WO2019198666A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2019198666A1
WO2019198666A1 PCT/JP2019/015329 JP2019015329W WO2019198666A1 WO 2019198666 A1 WO2019198666 A1 WO 2019198666A1 JP 2019015329 W JP2019015329 W JP 2019015329W WO 2019198666 A1 WO2019198666 A1 WO 2019198666A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
radiating element
frequency band
antenna
radiating
Prior art date
Application number
PCT/JP2019/015329
Other languages
English (en)
French (fr)
Inventor
宇野 博之
西木戸 友昭
上島 博幸
祐一 樫野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020513255A priority Critical patent/JP7281678B2/ja
Priority to CN201980025211.1A priority patent/CN111954957B/zh
Priority to US17/046,550 priority patent/US11424537B2/en
Publication of WO2019198666A1 publication Critical patent/WO2019198666A1/ja
Priority to US17/868,573 priority patent/US11699853B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points

Definitions

  • the present disclosure relates to an antenna device.
  • an antenna corresponding to the new frequency band is required for a device (for example, a mobile terminal) that performs wireless communication.
  • a device for example, a mobile terminal
  • Patent Literature 1 includes an antenna element corresponding to each of a low frequency band and a high frequency band, and a cutoff circuit that blocks transmission of a signal between the low frequency band antenna element and the high frequency band antenna element.
  • a multiband antenna having the following is disclosed.
  • the multiband antenna disclosed in Patent Document 1 is provided with a blocking circuit that blocks signal transmission between the low-frequency band antenna element and the high-frequency band antenna element. Become.
  • the non-limiting example of the present disclosure contributes to the provision of an antenna device having a simple configuration corresponding to a plurality of frequency bands.
  • An antenna device is provided on one surface of a substrate, and at least one first radiating element having a resonance frequency in a first frequency band provided on one surface of the substrate. Further, at least one second radiating element, a connection line connecting the first radiating element and the second radiating element on one surface of the substrate, and a position facing the first radiating element inside the substrate.
  • a conductor having a slot and a feed line that feeds power to the first radiating element through the slot, and the connection line extends in a polarization direction of a radiated radio wave due to resonance of the first radiating element.
  • a line length formed by the first radiating element, the connection line, and the second radiating element is connected to a central portion in a direction along the second frequency band lower than the first frequency band.
  • Resonance frequency It is set to a length with.
  • it contributes to the provision of an antenna device having a simple configuration corresponding to a plurality of frequency bands.
  • the perspective view which shows an example of the external appearance of the multiband antenna which concerns on one embodiment of this indication An exploded perspective view showing an example of a multiband antenna according to an embodiment of the present disclosure
  • the top view which shows an example of the multiband antenna which concerns on one embodiment of this indication Enlarged view of the periphery of the slot and the high-frequency feed line in the second dielectric Sectional view along line A in FIG. 2A
  • the figure which shows an example of the electric field distribution of a high frequency element The top view which shows an example of the multiband antenna which concerns on the 1st modification of one embodiment of this indication
  • FIG. 1A is a perspective view showing an example of the appearance of a multiband antenna 300 according to the present embodiment.
  • FIG. 1B is an exploded perspective view showing an example of the multiband antenna 300 according to the present embodiment.
  • FIG. 1C is a plan view showing an example of the multiband antenna 300 according to the present embodiment.
  • 1A, 1B, and 1C show an X axis, a Y axis, and a Z axis.
  • the X-axis, Y-axis, and Z-axis correspond to the width, length, and height (thickness) of the multiband antenna 300, respectively.
  • the multiband antenna 300 is provided on a multilayer substrate having a first dielectric 301 and a second dielectric 302, for example.
  • the multiband antenna 300 is configured by a conductor (or conductive) pattern, for example, in a multilayer substrate.
  • the conductor pattern is formed using, for example, an etching technique.
  • the multiband antenna 300 is configured by a copper foil pattern.
  • the second dielectric 302 is, for example, a double-sided copper-clad substrate configured using a core material.
  • the first dielectric 301 is configured using, for example, a prepreg.
  • the first dielectric 301 and the first dielectric 302 are bonded together to form a multilayer substrate.
  • the surface in the positive direction of the Z-axis is referred to as the “upper surface” of the first dielectric 301 and is negative on the Z-axis.
  • the directional surface may be referred to as the “lower surface” of the first dielectric 301.
  • the surface in the positive direction of the Z-axis is referred to as the “upper surface” of the second dielectric 302, and the negative surface of the Z-axis is negative.
  • the directional surface may be referred to as the “lower surface” of the second dielectric 302.
  • the relative dielectric constant of the first dielectric 301 may be the same as or different from the relative dielectric constant of the second dielectric 302.
  • the multiband antenna 300 may be provided over a substrate that does not include a dielectric.
  • the multiband antenna 300 includes a high-frequency element 303, a low-frequency element 304, a radiating element connection line 305, a low-frequency power feeding unit 306, a conductor 309 provided with a slot 307, a high-frequency power feeding line 308, and a high-frequency power feeding unit 310. And.
  • the multiband antenna 300 operates in a first frequency band and a second frequency band lower than the first frequency band.
  • the multiband antenna 300 supports transmission and / or reception of radio signals in a first frequency band, and supports transmission and / or reception of radio signals in a second frequency band.
  • “high frequency” corresponds to the first frequency band
  • “low frequency” corresponds to the second frequency band.
  • the two high-frequency elements 303 have, for example, a rectangular shape in the XY plane, and one of the two surfaces facing the Z-axis direction of the first dielectric 301 (for example, the upper surface in FIGS. 1A and 1B) Arranged in the Y-axis direction.
  • Each of the two high-frequency elements 303 is an antenna element that operates (in other words, resonates) in the first frequency band, and a resonance frequency (for convenience, a “first resonance frequency”) is included in the first frequency band. Called).
  • the first frequency band is a 28 GHz band.
  • the length of the side in the X-axis direction and the Y-axis direction of the high-frequency element 303 is ⁇ e 1/2 .
  • ⁇ e 1 corresponds to the first resonance frequency and is an effective wavelength in consideration of shortening the wavelength of the dielectric.
  • ⁇ e 1 is a wavelength obtained by multiplying the wavelength of the first resonance frequency in vacuum by a coefficient determined based on the dielectric constant of the dielectric.
  • the dielectric material to consider is both the 1st dielectric material 301 and the 2nd dielectric material 302, for example.
  • the two low-frequency elements 304 have, for example, a rectangular shape in the XY plane, and are arranged on the upper surface of the first dielectric 301 at a position sandwiching the high-frequency element 303 in the Y-axis direction.
  • three radiating element connection lines 305 are arranged on the upper surface of the first dielectric 301 and connect between the two high-frequency elements 303 and between the two sets of the high-frequency elements 303 and the low-frequency elements 304. .
  • the width (the length in the X-axis direction) of the radiating element connection line 305 is shorter than the length of one side of the high frequency element 303, for example.
  • the first dielectric 301 includes two high-frequency elements 303, two low-frequency elements 304, and three radiating element connection lines 305, and the pattern extending in the Y-axis direction is more than the first frequency band. It is an antenna element that operates in a low second frequency band.
  • the second frequency band is a 2 GHz band.
  • a pattern extending in the Y-axis direction may be referred to as a low-frequency antenna pattern for convenience.
  • the length L2 in the Y-axis direction of the low-frequency antenna pattern is, for example, the length that resonates in the second frequency band, in other words, the low-frequency antenna pattern has a resonance frequency ( 2) (referred to as “resonance frequency of 2”).
  • Length L2 is, for example, ⁇ e 2/4 ⁇ N ( N is an integer not less than 1).
  • ⁇ e 2 corresponds to the second resonance frequency and is an effective wavelength in consideration of wavelength shortening of the dielectric.
  • ⁇ e 2 is a wavelength obtained by multiplying the wavelength of the second resonance frequency in vacuum by a coefficient determined based on the relative dielectric constant of the dielectric.
  • the dielectric material to consider is both the 1st dielectric material 301 and the 2nd dielectric material 302, for example.
  • the low frequency power supply unit 306 is provided at one end of two low frequency elements 304, for example, and supplies a low frequency antenna pattern including the low frequency elements 304.
  • the low frequency power supply unit 306 is electrically connected to a low frequency wireless control unit (not shown), for example.
  • the power supply from the low frequency power supply unit 306 to the low frequency element 304 is controlled by the low frequency wireless control unit.
  • a configuration that includes the low-frequency antenna pattern and the low-frequency power feeding unit 306 and radiates radio waves in the second frequency band may be referred to as a “low-frequency radiation unit” for convenience.
  • the two conductors 309 are each formed by a rectangular conductor pattern at a position corresponding to the two high-frequency elements 303 on the upper surface of the second dielectric 302 (for example, a position in the negative direction of the Z axis with respect to the high-frequency elements 303). Is done.
  • the conductor 309 has, for example, a rectangular plate whose length is longer than each side of the high-frequency element 303 and has a function of a reflector that reflects radio waves radiated from the high-frequency element 303 in the negative Z-axis direction.
  • the two conductors 309 may be formed at positions corresponding to the two high-frequency elements 303 on the lower surface of the first dielectric 301 (for example, positions in the negative direction of the Z axis with respect to the high-frequency elements 303). Good.
  • Each conductor 309 is provided with a slot 307.
  • the position of the slot 307 in the conductor 309 may illustratively be in the center of the conductor 309 or near the center.
  • the slot 307 corresponds to a cut-out portion in which a part of the conductor 309 is cut into a rectangular shape elongated in the Y-axis direction.
  • the cutout portion may be referred to as a “slit”, “notch”, or “gap”.
  • the width direction of the slot 307 is the X-axis direction
  • the length direction of the slot 307 is the Y-axis direction.
  • Y-axis direction length of the slot 307 is, for example, .lambda.e 1/2 or less.
  • the two high-frequency power supply lines 308 are provided corresponding to the two high-frequency elements 303 on the lower surface of the second dielectric 302, for example.
  • Each of the high-frequency power supply lines 308 has, for example, a rectangular shape that is elongated in the X-axis direction, and is spaced from the slot 307 of the second dielectric 302 in the negative direction of the Z-axis. It is arranged at the position that overlaps.
  • a high frequency power supply unit 310 is provided at one end of each high frequency power supply line 308.
  • the high-frequency power supply unit 310 supplies power to the high-frequency element 303 by electromagnetic coupling with the high-frequency element 303, for example.
  • the power supplied from the high frequency power supply unit 310 is transmitted to the high frequency element 303 via the high frequency power supply line 308 and the slot 307.
  • the high frequency power supply unit 310 is electrically connected to a high frequency radio control unit (not shown), for example.
  • the power supply to the high frequency element 303 is controlled by the high frequency radio control unit.
  • the conductor 309, the high-frequency power supply line 308, and the high-frequency power supply unit 310 are arranged for each of the two high-frequency elements 303.
  • a configuration that includes the high-frequency element 303, the high-frequency power supply line 308, the conductor 309 having the slot 307, and the high-frequency power supply unit 310 radiates radio waves in the first frequency band is referred to as a “high-frequency radiation unit”. May be called.
  • FIG. 2A is an enlarged view of the periphery of the slot 307 and the high-frequency feed line 308 in the second dielectric 302.
  • 2B is a cross-sectional view taken along line A in FIG. 2A. 2B shows a high-frequency element 303 provided in the first dielectric 301 in addition to the slot 307 and the high-frequency feed line 308 provided in the second dielectric 302.
  • the slot 307 When the slot 307 is excited by the power supply from the high-frequency power supply unit 310 via the high-frequency power supply line 308, an electric field is generated in the X-axis direction that is the width direction of the slot 307.
  • the electromagnetic field radiated from the slot 307 is electromagnetically coupled to the high frequency element 303, the high frequency element 303 is excited.
  • the polarization direction of the high-frequency element 303 is the X-axis direction, similar to the direction of the electric field in the slot 307.
  • the slot 307 is excited via the high frequency power supply line 308 by the power supply from the high frequency power supply unit 310.
  • the line B along the edge of the radio-frequency feed line 308, a line A along the approximate center of the X-axis direction of the slot 307, the distance Lf, for example, may be set to .lambda.e 1/4 .
  • the slot 307 is excited via the high-frequency power supply line 308 by the power supply from the high-frequency power supply unit 310. Then, when the slot 307 and the high frequency element 303 are electromagnetically coupled, a radio wave is radiated from the high frequency element 303, for example, in the positive direction of the Z axis.
  • the slot 307 has a cutoff characteristic with respect to the second frequency band.
  • the cut-off frequency is defined by the length of the slot 307 in the Y-axis direction.
  • the length of the slot 307 in the Y-axis direction is defined so that the second resonance frequency included in the second frequency band corresponds to the cutoff frequency.
  • the length in the longitudinal direction of the slot 307 may be defined so that the frequency between the first frequency band and the second frequency band corresponds to the cutoff frequency.
  • the slot 307 for example, the influence of the operation of the low-frequency radiation unit on the operation of the high-frequency radiation unit can be suppressed. Therefore, for example, in the multiband antenna 300 of the embodiment, a cutoff circuit for cutting off transmission of power from the low frequency band to the high frequency band becomes unnecessary. Therefore, the configuration of the multiband antenna 300 can be simplified.
  • the slot 307 may be provided at a position shifted in the X-axis direction from the center of the length of the conductor 309 in the X-axis direction.
  • the slot 307 may be provided at a position shifted in the Y-axis direction from the center of the length of the conductor 309 in the Y-axis direction.
  • FIG. 3 is a diagram illustrating an example of an electric field distribution of the high-frequency element 303.
  • FIG. 3 shows a graph of the electric field distribution in the polarization direction (X-axis direction) of the high-frequency element 303 and the high-frequency element 303.
  • the vertical axis of the electric field distribution indicates the position of the high-frequency element 303 in the X-axis direction
  • the horizontal axis of the electric field distribution indicates the electric field value at the position of the high-frequency element 303 in the X-axis direction.
  • the electric field value takes the maximum value at the end of the high frequency element 303 and takes the minimum value at the central portion of the high frequency element 303 in the X-axis direction.
  • the radiating element connection line 305 is connected to the central portion in the X-axis direction of the high frequency element 303 where the electric field value takes the minimum value. This connection prevents or inhibits current from flowing from the high-frequency element 303 to the radiating element connection line 305. Therefore, the isolation characteristic between the high frequency radiation part and the low frequency radiation part can be improved. Therefore, for example, in the multiband antenna 300 of the embodiment, a cutoff circuit that cuts off the transmission of power from the high frequency band to the low frequency band becomes unnecessary. Therefore, the configuration of the multiband antenna 300 can be simplified.
  • a current flows between the high frequency elements 303 by connecting the radiation element connection line 305 connecting the two high frequency elements 303 to the center of each of the two high frequency elements 303 in the X-axis direction. Is blocked or inhibited. Therefore, the isolation characteristic between two high frequency radiation parts can be improved.
  • high frequency element 303, low frequency element 304, high frequency element 303 and low frequency element 304, and between two high frequency elements 303 are connected.
  • the radiating element connection line 305 is provided on one surface (for example, the upper surface) of the first dielectric 301.
  • the high-frequency element 303 has a resonance frequency in the first frequency band and operates with linearly polarized waves in the polarization direction (X-axis direction).
  • the radiating element connection line 305 is connected to the center of the high frequency element 303 in the direction along the polarization direction of the radiated radio wave due to resonance.
  • the conductor 309 having the slot 307 is provided at a position facing the high-frequency element 303 inside the multilayer substrate including the first dielectric 301 and the second dielectric 302.
  • This configuration can improve the isolation characteristics between the low-frequency radiation part and the high-frequency radiation part.
  • the radiating element connection line 305 is connected to a position where the electric field of the high frequency element 303 is small, the current flowing from the high frequency element 303 to the low frequency element 304 can be suppressed, and the operation of the high frequency radiating unit is given to the low frequency radiating unit. The influence can be suppressed.
  • the slot 307 suppresses the transmission of power in the second frequency band, the influence of the operation of the low frequency radiating unit on the high frequency radiating unit can be suppressed.
  • the radiating element connection line 305 that connects between the high frequency elements 303 included in each of the two high frequency radiating portions is connected to a position where the electric field of the high frequency element 303 is small, the current flowing between the high frequency elements 303 is reduced. It can suppress and the influence which the operation
  • the directivity of the radio wave radiated from the high frequency element 303 is controlled by adjusting the power value and / or the phase value supplied from the high frequency radio control unit to the two high frequency power supply units 310. it can.
  • Directivity control refers to controlling the direction of a peak (main lobe) and / or the level of a side lobe in a radio wave radiation pattern.
  • the directivity in the YZ plane can be controlled by arranging the two high-frequency elements 303 in the Y-axis direction on the XY plane.
  • the directivity control method for example, the method of adjusting the power value and / or the phase value supplied to each high-frequency power supply unit 310 may be a known method for directivity control of the array antenna.
  • the example of the multiband antenna 300 described above shows an example having two high frequency elements 303 and two low frequency elements 304.
  • the present disclosure is not limited to this.
  • the number of low frequency elements 304 may be one, or three or more.
  • the high frequency element 303 may be one, and may be three or more.
  • a multiband antenna having four high-frequency elements 303 will be described.
  • FIG. 4 is a plan view showing an example of the multiband antenna 600 according to the first modification of the present embodiment.
  • the same components as those shown in FIGS. 1A to 1C are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the multiband antenna 600 shown in FIG. 4 four high frequency elements 303, two low frequency elements 304, and a bent portion 601 are formed on the upper surface of the first dielectric 301. Further, on the upper surface of the first dielectric 301, a radiating element connection line 305 that connects the high-frequency elements 303, the low-frequency elements 304 and the high-frequency elements 303, and the high-frequency elements 303 and the bent portions 601 is connected. Is formed.
  • a conductor 309 having a slot 307, a high-frequency feed line 308, and a high-frequency feed unit 310 are provided on the back side of each of the four high-frequency elements 303 (in the negative direction of the Z axis).
  • two high-frequency radiating portions 602 are arranged in the X-axis direction and in the Y-axis direction.
  • two sets of high frequency elements 303 are arranged in parallel.
  • the bent portion 601 has a portion extending in the X-axis direction and a portion extending in the Y-axis direction.
  • the bent portion 601 is provided so as to connect two high-frequency elements 303 aligned in the X-axis direction most in the Y-axis negative direction via the radiating element connection line 305.
  • the bent portion 601 may be referred to as one of “low frequency elements”.
  • the length ⁇ e 2/4 ⁇ N (N is an integer of 1 or more) is set to. With this setting, the low-frequency antenna pattern operates in the second frequency band.
  • the multiband antenna 600 shown in FIG. 4 can improve the isolation characteristics between the low-frequency radiation part and the high-frequency radiation part, similarly to the multiband antenna 300 shown in FIGS. 1A to 1C.
  • the radiating element connection line 305 that connects between the high frequency elements 303 included in each of the four high frequency radiating units 602 is connected to a position where the electric field of the high frequency element 303 is small. Therefore, the current flowing between the high-frequency elements 303 can be suppressed, and the influence of the operation of one high-frequency radiation unit on the other high-frequency radiation units can be suppressed.
  • the multiband antenna 600 shown in FIG. 4 two high-frequency radiation units 602 are arranged in the X-axis direction and the Y-axis direction. Therefore, in the multiband antenna 600, the XZ plane of the radio wave radiated from the high frequency element 303 is adjusted by adjusting the value and / or phase value of the power supplied from the high frequency radio control unit to the four high frequency power supply units 310. And the directivity of the YZ plane can be controlled.
  • the example of the multiband antenna 300 and the multiband antenna 600 described above is an example of a multiband antenna corresponding to two frequency bands, a high frequency band (first frequency band) and a low frequency band (second frequency band). showed that.
  • first frequency band high frequency band
  • second frequency band low frequency band
  • FIG. 5 is a plan view showing an example of a multiband antenna 700 according to a second modification of the present embodiment.
  • the same components as those in FIGS. 1A to 1C and FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the multiband antenna 700 operates in three frequency bands.
  • the three frequency bands may be referred to as a first frequency band, a second frequency band, and a third frequency band in order from the higher frequency.
  • the first frequency band and the second frequency band are the 28 GHz band and the 2 GHz band, respectively, similarly to the example of the multiband antenna 300.
  • the third frequency band is, for example, an 800 MHz band.
  • 5 includes an antenna unit 300a, a radiating element 701, a power feeding unit 702, and a ground pattern 703.
  • the radiating element 701 and the ground pattern 703 are formed on the upper surface of the first dielectric 301 by a conductor pattern.
  • the power feeding unit 702 is provided at one end of the radiating element 701, for example.
  • the antenna unit 300a is the same as the multiband antenna 300 except that the low frequency power supply unit 306 is not provided and the end of one low frequency element 304 is connected to the ground pattern 703.
  • the antenna unit 300a includes a high-frequency radiation unit 602 that operates in the first frequency band and a low-frequency radiation unit that operates in the second frequency band.
  • the low frequency radiation portion includes a low frequency element 304 and a radiation element connection line 305, and has a low frequency antenna pattern extending in the Y-axis direction.
  • the power feeding unit 702 feeds the second frequency band to the low frequency antenna pattern of the antenna unit 300a.
  • the radiating element 701 is an antenna element that operates in the third frequency band.
  • the radiating element 701 has a resonance frequency (referred to as “third resonance frequency” for convenience) in the third frequency band.
  • ⁇ e 3 corresponds to the third resonance frequency and is an effective wavelength in consideration of wavelength shortening of the dielectric.
  • ⁇ e 3 is a wavelength obtained by multiplying the wavelength of the third resonance frequency in vacuum by a coefficient determined based on the dielectric constant of the dielectric.
  • the dielectric material to consider is both the 1st dielectric material 301 and the 2nd dielectric material 302 (refer FIG. 1A and FIG. 1B), for example.
  • the power feeding unit 702 feeds the second frequency band to the low frequency antenna pattern of the antenna unit 300a.
  • the power supply unit 702 supplies power to the radiating element 701 in the third frequency band.
  • the power feeding unit 702 is electrically connected to a wireless control unit (not shown).
  • the radio control unit controls power feeding in two frequency bands.
  • the ground pattern 703 transmits the power of the second frequency band supplied from the power supply unit 702 to the low frequency antenna pattern.
  • a part of the ground pattern 703 functions as a ground line when the low-frequency radiation unit operates in the antenna unit 300a.
  • the multiband antenna 700 shown in FIG. 5 can support three frequency bands, the first frequency band, the second frequency band, and the third frequency band.
  • the multiband antenna 700 shown in FIG. 5 is similar to the multiband antenna 300 shown in FIGS. 1A to 1C, with the isolation characteristics between the low frequency radiation portion and the high frequency radiation portion 602, and two high frequency The isolation characteristic between the radiation parts 602 can be improved.
  • the radiating element connection line 305 is connected from the high frequency element 303 to the central portion of the high frequency element 303 in the X-axis direction. Current is prevented or inhibited. Accordingly, the current is prevented or hindered from flowing from the high frequency element 303 to the power feeding unit 702, and the isolation characteristics can be improved.
  • the slot 307 has a cut-off characteristic with respect to the second frequency band and the third frequency band, the slot 307 is disposed between the radiating element 701 that operates the antenna of the third frequency band and the high frequency radiating unit 602. Can improve the isolation characteristics.
  • the length L3 of the radiating element 701 and the length L2 of the low-frequency antenna pattern are respectively defined based on the corresponding resonance frequencies. Therefore, when the power feeding unit 702 feeds the two frequency bands, one of the radiating element 701 and the low frequency antenna pattern does not affect the other. For example, when the power supply unit 702 supplies power in the second frequency band, the radiating element 701 is not excited. In addition, when the power feeding unit 702 performs power feeding in the third frequency band, the low frequency antenna pattern is not excited.
  • This disclosure can be realized by software, hardware, or software linked with hardware.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process described in the above embodiment may be partially or entirely performed. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of the functional blocks.
  • the LSI may include data input and output.
  • An LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor.
  • an FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital processing or analog processing.
  • the present disclosure can be implemented in all kinds of apparatuses, devices, and systems (collectively referred to as communication apparatuses) having a communication function.
  • communication devices include telephones (cell phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still / video cameras, etc.) ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicine (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication devices are not limited to those that are portable or movable, but any kind of devices, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or non-portable or fixed) Measurement equipment, control panels, etc.), vending machines, and any other “things” that may exist on the IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or non-portable or fixed
  • Measurement equipment control panels, etc.
  • vending machines and any other “things” that may exist on the IoT (Internet of Things) network.
  • Communication includes data communication by a combination of these in addition to data communication by a cellular system, a wireless LAN system, a communication satellite system, and the like.
  • the communication apparatus also includes devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • a controller or a sensor that generates a control signal or a data signal used by a communication device that executes a communication function of the communication apparatus is included.
  • the communication apparatus includes infrastructure equipment such as a base station, an access point, and any other apparatus, device, or system that communicates with or controls the various non-limiting apparatuses described above. .
  • An antenna device is provided on at least one first radiating element having a resonance frequency in a first frequency band provided on one surface of a substrate, and on one surface of the substrate.
  • At least one second radiating element, a connection line connecting the first radiating element and the second radiating element on one surface of the substrate, and a position facing the first radiating element inside the substrate A conductor having a slot and a feed line that feeds power to the first radiating element through the slot, and the connection line is along a polarization direction of the radiated radio wave due to resonance of the first radiating element.
  • the line length formed by the first radiating element, the connection line, and the second radiating element is resonated in a second frequency band lower than the first frequency band. frequency It is set to a length with.
  • the antenna device includes a plurality of the first radiating elements, and the connection line connects between central portions of the plurality of first radiating elements.
  • the plurality of first radiating elements are fed by controlling at least one of a phase value and a power value from the feeding line.
  • the plurality of first radiating elements are arranged in the polarization direction and a direction perpendicular to the polarization direction, and the second radiating element is in the polarization direction. And a portion extending along a direction perpendicular to the polarization direction.
  • a third radiating element provided on one surface of the substrate and having a resonance frequency in a third frequency band lower than the second frequency band, and one of the substrates A ground pattern connected to the second radiating element on the surface and electromagnetically coupled to the third radiating element, provided on the third radiating element, and having a second frequency band on the second radiating element.
  • a power feeding unit that feeds power and feeds power of the third frequency band to the third radiating element.
  • an insulating layer is provided between the first radiating element and the conductor, and between the conductor and the feed line.
  • the conductor has a size larger than that of the first radiating element.
  • One embodiment of the present disclosure is suitable for use in a small wireless communication device.
  • Multiband antenna 300a Antenna unit 301 First dielectric 302 Second dielectric 303 High frequency element 304 Low frequency element 305 Radiation element connection line 306 Low frequency power supply unit 307 Slot 308 High frequency power supply line 309 Conductor 310 High frequency Feeding part 601 Bending part 602 High-frequency radiation part 701 Radiation element 702 Feeding part 703 Ground pattern

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

複数の周波数帯に対応する簡易な構成のアンテナ装置の提供に資する。アンテナ装置は、基板の一方の面に設けられた、第1の周波数帯に共振周波数を有する少なくとも1つの第1放射素子と、基板の一方の面に設けられた少なくとも1つの第2放射素子と、基板の一方の面において第1放射素子と第2放射素子とを接続する接続線路と、基板の内部において第1放射素子と向き合う位置に設けられ、スロットを有する導体と、スロットを介して第1放射素子に給電する給電線路と、を備え、接続線路は、第1放射素子の、共振による放射電波の偏波方向に沿った方向の中央部に接続され、第1放射素子、接続線路、及び、第2放射素子によって形成される線路長が、第1の周波数帯よりも低い第2の周波数帯に共振周波数を有する長さに設定されている。

Description

アンテナ装置
 本開示は、アンテナ装置に関する。
 近年、無線通信における通信データトラヒックの量は増大している。通信データトラヒック量の増大に伴い、無線通信では、新たな周波数帯の使用が検討されている。
 新たな周波数帯が使用される場合、無線通信を行う装置(例えば、移動端末)には、新たな周波数帯に対応するアンテナが必要となる。一方で、小型かつ薄型な移動端末では、新たな周波数帯に対応するアンテナを配置するスペースを確保することが困難である。
 そのため、通信データトラヒック量が増大する高速大容量の無線通信では、1つのアンテナで複数の周波数帯に対応するマルチバンドアンテナの技術が検討されている。
 例えば、特許文献1には、低周波数帯および高周波数帯のそれぞれに対応するアンテナ素子と、低周波数帯のアンテナ素子と高周波数帯のアンテナ素子との間の信号の伝送を遮断する遮断回路とを有するマルチバンド用アンテナが開示されている。
国際公開第2014/097846号
 しかしながら、特許文献1に開示されたマルチバンド用アンテナでは、低周波数帯のアンテナ素子と高周波数帯のアンテナ素子との間の信号の伝送を遮断する遮断回路が設けられるため、アンテナの構成が複雑になってしまう。
 本開示の非限定的な実施例は、複数の周波数帯に対応する簡易な構成のアンテナ装置の提供に資する。
 本開示の一実施例に係るアンテナ装置は、基板の一方の面に設けられた、第1の周波数帯に共振周波数を有する少なくとも1つの第1放射素子と、前記基板の一方の面に設けられた少なくとも1つの第2放射素子と、前記基板の一方の面において前記第1放射素子と前記第2放射素子とを接続する接続線路と、前記基板の内部において前記第1放射素子と向き合う位置に設けられ、スロットを有する導体と、前記スロットを介して前記第1放射素子に給電する給電線路と、を備え、前記接続線路は、前記第1放射素子の、共振による放射電波の偏波方向に沿った方向の中央部に接続され、前記第1放射素子、前記接続線路、及び、前記第2放射素子によって形成される線路長が、前記第1の周波数帯よりも低い第2の周波数帯に共振周波数を有する長さに設定されている。
 なお、これらの包括的または具体的な態様は、システム、装置、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、複数の周波数帯に対応する簡易な構成のアンテナ装置の提供に資する。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
本開示の一実施の形態に係るマルチバンドアンテナの外観の一例を示す斜視図 本開示の一実施の形態に係るマルチバンドアンテナの一例を示す分解斜視図 本開示の一実施の形態に係るマルチバンドアンテナの一例を示す平面図 第2の誘電体におけるスロット及び高周波給電線路の周辺の拡大図 図2Aの線Aにおける断面図 高周波素子の電界分布の一例を示す図 本開示の一実施の形態の第1の変形例に係るマルチバンドアンテナの一例を示す平面図 本開示の一実施の形態の第2の変形例に係るマルチバンドアンテナの一例を示す平面図
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、以下に説明する各実施形態は一例であり、本開示はこれらの実施形態により限定されるものではない。
(一実施の形態)
 本開示の実施の形態について、図面を参照して詳細に説明する。
 図1Aは、本実施の形態に係るマルチバンドアンテナ300の外観の一例を示す斜視図である。図1Bは、本実施の形態に係るマルチバンドアンテナ300の一例を示す分解斜視図である。図1Cは、本実施の形態に係るマルチバンドアンテナ300の一例を示す平面図である。
 図1A、図1Bおよび図1Cには、X軸、Y軸およびZ軸が示される。X軸、Y軸およびZ軸は、それぞれ、マルチバンドアンテナ300の幅、長さおよび高さ(厚み)に対応する。
 マルチバンドアンテナ300は、例えば、第1の誘電体301と第2の誘電体302とを有する多層基板に設けられる。マルチバンドアンテナ300は、多層基板において、例えば導体(または導電)パターンによって構成される。導体パターンは、例えば、エッチング技術を用いて形成される。例えば、マルチバンドアンテナ300は、銅箔パターンによって構成される。
 第2の誘電体302は、例えば、コア材を用いて構成された両面銅張基板である。第1の誘電体301は、例えば、プリプレグを用いて構成される。第1の誘電体301と、第1の誘電体302と、が貼り合わされることによって、多層基板が構成される。なお、第1の誘電体301のZ軸方向に対向する2つの面のうち、Z軸の正の方向の面は、第1の誘電体301の「上面」と称され、Z軸の負の方向の面は、第1の誘電体301の「下面」と称されることがある。また、第2の誘電体302のZ軸方向に対向する2つの面のうち、Z軸の正の方向の面は、第2の誘電体302の「上面」と称され、Z軸の負の方向の面は、第2の誘電体302の「下面」と称されることがある。
 第1の誘電体301の比誘電率は、第2の誘電体302の比誘電率と同一であってもよいし、異なっていてもよい。
 なお、本実施の形態では、マルチバンドアンテナ300が複数の誘電体の層を含む多層基板に設けられる例を示すが、マルチバンドアンテナ300は、誘電体を含まない基板に設けられてもよい。
 マルチバンドアンテナ300は、高周波素子303と、低周波素子304と、放射素子接続線路305と、低周波給電部306と、スロット307が設けられる導体309と、高周波給電線路308と、高周波給電部310と、を具備する。
 マルチバンドアンテナ300は、第1の周波数帯および第1の周波数帯よりも低い第2の周波数帯で動作する。例えば、マルチバンドアンテナ300は、第1の周波数帯の無線信号の送信および/または受信をサポートし、第2の周波数帯の無線信号の送信および/または受信をサポートする。以下の説明において、「高周波」とは、第1の周波数帯に対応し、「低周波」とは、第2の周波数帯に対応する。
 2つの高周波素子303は、例えば、X-Y面において矩形を有し、第1の誘電体301のZ軸方向に対向する2つの面の一方(例えば、図1Aおよび図1Bの上面)において、Y軸方向に配列される。2つの高周波素子303は、それぞれ、第1の周波数帯で動作する(別言すると、共振する)アンテナ素子であり、第1の周波数帯に共振周波数(便宜的に「第1の共振周波数」と称する)を有する。例えば、第1の周波数帯は、28GHz帯である。
 高周波素子303のX軸方向及びY軸方向の辺の長さは、λe/2である。λeは、第1の共振周波数に対応し、誘電体の波長短縮が考慮された実効波長である。例えば、λeは、真空中の第1の共振周波数の波長に、誘電体の比誘電率に基づいて定まる係数を乗じた波長である。なお、考慮する誘電体は、例えば、第1の誘電体301と第2の誘電体302の両方である。
 2つの低周波素子304は、例えば、X-Y面において矩形を有し、第1の誘電体301の上面において、Y軸方向に高周波素子303を挟む位置に配列される。
 放射素子接続線路305は、例えば、第1の誘電体301の上面に3つ配置され、2つの高周波素子303の間、および、2組の高周波素子303と低周波素子304との間を接続する。放射素子接続線路305の幅(X軸方向の長さ)は、例えば、高周波素子303の一辺の長さより短い。
 なお、高周波素子303に対して放射素子接続線路305を接続する位置については、後述する。
 第1の誘電体301において、2つの高周波素子303、2つの低周波素子304、および、3つの放射素子接続線路305を含み、Y軸方向に延在するパターンは、第1の周波数帯よりも低い第2の周波数帯で動作するアンテナ素子である。例えば、第2の周波数帯は、2GHz帯である。以下、第1の誘電体301において、Y軸方向に延在するパターンを、便宜的に、低周波アンテナパターンと称することがある。
 低周波アンテナパターンのY軸方向の長さL2は、例えば、第2の周波数帯で共振する長さ、別言すると、低周波アンテナパターンが第2の周波数帯に共振周波数(便宜的に「第2の共振周波数」と称する)を有する長さに設定される。長さL2は、例えば、λe/4×N(Nは、1以上の整数)である。λeは、第2の共振周波数に対応し、誘電体の波長短縮が考慮された実効波長である。例えば、λeは、真空中の第2の共振周波数の波長に、誘電体の比誘電率に基づいて定まる係数を乗じた波長である。なお、考慮する誘電体は、例えば、第1の誘電体301と第2の誘電体302の両方である。
 低周波給電部306は、例えば、2つの低周波素子304の一方の端部に設けられ、低周波素子304を含む低周波アンテナパターンを給電する。低周波給電部306は、例えば、図示しない低周波無線制御部に電気的に接続される。低周波無線制御部によって、低周波給電部306から低周波素子304への給電が制御される。
 低周波アンテナパターンと低周波給電部306とを含み、第2の周波数帯の電波を放射する構成を、便宜的に、「低周波放射部」と称することがある。
 2つの導体309は、それぞれ、第2の誘電体302の上面において2つの高周波素子303に対応する位置(例えば、高周波素子303よりもZ軸の負の方向の位置)に矩形の導体パターンによって形成される。導体309は、例えば、矩形の各辺の長さが高周波素子303の各辺よりも長く、高周波素子303からZ軸の負の方向に放射される電波を反射する反射板の機能を有する。
 なお、2つの導体309は、それぞれ、第1の誘電体301の下面において2つの高周波素子303に対応する位置(例えば、高周波素子303よりもZ軸の負の方向の位置)に形成されてもよい。
 導体309のそれぞれに、スロット307が設けられる。導体309におけるスロット307の位置は、例示的に、導体309の中央又は中央近傍であってよい。スロット307は、導体309の一部がY軸方向に細長い矩形に切り抜かれた切り抜き部に相当する。切り抜き部は、「スリット」、「切り欠き」または「隙間」と称されてもよい。スロット307の幅方向はX軸方向であり、スロット307の長さ方向は、Y軸方向である。スロット307のY軸方向の長さは、例えば、λe/2以下である。
 2つの高周波給電線路308は、例えば、第2の誘電体302の下面において2つの高周波素子303に対応して設けられる。高周波給電線路308のそれぞれは、例えば、X軸方向に細長い矩形を有し、第2の誘電体302の、スロット307に対してZ軸の負の方向に間隔を空けて、平面視においてスロット307と重なる位置に配置される。高周波給電線路308それぞれの一端に、高周波給電部310が設けられる。
 高周波給電部310は、例えば、高周波素子303との電磁界的な結合によって高周波素子303を給電する。例えば、高周波給電部310から給電された電力は、高周波給電線路308およびスロット307を介して、高周波素子303へ伝送される。高周波給電部310は、例えば、図示しない高周波無線制御部に電気的に接続される。高周波無線制御部によって、高周波素子303への給電が制御される。
 上述したように、本実施の形態では2つの高周波素子303それぞれに対して、導体309、高周波給電線路308および高周波給電部310が配置される。
 高周波素子303と、高周波給電線路308と、スロット307を有する導体309と、高周波給電部310と、を含み、第1の周波数帯の電波を放射する構成を、便宜的に、「高周波放射部」と称することがある。
 次に、スロット307と高周波給電線路308との位置関係、および、高周波素子303への給電について説明する。
 図2Aは、第2の誘電体302におけるスロット307及び高周波給電線路308の周辺の拡大図である。図2Bは、図2Aの線Aにおける断面図である。なお、図2Bには、第2の誘電体302に設けられるスロット307と高周波給電線路308とに加えて、第1の誘電体301に設けられる高周波素子303が示される。
 スロット307が、高周波給電線路308を介した高周波給電部310からの給電によって励振されると、スロット307の幅方向であるX軸方向に電界が発生する。スロット307から放射される電磁界が高周波素子303に電磁界的に結合することによって、高周波素子303が励振する。この場合、高周波素子303の偏波方向は、スロット307の電界の方向と同様にX軸方向である。
 高周波給電部310からの給電によって、高周波給電線路308を介してスロット307が励振する。図2Aにおいて、高周波給電線路308の端部に沿った線Bと、スロット307のX軸方向の略中央に沿った線Aと、の間隔Lfは、例えば、λe/4に設定されてよい。
 間隔Lfがλe/4に設定されることによって、高周波給電線路308とスロット307とは、効率よく電磁界的に結合する。
 このような構成により、高周波給電部310からの給電によって、高周波給電線路308を介してスロット307が励振する。そして、スロット307と高周波素子303とが、電磁界的に結合することによって、高周波素子303から、例えば、Z軸の正方向へ電波が放射される。
 ここで、スロット307は、第2の周波数帯に対してカットオフ特性を有する。例えば、スロット307のY軸方向の長さによってカットオフ周波数が規定される。例えば、第2の周波数帯に含まれる第2の共振周波数がカットオフ周波数に相当するようにスロット307のY軸方向の長さが規定される。あるいは、第1の周波数帯と第2の周波数帯の間の周波数がカットオフ周波数に相当するようにスロット307の長手方向の長さが規定されてもよい。第2の周波数帯に対してカットオフ特性を有するスロット307を設けることにより、第2の周波数帯の電力が、高周波給電線路308へ到達することを抑制できる。なお、第2の周波数帯に対してカットオフ特性を有するスロット307は、カットオフ周波数よりも低い周波数の電力の伝達を阻止又は阻害するため、第2の周波数帯より低い周波数帯に対してカットオフ特性を有する。
 スロット307が設けられることによって、例えば、低周波放射部の動作が、高周波放射部の動作に与える影響を抑制できる。そのため、例えば、実施の形態のマルチバンドアンテナ300では、低周波数帯から高周波数帯への電力の伝達を遮断するための遮断回路が不要となる。したがって、マルチバンドアンテナ300の構成を簡易化できる。
 スロット307は、導体309のX軸方向の長さの中心からX軸方向にずれた位置に設けられてもよい。また、スロット307は、導体309のY軸方向の長さの中心からY軸方向にずれた位置に設けられてもよい。
 次に、高周波素子303に対して放射素子接続線路305を接続する位置について説明する。
 図3は、高周波素子303の電界分布の一例を示す図である。図3には、高周波素子303と、高周波素子303の偏波方向(X軸方向)における電界分布のグラフが示される。
 電界分布の縦軸は、高周波素子303のX軸方向の位置を示し、電界分布の横軸は、高周波素子303のX軸方向の位置における電界値を示す。
 高周波素子303の偏波方向がX軸方向であり、高周波素子303の端部が開放端であるため、X軸方向において定在波が発生する。電界値は、高周波素子303の端部において最大値をとり、高周波素子303のX軸方向における中央部で最小値をとる。
 電界値が最小値をとる、高周波素子303のX軸方向における中央部に、放射素子接続線路305を接続する。この接続によって、高周波素子303から放射素子接続線路305に電流が流れることが阻止又は阻害される。したがって、高周波放射部と、低周波放射部との間のアイソレーション特性を向上できる。そのため、例えば、実施の形態のマルチバンドアンテナ300では、高周波数帯から低周波数帯への電力の伝達を遮断する遮断回路が不要となる。したがって、マルチバンドアンテナ300の構成を簡易化できる。
 また、例えば、2つの高周波素子303の間を接続する放射素子接続線路305が、2つの高周波素子303それぞれのX軸方向における中央部に接続することによって、高周波素子303の間に電流が流れることが阻止又は阻害される。したがって、2つの高周波放射部の間のアイソレーション特性を向上できる。
 以上説明したように、本実施の形態に係るマルチバンドアンテナ300では、高周波素子303と、低周波素子304と、高周波素子303と低周波素子304の間および2つの高周波素子303の間を接続する放射素子接続線路305とが、第1の誘電体301の一方の面(例えば、上面)に設けられる。高周波素子303は、第1の周波数帯に共振周波数を有し、偏波方向(X軸方向)の直線偏波で動作する。放射素子接続線路305は、高周波素子303の、共振による放射電波の偏波方向に沿った方向の中央部に接続される。また、スロット307を有する導体309は、第1の誘電体301と第2の誘電体302とを含む多層基板の内部において、高周波素子303と向き合う位置に設けられる。
 この構成により、低周波放射部と高周波放射部との間のアイソレーション特性を向上できる。例えば、放射素子接続線路305が、高周波素子303の電界の小さい位置に接続されるため、高周波素子303から低周波素子304へ流れる電流を抑制でき、高周波放射部の動作が低周波放射部へ与える影響を抑制できる。また、スロット307が、第2の周波数帯の電力の伝達を抑制するため、低周波放射部の動作が高周波放射部へ与える影響を抑制できる。
 また、この構成では、遮断回路(例えば、スタブまたは帯域阻害フィルタ)を設けなくてよいため、簡易な構成で複数の周波数帯に対応することができる。
 また、2つの高周波放射部のそれぞれに含まれる高周波素子303の間を接続する放射素子接続線路305は、高周波素子303の電界の小さい位置に接続されるため、高周波素子303の間で流れる電流を抑制でき、一方の高周波放射部の動作が他方の高周波放射部へ与える影響を抑制できる。
 また、マルチバンドアンテナ300では、高周波無線制御部が2つの高周波給電部310に給電する電力の値および/または位相の値を調整することによって、高周波素子303から放射される電波の指向性を制御できる。指向性の制御とは、電波の放射パターンにおけるピーク(メインローブ)の方向および/またはサイドローブのレベルを制御することを指す。マルチバンドアンテナ300では、2つの高周波素子303がX-Y平面においてY軸方向に配列されることによって、Y-Z面の指向性を制御できる。なお、指向性制御の方法、例えば、各高周波給電部310に給電する電力の値および/または位相の値を調整する方法は、アレイアンテナの指向性制御についての公知の方法であってもよい。
 なお、上述したマルチバンドアンテナ300の例は、2つの高周波素子303と、2つの低周波素子304と、を有する例を示した。本開示は、これに限定されない。例えば、低周波素子304は、1つであってもよいし、3つ以上であってもよい。また、高周波素子303は、1つであってもよいし、3つ以上であってもよい。以下の変形例1では、4つの高周波素子303を有するマルチバンドアンテナを説明する。
 (変形例1)
 図4は、本実施の形態の第1の変形例に係るマルチバンドアンテナ600の一例を示す平面図である。図4において、図1A~図1Cに示した構成と同様の構成については、同一の符番を付し、適宜、説明を省略する。
 図4に示すマルチバンドアンテナ600は、第1の誘電体301の上面に、4つの高周波素子303と、2つの低周波素子304と、折り曲げ部601が形成される。また、第1の誘電体301の上面には、高周波素子303の間、低周波素子304と高周波素子303の間、および、高周波素子303と折り曲げ部601の間をそれぞれ接続する放射素子接続線路305が形成される。
 4つの高周波素子303それぞれの背面側(Z軸の負方向)には、スロット307を有する導体309、高周波給電線路308および高周波給電部310が設けられる。
 図4に示すマルチバンドアンテナ600では、高周波放射部602が、X軸方向とY軸方向に2つずつ配列される。この場合、第1の誘電体301の上面には、2つの高周波素子303を組にした、2組の高周波素子303が、並列に配列される。
 折り曲げ部601は、X軸方向に延びる部分と、Y軸方向に延びる部分を有する。折り曲げ部601は、例えば、最もY軸負方向においてX軸方向に整列する2つの高周波素子303を、放射素子接続線路305を介して接続するように設けられる。なお、折り曲げ部601は、「低周波素子」の1つと称されてもよい。
 マルチバンドアンテナ600では、低周波素子304と、放射素子接続線路305と、高周波素子303と、折り曲げ部601と、が接続されたパターン(マルチバンドアンテナ600における低周波アンテナパターン)に沿ったラインの長さをλe/4×N(Nは、1以上の整数)に設定する。この設定により、低周波アンテナパターンは、第2の周波数帯で動作する。
 この構成により、図4に示すマルチバンドアンテナ600は、図1A~図1Cに示したマルチバンドアンテナ300と同様に、低周波放射部と高周波放射部との間のアイソレーション特性を向上できる。
 また、4つの高周波放射部602のそれぞれに含まれる高周波素子303の間を接続する放射素子接続線路305は、高周波素子303の電界の小さい位置に接続される。そのため、高周波素子303の間で流れる電流を抑制でき、1つの高周波放射部の動作が他の高周波放射部へ与える影響を抑制できる。
 また、図4に示すマルチバンドアンテナ600では、高周波放射部602が、X軸方向とY軸方向に2つずつ配列される。そのため、マルチバンドアンテナ600では、高周波無線制御部が4つの高周波給電部310に給電する電力の値及び/又は位相の値を調整することによって、高周波素子303から放射される電波のX-Z面およびY-Z面の指向性を制御できる。
 なお、上述したマルチバンドアンテナ300およびマルチバンドアンテナ600の例は、高周波帯(第1の周波数帯)および低周波帯(第2の周波数帯)の2つの周波数帯に対応するマルチバンドアンテナの例を示した。以下の変形例2では、3つの周波数帯に対応するマルチバンドアンテナを説明する。
 (変形例2)
 図5は、本実施の形態の第2の変形例に係るマルチバンドアンテナ700の一例を示す平面図である。なお、図5において、図1A~図1Cおよび図4と同様の構成については同一の符番を付し、適宜、説明を省略する。
 マルチバンドアンテナ700は、3つの周波数帯で動作する。以下では、3つの周波数帯は、周波数が高い方から順に、第1の周波数帯、第2の周波数帯および第3の周波数帯と称されてもよい。例えば、第1の周波数帯および第2の周波数帯は、それぞれ、マルチバンドアンテナ300の例と同様に、28GHz帯および2GHz帯である。また、第3の周波数帯は、例えば、800MHz帯である。
 図5に示すマルチバンドアンテナ700は、アンテナ部300a、放射素子701、給電部702およびグランドパターン703を有する。
 放射素子701およびグランドパターン703は、第1の誘電体301の上面に、導体パターンによって形成される。給電部702は、例えば、放射素子701の一方の端部に設けられる。
 アンテナ部300aは、低周波給電部306が設けられない点、および、1つの低周波素子304の端部がグランドパターン703に接続される点を除いて、マルチバンドアンテナ300と同様である。アンテナ部300aは、第1の周波数帯で動作する高周波放射部602と、第2の周波数帯で動作する低周波放射部を有する。
 低周波放射部は、低周波素子304、および、放射素子接続線路305を含み、Y軸方向に延在する低周波アンテナパターンを有する。そして、マルチバンドアンテナ700では、給電部702が、アンテナ部300aの低周波アンテナパターンに対して、第2の周波数帯の給電を行う。
 放射素子701は、第3の周波数帯で動作する、別言すると、第3の周波数帯に共振周波数(便宜的に「第3の共振周波数」と称する)を有するアンテナ素子である。例えば、放射素子701の全長L3は、λe/4×N(Nは、1以上の整数)である。λeは、第3の共振周波数に対応し、誘電体の波長短縮が考慮された実効波長である。例えば、λeは、真空中の第3の共振周波数の波長に、誘電体の比誘電率に基づいて定まる係数を乗じた波長である。なお、考慮する誘電体は、例えば、第1の誘電体301と第2の誘電体302(図1Aおよび図1B参照)の両方である。
 給電部702は、上述したように、アンテナ部300aの低周波アンテナパターンに対して、第2の周波数帯の給電を行う。また、給電部702は、放射素子701に対して、第3の周波数帯の給電を行う。給電部702は、図示しない無線制御部に電気的に接続する。無線制御部によって、2つの周波数帯の給電が制御される。
 グランドパターン703は、給電部702から給電される第2の周波数帯の電力を低周波アンテナパターンへ伝達する。また、グランドパターン703の一部は、アンテナ部300aにおいて、低周波放射部が動作する場合、地線の機能を果たす。
 この構成により、図5に示すマルチバンドアンテナ700は、第1の周波数帯、第2の周波数帯および第3の周波数帯の3つの周波数帯に対応できる。
 また、図5に示すマルチバンドアンテナ700は、図1A~図1Cに示したマルチバンドアンテナ300と同様に、低周波放射部と高周波放射部602との間のアイソレーション特性、および、2つの高周波放射部602の間のアイソレーション特性を向上できる。
 また、図1A~図1Cに示したマルチバンドアンテナ300と同様に、高周波素子303のX軸方向における中央部に、放射素子接続線路305を接続することによって、高周波素子303から放射素子接続線路305に電流が流れることが阻止又は阻害される。したがって、高周波素子303から給電部702に電流が流れることが阻止又は妨害され、アイソレーション特性を向上できる。
 また、スロット307が、第2の周波数帯と第3の周波数帯に対してカットオフ特性を有するため、第3の周波数帯のアンテナの動作を行う放射素子701と、高周波放射部602との間のアイソレーション特性を向上できる。
 また、放射素子701の長さL3と、低周波アンテナパターンの長さL2が、それぞれ、対応する共振周波数に基づいて規定されている。そのため、給電部702が2つの周波数帯それぞれの給電を行った場合、放射素子701と低周波アンテナパターンの一方が他方に影響を与えない。例えば、給電部702が第2の周波数帯の給電を行った場合、放射素子701が励振しない。また、給電部702が第3の周波数帯の給電を行った場合、低周波アンテナパターンが励振しない。
 なお、上述した第1から第3の周波数帯の数値は、あくまで例示であり、本開示はこれに限定されない。
 なお、上記実施の形態の説明に用いた「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。
 上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 本開示の一実施例におけるアンテナ装置は、基板の一方の面に設けられた、第1の周波数帯に共振周波数を有する少なくとも1つの第1放射素子と、前記基板の一方の面に設けられた少なくとも1つの第2放射素子と、前記基板の一方の面において前記第1放射素子と前記第2放射素子とを接続する接続線路と、前記基板の内部において前記第1放射素子と向き合う位置に設けられ、スロットを有する導体と、前記スロットを介して前記第1放射素子に給電する給電線路と、を備え、前記接続線路は、前記第1放射素子の、共振による放射電波の偏波方向に沿った方向の中央部に接続され、前記第1放射素子、前記接続線路、及び、前記第2放射素子によって形成される線路長が、前記第1の周波数帯よりも低い第2の周波数帯に共振周波数を有する長さに設定されている。
 本開示の一実施例のアンテナ装置は、複数の前記第1放射素子を備え、前記接続線路は、前記複数の第1放射素子それぞれの中央部の間を接続する。
 本開示の一実施例のアンテナ装置において、前記複数の第1放射素子は、前記給電線路から、位相および電力の値のうち少なくとも一方を制御された給電が行われる。
 本開示の一実施例のアンテナ装置において、前記複数の第1放射素子は、前記偏波方向と前記偏波方向に垂直な方向とに配置され、前記第2放射素子は、前記偏波方向に沿って延びる部分と、前記偏波方向に垂直な方向に沿って延びる部分とを含む。
 本開示の一実施例のアンテナ装置において、前記基板の一方の面に設けられ、前記第2の周波数帯よりも低い第3の周波数帯に共振周波数を有する第3放射素子と、前記基板の一方の面において前記第2放射素子と接続され、前記第3放射素子と電磁界的に結合するグランドパターンと、前記第3放射素子に設けられ、前記第2放射素子に前記第2の周波数帯の電力を給電し、かつ、前記第3放射素子に前記第3の周波数帯の電力を給電する給電部と、を備える。
 本開示の一実施例のアンテナ装置において、前記第1放射素子と前記導体との間、および、前記導体と前記給電線路との間に、絶縁層が設けられる。
 本開示の一実施例のアンテナ装置において、前記導体は、前記第1放射素子よりも大きいサイズを有する。
 2018年4月12日出願の特願2018-076909の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、小型の無線通信装置に用いるのに好適である。
 300、600、700 マルチバンドアンテナ
 300a アンテナ部
 301 第1の誘電体
 302 第2の誘電体
 303 高周波素子
 304 低周波素子
 305 放射素子接続線路
 306 低周波給電部
 307 スロット
 308 高周波給電線路
 309 導体
 310 高周波給電部
 601 折り曲げ部
 602 高周波放射部
 701 放射素子
 702 給電部
 703 グランドパターン

Claims (7)

  1.  基板の一方の面に設けられた、第1の周波数帯に共振周波数を有する少なくとも1つの第1放射素子と、
     前記基板の一方の面に設けられた少なくとも1つの第2放射素子と、
     前記基板の一方の面において前記第1放射素子と前記第2放射素子とを接続する接続線路と、
     前記基板の内部において前記第1放射素子と向き合う位置に設けられ、スロットを有する導体と、
     前記スロットを介して前記第1放射素子に給電する給電線路と、を備え、
     前記接続線路は、前記第1放射素子の、共振による放射電波の偏波方向に沿った方向の中央部に接続され、
     前記第1放射素子、前記接続線路、及び、前記第2放射素子によって形成される線路長が、前記第1の周波数帯よりも低い第2の周波数帯に共振周波数を有する長さに設定されている、
     アンテナ装置。
  2.  複数の前記第1放射素子を備え、
     前記接続線路は、前記複数の第1放射素子それぞれの中央部の間を接続する、
     請求項1に記載のアンテナ装置。
  3.  前記複数の第1放射素子は、前記給電線路から、位相および電力の値のうち少なくとも一方を制御された給電が行われる、
     請求項2に記載のアンテナ装置。
  4.  前記複数の第1放射素子は、前記偏波方向と前記偏波方向に垂直な方向とに配置され、
     前記第2放射素子は、前記偏波方向に沿って延びる部分と、前記偏波方向に垂直な方向に沿って延びる部分とを含む、
     請求項2に記載のアンテナ装置。
  5.  前記基板の一方の面に設けられ、前記第2の周波数帯よりも低い第3の周波数帯に共振周波数を有する第3放射素子と、
     前記基板の一方の面において前記第2放射素子と接続され、前記第3放射素子と電磁界的に結合するグランドパターンと、
     前記第3放射素子に設けられ、前記第2放射素子に前記第2の周波数帯の電力を給電し、かつ、前記第3放射素子に前記第3の周波数帯の電力を給電する給電部と、を備える、
     請求項1に記載のアンテナ装置。
  6.  前記第1放射素子と前記導体との間、および、前記導体と前記給電線路との間に、絶縁層が設けられる、
     請求項1に記載のアンテナ装置。
  7.  前記導体は、前記第1放射素子よりも大きいサイズを有する、
     請求項1に記載のアンテナ装置。
     
PCT/JP2019/015329 2018-04-12 2019-04-08 アンテナ装置 WO2019198666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020513255A JP7281678B2 (ja) 2018-04-12 2019-04-08 アンテナ装置
CN201980025211.1A CN111954957B (zh) 2018-04-12 2019-04-08 天线装置
US17/046,550 US11424537B2 (en) 2018-04-12 2019-04-08 Antenna device
US17/868,573 US11699853B2 (en) 2018-04-12 2022-07-19 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076909 2018-04-12
JP2018-076909 2018-04-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/046,550 A-371-Of-International US11424537B2 (en) 2018-04-12 2019-04-08 Antenna device
US17/868,573 Continuation US11699853B2 (en) 2018-04-12 2022-07-19 Antenna device

Publications (1)

Publication Number Publication Date
WO2019198666A1 true WO2019198666A1 (ja) 2019-10-17

Family

ID=68164191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015329 WO2019198666A1 (ja) 2018-04-12 2019-04-08 アンテナ装置

Country Status (4)

Country Link
US (2) US11424537B2 (ja)
JP (1) JP7281678B2 (ja)
CN (1) CN111954957B (ja)
WO (1) WO2019198666A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270304A (ja) * 1990-03-19 1991-12-02 Misao Haishi 多周波共用平面アンテナ
WO2014097846A1 (ja) * 2012-12-20 2014-06-26 株式会社村田製作所 マルチバンド用アンテナ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278039A (ja) * 1999-03-19 2000-10-06 Hitachi Cable Ltd 偏波共用アンテナ
JP3503556B2 (ja) * 2000-02-04 2004-03-08 株式会社村田製作所 表面実装型アンテナおよびそのアンテナを装備した通信装置
CN1225057C (zh) * 2000-03-15 2005-10-26 阿苏拉布股份有限公司 用于小尺寸的设备的多频率天线
US6337667B1 (en) * 2000-11-09 2002-01-08 Rangestar Wireless, Inc. Multiband, single feed antenna
JP4163059B2 (ja) 2003-07-08 2008-10-08 古河電気工業株式会社 多周波共用アンテナ
JP2005159813A (ja) * 2003-11-27 2005-06-16 Matsushita Electric Ind Co Ltd 多周波共振型逆f型アンテナ
JP4192212B2 (ja) * 2004-01-28 2008-12-10 日本電波工業株式会社 マイクロストリップライン型の平面アレーアンテナ
US20100231462A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Multi-band serially connected antenna element for multi-band wireless communication devices
CN102983394B (zh) * 2012-09-19 2015-07-15 电子科技大学 覆盖五个频段的小尺寸平面天线
WO2016081036A1 (en) * 2014-11-18 2016-05-26 CommScope Technologies, LLC Cloaked low band elements for multiband radiating arrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270304A (ja) * 1990-03-19 1991-12-02 Misao Haishi 多周波共用平面アンテナ
WO2014097846A1 (ja) * 2012-12-20 2014-06-26 株式会社村田製作所 マルチバンド用アンテナ

Also Published As

Publication number Publication date
CN111954957A (zh) 2020-11-17
JP7281678B2 (ja) 2023-05-26
US11699853B2 (en) 2023-07-11
JPWO2019198666A1 (ja) 2021-04-15
US11424537B2 (en) 2022-08-23
CN111954957B (zh) 2023-06-27
US20210036423A1 (en) 2021-02-04
US20220352630A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
TWI544682B (zh) 寬頻天線及其操作方法
TWI425713B (zh) 諧振產生之三頻段天線
US8164167B2 (en) Integrated circuit structure and a method of forming the same
JP4868128B2 (ja) アンテナ装置及びそれを用いた無線通信機器
EP1248316B1 (en) Antenna and communication apparatus having the same
US20070057854A1 (en) Mobile transceiver and antenna device
JP2004088218A (ja) 平面アンテナ
JP2004201278A (ja) パターンアンテナ
JP3032664B2 (ja) アンテナ装置
JP5969821B2 (ja) アンテナ装置
JP2005094360A (ja) アンテナ装置および無線通信装置
JP6195080B2 (ja) アンテナ装置
KR102432311B1 (ko) 안테나 모듈 및 그것을 탑재한 통신 장치, 그리고 회로 기판
JP2014053885A (ja) マルチバンドアンテナ
EP2323217B1 (en) Antenna for multi mode mimo communication in handheld devices
US20180287249A1 (en) Antenna apparatus and electronic device
CN102437418A (zh) 用于移动终端的宽带平面型可重构天线系统
KR20140139286A (ko) 전자 기기의 안테나 장치
JP2018129595A (ja) アンテナ装置および無線機器
WO2019198666A1 (ja) アンテナ装置
WO2021060167A1 (ja) アンテナ装置
WO2018021353A1 (ja) アンテナ及び無線モジュール
JP2004056665A (ja) アンテナ及びそれを内蔵する移動体通信機
WO2017107137A1 (zh) 一种缝隙天线和终端
US20080129611A1 (en) Antenna module and electronic device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785892

Country of ref document: EP

Kind code of ref document: A1