JP7065687B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP7065687B2
JP7065687B2 JP2018096814A JP2018096814A JP7065687B2 JP 7065687 B2 JP7065687 B2 JP 7065687B2 JP 2018096814 A JP2018096814 A JP 2018096814A JP 2018096814 A JP2018096814 A JP 2018096814A JP 7065687 B2 JP7065687 B2 JP 7065687B2
Authority
JP
Japan
Prior art keywords
temperature side
power generation
temperature
generation element
thermoelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018096814A
Other languages
Japanese (ja)
Other versions
JP2019204809A (en
Inventor
孝之 森岡
彰 山下
秀忠 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018096814A priority Critical patent/JP7065687B2/en
Publication of JP2019204809A publication Critical patent/JP2019204809A/en
Application granted granted Critical
Publication of JP7065687B2 publication Critical patent/JP7065687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱エネルギーを電気エネルギーに変換する熱電変換装置に関する。 The present invention relates to a thermoelectric conversion device that converts thermal energy into electrical energy.

従来、ゼーベック効果が生じる熱電変換材料を使用して、熱エネルギーを電気エネルギーに変換する熱電変換装置がある。熱電変換装置には、高い発電出力を得ることを目的として、熱源に近い高温側熱電発電素子、および冷却源に近い低温側熱電発電素子を、熱源と冷却源との間に積層して配置したカスケード型熱電変換装置がある。 Conventionally, there is a thermoelectric conversion device that converts thermal energy into electrical energy by using a thermoelectric conversion material that produces a Zeebeck effect. In the thermoelectric conversion device, a high-temperature side thermoelectric power generation element close to the heat source and a low-temperature side thermoelectric power generation element close to the cooling source are stacked and arranged between the heat source and the cooling source for the purpose of obtaining a high power generation output. There is a cascade type thermoelectric converter.

高温側熱電発電素子を構成する熱電変換材料と、低温側熱電発電素子を構成する熱電変換材料とは異なる。高温側熱電発電素子は、例えば300℃から600℃程度の高温領域で比較的高い発電出力が得られるマグネシウムシリサイド(MgSi)などの熱電変換材料で構成されている。低温側熱電発電素子は、例えば室温から300℃程度の低温領域で比較的高い発電出力が得られるビスマステルル(BiTe)などの熱電変換材料で構成されている。従来、このような高温側熱電発電素子および低温側熱電発電素子を備えた熱電変換装置が開示されている(例えば、非特許文献1参照)。 The thermoelectric conversion material constituting the high-temperature side thermoelectric power generation element and the thermoelectric conversion material constituting the low-temperature side thermoelectric power generation element are different. The high-temperature side thermoelectric power generation element is made of a thermoelectric conversion material such as magnesium silicide (MgSi), which can obtain a relatively high power generation output in a high temperature region of, for example, about 300 ° C. to 600 ° C. The low-temperature side thermoelectric power generation element is made of a thermoelectric conversion material such as bismuth tellurium (BiTe), which can obtain a relatively high power generation output in a low temperature region of about 300 ° C. from room temperature, for example. Conventionally, a thermoelectric conversion device including such a high temperature side thermoelectric power generation element and a low temperature side thermoelectric power generation element has been disclosed (see, for example, Non-Patent Document 1).

熱電変換装置では、熱源の温度が想定以上に上昇すると、熱電発電素子における熱源から受熱する部分の温度が上限耐熱温度を超過し、熱電発電素子の発電特性が劣化する可能性がある。このような発電特性の劣化による熱電発電素子の寿命の短縮を防ぐために、熱電発電素子に帰還する電流を増加させ、ペルチェ効果によって熱電発電素子における熱源から受熱する部分の温度を低下させる技術が開示されている(例えば、特許文献1参照)。 In the thermoelectric conversion device, if the temperature of the heat source rises more than expected, the temperature of the portion of the thermoelectric power generation element that receives heat from the heat source exceeds the upper limit heat resistant temperature, and the power generation characteristics of the thermoelectric power generation element may deteriorate. In order to prevent the life of the thermoelectric power generation element from being shortened due to such deterioration of power generation characteristics, a technique for increasing the current returned to the thermoelectric power generation element and lowering the temperature of the portion of the thermoelectric power generation element that receives heat from the heat source by the Pelche effect is disclosed. (See, for example, Patent Document 1).

特開2015-188278号公報Japanese Unexamined Patent Publication No. 2015-188278

H.T.Kaibe, et al, "Development of thermoelectric generating cascade modules using silicide and Bi-Te", 23rd International Conference on Thermoelectrics, Australia, 2004.H.T.Kaibe, et al, "Development of thermoelectric generating cascade modules using constituting and Bi-Te", 23rd International Conference on Thermoelectrics, Australia, 2004.

カスケード型熱電変換装置では、特に低温側熱電発電素子において、ビスマステルルなどの熱電変換材料、熱電変換材料同士を電気的に接続する電極材料、および電極と低温側熱電発電素子との接合部分は、一定の温度以上になると材料の変質または材料同士の相互拡散などによって低温側熱電発電素子の発電特性の低下、あるいは、低温側熱電発電素子の断線または短絡による熱電変換装置の故障に繋がることがある。 In the cascade type thermoelectric conversion device, especially in the low temperature side thermoelectric power generation element, the thermoelectric conversion material such as bismastellu, the electrode material for electrically connecting the thermoelectric conversion materials, and the joint portion between the electrode and the low temperature side thermoelectric power generation element are used. If the temperature rises above a certain level, the power generation characteristics of the low-temperature side thermoelectric power generation element may deteriorate due to deterioration of the materials or mutual diffusion between the materials, or the thermoelectric conversion device may fail due to disconnection or short circuit of the low-temperature side thermoelectric power generation element. ..

このような問題の対策として、カスケード型熱電変換装置に特許文献1の技術を適用し、低温側熱電発電素子の帰還電流を増加させる電流制御を行うことによって、低温側熱電発電素子における高温側の温度を低下させることができる。しかし、この場合は同時に低温側熱電発電素子の低温側の温度が上昇し、低温側熱電発電素子の低温側が上限耐熱温度を超えてしまうことがある。低温側熱電発電素子の低温側の温度が上昇する理由は、熱電変換装置の熱抵抗がペルチェ効果によって低下し、冷却源と低温側熱電発電素子における低温側との間の熱抵抗値の割合が、冷却源と熱源との間の熱抵抗値に対して大きくなるためである。 As a countermeasure against such a problem, the technique of Patent Document 1 is applied to the cascade type thermoelectric conversion device, and the current control for increasing the feedback current of the low temperature side thermoelectric power generation element is performed to control the high temperature side of the low temperature side thermoelectric power generation element. The temperature can be lowered. However, in this case, the temperature on the low temperature side of the low temperature side thermoelectric power generation element may rise at the same time, and the low temperature side of the low temperature side thermoelectric power generation element may exceed the upper limit heat resistant temperature. The reason why the temperature on the low temperature side of the low temperature side thermoelectric power generation element rises is that the thermal resistance of the thermoelectric converter decreases due to the Pelche effect, and the ratio of the thermal resistance value between the cooling source and the low temperature side of the low temperature side thermoelectric power generation element is This is because it increases with respect to the thermal resistance value between the cooling source and the heat source.

また、熱電変換装置の熱抵抗が低下することによって熱源から熱電変換装置を通って冷却源に流入する貫通熱量が増加するため、当該貫通熱量が冷却源の冷却能力を超過し、冷却源によって熱電変換装置の温度上昇を抑制することができなくなり熱電変換装置の故障に繋がる。具体的には、低温側熱電発電素子の低温側が上限耐熱温度を超えることによって、冷却源の熱応力が引き起こす熱電変換材料の機械的損傷、または熱電発電素子の発電特性の劣化などが挙げられる。 Further, as the thermal resistance of the thermoelectric conversion device decreases, the amount of penetrating heat flowing from the heat source through the thermoelectric conversion device to the cooling source increases, so that the penetrating heat amount exceeds the cooling capacity of the cooling source, and the cooling source causes thermoelectricity. It becomes impossible to suppress the temperature rise of the converter, which leads to the failure of the thermoelectric converter. Specifically, when the low temperature side of the low temperature side thermoelectric power generation element exceeds the upper limit heat resistant temperature, mechanical damage of the thermoelectric conversion material caused by the thermal stress of the cooling source, deterioration of the power generation characteristics of the thermoelectric power generation element, and the like can be mentioned.

さらに、冷却源が自動車などで用いられるラジエタ―で採用されている液冷方式である場合、ラジエタ―液の温度上昇およびラジエタ―液の沸騰によって冷却能力が低下する。冷却源がヒートパイプの場合、ヒートパイプ内の冷媒のドライアウトによって冷却能力が低下する。これらの冷却能力の低下は、熱電変換装置の温度上昇を引き起こし、熱電変換装置全体の熱平衡が崩れることによる熱電変換装置の故障に繋がる。ラジエタ―で採用されている液冷方式を他の冷却源と共用している場合、ラジエター液の温度上昇は他の冷却源の冷却能力を低下させるため、貫通熱量を増加させる温度制御は望ましくない場合がある。 Further, when the cooling source is the liquid cooling method adopted in the radiator used in an automobile or the like, the cooling capacity is lowered due to the temperature rise of the radiator liquid and the boiling of the radiator liquid. When the cooling source is a heat pipe, the cooling capacity is reduced due to the dryout of the refrigerant in the heat pipe. These reductions in cooling capacity cause the temperature of the thermoelectric conversion device to rise, leading to failure of the thermoelectric conversion device due to the disruption of the thermal equilibrium of the entire thermoelectric conversion device. When the liquid cooling method used in the radiator is shared with other cooling sources, temperature control that increases the amount of through heat is not desirable because the temperature rise of the radiator liquid reduces the cooling capacity of other cooling sources. In some cases.

本発明は、このような問題を解決するためになされたものであり、発電特性の劣化を抑制して故障を防止することが可能な熱電変換装置を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a thermoelectric conversion device capable of suppressing deterioration of power generation characteristics and preventing failure.

上記の課題を解決するために、本発明による熱電変換装置は、熱源と、熱源に対向して設けられた冷却源と、熱源と冷却源との間に積層され、熱源側に設けられた高温側熱電発電素子、および冷却源側に設けられた低温側熱電発電素子と、高温側熱電発電素子と低温側熱電発電素子との境界部分に設けられ、当該境界部分の温度を測定する中間温度測定部と、高温側熱電発電素子が出力する電力を調整する高温側負荷調整回路と、中間温度測定部が測定した温度に基づいて、高温側負荷調整回路を制御する温度制御部とを備え、温度制御部は、中間温度測定部が測定した温度が予め定められた温度を超えたとき、高温側熱電発電素子に帰還する電流量が減少するように高温側負荷調整回路を制御し、予め定められた温度は、低温側熱電発電素子の過熱による故障を防止するために設定された温度である。 In order to solve the above problems, the thermoelectric conversion device according to the present invention is laminated between a heat source, a cooling source provided facing the heat source, and the heat source and the cooling source, and has a high temperature provided on the heat source side. Intermediate temperature measurement provided at the boundary between the side thermoelectric power generation element, the low temperature side thermoelectric power generation element provided on the cooling source side, and the high temperature side thermoelectric power generation element and the low temperature side thermoelectric power generation element, and measuring the temperature of the boundary part. It is equipped with a unit, a high temperature side load adjustment circuit that adjusts the power output by the high temperature side thermoelectric power generation element, and a temperature control unit that controls the high temperature side load adjustment circuit based on the temperature measured by the intermediate temperature measurement unit. The control unit controls the high-temperature side load adjustment circuit so that the amount of current returned to the high-temperature side thermoelectric generation element decreases when the temperature measured by the intermediate temperature measurement unit exceeds a predetermined temperature, and is predetermined. The temperature is set to prevent failure due to overheating of the low-temperature side thermoelectric power generation element .

本発明によると、熱電変換装置は、熱源と、熱源に対向して設けられた冷却源と、熱源と冷却源との間に積層され、熱源側に設けられた高温側熱電発電素子、および冷却源側に設けられた低温側熱電発電素子と、高温側熱電発電素子と低温側熱電発電素子との境界部分に設けられ、当該境界部分の温度を測定する中間温度測定部と、高温側熱電発電素子が出力する電力を調整する高温側負荷調整回路と、中間温度測定部が測定した温度に基づいて、高温側負荷調整回路を制御する温度制御部とを備え、温度制御部は、中間温度測定部が測定した温度が予め定められた温度を超えたとき、高温側熱電発電素子に帰還する電流量が減少するように高温側負荷調整回路を制御し、予め定められた温度は、低温側熱電発電素子の過熱による故障を防止するために設定された温度であるため、発電特性の劣化を抑制して故障を防止することが可能となる。
According to the present invention, the thermoelectric conversion device is laminated with a heat source, a cooling source provided facing the heat source, and a high-temperature side thermoelectric power generation element provided between the heat source and the cooling source, and cooling. An intermediate temperature measuring unit provided at the boundary between the low temperature side thermoelectric power generation element provided on the source side, the high temperature side thermoelectric power generation element and the low temperature side thermoelectric power generation element, and measuring the temperature of the boundary part, and the high temperature side thermoelectric power generation. It is equipped with a high temperature side load adjustment circuit that adjusts the power output by the element and a temperature control unit that controls the high temperature side load adjustment circuit based on the temperature measured by the intermediate temperature measurement unit. The temperature control unit measures the intermediate temperature. When the temperature measured by the unit exceeds a predetermined temperature, the high temperature side load adjustment circuit is controlled so that the amount of current returned to the high temperature side thermoelectric generation element decreases, and the predetermined temperature is the low temperature side thermoelectric. Since the temperature is set to prevent failure due to overheating of the power generation element, it is possible to suppress deterioration of power generation characteristics and prevent failure.

本発明の実施の形態1による熱電変換装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the thermoelectric conversion apparatus according to Embodiment 1 of this invention. 本発明の実施の形態1による高温側負荷調整回路の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the high temperature side load adjustment circuit by Embodiment 1 of this invention. 本発明の実施の形態1による高温側熱電発電素子における帰還電流に対する熱抵抗の関係を示す図である。It is a figure which shows the relationship of the thermal resistance with respect to the feedback current in the high temperature side thermoelectric power generation element by Embodiment 1 of this invention. 本発明の実施の形態2による熱電変換装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the thermoelectric conversion apparatus according to Embodiment 2 of this invention. 本発明の実施の形態3による熱電変換装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the thermoelectric conversion apparatus according to Embodiment 3 of this invention.

本発明の実施の形態について、図面に基づいて以下に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

<実施の形態1>
<全体構成>
図1は、本発明の実施の形態1による熱電変換装置1の構成の一例を示す模式図である。なお、熱電変換装置1は、熱源5の温度が600℃付近、冷却源6の温度が80℃付近での使用を想定している。
<Embodiment 1>
<Overall configuration>
FIG. 1 is a schematic diagram showing an example of the configuration of the thermoelectric conversion device 1 according to the first embodiment of the present invention. The thermoelectric conversion device 1 is assumed to be used when the temperature of the heat source 5 is around 600 ° C and the temperature of the cooling source 6 is around 80 ° C.

図1に示すように、熱電変換装置1は、熱源5と冷却源6との間の熱電変換部において、熱源5側に設けられた高温側熱電発電素子2と、冷却源6側に設けられた低温側熱電発電素子3とが積層した構造となっている。高温側熱電発電素子2は、高温側負荷調整回路9を介して外部負荷10に接続されている。高温側負荷調整回路9の詳細については後述する。低温側熱電発電素子3は、外部負荷10に接続されている。 As shown in FIG. 1, the thermoelectric conversion device 1 is provided on the high temperature side thermoelectric power generation element 2 provided on the heat source 5 side and on the cooling source 6 side in the thermoelectric conversion unit between the heat source 5 and the cooling source 6. It has a structure in which the low-temperature side thermoelectric power generation element 3 is laminated. The high temperature side thermoelectric power generation element 2 is connected to the external load 10 via the high temperature side load adjusting circuit 9. The details of the high temperature side load adjusting circuit 9 will be described later. The low temperature side thermoelectric power generation element 3 is connected to the external load 10.

高温側熱電発電素子2を構成する熱電変換材料には、600℃付近の温度領域において無次元性能指数ZTが高い材料が適している。600℃付近の温度領域において無次元性能指数ZTが高い材料としては、例えば、マグネシウムシリサイド(MgSi)などのシリサイド系材料、コバルトアンチモン(CoSb)などのスクッテルダイト系材料、および鉛テルル(PbTe)系材料などが挙げられる。低温側熱電発電素子3を構成する熱電変換材料には、室温から200℃付近の温度領域において無次元性能指数ZTが比較的高いビスマステルル系材料などが適している。 As the thermoelectric conversion material constituting the high-temperature side thermoelectric power generation element 2, a material having a high dimensionless figure of merit ZT in a temperature region around 600 ° C. is suitable. Materials having a high non-dimensional performance index ZT in the temperature range around 600 ° C. include, for example, a silicide-based material such as magnesium silicide (MgSi), a scutterdite-based material such as cobalt antimony (CoSb), and lead tellurium (PbTe). Examples include system materials. As the thermoelectric conversion material constituting the low-temperature side thermoelectric power generation element 3, a bismuth tellurium-based material having a relatively high dimensionless figure of merit ZT in the temperature range from room temperature to around 200 ° C. is suitable.

高温側熱電発電素子2および低温側熱電発電素子3のそれぞれは、逆極性の2種類の半導体材料からなるp型半導体とn型半導体とを電極で交互に直列に接続することによってπ型の熱電発電素子として構成されており、高温側熱電発電素子2および低温側熱電発電素子3の電流値および電圧値を適切に設計することができる。各半導体を接続する電極には、ニッケルまたは銅など、電気伝導性および熱伝導性が高い金属を用いる。 Each of the high-temperature side thermoelectric power generation element 2 and the low-temperature side thermoelectric power generation element 3 is a π-type thermoelectric power generation element in which p-type semiconductors and n-type semiconductors made of two types of semiconductor materials having opposite polarities are alternately connected in series by electrodes. It is configured as a power generation element, and the current value and the voltage value of the high temperature side thermoelectric power generation element 2 and the low temperature side thermoelectric power generation element 3 can be appropriately designed. For the electrodes connecting each semiconductor, a metal with high electrical and thermal conductivity such as nickel or copper is used.

中間セラミック基板4は、高温側熱電発電素子2と低温側熱電発電素子3との間に設けられている。中間セラミック基板4は、熱伝導性および耐熱性が高く、絶縁性を有し、かつ機械特性も良好である窒化アルミニウム(AlN)または酸化アルミニウム(Al)などで構成される。 The intermediate ceramic substrate 4 is provided between the high temperature side thermoelectric power generation element 2 and the low temperature side thermoelectric power generation element 3. The intermediate ceramic substrate 4 is made of aluminum nitride (AlN) or aluminum oxide (Al 2 O 3 ), which has high thermal conductivity and heat resistance, has insulating properties, and has good mechanical properties.

中間温度測定部7は、熱電対などで構成され、高温側熱電発電素子2と低温側熱電発電素子3との境界部分に設けられ、当該境界部分の温度を測定する。図1では、中間温度測定部7は、中間セラミック基板4に埋め込まれているが、これに限るものではない。例えば、中間温度測定部7は、中間セラミック基板4に直接貼り付けまたは接着してもよい。中間温度測定部7が測定する温度は、低温側熱電発電素子3の最高温度と同程度となるため、低温側熱電発電素子3の過熱による故障を防止するために、高温側熱電発電素子2と低温側熱電発電素子3との境界部分に中間温度測定部7を設けることは有効である。 The intermediate temperature measuring unit 7 is composed of a thermocouple or the like, is provided at a boundary portion between the high temperature side thermoelectric power generation element 2 and the low temperature side thermoelectric power generation element 3, and measures the temperature of the boundary portion. In FIG. 1, the intermediate temperature measuring unit 7 is embedded in the intermediate ceramic substrate 4, but is not limited to this. For example, the intermediate temperature measuring unit 7 may be directly attached or adhered to the intermediate ceramic substrate 4. Since the temperature measured by the intermediate temperature measuring unit 7 is about the same as the maximum temperature of the low temperature side thermoelectric power generation element 3, in order to prevent a failure due to overheating of the low temperature side thermoelectric power generation element 3, the high temperature side thermoelectric power generation element 2 is used. It is effective to provide the intermediate temperature measuring unit 7 at the boundary portion with the low temperature side thermoelectric power generation element 3.

中間温度測定部7は、温度制御部8に接続されている。温度制御部8は、高温側負荷調整回路9に接続されており、中間温度測定部7が測定した温度に基づいて高温側負荷調整回路9を制御する。具体的には、温度制御部8は、中間温度測定部7が熱電対である場合、当該中間温度測定部7で測定された起電力を温度に換算する。温度制御部8は、中間温度測定部7で測定される温度が予め設定した温度を超えないように高温側負荷調整回路9の電気的負荷を調整し、高温側熱電発電素子2の帰還電流量を制御する。すなわち、高温側負荷調整回路9は、温度制御部8の制御に従って、高温側熱電発電素子2が出力する電力を調整する。 The intermediate temperature measuring unit 7 is connected to the temperature control unit 8. The temperature control unit 8 is connected to the high temperature side load adjustment circuit 9, and controls the high temperature side load adjustment circuit 9 based on the temperature measured by the intermediate temperature measurement unit 7. Specifically, when the intermediate temperature measuring unit 7 is a thermocouple, the temperature control unit 8 converts the electromotive force measured by the intermediate temperature measuring unit 7 into a temperature. The temperature control unit 8 adjusts the electrical load of the high temperature side load adjustment circuit 9 so that the temperature measured by the intermediate temperature measurement unit 7 does not exceed a preset temperature, and the feedback current amount of the high temperature side thermoelectric power generation element 2. To control. That is, the high temperature side load adjusting circuit 9 adjusts the electric power output by the high temperature side thermoelectric power generation element 2 according to the control of the temperature control unit 8.

図1に示すように、高温側熱電発電素子2の受熱面には熱源5が接触し、低温側熱電発電素子3の冷却面には冷却源6が接触しており、熱電変換装置1の熱電変換部に温度差を与えている。 As shown in FIG. 1, the heat source 5 is in contact with the heat receiving surface of the high temperature side thermoelectric power generation element 2, and the cooling source 6 is in contact with the cooling surface of the low temperature side thermoelectric power generation element 3. A temperature difference is given to the conversion unit.

熱源5は、具体的には、高温側熱電発電素子2の受熱面にフィン型の熱交換器を設け、エンジンの排気ガスまたは工場の装置などから排出される熱排気、あるいは、ボイラーなどから捨てられた水蒸気などの熱エネルギーを有する熱流体を熱交換器に通過させることによって、熱を高温側熱電発電素子2に伝えることができる。また、高温側熱電発電素子2の受熱面を工業用の熱処理炉、あるいは自動車のエンジンなどの内燃機関の高温部に貼り付けまたは圧接することによって、熱を高温側熱電発電素子2に伝えることができる。このとき、熱源5と高温側熱電発電素子2の受熱面との間にカーボンシートなどの熱伝導材を挟むことによって、接触界面における熱伝導性を向上させることができる。 Specifically, the heat source 5 is provided with a fin-type heat exchanger on the heat receiving surface of the high-temperature side thermoelectric power generation element 2, and is discarded from the exhaust gas of the engine, the heat exhaust discharged from the factory equipment, or the boiler. Heat can be transferred to the high-temperature side thermoelectric power generation element 2 by passing a heat fluid having heat energy such as steam that has been generated through the heat exchanger. Further, heat can be transferred to the high temperature side thermoelectric power generation element 2 by attaching or pressing the heat receiving surface of the high temperature side thermoelectric power generation element 2 to a high temperature part of an internal combustion engine such as an industrial heat treatment furnace or an automobile engine. can. At this time, by sandwiching a heat conductive material such as a carbon sheet between the heat source 5 and the heat receiving surface of the high temperature side thermoelectric power generation element 2, the heat conductivity at the contact interface can be improved.

冷却源6は、具体的には、ラジエタ―液または冷却水が内部を流れる液冷式のシートシンクであり、低温側熱電発電素子3の冷却面からの熱を受ける。また、冷却源6は、簡素な構成とするために、アルミニウム製のフィン型空冷式の熱交換器とし、大気の温度と熱交換するようにしてもよい。 Specifically, the cooling source 6 is a liquid-cooled sheet sink through which radiator liquid or cooling water flows, and receives heat from the cooling surface of the low-temperature side thermoelectric power generation element 3. Further, the cooling source 6 may be a fin-type air-cooled heat exchanger made of aluminum to exchange heat with the temperature of the atmosphere in order to have a simple structure.

<高温側負荷調整回路9の構成>
高温側熱電発電素子2の正極および負極のそれぞれに接続された出力電力端子は、高温側負荷調整回路9の入力側正極端子および入力側負極端子のそれぞれに接続されている。高温側負荷調整回路9の出力側には、バッテリーまたは動力機などの外部負荷10が接続されている。外部負荷10は、高温側負荷調整回路9から出力された電力を利用して動作する。
<Structure of high temperature side load adjustment circuit 9>
The output power terminals connected to the positive electrode and the negative electrode of the high temperature side thermoelectric power generation element 2 are connected to the input side positive electrode terminal and the input side negative electrode terminal of the high temperature side load adjustment circuit 9, respectively. An external load 10 such as a battery or a motor is connected to the output side of the high temperature side load adjusting circuit 9. The external load 10 operates by using the electric power output from the high temperature side load adjusting circuit 9.

高温側負荷調整回路9は、リニアレギュレータなどの安価で単純な回路方式を用いることができるが、高温側熱電発電素子2によって発電した電力をより効率的に利用するために、入力電力に対する出力電力のエネルギー変換効率がより高い回路方式であるスイッチングレギュレータを用いることが望ましい。スイッチングレギュレータは、内蔵されるスイッチング素子のオンオフ制御によって、入力される直流電力を昇降圧して出力するDC-DCコンバータである。スイッチングレギュレータは、高温側熱電発電素子2の入力側から高温側負荷調整回路9をみた負荷を出力電圧の昇降圧比によって制御することができるため、リニアレギュレータよりも広い範囲で高温側熱電発電素子2にかかる負荷の値を制御することができ、高温側熱電発電素子2の負荷制御に有効な回路方式である。 The high temperature side load adjustment circuit 9 can use an inexpensive and simple circuit method such as a linear regulator, but in order to more efficiently use the power generated by the high temperature side thermoelectric power generation element 2, the output power with respect to the input power. It is desirable to use a switching regulator, which is a circuit system with higher energy conversion efficiency. The switching regulator is a DC-DC converter that steps up and down the input DC power and outputs it by controlling the on / off of the built-in switching element. Since the switching regulator can control the load of the high temperature side load adjustment circuit 9 from the input side of the high temperature side thermoelectric power generation element 2 by the step-up / down ratio of the output voltage, the high temperature side thermoelectric power generation element 2 has a wider range than the linear regulator. It is a circuit method that can control the value of the load applied to the high temperature side thermoelectric power generation element 2 and is effective for load control.

図2は、高温側負荷調整回路9の構成の一例を示す模式図である。図2の例では、昇降圧型チョッパ回路を示しているが、熱電変換装置1の入出力仕様に応じてSEPIC(Single Ended Primary Inductance Converter)など、異なる回路構成のスイッチングレギュレータ回路を使用することができる。 FIG. 2 is a schematic diagram showing an example of the configuration of the high temperature side load adjusting circuit 9. In the example of FIG. 2, a buck-boost chopper circuit is shown, but a switching regulator circuit having a different circuit configuration such as SEPIC (Single Ended Primary Inductance Converter) can be used depending on the input / output specifications of the thermoelectric converter 1. ..

図2に示すように、高温側負荷調整回路9は、キャパシタ11,17と、スイッチング素子12,15と、ダイオード13,16と、インダクタ14とを備えている。キャパシタ11は、入力電力波形のリップル電圧を小さくするために、入力に並列に接続されている。スイッチング素子12は、ソース電極がインダクタ14に接続され、ドレイン電極が入力正極側に接続されている。ダイオード13は、アノードがGNDラインに接続され、カソードがスイッチング素子12およびインダクタ14のラインに接続されている。スイッチング素子15は、ドレイン電極がGNDラインに接続され、ソース電極がインダクタ14およびダイオード16のラインに接続されている。ダイオード16は、アノードがインダクタ14に接続され、カソードが外部負荷10の正側に接続されている。キャパシタ17は、出力電力波形のリップル電圧を小さくするために、出力に並列に接続されている。 As shown in FIG. 2, the high temperature side load adjusting circuit 9 includes capacitors 11 and 17, switching elements 12 and 15, diodes 13 and 16, and an inductor 14. The capacitor 11 is connected in parallel with the input in order to reduce the ripple voltage of the input power waveform. In the switching element 12, the source electrode is connected to the inductor 14, and the drain electrode is connected to the input positive electrode side. In the diode 13, the anode is connected to the GND line and the cathode is connected to the line of the switching element 12 and the inductor 14. In the switching element 15, the drain electrode is connected to the GND line, and the source electrode is connected to the inductor 14 and the diode 16 line. In the diode 16, the anode is connected to the inductor 14, and the cathode is connected to the positive side of the external load 10. The capacitor 17 is connected in parallel with the output in order to reduce the ripple voltage of the output power waveform.

スイッチング素子12,15のPWM(Pulse Width Modulation)によるゲート制御信号は、温度制御部8から入力される。スイッチング素子12,15のデューティ比を制御することによって高温側熱電発電素子2の負荷調整が行われる。高温側熱電発電素子2からみた出力側の負荷を大きくする制御を行う場合、スイッチング素子15のデューティ比を1とし、スイッチング素子12のデューティ比を小さく制御することによって、高温側熱電発電素子2から入力される入力電流値を減少させる。高温側負荷調整回路9から出力される出力電圧は、高温側熱電発電素子2から入力される入力電圧よりも小さくなり、高温側負荷調整回路9から出力される出力電流は、高温側熱電発電素子2から入力される入力電流よりも大きくなる。このように、高温側熱電発電素子2からみた出力側の負荷を大きくする制御を行う場合、高温側負荷調整回路9は降圧制御を行う。 The gate control signal by PWM (Pulse Width Modulation) of the switching elements 12 and 15 is input from the temperature control unit 8. By controlling the duty ratios of the switching elements 12 and 15, the load of the high temperature side thermoelectric power generation element 2 is adjusted. When controlling to increase the load on the output side as seen from the high temperature side thermoelectric power generation element 2, the duty ratio of the switching element 15 is set to 1, and the duty ratio of the switching element 12 is controlled to be small, so that the high temperature side thermoelectric power generation element 2 is used. Decrease the input current value to be input. The output voltage output from the high temperature side load adjustment circuit 9 is smaller than the input voltage input from the high temperature side thermoelectric power generation element 2, and the output current output from the high temperature side load adjustment circuit 9 is the high temperature side thermoelectric power generation element. It becomes larger than the input current input from 2. In this way, when controlling to increase the load on the output side as seen from the high temperature side thermoelectric power generation element 2, the high temperature side load adjusting circuit 9 performs step-down control.

一方、高温側熱電発電素子2からみた出力側の負荷を小さくする制御を行う場合、スイッチング素子12のデューティ比を1とし、スイッチング素子15のデューティ比を大きく制御することによって、スイッチング素子15を通って高温側熱電発電素子2に帰還する帰還電流の成分が増加する。高温側負荷調整回路9から出力される出力電圧は、高温側熱電発電素子2から入力される入力電圧よりも大きくなり、高温側負荷調整回路9から出力される出力電流は、高温側熱電発電素子2から入力される入力電流よりも小さくなる。このように、高温側熱電発電素子2からみた出力側の負荷を小さくする制御を行う場合、高温側負荷調整回路9は昇圧制御を行う。 On the other hand, when controlling to reduce the load on the output side as seen from the high temperature side thermoelectric power generation element 2, the duty ratio of the switching element 12 is set to 1, and the duty ratio of the switching element 15 is largely controlled to pass through the switching element 15. The component of the feedback current that returns to the high temperature side thermoelectric power generation element 2 increases. The output voltage output from the high temperature side load adjustment circuit 9 is larger than the input voltage input from the high temperature side thermoelectric power generation element 2, and the output current output from the high temperature side load adjustment circuit 9 is the high temperature side thermoelectric power generation element. It becomes smaller than the input current input from 2. In this way, when controlling to reduce the load on the output side as seen from the high temperature side thermoelectric power generation element 2, the high temperature side load adjusting circuit 9 performs boost control.

高温側負荷調整回路9を用いて上記の制御を行うことによって、高温側熱電発電素子2にかかる負荷を増減させることができる。 By performing the above control using the high temperature side load adjusting circuit 9, the load applied to the high temperature side thermoelectric power generation element 2 can be increased or decreased.

また、ゼーベック効果によって、高温側熱電発電素子2は、その開放電圧の1/2付近の印加電圧において最大の出力電力が得られる。従って、高温側負荷調整回路9は、高温側熱電発電素子2の印加電圧を制御することによって、高温側熱電発電素子2が最大電力を出力する制御を行うことができる。 Further, due to the Zeebeck effect, the high temperature side thermoelectric power generation element 2 can obtain the maximum output power at an applied voltage of about ½ of its open circuit voltage. Therefore, the high temperature side load adjusting circuit 9 can control the high temperature side thermoelectric power generation element 2 to output the maximum power by controlling the applied voltage of the high temperature side thermoelectric power generation element 2.

<効果>
本実施の形態1によれば、高温側熱電発電素子2からみた出力側の負荷を小さくする制御を行うと、高温側熱電発電素子2への帰還電流は増加するため、ペルチェ効果およびトムソン効果による高温側熱電発電素子2における高温側から低温側への貫通熱量が増加し、高温側熱電発電素子2の熱抵抗Rhは低下する。図3は、高温側熱電発電素子2における帰還電流に対する熱抵抗Rhの関係を簡略化した図である。高温側熱電発電素子2におけるn型半導体に高温と低温との温度差を設けたとき、高温側で発生した伝導電子が低温側に拡散することによって電子が流れる。このとき、ペルチェ効果およびトムソン効果によって電子が流れる方向に熱が輸送されるため、起電力方向に電流を増加させる、すなわち高温側熱電発電素子2の帰還電流量を増加させると、n型半導体の高温側から低温側への熱の輸送量が増加する。また、高温側熱電発電素子2におけるp型半導体に高温と低温との温度差を設けたとき、高温側で発生したホールが低温側に拡散することによってホールが流れる。このとき、ホールが流れる方向に熱が輸送されるため、起電力方向に電流を増加させる、すなわち高温側熱電発電素子2の帰還電流量を増加させると、n型半導体の高温側から低温側への熱の輸送量が増加する。このような現象によって、π型の熱電発電素子では、起電力方向に高温側熱電発電素子2の帰還電流量を増加させることによって、高温側熱電発電素子2におけるn型半導体およびp型半導体において高温側から低温側への熱の輸送量が増加し、高温側熱電発電素子2の熱抵抗Rhが低下する。
<Effect>
According to the first embodiment, when the load on the output side as seen from the high temperature side thermoelectric power generation element 2 is controlled to be small, the feedback current to the high temperature side thermoelectric power generation element 2 increases, so that the Pelche effect and the Thomson effect are applied. The amount of heat penetrating from the high temperature side to the low temperature side of the high temperature side thermoelectric power generation element 2 increases, and the thermal resistance Rh of the high temperature side thermoelectric power generation element 2 decreases. FIG. 3 is a diagram simplifying the relationship of the thermal resistance Rh with respect to the feedback current in the high temperature side thermoelectric power generation element 2. When the temperature difference between the high temperature and the low temperature is provided in the n-type semiconductor in the high temperature side thermoelectric power generation element 2, the conduction electrons generated on the high temperature side diffuse to the low temperature side, so that the electrons flow. At this time, heat is transported in the direction in which electrons flow due to the Pelche effect and the Thomson effect. Therefore, if the current is increased in the electromotive force direction, that is, the feedback current amount of the high temperature side thermoelectric power generation element 2 is increased, the n-type semiconductor The amount of heat transported from the high temperature side to the low temperature side increases. Further, when the temperature difference between the high temperature and the low temperature is provided in the p-type semiconductor in the high temperature side thermoelectric power generation element 2, the holes generated on the high temperature side diffuse to the low temperature side, so that the holes flow. At this time, since heat is transported in the direction in which the holes flow, if the current is increased in the electromotive force direction, that is, if the feedback current amount of the high temperature side thermoelectric power generation element 2 is increased, the n-type semiconductor is moved from the high temperature side to the low temperature side. Increases the amount of heat transported. Due to such a phenomenon, in the π-type thermoelectric power generation element, the feedback current amount of the high temperature side thermoelectric power generation element 2 is increased in the electromotive force direction, so that the n-type semiconductor and the p-type semiconductor in the high temperature side thermoelectric power generation element 2 have high temperatures. The amount of heat transported from the side to the low temperature side increases, and the thermal resistance Rh of the high temperature side thermoelectric power generation element 2 decreases.

一方、高温側熱電発電素子2からみた出力側の負荷を大きくする制御を行うと、高温側熱電発電素子2の帰還電流量は減少するため、ペルチェ効果およびトムソン効果による高温側熱電発電素子2における高温側から低温側への貫通熱量が減少し、高温側熱電発電素子2の熱抵抗Rhは増加する。本実施の形態1では、高温側熱電発電素子2における低温側の温度が耐熱上限温度を超えるまたは超えることが予測される場合に、高温側熱電発電素子2からみた出力側の負荷を大きくする制御を行うことによって高温側熱電発電素子2の熱抵抗Rhが増加する現象を利用して、熱源5から冷却源6への貫通熱量を減少させる。これにより、低温側熱電発電素子3における高温側の温度、および高温側熱電発電素子2における低温側の温度を低下させ、低温側熱電発電素子3および冷却源6の寿命を長くすることができる。すなわち、熱電変換装置1の発電特性の劣化を抑制して故障を防止することが可能となる。 On the other hand, if control is performed to increase the load on the output side as seen from the high temperature side thermoelectric power generation element 2, the amount of feedback current of the high temperature side thermoelectric power generation element 2 decreases. The amount of heat penetrating from the high temperature side to the low temperature side decreases, and the thermal resistance Rh of the high temperature side thermoelectric power generation element 2 increases. In the first embodiment, when the temperature on the low temperature side of the high temperature side thermoelectric power generation element 2 is predicted to exceed or exceed the heat resistance upper limit temperature, the control to increase the load on the output side as seen from the high temperature side thermoelectric power generation element 2. By utilizing the phenomenon that the heat resistance Rh of the high temperature side thermoelectric power generation element 2 increases, the amount of heat penetrating from the heat source 5 to the cooling source 6 is reduced. As a result, the temperature on the high temperature side of the low temperature side thermoelectric power generation element 3 and the temperature on the low temperature side of the high temperature side thermoelectric power generation element 2 can be lowered, and the life of the low temperature side thermoelectric power generation element 3 and the cooling source 6 can be extended. That is, it is possible to suppress deterioration of the power generation characteristics of the thermoelectric conversion device 1 and prevent failure.

また、本実施の形態1による温度制御方法は、機械的な可動部がない熱電効果を用いた制御であるため、制御対象である温度制御部8の温度に対して高速で制御の入力をすることができ、他の機械的な温度制御方法、例えば高温側を流れる熱流体の流量を調整して入熱量を制御する方法などと比較して、故障防止の効果を高めることができる。 Further, since the temperature control method according to the first embodiment is the control using the thermoelectric effect without the mechanical moving part, the control is input at high speed with respect to the temperature of the temperature control unit 8 to be controlled. Therefore, the effect of failure prevention can be enhanced as compared with other mechanical temperature control methods, for example, a method of adjusting the flow rate of the thermal fluid flowing on the high temperature side to control the amount of heat input.

さらに、本実施の形態1によれば、中間温度測定部7の位置の温度が設定値を超えない範囲となるように温度制御することによって、熱電変換装置1の信頼性を担保する範囲内で常に最大電力を出力する負荷制御を行うことができる。 Further, according to the first embodiment, the reliability of the thermoelectric conversion device 1 is ensured by controlling the temperature so that the temperature at the position of the intermediate temperature measuring unit 7 does not exceed the set value. Load control that always outputs the maximum power can be performed.

<実施の形態2>
図4は、本発明の実施の形態2による熱電変換装置18の構成の一例を示す模式図である。
<Embodiment 2>
FIG. 4 is a schematic diagram showing an example of the configuration of the thermoelectric conversion device 18 according to the second embodiment of the present invention.

図4に示すように、熱電変換装置18は、低温側負荷調整回路19を備えることを特徴としている。その他の構成は、実施の形態1で説明した図1に示す構成と同様であるため、ここでは詳細な説明を省略する。 As shown in FIG. 4, the thermoelectric conversion device 18 is characterized by including a low temperature side load adjusting circuit 19. Since other configurations are the same as the configurations shown in FIG. 1 described in the first embodiment, detailed description thereof will be omitted here.

実施の形態1では、高温側負荷調整回路9で高温側熱電発電素子2の負荷調整を行うことによって、中間温度測定部7の位置の温度制御を行うことについて説明した。本実施の形態2では、これに加えて、低温側負荷調整回路19で低温側熱電発電素子3の負荷調整を行うことによって、中間温度測定部7の位置の温度制御を行うことについて説明する。なお、低温側負荷調整回路19の構成は、高温側負荷調整回路9の構成と同じであってもよく、例えば図2に示すような構成である。以下では、低温側負荷調整回路19の構成は図2に示す構成であるものとして説明する。また、低温側熱電発電素子3における帰還電流に対する熱抵抗Rcの関係は、図3と同様である。 In the first embodiment, it has been described that the temperature of the position of the intermediate temperature measuring unit 7 is controlled by adjusting the load of the high temperature side thermoelectric power generation element 2 in the high temperature side load adjusting circuit 9. In the second embodiment, in addition to this, the temperature control of the position of the intermediate temperature measuring unit 7 will be described by adjusting the load of the low temperature side thermoelectric power generation element 3 in the low temperature side load adjusting circuit 19. The configuration of the low temperature side load adjustment circuit 19 may be the same as the configuration of the high temperature side load adjustment circuit 9, and is, for example, the configuration shown in FIG. Hereinafter, the configuration of the low temperature side load adjusting circuit 19 will be described assuming that it is the configuration shown in FIG. Further, the relationship of the thermal resistance Rc with respect to the feedback current in the low temperature side thermoelectric power generation element 3 is the same as in FIG.

低温側熱電発電素子3からみた出力側の負荷を、低温側負荷調整回路19のスイッチング素子のPWM制御で小さくすることによって、低温側熱電発電素子3の熱抵抗値Rcは小さくなり、低温側熱電発電素子3における高温側から低温側への熱の輸送量が増加する。これにより、中間温度測定部7の位置の温度をさらに低下させることができる。このような負荷制御によって、高温側熱電発電素子2の温度範囲がさらに高くなっても、中間温度測定部7の位置の温度上昇を抑制することができる。 By reducing the load on the output side as seen from the low temperature side thermoelectric power generation element 3 by the PWM control of the switching element of the low temperature side load adjustment circuit 19, the thermal resistance value Rc of the low temperature side thermoelectric power generation element 3 becomes small, and the low temperature side thermoelectric power generation The amount of heat transported from the high temperature side to the low temperature side in the power generation element 3 increases. As a result, the temperature at the position of the intermediate temperature measuring unit 7 can be further lowered. By such load control, even if the temperature range of the high temperature side thermoelectric power generation element 2 is further increased, the temperature rise at the position of the intermediate temperature measuring unit 7 can be suppressed.

<実施の形態3>
図5は、本発明の実施の形態3よる熱電変換装置20の構成の一例を示す模式図である。
<Embodiment 3>
FIG. 5 is a schematic diagram showing an example of the configuration of the thermoelectric conversion device 20 according to the third embodiment of the present invention.

図5に示すように、熱電変換装置20は、高温側セラミック基板21、低温側セラミック基板22、高温側温度測定部23、および低温側温度測定部24を備えることを特徴としている。その他の構成は、実施の形態2で説明した図4に示す構成と同様であるため、ここでは詳細な説明を省略する。 As shown in FIG. 5, the thermoelectric conversion device 20 is characterized by including a high temperature side ceramic substrate 21, a low temperature side ceramic substrate 22, a high temperature side temperature measuring unit 23, and a low temperature side temperature measuring unit 24. Since other configurations are the same as the configurations shown in FIG. 4 described in the second embodiment, detailed description thereof will be omitted here.

高温側セラミック基板21は、熱源5と高温側熱電発電素子2との間に設けられている。低温側セラミック基板22は、冷却源6と低温側熱電発電素子3との間に設けられている。 The high temperature side ceramic substrate 21 is provided between the heat source 5 and the high temperature side thermoelectric power generation element 2. The low temperature side ceramic substrate 22 is provided between the cooling source 6 and the low temperature side thermoelectric power generation element 3.

高温側温度測定部23は、熱電対などで構成され、熱源5と高温側熱電発電素子2との境界部分に設けられ、当該境界部分、具体的には高温側熱電発電素子2における高温側の温度を測定する。低温側温度測定部24は、熱電対などで構成され、冷却源6と低温側熱電発電素子3との境界部分に設けられ、当該境界部分、具体的には低温側熱電発電素子3における低温側の温度を測定する。 The high temperature side temperature measuring unit 23 is composed of a thermocouple or the like, and is provided at the boundary portion between the heat source 5 and the high temperature side thermoelectric power generation element 2. The boundary portion, specifically, the high temperature side of the high temperature side thermoelectric power generation element 2. Measure the temperature. The low temperature side temperature measuring unit 24 is composed of a thermocouple or the like, and is provided at the boundary portion between the cooling source 6 and the low temperature side thermoelectric power generation element 3. The boundary portion, specifically, the low temperature side in the low temperature side thermoelectric power generation element 3. Measure the temperature of.

高温側温度測定部23および低温側温度測定部24のそれぞれで測定された温度の値は、温度制御部8に送られる。温度制御部は、中間温度測定部7の位置、高温側温度測定部23の位置、および低温側温度測定部24の位置のそれぞれにおける上限耐熱温度を超えない範囲で高温側負荷調整回路9および低温側負荷調整回路19の負荷を制御する。 The temperature values measured by each of the high temperature side temperature measuring unit 23 and the low temperature side temperature measuring unit 24 are sent to the temperature control unit 8. The temperature control unit includes the high temperature side load adjustment circuit 9 and the low temperature within a range not exceeding the upper limit heat resistant temperature at each of the position of the intermediate temperature measurement unit 7, the position of the high temperature side temperature measurement unit 23, and the position of the low temperature side temperature measurement unit 24. The load of the side load adjusting circuit 19 is controlled.

例えば、高温側温度測定部23の位置の温度を下げるためには、高温側熱電発電素子2および低温側熱電発電素子3の合計の熱抵抗が低下するように、高温側負荷調整回路9および低温側負荷調整回路19のうちの少なくとも一方の負荷を小さくし、高温側熱電発電素子2および低温側熱電発電素子3のうちの少なくとも一方の帰還電流を大きくする制御を行う。このような制御を行うと、中間温度測定部7の位置および低温側温度測定部24の位置の温度が上昇する。このとき、中間温度測定部7の位置の温度を低下させるためには、低温側負荷調整回路19の負荷を小さくする制御を行い、低温側熱電発電素子3の熱抵抗を下げる。一方、低温側温度測定部24の位置の温度を低下させるためには、高温側負荷調整回路9の負荷を小さくする制御を行い、高温側熱電発電素子2の熱抵抗を下げる。 For example, in order to lower the temperature at the position of the high temperature side temperature measuring unit 23, the high temperature side load adjusting circuit 9 and the low temperature side load adjustment circuit 9 and the low temperature side so as to reduce the total thermal resistance of the high temperature side thermoelectric power generation element 2 and the low temperature side thermoelectric power generation element 3. Control is performed to reduce the load of at least one of the side load adjusting circuits 19 and increase the feedback current of at least one of the high temperature side thermoelectric power generation element 2 and the low temperature side thermoelectric power generation element 3. When such control is performed, the temperature at the position of the intermediate temperature measuring unit 7 and the position of the low temperature side temperature measuring unit 24 rises. At this time, in order to lower the temperature at the position of the intermediate temperature measuring unit 7, the load of the low temperature side load adjusting circuit 19 is controlled to be reduced, and the thermal resistance of the low temperature side thermoelectric power generation element 3 is lowered. On the other hand, in order to lower the temperature at the position of the low temperature side temperature measuring unit 24, the load of the high temperature side load adjusting circuit 9 is controlled to be reduced, and the thermal resistance of the high temperature side thermoelectric power generation element 2 is lowered.

このように、高温側温度測定部23の位置、中間温度測定部7の位置、および低温側温度測定部24の位置のそれぞれの温度が上限耐熱温度を超えない範囲で高温側負荷調整回路9および低温側負荷調整回路19の負荷を増減させる制御を行うことによって、熱電変換装置20の故障を防止することができる。 In this way, the high temperature side load adjustment circuit 9 and the high temperature side load adjustment circuit 9 and the position of the high temperature side load adjustment unit 9 and the position of the intermediate temperature measurement unit 7 and the position of the low temperature side temperature measurement unit 24 do not exceed the upper limit heat resistant temperature. By controlling the load of the low temperature side load adjusting circuit 19 to be increased or decreased, it is possible to prevent the thermoelectric conversion device 20 from failing.

<実施の形態4>
本発明の実施の形態4では、高温側負荷調整回路9が、高温側熱電発電素子2の起電力の極性とは逆極性の電圧を発生させる機能を有することを特徴としている。その他の構成は、実施の形態1で説明した図1に示す熱電変換装置1、実施の形態2で説明した図4に示す熱電変換装置18、または実施の形態3で説明した図5に示す熱電変換装置20と同様であるため、ここでは詳細な説明を省略する。
<Embodiment 4>
The fourth embodiment of the present invention is characterized in that the high temperature side load adjusting circuit 9 has a function of generating a voltage having a polarity opposite to the polarity of the electromotive force of the high temperature side thermoelectric power generation element 2. Other configurations include the thermoelectric conversion device 1 shown in FIG. 1 described in the first embodiment, the thermoelectric conversion device 18 shown in FIG. 4 described in the second embodiment, or the thermoelectric conversion device 18 shown in FIG. 5 described in the third embodiment. Since it is the same as the conversion device 20, detailed description thereof will be omitted here.

高温側負荷調整回路9は、温度制御部8の制御によって、高温側熱電発電素子2の帰還電流とは逆方向の電流を高温側熱電発電素子2に流す電力を発生させることが可能である。電圧源としては、蓄電池または他の発電機などを用いることができる。このとき、高温側熱電発電素子2における電子およびホールによる熱の輸送方向が、高温側負荷調整回路9が発生させた電力によって逆転するため、熱源5から流れる熱とは逆方向にペルチェ効果が働き、図3に示すように高温側熱電発電素子2の熱抵抗をさらに大きくすることができる。これにより、高温側熱電発電素子2から低温側熱電発電素子3および冷却源6に流れる熱量をさらに小さくすることができる。 The high temperature side load adjusting circuit 9 can generate electric power for passing a current in the direction opposite to the feedback current of the high temperature side thermoelectric power generation element 2 to the high temperature side thermoelectric power generation element 2 by controlling the temperature control unit 8. As the voltage source, a storage battery or another generator can be used. At this time, since the heat transport direction by the electrons and holes in the high temperature side thermoelectric power generation element 2 is reversed by the electric power generated by the high temperature side load adjustment circuit 9, the Pelche effect works in the direction opposite to the heat flowing from the heat source 5. As shown in FIG. 3, the thermal resistance of the high temperature side thermoelectric power generation element 2 can be further increased. As a result, the amount of heat flowing from the high temperature side thermoelectric power generation element 2 to the low temperature side thermoelectric power generation element 3 and the cooling source 6 can be further reduced.

なお、図示しないスイッチを設け、高温側負荷調整回路9および低温側負荷調整回路19のそれぞれにおいて出力端子の配線を逆極性につなぎかえ、高温側熱電発電素子2に対して発電とは逆極性の電力を与えることによって、外部からの電源を必要とせずに高温側熱電発電素子2の熱抵抗を増加させることができる。 A switch (not shown) is provided, and the wiring of the output terminal is reconnected to the opposite polarity in each of the high temperature side load adjustment circuit 9 and the low temperature side load adjustment circuit 19, so that the high temperature side thermoelectric power generation element 2 has the opposite polarity to the power generation. By applying electric power, the thermal resistance of the high temperature side thermoelectric power generation element 2 can be increased without requiring an external power source.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

1 熱電変換装置、2 高温側熱電発電素子、3 低温側熱電発電素子、4 中間セラミック基板、5 熱源、6 冷却源、7 中間温度測定部、8 温度制御部、9 高温側負荷調整回路、10 外部負荷、11 キャパシタ、12 スイッチング素子、13 ダイオード、14 インダクタ、15 スイッチング素子、16 ダイオード、17 キャパシタ、18 熱電変換装置、19 低温側負荷調整回路、20 熱電変換装置、21 高温側セラミック基板、22 低温側セラミック基板、23 高温側温度測定部、24 低温側温度測定部。 1 Thermoelectric converter, 2 High temperature side thermoelectric power generation element, 3 Low temperature side thermoelectric power generation element, 4 Intermediate ceramic substrate, 5 Heat source, 6 Cooling source, 7 Intermediate temperature measurement unit, 8 Temperature control unit, 9 High temperature side load adjustment circuit, 10 External load, 11 capacitors, 12 switching elements, 13 diodes, 14 inductors, 15 switching elements, 16 diodes, 17 capacitors, 18 thermoelectric converters, 19 low temperature side load adjustment circuits, 20 thermoelectric converters, 21 high temperature side ceramic substrates, 22 Low temperature side ceramic substrate, 23 high temperature side temperature measurement unit, 24 low temperature side temperature measurement unit.

Claims (5)

熱源と、
前記熱源に対向して設けられた冷却源と、
前記熱源と前記冷却源との間に積層され、前記熱源側に設けられた高温側熱電発電素子、および前記冷却源側に設けられた低温側熱電発電素子と、
前記高温側熱電発電素子と前記低温側熱電発電素子との境界部分に設けられ、当該境界部分の温度を測定する中間温度測定部と、
前記高温側熱電発電素子が出力する電力を調整する高温側負荷調整回路と、
前記中間温度測定部が測定した温度に基づいて、前記高温側負荷調整回路を制御する温度制御部と、
を備え
前記温度制御部は、前記中間温度測定部が測定した前記温度が予め定められた温度を超えたとき、前記高温側熱電発電素子に帰還する電流量が減少するように前記高温側負荷調整回路を制御し、
前記予め定められた温度は、前記低温側熱電発電素子の過熱による故障を防止するために設定された温度であることを特徴とする、熱電変換装置。
With a heat source
A cooling source provided facing the heat source and
A high-temperature side thermoelectric power generation element laminated between the heat source and the cooling source and provided on the heat source side, and a low-temperature side thermoelectric power generation element provided on the cooling source side.
An intermediate temperature measuring unit provided at a boundary portion between the high temperature side thermoelectric power generation element and the low temperature side thermoelectric power generation element and measuring the temperature of the boundary portion,
A high-temperature side load adjustment circuit that adjusts the power output by the high-temperature side thermoelectric power generation element, and
A temperature control unit that controls the high temperature side load adjustment circuit based on the temperature measured by the intermediate temperature measurement unit, and a temperature control unit.
Equipped with
The temperature control unit installs the high temperature side load adjustment circuit so that the amount of current returned to the high temperature side thermoelectric power generation element decreases when the temperature measured by the intermediate temperature measurement unit exceeds a predetermined temperature. Control and
The thermoelectric conversion device, characterized in that the predetermined temperature is a temperature set for preventing failure due to overheating of the low temperature side thermoelectric power generation element .
前記低温側熱電発電素子が出力する電力を調整する低温側負荷調整回路をさらに備え、
前記温度制御部は、前記中間温度測定部が測定した温度に基づいて、前記低温側負荷調整回路を制御し、
前記温度制御部は、前記中間温度測定部が測定した前記温度が予め定められた温度を超えたとき、前記低温側熱電発電素子に帰還する電流量が増加するように前記低温側負荷調整回路を制御することを特徴とする、請求項1に記載の熱電変換装置。
Further provided with a low temperature side load adjusting circuit for adjusting the electric power output by the low temperature side thermoelectric power generation element,
The temperature control unit controls the low temperature side load adjustment circuit based on the temperature measured by the intermediate temperature measurement unit .
The temperature control unit installs the low temperature side load adjusting circuit so that the amount of current returned to the low temperature side thermoelectric power generation element increases when the temperature measured by the intermediate temperature measurement unit exceeds a predetermined temperature. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is controlled .
前記熱源と前記高温側熱電発電素子との境界部分に設けられ、当該境界部分の温度を測定する高温側温度測定部と、
前記冷却源と前記低温側熱電発電素子との境界部分に設けられ、当該境界部分の温度を測定する低温側温度測定部と、
をさらに備え、
前記温度制御部は、前記中間温度測定部が測定した温度、前記高温側温度測定部が測定した温度、および前記低温側温度測定部が測定した温度のそれぞれが上限耐熱温度を超えない範囲で前記高温側負荷調整回路および前記低温側負荷調整回路の負荷を増減させるように制御することを特徴とする、請求項に記載の熱電変換装置。
A high temperature side temperature measuring unit provided at a boundary portion between the heat source and the high temperature side thermoelectric power generation element and measuring the temperature of the boundary portion, and a high temperature side temperature measuring unit.
A low temperature side temperature measuring unit provided at a boundary portion between the cooling source and the low temperature side thermoelectric power generation element and measuring the temperature of the boundary portion,
Further prepare
In the temperature control unit, the temperature measured by the intermediate temperature measuring unit, the temperature measured by the high temperature side temperature measuring unit, and the temperature measured by the low temperature side temperature measuring unit do not exceed the upper limit heat resistant temperature. The thermoelectric conversion device according to claim 2 , wherein the load of the high temperature side load adjusting circuit and the low temperature side load adjusting circuit are controlled to be increased or decreased .
前記温度制御部は、前記高温側熱電発電素子が出力する電力とは逆極性の電力を発生するように前記高温側負荷調整回路を制御することを特徴とする、請求項1からのいずれか1項に記載の熱電変換装置。 One of claims 1 to 3 , wherein the temperature control unit controls the high temperature side load adjusting circuit so as to generate electric power having a polarity opposite to that of the electric power output by the high temperature side thermoelectric power generation element. The thermoelectric conversion device according to item 1. 前記低温側熱電発電素子は、ビスマステルル系材料で構成されることを特徴とする、請求項1からのいずれか1項に記載の熱電変換装置。 The thermoelectric conversion device according to any one of claims 1 to 4 , wherein the low-temperature side thermoelectric power generation element is made of a bismuth tellurium-based material.
JP2018096814A 2018-05-21 2018-05-21 Thermoelectric converter Active JP7065687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018096814A JP7065687B2 (en) 2018-05-21 2018-05-21 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018096814A JP7065687B2 (en) 2018-05-21 2018-05-21 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2019204809A JP2019204809A (en) 2019-11-28
JP7065687B2 true JP7065687B2 (en) 2022-05-12

Family

ID=68727295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018096814A Active JP7065687B2 (en) 2018-05-21 2018-05-21 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP7065687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436204B1 (en) * 2021-02-18 2022-08-25 최병규 Appratus for testing semiconductor device
JP7492300B2 (en) 2022-01-26 2024-05-29 株式会社テイエルブイ Thermoelectric Generators and Steam Systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055769A (en) 2011-09-02 2013-03-21 Institute Of National Colleges Of Technology Japan Output control device for thermoelectric transducer
JP2013172576A (en) 2012-02-21 2013-09-02 Toyota Motor Corp Power generator
JP2015188278A (en) 2014-03-26 2015-10-29 株式会社Kelk Thermoelectric power generation device and thermoelectric power generation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2515446A (en) * 2013-01-25 2014-12-31 Europ Thermodynamics Ltd Thermoelectric generators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055769A (en) 2011-09-02 2013-03-21 Institute Of National Colleges Of Technology Japan Output control device for thermoelectric transducer
JP2013172576A (en) 2012-02-21 2013-09-02 Toyota Motor Corp Power generator
JP2015188278A (en) 2014-03-26 2015-10-29 株式会社Kelk Thermoelectric power generation device and thermoelectric power generation method

Also Published As

Publication number Publication date
JP2019204809A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP4255691B2 (en) Electronic component cooling device using thermoelectric conversion material
JP4015435B2 (en) Heating and cooling devices using thermoelectric elements
US8997502B2 (en) Thermoelectric assembly for improved airflow
US20130213448A1 (en) Thermoelectric Remote Power Source
JP7065687B2 (en) Thermoelectric converter
JP2006041362A (en) Semiconductor device, power converter using same, and hybrid automobile using same power converter
JP6381764B1 (en) Semiconductor power module
KR20140125628A (en) Automotive generator module using the waste heat and sub charging system for Automotive battery with the same
US20120159967A1 (en) Thermoelectric apparatus
Trajin et al. Electro-thermal model of an integrated buck converter
KR102109486B1 (en) Multi-multi-array themoeletric generator and its generating system
JP4833795B2 (en) Semiconductor device connection leads
JP4869846B2 (en) Power conversion element
US20180026009A1 (en) Power module, electrical power conversion device, and driving device for vehicle
US10897001B2 (en) Thermoelectric conversion module
US20120111029A1 (en) Ac powered thermoelectric device
Rocha et al. An energy scavenging microsystem based on thermoelectricity for battery life extension in laptops
JP2015115523A (en) Semiconductor apparatus for power conversion device, and power conversion device
GB2521353A (en) Thermoelectric device
KR102021664B1 (en) Multi-multi-array themoeletric generator and its manufacturing method
JP7313660B2 (en) Thermoelectric conversion module
Škalic et al. Energy Harvesting on Power Amplifiers Based on Application of Thermoelectric Generators
TWI744717B (en) Thermoelectric power generating device and manufacturing method thereof
JP5453296B2 (en) Semiconductor device
Gurara et al. A Multi-Mode Four-Switch Buck-Boost Derived DC-DC Converter with an Intermediate Battery Interface for Solar Thermoelectric Generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7065687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150