数1~4のアルコキシ基等が挙げられる。
 なお、式(A)において、炭素結合(2)が単結合で、かつR’が水素原子以外の場合に限り、Rは水素原子であってもよい。
 すなわち、式(A)において、炭素結合(1)が単結合または二重結合であり、炭素結合(2)が単結合であり、R及びR’が水素原子である場合、ならびに、炭素結合(1)が単結合であり、炭素結合(2)が二重結合であり、Rが水素原子であり、R’が上記R1である場合を除く。
<エーテル化合物>
 本発明に係るエーテル化合物は、下記一般式(B)で表されるエーテル化合物である。
Figure JPOXMLDOC01-appb-C000006
[上記式中、R”は炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基またはアリール基を表す;nは0または1である。]
 R”で表される炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、等を例示することができる。
 R”で表される炭素数1~8のアルキル基としては、環状アルキルでもよく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 R”で表される炭素数2~8のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-ブテニル基、3-メチル-1-ブテニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-3-ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、等を例示することができる。
 R”で表される炭素数2~8のアルケニル基としては、環状アルケニル基でもよく、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基、シクロヘプテニル基、シクロヘプタジエニル基、シクロオクテニル基、シクロオクタジエニル基等が挙げられる。
 R”で表される炭素数2~8のアルキニル基としては、エチニル基、1-プロパルギル基、1-ブチニル基、2-ブチニル基、2-ペンチル基、3-ヘキシニル基、1-ヘプチニル基、2-オクチニル基等が挙げられる。
 R”が有してもよい置換基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの炭素数1~6のアルキル基、メトキシ基、エトキシ基、n-プルポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、メチレンジオキシ基などの炭素数1~4のアルコキシ基等が挙げられる。
 本発明の一般式(A)で表されるラクトン化合物および一般式(B)で表されるエーテル化合物の好ましい具体例としては、以下に示す化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
<製造方法>
 式(A)および式(B)において、炭素結合(1)が単結合であり、炭素結合(2)が二重結合であり、R及びR”がn‐ブチル基であり、R’が水素原子であり、nが0であるラクトン誘導体およびエーテル誘導体の合成方法(下記スキーム1)を例に、本発明に係る化合物の製造方法を説明するが、以下の方法に限定されるものではない。
Figure JPOXMLDOC01-appb-C000010
 (I)の反応では、シトラールと、例えばブチルリチウムもしくはブチルマグネシウムハライドとを、触媒として一価のハロゲン化銅の存在下で反応させることにより、シトロネラール誘導体である中間体(a)が得られる。
 (II)の反応では、例えば日本国特開2012-131785号公報やSynthesis, 1978, P.147-148、Org. Biomol. Chem, 2015, 13, P.5817-5825に記載の閉環反応により、中間体(a)からイソブレゴール誘導体である中間体(b)が得られる。
 (III)の反応では、例えばブラウンヒドロホウ素化反応やChem. Commun. 2016, 52, P.11897-11900の手法により、中間体(b)からパラメンタン誘導体である中間体(c)が得られる。
 (IV)の反応は、例えばTetrahedron 1993, 49, 29, P.6429-6436に記載の手法により、中間体(c)からラクトン誘導体(d)が得られる。
 (V)の反応は、例えば酸触媒を用いた脱水環化反応、もしくはChemSusChem, 2012, 5, P.1578-1586に記載の手法により、中間体(c)からエーテル誘導体(e)が得られる。
 (VI)の反応は、例えばTetrahedron 1993, 49, 29, P.6429-6436に記載の手法により、ラクトン誘導体(d)からラクトン誘導体(f)が得られる。
 (VII)の反応は、例えばCA2997950A1に記載の手法により、中間体(b)からオゾン分解を経て環化を行い、ラクトン誘導体(f)が得られる。
 式(A)おいて、炭素結合(1)が二重結合であり、炭素結合(2)が単結合であり、Rがn‐ブチル基であり、R’が水素原子であり、nが0であるラクトン誘導体は、例えば次に示す方法(スキーム2)により合成されるが、その合成法は以下の方法に限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
 (IX)の反応では、国際公開第2012/165164号の手法に従い、アセト酢酸メチルから中間体(g)を得ることが出来る。
 (X)の反応では、中間体(g)に、例えばブチルリチウムもしくはブチルマグネシウムハライドと、一価のハロゲン化銅を作用させることにより共役付加反応を行い、ラクトン誘導体(h)が得られる。
 式(A)および式(B)において、炭素結合(1)が単結合であり、炭素結合(2)が単結合であり、R及びR”がn‐ブチル基であり、R’が水素原子であり、nが1であるラクトン誘導体およびエーテル誘導体は、例えば次に示す方法(スキーム3)により合成されるが、その合成法は以下の方法に限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
 (XI)の反応では、スキーム1で得られる中間体(b)から、例えばTetrahedron Asymmetry 1999, 10, P.929-936の手法、もしくは、オゾン分解、ホーナー・エモンズ反応を経て還元、環化反応を行うことにより、ラクトン誘導体(i)が得られる。
 (XII)の反応では、例えばTetrahedron 1993, 49, 29, P.6429-6436の手法により中間体(b)の環化を行い、脱水、水素化を経てエーテル誘導体(j)が得られる。(XI)の方法を応用してもエーテル誘導体(j)が得られる。
 式(A)において、炭素結合(1)が単結合であり、炭素結合(2)が単結合であり、Rが水素原子であり、R’がn‐ブチル基であり、nが0であるラクトン誘導体は、例えば次に示す方法(スキーム4)により合成されるが、その合成法は以下の方法に限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
 (XIII)の反応では、例えばリチウムジイソプロピルアミドとアルキルハライドを作用させることにより、ラクトン化合物(k)からラクトン誘導体(l)が得られる。
 このようにして得られた本発明の化合物は、必要に応じて、単離及び精製を行うことができる。単離及び精製の方法としては、例えばカラムクロマトグラフィー、減圧蒸留等が挙げられ、これらを単独であるいは併用して行うことができる。
 本発明の香料組成物に含まれる式(A)および(B)で表される化合物は、パラメンタン骨格における1,3,4,8位の立体配置により、それぞれ光学活性、ジアステレオマーの立体異性体が存在する。これらの異性体は、いずれも良好な香気を有する。式(A)および(B)の化合物を香料組成物に用いる場合は、ラセミ体を用いてもよいが、光学活性体を用いてもよい。光学活性体を用いる場合の光学純度としては、20%ee~99.9%ee、好ましくは50%ee~99.9%eeである。ジアステレオマー等の立体異性体を用いる場合の異性体純度は、20%de~99.9%de、好ましくは50%de~99.9%deである。
 光学純度、異性体比率の測定は、例えばNMR及び/又はカラム(もしくはキラルカラム)を用いた各種クロマトグラフィーにより測定することができる。
 本発明の香料組成物は、式(A)および(B)で表される化合物を少なくとも1種含有する。式(A)および(B)で表される化合物の香料組成物への配合量は、特に限定されないが、香料組成物に対して0.01~60重量%、特に0.1~40重量%であることが好ましい。
 また、本発明の香料組成物には、通常使用される調合香料を配合することができる。この様にして得られる香料組成物は、嗜好性の高い香気付与を提供できる。
 本発明の一般式(A)および(B)で表されるラクトン化合物、エーテル化合物を含む香料組成物を用いて賦香させることができる製品としては、とくに限定されないが、例えば、飲料、食品、香粧品、トイレタリー製品、エアケア製品、日用・雑貨品、口腔用組成物、ヘアケア製品、スキンケア製品、ボディケア製品、衣料用洗剤、衣料用柔軟仕上げ剤、医薬部外品、医薬品などが挙げられる。
 飲料または食品の具体例としては、何ら限定されるものではないが、果汁飲料類、果実酒類、乳飲料類、炭酸飲料、清涼飲料、ドリンク剤類の如き飲料類;アイスクリーム類、シャーベット類、アイスキャンディー類の如き冷菓類;ゼリー、プリンなどのデザート類;ケーキ、クッキー、チョコレート、チューインガムなどの洋菓子類;饅頭、羊羹、ウイロウなどの和菓子類;ジャム類;キャンディー類;パン類;緑茶、ウーロン茶、紅茶、柿の葉茶、カミツレ茶、クマザサ茶、桑茶、ドクダミ茶、プアール茶、マテ茶、ルイボス茶、ギムネマ茶、グアバ茶、コーヒー、ココアの如き茶飲料または嗜好飲料類;和風スープ、洋風スープ、中華スープの如きスープ類;風味調味料;各種インスタント飲料乃至食品類;各種スナック食品類;歯磨き、口腔洗浄料、マウスウオッシュ、トローチ、チューインガム類などの口腔用組成物などを挙げることができる。
 また、香粧品、トイレタリー製品、エアケア製品、日用・雑貨品、口腔用組成物、ヘアケア製品、スキンケア製品、ボディケア製品、衣料用洗剤、衣料用柔軟仕上げ剤、医薬部外品としては、例えば、フレグランス製品、基礎化粧品、仕上げ化粧品、頭髪化粧品、日焼け化粧品、薬用化粧品、ヘアケア製品、石鹸、身体洗浄剤、浴用剤、洗剤、柔軟仕上げ剤、洗浄剤、台所用洗剤、漂白剤、エアゾール剤、消臭・芳香剤、忌避剤、その他の雑貨類などを挙げることができる。
 より具体的には、
・フレグランス製品としては、香水、オードパルファム、オードトワレ、オーデコロンなど;
・基礎化粧品としては、洗顔クリーム、バニシングクリーム、クレンジングクリーム、コールドクリーム、マッサージクリーム、乳液、化粧水、美容液、パック、メイク落としなど;
・仕上げ化粧品としては、ファンデーション、粉おしろい、固形おしろい、タルカムパウダー、口紅、リップクリーム、頬紅、アイライナー、マスカラ、アイシャドウ、眉墨、アイパック、ネイルエナメル、エナメルリムバーなど;
・頭髪化粧品としては、ポマード、ブリランチン、セットローション、ヘアーステック、ヘアーソリッド、ヘアーオイル、ヘアートリートメント、ヘアークリーム、ヘアートニック、ヘアーリキッド、ヘアースプレー、バンドリン、養毛剤、染毛剤など;を挙げることができる。
・日焼け化粧品としては、サンタン製品、サンスクリーン製品など;
・薬用化粧品としては、制汗剤、アフターシェービングローションおよびジェル、パーマネントウェーブ剤、薬用石鹸、薬用シャンプー、薬用皮膚化粧料などを挙げることができ;
・ヘアケア製品としては、シャンプー、リンス、リンスインシャンプー、コンディショナー、トリートメント、ヘアパックなど;
・石鹸としては、化粧石鹸、浴用石鹸、香水石鹸、透明石鹸、合成石鹸など;
・身体洗浄剤としては、ボディソープ、ボディシャンプー、ハンドソープなど;
・浴用剤としては、入浴剤(バスソルト、バスタブレット、バスリキッド等)、フォームバス(バブルバス等)、バスオイル(バスパフューム、バスカプセル等)、ミルクバス、バスジェリー、バスキューブなど;
・洗剤としては、衣料用重質洗剤、衣料用軽質洗剤、液体洗剤、洗濯石鹸、コンパクト洗剤、粉石鹸など;を挙げることができる。
・柔軟仕上げ剤としては、ソフナー、ファーニチアケアーなど;
・洗浄剤としては、クレンザー、ハウスクリーナー、トイレ洗浄剤、浴室用洗浄剤、ガラスクリーナー、カビ取り剤、排水管用洗浄剤など;
・台所用洗剤としては、台所用石鹸、台所用合成石鹸、食器用洗剤など;
・漂白剤としては、酸化型漂白剤(塩素系漂白剤、酸素系漂白剤等)、還元型漂白剤(硫黄系漂白剤等)、光学的漂白剤など;
・エアゾール剤としては、スプレータイプ、パウダースプレーなど;
・消臭・芳香剤としては、固形状タイプ、ゲル状タイプ、リキッドタイプなど;
・雑貨としては、ティッシュペーパー、トイレットペーパーなど;
を挙げることができる。
 前記医薬品の具体例としては、何ら限定されるものではないが、ハップ剤、軟膏剤の如き皮膚外用剤、内服剤などを挙げることができる。
 前記一般式(A)および(B)で表されるラクトン化合物、エーテル化合物を含む香料組成物を用いて賦香させることができる製品の剤形は、混合物自体の形状をとることができるが、その他の剤形としては、例えば、アルコール類、プロピレングリコール、グリセリン、ジプロピレングリコールなどの多価アルコール類、トリエチルシトレート、ベンジルベンゾエート、ジエチルフタレートなどのエステル類に溶解した液体状;アラビアガム、トラガントガムなどの天然ガム質類;グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどの乳化剤で乳化した乳化状;アラビアガム等の天然ガム質類、ゼラチン、デキストリンなどの賦形剤を用いて被膜させた粉末状;界面活性剤、例えば非イオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤などを用いて可溶化あるいは分散化した可溶化状或いは分散化状;又はカプセル化剤で処理して得られるマイクロカプセルなど;その目的に応じて任意の形状を選択して用いられている。
 さらに、サイクロデキストリンなどの包接剤に包接して、上記フレグランス組成物を安定化且つ徐放性にして用いることもある。これらは、最終製品の形態、例えば液体状、固体状、粉末状、ゲル状、ミス卜状、エアゾール状などに適したもので適宜に選択して用いられる。
 既存の香料に所定量のラクトン化合物・エーテル化合物を添加することにより、より嗜好性が高く、より良好な香調に高湿を改善することが出来る。また、香料中の好ましくない香調を抑えることも出来る。添加形態は、化合物を直接添加しても、上記に挙げた包接剤等を用いても良い。
 以下に実施例を挙げ、本発明を詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、合成例、実施例中での生成物の測定は、次の機器装置類を用いて行われた。
NMR  :DRX500(Bruker社製)
GC/MS:GCMS-QP2010(島津製作所社製)
  カラム:RTX-1(長さ30m×内径0.25mm、液相膜厚0.25μm)
GC純度 :GC-4000Plus(ジーエルサイエンス社製)
  カラム:RTX-1(長さ30m×内径0.25mm、液相膜厚0.25μm)
      InertCap-WAX(長さ15m×内径0.25mm、液相膜厚0.25μm)
光学純度 :GC-2010(島津製作所社製)
  カラム:beta-DEX225(RESTEK製、長さ30m×内径0.25mm、液相膜厚0.25μm)
      beta-DEX325(RESTEK製、長さ30m×内径0.25mm、液相膜厚0.25μm)
      HYDRODEX β-3p(MACHEREY-NAGEL製、長さ20m×内径0.25mm)
施光度  :P-1020(JASCO社製)
<実施例1~16:1,4付加反応>
〔実施例1〕3-メチルシトロネラールの合成
本反応は窒素雰囲気下にて行った。滴下漏斗を有した1Lの四つ口フラスコを用意し、フラスコにヨウ化銅(27.3g,1.05eq)及びジエチルエーテル(200ml)を添加し、系内を0-5℃まで攪拌しつつ冷却した。滴下漏斗にメチルリチウム・エーテル溶液(1.13mol/L,260ml,2.05eq.vs CuI)を添加し、1時間半を要し滴下した。滴下終了後温度を保ちつつ30分攪拌し、系内を-60℃以下まで冷却した。滴下漏斗にシトラール(20.8g,137mmol)及びジエチルエーテル(100ml)を添加し、ゆっくりと1時間を要し滴下した。終了後に1時間温度を保ちつつ攪拌し、徐々に系内温度を室温まで昇温した。後処理として、系内を0~5℃まで冷却し、飽和塩化アンモニウム水溶液をゆっくりと滴下した。油層を飽和塩化アンモニウム水溶液で3回・飽和食塩水で1回洗浄し、無水硫酸マグネシウムにて乾燥して減圧濃縮し、カラムクロマトグラフィーにて精製し目的3-メチルシトロネラールを得た(17.2 g, 75% yield)。
3-メチルシトロネラール
H-NMR(500MHz,CDCl):δ0.93(s,6H),1.33-1.39(m,2H),1.60(s,3H),1.68(3H,d,J=0.85Hz),1.94-2.01(m,2H),2.27(2H,d,J=3.2Hz),5.06-5.11(1H,m),9.85(1H,t,J=3.1Hz).
13C-NMR(125MHz,CDCl):17.6(CH3),22.7(CH2),25.7(CH3),27.4(2C,CH3),33.5(C),42.7(CH2),54.7(CH2),124.3(CH),131.6(C),203.6(C).
〔実施例2〕3-エチルシトロネラールの合成
 メチルリチウムの代わりにエチルリチウムを用いたこと以外は実施例1と同様の手法により、シトラール(3.70g,24.3mmol)から3-エチルシトロネラールを得た(3.01g,16.7mmol,67%yield)。
3-エチルシトロネラール
H-NMR(500MHz,CDCl):δ0.86(3H,t,J=7.5Hz),1.03(s,3H),1.31-1.38(2H,m),1.41(2H,q,J=7.6Hz),1.60(s,3H),1.68(3H,s),1.90-1.98(2H,m),2.27(2H,d,J=3.2Hz),5.00-5.15(1H,m),9.85(1H,t,J=3.2Hz).
13C-NMR(125MHz,CDCl):8.0(CH3),17.6(CH3),22.6(CH2),24.8(CH3),25.7(CH3),32.3(CH2),36.2(C),39.6(CH2),52.4(CH2),124.3(CH),131.6(C),203.8(C).
〔実施例3〕3-ブチルシトロネラールの合成
 本反応は窒素雰囲気下にて行った。滴下漏斗を有した1Lの四つ口フラスコを用意し、フラスコにヨウ化銅(45.7g,1.05eq)及びジエチルエーテル(200ml)を添加し、系内を0~5℃まで攪拌しつつ冷却した。滴下漏斗にn-ブチルリチウム・エーテル溶液(1.6mol/L,300ml,2.10eq vs CuI)を添加し、1時間半を要し滴下した。滴下終了後温度を保ちつつ30分攪拌し、系内を-60℃以下まで冷却した。滴下漏斗にシトラール(34.8g,228mmol)及びジエチルエーテル(50ml)を添加し、2時間を要し滴下した。終了後に1時間温度を保ちつつ攪拌し、徐々に系内温度を室温まで昇温した。後処理として、系内を0-5℃まで冷却し、飽和塩化アンモニウム水溶液をゆっくりと滴下した。油層を飽和塩化アンモニウム水溶液で3回・飽和食塩水で1回洗浄し、無水硫酸マグネシウムにて乾燥して減圧濃縮した。得られた粗生成物を蒸留し(バス温110℃,塔頂68-75℃,減圧度0.25torr)、目的の3-ブチルシトロネラールを得た(37.5g,78%yield)。
3-ブチルシトロネラール
H-NMR(500MHz,CDCl):δ0.91(3H,t,J=6.9Hz),1.04(3H,s),1.20-1.38(8H,m),1.60(3H,s),1.68(3H,s),1.89-1.97(2H,m),2.27(2H,d,J=3.2Hz),5.05-5.11(1H,m),9.85(1H,t,J=3.2Hz).
13C-NMR(125MHz,CDCl):14.1(CH3),17.6(CH3),22.3(CH2),23.4(CH2),25.3(CH3),25.7(CH3),25.8(CH2),36.1(C),39.7(CH2),40.0(CH2),52.9(CH2),124.3(CH),131.5(C),203.8(C).
〔実施例4〕3-フェニルシトロネラールの合成
 n-ブチルリチウムの代わりにフェニルリチウムを用いたこと以外は実施例3と同様の手法により、シトラール(14.8g,97.1mmol)から3-フェニルシトロネラールを得た(18.2g,79.0mmol,81%yield)。
3-フェニルシトロネラール
H-NMR(500MHz,CDCl):δ1.45(6H,d,J=13.6Hz),1.66(3H,s),1.67-1.81(4H,m),2.54(1H,dd,J=15.1,3.4Hz),2.82(1H,dd,J=15.2,2.5Hz),4.99-5.04(1H,br),7.22(1H,qui,J=4.5Hz),7.34(4H,d,J=4.5Hz),9.52(1H,dd,J=3.3,2.4Hz).
13C-NMR(125MHz,CDCl):17.5(CH3),22.6(CH2),24.7(CH2),25.6(CH3),39.9(C),43.6(CH2),55.5(CH2),123.9(CH),126.1(2C,CH),126.2(CH),128.5(2C,CH),131.8(C),145.6(C),203.1(C).
〔実施例5〕3-ブチルシトロネラールの合成
 本反応は窒素雰囲気下にて行った。滴下漏斗を有した2L四つ口フラスコに、臭化銅・ジメチルスルフィド錯体(4.28g,5mol%)、DMI(90.5mL,2eq.)、THF(200mL)を添加し、撹拌しつつ系内を-35℃前後まで冷却した。更にシトラール(63.5g,417mmol)、クロロトリメチルシラン(84.6mL,1.6eq.)を系内に添加し、滴下漏斗よりブチルマグネシウムクロリド・THF溶液(1.0mol/L,500mL,1.2eq.)を、3時間を要し滴下した。GCにて反応の分析を行った。シトラールが完全に消失したことを確認し、後処理を行った。系内を0℃以上に昇温し、クエン酸(80g,1.0eq.)の水溶液(500mL)を滴下した(最大11℃)。更に1N塩酸(100mL)とヘプタン(250mL)を添加し洗浄した。系内は均一の二層となった。水層を留去し(pH=1)、1N塩酸で1回、10%食塩水で2回洗浄し、アンモニア水と5%重曹水の混合液を系内に添加した。水層が青色に変化しないことを確認し、飽和食塩水で3回洗浄して油層を無水硫酸マグネシウムにて乾燥した。濾過濃縮後、目的の3-ブチルシトロネラール粗生成物((101g)を得た。精製を行わず、そのまま次の反応に用いた。
〔実施例6〕3-エチルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにエチルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(10.0g,65.7mmol)から3-エチルシトロネラール(12.1g)を粗生成物として得た。
〔実施例7〕3-イソプロピルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにイソプロピルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(10.0g,65.7mmol)から3-イソプロピルシトロネラール(17.2g)を粗生成物として得た。
〔実施例8〕3-プロピルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにプロピルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(15.0g,98.5mmol)から3-プロピルシトロネラール(6.58g,34%yield)を得た。
3-プロピルシトロネラール
H-NMR(500MHz,CDCl):δ0.91(3H,t,J=6.9Hz),1.04(3H,s),1.25-1.39(6H,m),1.60(3H,s),1.68(3H,s),1.89-1.96(2H,m),2.27(2H,d,J=3.3Hz),5.00-5.13(1H,m),9.85(1H,t,J=3.2Hz).
13C-NMR(125MHz,CDCl):14.1(CH3),16.8(CH2),17.6(CH2),22.3(CH2),25.3(CH3),25.7(CH3),36.2(C),40.8(CH2),42.4(CH2),52.9(CH2),124.3(CH),131.6(C),203.8(CH).
〔実施例9〕3-iso-ブチルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにiso-ブチルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(21.8g,143mmol)から3-iso-ブチルシトロネラール(30.9g)を粗生成物として得た。
〔実施例10〕3-sec-ブチルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにsec-ブチルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(10.0g,65.7mmol)から3-sec-ブチルシトロネラール(15.9g)を粗生成物として得た。
〔実施例11〕3-n-ペンチルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにn-ペンチルマグネシウムブロミドを用いたこと以外は実施例5と同様の手法で、シトラール(15.0g,98.5mmol)から3-n-ペンチルシトロネラール(29.0g)を粗生成物として得た。
〔実施例12〕3-(3-ペンチル)シトロネラールの合成
 ブチルマグネシウムクロリドの代わりに3-ペンチルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(12.9g,84.6mmol)から3-(3-ペンチル)シトロネラール(4.01g,17.9mmol,21%yield)をカラムクロマトグラフィーによる単離精製物として得た。
3-(3-ペンチル)シトロネラール
H-NMR(500MHz,CDCl):δ0.83-0.99(7H,m),1.06(3H,s),1.12(2H,qui,J=7.1Hz),1.38-1.58(4H,m),1.60(3H,s),1.68(3H,s),1.89-1.96(2H,m),2.32(1H,ddd,J=24.0,14.4,3.4Hz),5.05-5.12(1H,m),9.87(1H,t,J=3.2Hz).
13C-NMR(125MHz,CDCl):14.4(CH3),14.5(CH3),17.6(CH3),22.4(CH2),22.9(CH3),23.0(CH2),23.2(CH2),25.7(CH3),38.4(CH2),40.2(C),49.3(CH),51.1(CH2),124.4(CH),131.6(C),204.3(CH).
〔実施例13〕3-n-ヘキシルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにn-ヘキシルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(15.0g,98.5mmol)から3-n-ヘキシルシトロネラール(24.0g)を粗生成物として得た。
〔実施例14〕3-シクロヘキシルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにn-シクロヘキシルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(13.8g,90.9mmol)から3-シクロヘキシルシトロネラール(18.0g)を粗生成物として得た。
〔実施例15〕3-n-ヘプチルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにn-ヘプチルマグネシウムブロミドを用いたこと以外は実施例5と同様の手法で、シトラール(13.8g,90.9mmol)から3-n-ヘプチルシトロネラール(21.7g)を粗生成物として得た。
〔実施例16〕3-n-オクチルシトロネラールの合成
 ブチルマグネシウムクロリドの代わりにn-オクチルマグネシウムクロリドを用いたこと以外は実施例5と同様の手法で、シトラール(12.0g,78.8mmol)から3-n-オクチルシトロネラール(5.87g,28%yield)を得た。
3-n-オクチルシトロネラール
H-NMR(500MHz,CDCl):δ0.91(3H,t,J=6.8Hz),1.04(3H,s),1.25-1.39(16H,m),1.60(3H,s),1.68(3H,s),1.88-1.97(2H,m),2.27(2H,d,J=3.2Hz),5.00-5.13(1H,m),9.84(1H,t,J=3.2Hz).
13C-NMR(125MHz,CDCl):14.1(CH3),17.6(CH3),22.3(CH2),22.7(CH3),23.6(CH2),25.3(CH3),25.7(CH3),29.3(CH2),29.6(CH2),30.3(CH2),31.9(CH2),36.2(C),40.0(CH2x2),52.9(CH2),124.3(CH),131.6(C),203.9(CH).
<実施例17~35:閉環反応>
〔実施例17〕光学活性(-)-5-メチルイソプレゴールの合成
 本反応はOrg.Biomol.Chem,2015,13,P.5817-5825に従い行った。コンデンサを有した100mlの四つ口フラスコに窒素雰囲気下にて(R)-BINOL(1.23mg,1.6eq. vs Al)、トルエン(s/s=3,27ml)を加え、拡販しつつトリエチルアルミニウムをゆっくりと添加した。一時間室温にて撹拌後、系内を0-5℃に冷却し実施例1で得られた3-メチルシトロネラール(9.00g,53.5mmol)をゆっくりと滴下した。3時間後にGCにて反応の完結を確認し、反応を終了させた。後処理として、トルエン/塩酸にてクエンチ後、油層を水道水・飽和食塩水で各一回洗浄した。無水硫酸マグネシウムにて乾燥してシリカゲルカラムクロマトグラフィーを通過させ、減圧濃縮して目的の光学活性(-)-5-メチルイソプレゴールを得た(7.42g,83%yield)。
光学活性(-)-5-メチルイソプレゴール
[a]20 =-6.6(c0.64,CHCl,)
H-NMR(500MHz,CDCl):δ0.93(3H,s),0.96(3H,s),1.14(1H,t,J=11.7Hz),1.22(1H,td,J=13.0,4.6Hz),1.26-1.41(2H,m),1.45-1.57(2H,m),1.74(3H,dd,J=1.5,0.9Hz),1.75-1.87(2H,m),3.61-3.66(1H,m),4.85-4.86(1H,m),4.89-4.91(1H,m)
13C-NMR(125MHz,CDCl):δ19.2(CH3),25.1(CH3),26.4(CH2),32.2(C),33.0(CH3),38.6(CH2),46.8(CH2),54.8(CH),67.6(CH),112.8(CH2),146.7(C)
89%ee;
〔実施例18〕光学活性(+)-5-メチルイソプレゴールの合成
 (R)-BINOLの代わりに(S)-BINOLを用いたこと以外は実施例17と同様の手法で、実施例1で得られた3-メチルシトロネラール(1.00g,5.94mmol)より光学活性(+)-5-メチルイソプレゴールを得た(896mg,90%yield)。
光学活性(+)-5-メチルイソプレゴール
[a]20 =-6.6(c0.64,CHCl,)
H-NMR(500MHz,CDCl):δ0.93(3H,s),0.96(3H,s),1.14(1H,t,J=11.7Hz),1.22(1H,td,J=13.0,4.6Hz),1.26-1.41(2H,m),1.45-1.57(2H,m),1.74(3H,dd,J=1.5,0.9Hz),1.75-1.87(2H,m),3.61-3.66(1H,m),4.85-4.86(1H,m),4.89-4.91(1H,m)
13C-NMR(125MHz,CDCl):δ19.2(CH3),25.1(CH3),26.4(CH2),32.2(C),33.0(CH3),38.6(CH2),46.8(CH2),54.8(CH),67.6(CH),112.8(CH2),146.7(C)
89%ee;
〔実施例19〕光学活性(-)-5-ブチルイソプレゴールの合成
 3-メチルシトロネラールの代わりに実施例3で得られた3-ブチルシトロネラール(5.00g,23.8mmol)を用いたこと以外は実施例17と同様の手法で、光学活性(-)-5-ブチルイソプレゴールを得た(4.41g,90%yield)。
光学活性(-)-5-ブチルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.91-1.07(6H,m),1.10(1H,tJ=11.7Hz),1.14-1.41(7H,m),1.43-1.62(3H,m),1.74(3H,s),1.77-1.91(3H,m),3.65(1H,ddd,J=10.7,10.7,4.4Hz),4.88(2H,d,J=20.4Hz)(major);
1H-NMR(500MHz,CDCl):δ0.88-0.91(6H,m),1.05(1H,t,J11.7Hz),1.14-1.41(7H,m),1.43-1.62(3H,m),1.75(3H,br),1.77-1.91(3H,m),3.61(1H,ddd,J=10.8,10.5,4.2Hz),4.88(2H,d,J=20.4Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.7(CH3),23.6(CH2),25.4(CH2),26.1(CH2),34.7(C),36.9(CH2),45.1(CH2),45.9(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),23.5(CH2),25.4(CH2),25.8(CH2),29.4(CH3),34.7(C),37.1(CH2),44.9(CH2),45.9(CH2),54.8(CH),67.1(CH),112.7(CH2),146.7(C)(minor)
74%ee(major)
88%ee(minor)
〔実施例20〕光学活性(+)-5-ブチルイソプレゴールの合成
 (R)-BINOLの代わりに(S)-BINOLを用いたこと、3-メチルシトロネラールの代わりに実施例3で得られた3-ブチルシトロネラール(5.00g,23.8mmol)を用いたこと以外は実施例17と同様の手法で、光学活性(+)-5-ブチルイソプレゴールを得た(4.86g,97%yield)。
光学活性(+)-5-ブチルイソプレゴール
[a] 20=+68.1(c0.30,CHCl3,mixture)
1H-NMR(500MHz,CDCl):δ0.91-1.08(6H,m),1.10(1H,t,J=11.7Hz),1.14-1.41(7H,m),1.43-1.62(3H,m),1.74(3H,s),1.76-1.91(3H,m),3.65(1H,ddd,J=10.7,10.7,4.4Hz),4.88(2H,d,J=20.4Hz)(major);
1H-NMR(500MHz,CDCl):δ0.88-0.91(6H,m),1.05(1H,t,J11.7Hz),1.14-1.41(7H,m),1.43-1.62(3H,m),1.75(3H,br),1.76-1.91(3H,m),3.61(1H,ddd,J=10.8,10.5,4.2Hz),4.88(2H,d,J=20.4Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.7(CH3),23.6(CH2),25.4(CH2),26.1(CH2),34.7(C),36.9(CH2),45.1(CH2),45.9(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),23.5(CH2),25.4(CH2),25.8(CH2),29.4(CH3),34.7(C),37.1(CH2),44.9(CH2),45.9(CH2),54.9(CH),67.1(CH),112.7(CH2),146.7(C)(minor)
56%ee(major)
81%ee(minor)
〔実施例21〕5-エチルイソプレゴールの合成
 本反応は窒素雰囲気下にて行った。コンデンサを有した300mLリアクターに実施例6で得られた粗3-エチルシトロネラール混合物(7.90g)、トルエン(40mL)および塩化亜鉛もしくは臭化亜鉛(395mg,5wt%)及びデカン酸(237mg,3wt%)を添加し、1時間100℃で加熱撹拌した。GCで反応の完結を確認し、後処理を行った。溶液を室温まで冷却後、飽和食塩水で二回洗浄し、無水硫酸マグネシウムにて乾燥、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで単離精製し、目的の5-エチルイソプレゴールを1.99g得た(2steps,33%yield)。
5-エチルイソプレゴール
H-NMR(500MHz,CDCl):δ0.82-0.87(m,3H),0.90(s,3H,C-CH),1.02-1.63(m,7H),1.76(s,3H,C=C-CH),1.80-1.96(m,3H),3.62-3.69(m,1H,CH-OH),4.88(d,2H,J=21.0Hz,C=CH)(major).
H-NMR(500MHz,CDCl):δ0.82-0.85(m,3H),0.88(s,3H,C-CH),1.02-1.63(m,7H),1.73(s,3H,C=C-CH),1.80-1.96(m,3H),3.56-3.62(m,1H,CH-OH),4.88(d,2H,J=21.0Hz,C=CH)(minor).
13C-NMR(125MHz,CDCl):7.6(CH),19.3(CH),22.1(CH),26.1(CH),34.7(C),36.4(CH),38.2(CH),44.6(CH),55.1(CH),67.6(CH),112.7(CH),146.7(C)(major).
13C-NMR(125MHz,CDCl):7.9(CH),19.3(CH),22.1(CH),25.8(CH),34.6(C),36.6(CH),38.2(CH),44.6(CH),54.8(CH),67.1(CH),112.7(CH),146.7(C)(minor).
HRMS calcd for C1222O(M+)182.1662,found 182.1671.
〔実施例22〕5-メチルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例1で得られた3-メチルシトロネラール(10.0g,59.4mmol)を用いたこと以外は実施例21と同様の手法で、5-メチルイソプレゴールを得た(8.71g,87%yield)。
5-メチルイソプレゴール
H-NMR(500MHz,CDCl):δ0.94(3H,s),0.97(3H,s),1.14(1H,t,J=11.5Hz),1.17-1.31(2H,m),1.35-1.42(1H,m),1.45-1.58(2H,m),1.74(3H,dd,J=1.5,1.0Hz),1.78(1H,dq,J=12.5,2.0Hz),1.81-1.87(1H,m),3.61-3.67(1H,m),4.86-4.87(1H,m),4.89-4.91(1H,m).
13C-NMR(125MHz,CDCl):19.3(CH3),25.1(CH3),26.4(CH2),32.1(C),33.0(CH3),38.5(CH2),46.8(CH2),54.8(CH),67.6(CH),112.8(CH2),146.6(C).
HRMS calcd for C1120O (M+) 168.1514, found 168.1516.
〔実施例23〕5-プロピルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例8で得られた3-プロピルシトロネラール(6.00g)を用いたこと以外は実施例21と同様の手法で、より5-プロピルイソプレゴールを得た(5.04g,84%yield)。
5-プロピルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.88-0.93(6H,m),1.03-1.22(5H,m),1.28-1.41(3H,m),1.45-1.59(3H,m),1.74(3H,s),1.76-1.86(1H,m),3.65(1H,dt,J=10.5,4.0Hz),4.88(2H,d,J=20.0Hz)(major);
1H-NMR(500MHz,CDCl):δ0.88-0.93(6H,m),1.03-1.30(7H,m),1.35-1.41(1H,m),1.45-1.59(3H,m),1.74(3H,s),1.82-1.93(1H,m),3.61(1H,dt,J=10.5,4.0Hz),4.88(2H,d,J=20.0Hz)(minor)
13C-NMR(125MHz,CDCl):15.0(CH3),16.4(CH2),19.3(CH3),22.7(CH3),26.1(CH2),34.8(C),36.9(CH2),45.1(CH2),48.7(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):15.1(CH3),16.8(CH2),19.3(CH3),25.9(CH2),29.5(CH3),34.7(C),37.1(CH2),39.1(CH2),45.0(CH2),54.8(CH),67.1(CH),112.7(CH2),146.7(C)(minor)
〔実施例24〕5-イソプロピルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例7で得られた粗3-イソプロピルシトロネラールを用いたこと以外は実施例21と同様の手法で、3-イソプロピルシトロネラール(17.2g)より5-イソプロピルイソプレゴールを得た(3.17g,2steps 27%yield)。
5-イソプロピルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.78-0.90(9H,m),1.03-1.67(8H,m),1.73(3H,s),1.88(1H,ddd,J=12.5,4.4,2.3Hz),3.66(1H,td,J=10.7,4.2Hz),1.76-1.86(1H,m),3.65(1H,dt,J=10.5,4.0Hz),4.86(1H,br),4.89-4.92(1H,m)(major);
13C-NMR(125MHz,CDCl):16.8(CH3),16.9(CH3),18.1(CH3),19.3(CH3),26.1(CH2),34.8(CH2),37.0(C),39.5(CH),43.2(CH2),54.9(CH),67.9(CH),112.7(CH2),146.7(C)(major)
〔実施例25〕5-ブチルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例5で得られた粗3-ブチルシトロネラール混合物を用いたこと以外は実施例21と同様の手法で、3-ブチルシトロネラール(30.9g)より5-ブチルイソプレゴールを得た(8.34g,2 steps 28%yield)。
5-ブチルイソプレゴール
1H-NMR(500MHz,CDCl3):δ0.90-0.93(m,6H),1.10(t,1H,J=11.5Hz),1.15-1.41(m,7H),1.45-1.62(m,3H),1.74(br,3H,C=C-CH3),1.77-1.90(m,3H),3.65(tq,1H,J=11.0,1.5Hz,CH-OH),4.84-4.87(br,1H,C=CH2),4.89-4.92(br,1H,C=CH2)(major).
1H-NMR(500MHz,CDCl3):δ0.88-0.91(m,6H),1.02-1.40(m,8H),1.45-1.62(m,3H),1.75(d,3H,J=2.0Hz,C=C-CH3),1.77-1.90(m,3H),3.57-3.65(m,1H,CH-OH),4.84-4.87(br,1H,C=CH2),4.89-4.92(br,1H,C=CH2)(minor).
13C-NMR(125MHz,CDCl3):14.1(CH3),19.3(CH3),22.7(CH3),23.6(CH2),25.4(CH2),26.1(CH2),34.7(C),36.9(CH2),45.1(CH2),45.9(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major).
13C-NMR(125MHz,CDCl3):14.1(CH3),19.3(CH3),23.6(CH2),25.4(CH2),25.9(CH2),29.4(CH3),34.7(C),37.1(CH2),44.9(CH2),45.9(CH2),54.8(CH),67.1(CH),112.7(CH2),146.7(C)(minor).
〔実施例26〕5-(1α,2β,5β)-ブチルイソプレゴールの合成
 実施例25で得られた5-ブチルイソプレゴール(22.1g)をさらに単離精製し、5-(1α,2β,5β)-ブチルイソプレゴールを得た(751mg)。
5-(1α,2β,5β)-ブチルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.88-0.91(6H,m),1.05(1H,t,J11.7Hz),1.14-1.41(7H,m),1.43-1.62(3H,m),1.75(3H,br),1.76-1.91(3H,m),3.61(1H,ddd,J=10.8,10.5,4.2Hz),4.88(2H,d,J=20.4Hz)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),23.5(CH2),25.4(CH2),25.8(CH2),29.4(CH3),34.7(C),37.1(CH2),44.9(CH2),45.9(CH2),54.9(CH),67.1(CH),112.7(CH2),146.7(C)
〔実施例27〕5-iso-ブチルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例9で得られた粗3-iso-ブチルシトロネラールを用いたこと以外は実施例21と同様の手法で、3-iso-ブチルシトロネラール(30.9g)より5-iso-ブチルイソプレゴールを得た(13.4g,2 steps 50%yield)。
〔実施例28〕5-sec-ブチルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例10で得られた3-sec-ブチルシトロネラール粗生成物を用いたこと以外は実施例21と同様の手法で、3-sec-ブチルシトロネラール(15.9g)より5-sec-ブチルイソプレゴールを得た(2.03g,2 steps 15%yield)。
〔実施例29〕5-n-ペンチルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例11で得られた3-n-ペンチルシトロネラール粗生成物を用いたこと以外は実施例21と同様の手法で、3-n-ペンチルシトロネラール粗生成物(19.7g)より5-n-ペンチルイソプレゴールを得た(3.21g,2 steps 23%yield)。
5-n-ペンチルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.85-0.94(6H,m),1.02-1.40(12H,m),1.46-1.57(3H,m),1.73(3H,s),1.77-1.87(1H,m),3.65(1H,dt,J=10.8,4.3Hz),4.88(2H,d,J=19.9Hz)(major)
1H-NMR(500MHz,CDCl):δ0.85-0.94(6H,m),1.02-1.40(12H,m),1.46-1.57(3H,m),1.73(3H,s),1.83-1.93(1H,m),3.61(1H,dt,J=10.4,4.2Hz),4.88(2H,d,J=19.9Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),19.2(CH3),22.6(CH3),22.8(CH2),23.1(CH2),26.1(CH2),32.7(CH2),34.7(C),36.8(CH2),45.0(CH2),46.1(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.7(CH2),22.8(CH2),25.9(CH2),29.4(CH3),32.8(CH2),34.5(C),36.6(CH2),37.1(CH2),44.9(CH2),54.7(CH),67.1(CH),112.7(CH2),146.7(C)(minor)
〔実施例30〕5-(3-ペンチル)イソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例12で得られた3-(3-ペンチル)シトロネラール(2.70g,13.8mmol)を用いたこと以外は実施例21と同様の手法で、5-(3-ペンチル)イソプレゴールを得た(2.27g,76%yield)。
5-(3-ペンチル)イソプレゴール
1H-NMR(500MHz,CDCl):δ0.72(hep,J=3.6Hz),0.83-0.95(6H,m),1.03-1.30(18H,m),1.42-1.61(3H,m),1.73(3H,s),1.79-1.87(1H,m),3.65(1H,dt,J=10.6,4.4Hz),4.88(2H,d,J=20.2Hz)(major)
1H-NMR(500MHz,CDCl):δ0.72(hep,J=3.6Hz),0.83-0.95(6H,m),1.03-1.30(18H,m),1.42-1.61(3H,m),1.73(3H,s),1.91(ddd,J=12.6,4.4,2.2Hz),3.65(1H,dt,J=10.6,4.4Hz),4.88(2H,d,J=20.2Hz)(minor)
13C-NMR(125MHz,CDCl):14.6(CH3x2),19.2(CH3),19.6(CH3),22.6(CH2),22.7(CH2),25.9(CH2),34.9(CH2),38.6(C),43.2(CH2),54.7(CH),54.9(CH),57.7(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):14.6(CH3),19.2(CH3),19.6(CH3),22.2(CH2),22.6(CH2),25.7(CH2),25.9(CH3),34.9(CH2),38.3(C),42.9(CH),43.2(CH2),54.7(CH),54.9(CH),112.7(CH2),146.7(C)(minor)
〔実施例31〕5-n-ヘキシルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例13で得られた3-n-ヘキシルシトロネラール粗生成物を用いたこと以外は実施例21と同様の手法で、3-n-ヘキシルシトロネラール(24.0g)より5-n-ヘキシルイソプレゴールを得た(6.02g,2 steps 26%yield)。
5-n-ヘキシルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.85-0.94(6H,m),1.03-1.41(14H,m),1.45-1.59(3H,m),1.74(3H,s),1.76-1.87(1H,m),3.65(1H,dt,J=11.0,4.5Hz),4.88(2H,d,J=19.5Hz)(major)
1H-NMR(500MHz,CDCl):δ0.85-0.94(6H,m),1.07-1.41(14H,m),1.45-1.59(3H,m),1.74(3H,s),1.84-1.93(1H,m),3.61(1H,dt,J=11.0,4.0Hz),4.88(2H,d,J=19.5Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.6(CH2),22.7(CH3),23.1(CH2),26.1(CH2),30.2(CH2),31.9(CH2),34.7(C),36.9(CH2),45.1(CH2),46.1(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.6(CH2),23.5(CH2),25.9(CH2),,29.4(CH3),30.3(CH2),31.9(CH2),34.6(C),36.7(CH2),37.1(CH2),44.9(CH2),54.8(CH),67.1(CH),112.7(CH2),146.7(C)(minor)
〔実施例32〕5-シクロヘキシルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例14で得られた3-シクロヘキシルシトロネラール粗生成物を用いたこと以外は実施例21と同様の手法で、3-シクロヘキシルシトロネラール(18.0g)より5-シクロヘキシルイソプレゴールを得た(7.63g,2 steps 39%yield)。
〔実施例33〕5-n-ヘプチルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例15で得られた3-n-ヘプチルシトロネラール粗生成物を用いたこと以外は実施例21と同様の手法で、3-n-ヘプチルシトロネラール(21.7g)より5-n-ヘプチルイソプレゴールを得た(6.89g,2 steps 31%yield)。
5-n-ヘプチルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.85-0.94(6H,m),1.03-1.41(16H,m),1.45-1.59(3H,m),1.73(3H,s),1.76-1.87(1H,m),3.65(1H,dt,J=10.8,4.4Hz),4.88(2H,d,J=20.8Hz)(major)
1H-NMR(500MHz,CDCl):δ0.85-0.94(6H,m),1.03-1.41(16H,m),1.45-1.59(3H,m),1.73(3H,s),1.76-1.87(1H,m),3.61(1H,dt,J=10.9,4.2Hz),4.88(2H,d,J=20.8Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.6(CH2),22.7(CH3),23.2(CH2),26.1(CH2),29.4(CH2),30.5(CH2),31.9(CH2),34.7(C),36.9(CH2),45.0(CH2),46.2(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.6(CH2),23.6(CH2),25.9(CH2),29.4(CH2),29.4(CH3),30.6(CH2),31.9(CH2),34.6(C),36.7(CH2),37.1(CH2),44.9(CH2),54.8(CH),67.1(CH),112.7(CH2),146.7(C)(minor)
〔実施例34〕5-n-オクチルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例16で得られた3-n-オクチルシトロネラール(5.50g)を用いたこと以外は実施例21と同様の手法で、5-n-オクチルイソプレゴールを得た(4.29g,78% yield)。
5-n-オクチルイソプレゴール
1H-NMR(500MHz,CDCl):δ0.85-0.93(6H,m),1.02-1.40(18H,m),1.44-1.57(3H,m),1.73(3H,s),1.78-1.88(1H,m),3.65(1H,dt,J=10.7,4.3Hz),4.88(2H,d,J=19.1Hz)(major)
1H-NMR(500MHz,CDCl):δ0.85-0.93(6H,m),1.02-1.40(18H,m),1.44-1.57(3H,m),1.73(3H,s),1.83-1.92(1H,m),3.61(1H,dt,J=10.5,4.0Hz),4.88(2H,d,J=19.1Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.6(CH2),22.6(CH3),23.1(CH2),,26.1(CH2),29.3(CH2),29.7(CH2),30.5(CH2),31.9(CH2),34.7(C),36.9(CH2),45.0(CH2),46.2(CH2),55.1(CH),67.6(CH),112.7(CH2),146.7(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),19.3(CH3),22.6(CH2),23.6(CH2),25.9(CH2),29.3(CH2),29.4(CH3),29.7(CH2),30.6(CH2),31.9(CH2),34.6(C),36.9(CH2),37.1(CH2),45.0(CH2),54.7(CH),67.1(CH),112.7(CH2),146.7(C)(minor)
〔実施例35〕5-フェニルイソプレゴールの合成
 3-エチルシトロネラールの代わりに実施例4で得られた3-フェニルシトロネラール(2.00g,8.68mmol)を用いたこと以外は実施例21と同様の手法で、5-フェニルイソプレゴールを得た(1.58g,85%yield)。
5-フェニルイソプレゴール
H-NMR(500MHz,CDCl):δ1.32(3H,s),1.32-1.50(2H,m),1.52(3H,s),1.53-1.75(2H,m),1.88-2.04(2H,m),2.38(1H,dq,J=13.8,3.0Hz),2.71(1H,dt,J=13.3,2.9Hz),3.45(1H,td,J=11.0,3.9Hz),4.77-4.85(2H,m),7.10-7.45(5H,m)(major).
H-NMR(500MHz,CDCl):δ1.20(3H,s),1.35-1.73(5H,m),1.79(3H,s),1.86-2.04(2H,m),2.30(1H,dq,J=12.5,2.0Hz),3.84(1H,td,J=10.7,4.2Hz),4.90-4.96(2H,m),7.10-7.45(5H,m)(minor).
13C-NMR(125MHz,CDCl):19.3(CH3),25.5(CH3),26.3(CH2),37.1(CH2),38.8(C),44.8(CH2),54.6(CH),67.8(CH),112.9(CH2),124.9(CH),125.8(CH),125.9(CH),128.2(CH),128.5(CH),146.4(C),151.3(C)(major).
13C-NMR(125MHz,CDCl):19.1(CH3),26.5(CH2),35.3(CH3),37.0(CH2),40.0(C),44.9(CH2),54.9(CH),67.3(CH),112.7(CH2),124.9(CH),125.6(CH),125.9(CH),128.2(CH),128.5(CH),146.3(C),146.6(C)(minor).
<実施例36~55>
〔実施例36〕1-ブチルパラメンタン-3,9-ジオールの合成
 本反応は窒素雰囲気下にて行った。滴下漏斗を有した100mLリアクターに実施例25で得られた5-ブチルイソプレゴール(3.40g,16.2mmol)及びTHF(5mL)を添加し、滴下漏斗にボラン/THF・THF溶液(1.0mol/L,24.2mL,1.5eq.)を添加した。系内を撹拌しつつ0-5℃に冷却し、凡そ45分を要してボラン溶液を滴下した。滴下終了後、室温で1時間撹拌し、滴下漏斗内にNaOH水(25wt%,9.9mL,3eq.)を加えた。先ず水道水を数滴系内に添加し、発泡が収まったことを確認してNaOH水を15分で滴下した(max25℃)。水浴にて系内を再び室温に戻し、滴下漏斗に過酸化水素水(30%水溶液,24.8mL,12eq.)を添加した。凡そ15分を要して滴下し、終了後更に1時間還流撹拌した。GCにて反応の完結を確認し、後処理を行った。反応溶液をヘプタン/1N塩酸に添加し、油層を分離した。水層をヘプタンにて抽出し、得られた油層を合わせて飽和食塩水で3回洗浄した。油層を無水硫酸マグネシウムにて乾燥し、濾過濃縮をすることにより粗生成物を得た。カラムクロマトグラフィーで単離精製し、目的の1-ブチルパラメンタン-3,9-ジオールを無色オイルとして得た(2.21g,9.69mmol,60%yield)。
1-ブチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.85-0.93(6H,m),0.98(3H,d,J=7.4Hz),1.04-1.48(12H,m),1.71(1H,ddd,J=12.3,4.3,2.4Hz),1.84-1.91(1H,m),2.49-3.27(2H,br),3.58-3.70(3H,m)(major)
1H-NMR(500MHz,CDCl):δ0.86-0.93(6H,m),0.98(3H,d,J=7.3Hz),1.05-1.48(12H,m),1.78-1.91(2H,m),2.49-3.27(2H,br),3.58-3.70(3H,m)(minor)
13C-NMR(125MHz,CDCl):12.0(CH3),14.1(CH3),22.4(CH3),23.6(CH2),25.5(CH2),25.8(CH2),34.6(C),37.1(CH2),38.6(CH),45.7(CH2),47.1(CH2),49.4(CH),67.3(CH2),67.4(CH)(major)
13C-NMR(125MHz,CDCl):12.0(CH3),14.1(CH3),23.6(CH2),25.5(CH2),25.7(CH2),29.2(CH3),34.4(C),36.2(CH2),37.2(CH2),38.6(CH),45.7(CH2),48.9(CH),66.9(CH2),67.2(CH)(minor)
〔実施例37〕1-メチルパラメンタン3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例22で得られた5-メチルイソプレゴール(5.38g,32.0mmol)を使用したこと以外は実施例36と同様の手法で、1-メチルパラメンタン-3,9-ジオールを無色オイルとして得た(3.85g,65%yield)。
1-メチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.88(3H,s),0.94(3H,s),0.98(3H,d,J=7.3Hz),1.11-1.47(5H,m),1.64-1.68(1H,m),1.70(1H,dq,J=12.3,4.3,2.6Hz),1.83-1.91(1H,m),2.93(2H,br),3.59-3.70(3H,m)
13C-NMR(125MHz,CDCl):12.0(CH3),24.9(CH3),26.1(CH2),32.1(C),32.8(CH3),38.6(CH),38.8(CH2),48.8(CH2),49.1(CH),67.2(CH2),67.4(CH)
〔実施例38〕(3R,4S)-1-メチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例17で得られた光学活性(-)-5-メチルイソプレゴール((-)-1R,2S-5-メチルイソプレゴール)(3.00g,17.8mmol)を用いたこと以外は実施例36と同様の手法で、光学活性(3R,4S)-1-メチルパラメンタン-3,9-ジオールを無色オイルとして得た(3.03g,91%yield)。
(3R,4S)-5-メチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.88(3H,s),0.94(3H,s),0.98(3H,d,J=7.3Hz),1.10-1.47(5H,m),1.64-1.68(1H,m),1.70(1H,dq,J=12.3,4.3,2.6Hz),1.83-1.91(1H,m),2.93(2H,br),3.59-3.70(3H,m)
13C-NMR(125MHz,CDCl):12.0(CH3),24.9(CH3),26.0(CH2),32.1(C),32.8(CH3),38.6(CH),38.8(CH2),48.8(CH2),49.1(CH),67.2(CH2),67.4(CH)
〔実施例39〕(3S,4R)-1-メチルパラメンタン-3,9-ジオールの合成
 実施例36と同様の手法で、5-ブチルイソプレゴールの代わりに実施例18で得られた光学活性(+)-5-メチルイソプレゴール((+)-1S,2R-5-メチルイソプレゴール)(2.70g,16.0mmol)を用いたこと以外は実施例36と同様の手法で、光学活性(3S,4R)-1-メチルパラメンタン-3,9-ジオールを無色オイルとして得た(2.47g,81% yield)。
(3S,4R)-5-メチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.88(3H,s),0.94(3H,s),0.98(3H,d,J=7.3Hz),1.11-1.47(5H,m),1.64-1.68(1H,m),1.70(1H,dq,J=12.3,4.3,2.6Hz),1.83-1.93(1H,m),2.93(2H,br),3.59-3.69(3H,m)
13C-NMR(125MHz,CDCl):12.0(CH3),24.9(CH3),26.1(CH2),32.1(C),32.8(CH3),38.6(CH),38.8(CH2),48.8(CH2),49.1(CH),67.2(CH2),67.4(CH)
〔実施例40〕1-エチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例21で得られた5-エチルイソプレゴール(3.50g,19.2mmol)を用いたこと以外は実施例36と同様の手法で、1-エチルパラメンタン-3,9-ジオールを得た(3.10g,15.5mmol,81%yield)。
1-エチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.77-0.90(6H,m),0.97(3H,d,J=7.7Hz),1.01-1.60(8H,m),1.70(1H,ddd,J=12.4,4.1,2.5Hz),1.76-1.85(1H,m),3.52-3.66(3H,m),4.14(2H,br)(major)
1H-NMR(500MHz,CDCl):δ0.77-0.90(6H,m),0.97(3H,d,J=7.7Hz),1.01-1.60(8H,m),1.76-1.85(2H,m),3.52-3.66(3H,m),4.14(2H,br)(minor)
13C-NMR(125MHz,CDCl):7.59(CH3),11.9(CH3),21.8(CH3),26.0(CH2),28.5(CH2),34.5(C),36.6(CH2),38.0(CH2),38.9(CH),49.4(CH),66.9(CH2),67.0(CH),(major)
13C-NMR(125MHz,CDCl):7.89(CH3),11.9(CH3),25.8(CH2),28.5(CH3),34.4(C),36.7(CH2),38.9(CH),46.4(CH2),46.4(CH2),49.0(CH),66.4(CH),67.0(CH2),(minor)
〔実施例41〕1-イソプロピルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例24で得られた5-イソプロピルイソプレゴール(2.80g,14.3mmol)を用いたこと以外は実施例36と同様の手法で、1-イソプロピルパラメンタン-3,9-ジオールを粗生成物として得た(2.81g,10.8mmol,92%yield)。本化合物は精製せずにそのまま次の反応に用いた。
〔実施例42〕1-プロピルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例23で得られた5-プロピルイソプレゴール(3.82g,19.5mmol)を用いたこと以外は実施例36と同様の手法で、1-プロピルパラメンタン-3,9-ジオールを得た(3.68g,88%yield)。
〔実施例43〕1-iso-ブチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例27で得られた5-iso-ブチルイソプレゴール(6.00g,28.5mmol)を用いたこと以外は実施例36と同様の手法で、1-iso-ブチルパラメンタン-3,9-ジオールを粗生成物として得た(6.02g,26.4mmol,93%yield)。本化合物は精製せずにそのまま次の反応に用いた。
〔実施例44〕1-sec-ブチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例28で得られた5-sec-ブチルイソプレゴール(1.81g,8.60mmol)を使用したこと以外は実施例36と同様の手法で、1-sec-ブチルパラメンタン-3,9-ジオールを粗生成物として得た(1.69g,7.41mmol,86%yield)。本化合物は精製せずにそのまま次の反応に用いた。
〔実施例45〕光学活性1-ブチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例19で得られた(-)-5-ブチルイソプレゴール(1.50g,7.13mmol)を使用したこと以外は実施例36と同様の手法で、光学活性1-ブチルパラメンタン-3,9-ジオールを無色オイルとして得た(1.48g,91%yield)。
光学活性1-ブチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.86-0.93(6H,m),0.98(3H,d,J=7.3Hz),1.05-1.48(14H,m),1.71(1H,ddd,J=12.3,4.3,2.4Hz),1.84-1.91(1H,m),3.58-3.70(3H,m)(major)
1H-NMR(500MHz,CDCl):δ0.86-0.93(6H,m),0.98(3H,d,J=7.3Hz),1.05-1.48(14H,m),1.78-1.91(2H,m),3.58-3.70(3H,m)(minor)
13C-NMR(125MHz,CDCl):12.0(CH3),14.1(CH3),22.4(CH3),23.6(CH2),25.5(CH2),25.8(CH2),34.6(C),37.0(CH2),38.6(CH),45.7(CH2),47.1(CH2),49.4(CH),67.3(CH2),67.4(CH)(major)
13C-NMR(125MHz,CDCl):12.0(CH3),14.1(CH3),23.6(CH2),25.5(CH2),25.7(CH2),29.2(CH3),34.4(C),36.2(CH2),37.2(CH2),38.6(CH),45.7(CH2),48.9(CH),66.9(CH2),67.3(CH)(minor)
〔実施例46〕光学活性1-ブチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例20で得られた(+)-5-ブチルイソプレゴール(1.50g,7.13mmol)を使用したこと以外は実施例36と同様の手法で、光学活性1-ブチルパラメンタン-3,9-ジオールを無色オイルとして得た(1.48g,91%yield)。
光学活性1-ブチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.86-0.93(6H,m),0.98(3H,d,J=7.3Hz),1.05-1.48(12H,m),1.71(1H,ddd,J=12.3,4.3,2.4Hz),1.84-1.91(1H,m),2.52-3.25(2H,br),3.58-3.70(3H,m)(major)
1H-NMR(500MHz,CDCl):δ0.86-0.93(6H,m),0.98(3H,d,J=7.3Hz),1.05-1.48(12H,m),1.78-1.91(2H,m),2.52-3.25(2H,br),3.58-3.70(3H,m)(minor)
13C-NMR(125MHz,CDCl):12.0(CH3),14.1(CH3),22.4(CH3),23.6(CH2),25.5(CH2),25.8(CH2),34.6(C),37.0(CH2),38.6(CH),45.7(CH2),47.1(CH2),49.4(CH),67.3(CH2),67.4(CH)(major)
13C-NMR(125MHz,CDCl):12.0(CH3),14.1(CH3),23.6(CH2),25.5(CH2),25.7(CH2),29.2(CH3),34.4(C),36.2(CH2),37.2(CH2),38.6(CH),45.7(CH2),48.9(CH),66.9(CH2),67.3(CH)(minor)
〔実施例47〕1-ブチルパラメンタン-3,9-ジオール単一異性体の合成
 5-ブチルイソプレゴールの代わりに実施例26で得られた5-ブチルイソプレゴール(1α,2β,5β)体(500mg,2.38mmol)を使用したこと以外は実施例36と同様の手法で、1-ブチルパラメンタン-3,9-ジオール単一異性体を無色オイルとして得た(511mg,94%yield)。
1-ブチルパラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.86-0.93(6H,m),0.98(3H,d,J=7.3Hz),1.05-1.48(12H,m),1.78-1.91(2H,m),2.50-3.25(2H,br),3.58-3.70(3H,m)
13C-NMR(125MHz,CDCl):12.0(CH3),14.1(CH3),23.6(CH2),25.5(CH2),25.7(CH2),29.2(CH3),34.4(C),36.2(CH2),37.2(CH2),38.6(CH),45.7(CH2),48.9(CH),66.9(CH2),67.3(CH)
〔実施例48〕1-n-ペンチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例29で得られた5-n-ペンチルイソプレゴール(2.35g)を使用したこと以外は実施例36と同様の手法で、1-n-ペンチルパラメンタン-3,9-ジオールを得た(2.49g)。本化合物は精製を行わず、組成生物のまま次の反応に用いた。
〔実施例49〕1-(3-ペンチル)パラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例30で得られた5-(3-ペンチル)イソプレゴール(2.10g,9.36mmol)を使用したこと以外は実施例36と同様の手法で、1-(3-ペンチル)パラメンタン-3,9-ジオールを得た(2.29g,quant.)。
5-(3-ペンチル)パラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.67-0.74(1H,m),0.80(3H,s),0.94(6H,t,J=7.4Hz),0.98(1H,d,J=7.3Hz),1.02-1.20(4H,m),1.28-1.59(6H,m),1.80-1.88(2H,m),3.12(2H,br),3.57-3.70(3H,m)(major)
1H-NMR(500MHz,CDCl):δ0.76(3H,s),0.94(6H,t,J=7.4Hz),0.99(1H,d,J=7.3Hz),1.02-1.20(5H,m),1.28-1.59(6H,m),1.80-1.88(1H,m),2.05-2.10(1H,m),3.12(2H,br),3.57-3.70(3H,m)(minor)
13C-NMR(125MHz,CDCl):11.9(CH3),14.57(CH3),14.62(CH3),19.3(CH3),22.6(CH2),22.7(CH2),25.8(CH2),35.2(CH2),38.5(C),38.8(CH),45.5(CH2),49.2(CH),54.6(CH),67.2(CH2),67.4(CH)(major)
13C-NMR(125MHz,CDCl):11.8(CH3),14.2(CH3),14.4(CH3),22.3(CH2),22.5(CH2),24.7(CH3),25.7(CH2),36.4(CH2),38.2(C),38.8(CH),42.7(CH),46.4(CH2),49.1(CH),66.3(CH),67.3(CH2)(minor)
〔実施例50〕1-n-ヘキシルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例31で得られた5-n-ヘキシルイソプレゴール(3.01g)を使用したこと以外は実施例36と同様の手法で、1-n-ヘキシルパラメンタン-3,9-ジオールを得た(3.21g)。本化合物は精製を行わず、組成生物のまま次の反応に用いた。
〔実施例51〕1-シクロヘキシルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例32で得られた5-シクロヘキシルイソプレゴール(6.00g)を使用したこと以外は実施例36と同様の手法で、1-シクロヘキシルパラメンタン-3,9-ジオールを得た(6.30g)。本化合物は精製を行わず、組成生物のまま次の反応に用いた。
〔実施例52〕1-ヘプチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例33で得られた5-n-ヘプチルイソプレゴール(3.08g)を使用したこと以外は実施例36と同様の手法で、1-n-ヘプチルパラメンタン-3,9-ジオールを得た(3.44g)。本化合物は精製を行わず、組成生物のまま次の反応に用いた。
〔実施例53〕1-n-オクチルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例34で得られた5-n-オクチルイソプレゴール(2.20g)を使用したこと以外は実施例36と同様の手法で、1-n-オクチルパラメンタン-3,9-ジオールを得た(2.04g)。本化合物は精製を行わず、組成生物のまま次の反応に用いた。
〔実施例54〕1-フェニルパラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりに実施例35で得られた5-フェニルイソプレゴール(1.00g,4.31mmol)を使用したこと以外は実施例36と同様の手法で、1-フェニルパラメンタン-3,9-ジオールを得た(0.83g,77%yield)。本化合物は精製せずにそのまま次の反応に用いた。
〔実施例55〕パラメンタン-3,9-ジオールの合成
 5-ブチルイソプレゴールの代わりにL-イソプレゴール(15.0g,97.2mmol)を使用したこと以外は実施例36と同様の手法で、パラメンタン-3,9-ジオールを得た(12.6g,72.9mmol,75%yield)。
パラメンタン-3,9-ジオール
1H-NMR(500MHz,CDCl):δ0.89-1.05(7H,m),1.23(1H,qd,J=12.9,3.5Hz),1.31-1.47(2H,m),1.57(1H,dq,J=13.2,3.3Hz),1.60-1.71(2H,m),1.83-1.90(1H,m),1.93-1.97(1H,m),2.86(1H,br),3.14(1H,br),3.43-3.68(3H,m)(major)
1H-NMR(500MHz,CDCl):δ0.84-1.05(7H,m),1.23(1H,qd,J=12.9,3.5Hz),1.31-1.47(2H,m),1.57(1H,dq,J=13.2,3.3Hz),1.60-1.71(2H,m),1.83-1.90(1H,m),1.95-2.06(1H,m),2.86(1H,br),3.14(1H,br),3.43-3.68(3H,m)(minor)
13C-NMR(125MHz,CDCl):12.0(CH3),22.1(CH3),29.4(CH2),31.5(CH),34.6(CH2),38.5(CH),44.7(CH2),48.5(CH),67.2(CH2),70.3(CH)(major)
13C-NMR(125MHz,CDCl):12.7(CH3),22.1(CH3),25.5(CH2),31.5(CH),34.3(CH2),36.0(CH),45.2(CH2),45.9(CH),66.8(CH2),71.8(CH)(minor)
<実施例56~82:2H-ミントラクトン化>
〔実施例56〕1-ブチル-2H-ミントラクトン(例示化合物Bu-1aa)の合成
 本反応はTetrahedron 1993,49,29,P.6429-6436に従い行った。dean-starkコンデンサを有した100mLフラスコに実施例36で得られた1-ブチルパラメンタン3,9-ジオール(200mg,0.876mmol)、炭酸銀セライト担持(1.06g,50wt% loading,2.2eq)、トルエン(30mL)を添加し、3時間還流撹拌を行った。析出した水はコンデンサで除去した。GCで反応の終了を確認し、系内を室温まで冷却した。反応溶液を濾過後に減圧濃縮し、得られた残渣をカラムクロマトグラフィーで単離精製し、1-ブチル-2H-ミントラクトン(例示化合物Bu-1aa)を目的の無色オイルとして得た(114mg,0.509mmol,58%yield)。
例示化合物Bu-1aa:1-ブチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.86-0.94(3H,m),0.96(3H,s),1.19(3H,d,J=7.7Hz),1.27-1.53(10H,m),1.58-1.68(1H,m),1.85-1.93(1H,m),2.00(1H,ddd,J=11.7,3.9,1.5Hz),2.63(1H,qui,J=7.6Hz),4.19(1H,td,J=11.5,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.86-0.94(3H,m),0.96(3H,s),1.18(3H,d,J=7.7Hz),1.27-1.53(10H,m),1.58-1.68(1H,m),1.85-1.93(1H,m),2.11-2.16(1H,m),2.63(1H,qui,J=7.6Hz),4.12(1H,td,J=11.5,4.0Hz)(minor)
13C-NMR(125MHz,CDCl):9.6(CH),14.1(CH),20.8(CH),23.4(CH),23.6(CH),25.4(CH),35.4(C),37.3(CH),38.9(CH),41.2(CH),45.9(CH),48.2(CH),79.3(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.6(CH),14.1(CH),20.6(CH),23.5(CH),25.7(CH),29.6(CH),35.3(C),37.0(CH),37.8(CH),38.9(CH),40.5(CH),48.0(CH),78.7(CH),180.4(C)(minor)
香調:Green, Fruity, Tuberose, Lactone, Tropical, Powerful, Peach
〔実施例57〕1-ブチル-2H-ミントラクトン(例示化合物Bu-1ab)の合成
 実施例56で得られた例示化合物Bu-1aa(100mg,0.446mmol)をトルエン中、ナトリウムt-ブトキシド(100mg)で還流撹拌し、常法により後処理を行うことで1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1ab)を得た(58mg,58%yield)。
例示化合物Bu-1ab:5-ブチル-2H-ミントラクトン異性体
H-NMR(500MHz,CDCl):δ0.86-0.94(3H,m),0.97(3H,s),1.21(3H,d,J=6.9Hz),1.24-1.48(10H,m),1.48-1.53(1H,m),1.75-1.87(1H,m),1.96(1H,ddd,J=11.8,3.9,1.5Hz),2.23-2.31(1H,m),3.91-3.98(1H,m)(major)
H-NMR(500MHz,CDCl):δ0.86-0.94(3H,m),0.97(3H,s),1.21-1.53(13H,m),1.58-1.65(1H,m),1.75-1.87(1H,m),2.10(1H,ddd,J=12.0,3.6,1.8Hz),2.23-2.31(1H,m),3.85-3.93(1H,m)(minor)
13C-NMR(125MHz,CDCl):12.6(CH),14.1(CH),23.4(CH),23.6(CH),25.4(CH),25.7(CH),35.5(C),37.3(CH),40.7(CH),41.4(CH),45.9(CH),52.5(CH),80.4(CH),179.6(C)(major)
13C-NMR(125MHz,CDCl):12.6(CH),14.1(CH),23.4(CH),23.5(CH),25.7(CH),29.5(CH),35.4(C),37.0(CH),37.3(CH),37.9(CH),40.1(CH),52.3(CH),79.8(CH),179.6(C)(minor)
香調:Green, Fruity, Tuberose, Lactone, Tropical, Powerful, Peach
〔実施例58〕光学活性1-ブチル-2H-ミントラクトン(例示化合物Bu1-be)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例45で得られた光学活性5-ブチルパラメンタン3,9-ジオール(0.500g,2.19mmol)を用いた以外は実施例56と同様の手法を用い、光学活性1-ブチル-2H-ミントラクトン(0.361g,74%yield)を例示化合物Bu1-beとして得た。
例示化合物Bu1-be:光学活性1-ブチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.85-0.95(3H,m),0.96(3H,s),1.18(3H,d,J=7.5Hz),1.27-1.53(10H,m),1.58-1.68(1H,m),1.85-1.93(1H,m),1.97-2.04(1H,m),2.63(1H,qui,J=7.5Hz),4.19(1H,td,J=11.5,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.86-0.95(3H,m),0.96(3H,s),1.17(3H,d,J=7.8Hz),1.27-1.53(10H,m),1.58-1.68(1H,m),1.85-1.93(1H,m),2.11-2.16(1H,m),2.63(1H,qui,J=7.6Hz),4.12(1H,td,J=11.5,3.8Hz)(minor)
13C-NMR(125MHz,CDCl):9.6(CH),14.1(CH),20.8(CH),23.4(CH),23.6(CH),25.4(CH),35.4(C),37.3(CH),38.9(CH),41.2(CH),46.0(CH),48.2(CH),79.3(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.6(CH),14.1(CH),20.6(CH),23.5(CH),25.7(CH),29.6(CH),35.3(C),37.0(CH),37.8(CH),38.9(CH),40.5(CH),48.0(CH),78.7(CH),180.4(C)(minor)
Majorisomer:56.1%ee
Minorisomer:79.7%ee
香調:Balsamic, Creamy, Lactonic
〔実施例59〕光学活性1-ブチル-2H-ミントラクトン(例示化合物Bu-1ce)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例46で得られた光学活性1-ブチルパラメンタン3,9-ジオール(1.80g,7.88mmol)を用いた以外は実施例56と同様の手法を用い、光学活性1-ブチル-2H-ミントラクトン(1.59g,90%yield)を例示化合物Bu-1ceとして得た。
例示化合物Bu-1ce:光学活性1-ブチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.86-0.95(3H,m),0.96(3H,s),1.18(3H,d,J=7.7Hz),1.27-1.53(10H,m),1.58-1.68(1H,m),1.85-1.93(1H,m),1.97-2.04(1H,m),2.63(1H,qui,J=7.6Hz),4.19(1H,td,J=11.5,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.86-0.95(3H,m),0.96(3H,s),1.17(3H,d,J=7.8Hz),1.27-1.53(10H,m),1.58-1.68(1H,m),1.85-1.93(1H,m),2.11-2.16(1H,m),2.63(1H,qui,J=7.6Hz),4.12(1H,td,J=11.6,3.8Hz)(minor)
13C-NMR(125MHz,CDCl):9.6(CH),14.1(CH),20.8(CH),23.4(CH),23.6(CH),25.4(CH),35.4(C),37.3(CH),38.9(CH),41.2(CH),46.0(CH),48.2(CH),79.3(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.6(CH),14.1(CH),20.6(CH),23.5(CH),25.7(CH),29.6(CH),35.3(C),37.0(CH),37.8(CH),38.9(CH),40.5(CH),48.0(CH),78.7(CH),180.4(C)(minor)
Majorisomer:54.3%ee
Minorisomer:79.0%ee
香調:Floral, Tuberose, Sweet, Tonka
〔実施例60〕1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1af)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例47で得られた1-ブチルパラメンタン3,9-ジオール(280mg,1.23mmol)を用いた以外は実施例56と同様の手法を用い、1-ブチル-2H-ミントラクトン異性体(140mg,51%yield)を例示化合物Bu-1afとして得た。
例示化合物Bu-1af:1-ブチル-2H-ミントラクトン異性体
H-NMR(500MHz,CDCl):δ0.92(3H,t,J=7.1Hz),0.96(3H,s),1.17(3H,d,J=7.7Hz),1.19-1.35(8H,m),1.36-1.49(2H,m),1.58-1.68(2H,m),1.85-1.93(1H,m),2.10-2.16(1H,m),2.63(1H,qui,J=7.6Hz),4.12(1H,td,J=11.5,3.8Hz)
13C-NMR(125MHz,CDCl):9.6(CH3),14.1(CH3),20.6(CH2),23.5(CH2),25.7(CH2),29.6(CH3),35.3(C),37.0(CH2),37.8(CH),38.8(CH),40.5(CH2),48.0(CH),78.7(CH),180.4(C)
香調:Tonka, Balsamic, Coumarin, Sweet
〔実施例61〕1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1ae)の合成
 実施例56で得られた例示化合物Bu-1aa(312mg,1.56mmol)をカラムクロマトグラフィーで単離精製し、1-ブチル-2H-ミントラクトン異性体(21mg,7%yield)を例示化合物Bu-1aeとして得た。
例示化合物Bu-1ae:1-ブチル-2H-ミントラクトン異性体
H-NMR(500MHz,CDCl):δ0.92(3H,t,J=7.0Hz),0.96(3H,s),1.17(3H,d,J=7.9Hz),1.25-1.53(10H,m),1.60-1.69(1H,m),1.85-1.93(1H,m),1.97-2.10(1H,m),2.63(1H,qui,J=7.5Hz),4.19(1H,td,J=11.1,3.8Hz)
13C-NMR(125MHz,CDCl):9.6(CH3),14.1(CH3),20.8(CH2),23.5(CH2),23.6(CH3),25.5(CH2),35.4(C),37.3(CH2),38.9(CH),41.2(CH2),45.9(CH2),48.2(CH),79.3(CH),180.4(C)
香調: Floral, Lactone, Sweet
〔実施例62〕1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1ad)の合成
 実施例60で得られた1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1af)(200mg,0.892mmol)にカリウムt-ブトキシド(100mg,1.0eq.)を添加し、150℃で8時間加熱攪拌した。反応溶液をトルエンに溶解させ、水道水で洗浄した後に油層を無水硫酸マグネシウムにて乾燥、濃縮ろ過し、1-ブチル-2H-ミントラクトン異性体(145mg,73%yield)を例示化合物Bu-1adとして得た。
例示化合物Bu-1ad:1-ブチル-2H-ミントラクトン異性体
H-NMR(500MHz,CDCl):δ0.92(3H,t,J=7.1Hz),0.96(3H,s),1.19-1.35(10H,m),1.35-1.50(3H,m),1.55-1.67(1H,m),1.74-1.81(1H,m),2.10(1H,ddd,J=12.1,3.7,1.7Hz),2.23-2.31(1H,m),3.88(1H,ddd,J=12.2,10.3,3.9Hz)
13C-NMR(125MHz,CDCl):12.6(CH3),14.1(CH3),23.4(CH2),23.5(CH2),25.7(CH2),29.6(CH3),35.5(C),37.0(CH2),37.9(CH2),40.5(CH2),41.4(CH),52.3(CH),79.8(CH),179.6(C)
香調:Floral, Fruity, Orris.
〔実施例63〕1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1ac)の合成
 1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1af)の代わりに実施例61で得られた1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1ae)(50mg,0.223mmol)を用いたこと以外は実施例62と同様の手法を用い、1-ブチル-2H-ミントラクトン異性体(32mg,64%yield)を例示化合物Bu-1acとして得た。
例示化合物Bu-1ac:1-ブチル-2H-ミントラクトン異性体
H-NMR(500MHz,CDCl):δ0.91(3H,t,J=7.0Hz),0.97(3H,s),1.21(3H,d,J=7.0Hz),1.24-1.46(10H,m),1.48-1.53(1H,m),1.79-1.83(1H,m),1.97(1H,ddd,J=12.0,4.0,1.5Hz),2.22-2.31(1H,m),3.91-3.98(1H,m)
13C-NMR(125MHz,CDCl):12.6(CH3),14.1(CH3),23.5(CH2),23.6(CH2),23.6(CH3),25.5(CH2),35.6(C),37.4(CH2),40.7(CH2),41.4(CH),45.9(CH2),52.5(CH),80.4(CH),179.7(C)
香調:Floral, Sweet, Jasmin, Tuberose.
〔実施例64〕
 例示化合物Bu-1ac,Bu-1ad,Bu-1ae,Bu-1afを混合し、香調を確認したところ、実施例56で得られた化合物Bu-1aaと同様の香調を得た。
〔実施例65〕光学活性1-ブチル-2H-ミントラクトン(例示化合物Bu-1bf)の合成
 1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1af)の代わりに実施例58で得られた光学活性1-ブチル-2H-ミントラクトン(例示化合物Bu1-be)(150mg,0.669mmol)を用いたこと以外は実施例62と同様の手法を用い、光学活性1-ブチル-2H-ミントラクトン異性体(102mg,68%yield)を例示化合物Bu-1bfとして得た。
例示化合物Bu-1bf:光学活性1-ブチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.91(3H,t,J=7.0Hz),0.97(3H,s),1.21(3H,d,J=7.0Hz),1.24-1.46(10H,m),1.48-1.53(1H,m),1.79-1.83(1H,m),1.97(1H,ddd,J=12.0,4.0,1.5Hz),2.22-2.31(1H,m),3.91-3.98(1H,m)(major)
H-NMR(500MHz,CDCl):δ0.92(3H,t,J=7.1Hz),0.96(3H,s),1.19-1.35(10H,m),1.35-1.50(3H,m),1.55-1.67(1H,m),1.74-1.81(1H,m),2.07-2.14(1H,m),2.23-2.31(1H,m),3.85-3.92(1H,m)(minor)
13C-NMR(125MHz,CDCl):12.6(CH3),14.1(CH3),23.5(CH2),23.6(CH2),23.6(CH3),25.5(CH2),35.6(C),37.4(CH2),40.7(CH2),41.4(CH),45.9(CH2),52.5(CH),80.4(CH),179.7(C)(major)
13C-NMR(125MHz,CDCl):12.6(CH3),14.1(CH3),23.5(CH2),23.6(CH2),23.6(CH3),25.5(CH2),35.6(C),37.4(CH2),40.7(CH2),41.4(CH),45.9(CH2),52.5(CH),80.4(CH),179.7(C)(minor)
Majorisomer:60.5%ee
Minorisomer:80.8%ee
香調:Nutty, Lactone.
〔実施例66〕光学活性1-ブチル-2H-ミントラクトン(例示化合物Bu-1cf)の合成
 1-ブチル-2H-ミントラクトン異性体(例示化合物Bu-1af)の代わりに実施例59で得られた光学活性1-ブチル-2H-ミントラクトン(例示化合物Bu-1ce)(300mg,1.34mmol)を用いたこと以外は実施例62と同様の手法を用い、光学活性1-ブチル-2H-ミントラクトン異性体(281mg,94%yield)を例示化合物Bu-1cfとして得た。
例示化合物Bu-1cf:光学活性1-ブチル-2H-ミントラクト
H-NMR(500MHz,CDCl):δ0.92(3H,t,J=7.0Hz),0.97(3H,s),1.21(3H,d,J=7.0Hz),1.24-1.46(10H,m),1.48-1.53(1H,m),1.79-1.83(1H,m),1.97(1H,ddd,J=12.0,4.0,1.5Hz),2.22-2.31(1H,m),3.91-3.98(1H,m)(major)
H-NMR(500MHz,CDCl):δ0.92(3H,t,J=7.1Hz),0.96(3H,s),1.19-1.35(10H,m),1.35-1.50(3H,m),1.55-1.67(1H,m),1.74-1.81(1H,m),2.07-2.14(1H,m),2.22-2.31(1H,m),3.85-3.92(1H,m)(minor)
13C-NMR(125MHz,CDCl):12.6(CH3),14.1(CH3),23.5(CH2),23.6(CH2),23.6(CH3),25.5(CH2),35.6(C),37.4(CH2),40.7(CH2),41.4(CH),45.9(CH2),52.5(CH),80.4(CH),179.7(C)(major)
13C-NMR(125MHz,CDCl):12.6(CH3),14.1(CH3),23.5(CH2),23.6(CH2),23.6(CH3),25.5(CH2),35.6(C),37.4(CH2),40.7(CH2),41.4(CH),45.9(CH2),52.5(CH),80.4(CH),179.7(C)(minor)
Majorisomer:57.5%ee
Minorisomer:79.8%ee
香調:Floral, Sweet.
〔実施例67〕1-メチル-2H-ミントラクトン(例示化合物Me-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例37で得られた1-メチルパラメンタン3,9-ジオール(1.00g,5.37mmol)を用いたこと以外は実施例56と同様の手法を用い、1-メチル-2H-ミントラクトン(694mg,3.81mmol,71%yield)を例示化合物Me-1aとして得た。
例示化合物Me-1a:1-メチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.99(3H,s),1.04(3H,s),1.17(3H,d,J=7.7Hz),1.27-1.55(4H,m),1.62-1.67(1H,m),1.84-1.92(1H,m),1.99(1H,ddd,J=11.8,3.9,1.7Hz),2.63(1H,qui,J=7.6Hz),4.17(1H,td,J=11.4,3.9Hz)(major)
H-NMR(500MHz,CDCl):δ1.00(3H,s),1.04(3H,s),1.21(3H,d,J=6.9Hz),1.27-1.55(4H,m),1.62-1.67(1H,m),1.81-1.90(1H,m),1.94-1.98(1H,m),2.24-2.31(1H,m),3.91-3.97(1H,m)(minor)
13C-NMR(125MHz,CDCl):9.6(CH),21.0(CH),26.0(CH),32.8(C),33.1(CH),38.80(CH),38.80(CH),43.0(CH),48.0(CH),79.2(CH),180.3(C)(major)
13C-NMR(125MHz,CDCl):12.5(CH),23.8(CH),26.0(CH),32.9(C),33.1(CH),38.8(CH),41.3(CH),42.5(CH),52.3(CH),80.2(CH),179.6(C)(major)
香調:Coumarine, Balsamic, White Floral, Lactone, Tuberose, Tonka 
〔実施例68〕(1R,2S)-5-メチル-2H-ミントラクトン(例示化合物Me-1b)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例38で得られた(1R,2S)-1-メチルパラメンタン3,9-ジオール(1.50g,8.05mmol)を用いたこと以外は実施例56と同様の手法を用い、(1R,2S)-1-メチル-2H-ミントラクトン(1.327g,7.28mmol,90%yield)を例示化合物Me-1bとして得た。
例示化合物Me-1b:(1R,2S)-1-メチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.99(3H,s),1.04(3H,s),1.17(3H,d,J=7.7Hz),1.27-1.55(4H,m),1.62-1.67(1H,m),1.84-1.92(1H,m),1.99(1H,ddd,J=11.7,3.9,1.7Hz),2.63(1H,qui,J=7.6Hz),4.17(1H,td,J=11.4,3.9Hz)(major)
H-NMR(500MHz,CDCl):δ1.00(3H,s),1.04(3H,s),1.21(3H,d,J=6.9Hz),1.27-1.55(4H,m),1.62-1.67(1H,m),1.81-1.90(1H,m),1.94-1.98(1H,m),2.24-2.31(1H,m),3.91-3.97(1H,m)(minor)
13C-NMR(125MHz,CDCl):9.6(CH),21.0(CH),26.0(CH),32.8(C),33.1(CH),38.78(CH),38.81(CH),43.0(CH),48.0(CH),79.1(CH),180.3(C)(major)
13C-NMR(125MHz,CDCl):12.5(CH),23.8(CH),26.0(CH),32.9(C),33.1(CH),38.8(CH),41.3(CH),42.5(CH),52.3(CH),80.2(CH),179.6(C)(major)
香調:Coumarine, Balsamic, White Floral, Lactone, Tuberose, Tonka 
〔実施例69〕(1S,2R)-1-メチル-2H-ミントラクトン(例示化合物Me-1c)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例39で得られた(1S,2R)-1-メチルパラメンタン3,9-ジオール(1.50g,8.05mmol)を用いたこと以外は実施例56と同様の手法を用い、(1S,2R)-1-メチル-2H-ミントラクトン(1.192g,6.54mmol,81%yield)を例示化合物Me-1cとして得た。
例示化合物Me-1c:(1S,2R)-1-メチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.99(3H,s),1.04(3H,s),1.17(3H,d,J=7.7Hz),1.27-1.55(4H,m),1.62-1.67(1H,m),1.84-1.92(1H,m),1.99(1H,ddd,J=11.7,3.9,1.7Hz),2.63(1H,qui,J=7.7Hz),4.17(1H,td,J=11.4,3.9Hz)(major)
H-NMR(500MHz,CDCl):δ1.00(3H,s),1.04(3H,s),1.20(3H,d,J=7.0Hz),1.27-1.55(4H,m),1.62-1.67(1H,m),1.81-1.90(1H,m),1.94-1.98(1H,m),2.28(1H,qui,J=7.7Hz),3.91-3.96(1H,m)(minor)
13C-NMR(125MHz,CDCl):9.6(CH),21.0(CH),26.0(CH),32.8(C),33.1(CH),38.79(CH),38.81(CH),43.0(CH),48.0(CH),79.2(CH),180.3(C)(major)
13C-NMR(125MHz,CDCl):12.5(CH),23.8(CH),26.0(CH),32.9(C),33.1(CH),38.8(CH),41.5(CH),42.5(CH),52.3(CH),80.3(CH),179.6(C)(major)
香調:Coumarine, Balsamic, White Floral, Lactone, Tuberose, Tonka 
〔実施例70〕1-エチル-2H-ミントラクトン(例示化合物Et-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例40で得られた1-エチルパラメンタン3,9-ジオール(2.00g,9.98mmol)を用いたこと以外は実施例56と同様の手法を用い、1-エチル-2H-ミントラクトン(1.17g,6.09mmol,61%yield)を例示化合物Et-1aとして得た。
例示化合物Et-1a:1-エチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.86(3H,t,J=7.7Hz),0.95(3H,s),1.16(3H,d,J=7.7Hz),1.20-2.34(9H,m),2.59-2.67(1H,m),4.19(1H,td,J=11.3,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.85(3H,t,J=7.7Hz),0.95(3H,s),1.16(3H,d,J=7.7Hz),1.20-2.34(9H,m),2.59-2.67(1H,m),4.11(1H,td,J=11.5,3.9Hz)(minor)
13C-NMR(125MHz,CDCl):7.6(CH),9.6(CH),20.7(CH),23.0(CH),35.5(C),36.7(CH),38.2(CH),38.8(CH),40.7(CH),48.2(CH),79.7(CH),180.3(C)(major)
13C-NMR(125MHz,CDCl):7.8(CH),12.5(CH),20.5(CH),28.8(CH),29.3(CH),35.3(C),37.3(CH),40.0(CH),41.3(CH),48.0(CH),78.6(CH),180.3(C)(minor)
香調:Floral,Sweet,Nutty,Coumarin
〔実施例71〕1-イソプロピル-2H-ミントラクトン(例示化合物iPr-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例41で得られた1-イソプロピルパラメンタン3,9-ジオール(1.60g,7.46mmol)を用いたこと以外は実施例56と同様の手法を用い、目的の1-イソプロピル-2H-ミントラクトン(890mg,57%yield)を例示化合物iPr-1aとして得た。
例示化合物iPr-1a:1-イソプロピル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.79-0.91(9H,m),1.03-1.15(3H,m),1.18-1.96(7H,m),2.04-2.09(1H,m),2.63(1H,qui,J=7.6Hz),4.19(1H,td,J=11.6,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.79-0.91(9H,m),1.03-1.15(3H,m),1.18-1.96(8H,m),2.63(1H,qui,J=7.6Hz),4.15(1H,td,J=11.5,3.7Hz)(minor)
13C-NMR(125MHz,CDCl):9.6(CH),16.8(CH),17.0(CH),19.2(CH),20.8(CH),35.2(CH),37.9(C),38.8(CH),39.3(CH),39.6(CH),47.9(CH),79.6(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.5(CH),16.7(CH),16.9(CH),20.2(CH),23.0(CH),28.6(CH),35.9(CH),37.9(C),38.9(CH),39.8(CH),48.3(CH),78.0(CH),180.4(C)(minor)
香調:White floral,Jasmin,Leathery,Animaric,Fruity
〔実施例72〕1-プロピル-2H-ミントラクトン(例示化合物Pr-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例42で得られた1-プロピルパラメンタン3,9-ジオール(2.22g,10.3mmol)を用いたこと以外は実施例56と同様の手法を用い、1-プロピル-2H-ミントラクトン(1.44g,67%yield)を例示化合物Pr-1aとして得た。
例示化合物Pr-1a:1-プロピル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.85-0.95(3H,m),0.96(3H,s),1.15(3H,d,J=9.0Hz),1.20-1.54(8H,m),1.60-1.69(1H,m),1.81-1.93(1H,m),2.01(1H,ddd,J=12.1,3.7,1.7Hz),2.63(1H,qui,J=7.5Hz),4.18(1H,td,J=11.5,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.85-0.95(3H,m),0.97(3H,s),1.15(3H,d,J=9.0Hz),1.20-1.54(8H,m),1.60-1.69(1H,m),1.81-1.93(1H,m),2.10-2.07(1H,m),2.63(1H,qui,J=7.5Hz),4.15(1H,td,J=11.5,3.5Hz)(minor)
13C-NMR(125MHz,CDCl):9.6(CH3),14.8(CH3),16.4(CH2),20.8(CH2),23.6(CH3),35.5(C),37.3(CH2),38.9(CH),41.2(CH2),48.2(CH),48.6(CH2),79.3(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.6(CH3),14.9(CH3),16.7(CH2),20.6(CH2),29.6(CH3),35.5(C),37.8(CH2),38.9(CH),39.8(CH2),40.6(CH2),48.0(CH),78.7(CH),180.4(C)(minor)
香調:Floral,Fruity,Peach,Nutty,Peanuts
〔実施例73〕1-iso-ブチル2H-ミントラクトン(例示化合物iBu-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例43で得られた1-iso-ブチルパラメンタン3,9-ジオール(2.73g,12.0mmol)を用いたこと以外は実施例56と同様の手法を用い、目的の1-iso-ブチル2H-ミントラクトン(1.91g,71%yield)を例示化合物iBu-1aとして得た。
例示化合物iBu-1a:1-iso-ブチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.80-1.04(9H,m),1.10-1.24(3H,m),1.25-1.93(9H,m),2.04(1H,ddd,J=11.6,3.9,1.6Hz),2.63(1H,qui,J=7.7Hz),4.18(1H,td,J=11.5,4.0Hz)(diastereomer1)
H-NMR(500MHz,CDCl):δ0.80-1.04(9H,m),1.10-1.24(3H,m),1.25-1.93(9H,m),2.16(1H,ddd,J=12.0,3.6,1.9Hz),2.63(1H,qui,J=7.7Hz),4.14(1H,td,J=11.4,3.6Hz)(diastereomer2)
H-NMR(500MHz,CDCl):δ0.80-1.04(9H,m),1.10-1.24(3H,m),1.25-1.93(9H,m),1.97-2.03(1H,m),2.63(1H,qui,J=7.7Hz),4.18(1H,td,J=11.5,4.0Hz)(diastereomer3)
H-NMR(500MHz,CDCl):δ0.80-1.04(9H,m),1.10-1.24(3H,m),1.25-1.93(9H,m),2.11-2.17(1H,m),2.63(1H,qui,J=7.7Hz),4.14(1H,td,J=11.4,3.6Hz)(diastereomer4)
香調:Floral,Fruity,Peach
〔実施例74〕1-sec-ブチル-2H-ミントラクトン(例示化合物sBu-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例44で得られた1-sec-ブチルパラメンタン3,9-ジオール(0.350g,1.53mmol)を用いたこと以外は実施例56と同様の手法を用い、1-sec-ブチル-2H-ミントラクトン(0.258g,75%yield)を例示化合物sBu-1aとして得た。
例示化合物sBu-1a:1-sec-ブチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.80-0.95(6H,m),1.05-1.15(1H,m),1.15-1.18(3H,m),1.25-1.70(9H,m),1.81-2.07(2H,m),2.01(1H,ddd,J=11.5,4.0,1.5Hz),2.63(1H,qui,J=7.5Hz),4.18(1H,td,J=11.5,4.0Hz)(diastereomer1)
H-NMR(500MHz,CDCl):δ0.80-0.95(6H,m),1.05-1.15(1H,m),1.15-1.18(3H,m),1.25-1.70(9H,m),1.81-2.07(2H,m),2.13(1H,ddd,J=11.5,4.0,1.5Hz),2.63(1H,qui,J=7.5Hz),4.18(1H,td,J=11.5,4.0Hz)(diastereomer2)
H-NMR(500MHz,CDCl):δ0.80-0.95(6H,m),1.05-1.15(1H,m),1.15-1.18(3H,m),1.25-1.70(9H,m),1.81-2.07(2H,m),2.39(1H,dt,J=12.5,2.5Hz),2.63(1H,qui,J=7.5Hz),4.07-4.18(1H,m)(diastereomer3)
H-NMR(500MHz,CDCl):δ0.80-0.95(6H,m),1.05-1.15(1H,m),1.15-1.18(3H,m),1.25-1.70(9H,m),1.81-2.07(2H,m),2.44(1H,dt,J=12.5,2.5Hz),2.63(1H,qui,J=7.5Hz),4.07-4.18(1H,m)(diastereomer4)
香調:Fruity,Floral,Prune,Dry-fruits
〔実施例75〕1-n-ペンチル-2H-ミントラクトン(例示化合物Pe-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例48で得られた5-n-ペンチルパラメンタン-3,9-ジオール(1.23g,5.07mmol)を用いたこと以外は実施例56と同様の手法を用い、1-ペンチル-2H-ミントラクトン(0.367g,30%yield)を例示化合物Pe-1aとして得た。
例示化合物Pe-1a:1-ペンチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.90(3H,t,J=7.0Hz),0.97(3H,s),1.21(3H,d,J=7.0Hz),1.22-1.48(12H,m),1.58-1.67(1H,m),1.75-1.81(1H,m),2.10(1H,ddd,J=12.0,4.0,2.0Hz),2.22-2.31(1H,m),3.88(1H,ddd,J=12.5,10.5,4.0Hz)(major)
13C-NMR(125MHz,CDCl):12.6(CH3),14.1(CH3),22.7(CH2),23.2(CH2),23.4(CH2),29.6(CH3),32.7(CH2),35.5(C),37.3(CH2),37.9(CH2),40.1(CH2),41.4(CH),52.3(CH),79.8(CH),179.6(C)(major)
香調:Fruity,Plastic,Coconuts
〔実施例76〕1-(3-ペンチル)-2H-ミントラクトン(例示化合物3Pe-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例49で得られた1-(3-ペンチル)パラメンタン-3,9-ジオール(330mg,1.36mmol)を用いたこと以外は実施例56と同様の手法を用い、目的の1-(3-ペンチル)-2H-ミントラクトン(212mg,0.791mmol,58%yield)を例示化合物3Pe-1aとして得た。
例示化合物3Pe-1a:1-(3-ペンチル)-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.76-0.84(1H,m),0.89-0.97(9H,m),1.06-1.15(3H,m),1.17(3H,d,J=7.7Hz),1.30-1.70(6H,m),1.82-1.89(1H,m),2.07(1H,ddd,J=11.6,4.0,1.6Hz),2.59-2.67(1H,m),4.18(1H,td,J=11.3,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.76-0.84(1H,m),0.89-0.97(9H,m),1.06-1.15(3H,m),1.17(3H,d,J=7.7Hz),1.30-1.70(6H,m),1.91-2.02(1H,m),2.42(1H,dt,J=12.3,3.0Hz),2.59-2.67(1H,m),4.15(1H,td,J=11.3,3.6Hz)(major)
13C-NMR(125MHz,CDCl):9.61(CH3),14.5(CH3),14.6(CH3),20.7(CH2),21.7(CH3),22.8(CH2),22.9(CH2),35.1(CH2),38.9(C),39.3(CH2),39.4(C),48.0(CH),54.6(CH),79.5(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):13.9(CH3),14.5(CH3),14.6(CH3),20.6(CH2),22.3(CH2),22.4(CH2),25.0(CH3),36.6(CH2),38.8(CH),39.3(C),40.2(CH2),43.1(CH),48.3(CH),78.2(CH),180.4(C)(minor)
香調:Fruity,Peach,Coconuts
〔実施例77〕1-n-ヘキシル-2H-ミントラクトン(例示化合物Hx-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例50で得られた1-n-ヘキシルパラメンタン-3,9-ジオール(0.530g,2.09mmol)を用いたこと以外は実施例56と同様の手法を用い、1-n-ヘキシル-2H-ミントラクトン(0.400g,76%yield)を例示化合物Hx-1aとして得た。
例示化合物Hx-1a:5-ヘキシル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.86-0.92(3H,m),0.96(3H,s),1.16(3H,d,J=8.0Hz),1.20-1.68(15H,m),1.84-1.94(1H,m),2.00(1H,ddd,J=12.0,4.0,1.5Hz),2.63(1H,qui,J=8.0Hz),4.18(1H,td,J=11.5,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.86-0.92(3H,m),0.96(3H,s),1.16(3H,d,J=8.0Hz),1.20-1.68(15H,m),1.84-1.94(1H,m),2.11-2.15(1H,m),2.10-2.07(1H,m),2.63(1H,qui,J=8.0Hz),4.12(1H,td,J=12.0,4.0Hz)(minor)
13C-NMR(125MHz,CDCl):9.7(CH3),14.1(CH3),20.8(CH2),22.7(CH2),23.2(CH2),23.6(CH3),30.1(CH2),31.9(CH2),35.5(C),37.3(CH2),38.9(CH),41.2(CH2),46.2(CH2),48.2(CH),79.3(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.7(CH3),14.1(CH3),20.7(CH2),22.7(CH2),23.5(CH2),29.6(CH3),30.1(CH2),31.9(CH2),35.4(C),37.8(CH2),38.9(CH),40.5(CH2),46.2(CH2),48.0(CH),78.7(CH),180.4(C)(minor)
香調:Sweet,Coumarin
〔実施例78〕1-シクロヘキシル-2H-ミントラクトン(例示化合物Cy-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例51で得られた1-シクロヘキシルパラメンタン-3,9-ジオール(3.00g,2.09mmol)を用いたこと以外は実施例56と同様の手法を用い、1-シクロヘキシル-2H-ミントラクトン(0.400g,76%yield)を例示化合物Cy-1aとして得た。
例示化合物Cy-1a:1-シクロヘキシル-2H-ミントラクトン(047-012CyL)
H-NMR(500MHz,CDCl):δ0.90(3H,s),0.95-1.38(12H,m),1.44(1H,qd,J=12.6,3.5Hz),1.55-1.61(1H,br),1.62-1.90(6H,m),2.08(1H,dd,J=11.6,2.5Hz),2.63(1H,qui,J=7.7Hz),4.19(1H,td,J=11.5,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.84(3H,s),0.95-1.38(12H,m),1.44(1H,qd,J=12.6,3.5Hz),1.55-1.61(1H,br),1.62-1.90(6H,m),2.37-2.43(1H,br),2.63(1H,qui,J=7.7Hz),4.12(1H,td,J=11.6,3.5Hz)(minor)
13C-NMR(125MHz,CDCl):9.6(CH3),20.2(CH3),20.8(CH2),26.68(CH2),26.71(CH2),26.8(CH2),27.1(CH2x2),35.3(CH2),37.9(C),38.9(CH),39.6(CH2),48.0(CH),50.6(CH),79.7(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.6(CH3),20.3(CH2),24.9(CH3),26.4(CH2),26.5(CH2),27.1(CH2),27.17(CH2),27.20(CH2),35.6(CH2),38.0(C),38.9(CH),39.4(CH2),39.5(CH),48.4(CH),78.0(CH),180.4(C)(minor)
香調:Floral,Fruity,Lactone,sweet
〔実施例79〕1-n-ヘプチル-2H-ミントラクトン(例示化合物Hp-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例52で得られた1-n-ヘプチルパラメンタン-3,9-ジオール(1.23g,5.07mmol)を用いたこと以外は実施例56と同様の手法を用い、1-n-ヘプチル-2H-ミントラクトン(0.367g,30%yield)を例示化合物Hp-1aとして得た。
例示化合物Hp-1a:1-n-ヘプチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.87-0.92(3H,m),0.96(3H,s),1.17(3H,d,J=7.7Hz),1.20-1.70(17H,m),1.83-1.94(1H,m),2.00(1H,ddd,J=11.7,3.8,1.3Hz),2.63(1H,qui,J=7.7Hz),4.18(1H,td,J=11.5,3.9Hz)(major)
H-NMR(500MHz,CDCl):δ0.87-0.92(3H,m),0.96(3H,s),1.16(3H,d,J=7.7Hz),1.20-1.70(17H,m),1.83-1.94(1H,m),2.10-2.15(1H,m),2.63(1H,qui,J=7.7Hz),4.12(1H,td,J=11.6,3.9Hz)(minor)
13C-NMR(125MHz,CDCl):9.7(CH3),14.1(CH3),20.8(CH2),22.7(CH2),23.2(CH2),23.6(CH3),29.3(CH2),30.4(CH2),31.9(CH2),35.5(C),37.3(CH2),38.9(CH),41.2(CH2),46.2(CH2),48.2(CH),79.3(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.7(CH3),14.1(CH3),20.6(CH2),22.7(CH2),23.5(CH2)29.3(CH2),29.6(CH3),30.4(CH2),31.9(CH2),35.4(C),37.3(CH2),37.8(CH2),38.9(CH),40.5(CH2),48.0(CH),78.7(CH),180.4(C)(minor)
香調:Fruity,Honey,Rose
〔実施例80〕1-n-オクチル-2H-ミントラクトン(例示化合物Oc-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例53で得られた1-n-オクチルパラメンタン-3,9-ジオール(1.37g,4.816mmol)を用いたこと以外は実施例56と同様の手法を用い、1-n-オクチル-2H-ミントラクトン(0.530g,39%yield)を例示化合物Oc-1aとして得た。
例示化合物Oc-1a:1-n-オクチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.85-0.92(6H,m),0.96(3H,s),1.17(3H,d,J=7.7Hz),1.20-1.95(17H,m),1.97-2.03(1H,m),2.63(1H,qui,J=7.6Hz),4.18(1H,td,J=11.5,4.0Hz)(major)
H-NMR(500MHz,CDCl):δ0.85-0.92(6H,m),0.96(3H,s),1.17(3H,d,J=7.7Hz),1.20-1.95(17H,m),2.10-2.16(1H,m),2.63(1H,qui,J=7.6Hz),4.12(1H,td,J=11.6,3.8Hz)(minor)
13C-NMR(125MHz,CDCl):9.6(CH3),14.1(CH3),20.8(CH2),22.7(CH2),23.2(CH2),23.6(CH3),29.3(CH2),29.6(CH2),30.5(CH2),31.9(CH2),35.5(C),37.3(CH2),38.9(CH),41.2(CH2),46.2(CH2),48.2(CH),79.3(CH),180.4(C)(major)
13C-NMR(125MHz,CDCl):9.7(CH3),14.1(CH3),20.6(CH2),22.7(CH2),23.5(CH2)29.3(CH2),29.6(CH2),29.6(CH3),30.4(CH2),31.9(CH2),35.4(C),37.3(CH2),37.8(CH2),38.9(CH),40.5(CH2),48.0(CH),78.7(CH),180.4(C)(minor)
香調:Cinnamon,Honey,Apple
〔実施例81〕1-フェニル-2H-ミントラクトン(例示化合物Ph-1a)の合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例54で得られた1-フェニルパラメンタン-3,9-ジオール(800mg,3.223mmol)を用いたこと以外は実施例56と同様の手法を用い、1-フェニル-2H-ミントラクトン(531mg,2.177mmol,68%yield)を例示化合物Ph-1aとして得た。
例示化合物Ph-1a:1-フェニル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.96(3H,d,J=7.7Hz),1.26(3H,s),1.40-2.14(5H,m),2.51-2.57(1H,m),2.61(1H,qui,J=7.6Hz),2.93(1H,dt,J=12.4,3.0Hz),3.86(1H,td,J=11.8,3.3Hz),7.19-7.25(1H,m),7.32-7.40(4H,m)(major)
H-NMR(500MHz,CDCl):δ1.23(3H,d,J=7.7Hz),1.37(3H,s),1.40-2.14(6H,m),2.45-2.49(1H,m),2.70(1H,qui,J=7.6Hz),4.38(1H,td,J=11.6,3.9Hz),7.19-7.25(1H,m),7.32-7.40(4H,m)(minor)
13C-NMR(125MHz,CDCl):9.5(CH),21.5(CH),35.2(CH),36.9(CH),38.8(CH),40.6(C),41.8(CH),48.1(CH),78.6(CH),125.6(2C,CH),126.1(CH),128.8(2C,CH),145.9(C),180.1(C)(major)
13C-NMR(125MHz,CDCl):9.7(CH),21.1(CH),26.2(CH),37.5(CH),38.8(CH),39.4(C),41.5(CH),47.9(CH),79.2(CH),124.8(2C,CH),126.2(CH),128.4(2C,CH),150.3(C),180.1(C)(minor)
香調:Floral,Fruity
〔実施例82〕2H-ミントラクトンの合成
 1-ブチルパラメンタン3,9-ジオールの代わりに実施例55で得られたパラメンタン-3,9-ジオール(5.00g,29.0mmol)を用いたこと以外は実施例56と同様の手法を用い、2H-ミントラクトン(4.62g,27.5mmol,95%yield)を得た。
<実施例83~84:2H-ミンクラクトン(二重結合)>
〔実施例83〕メチル-2-(4-メチル-2-オキソシクロヘキ-3-セン-1-イル)プロパネートの合成
 コンデンサを有した500mL四つ口フラスコに窒素雰囲気下、メタノール32mLを加え、ナトリウムメトキシド(16.3g,1.0eq.)を0-10℃に冷却しつつ徐々に添加した。更にアセト酢酸メチル(32.3mL,300mmol)を滴下し1時間攪拌した後、2-ブロモプロピオン酸メチル(50.0g,1.0eq.)を添加した。添加終了後、70℃にて3時間攪拌を行い、反応終了後、0.5N塩酸35mLを温度を保ちつつ滴下した。メタノールを回収後、水層をトルエン抽出し、無水硫酸マグネシウムにて乾燥後に濾過濃縮し、58.14gの粗エステル中間体を得た(96%yield,90.5%GCP.)。
 続いて滴下漏斗とコンデンサを有した500mLリアクターに、粗エステル40.0g(as90.5%p.,179mmol)をDMSO(80mL)に溶解し、水酸化カリウム(166mg,0.015eq.)を徐々に加え系内を弱塩基性とし、35℃にて30分攪拌した。同温にて、メチルビニルケトン(17.3mL,1.05eq.)を滴下し、40℃にて3時間攪拌した。反応液を氷冷下で冷却し、メタノール(80mL)を加え、ナトリウムメトキシド(3.20g,0.3eq.)を同温にてゆっくりと添加した。30分攪拌後、GCにより反応終了を確認し、系内を希塩酸でpH=6~7まで中和した。メタノール・水を回収した後、コンデンサを有した200mLリアクターに残渣を添加し、無水塩化マグネシウム(14.1g,0.75eq.)を加えた。130℃にて3時間半加熱撹拌した後、反応液を室温まで冷却し、酢酸エチル/水で抽出した。有機層を濃縮し、34.5gの粗メチルエステル体を得た。ビグロ蒸留(バス温152-175℃,塔頂80-95℃,減圧度44-47Pa)を行い、メチルエステル中間体12.7g(64.5mmol,36%yield in 2steps)を得た。
メチルエステル中間体(メチル2-(4-メチル-2-オキソシクロヘキ-3-セン-1-イル)プロパネート)
H-NMR(500MHz,CDCl):δ1.10(3H,d,J=7.1Hz),1.72-1.82(1H,m),1.94(3H,s),1.95-2.06(1H,m),2.27-2.49(2H,m),2.74(1H,dt,J=13.8,5.1Hz),3.04-3.11(1H,m),3.70(3H,s),5.87(1H,s)(major)
H-NMR(500MHz,CDCl):δ1.20(3H,dd,J=7.2,0.8Hz),1.72-1.82(1H,m),1.94(3H,s),1.95-2.06(1H,m),2.27-2.49(2H,m),2.57(1H,dt,J=12.0,4.9Hz),2.94-3.03(1H,m),3.67(3H,s),5.87(1H,s)(minor)
13C-NMR(125MHz,CDCl):13.0(CH3),24.1(CH3),24.5(CH2),30.8(CH2),38.1(CH),48.0(CH),51.7(CH3),126.5(CH),161.9(C),176.7(C),198.9(C)(major)
13C-NMR(125MHz,CDCl):13.7(CH3),24.2(CH3),25.2(CH2),31.2(CH2),38.5(CH),48.5(CH),51.8(CH3),126.5(CH),161.5(C),175.3(C),198.8(C)(minor)
〔実施例84〕6-イソプロピル-3,6-ジメチル-3a,4,5,6-テトラヒドロベンゾフラン-2(3H)-オン(例示化合物iPr-3)の合成
 本反応は窒素雰囲気下にて行った。滴下漏斗を有した200mL四つ口フラスコに、臭化銅・ジメチルスルフィド錯体(78.6mg,5mol%)、DMI(1.7mL,2eq.)、THF(20mL)を添加し、撹拌しつつ系内を-10℃前後まで冷却した。更にイソプロピルマグネシウムクロリド・THF溶液(1.0mol/L,11mL,1.4eq.)を系内に添加し、滴下漏斗より実施例83で得られたメチルエステル中間体(1.50g,7.64mmol)のTHF溶液(30mL)を滴下した。滴下終了後に系内を0-5℃で一時間攪拌し、反応の終了を確認して後処理を行った。系内を冷却しつつ1N塩酸によりクエンチし、トルエン抽出を行った。油層をアンモニア水と飽和食塩水で洗浄した。油層を無水硫酸マグネシウムにて乾燥させ、濾過濃縮することにより粗生成物を得た。カラムクロマトグラフィーで単離精製を行い、目的の例示化合物iPr-3を得た(1.07g,5.12mmol,67%yield)。
例示化合物iPr-3:6-イソプロピル-3,6-ジメチル-3a,4,5,6-テトラヒドロベンゾフラン-2(3H)-オン
H-NMR(500MHz,CDCl):δ0.79-0.93(6H,m),0.95(3H,s),1.10-1.28(1H,m),1.29(1H,d,J=7.0Hz),1.40-1.65(2H,m),1.91-2.00(2H,m),2.27-2.34(1H,m),2.38-2.47(1H,m),5.18(1H,d,J=1.1Hz)(major)
H-NMR(500MHz,CDCl):δ0.79-0.93(6H,m),0.95(3H,s),1.07-1.27(4H,m),1.40-1.65(2H,m),2.38-2.47(1H,m),2.48-2.58(1H,m),2.72-2.77(1H,m),2.81(1H,qui,J=7.1Hz),5.18(1H,d,J=1.1Hz)(minor)
13C-NMR(125MHz,CDCl):13.4(CH3),17.7(CH3),18.5(CH3),25.2(CH3),25.6(CH2),32.7(CH2),36.6(CH),37.1(C),41.7(CH),43.5(CH),109.7(CH),149.8(C),177.3(C)(major)
13C-NMR(125MHz,CDCl):14.9(CH3),16.7(CH3),18.5(CH3),21.4(CH3),25.4(CH2),31.0(CH),34.6(C),38.9(CH),52.0(CH2),52.4(CH),110.7(CH),149.9(C),176.3(C)(minor)
香調:Fruity,Floral
<実施例85~88:ブロモ化・ミンクラクトン化>
〔実施例85〕8-ブロモ-1-メチル-2H-ミントラクトンの合成
 本反応はTetrahedron 1993,49,29,P.6429-6436の手法に従い行った。本反応は窒素雰囲気下にて行った。100mLフラスコに実施例67で得られた例示化合物Me-1a(1.14g,5.10mmol)とTHF(15mL)を加え、撹拌しつつ-70℃以下まで冷却した。滴下漏斗よりリチウムジイソプロピルアミドのTHF溶液(1.04mol/L,5.9mL,6.12mmol,1.2eq.)を、30分を要して滴下し、終了後に温度を保ちつつ30分撹拌した。続いて滴下漏斗よりトリメチルシリルクロリド(0.84mL,6.63mmol,1.3eq.)のTHF(5mL)溶液を、10分を要して滴下し、そのまま15分撹拌した。フラスコにN-ブロモスクシンイミド(1.18g,6.63mmol,1.3eq.)を加え、温度を保ちつつ1時間撹拌し、徐々に室温に戻しつつ3時間撹拌した。得られた溶液をトルエン及び水道水で洗浄・抽出し、乾燥・濃縮して得られた残渣をカラムクロマトグラフィーにて精製し、目的の8-ブロモ-1-メチル-2H-ミントラクトンを得た(820mg,2.704mmol,53%yield)。本化合物は精製せずにそのまま次の反応に用いた。
〔実施例86〕8-ブロモ-1-ブチル-2H-ミントラクトンの合成
 例示化合物Me-1aの代わりに実施例56で得られた例示化合物Bu-1aa(1.14g,5.10mmol)を用いたこと以外は実施例85と同様の手法で、8-ブロモ-1-ブチル-2H-ミントラクトン(820mg,53%yield)を粗生成物として得た。本化合物は精製せずにそのまま次の反応に用いた。
〔実施例87〕1-メチルミントラクトン(例示化合物Me-2)の合成
 本反応はTetrahedron 1993,49,29,P.6429-6436の手法に従い行った。実施例85で得られた8-ブロモ-1-メチル-2H-ミントラクトン(820mg,2.704mmol)と1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(0.40mL,2.704mmol,1.0eq.)およびトルエン(10mL)を100mLフラスコに加え、3時間還流撹拌を行った。反応溶液を冷却し、得られた溶液をトルエン及び水道水で洗浄・抽出し、乾燥・濃縮して得られた残渣をカラムクロマトグラフィーにて精製し、目的の1-メチルミントラクトンを例示化合物Me-2として得た(285mg,1.28mmol,47%yield)。
例示化合物Me-2:1-メチルミントラクトン
H-NMR(500MHz,CDCl):δ1.00(3H,s),1.08-1.12(4H,m),1.20-1.31(1H,m),1.64-1.70(1H,m),1.81(1H,t,J=1.7Hz),2.19(1H,ddd,J=12.2,6.1,2.4Hz),2.30-2.38(1H,m),2.70(1H,ddd,J=14.5,4.9,2.0Hz),4.74-4.80(1H,m)
13C-NMR(125MHz,CDCl):8.2(CH),22.8(CH),24.1(CH),31.8(CH),31.9(C),39.0(CH),46.2(CH),78.4(CH),119.7(C),162.6(C),174.8(C)
香調:Balsamic,Sweat,Coumarin,Fruity,Plum
〔実施例88〕1-ブチルミントラクトン(例示化合物Bu-2)の合成
 8-ブロモ-1-メチル-2H-ミントラクトンの代わりに実施例86で得られた8-ブロモ-1-ブチル-2H-ミントラクトン(820mg,2.70mmol)を用いたこと以外は実施例87と同様の手法で、1-ブチルミントラクトン(285mg,1.28mmol,47%yield)を例示化合物Bu-2として得た。
例示化合物Bu-2:1-ブチルミントラクトン
H-NMR(500MHz,CDCl):δ0.92-0.96(3H,m),0.97-1.19(4H,m),1.16-1.38(7H,m),1.63-1.68(1H,m),1.81(3H,s),2.22(1H,ddd,J=12.1,6.1,2.4Hz),2.31-2.40(1H,m),2.66-2.74(1H,m),4.71-4.82(1H,m)(major)
H-NMR(500MHz,CDCl):δ0.87-0.92(3H,m),0.97-1.19(4H,m),1.16-1.38(6H,m),1.42-1.48(1H,m),1.74-1.82(4H,m),2.27-2.40(2H,m),2.63-2.70(1H,m),4.71-4.82(1H,m)(minor)
13C-NMR(125MHz,CDCl):14.0(CH),21.8(CH),22.6(CH),23.4(CH),25.5(CH),28.1(CH),34.4(C),37.3(CH),44.4(CH),44.5(CH),78.5(CH),119.5(C),162.9(C),174.8(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH),21.8(CH),22.5(CH),23.5(CH),25.9(CH),28.1(CH),34.4(C),35.5(CH),37.6(CH),44.2(CH),78.1(CH),119.6(C),162.9(C),174.8(C)(minor)
香調:Fruity,woody,Lactone,Peach,Coconuts
<実施例89~90:α位-アルキル化>
〔実施例89〕8-アリル-2H-ミントラクトン(例示化合物N-1-Ay)の合成
 本反応は窒素雰囲気下にて行った。滴下漏斗を有した100mLリアクターに実施例82で得られた2H-ミントラクトン(1.26g,7.488mmol)及びTHF(10mL)を添加し、-50℃以下まで冷却しつつ撹拌した。滴下漏斗よりリチウム・ジイソプロピルアミド・THF溶液(1.04mol/L,2.5eq.,18mL)を、30分を要して滴下し、更にアリルブロミド(1.62mL,2.5eq.)のTHF(10mL)溶液を、30分を要して滴下した。滴下終了後に徐々に系内を室温まで昇温し、2時間撹拌した。GCにて反応の完結を確認し、後処理を行った。溶液にトルエンと飽和食塩水を添加し、油層を1N塩酸で2回、5%重曹水で1回洗浄し、無水硫酸マグネシウムにて乾燥して濾過濃縮した。得られた残渣をカラムクロマトグラフィーにより単離精製し、8-アリル-2H-ミントラクトンを例示化合物N-1-Ayとして得た(1.09g,70%yield)。
例示化合物N-1-Ay:8-アリル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.96-1.08(4H,m),1.12-1.21(4H,m),1.36(1H,qd,J=12.5,3.8Hz),1.54-1.69(2H,m),1.74(1H,dq,J=12.6,3.1Hz),1.80-1.86(1H,m),2.12(1H,dd,J=14.2,7.7Hz),2.22-2.28(1H,m),2.32(1H,dd,J=14.1,7.8Hz),4.02(1H,td,J=11.1,3.8Hz),5.06-5.14(2H,m),5.74-5.86(1H,m)
13C-NMR(125MHz,CDCl):21.5(CH),22.0(CH),23.1(CH),31.3(CH),34.4(CH),35.8(CH),39.0(CH),45.4(C),54.8(CH),79.7(CH),118.6(CH),133.0(CH),180.8(C)
香調:Fruity,Sweet,Cookie,Pineapple,Dryfruit,Galbanum
〔実施例90〕8-ブチル-2H-ミントラクトン(例示化合物N-1-Bu)の合成
 アリルブロミドの代わりにヨウ化ブチルを用いること以外は実施例89と同様の手法で、1.00g(5.942mmol)の2H-ミントラクトンより8-ブチル-2H-ミントラクトンを例示化合物N-1-Buとして得た(650mg,2.90mmol,49%yield)。
例示化合物N-1-Bu:8-ブチル-2H-ミントラクトン
H-NMR(500MHz,CDCl):δ0.89(3H,t,J=7.1Hz),0.95-1.08(4H,m),1.12-1.23(4H,m),1.24-1.40(6H,m),1.49-1.65(3H,m),1.71(1H,ddd,J=12.6,6.7,1.0Hz),1.79-1.85(1H,m),2.21-2.28(1H,m),3.99(1H,td,J=11.9,3.8Hz)
13C-NMR(125MHz,CDCl):13.9(CH),21.2(CH),22.0(CH),23.0(CH),23.3(CH),26.2(CH),30.7(CH),31.3(CH),34.4(CH),39.2(CH),45.3(C),55.3(CH),79.6(CH),181.3(C)
香調:Fruity,Creamy,Spicy.
<実施例91~103:エーテル化>
〔実施例91〕1-イソプロピルテトラヒドロメントフラン(例示化合物iPr-4)の合成
 本反応はChem Sus Chem,2012,5,P.1578-1586の手法に従い行った。コンデンサを有した100mLリアクターに実施例41で得られた1-イソプロピルパラメンタン-3,9-ジオール(500mg,2.333mmol)、カリウムt-ブトキシド(393mg,1.5eq.,3.50mmol)および炭酸ジメチル(7.8mL)を加え、2時間還流撹拌を行った。GCおよびTLCで反応の終了を確認し、後処理を行った。溶液を室温まで冷却し、トルエンおよび水道水を加えて洗浄した。油層を1N塩酸、5%重曹水で各1回洗浄し、無水硫酸マグネシウムにて乾燥させ濾過濃縮した。得られた残渣をカラムクロマトグラフィーで単離精製し、目的の1-イソプロピルテトラヒドロメントフランを例示化合物iPr-4として得た(403mg,2.14mmol,92%yield)。
例示化合物iPr-4:1-イソプロピルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.82(3H,s),0.86(6H,dd,J=6.5,1.0Hz),0.93(3H,d,J=7.5Hz),1.01-1.45(4H,m),1.47-1.53(1H,m),1.60-1.67(1H,m),1.77-1.90(1H,m),1.95(1H,ddd,J=11.5,4.5,2.0Hz),2.24-2.37(1H,m),3.36-3.46(2H,m),4.12-4.17(1H,m)(major)
H-NMR(500MHz,CDCl):δ0.78(3H,s),0.86(6H,dd,J=6.5,1.0Hz),0.92(3H,d,J=7.0Hz),1.01-1.45(4H,m),1.54-1.57(1H,m),1.60-1.67(1H,m),1.77-1.90(1H,m),2.21-2.24(1H,m),2.24-2.37(1H,m),3.36-3.46(2H,m),4.12-4.17(1H,m)(minor)
13C-NMR(125MHz,CDCl):15.5(CH3),17.0(CH3),17.2(CH3),19.3(CH3),21.1(CH2),34.0(CH2),35.7(CH2),37.6(C),39.7(CH),40.6(CH),49.1(CH),75.7(CH2),77.0(CH)(major)
13C-NMR(125MHz,CDCl):15.6(CH3),16.8(CH3),17.0(CH3),20.4(CH2),23.0(CH3),28.6(CH),33.9(CH),36.5(CH2),37.5(C),41.2(CH2),49.4(CH),75.5(CH),75.6(CH2)(minor)
香調:Floral,Fruity
〔実施例92〕1-メチルテトラヒドロメントフラン(例示化合物Me-4)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例37で得られた1-メチルパラメンタン-3,9-ジオール(631mg,3.39mmol)を用いたこと以外は実施例91と同様の手法を用い、1-メチルテトラヒドロメントフラン(320mg,1.90mmol,56%yield)を例示化合物Me-4として得た。
例示化合物Me-4:5-メチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.91-0.94(6H,m),0.99(3H,s),1.14-1.24(2H,m),1.28-1.35(2H,m),1.43-1.48(1H,m),1.58-1.63(1H,m),1.86(1H,ddd,J=11.7,4.0,1.9Hz),2.31(1H,ddd,J=13.4,7.1,3.0Hz),3.37-3.44(2H,m),4.16(1H,dd,J=8.7,7.2Hz)
13C-NMR(125MHz,CDCl):15.5(CH),21.3(CH),26.0(CH),32.5(C),33.2(CH),33.9(CH),39.3(CH),44.4(CH),49.2(CH),74.7(CH),77.0(CH)
香調:Coumarine,Minty,Herbal
〔実施例93〕1-エチルテトラヒドロメントフラン(例示化合物Et-4)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例40で得られた1-エチルパラメンタン-3,9-ジオール(500mg,2.50mmol)を用いたこと以外は実施例91と同様の手法を用い、1-エチルテトラヒドロメントフラン(398mg,2.18mmol,88%yield)を例示化合物Et-4として得た。
例示化合物Et-4:1-エチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.80-0.95(9H,m),1.01-1.45(7H,m),1.53-1.65(1H,m),1.87(1H,ddd,J=11.5,4.0,1.5Hz),2.24-2.37(1H,m),3.36-3.47(2H,m),4.16(1H,dd,J=8.5,7.5Hz)(major)
H-NMR(500MHz,CDCl):δ0.80-0.95(9H,m),1.01-1.45(7H,m),1.53-1.65(1H,m),2.00(1H,ddd,J=12.0,4.0,1.5Hz),2.24-2.37(1H,m),3.36-3.47(2H,m),4.16(1H,dd,J=8.5,7.5Hz)(minor)
13C-NMR(125MHz,CDCl):7.8(CH3),15.6(CH3),21.2(CH2),23.1(CH3),34.0(CH),35.2(C),37.4(CH2),38.3(CH2),42.0(CH2),49.4(CH),75.8(CH2),76.7(CH)(major)
13C-NMR(125MHz,CDCl):7.9(CH3),15.6(CH3),20.9(CH2),28.9(CH3),29.4(CH2),34.0(CH),35.0(C),38.0(CH2),41.4(CH2),49.2(CH),75.7(CH2),76.2(CH)(minor)
香調:Floral,Fruity,Green,Woody
〔実施例94〕1-プロピルテトラヒドロメントフラン(例示化合物Pr-4)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例42で得られた1-プロピルパラメンタン-3,9-ジオール(1.90g,8.86mmol)を用いたこと以外は実施例91と同様の手法を用い、目的の1-プロピルテトラヒドロメントフランを例示化合物Pr-4として得た(868mg,50%yield)。
例示化合物Pr-4:1-プロピルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.85-0.95(9H,m),1.01-1.45(9H,m),1.53-1.65(1H,m),1.87(1H,ddd,J=11.7,3.8,1.5Hz),2.24-2.37(1H,m),3.36-3.47(2H,m),4.15(1H,dd,J=8.3,7.6Hz)(major)
H-NMR(500MHz,CDCl):δ0.80-0.95(9H,m),1.01-1.35(8H,m),1.53-1.65(2H,m),2.00(1H,ddd,J=12.0,3.6,1.6Hz),2.24-2.37(1H,m),3.36-3.47(2H,m),4.16(1H,dd,J=8.5,7.5Hz)(minor)
13C-NMR(125MHz,CDCl):15.0(CH3),15.5(CH3),16.6(CH2),21.1(CH2),23.6(CH3),33.9(CH),35.2(C),37.8(CH2),42.5(CH2),48.8(CH2),49.4(CH),75.6(CH2),76.2(CH)(major)
13C-NMR(125MHz,CDCl):15.0(CH3),15.6(CH3),16.7(CH2),20.9(CH2),29.6(CH3),33.9(CH),35.0(C),38.5(CH2),39.9(CH2),41.9(CH2),49.2(CH),76.7(CH2),77.0(CH)(minor)
香調:Floral,Fruity,Apricot,Jasmin,metalic
〔実施例95〕1-ブチルテトラヒドロメントフラン(例示化合物Bu-4a)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例36で得られた1-ブチルパラメンタン-3,9-ジオール(1.08g,4.73mmol)を用いたこと以外は実施例91と同様の手法を用い、目的の1-ブチルテトラヒドロメントフランを例示化合物Bu-4aとして得た(0.512g,52%yield)。
例示化合物Bu-4a:1-ブチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.88-0.94(9H,m),1.00-1.67(12H,m),1.88(1H,ddd,J=11.6,3.9,1.3Hz),2.24-2.35(1H,m),3.35-3.46(2H,m),4.16(1H,t,J=8.5Hz)(major)
H-NMR(500MHz,CDCl):δ0.88-0.94(9H,m),1.00-1.6.7(12H,m),2.00(1H,ddd,J=12.0,3.6,1.5Hz),2.24-2.35(1H,m),3.35-3.46(2H,m),4.16(1H,t,J=8.5Hz)(minor)
13C-NMR(125MHz,CDCl):14.2(CH3),15.5(CH3),21.1(CH2),23.5(CH2),23.6(CH3),25.6(CH2),34.0(CH),35.1(C),37.8(CH2),42.5(CH2),46.0(CH2),49.4(CH2),75.7(CH2),77.0(CH)(major)
13C-NMR(125MHz,CDCl):14.2(CH3),15.6(CH3),20.9(CH2),23.6(CH2),25.8(CH2),29.6(CH3),33.9(CH),34.9(C),37.1(CH2),38.5(CH2),41.8(CH2),49.2(CH2),75.7(CH2),76.2(CH)(minor)
香調:Tuberose,Lactone,Aquatic,Fruity,white,Creamy
〔実施例96〕1-ブチルテトラヒドロメントフラン異性体(例示化合物Bu-4c)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに、実施例36においてボラン溶液を25℃で滴下し反応させ、得られた1-ブチルパラメンタン-3,9-ジオール(3.00g,13.1mmol)を用いたこと以外は実施例91と同様の手法を用いて反応を行い、単離精製により1-ブチルテトラヒドロメントフラン異性体を例示化合物Bu-4cとして得た(0.221g,8%yield)。
例示化合物Bu-4c:1-ブチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.88-0.94(9H,m),1.00-1.67(12H,m),1.78-1.84(1H,m),2.24-2.35(1H,m),3.33-3.39(2H,m),4.05(1H,td,J=7.5,3.1Hz)(major)
H-NMR(500MHz,CDCl):δ0.88-0.94(9H,m),1.00-1.67(12H,m),1.91-1.97(1H,m),2.24-2.35(1H,m),3.28-3.35(2H,m),4.05(1H,td,J=7.5,3.1Hz)(minor)
13C-NMR(125MHz,CDCl):14.2(CH3),15.6(CH3),21.1(CH2),23.6(CH2),23.7(CH3),25.6(CH2),35.1(C),37.8(CH2),38.2(CH),42.3(CH2),46.0(CH2),53.6(CH),75.6(CH2),81.1(CH)(major)
13C-NMR(125MHz,CDCl):14.2(CH3),15.9(CH3),20.9(CH2),23.3(CH2),25.8(CH2),29.7(CH3),35.0(C),37.1(CH2),38.1(CH),41.6(CH2),46.0(CH2),53.3(CH),74.7(CH2),80.5(CH)(minor)
香調:Tuberose,Lactone,Fruity,Aquatic,white,Creamy
〔実施例97〕異性体である例示化合物Bu-4aと例示化合物Bu-4cを混和し香調を確認したところ、混合物からは例示化合物Bu-4aと同様の香調を得た。
〔実施例98〕1-iso-ブチルテトラヒドロメントフラン(例示化合物iBu-4a)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例43で得られた1-iso-ブチルパラメンタン-3,9-ジオール(1.26g,5.517mmol)を用いたこと以外は実施例91と同様の手法を用い、1-iso-ブチルテトラヒドロメントフラン(596mg,2.83mmol,51%yield)を例示化合物iBu-4aとして得た。
例示化合物iBu-4a:1-iso-ブチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.86-0.96(12H,m),1.03-1.80(9H,m),1.91(1H,ddd,J=11.7,4.1,1.8Hz),2.24-2.35(1H,m),3.33-3.45(2H,m),4.11-4.18(1H,m)(major)
H-NMR(500MHz,CDCl):δ0.86-0.96(12H,m),1.03-1.80(9H,m),2.03(1H,ddd,J=11.8,4.1,1.9Hz),2.24-2.35(1H,m),3.33-3.45(2H,m),4.11-4.18(1H,m)(minor)
13C-NMR(125MHz,CDCl):15.5(CH3),21.0(CH2),23.6(CH),24.1(CH3),25.7(CH3),25.7(CH3),33.9(CH),36.0(C),38.2(CH2),42.7(CH2),49.3(CH),55.3(CH),75.6(CH2),76.8(CH)(major)
13C-NMR(125MHz,CDCl):15.6(CH3),22.7(CH2),24.6(CH),25.5(CH3),25.7(CH3),30.3(CH3),33.9(CH),35.8(C),39.1(CH2),42.6(CH2),46.3(CH2),49.2(CH),75.6(CH2),77.0(CH)(minor)
香調:Fruity,Floral,Plum,Peach
〔実施例99〕1-n-ペンチルテトラヒドロメントフラン(例示化合物Pe-4a)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例48で得られた1-n-ペンチルパラメンタン-3,9-ジオール(1.23g,5.07mmol)を用いたこと以外は実施例91と同様の手法を用い、目的の5-ペンチルテトラヒドロメントフランを例示化合物Pe-4aとして得た(367mg,30%yield)。
例示化合物Pe-4a:5-ペンチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.85-0.95(9H,m),1.00-1.37(12H,m),1.40-1.46(1H,m),1.55-1.64(1H,m),1.87(1H,ddd,J=12.0,4.0,1.9Hz),2.24-2.38(1H,m),3.36-3.47(2H,m),4.16(1H,dd,J=8.5,7.5Hz)(major)
H-NMR(500MHz,CDCl):δ0.85-0.95(9H,m),1.00-1.37(12H,m),1.51-1.55(1H,m),1.55-1.64(1H,m),2.00(1H,ddd,J=12.0,3.5,1.5Hz),2.24-2.38(1H,m),3.36-3.47(2H,m),4.16(1H,dd,J=8.5,7.5Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),15.6(CH3),21.1(CH2),22.7(CH2),23.0(CH2),23.6(CH3),32.8(CH2),34.0(CH),35.0(C),37.8(CH2),42.5(CH2),46.3(CH2),49.4(CH),74.7(CH2),76.3(CH)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),15.5(CH3),20.9(CH2),22.8(CH2),23.2(CH2),29.6(CH3),32.8(CH2),33.9(CH),35.1(C),37.4(CH2),38.5(CH2),41.8(CH2),49.2(CH),76.8(CH2),77.0(CH)(minor)
香調:Floral,Furity,coumarin
〔実施例100〕1-n-ヘキシルテトラヒドロメントフラン(例示化合物Hx-4a)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例50で得られた1-n-ヘキシルパラメンタン-3,9-ジオール(246mg,0.9601mmol)を用いたこと以外は実施例91と同様の手法を用い、目的の1-n-ヘキシルテトラヒドロメントフランを例示化合物Hx-4aとして得た(94.1mg,41%yield)。
例示化合物Hx-4a:1-n-ヘキシルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.85-0.95(9H,m),1.00-1.45(15H,m),1.50-1.65(1H,m),1.87(1H,ddd,J=11.5,4.0,1.5Hz),2.24-2.38(1H,m),3.36-3.47(2H,m),4.15(1H,dd,J=8.5,7.5Hz)(major)
H-NMR(500MHz,CDCl):δ0.85-0.95(9H,m),1.00-1.37(15H,m),1.50-1.65(1H,m),2.00(1H,ddd,J=12.0,3.5,1.5Hz),2.24-2.38(1H,m),3.36-3.47(2H,m),4.15(1H,dd,J=8.5,7.5Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),15.5(CH3),21.1(CH2),22.7(CH2),23.3(CH2),23.7(CH3),30.2(CH2),31.9(CH2),34.0(CH),35.1(C),37.8(CH2),42.5(CH2),46.3(CH2),49.4(CH),75.7(CH2),76.2(CH)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),15.6(CH3),20.9(CH2),22.7(CH2),23.5(CH2),29.6(CH3),30.3(CH2),32.0(CH2),33.9(CH),35.0(C),37.4(CH2),38.5(CH2),41.8(CH2),49.2(CH),76.8(CH2),77.0(CH)(minor)
香調:Fruity,Coconuts
〔実施例101〕1-n-ヘプチルテトラヒドロメントフラン(例示化合物Hp-4a)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例52で得られた1-n-ヘプチルパラメンタン-3,9-ジオール(2.00g,7.94mmol)を用いたこと以外は実施例91と同様の手法を用い、目的の1-ヘプチルテトラヒドロメントフランを例示化合物Hp-4aとして得た(367mg,30%yield)。
例示化合物Hp-4a:1-n-ヘプチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.85-0.95(9H,m),1.00-1.45(15H,m),1.50-1.63(1H,m),2.00(1H,dd,J=11.9,2.1Hz),2.24-2.36(1H,m),3.36-3.47(2H,m),4.15(1H,t,J=7.1,Hz)(major)
H-NMR(500MHz,CDCl):δ0.85-0.95(9H,m),1.00-1.45(15H,m),1.50-1.63(1H,m),1.87(1H,dd,J=11.7,2.7Hz),2.24-2.36(1H,m),3.36-3.47(2H,m),4.15(1H,t,J=7.1,Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),15.6(CH3),20.9(CH2),22.7(CH2),23.5(CH2),23.7(CH3),29.4(CH2),30.6(CH2),31.9(CH2),33.9(CH),35.0(C),37.4(CH2),38.5(CH2),41.8(CH2),49.2(CH),75.6(CH2),76.2(CH)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),15.5(CH3),21.1(CH2),22.7(CH2),23.3(CH2),29.3(CH2),29.6(CH3),30.5(CH2),31.9(CH2),33.9(CH),35.1(C),37.8(CH2),42.5(CH2),46.3(CH2),49.4(CH),76.7(CH2),77.0(CH)(minor)
香調:Fruity,gluten
〔実施例102〕1-n-オクチルテトラヒドロメントフラン(例示化合物Oc-4a)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例53で得られた1-n-オクチルパラメンタン-3,9-ジオール(1.40g,4.92mmol)を用いたこと以外は実施例91と同様の手法を用い、目的の1-n-オクチルテトラヒドロメントフランを例示化合物Oc-4aとして得た(724mg,55%yield)。
例示化合物Oc-4a:1-n-オクチルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.85-0.93(9H,m),1.00-1.45(18H,m),1.51-1.62(2H,m),2.00(1H,ddd,J=12.0,3.5,1.5Hz),2.23-2.35(1H,m),3.38-3.45(2H,m),4.15(1H,dd,J=9.5,7.5Hz)(major)
H-NMR(500MHz,CDCl):δ0.85-0.93(9H,m),1.00-1.45(18H,m),1.51-1.62(2H,m),1.87(1H,ddd,J=12.0,4.0,20Hz),2.23-2.35(1H,m),3.38-3.45(2H,m),4.15(1H,dd,J=9.5,7.5Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),15.6(CH3),20.9(CH2),22.7(CH2),23.3(CH2),23.6(CH3),29.3(CH2),29.5(CH2),30.6(CH2),31.9(CH),33.9(CH),35.0(C),37.4(CH2),38.5(CH2),41.8(CH2),49.2(CH),75.6(CH2),76.2(CH)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),15.6(CH3),21.1(CH2),22.7(CH2),23.3(CH2),29.3(CH2),29.4(CH2),29.6(CH3),30.5(CH2),31.9(CH),33.9(CH),35.1(C),37.8(CH2),42.5(CH2),46.3(CH2),49.4(CH),76.7(CH2),77.0(CH)(minor)
香調:Fruity,Apple,cinnamon
〔実施例103〕1-フェニルテトラヒドロメントフラン(例示化合物Ph-4a)の合成
 1-イソプロピルパラメンタン-3,9-ジオールの代わりに実施例54で得られた1-フェニルパラメンタン-3,9-ジオール(400mg,1.61mmol)を用いたこと以外は実施例91と同様の手法を用い、1-フェニルテトラヒドロメントフラン(360mg,1.56mmol,97%yield)を例示化合物Ph-4aとして得た。
例示化合物Ph-4a:1-フェニルテトラヒドロメントフラン
H-NMR(500MHz,CDCl):δ0.72(3H,d,J=7.2Hz),1.22(3H,s),1.25-1.30(1H,m),1.40-1.70(5H,m),2.24-2.33(1H,m),2.47(1H,ddd,J=14.0,5.3,2.7Hz),3.12(1H,td,J=11.2,3.3Hz),3.31(1H,dd,J=8.3,3.1Hz),4.14(1H,dd,J=8.5,7.4Hz),7.12-7.43(5H,m)(major)
H-NMR(500MHz,CDCl):δ0.97(3H,d,J=7.2Hz),1.31(3H,s),1.40-1.70(4H,m),1.75-1.83(1H,m),1.92-1.97(1H,m),2.32-2.41(2H,m),3.48(1H,dd,J=8.7,3.1Hz),3.62(1H,td,J=10.9,3.9Hz),4.20(1H,dd,J=8.5,7.4Hz),7.12-7.43(5H,m)(minor)
13C-NMR(125MHz,CDCl):15.4(CH3),21.7(CH2),26.2(CH3),33.9(CH),37.5(CH2),40.2(C),43.0(CH2),49.3(CH),75.9(CH2),76.8(CH),125.9(CHx2),128.2(CH),128.5(CHx2),147.1(C)(major)
13C-NMR(125MHz,CDCl):15.6(CH3),21.4(CH2),33.9(CH),35.3(CH3),38.2(CH2),39.3(C),42.7(CH2),49.0(CH),75.7(CH2),76.5(CH),125.1(CHx2),125.5(CHx2),125.8(CH),151.5(C)(minor)
香調:Floral,Fruity,Balsamic,Rosy,Plum,Whitefloral
〔実施例104〕香調持続性の確認
 比較化合物であるγ-ノナラクトン、γ-デカラクトン、δ-ウンデカラクトン、ネクタリルと、実施例56で得られた例示化合物Bu-1aaをそれぞれ30μLずつブロッターに添加し、香気の持続性を確認した。その結果、比較化合物はいずれも3週間以内に匂いがまったく感じられなくなったが、例示化合物Bu-1aaはその匂いが4ヶ月持続し、その香調もブロッター添加時と比較してほとんど変化が無かった。
Figure JPOXMLDOC01-appb-T000014
〔実施例105〕1-(4-ブチル-2-ヒドロキシ-4-メチルシクロヘキシル)エタン-1-オンの合成
 100mL反応フラスコに実施例25で得られた5-ブチルイソプレゴール(1.20g,5.70mmol)および1-ブタノール(10mL)を添加し、10℃以下で系内を攪拌し、オゾン発生装置よりオゾンガスの吹き込みを行い、反応させた。2時間後に吹き込みを停止し、5%重曹水を滴下し反応を終了させた。系内に酢酸エチルを添加し、重曹水で一回、飽和食塩水で二回洗浄し、油層を無水硫酸マグネシウムにて乾燥させろ過濃縮し、目的の1-(4-ブチル-2-ヒドロキシ-4-メチルシクロヘキシル)エタン-1-オンを得た(0.99g,82%yield)。
〔実施例106〕1-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)エタン-1-オンの合成
 本反応は窒素雰囲気下にて行った。50mLフラスコに実施例105で得られた1-(4-ブチル-2-ヒドロキシ-4-メチルシクロヘキシル)エタン-1-オン(3.00g,14.1mmol)、ジメチルtブチルシリルクロリド(3.19g,1.5eq.)、イミダゾール(1.92g,2.0eq.)およびDMF(9mL)を添加し、バス温30℃で1時間半攪拌した。GCにて基質が完全に消費されたことを確認し、後処理を行った。反応溶液を室温まで冷却し、飽和食塩水を投入し、トルエン抽出を二回行った。得られた油層を無水硫酸マグネシウムにて乾燥し、濾過濃縮して目的の粗シリルエーテルを得た。カラムクロマトグラフィーで単離精製し、目的の1-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)エタン-1-オン(7.63g,29.2mmol,80%yield)を得た。
〔実施例107〕エチル-3-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)-2-ブテノエートの合成
 本反応は窒素雰囲気下にて行った。滴下漏斗とコンデンサを有した100mLリアクターに水素化ナトリウム(60% oil dispersion,735mg,1.5eq.)およびDMF(20mL)を添加し、攪拌しつつ10℃以下まで冷却した。滴下漏斗よりホスホノ酢酸トリエチル(3.7mL,1.5eq.)のDMF(5mL)溶液を、30分を要して滴下し30分攪拌し熟成させた。さらに滴下漏斗より実施例106で得られた1-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)エタン-1-オン(4.00g,12.3mmol)のDMF(5mL)溶液を、20分を要して滴下し、終了後系内を120℃に昇温し攪拌させた。5時間攪拌後、目的物の生成を確認し後処理を行った。系内を10℃以下まで冷却後、1N塩酸を添加してクエンチし、溶液を二回トルエン抽出した。油層を無水硫酸マグネシウムにて乾燥、減圧濃縮し粗生成物を得た。カラムクロマトグラフィーで単離精製し、目的のエチル-3-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)-2-ブテノエートを1.64g(4.13mmol,37%yield)得た。
〔実施例108〕エチル-3-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)ブタノエートの合成
 100mLオートクレーヴに実施例107で得られたエチル-3-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)-2-ブテノエート(1.64g,4.13mmol)、パラジウム炭素担持(5%Pd wet,10mg)、エタノール(5mL)を添加し、水素圧1MPaで80℃加熱攪拌させた。2時間後に後処理として、冷却、水素パージ後に得られた溶液を濾過濃縮し、目的のエチル-3-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)ブタノエートを得た(1.78g,quant.)。
〔実施例109〕7-ブチル-4,7-ジメチルオクタヒドロ-2H-クロメン-2-オン(例示化合物Bu-5)の合成
 本反応は窒素雰囲気下にて行った。50mLリアクターに実施例108で得られたエチル-3-(4-ブチル-2-((t-ブチルジメチルシリル)オキシ)-4-メチルシクロヘキシル)ブタノエート(1.58g,3.96mmol)、テトラブチルアンモニウムフルオリド・THF溶液(1mol/L,24mL,6.0eq.)を添加し、50℃で24時間攪拌した。得られた溶液を飽和食塩水で洗浄後、無水硫酸マグネシウムにて乾燥、濾過濃縮した。得られた残渣をカラムクロマトグラフィーにより精製し、目的の例示化合物Bu-5(57mg,6%yield)を得た。
例示化合物Bu-5
H-NMR(500MHz,CDCl):δ0.84-0.96(6H,m),1.03(3H,d,J=7.2Hz),1.11-1.61(10H,m),1.86-1.93(1H,m),2.09(1H,sep,J=3.5Hz),2.40(2H,dt,J=17.5,3.5Hz),2.69(2H,dd,J=17.6,6.6Hz),4.31(1H,td,J=11.2,4.4Hz)(major)
H-NMR(500MHz,CDCl):δ0.84-0.96(6H,m),1.02(3H,d,J=7.1Hz),1.11-1.61(10H,m),1.96-2.03(1H,m),2.09(1H,sep,J=3.5Hz),2.40(2H,dt,J=17.5,3.5Hz),2.69(2H,dd,J=17.6,6.6Hz),4.26(1H,td,J=11.3,4.2Hz)(minor)
13C-NMR(125MHz,CDCl):14.1(CH3),15.1(CH3),22.5(CH3),23.5(CH2),23.8(CH2),25.4(CH2),28.9(CH),34.6(C),36.8(CH2),39.0(CH2),43.0(CH),43.5(CH2),45.5(CH2),75.8(CH),171.7(C)(major)
13C-NMR(125MHz,CDCl):14.1(CH3),15.1(CH3),23.5(CH2),23.6(CH2),25.7(CH2),28.9(CH),29.2(CH3),34.4(C),36.2(CH2),37.1(CH2),39.0(CH2),42.6(CH),43.2(CH2),75.3(CH),171.8(C)(minor)
香調:Floral,Fruity,Lactone
〔実施例110〕フレグランス組成物
 下記表2の処方に従い、上記で合成した例示化合物Bu-1/Bu-1aa/Pr-1aまたはiBu-1a、もしくは例示化合物の代わりにネクタリルまたはγ-デカラクトンの化合物を用いて香水用香料組成物を調製した。
官能評価は5年以上経験した4人の専門パネラーが行い、その結果、例示化合物を含有するフローラル・グリーン調香料組成物は、いずれの組成物においてもネクタリルまたはγ-デカラクトンの化合物を含有するフローラル・グリーン調香料組成物と比べて、優位性がはっきりと認められる強いフローラル・グリーン香気を有し、嗜好性が高く、香質においても優れているとパネラー全員が判断した。
Figure JPOXMLDOC01-appb-T000015
〔実施例111〕フレグランス組成物
 下記表3の処方に従い、上記で合成した例示化合物Bu-1/Bu-1aa/Pr-1aまたはiBu-1aを用いて香水用香料組成物を調製した。
 官能評価は5年以上経験した4人の専門パネラーが行い、その結果、例示化合物を含有するオレンジフラワー調香料組成物は、いずれの組成物においても嗜好性が高く、香質に優れる結果であると4人全員が判断した。
Figure JPOXMLDOC01-appb-T000016
〔実施例112〕シャンプー
 下記表4の処方に従い、上記実施例110の香料組成物を1.0%賦香したシャンプー(100g)を作製した。このものの官能評価は5年以上経験した4人の専門パネラーが行い、比較化合物を用いた香料組成物よりも、例示化合物を用いた香料組成物の方がいずれも嗜好性が高く、香質に優れる結果であると4人全員が判断した。
Figure JPOXMLDOC01-appb-T000017
〔実施例113〕ボディシャンプー
 下記表5の処方に従い、上記実施例111の香料組成物を賦香したボディーシャンプー(100g)を作製した。このものの官能評価は5年以上経験した4人の専門パネラーが行い、清潔感のあるマリーン調がはっきりと認識でき、嗜好性が高く、香質に優れる結果であると4人全員が判断した。
Figure JPOXMLDOC01-appb-T000018
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年4月11日出願の米国特許仮出願(62/656,054)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る化合物は強いピーチ様あるいはジャスミン様の香気を有するため、付香剤として有用である。

Claims (5)

  1.  下記一般式(A)で表されるラクトン化合物。
    Figure JPOXMLDOC01-appb-C000001
    [上記式中、Rは水素原子または下記R1であり、
     Rが水素原子である場合、R’は下記R1であり、炭素結合(1)は単結合または二重結合であり、炭素結合(2)は単結合である。
     Rが下記R1である場合、R’は水素原子または下記R1であり、炭素結合(1)および(2)はともに単結合であるか、またはいずれか一方が二重結合でもう一方が単結合である。
    R1:炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基、またはアリール基。
     nは0または1である。]
  2.  下記一般式(B)で表されるエーテル化合物。
    Figure JPOXMLDOC01-appb-C000002
    [上記式中、R”は炭素数1~8の置換基を有しても良いアルキル基、炭素数2~8の置換基を有しても良いアルケニル基、炭素数2~8の置換基を有しても良いアルキニル基またはアリール基を表す;nは0または1である。]
  3.  請求項1または2に記載の化合物を含有する香料組成物。
  4.  請求項3に記載の香料組成物を配合してなることを特徴とする飲料、食品、香粧品、トイレタリー製品、エアケア製品、日用・雑貨品、口腔用組成物、ヘアケア製品、スキンケア製品、ボディケア製品、衣料用洗剤、衣料用柔軟仕上げ剤、医薬部外品又は医薬品。
  5.  香料の香気を改善する方法であって、請求項1または2に記載の化合物を香料に添加することを特徴とする方法。
PCT/JP2019/015363 2018-04-11 2019-04-08 新規ラクトン化合物及び新規エーテル化合物 WO2019198678A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020513263A JP7401426B2 (ja) 2018-04-11 2019-04-08 新規ラクトン化合物及び新規エーテル化合物
EP19785255.1A EP3778581A4 (en) 2019-04-08 Novel lactone compound and novel ether compound
US17/044,080 US11427554B2 (en) 2018-04-11 2019-04-08 Lactone compound and novel ether compound
CA3096241A CA3096241A1 (en) 2018-04-11 2019-04-08 Novel lactone compound and novel ether compound
CN201980025074.1A CN111954665B (zh) 2018-04-11 2019-04-08 新型内酯化合物和新型醚化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862656054P 2018-04-11 2018-04-11
US62/656,054 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198678A1 true WO2019198678A1 (ja) 2019-10-17

Family

ID=68164155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015363 WO2019198678A1 (ja) 2018-04-11 2019-04-08 新規ラクトン化合物及び新規エーテル化合物

Country Status (5)

Country Link
US (1) US11427554B2 (ja)
JP (1) JP7401426B2 (ja)
CN (1) CN111954665B (ja)
CA (1) CA3096241A1 (ja)
WO (1) WO2019198678A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225645A1 (en) * 2022-05-19 2023-11-23 P2 Science, Inc. Improved synthetic methods for making lactones

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480432A (en) * 1977-12-06 1979-06-27 Soda Aromatic Perfume composition
JPS56169621A (en) * 1980-05-03 1981-12-26 Haarmann & Reimer Gmbh Perfume and fragrance made of di-and tetrahydrobenzofuranone derivative
JPH07503281A (ja) * 1992-11-18 1995-04-06 フイルメニツヒ ソシエテ アノニム 香料成分としてのフラノンの使用
FR2721926A1 (fr) * 1994-06-29 1996-01-05 Toulouse Inst Nat Polytech Procede de preparation stereoselective de composes cycliques terpeniques carbonyles par cyclocarbonylation catalytique, et applications de ces composes comme desinfectants ou produits odoriferants
JPH10120671A (ja) * 1996-10-23 1998-05-12 Inoue Koryo Seizosho:Kk 香料およびその製法
JP2003505556A (ja) * 1999-07-22 2003-02-12 フイルメニツヒ ソシエテ アノニム γ−不飽和β−ラクトンの製法およびその芳香族香料成分としての使用
JP2004269463A (ja) * 2003-03-11 2004-09-30 Sanei Gen Ffi Inc ワインラクトン及びその中間体の製造法並びにその応用
JP2012131785A (ja) 2010-12-01 2012-07-12 Takasago Internatl Corp 光学活性メントールの製造方法
WO2012165164A1 (ja) 2011-06-01 2012-12-06 高砂香料工業株式会社 ワインラクトンの製造方法
CA2997950A1 (en) 2015-09-11 2017-03-16 P2 Science, Inc. Preparation of 3-hydroxy-3,6-dimethylhexahydrobenzofuran-2-one and derivatives thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480432A (en) * 1977-12-06 1979-06-27 Soda Aromatic Perfume composition
JPS56169621A (en) * 1980-05-03 1981-12-26 Haarmann & Reimer Gmbh Perfume and fragrance made of di-and tetrahydrobenzofuranone derivative
JPH07503281A (ja) * 1992-11-18 1995-04-06 フイルメニツヒ ソシエテ アノニム 香料成分としてのフラノンの使用
FR2721926A1 (fr) * 1994-06-29 1996-01-05 Toulouse Inst Nat Polytech Procede de preparation stereoselective de composes cycliques terpeniques carbonyles par cyclocarbonylation catalytique, et applications de ces composes comme desinfectants ou produits odoriferants
JPH10120671A (ja) * 1996-10-23 1998-05-12 Inoue Koryo Seizosho:Kk 香料およびその製法
JP2003505556A (ja) * 1999-07-22 2003-02-12 フイルメニツヒ ソシエテ アノニム γ−不飽和β−ラクトンの製法およびその芳香族香料成分としての使用
JP2004269463A (ja) * 2003-03-11 2004-09-30 Sanei Gen Ffi Inc ワインラクトン及びその中間体の製造法並びにその応用
JP2012131785A (ja) 2010-12-01 2012-07-12 Takasago Internatl Corp 光学活性メントールの製造方法
WO2012165164A1 (ja) 2011-06-01 2012-12-06 高砂香料工業株式会社 ワインラクトンの製造方法
CA2997950A1 (en) 2015-09-11 2017-03-16 P2 Science, Inc. Preparation of 3-hydroxy-3,6-dimethylhexahydrobenzofuran-2-one and derivatives thereof

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
CAROLINE PLESSIS , SAM DERRER : "Novel photolactonisation from xanthenoic esters", TETRAHEDRON LETTERS, vol. 42, no. 37, 10 September 2001 (2001-09-10), pages 6519 - 6522, XP004299720, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(01)01296-5 *
CHEM SUS CHEM, vol. 5, 2012, pages 1578 - 1586
CHEM. COMMUN., vol. 52, 2016, pages 11897 - 11900
CHEMSUSCHEM, vol. 5, 2012, pages 1578 - 1586
CHRISTIAN S. JUNGONG, JINU P. JOHN, JOSEPH P. BEQUETTE, ALEXEI V. NOVIKOV: "Synthetically useful transformations of delta -sultones and thiane-1, 1-dioxides obtained by C-H insertion", HETEROCYCLES, vol. 78, no. 10, 29 July 2009 (2009-07-29), pages 2531 - 2539, XP009523662, ISSN: 0385-5414, DOI: 10.3987/COM-09-11788 *
DUMINDA S. LIYANAGE , CHRISTIAN S.JUNGONG , ALEXEI V.NOVIKOV: "Oxidative conversion of delta -sultones to y -lactones", TETRAHEDRON LETTERS, vol. 56, no. 17, 21 March 2015 (2015-03-21), pages 2269 - 2271, XP055742686, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2015.03.038 *
MICHAEL P DOYLE; ALEXEY V KALININ; DOINA G ENE: "Chiral Catalyst Controlled Diastereoselection and Regioselection in Intramolecular Carbon-Hydrogen Insertion Reactions of Diazoacetates", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 118, no. 37, 18 September 1996 (1996-09-18), pages 8837 - 8846, XP055644023, ISSN: 0002-7863, DOI: 10.1021/ja961682m *
ORG. BIOMOL. CHEM, vol. 13, 2015, pages 5817 - 5825
PARANJPE, K.; PHALNIKER, N. L.; BHIDE, B. V.; NARGUND, K. S.: "Letters to the Editor: Synthesis of santonin", CURRENT SCIENCE, vol. 12, no. 5, 1943, pages 150 - 151, XP009523637, ISSN: 0011-3891 *
SYNTHESIS, 1978, pages 147 - 148
TETRAHEDRON ASYMMETRY, vol. 10, 1999, pages 929 - 936
TETRAHEDRON, vol. 49, no. 29, 1993, pages 6429 - 6436
YOSHIHIKO ITO , HIDEHITO KATO , TAKEO SAEGUSA : "A New Approach for Stereoselective Synthesis of y-Butyrolactones", JOURNAL OF ORGANIC CHEMISTRY, vol. 47, no. 4, 1 January 1982 (1982-01-01), Japan, pages 741 - 743, XP002106633, ISSN: 0022-3263, DOI: 10.1021/jo00133a005 *

Also Published As

Publication number Publication date
CN111954665B (zh) 2023-08-15
EP3778581A1 (en) 2021-02-17
US11427554B2 (en) 2022-08-30
CA3096241A1 (en) 2019-10-17
CN111954665A (zh) 2020-11-17
JPWO2019198678A1 (ja) 2021-04-30
JP7401426B2 (ja) 2023-12-19
US20210047283A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
EP1761238B1 (en) Menthol derivative and cooling agent composition comprising the same
US8476472B2 (en) (3R)-L-menthyl 3-hydroxybutyrate, process for producing the same, and sensate composition comprising the same
US20100303740A1 (en) Process for producing (3s)-i-menthyl 3-hydroxybutyrate and sensate composition
CN109310601B (zh) 香料材料
JP6498184B2 (ja) 新規化合物及び該化合物を含有する香料組成物
US10294193B2 (en) Compound, and flavor composition and/or fragrance composition containing same
US9975838B2 (en) Method for synthezising cyclohexenones for use in the perfume industry and compounds obtained thereby
JP7401426B2 (ja) 新規ラクトン化合物及び新規エーテル化合物
JP7420633B2 (ja) 香料組成物
JP2005281628A (ja) フレグランス組成物又はフレーバー組成物
JP3133200B2 (ja) 4−(6,6−ジメチル−2−メチレンシクロヘキシル)−2−メチル−2−ブテナールの香料組成物
JPH07109240A (ja) クリサンテノール化合物
JP2001122818A (ja) 4−(6,6−ジメチル−2−メチレンシクロヘキシル)−2−メチル−2−ブテナールの製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3096241

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020513263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019785255

Country of ref document: EP

Effective date: 20201111