WO2019198312A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2019198312A1
WO2019198312A1 PCT/JP2019/003736 JP2019003736W WO2019198312A1 WO 2019198312 A1 WO2019198312 A1 WO 2019198312A1 JP 2019003736 W JP2019003736 W JP 2019003736W WO 2019198312 A1 WO2019198312 A1 WO 2019198312A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
cooler
conversion device
power converter
power conversion
Prior art date
Application number
PCT/JP2019/003736
Other languages
French (fr)
Japanese (ja)
Inventor
研吾 後藤
智道 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019198312A1 publication Critical patent/WO2019198312A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a power conversion device that converts AC power and DC power having a cooling function.
  • IGBT insulated gate bipolar transistors
  • the element temperature rises due to the influence of the heat generated in other semiconductor modules in addition to the current flowing through the element. there's a possibility that.
  • the element life may be shortened or the electric characteristics of the element may be deteriorated.
  • Patent Document 1 includes a heat exchange means capable of adjusting the cooling capacity for detecting the internal temperature and the external temperature of the power conversion device and exchanging heat between the inside and the outside, and from the detection of the electric power generated by the solar panel.
  • a configuration is described in which the temperature rise inside the power conversion device is predicted and the cooling capacity of the heat exchange means is increased before the heat generation of the semiconductor element.
  • the forced air cooling method is a method in which, for example, the element temperature is lowered by forcing air to a heat sink that contacts the semiconductor element.
  • the forced water cooling method is a method in which a water channel is formed in a heat sink that is in contact with a semiconductor element, and the element temperature is lowered by flowing water through the water channel.
  • the cooling of the semiconductor element is designed so that the maximum temperature of the junction is not more than the temperature specified by the semiconductor element under the condition of the maximum heat generation amount, and the cooling capacity is changed according to the heat generation amount of the semiconductor element. Not set. Under such conditions, when the ambient temperature of the semiconductor element rises significantly due to external factors, the temperature of the semiconductor element rises, which may cause a semiconductor element failure.
  • Patent Document 1 since the temperature change width of the semiconductor element can be suppressed, it is possible to reduce the temperature stress applied to the semiconductor element used in the power conversion device.
  • the present invention has been made to solve this drawback, and reduces the temperature stress of the semiconductor element without disposing a temperature sensor inside the power converter, and further reduces the efficiency without reducing the efficiency. Can be driven.
  • a power converter includes a power converter including a semiconductor element that converts power supplied from a DC power source into AC power, a cooler that cools the semiconductor element, and the cooler.
  • a power conversion device including a power source for driving, a controller for controlling driving of the cooler, and a detector for measuring outside air temperature, the controller for controlling driving of the cooler controls the outside air temperature. The cooling operation is determined according to the value of the detector to be measured.
  • the present invention it is possible to reduce the temperature stress of the semiconductor element and improve the power conversion efficiency of the power converter.
  • FIG. 1 is a diagram illustrating a configuration of a power conversion device 100 according to a first embodiment of the present invention.
  • a power conversion apparatus 100 according to the first embodiment illustrated in FIG. 1 includes a semiconductor element 102 that converts DC power into an AC power source, and a cooler 103 that cools the semiconductor element.
  • the power converter 100 is connected to a DC power source 101 and a load 104, and DC power output from the DC power source 101 is converted into AC power and supplied to the load 104.
  • FIG. 2 is a diagram showing a configuration when the AC power output from the AC power source 105 is converted into DC power and supplied to the load 104.
  • the cooling capacity of the cooler 103 is determined by the cooler drive system 110a.
  • the cooling drive system 110 a has a configuration in which the cooling command value 112 determined by the cooler control unit 111 according to the outside air temperature detected by the outside air temperature detection unit 114 is input to the cooler power source 113.
  • the cooler drive system 110a may be configured as a part of the power conversion apparatus 100.
  • the cooler control unit 111 includes an interface for receiving measurement values from an external sensor such as the outside air temperature detection unit 114.
  • the external sensor includes a sensor that is used to acquire information that is measured outside the power conversion device, such as outside air temperature and power generation amount information, or is collected outside.
  • the semiconductor element 2 converts the DC power supplied from the DC power supply 101 into AC power by switching such as PWM (Pulse Width Modulation) and outputs the AC power to the load 104. At this time, the semiconductor element generates a switching loss due to switching by PWM and a conduction loss caused by flowing the element.
  • PWM Pulse Width Modulation
  • the loss of the semiconductor element will be described by taking the IGBT as an example.
  • Formula (1), (2) Indicates the conduction loss of the freewheeling diode arranged in parallel with the IGBT and IGBT.
  • the conduction loss of a semiconductor element is a loss determined by the product of the current flowing during conduction and the voltage across the element.
  • Equations (3) and (4) show the switching loss of the IGBT
  • equation (5) shows the recovery loss of the diode.
  • the switching loss is proportional to the PWM switching frequency f sw and increases as the switching frequency increases. When this switching frequency is high, the switching loss is larger than the conduction loss, and occupies most of the element loss.
  • the IGBT is used for description, but the semiconductor device such as a MOSFET is not limited thereto.
  • P ss is the IGBT conduction loss
  • I is the IGBT semiconductor element current
  • V CE is the IGBT voltage
  • P sd is a diode conduction loss
  • I is a diode current
  • V ak is a diode ON voltage
  • P on is the IGBT turn-on loss
  • f sw is the switching frequency
  • E on is the turn-on loss per pulse.
  • P off is the IGBT turn-off loss
  • f sw is the switching frequency
  • E off is the turn-off loss per pulse.
  • P err is the IGBT recovery loss
  • f sw is the switching frequency
  • E err is the recovery loss per pulse.
  • FIG. 3 shows an example of the current dependency of the ON voltage of the semiconductor element 102.
  • the ON voltage is a voltage applied to both ends of the semiconductor when the semiconductor element is conductive.
  • the high temperature characteristic 202 has a higher ON voltage than the low temperature characteristic 201. If the current is the same from equation (1), the conduction loss increases at high temperatures when the ON voltage is high.
  • FIG. 4 shows an example of the current dependency of the recovery loss of the diode in the semiconductor element 102. Similar to FIG. 3, the recovery loss high temperature characteristic 204 has a characteristic that the recovery loss low temperature characteristic 203 is larger than the recovery loss low temperature characteristic 203, and the recovery loss increases according to the equation (5). Further, FIG.
  • the turn-on loss high temperature characteristic 206 has a characteristic that the turn-on loss high temperature characteristic 205 is larger than the turn-on low temperature characteristic 205, and the switching loss increases according to the equation (4).
  • the loss characteristics due to the temperature difference of the semiconductor element 102 described with reference to FIGS. 4 and 5 become more prominent when the switching frequency is high.
  • Semiconductor elements include power and insulating materials from the chip that is a heat generating element to the semiconductor element case and heat sink, and it acts as a thermal resistance against the heat generated in the chip.
  • the IGBT is composed of a chip, a base, and the like, but each material has a heat capacity calculated in accordance with the mass and specific heat as well as the heat resistance, and the temperature changes with a time constant determined by the heat capacity and the heat resistance.
  • FIG. 6 shows a schematic diagram of the transient thermal resistance of the IGBT.
  • the junction temperature 220 of the IGBT is calculated by the thermal circuit configured in FIG.
  • the IGBT steady junction temperature 220 is calculated by the junction-case thermal resistance 210, the case-heat sink thermal resistance 211, the heat sink-ambient thermal resistance 212, and the ambient temperature 223 with the IGBT loss 209 as an input.
  • the transient junction temperature of the IGBT is calculated by a thermal circuit obtained by adding the thermal capacity 213 of the chip, the thermal capacity 214 of the module, and the thermal capacity 215 of the heat sink to the above-described thermal resistance.
  • the transient junction temperature of the IGBT is expressed by Equation (6)
  • the steady junction temperature is expressed by Equation (7).
  • the junction temperature increases as the ambient temperature Ta increases.
  • T j is the IGBT junction temperature
  • Ta is the ambient temperature
  • C c is the chip heat capacity
  • C m is the module temperature
  • Ch is the heat sink heat capacity
  • R th is the junction surface-case thermal resistance
  • R cf is the case- The heat resistance between the heat sinks
  • R ta is the heat resistance between the heat sink and the surroundings
  • is the frequency.
  • FIG. 7 shows a cooling device according to the first embodiment.
  • the semiconductor element 102 is installed on the air-cooling heat sink 103a and radiated through the heat sink heat radiating portion 103b.
  • the thermal resistance is determined by the shape of the heat radiating portion 103b of the heat sink, but it is possible to suppress the thermal resistance by forcing the cooling fan 103c to apply air to the 103b.
  • Natural convection will be explained using a vertical plate as an example. Natural convection heat transfer is expressed by equation (8).
  • Nu is the Nusselt number
  • Gr is the Grashof number
  • Pr is the Prandtl number
  • L is the plate length
  • is the heat transfer coefficient
  • is the thermal conductivity of the fluid
  • g is the gravitational acceleration
  • is the volume expansion coefficient
  • v is the kinematic viscosity coefficient
  • Tw is the plate temperature
  • Ta is the fluid temperature. It has become.
  • the heat transfer coefficient in the air at 20 ° C is expressed by equation (11) and is determined by the difference between the fluid temperature and the target heating element temperature.
  • Equations (11) and (15) are calculated by taking the characteristics of air at 20 ° C. as an example, but the coefficient also changes in the case of water cooling, and the forced convection heat transfer coefficient is Increase.
  • FIG. 8 shows the cooling device according to the first embodiment, in which the semiconductor element 102 is disposed on the water cooling heat sink 103d, and in the water cooling heat sink 103d, there is a water channel from the water inlet 103e to the main portion of 103f. Cooled by flowing water.
  • the thermal resistance of the water-cooled heat sink is determined by the flow rate determined by the flow rate of the water inlet and the cross-sectional area of the water channel, and the thermal resistance can be lowered by increasing the flow rate. In this way, when forcibly cooling with a fan or cooling with water, adjusting the cooling fan or water cooling pump can change the flow rate of cooling air or cooling water and make the cooling capacity variable. .
  • the power conversion device can be driven without deteriorating the power conversion efficiency. Further, when the ambient temperature is low, the loss generated in the power supply of the cooling system can be suppressed by setting the cooling capacity low.
  • the description is given with the power conversion device 100 that converts DC power into AC power, but the same effect can be obtained with the power conversion device that converts AC power into DC power shown in FIG. Moreover, the same effect is acquired also as an apparatus with which the output of the power supply of the cooler described in Example 1 increases according to a rise in outside air temperature, for example, a solar panel. Further, the same effect can be obtained even with a power source that can absorb the loss generated in the power converter as heat energy.
  • FIG. 9 shows the power conversion apparatus 100 according to the second embodiment.
  • the difference from the first embodiment is configured by the power conversion device output detection unit 106 instead of the outside air temperature detection unit 114, and detects the power conversion device output value 115 between the power conversion device 100 and the load 104.
  • the part 106 is configured.
  • symbol is used about the same component as Example 1, and duplication description is abbreviate
  • the power loss of the semiconductor element 102 increases as the current increases. Therefore, when the power converter output value 115 is large, the junction temperature of the semiconductor element increases, and the efficiency of the semiconductor element increases. Decreases. Further, when the power converter output value 115 is small, the junction temperature of the semiconductor element becomes low, so the decrease in efficiency is small. Even if the cooler command value is a low design value under the condition that the junction temperature of the semiconductor element is low, the efficiency is not lowered.
  • the output detection unit is used in the second embodiment, the same effect can be obtained even if the output detection unit is configured.
  • the power conversion device 100 that converts DC power to AC power is described.
  • the same effect can be obtained by a power conversion device that converts AC power to DC power. .
  • FIG. 11 shows the power conversion apparatus 100 according to the third embodiment.
  • the difference from the first embodiment is that the outside air temperature detecting unit 114 is composed of the outside humidity detecting unit 116.
  • symbol is used about the same component as Example 1, and duplication description is abbreviate
  • Equation (16) is an equation indicating the relative humidity and the lifetime of the semiconductor element. As shown in Expression (16), the lifetime L of the semiconductor element is shortened as the relative humidity and temperature increase. Therefore, when the external humidity 117 is high, increasing the cooling capacity of the semiconductor element can reduce the element temperature, thereby prolonging the element life.
  • L is the semiconductor lifetime
  • A is the acceleration coefficient
  • n is the relative humidity coefficient
  • RH is the relative humidity
  • Ea is the activation energy
  • V is the voltage
  • K is the Boltzmann constant
  • T is the absolute temperature.
  • the power conversion device 100 that converts DC power into AC power is described.
  • the same effect can be obtained with a power conversion device that converts AC power into DC power. .
  • FIG. 13 shows a power converter according to the fourth embodiment.
  • the outside air temperature detection unit 114 includes a semiconductor power cycle number detection unit 118.
  • symbol is used about the same component as Example 1, and duplication description is abbreviate
  • FIG. 14 shows the relationship between the amount of change in the case temperature and the lifetime of the semiconductor element according to Example 4. Since semiconductor elements repeatedly increase and decrease in temperature according to the conditions under which they are used, fatigue and deterioration progress due to thermal stress. This deterioration corresponds to the deterioration of the aluminum wire bonding portion on the chip surface of the semiconductor element and the deterioration of the solder bonding portion used for bonding between the insulating substrate and the base. This fatigue and deterioration greatly depends on the temperature rise / fall range. This thermal stress is called power cycle life. A semiconductor device has a defined power cycle life, and as shown in FIG. 14, the power cycle life depends on the amount of change in junction temperature. As in the fourth embodiment, when the number of power cycles of the semiconductor becomes equal to or higher than a certain level, the temperature increase width can be reduced and the increase in the number of power cycles can be suppressed by increasing the cooling capacity.
  • the power conversion device 100 that converts DC power into AC power is described. However, as shown in FIG. 15, the same effect can be obtained with a power conversion device that converts AC power into DC power. .
  • FIG. 16 shows a power converter according to the fifth embodiment.
  • the outside air temperature detection unit 114 includes a load output detection unit 120 and a load output accumulation unit 121.
  • symbol is used about the same component as Example 1, and duplication description is abbreviate
  • FIG. 17 shows an example of the seasonality of the power generation amount of the wind power generation system as an example of the load according to the fifth embodiment.
  • the bar in FIG. 17 represents the power generation output for each month.
  • Wind power generation systems vary greatly depending on the season, and this seasonal variation is particularly large in regions where power generation is high.
  • the power conversion efficiency of a power converter device is designed according to a rated output, when operating with the output lower than a rating, power conversion efficiency deteriorates. Therefore, it is possible to reduce the power conversion efficiency and increase the amount of power transmission by making the load output a database in the storage unit and making the system improve the cooling capacity more than usual during the period when the load output decreases. Become.
  • Renewable energy is set as a frame of power transmission as a mechanism to ensure the stability of the power system, but there are cases where the amount of power generation is lower than the frame due to seasonality and weather conditions. Reducing this difference may be more important for system stability, etc. than using additional power for cooling. For example, in order to transmit more generated power, there is a control mode for improving the cooling capacity in order to improve the power conversion efficiency than usual, and the reduction in the amount of power generation can be suppressed.
  • the wind power generation system has been described as an example.
  • load output data is accumulated even in a system with different output characteristics depending on the season, such as a solar power generation system and other natural energy power sources, and the load pattern is obtained. Accordingly, it is possible to suppress a decrease in power conversion efficiency by determining the cooling capacity accordingly.
  • the power conversion device 100 that converts DC power into AC power is described.
  • the same effect can be obtained with a power conversion device that converts AC power into DC power.
  • the control is performed for each month or season, but the control can be switched by another time span.
  • FIG. 19 shows the power conversion apparatus 100 according to the sixth embodiment.
  • the difference from the first embodiment is that the outside air temperature detection unit 114 is configured by the load output prediction unit 122.
  • symbol is used about the same component as Example 1, and duplication description is abbreviate
  • the load output prediction unit is configured to perform output prediction via a wind speed prediction unit disposed at a position downstream of the wind turbine and adjust the cooling capacity.
  • the weather prediction unit can predict the weather in advance, perform output prediction according to the weather prediction, and adjust the cooling capacity.
  • the description is given with the power conversion device that converts the DC power into the AC power.
  • the same effect can be obtained with the power conversion device that converts the AC power into the DC power.
  • Power converter 101. DC power supply, 102. Semiconductor element, 103. Cooler, 103a. Air cooling heat sink, 103b. Heat sink heat sink for air cooling, 103c. Fan, 103d. Heat sink for water cooling, 103e. Water-cooled water inlet, 103f. Water-cooled water discharge section, 104. Load, 105. AC power supply, 106.
  • a cooling system including a load output prediction unit; Cooler controller, 112. Cooler command value, 113. Cooler power supply, 114. Outside air temperature detector, 115. Output detection value, 116. Humidity detection unit, 117. External humidity detection value 118. Cycle number detection unit, 119. Number of cycles, 120. Load output detector 121. Load output storage section, 122. Load output prediction unit, 123. Load output predicted value 201. 202. ON voltage current dependency of semiconductor element at low temperature; 203. ON voltage current dependency of semiconductor element at high temperature, 204. Recovery loss current dependency of semiconductor element at low temperature Dependence on recovery loss current of semiconductor element at high temperature, 205. Dependence on switching loss current of semiconductor element at low temperature, 206. 209.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention addresses the problem of providing a power conversion device suppressing lowering of conversion efficiency due to the increase of the surrounding temperature of the power conversion device and capable of reducing temperature stress on semiconductor elements. The power conversion device is equipped with a cooler for cooling semiconductor elements within the power conversion device, wherein the semiconductor cooler can increase the power conversion efficiency of the power conversion device by increasing the cooling ability when outside temperature is high and lowering the temperatures of the elements.

Description

電力変換装置Power converter
 本発明は、冷却機能を備えた交流電力と直流電力の変換を行う電力変換装置に関するものである。 The present invention relates to a power conversion device that converts AC power and DC power having a cooling function.
 絶縁ゲート型バイポーラトランジスタ(IGBT)等の高速電力用半導体素子を用いた電力変換装置が様々な分野で使用されている。近年、半導体技術の進歩により大容量の半導体モジュールが実現され、大容量の変換装置の開発が進んでいる。 Power conversion devices using high-speed power semiconductor elements such as insulated gate bipolar transistors (IGBT) are used in various fields. In recent years, due to advances in semiconductor technology, large capacity semiconductor modules have been realized, and development of large capacity conversion devices is progressing.
 また、大容量化を図るため、半導体モジュールを複数並列接続することもあり、この場合、素子に通流する電流のほかに、他の半導体モジュールで発生する熱による影響を受け、素子温度が上昇する可能性がある。素子温度が上昇すると、素子寿命が短くなったり素子の電気特性が悪化したりする可能性がある。 In order to increase the capacity, multiple semiconductor modules may be connected in parallel. In this case, the element temperature rises due to the influence of the heat generated in other semiconductor modules in addition to the current flowing through the element. there's a possibility that. When the element temperature rises, the element life may be shortened or the electric characteristics of the element may be deteriorated.
 例えば特許文献1に、電力変換装置の内部温度と外部温度を検出し、内部と外部の熱交換を行う冷却能力の調整可能な熱交換手段を備え、太陽光パネルで発電された電力の検出から、電力変換装置内部の温度上昇を予測して半導体素子の発熱前に前記熱交換手段の冷却能力を上げる構成について記載されている。 For example, Patent Document 1 includes a heat exchange means capable of adjusting the cooling capacity for detecting the internal temperature and the external temperature of the power conversion device and exchanging heat between the inside and the outside, and from the detection of the electric power generated by the solar panel. A configuration is described in which the temperature rise inside the power conversion device is predicted and the cooling capacity of the heat exchange means is increased before the heat generation of the semiconductor element.
特開2016-146737JP2016-146737
 素子冷却方式として自然空冷方式や、強制空冷、強制水冷方式といった冷却方式がある。強制空冷方式は、例えば半導体素子に接触するヒートシンクに風を強制的に当てることで素子温度を下げる方式である。また、強制水冷方式は半導体素子に接触するヒートシンク内に水路を作り、水路に水を流すことで素子温度を下げる方式である。 There are cooling methods such as natural air cooling, forced air cooling, and forced water cooling as element cooling methods. The forced air cooling method is a method in which, for example, the element temperature is lowered by forcing air to a heat sink that contacts the semiconductor element. The forced water cooling method is a method in which a water channel is formed in a heat sink that is in contact with a semiconductor element, and the element temperature is lowered by flowing water through the water channel.
 半導体素子の冷却は、最大発熱量となる条件において、接合部の最高温度が半導体素子で規定される温度以下になるように設計され、半導体素子の発熱量に応じて冷却能力を変更するように設定されていない。このような条件下で、外的要因により半導体素子の周囲温度が著しく上昇した場合、半導体素子の温度が上昇し、半導体素子故障が発生する可能性がある。 The cooling of the semiconductor element is designed so that the maximum temperature of the junction is not more than the temperature specified by the semiconductor element under the condition of the maximum heat generation amount, and the cooling capacity is changed according to the heat generation amount of the semiconductor element. Not set. Under such conditions, when the ambient temperature of the semiconductor element rises significantly due to external factors, the temperature of the semiconductor element rises, which may cause a semiconductor element failure.
 特許文献1によれば、半導体素子の温度変化幅を抑制できるため、電力変換装置に使用される半導体素子にかかる温度的ストレスを低減することが可能となる。 According to Patent Document 1, since the temperature change width of the semiconductor element can be suppressed, it is possible to reduce the temperature stress applied to the semiconductor element used in the power conversion device.
 しかし、上記のような従来例では、電力変換装置内部に温度センサを配置する必要があり、温度センサの追加によりコストが増加する。また、温度が上がりやすい電力変換装置内部は、温度センサの故障が発生する可能性がある。 However, in the conventional example as described above, it is necessary to arrange a temperature sensor inside the power converter, and the cost increases due to the addition of the temperature sensor. In addition, there is a possibility that a temperature sensor malfunctions inside the power conversion device where the temperature is likely to rise.
 そこで、本発明はこの欠点を解決するためになされたものであり、電力変換装置内部に温度センサを配置することなく半導体素子の温度ストレスを低減し、さらに、効率を悪化させることなく電力変換装置を駆動することが可能となる。 Therefore, the present invention has been made to solve this drawback, and reduces the temperature stress of the semiconductor element without disposing a temperature sensor inside the power converter, and further reduces the efficiency without reducing the efficiency. Can be driven.
 上記課題を解決するため、本発明の電力変換装置は、直流電源の供給する電力を交流電力に変換させる半導体素子を含む電力変換装置と、前記半導体素子を冷却する冷却器と、前記冷却器を駆動するための電源と、前記冷却器の駆動を制御する制御器と、外気温を測定する検出器とを備える電力変換装置において、前記冷却器の駆動を制御する制御器は、前記外気温を測定する検出器の値に応じて冷却動作を決定する構成を備える。 In order to solve the above-described problems, a power converter according to the present invention includes a power converter including a semiconductor element that converts power supplied from a DC power source into AC power, a cooler that cools the semiconductor element, and the cooler. In a power conversion device including a power source for driving, a controller for controlling driving of the cooler, and a detector for measuring outside air temperature, the controller for controlling driving of the cooler controls the outside air temperature. The cooling operation is determined according to the value of the detector to be measured.
 本発明によれば、半導体素子の温度ストレスを低減し、かつ、電力変換装置の電力変換効率を改善することが可能となる。 According to the present invention, it is possible to reduce the temperature stress of the semiconductor element and improve the power conversion efficiency of the power converter.
本発明の実施例1に係る直流から交流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from direct current | flow to alternating current which concerns on Example 1 of this invention. 本発明の実施例1に係る交流から直流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from alternating current to direct current which concerns on Example 1 of this invention. 半導体素子(IGBT)の低温、高温時の静特性を示す図である。It is a figure which shows the static characteristic at the time of the low temperature of a semiconductor element (IGBT), and high temperature. 半導体素子(ダイオード)の低温、高温時の動特性を示す図である。It is a figure which shows the dynamic characteristic at the time of the low temperature and high temperature of a semiconductor element (diode). 半導体素子(IGBT)の低温、高温時の動特性を示す図である。It is a figure which shows the dynamic characteristic at the time of the low temperature of a semiconductor element (IGBT), and high temperature. 半導体素子(IGBT)の過渡熱回路網を示す図である。It is a figure which shows the transient thermal network of a semiconductor element (IGBT). 半導体素子の強制空冷方式の模式図を示す図である。It is a figure which shows the schematic diagram of the forced air cooling system of a semiconductor element. 半導体素子の強制水冷方式の模式図を示す図である。It is a figure which shows the schematic diagram of the forced water cooling system of a semiconductor element. 本発明の実施例2に係る直流から交流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from direct current | flow to alternating current which concerns on Example 2 of this invention. 本発明の実施例2に係る交流から直流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from alternating current to direct current which concerns on Example 2 of this invention. 本発明の実施例3に係る直流から交流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from direct current | flow to alternating current which concerns on Example 3 of this invention. 本発明の実施例3に係る交流から直流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from alternating current to direct current which concerns on Example 3 of this invention. 本発明の実施例4に係る直流から交流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from direct current | flow to alternating current which concerns on Example 4 of this invention. 本発明の実施例4に係るケース温度と半導体素子の寿命の関係を示す図である。It is a figure which shows the relationship between the case temperature which concerns on Example 4 of this invention, and the lifetime of a semiconductor element. 本発明の実施例4に係る交流から直流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from alternating current to direct current which concerns on Example 4 of this invention. 本発明の実施例5に係る直流から交流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from direct current | flow to alternating current based on Example 5 of this invention. 本発明の実施例5に係る負荷出力の季節特性を示す図である。It is a figure which shows the seasonal characteristic of the load output which concerns on Example 5 of this invention. 本発明の実施例5に係る交流から直流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from alternating current to direct current which concerns on Example 5 of this invention. 本発明の実施例6に係る負荷出力の季節特性を示す図である。It is a figure which shows the seasonal characteristic of the load output which concerns on Example 6 of this invention. 本発明の実施例6に係る交流から直流へ変換する電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which converts from alternating current to direct current which concerns on Example 6 of this invention.
 以下本発明の実施例について図面を用いて説明する。なお、各図において同一部分は同じ発号を付与している。 Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same part is given the same issue.
 図1は本発明の実施例1に係る電力変換装置100の構成を示す図である。図1に示す実施例1の電力変換装置100は、直流電力を交流電源に変換する半導体素子102と、半導体素子を冷却するための冷却器103を備える。また、該電力変換装置100は直流電源101及び負荷104に接続され、直流電源101の出力する直流電力は交流電力に変換され、負荷104に供給される。 FIG. 1 is a diagram illustrating a configuration of a power conversion device 100 according to a first embodiment of the present invention. A power conversion apparatus 100 according to the first embodiment illustrated in FIG. 1 includes a semiconductor element 102 that converts DC power into an AC power source, and a cooler 103 that cools the semiconductor element. The power converter 100 is connected to a DC power source 101 and a load 104, and DC power output from the DC power source 101 is converted into AC power and supplied to the load 104.
 図2は逆に、交流電源105の出力する交流電力が直流電力に変換され、負荷104に供給される場合についての構成を示す図である。 FIG. 2 is a diagram showing a configuration when the AC power output from the AC power source 105 is converted into DC power and supplied to the load 104.
 前記冷却器103の冷却能力は冷却器駆動システム110aで決定される。冷却駆動システム110aは外気温検出部114で検出した外気温に応じて冷却器制御部111で決定した冷却指令値112を冷却器電源113に入力する構成を備える。なお、冷却器駆動システム110aは電力変換装置100の一部として構成してもよい。冷却器制御部111は、外気温検出部114等の外部センサから計測値を受け取るためのインターフェイスを備える。外部センサとは、外気温や発電量情報等、電力変換装置外部で計測され、若しくは外部で集計される情報を取得するために用いられるセンサーを含む。 The cooling capacity of the cooler 103 is determined by the cooler drive system 110a. The cooling drive system 110 a has a configuration in which the cooling command value 112 determined by the cooler control unit 111 according to the outside air temperature detected by the outside air temperature detection unit 114 is input to the cooler power source 113. The cooler drive system 110a may be configured as a part of the power conversion apparatus 100. The cooler control unit 111 includes an interface for receiving measurement values from an external sensor such as the outside air temperature detection unit 114. The external sensor includes a sensor that is used to acquire information that is measured outside the power conversion device, such as outside air temperature and power generation amount information, or is collected outside.
 半導体素子2はPWM(Pulse Width Modulation)等のスイッチングにより、直流電源101から供給された直流電力を交流電力へ変換し、交流電力を負荷104に出力する。このとき半導体素子はPWMによるスイッチングによるスイッチング損や、素子を通流することで発生する導通損失が発生する。 The semiconductor element 2 converts the DC power supplied from the DC power supply 101 into AC power by switching such as PWM (Pulse Width Modulation) and outputs the AC power to the load 104. At this time, the semiconductor element generates a switching loss due to switching by PWM and a conduction loss caused by flowing the element.
 ここで、半導体素子の損失についてIGBTを例にとって説明する。式(1)、(2)
はIGBTおよびIGBTに並列に配置された還流ダイオードの導通損失を示す。半導体素子の導通損失は導通時の通流電流と素子の両端電圧の積で決定される損失である。式(3)と式(4)はIGBTのスイッチング損失を示しており、式(5)はダイオードのリカバリ損を示している。式(3)から式(5)に示すようにスイッチング損失はPWMのスイッチング周波数fswに比例し、スイッチング周波数の増大とともに増加する。このスイッチング周波数が高い場合、導通損よりもスイッチング損失が大きくなり、素子損失の大部分を占めることとなる。ここではIGBTを用いて説明をしたが、MOSFET等半導体素子であればその限りではない。
Here, the loss of the semiconductor element will be described by taking the IGBT as an example. Formula (1), (2)
Indicates the conduction loss of the freewheeling diode arranged in parallel with the IGBT and IGBT. The conduction loss of a semiconductor element is a loss determined by the product of the current flowing during conduction and the voltage across the element. Equations (3) and (4) show the switching loss of the IGBT, and equation (5) shows the recovery loss of the diode. As shown in the equations (3) to (5), the switching loss is proportional to the PWM switching frequency f sw and increases as the switching frequency increases. When this switching frequency is high, the switching loss is larger than the conduction loss, and occupies most of the element loss. Here, the IGBT is used for description, but the semiconductor device such as a MOSFET is not limited thereto.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、PssはIGBT導通損失、IはIGBT半導体素子電流、VCEはIGBTON電圧である。 Here, P ss is the IGBT conduction loss, I is the IGBT semiconductor element current, and V CE is the IGBT voltage.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Psdはダイオード導通損失、Iはダイオード電流、VakはダイオードON電圧である。 Here, P sd is a diode conduction loss, I is a diode current, and V ak is a diode ON voltage.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、PonはIGBTターンオン損失、fswはスイッチング周波数、Eonは1パルス当りのターンオン損失である。 Here, P on is the IGBT turn-on loss, f sw is the switching frequency, and E on is the turn-on loss per pulse.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、PoffはIGBTターンオフ損失、fswはスイッチング周波数、Eoffは1パルス当りのターンオフ損失である。 Here, P off is the IGBT turn-off loss, f sw is the switching frequency, and E off is the turn-off loss per pulse.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、PerrはIGBTリカバリ損失、fswはスイッチング周波数、Eerrは1パルス当りのリカバリ損失である。 Here, P err is the IGBT recovery loss, f sw is the switching frequency, and E err is the recovery loss per pulse.
 図3は半導体素子102のON電圧の電流依存性の例を示すものである。ON電圧は半導体素子導通時に半導体の両端にかかる電圧である。電流が同じ時、高温時特性202は低温時特性201に対し、ON電圧が高くなる特性を有する。式(1)より電流が同じであればON電圧が高い高温時は導通損失が大きくなる。また、図4は半導体素子102内のダイオードのリカバリ損の電流依存性の例を示す。図3と同様にリカバリ損の高温特性204がリカバリ損低温特性203よりも大きくなる特性を有し、式(5)に従ってリカバリ損失が大きくなる。さらに、図5は半導体素子102のターンオン損失の電流依存性の例を示す。図4と同様にターンオン損失高温時特性206がターンオン低温時特性205よりも大きくなる特性を有し、式(4)に従ってスイッチング損失が大きくなる。図4および図5で説明した半導体素子102の温度の違いによる損失特性はスイッチング周波数が高い場合、より顕著になる。 FIG. 3 shows an example of the current dependency of the ON voltage of the semiconductor element 102. The ON voltage is a voltage applied to both ends of the semiconductor when the semiconductor element is conductive. When the current is the same, the high temperature characteristic 202 has a higher ON voltage than the low temperature characteristic 201. If the current is the same from equation (1), the conduction loss increases at high temperatures when the ON voltage is high. FIG. 4 shows an example of the current dependency of the recovery loss of the diode in the semiconductor element 102. Similar to FIG. 3, the recovery loss high temperature characteristic 204 has a characteristic that the recovery loss low temperature characteristic 203 is larger than the recovery loss low temperature characteristic 203, and the recovery loss increases according to the equation (5). Further, FIG. 5 shows an example of current dependency of the turn-on loss of the semiconductor element 102. As in FIG. 4, the turn-on loss high temperature characteristic 206 has a characteristic that the turn-on loss high temperature characteristic 205 is larger than the turn-on low temperature characteristic 205, and the switching loss increases according to the equation (4). The loss characteristics due to the temperature difference of the semiconductor element 102 described with reference to FIGS. 4 and 5 become more prominent when the switching frequency is high.
 半導体素子は発熱要素であるチップから半導体素子ケース、ヒートシンクにいたるまで、電力や絶縁材料などがあり、チップで発生した熱に対して熱抵抗として働く。IGBTはチップやベースなどで構成されるが、各材料に熱抵抗と同様に質量と比熱に応じて計算される熱容量が存在し、熱容量と熱抵抗で決まる時定数で温度は変化する。 Semiconductor elements include power and insulating materials from the chip that is a heat generating element to the semiconductor element case and heat sink, and it acts as a thermal resistance against the heat generated in the chip. The IGBT is composed of a chip, a base, and the like, but each material has a heat capacity calculated in accordance with the mass and specific heat as well as the heat resistance, and the temperature changes with a time constant determined by the heat capacity and the heat resistance.
 図6はIGBTの過渡熱抵抗の模式図を示す。IGBTの接合温度220は図6で構成される熱回路で計算される。IGBTの定常的な接合温度220は、IGBT損失209を入力として、接合―ケース間熱抵抗210とケース―ヒートシンク間熱抵抗211とヒートシンク―周囲間熱抵抗212と周囲温度223によって計算される。IGBTの過渡的な接合温度は、前述した熱抵抗にチップの熱容量213とモジュールの熱容量214、ヒートシンクの熱容量215を加えた熱回路で計算される。 FIG. 6 shows a schematic diagram of the transient thermal resistance of the IGBT. The junction temperature 220 of the IGBT is calculated by the thermal circuit configured in FIG. The IGBT steady junction temperature 220 is calculated by the junction-case thermal resistance 210, the case-heat sink thermal resistance 211, the heat sink-ambient thermal resistance 212, and the ambient temperature 223 with the IGBT loss 209 as an input. The transient junction temperature of the IGBT is calculated by a thermal circuit obtained by adding the thermal capacity 213 of the chip, the thermal capacity 214 of the module, and the thermal capacity 215 of the heat sink to the above-described thermal resistance.
 図6で示した熱回路網の構成では、IGBTの過渡的な接合温度は式(6)で表され、定常的な接合温度は式(7)で表される。式(6),(7)に示すように接合温度は周囲温度Taが高いほど高くなる。 In the configuration of the thermal circuit network shown in FIG. 6, the transient junction temperature of the IGBT is expressed by Equation (6), and the steady junction temperature is expressed by Equation (7). As shown in equations (6) and (7), the junction temperature increases as the ambient temperature Ta increases.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、TjはIGBT接合温度、Tは周囲温度、Ccはチップ熱容量、Cmはモジュール温度、Chはヒートシンク熱容量、Rt-hは接合面―ケース間熱抵抗、Rc-fはケース―ヒートシンク間熱抵抗、Rt-aはヒートシンク―周囲間熱抵抗、ωは周波数である。 Here, T j is the IGBT junction temperature, Ta is the ambient temperature, C c is the chip heat capacity, C m is the module temperature, Ch is the heat sink heat capacity, R th is the junction surface-case thermal resistance, and R cf is the case- The heat resistance between the heat sinks, R ta is the heat resistance between the heat sink and the surroundings, and ω is the frequency.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 図7は実施例1に係る冷却装置を示すものである。半導体素子102は空冷用ヒートシンク103a上に設置され、ヒートシンク放熱部103bを介して放熱される。空冷ファンがない場合、ヒートシンクの放熱部103bの形状によって熱抵抗が決定されるが、冷却ファン103cで強制的に風を103bに当てることで熱抵抗を抑制することが可能となる。 FIG. 7 shows a cooling device according to the first embodiment. The semiconductor element 102 is installed on the air-cooling heat sink 103a and radiated through the heat sink heat radiating portion 103b. When there is no air cooling fan, the thermal resistance is determined by the shape of the heat radiating portion 103b of the heat sink, but it is possible to suppress the thermal resistance by forcing the cooling fan 103c to apply air to the 103b.
 自然対流について、垂直平板を例にとって説明する。自然対流熱伝達は式(8)で表される。 Natural convection will be explained using a vertical plate as an example. Natural convection heat transfer is expressed by equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、Nuはヌセルト数、Grはグラスホフ数、Prはプラントル数である。 Here, Nu is the Nusselt number, Gr is the Grashof number, and Pr is the Prandtl number.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、Lは平板長さ、αは熱伝達率、λは流体の熱伝導率、gは重力加速度、βは体積膨張率、vは動粘性係数、Twは平板温度、Taは流体温度となっている。 Where L is the plate length, α is the heat transfer coefficient, λ is the thermal conductivity of the fluid, g is the gravitational acceleration, β is the volume expansion coefficient, v is the kinematic viscosity coefficient, Tw is the plate temperature, and Ta is the fluid temperature. It has become.
 20℃における空気中の熱伝達率は式(11)で表され、流体温度と対象とする発熱体温度の差によって決まる。 The heat transfer coefficient in the air at 20 ° C is expressed by equation (11) and is determined by the difference between the fluid temperature and the target heating element temperature.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 一方、強制対流熱伝達は式(12)で表される。 On the other hand, forced convection heat transfer is expressed by equation (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、Reはレイノルズ数、Uは流速である。 Where Re is the Reynolds number and U is the flow velocity.
 20℃の空気中の強制対流熱伝達率は式(14)で表され、流速Uの増大に伴い、熱伝達率が増加する。熱抵抗は式(15)のように熱伝達率の増加に伴い減少する。 The forced convection heat transfer coefficient in air at 20 ° C. is expressed by equation (14), and the heat transfer coefficient increases as the flow velocity U increases. The thermal resistance decreases as the heat transfer coefficient increases as in equation (15).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、Rは熱抵抗、Sは伝熱面積である。
すなわち、冷却風の風速を変えることにより冷却能力を調整することができる。なお、式(11)、(15)は20℃の時の空気の特性を例にとって計算をしているが、水冷の場合も係数が変わるのみで、強制対流熱伝達率は流速の増大に対して増大する。
Here, R is a thermal resistance, and S is a heat transfer area.
That is, the cooling capacity can be adjusted by changing the wind speed of the cooling air. Equations (11) and (15) are calculated by taking the characteristics of air at 20 ° C. as an example, but the coefficient also changes in the case of water cooling, and the forced convection heat transfer coefficient is Increase.
 さらに、図8は実施例1に係る冷却装置を示すものであり、半導体素子102は水冷用ヒートシンク103d上に配置され、水冷用ヒートシンク103d内には入水部103eから103fの主力部までの水路に水が流れることで冷却される。水冷ヒートシンクの熱抵抗は、入水部の流量と水路断面積で決定される流速で決まり、流量を増加させることで熱抵抗を下げることが可能となる。このように、強制的にファンで空冷する場合や水冷で冷却する場合、冷却ファンや水冷ポンプを調整することにより冷却風や冷却水の流速を変え、冷却能力を可変にすることが可能になる。この可変冷却能力を周囲温度が高い場合に高く設定し、より半導体素子の接合温度を下げることで、電力変換効率を悪化することなく電力変換装置を駆動することが可能となる。また、周囲温度が低い場合、冷却能力を低く設定することで、冷却システムの電源で発生する損失を抑制することもできる。 Further, FIG. 8 shows the cooling device according to the first embodiment, in which the semiconductor element 102 is disposed on the water cooling heat sink 103d, and in the water cooling heat sink 103d, there is a water channel from the water inlet 103e to the main portion of 103f. Cooled by flowing water. The thermal resistance of the water-cooled heat sink is determined by the flow rate determined by the flow rate of the water inlet and the cross-sectional area of the water channel, and the thermal resistance can be lowered by increasing the flow rate. In this way, when forcibly cooling with a fan or cooling with water, adjusting the cooling fan or water cooling pump can change the flow rate of cooling air or cooling water and make the cooling capacity variable. . By setting this variable cooling capacity high when the ambient temperature is high and further lowering the junction temperature of the semiconductor element, the power conversion device can be driven without deteriorating the power conversion efficiency. Further, when the ambient temperature is low, the loss generated in the power supply of the cooling system can be suppressed by setting the cooling capacity low.
 本実施例1では直流電力を交流電力に変換する電力変換装置100で説明を行っているが、図2に示す交流電力を直流電力に変換する電力変換装置でも同様の効果が得られる。また、実施例1で記載の冷却器の電源を外気温の上昇に応じて出力が増大する機器、例えば、太陽光パネルとしても同様の効果が得られる。さらに、電力変換装置で発生した損失を熱エネルギーとして吸収しえる電源でも同様の効果を得られる。 In the first embodiment, the description is given with the power conversion device 100 that converts DC power into AC power, but the same effect can be obtained with the power conversion device that converts AC power into DC power shown in FIG. Moreover, the same effect is acquired also as an apparatus with which the output of the power supply of the cooler described in Example 1 increases according to a rise in outside air temperature, for example, a solar panel. Further, the same effect can be obtained even with a power source that can absorb the loss generated in the power converter as heat energy.
 図9は実施例2に係る電力変換装置100を示すものである。実施例1との差分は外気温検出部114の代わりに電力変換装置出力検出部106で構成され、電力変換装置100と負荷104の間に電力変換装置出力値115を検出する電力変換装置出力検出部106が構成されている点である。なお、実施例1と同じ構成要素については同じ符号を用い、重複説明を省く。 FIG. 9 shows the power conversion apparatus 100 according to the second embodiment. The difference from the first embodiment is configured by the power conversion device output detection unit 106 instead of the outside air temperature detection unit 114, and detects the power conversion device output value 115 between the power conversion device 100 and the load 104. The part 106 is configured. In addition, the same code | symbol is used about the same component as Example 1, and duplication description is abbreviate | omitted.
 式(1)で述べたように、半導体素子102の電力損失は電流が大きくなるほど損失が増加するため、電力変換装置出力値115が大きい場合、半導体素子の接合温度が高くなり、半導体素子の効率が低下する。また、電力変換装置出力値115が小さい場合、半導体素子の接合温度は低くなるため、効率の低下が小さい。半導体素子の接合温度が低い条件で冷却器指令値は低い設計値でも効率の低下を招かない。なお、実施例2では出力検出部としたが、電流検出部で構成されていても同様の効果が得られる。 As described in Equation (1), the power loss of the semiconductor element 102 increases as the current increases. Therefore, when the power converter output value 115 is large, the junction temperature of the semiconductor element increases, and the efficiency of the semiconductor element increases. Decreases. Further, when the power converter output value 115 is small, the junction temperature of the semiconductor element becomes low, so the decrease in efficiency is small. Even if the cooler command value is a low design value under the condition that the junction temperature of the semiconductor element is low, the efficiency is not lowered. Although the output detection unit is used in the second embodiment, the same effect can be obtained even if the output detection unit is configured.
 実施例2では、直流電力を交流電力に変換する電力変換装置100で説明を行っているが、図10に示すように、交流電力を直流電力に変換する電力変換装置でも同様の効果が得られる。 In the second embodiment, the power conversion device 100 that converts DC power to AC power is described. However, as shown in FIG. 10, the same effect can be obtained by a power conversion device that converts AC power to DC power. .
 図11は実施例3に係る電力変換装置100を示すものである。実施例1との差分は外気温検出部114が外湿度検出部116で構成される点である。なお、実施例1と同じ構成要素については同じ符号を用い、重複説明を省く。 FIG. 11 shows the power conversion apparatus 100 according to the third embodiment. The difference from the first embodiment is that the outside air temperature detecting unit 114 is composed of the outside humidity detecting unit 116. In addition, the same code | symbol is used about the same component as Example 1, and duplication description is abbreviate | omitted.
 式(16)は相対湿度と半導体素子の寿命を示す式である。式(16)に示すように相対湿度や温度の増加とともに半導体素子の寿命Lは短くなる。そこで、外湿度117が高い場合、半導体素子の冷却能力を上昇させることで、素子温度を下げれば、素子寿命を長期化することが可能となる。 Equation (16) is an equation indicating the relative humidity and the lifetime of the semiconductor element. As shown in Expression (16), the lifetime L of the semiconductor element is shortened as the relative humidity and temperature increase. Therefore, when the external humidity 117 is high, increasing the cooling capacity of the semiconductor element can reduce the element temperature, thereby prolonging the element life.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、Lは半導体寿命、Aは加速係数、nは相対湿度係数、RHは相対湿度、Eaは活性化エネルギー、Vは電圧、Kはボルツマン定数、Tは絶対温度である。 Here, L is the semiconductor lifetime, A is the acceleration coefficient, n is the relative humidity coefficient, RH is the relative humidity, Ea is the activation energy, V is the voltage, K is the Boltzmann constant, and T is the absolute temperature.
 実施例3では、直流電力を交流電力に変換する電力変換装置100で説明を行っているが、図12に示すように、交流電力を直流電力に変換する電力変換装置でも同様の効果が得られる。 In the third embodiment, the power conversion device 100 that converts DC power into AC power is described. However, as shown in FIG. 12, the same effect can be obtained with a power conversion device that converts AC power into DC power. .
 図13は実施例4に係る電力変換装置を示すものである。実施例1との差分は外気温検出部114が半導体パワーサイクル数検出部118で構成される点である。なお、実施例1と同じ構成要素については同じ符号を用い、重複説明を省く。 FIG. 13 shows a power converter according to the fourth embodiment. The difference from the first embodiment is that the outside air temperature detection unit 114 includes a semiconductor power cycle number detection unit 118. In addition, the same code | symbol is used about the same component as Example 1, and duplication description is abbreviate | omitted.
 図14は実施例4に係る半導体素子のケース温度変化量と寿命の関係を示すものである。半導体素子は、使用される条件に応じて温度上昇と下降を繰り返すため、熱的なストレスを受けて疲労、劣化が進む。この劣化は、半導体素子のチップ表面のアルミワイヤ接合部の劣化や、絶縁基板とベース間の接合に使用される半田接合部の劣化に相当する。この疲労や劣化は温度の上昇・下降幅に大きく依存する。この熱的なストレスをパワーサイクル寿命と呼ぶ。半導体素子にはパワーサイクル寿命が定義されており、図14に示すようにパワーサイクル寿命は接合温度の変化量に依存する。実施例4のように、半導体のパワーサイクル数が一定以上になった際、冷却能力を高めることで、温度上昇幅を小さくし、パワーサイクル数の増大を抑制することができる。 FIG. 14 shows the relationship between the amount of change in the case temperature and the lifetime of the semiconductor element according to Example 4. Since semiconductor elements repeatedly increase and decrease in temperature according to the conditions under which they are used, fatigue and deterioration progress due to thermal stress. This deterioration corresponds to the deterioration of the aluminum wire bonding portion on the chip surface of the semiconductor element and the deterioration of the solder bonding portion used for bonding between the insulating substrate and the base. This fatigue and deterioration greatly depends on the temperature rise / fall range. This thermal stress is called power cycle life. A semiconductor device has a defined power cycle life, and as shown in FIG. 14, the power cycle life depends on the amount of change in junction temperature. As in the fourth embodiment, when the number of power cycles of the semiconductor becomes equal to or higher than a certain level, the temperature increase width can be reduced and the increase in the number of power cycles can be suppressed by increasing the cooling capacity.
 実施例4では、直流電力を交流電力に変換する電力変換装置100で説明を行っているが、図15に示すように、交流電力を直流電力に変換する電力変換装置でも同様の効果が得られる。 In the fourth embodiment, the power conversion device 100 that converts DC power into AC power is described. However, as shown in FIG. 15, the same effect can be obtained with a power conversion device that converts AC power into DC power. .
 図16は実施例5に係る電力変換装置を示すものである。実施例1との差分は外気温検出部114が負荷出力検出部120と負荷出力蓄積部121で構成される点である。なお、実施例1と同じ構成要素については同じ符号を用い、重複説明を省く。 FIG. 16 shows a power converter according to the fifth embodiment. The difference from the first embodiment is that the outside air temperature detection unit 114 includes a load output detection unit 120 and a load output accumulation unit 121. In addition, the same code | symbol is used about the same component as Example 1, and duplication description is abbreviate | omitted.
 図17は実施例5に係る負荷の例として、風力発電システムの発電量の季節性の例を示している。図17の棒は各月の発電出力を表している。風力発電システムは季節によって発電量が大きく異なり、発電量が多い地域では、特にこの季節変動が大きい。通常、電力変換装置の電力変換効率は定格出力にあわせて設計されるため、定格よりも低い出力で運転した場合、電力変換効率が悪化する。そのため、負荷出力を蓄積部でデータベース化し、負荷出力が低下する期間において、通常以上に冷却能力を向上するシステムとすることで、電力変換効率の低下を抑制し、送電量を増やすことが可能となる。 FIG. 17 shows an example of the seasonality of the power generation amount of the wind power generation system as an example of the load according to the fifth embodiment. The bar in FIG. 17 represents the power generation output for each month. Wind power generation systems vary greatly depending on the season, and this seasonal variation is particularly large in regions where power generation is high. Usually, since the power conversion efficiency of a power converter device is designed according to a rated output, when operating with the output lower than a rating, power conversion efficiency deteriorates. Therefore, it is possible to reduce the power conversion efficiency and increase the amount of power transmission by making the load output a database in the storage unit and making the system improve the cooling capacity more than usual during the period when the load output decreases. Become.
 自然エネルギーは、電力系統の安定性を担保する仕組みとして送電量が枠として設定されているが、季節性、気象条件等により、枠より低い発電量となる場合がある。この差分を低減することは冷却のために追加で電力を使うより系統安定性等のために重要になる場合がある。例えば、発電した電力をより多く送電するために、通常より電力変換効率を向上させるために、冷却能力を向上させる制御モードがあり、発電量の低減を抑制することができる。 ∙ Renewable energy is set as a frame of power transmission as a mechanism to ensure the stability of the power system, but there are cases where the amount of power generation is lower than the frame due to seasonality and weather conditions. Reducing this difference may be more important for system stability, etc. than using additional power for cooling. For example, in order to transmit more generated power, there is a control mode for improving the cooling capacity in order to improve the power conversion efficiency than usual, and the reduction in the amount of power generation can be suppressed.
 尚、実施例5では風力発電システムを例にとって説明をしたが、太陽光発電システムや他の自然エネルギー電源のように季節によって出力特性が異なるシステムおいても負荷出力データを蓄積し、負荷パターンに応じて冷却能力を決定することで電力変換効率の低下を抑制することが可能になる。 In the fifth embodiment, the wind power generation system has been described as an example. However, load output data is accumulated even in a system with different output characteristics depending on the season, such as a solar power generation system and other natural energy power sources, and the load pattern is obtained. Accordingly, it is possible to suppress a decrease in power conversion efficiency by determining the cooling capacity accordingly.
 実施例5では、直流電力を交流電力に変換する電力変換装置100で説明を行っているが、図18に示すように、交流電力を直流電力に変換する電力変換装置でも同様の効果が得られる。また、図17では月や季節ごとの制御としたが、他の時間スパンにより制御切り替えをすることもできる。 In the fifth embodiment, the power conversion device 100 that converts DC power into AC power is described. However, as shown in FIG. 18, the same effect can be obtained with a power conversion device that converts AC power into DC power. . In FIG. 17, the control is performed for each month or season, but the control can be switched by another time span.
 図19は実施例6に係る電力変換装置100を示すものである。実施例1との差分は外気温検出部114が負荷出力予測部122で構成される点である。なお、実施例1と同じ構成要素については同じ符号を用い、重複説明を省く。 FIG. 19 shows the power conversion apparatus 100 according to the sixth embodiment. The difference from the first embodiment is that the outside air temperature detection unit 114 is configured by the load output prediction unit 122. In addition, the same code | symbol is used about the same component as Example 1, and duplication description is abbreviate | omitted.
 実施例5で述べたように、負荷出力が低い場合、半導体素子の損失が増大するため、負荷出力を予測する負荷出力予測値123を用いて電力変換装置の冷却能力を向上させることで、発電効率の低下を抑制することができる。なお、実施例1と同じ構成要素については同じ符号を用い、重複説明を省く。 As described in the fifth embodiment, when the load output is low, the loss of the semiconductor element increases. Therefore, by using the load output prediction value 123 that predicts the load output, the cooling capacity of the power conversion device is improved, thereby generating power. A decrease in efficiency can be suppressed. In addition, the same code | symbol is used about the same component as Example 1, and duplication description is abbreviate | omitted.
 実施例6の負荷出力予測部は例えば、風力発電システムの場合、風車よりも風下の位置に配置される風速予測部を介して出力予測を行い、冷却能力を調整する構成である。また、太陽光発電システムの場合でも天気を事前に天候予測部で予測し、天候予測に応じて出力予測を行い、冷却能力を調整する構成もとることができる。 For example, in the case of a wind power generation system, the load output prediction unit according to the sixth embodiment is configured to perform output prediction via a wind speed prediction unit disposed at a position downstream of the wind turbine and adjust the cooling capacity. Even in the case of a solar power generation system, the weather prediction unit can predict the weather in advance, perform output prediction according to the weather prediction, and adjust the cooling capacity.
 実施例6では直流電力を交流電力に変換する電力変換装置で説明を行っているが、図20に示すように、交流電力を直流電力に変換する電力変換装置でも同様の効果が得られる。 In the sixth embodiment, the description is given with the power conversion device that converts the DC power into the AC power. However, as shown in FIG. 20, the same effect can be obtained with the power conversion device that converts the AC power into the DC power.
100.電力変換装置、101.直流電源、102.半導体素子、103.冷却器、103a.空冷用ヒートシンク、103b.空冷用ヒートシンク放熱部、103c.ファン、103d.水冷用ヒートシンク、103e.水冷入水部、103f.水冷出水部、104.負荷、105.交流電源、106.電力変換装置の出力検出部、110a.外気温検出部を含む冷却システム、110b.出力検出部を含む冷却システム、110c.外湿度検出部を含む冷却システム、110d.半導体素子サイクル数検出を含む冷却システム、110e.負荷出力蓄積部を含む冷却システム、110f.負荷出力予測部を含む冷却システム、111.冷却器制御部、112.冷却器指令値、113.冷却器電源、114.外気温検出部、115.出力検出値、116.湿度検出部、117.外湿度検出値、118.サイクル数検出部、119.サイクル数、120.負荷出力検出部、121.負荷出力蓄積部、122.負荷出力予測部、123.負荷出力予測値、201.低温時の半導体素子のON電圧電流依存性、202.高温時の半導体素子のON電圧電流依存性、203.低温時の半導体素子のリカバリ損電流依存性、204.高温時の半導体素子のリカバリ損電流依存性、205.低温時の半導体素子のスイッチング損電流依存性、206.高温時の半導体素子のスイッチング損電流依存性、209.損失合計、210.接合-ケース間熱抵抗、211.ケース-ヒートシンク間熱抵抗、212.ヒートシンク-周囲間熱抵抗、213.チップ熱容量、214.モジュール熱容量、215.ヒートシンク熱容量、220.接合温度、221.モジュールケース温度、222.ヒートシンク温度、223.周囲温度 100. Power converter, 101. DC power supply, 102. Semiconductor element, 103. Cooler, 103a. Air cooling heat sink, 103b. Heat sink heat sink for air cooling, 103c. Fan, 103d. Heat sink for water cooling, 103e. Water-cooled water inlet, 103f. Water-cooled water discharge section, 104. Load, 105. AC power supply, 106. An output detector of the power converter, 110a. A cooling system including an outside air temperature detector, 110b. A cooling system including an output detector, 110c. A cooling system including an external humidity detector, 110d. A cooling system including semiconductor element cycle number detection; 110e. A cooling system including a load output accumulator; 110f. A cooling system including a load output prediction unit; Cooler controller, 112. Cooler command value, 113. Cooler power supply, 114. Outside air temperature detector, 115. Output detection value, 116. Humidity detection unit, 117. External humidity detection value 118. Cycle number detection unit, 119. Number of cycles, 120. Load output detector 121. Load output storage section, 122. Load output prediction unit, 123. Load output predicted value 201. 202. ON voltage current dependency of semiconductor element at low temperature; 203. ON voltage current dependency of semiconductor element at high temperature, 204. Recovery loss current dependency of semiconductor element at low temperature Dependence on recovery loss current of semiconductor element at high temperature, 205. Dependence on switching loss current of semiconductor element at low temperature, 206. 209. Switching loss current dependency of semiconductor element at high temperature Total loss, 210. Bond-case thermal resistance, 211. Case-heat sink thermal resistance, 212. Heat sink-to-ambient thermal resistance, 213. Chip heat capacity, 214. Module heat capacity, 215. Heat sink heat capacity, 220. Bonding temperature, 221. Module case temperature, 222. Heat sink temperature, 223. Ambient temperature

Claims (9)

  1.  電源と負荷に電気的に接続され、電源から受け取る電力を半導体素子のスイッチングにより変換する電力変換装置であって、
     該半導体素子を冷却する冷却器と、
     該冷却器の冷却能力を制御する冷却器制御部と、を備え、
     該冷却器制御部は外部センサとのインターフェイスを備えることを特徴とする電力変換装置。
    A power converter that is electrically connected to a power source and a load and converts power received from the power source by switching of a semiconductor element,
    A cooler for cooling the semiconductor element;
    A cooler control unit for controlling the cooling capacity of the cooler,
    The cooler control unit includes an interface with an external sensor.
  2.  請求項1記載の電力変換装置であって、
     該電力変換装置の外部気温を検出する検出器を備え、
     該冷却器制御部は、該電力変換装置外部の気温情報に基づき、該冷却器を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    A detector for detecting the external temperature of the power converter,
    The cooler control unit controls the cooler based on temperature information outside the power converter.
  3.  請求項1記載の電力変換装置であって、
     該電力変換装置の外部湿度を検出する検出器を備え、
     該冷却器制御部は、電力変換装置外部の湿度情報に基づき、該冷却器を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    A detector for detecting the external humidity of the power converter,
    The cooler control unit controls the cooler based on humidity information outside the power converter.
  4.  請求項1記載の電力変換装置であって、
     該電力変換装置の出力を検出する検出器を備え、
     該冷却器制御部は、該電力変換装置の出力の検出値に基づき、該冷却器を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    A detector for detecting the output of the power converter,
    The cooler control unit controls the cooler based on a detected value of an output of the power converter.
  5.  請求項1記載の電力変換装置であって、
     該電力変換装置の半導体素子の温度サイクルを記憶する温度サイクル記憶部を備え、
     該冷却器制御部は、該電力変換装置の半導体素子の温度サイクル情報に基づき、該冷却器を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    A temperature cycle storage unit for storing a temperature cycle of a semiconductor element of the power conversion device;
    The cooler control unit controls the cooler based on temperature cycle information of a semiconductor element of the power converter.
  6.  請求項4記載の電力変換装置であって、
     該電力変換装置の出力を蓄積する電力変換装置出力蓄積部を備え、
     該冷却器制御部は、該電力変換装置出力蓄積部の情報に基づき、該冷却器を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 4,
    A power converter output storage unit for storing the output of the power converter;
    The cooler control unit controls the cooler based on information of the power converter output accumulation unit.
  7.  請求項1記載の電力変換装置であって、
     該電力変換装置の出力を予想する予測器を備え、
     該冷却器制御部は、該電力変換装置の出力予測値に基づき、該冷却器を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    A predictor for predicting the output of the power converter,
    The cooler control unit controls the cooler based on an output predicted value of the power converter.
  8.  請求項1記載の電力変換装置であって、
     該冷却器の冷却能力を調整する冷却器電源を有し、
     該冷却器制御部は該冷却器電源を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    A cooler power supply for adjusting the cooling capacity of the cooler;
    The cooler control unit controls the cooler power supply.
  9.  自然エネルギー電源の発電電力を変換する電力変換装置であって、
     該電力変換装置の素子を冷却する冷却器を有し、
     該自然エネルギー電源の発電量に応じて該冷却器を制御する制御器を備えることを特徴とする電力変換装置。
    A power conversion device for converting the power generated by a natural energy power source,
    A cooler for cooling the elements of the power converter,
    A power converter comprising a controller that controls the cooler according to the amount of power generated by the natural energy power source.
PCT/JP2019/003736 2018-04-11 2019-02-01 Power conversion device WO2019198312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018075829A JP2019187105A (en) 2018-04-11 2018-04-11 Power conversion device
JP2018-075829 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198312A1 true WO2019198312A1 (en) 2019-10-17

Family

ID=68163977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003736 WO2019198312A1 (en) 2018-04-11 2019-02-01 Power conversion device

Country Status (2)

Country Link
JP (1) JP2019187105A (en)
WO (1) WO2019198312A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126138A (en) * 1995-10-31 1997-05-13 Kawamoto Seisakusho:Kk Water supply device
JPH10290561A (en) * 1997-04-14 1998-10-27 Hitachi Ltd Power converter
JP2009213262A (en) * 2008-03-04 2009-09-17 Sharp Corp Power-converting apparatus and power-generating system using the same
JP2012244825A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Electric power conversion apparatus
JP2016140167A (en) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 Cooling system
JP2016146737A (en) * 2015-02-03 2016-08-12 パナソニックIpマネジメント株式会社 Cooling apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126138A (en) * 1995-10-31 1997-05-13 Kawamoto Seisakusho:Kk Water supply device
JPH10290561A (en) * 1997-04-14 1998-10-27 Hitachi Ltd Power converter
JP2009213262A (en) * 2008-03-04 2009-09-17 Sharp Corp Power-converting apparatus and power-generating system using the same
JP2012244825A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Electric power conversion apparatus
JP2016140167A (en) * 2015-01-27 2016-08-04 トヨタ自動車株式会社 Cooling system
JP2016146737A (en) * 2015-02-03 2016-08-12 パナソニックIpマネジメント株式会社 Cooling apparatus

Also Published As

Publication number Publication date
JP2019187105A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
KR101366880B1 (en) Solar power inverters, including temperature-controlled solar power inverters, and associated systems and methods
CN106256176A (en) Electronic equipment
KR102101901B1 (en) Apparatus and method for driving inverter
US20120096871A1 (en) Dynamic switching thermoelectric thermal management systems and methods
JP2007181312A (en) Power converter and its control method
JP2017184298A (en) Electric power conversion system
WO2017119126A1 (en) Semiconductor device
CN101470449A (en) Cooling control system and cooling control method
CN108072819B (en) IGBT failure detection method and device
JP5206483B2 (en) Power converter cooling system
Zhou et al. Thermal profile analysis of doubly-fed induction generator based wind power converter with air and liquid cooling methods
Wang et al. High-efficiency photovoltaic-thermoelectric hybrid energy harvesting system based on functionally multiplexed intelligent thermal management
WO2019198312A1 (en) Power conversion device
Belarbi et al. Experimental investigation on controlled cooling by coupling of thermoelectric and an air impinging jet for CPU
JP6653122B2 (en) Electric compressor, control device and monitoring method
JP2018042355A (en) Electric power conversion system and electric power conversion method
JPWO2016170584A1 (en) Power converter
CN117030307A (en) Heat dissipation evaluation method and system based on intelligent power module wafer junction temperature
JP5195507B2 (en) Internal air temperature estimation method for closed type power conversion unit and cooling system for power conversion device
JP7065687B2 (en) Thermoelectric converter
JP2007089256A (en) Dc-dc converter, semiconductor module and temperature detector of the same
Zhang et al. Optimized thermoelectric module-heat sink assemblies for precision temperature control
Nguyen et al. Effect of potting materials on LED bulb's driver temperature
Szobolovszky et al. Waste heat recovery in solid-state lighting based on thin film thermoelectric generators
CN113555492A (en) Electronic waste heat collecting device and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785120

Country of ref document: EP

Kind code of ref document: A1