JP2013172576A - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP2013172576A
JP2013172576A JP2012035582A JP2012035582A JP2013172576A JP 2013172576 A JP2013172576 A JP 2013172576A JP 2012035582 A JP2012035582 A JP 2012035582A JP 2012035582 A JP2012035582 A JP 2012035582A JP 2013172576 A JP2013172576 A JP 2013172576A
Authority
JP
Japan
Prior art keywords
temperature
thermoelectric element
heat
heat source
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012035582A
Other languages
Japanese (ja)
Inventor
Manabu Orihashi
学芙 渡橋
Tadashi Nakagawa
正 中川
Keiko Tanaka
敬子 田中
Shuhei Koyama
修平 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012035582A priority Critical patent/JP2013172576A/en
Publication of JP2013172576A publication Critical patent/JP2013172576A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generator whose power generation efficiency is improved by controlling a temperature between two thermoelectric elements.SOLUTION: A power generator 1 includes: a first thermoelectric element 10 disposed to exchange heat with a high-temperature heat source 13; and a second thermoelectric element 20 disposed to exchange heat with a low-temperature heat source 23. A performance index of the first thermoelectric element 10 is higher than that of the second thermoelectric element 20 at a temperature of the high-temperature heat source 13; the performance index of the second thermoelectric element 20 is higher than that of the first thermoelectric element 10 at a temperature of the low-temperature heat source 23; and a heat transport amount of a heat transport medium that transports heat by circulating between the first thermoelectric element 10 and the second thermoelectric element 20 is controlled. As a result, a heat amount moving from the first thermoelectric element 10 on a high-temperature heat source 13 side to the second thermoelectric element 20 on a low-temperature heat source 23 side is controlled and temperatures of the first thermoelectric element 10 and the second thermoelectric element 20 are set at temperatures at which favorable power generation efficiency is attained, thereby improving power generation efficiency of the power generator 1.

Description

本発明は発電装置に関する。   The present invention relates to a power generator.

内燃機関から排出される高温の排気の熱エネルギーを熱電変換素子により電気エネルギーとして回収する技術が知られている。このような技術の一例が特許文献1に開示されている。特許文献1の内燃機関の排熱発電装置は、排気ポートの管壁に、熱電変換素子の高温側面が排気ポートの径方向中心側を向き、低温側面が排気ポートの周囲に形成されている冷却水通路に向くように配設し、両面の温度差を確保して発電を行う。   A technique for recovering thermal energy of hot exhaust gas discharged from an internal combustion engine as electric energy by a thermoelectric conversion element is known. An example of such a technique is disclosed in Patent Document 1. In the exhaust heat power generation device for an internal combustion engine of Patent Document 1, the cooling is such that the high temperature side surface of the thermoelectric conversion element faces the radial center of the exhaust port and the low temperature side surface is formed around the exhaust port on the tube wall of the exhaust port. It is arranged so as to face the water passage, and power generation is performed while ensuring a temperature difference between the two surfaces.

このほか本発明と関連性があると考えられる技術として、例えば特許文献2では、流量調整弁を調整し、発電ユニットとした熱電素子へ送る排気の流量を調整する排熱発電装置が開示されている。   In addition, as a technique considered to be related to the present invention, for example, Patent Document 2 discloses an exhaust heat power generation apparatus that adjusts a flow rate adjustment valve and adjusts a flow rate of exhaust gas sent to a thermoelectric element serving as a power generation unit. Yes.

特開2006−266211号公報JP 2006-266221 A 特開平11−229867号公報Japanese Patent Laid-Open No. 11-229867

ところで、熱電素子の発電性能は、熱電素子の特性と熱電素子の高温側面と低温側面との間の温度差(温度幅)で決定される。熱電素子の特性は、熱電素子の性能指数が高いほど、発電効率が高く、発電性能が良い。図1は、温度に対する性能指数を示し、熱電素子の特性を説明した図である。図1に示すように、素子の特性は、素子を構成する材料により異なり、素子を構成する材料毎にそれぞれ発電性能を効率よく発揮できる温度域が存在する。現状では、広範囲の温度域で効率よく発電可能な材料が見つかっていない。   By the way, the power generation performance of the thermoelectric element is determined by the characteristics of the thermoelectric element and the temperature difference (temperature range) between the high temperature side surface and the low temperature side surface of the thermoelectric element. As for the characteristics of the thermoelectric element, the higher the figure of merit of the thermoelectric element, the higher the power generation efficiency and the better the power generation performance. FIG. 1 shows a figure of merit with respect to temperature and is a diagram illustrating the characteristics of thermoelectric elements. As shown in FIG. 1, the characteristics of the element vary depending on the material constituting the element, and there are temperature ranges where the power generation performance can be efficiently exhibited for each material constituting the element. At present, no material that can generate power efficiently in a wide temperature range has been found.

例えば、図2(a)に示す低温の温度域で性能指数の高い材料を用いた素子では、低温の温度域(L)では効率よく発電するが、高温の温度域(H)では発電効率が悪い。反対に、図2(b)に示す高温の温度域で性能指数の高い材料を用いた素子では、高温の温度域(H)では効率よく発電するが、低温の温度域(L)では発電効率が悪い。このように、発電性能を効率よく発揮できる温度域を外れると発電効率が著しく低下するため、使用する温度域に適合する材料の素子を選定する必要があった。しかしながら、使用する温度域に適合する材料が都合よく存在するわけではない。   For example, the element using a material having a high performance index in the low temperature range shown in FIG. 2A efficiently generates power in the low temperature range (L), but the power generation efficiency is high in the high temperature range (H). bad. On the other hand, the element using a material having a high performance index in the high temperature range shown in FIG. 2B efficiently generates power in the high temperature range (H), but in the low temperature range (L), the power generation efficiency. Is bad. As described above, since the power generation efficiency is remarkably lowered if the temperature range in which the power generation performance can be efficiently exhibited is exceeded, it is necessary to select an element made of a material suitable for the temperature range to be used. However, there is no convenient material suitable for the temperature range to be used.

そこで、図3に示すような、高温の温度域で効率よく発電する材料からなる高温用素子102と、低温の温度域で効率よく発電する材料からなる低温用素子103と、を組み合わせたカスケード型の熱電素子101が採用されている。熱電素子101は、p型半導体素子とn型半導体素子を備えた高温用素子102を高温熱源側の高温プレート104と中間プレート106により挟み込むとともに、p型半導体素子とn型半導体素子を備えた低温用素子103を低温熱源側の低温プレート105と中間プレート106とにより挟み込んだ構成をしている。   Therefore, as shown in FIG. 3, a cascade type in which a high temperature element 102 made of a material that efficiently generates power in a high temperature range and a low temperature element 103 made of a material that efficiently generates power in a low temperature range are combined. The thermoelectric element 101 is employed. The thermoelectric element 101 sandwiches a high-temperature element 102 including a p-type semiconductor element and an n-type semiconductor element between a high-temperature plate 104 and an intermediate plate 106 on the high-temperature heat source side, and at a low temperature including a p-type semiconductor element and an n-type semiconductor element. The element 103 is sandwiched between a low temperature plate 105 and an intermediate plate 106 on the low temperature heat source side.

図4はカスケード型の熱電素子101の性能指数を示した図である。図4中のTは高温熱源の温度、Tは低温熱源の温度、Zは高温用素子の性能指数、Zは低温用素子の性能指数を示している。カスケード型の熱電素子1の性能指数は、中間プレートの温度(中間温度)Tに左右される。すなわち、中間温度Tが高すぎると、高温用素子2における発電効率は高いが低温用素子3における発電効率が低く、全体としての発電効率が低下していた。反対に、中間温度Tが低すぎると、低温用素子3における発電効率は高いが高温用素子2における発電効率が低く、全体としての発電効率が低下していた。 FIG. 4 is a diagram showing a figure of merit of the cascade type thermoelectric element 101. T H in Figure 4 the temperature of the high-temperature heat source, the T C temperature of the cold heat source, the Z H merit of high temperature element, the Z C represents the performance index of the low temperature element. The figure of merit of the cascade type thermoelectric element 1 depends on the temperature (intermediate temperature) TN of the intermediate plate. That is, if the intermediate temperature TN is too high, the power generation efficiency in the high temperature element 2 is high, but the power generation efficiency in the low temperature element 3 is low, and the power generation efficiency as a whole is reduced. On the other hand, if the intermediate temperature TN is too low, the power generation efficiency in the low temperature element 3 is high, but the power generation efficiency in the high temperature element 2 is low, and the power generation efficiency as a whole is reduced.

従来の熱電素子では、このようなカスケード型の2つの素子の間の温度(中間温度T)について考慮していないため、発電効率にとって最適な温度域が利用されておらず、発電効率が良好とはいえなかった。 In the conventional thermoelectric element, since the temperature (intermediate temperature T N ) between the two elements of the cascade type is not considered, the optimum temperature range for the power generation efficiency is not used, and the power generation efficiency is good. That wasn't true.

そこで、本発明は、2つの熱電素子間の温度を制御し、発電効率を向上した発電装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a power generation apparatus that controls the temperature between two thermoelectric elements to improve power generation efficiency.

かかる課題を解決する本発明の発電装置は、高温熱源と熱交換するように配置された第1熱電素子と、低温熱源と熱交換するように配置された第2熱電素子と、を備え、前記高温熱源の温度において、前記第1熱電素子の性能指数が前記第2熱電素子の性能指数よりも高く、前記低温熱源の温度において、前記第2熱電素子の性能指数が前記第1熱電素子の性能指数よりも高い関係にあり、前記第1熱電素子と前記第2熱電素子との間を循環して熱を輸送する熱輸送媒体の熱輸送量を制御することを特徴とする。   A power generator of the present invention that solves such a problem includes a first thermoelectric element arranged to exchange heat with a high-temperature heat source, and a second thermoelectric element arranged to exchange heat with a low-temperature heat source, The performance index of the first thermoelectric element is higher than the performance index of the second thermoelectric element at the temperature of the high temperature heat source, and the performance index of the second thermoelectric element is the performance of the first thermoelectric element at the temperature of the low temperature heat source. The relationship is higher than the index, and the heat transport amount of a heat transport medium that transports heat by circulating between the first thermoelectric element and the second thermoelectric element is controlled.

上記構成によると、高温熱源側の第1熱電素子から低温熱源側の第2熱電素子へ移動する熱量を制御し、第1熱電素子の温度及び第2熱電素子の温度を制御することができる。これにより、第1熱電素子と第2熱電素子のそれぞれの温度を、発電効率が良好となる温度にすることができる。この結果、発電装置の発電効率を向上できる。   According to the above configuration, the amount of heat transferred from the first thermoelectric element on the high temperature heat source side to the second thermoelectric element on the low temperature heat source side can be controlled, and the temperature of the first thermoelectric element and the temperature of the second thermoelectric element can be controlled. Thereby, each temperature of a 1st thermoelectric element and a 2nd thermoelectric element can be made into the temperature from which electric power generation efficiency becomes favorable. As a result, the power generation efficiency of the power generator can be improved.

上記の発電装置において、前記熱輸送媒体の温度が、前記第1熱電素子の性能指数と前記第2熱電素子の性能指数とが一致する温度になるように熱輸送量を制御することとしてもよい。これにより、第1熱電素子の発電性能が高い温度域で第1熱電素子の発電を行い、第2熱電素子の発電性能が高い温度域で第2熱電素子の発電を行うことができる。この結果、発電装置の発電効率を向上できる。   In the above power generation apparatus, the heat transport amount may be controlled so that the temperature of the heat transport medium becomes a temperature at which the performance index of the first thermoelectric element and the performance index of the second thermoelectric element coincide with each other. . Accordingly, the first thermoelectric element can generate power in a temperature range where the power generation performance of the first thermoelectric element is high, and the second thermoelectric element can generate power in a temperature range where the power generation performance of the second thermoelectric element is high. As a result, the power generation efficiency of the power generator can be improved.

上記の発電装置において、前記熱輸送量制御手段は、前記熱輸送媒体が前記第1熱電素子から前記第2熱電素子へ移動する熱輸送路と、前記熱輸送媒体が前記第2熱電素子から前記第1熱電素子へ戻る戻り路と、前記戻り路の流量を制御する制御弁とを備えてもよい。この構成において、第1熱電素子と第2熱電素子との温度差が小さい場合、前記制御弁が閉弁することとしてもよい。   In the above power generator, the heat transport amount control means includes a heat transport path through which the heat transport medium moves from the first thermoelectric element to the second thermoelectric element, and the heat transport medium from the second thermoelectric element to the second thermoelectric element. You may provide the return path which returns to a 1st thermoelectric element, and the control valve which controls the flow volume of the said return path. In this configuration, when the temperature difference between the first thermoelectric element and the second thermoelectric element is small, the control valve may be closed.

上記の発電装置において、前記高温熱源を、内燃機関から排出される排気としてもよい。また、この構成において、前記低温熱源を、内燃機関内を循環冷却する冷却水としてもよい。   In the above power generator, the high-temperature heat source may be exhaust exhausted from an internal combustion engine. In this configuration, the low-temperature heat source may be cooling water that circulates and cools the internal combustion engine.

本発明の発電装置は、2つの熱電素子間の温度を制御し、発電効率を向上することができる。   The power generator of the present invention can improve the power generation efficiency by controlling the temperature between two thermoelectric elements.

温度に対する性能指数を示し、熱電素子の特性を説明した図である。It is the figure which showed the performance index with respect to temperature, and demonstrated the characteristic of the thermoelectric element. (a)は低温の温度域で高い性能指数を示す素子の温度と性能指数の関係を示した図であり、(b)は高温の温度域で高い性能指数を示す素子の温度と性能指数の関係を示した図である。(A) is the figure which showed the relationship between the temperature of a device which shows a high figure of merit in a low temperature range, and the figure of merit, and (b) is the temperature and the figure of merit of the device which shows a high figure of merit in a high temperature range. It is the figure which showed the relationship. カスケード型の熱電素子の例を示した図である。It is the figure which showed the example of the cascade type thermoelectric element. カスケード型の熱電素子の性能指数を示した図である。It is the figure which showed the figure of merit of the cascade type thermoelectric element. 実施例の発電装置を示した図である。It is the figure which showed the electric power generating apparatus of the Example. 発電装置における第1熱電素子と第2熱電素子の性能指数を示した図である。It is the figure which showed the performance index of the 1st thermoelectric element and 2nd thermoelectric element in an electric power generating apparatus. 実施例の発電装置に関し、高温熱源及び低温熱源の温度と熱電素子の性能指数との関係を示した図である。It is the figure which showed the relationship between the temperature of a high-temperature heat source and a low-temperature heat source, and the performance index of a thermoelectric element regarding the electric power generating apparatus of an Example. 比較例の発電装置に関し、高温熱源及び低温熱源の温度と熱電素子の性能指数との関係を示した図である。It is the figure which showed the relationship between the temperature of a high temperature heat source and a low temperature heat source, and the figure of merit of a thermoelectric element regarding the electric power generating apparatus of a comparative example. 発電装置を組み込んだエンジンを示した図である。It is the figure which showed the engine incorporating the electric power generating apparatus. 高温熱源と低温熱源の組合せを複数備えた多段式の発電装置を示した図である。It is the figure which showed the multistage type electric power generating apparatus provided with two or more combinations of a high temperature heat source and a low temperature heat source. 制御弁の代わりにアキュムレータを備えた発電装置を示した図である。It is the figure which showed the electric power generating apparatus provided with the accumulator instead of the control valve.

以下、本発明を実施するための形態を図面と共に詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

図5は本実施例の発電装置1を示した図である。発電装置1は第1熱電素子10、第2熱電素子20、熱輸送媒体循環路30を備えている。第1熱電素子10は高温熱源13と熱交換するように配置されている。第1熱電素子10は第1p型半導体素子11と第1n型半導体素子12とを有する。第1p型半導体素子11と第1n型半導体素子12とは、高温熱源13の温度において、第1熱電素子10が高い性能指数を持つように選択された材料からなる。第2熱電素子20は低温熱源23と熱交換するように配置されている。第2熱電素子20は第2p型半導体素子21と第2n型半導体素子22とを有する。第2熱電素子20は第2p型半導体素子21と第2n型半導体素子22とは、低温熱源23の温度において、第2熱電素子20が高い性能指数を持つように選択された材料からなる。特に、第1熱電素子10と第2熱電素子20とは、高温熱源13の温度において、第1熱電素子10の性能指数が第2熱電素子20の性能指数よりも高く、低温熱源23の温度において、第2熱電素子20の性能指数が第1熱電素子10の性能指数よりも高い関係にある。   FIG. 5 is a diagram showing the power generator 1 of the present embodiment. The power generation apparatus 1 includes a first thermoelectric element 10, a second thermoelectric element 20, and a heat transport medium circulation path 30. The first thermoelectric element 10 is arranged to exchange heat with the high temperature heat source 13. The first thermoelectric element 10 includes a first p-type semiconductor element 11 and a first n-type semiconductor element 12. The first p-type semiconductor element 11 and the first n-type semiconductor element 12 are made of a material selected so that the first thermoelectric element 10 has a high figure of merit at the temperature of the high-temperature heat source 13. The second thermoelectric element 20 is arranged to exchange heat with the low-temperature heat source 23. The second thermoelectric element 20 includes a second p-type semiconductor element 21 and a second n-type semiconductor element 22. The second p-type semiconductor element 21 and the second n-type semiconductor element 22 of the second thermoelectric element 20 are made of materials selected so that the second thermoelectric element 20 has a high figure of merit at the temperature of the low-temperature heat source 23. In particular, the first thermoelectric element 10 and the second thermoelectric element 20 are such that the performance index of the first thermoelectric element 10 is higher than the performance index of the second thermoelectric element 20 at the temperature of the high temperature heat source 13 and the temperature of the low temperature heat source 23. The performance index of the second thermoelectric element 20 is higher than the performance index of the first thermoelectric element 10.

熱輸送媒体循環路30は熱輸送媒体が循環する通路である。図5中の矢印は熱輸送媒体の流れ方向を示している。熱輸送媒体は、高温の物体から熱を受け取り、低温の物体へ熱を受け渡すことのできる媒体である。熱輸送媒体は、高温熱源13から熱を受け取り気化し、低温熱源23へ熱を受け渡して液化する潜熱材を熱輸送媒体としてもよい。潜熱材は、蒸発することにより多量の熱エネルギーを運ぶことができる。また、熱輸送媒体は、温度差と流量から輸送する熱エネルギーの検出が容易な顕熱材であってもよい。本実施例では、熱輸送媒体として、例えば、水やオイルを採用してもよい。熱輸送媒体循環路30は、第1熱電素子10側の第1熱交換室31、第2熱電素子20側の第2熱交換室32、熱輸送路33、戻り路34を備えている。第1熱交換室31は、高温熱源13の反対側において第1熱電素子10に接触している。第2熱交換室32は、低温熱源23の反対側において第2熱電素子20に接触している。熱輸送路33、戻り路34は、各々、第1熱交換室31と第2熱交換室32とを連通する。図5中に示すように、熱輸送媒体は、熱輸送路33内を第1熱交換室31から第2熱交換室32へ移動する。反対に、熱輸送媒体は、戻り路34内を第2熱交換室32から第1熱交換室31へ移動する。戻り路34上には制御弁35が設けられており、制御弁35は、絞りを調整することにより、戻り路34を流れる熱輸送媒体の流量を制御する。すなわち、制御弁35は、第2熱交換室32から第1熱交換室31への熱輸送媒体の流量を制御する。この制御弁35は、電磁弁のような電動式の機構により開度を調整してもよいし、ダイアフラムのような機械式の機構により開度を調整してもよい。   The heat transport medium circulation path 30 is a passage through which the heat transport medium circulates. The arrows in FIG. 5 indicate the flow direction of the heat transport medium. A heat transport medium is a medium that can receive heat from a hot object and transfer the heat to a cold object. The heat transport medium may be a latent heat material that receives and vaporizes heat from the high-temperature heat source 13 and delivers the heat to the low-temperature heat source 23 to liquefy it. The latent heat material can carry a large amount of heat energy by evaporating. Further, the heat transport medium may be a sensible heat material in which thermal energy transported from a temperature difference and a flow rate can be easily detected. In this embodiment, for example, water or oil may be adopted as the heat transport medium. The heat transport medium circulation path 30 includes a first heat exchange chamber 31 on the first thermoelectric element 10 side, a second heat exchange chamber 32 on the second thermoelectric element 20 side, a heat transport path 33, and a return path 34. The first heat exchange chamber 31 is in contact with the first thermoelectric element 10 on the opposite side of the high temperature heat source 13. The second heat exchange chamber 32 is in contact with the second thermoelectric element 20 on the opposite side of the low-temperature heat source 23. The heat transport path 33 and the return path 34 communicate with the first heat exchange chamber 31 and the second heat exchange chamber 32, respectively. As shown in FIG. 5, the heat transport medium moves from the first heat exchange chamber 31 to the second heat exchange chamber 32 in the heat transport path 33. In contrast, the heat transport medium moves from the second heat exchange chamber 32 to the first heat exchange chamber 31 in the return path 34. A control valve 35 is provided on the return path 34, and the control valve 35 controls the flow rate of the heat transport medium flowing through the return path 34 by adjusting the throttle. That is, the control valve 35 controls the flow rate of the heat transport medium from the second heat exchange chamber 32 to the first heat exchange chamber 31. The opening of the control valve 35 may be adjusted by an electric mechanism such as an electromagnetic valve, or may be adjusted by a mechanical mechanism such as a diaphragm.

次に、発電装置1の作動について説明する。発電装置1は第1熱電素子10と第2熱電素子20の熱電効果(ゼーベック効果)を利用して発電する。発電装置1が発電するための条件は、熱輸送媒体の温度が高温熱源13の温度よりも低く、熱輸送媒体の温度が低温熱源23の温度よりも高いことである。   Next, the operation of the power generator 1 will be described. The power generation apparatus 1 generates power using the thermoelectric effect (Seebeck effect) of the first thermoelectric element 10 and the second thermoelectric element 20. The condition for the power generation device 1 to generate power is that the temperature of the heat transport medium is lower than the temperature of the high temperature heat source 13 and the temperature of the heat transport medium is higher than the temperature of the low temperature heat source 23.

ここでは、上記の発電装置1が発電するための条件が満たされたとして説明する。高温熱源13が熱輸送媒体よりも高温であるから、第1熱電素子10は、高温熱源13と第1熱交換室31内の熱輸送媒体との温度差により発電する。このとき、第1熱電素子10は高温熱源13から吸熱し、熱輸送媒体へ放熱する。第1熱交換室31内で第1熱電素子10から熱を受け取った熱輸送媒体は、熱輸送路33を通り、第2熱交換室32へ送られる。また、第2熱電素子20は、第2熱交換室32内の熱輸送媒体と低温熱源23との温度差により発電する。このとき、第2熱電素子20は熱輸送媒体から吸熱し、低温熱源23へ放熱する。すなわち、第1熱交換室31で第1熱電素子10から熱を受け取った熱輸送媒体は第2熱交換室32において第2熱電素子20へ熱を受け渡す。第2熱交換室32内の熱輸送媒体は、第2熱電素子20へ熱を受け渡すことにより温度が低下する。その後、温度の低下した熱輸送媒体は戻り路34を通り、第1熱交換室31へ戻る。   Here, the description will be made assuming that the conditions for generating power by the power generation apparatus 1 are satisfied. Since the high temperature heat source 13 is at a higher temperature than the heat transport medium, the first thermoelectric element 10 generates power due to a temperature difference between the high temperature heat source 13 and the heat transport medium in the first heat exchange chamber 31. At this time, the first thermoelectric element 10 absorbs heat from the high-temperature heat source 13 and dissipates heat to the heat transport medium. The heat transport medium that has received heat from the first thermoelectric element 10 in the first heat exchange chamber 31 passes through the heat transport path 33 and is sent to the second heat exchange chamber 32. In addition, the second thermoelectric element 20 generates power due to a temperature difference between the heat transport medium in the second heat exchange chamber 32 and the low-temperature heat source 23. At this time, the second thermoelectric element 20 absorbs heat from the heat transport medium and dissipates heat to the low-temperature heat source 23. That is, the heat transport medium that has received heat from the first thermoelectric element 10 in the first heat exchange chamber 31 delivers heat to the second thermoelectric element 20 in the second heat exchange chamber 32. The heat transport medium in the second heat exchange chamber 32 is lowered in temperature by delivering heat to the second thermoelectric element 20. Thereafter, the heat transport medium whose temperature has decreased passes through the return path 34 and returns to the first heat exchange chamber 31.

以上の説明の通り、熱輸送媒体は熱輸送媒体循環路30を循環しながら、第1熱交換室31から第2熱交換室32へ熱の輸送を行う。発電装置1は、例えば、ECUなどの制御部により、制御弁35の開度を調節することにより、第1熱交換室31へ供給する熱輸送媒体の流量を制御する。熱輸送媒体の流量が変化することにより、第1熱交換室31から第2熱交換室32へ輸送される熱量が変化する。第1熱交換室31から第2熱交換室32へ輸送される熱量が減少すれば、第1熱電素子10の低温側部の温度が上昇し、第2熱電素子20の高温側部の温度が低下する。反対に、第1熱交換室31から第2熱交換室32へ輸送される熱量が増加すれば、第1熱電素子10の低温側部の温度が低下し、第2熱電素子20の高温側部の温度が上昇する。このように、発電装置1は熱輸送媒体による熱の輸送量を制御して、第1熱電素子10の低温側部と第2熱電素子20の高温側部の温度を制御する。なお、発電装置1は、熱輸送路33に熱輸送媒体の温度を測定する温度センサを備えてもよい。温度センサにより測定された情報は、例えば、ECUなどの制御部へ送られ、制御部が受信した温度情報に基づき、制御弁35の開度を制御することとしてもよい。   As described above, the heat transport medium transports heat from the first heat exchange chamber 31 to the second heat exchange chamber 32 while circulating through the heat transport medium circulation path 30. The power generator 1 controls the flow rate of the heat transport medium supplied to the first heat exchange chamber 31 by adjusting the opening of the control valve 35 by a control unit such as an ECU, for example. By changing the flow rate of the heat transport medium, the amount of heat transported from the first heat exchange chamber 31 to the second heat exchange chamber 32 changes. If the amount of heat transported from the first heat exchange chamber 31 to the second heat exchange chamber 32 decreases, the temperature of the low temperature side portion of the first thermoelectric element 10 increases and the temperature of the high temperature side portion of the second thermoelectric element 20 increases. descend. Conversely, if the amount of heat transported from the first heat exchange chamber 31 to the second heat exchange chamber 32 increases, the temperature of the low temperature side portion of the first thermoelectric element 10 decreases, and the high temperature side portion of the second thermoelectric element 20 Temperature rises. As described above, the power generation device 1 controls the temperature of the low temperature side portion of the first thermoelectric element 10 and the high temperature side portion of the second thermoelectric element 20 by controlling the amount of heat transported by the heat transport medium. Note that the power generation device 1 may include a temperature sensor that measures the temperature of the heat transport medium in the heat transport path 33. The information measured by the temperature sensor may be sent to a control unit such as an ECU, for example, and the opening degree of the control valve 35 may be controlled based on the temperature information received by the control unit.

ここで、発電装置1の性能との関係で熱輸送媒体の流量について説明する。次式は発電装置1の発電効率ηを表す式である。次式において、Tは高温熱源温度、Tは低温熱源温度、Zは性能指数である。

Figure 2013172576

数1の式によると、発電効率ηは高温熱源温度Tと低温熱源温度Tとの温度差(T−T)が増加するほど向上し、性能指数Zが上昇するほど向上する。図6は発電装置1における第1熱電素子10と第2熱電素子20の性能指数を示した図である。図6中の実線は第1熱電素子10の性能指数を示し、破線は第2熱電素子20の性能指数を示している。図中の横軸は温度を示し、図中の高温熱源温度Tと低温熱源温度Tの温度差(有効温度差)は発電装置1の性能(発電効率)を決める因子の一つであり、有効温度差が増加するほど発電効率が高まる。また、図6中の縦軸は性能指数を示しており、第1熱電素子10または第2熱電素子20の発電時の温度の値に対応する性能指数が高いほど、発電装置1の発電効率が高まる。ここで、図6中に示す第1熱電素子10の性能指数と第2熱電素子20の性能指数の値が一致する温度を最適温度Tとする。図6に示すように、最適温度Tよりも高温では、第1熱電素子10の性能指数が第2熱電素子20の性能指数よりも高く、最適温度Tよりも低温では、第2熱電素子20の性能指数が第1熱電素子10の性能指数よりも高い。 Here, the flow rate of the heat transport medium will be described in relation to the performance of the power generation device 1. The following expression is an expression representing the power generation efficiency η of the power generator 1. In the following equation, T H is a high temperature heat source temperature, T C is low heat source temperature, Z is merit.
Figure 2013172576

According to equation 1, the power generation efficiency η is improved as the temperature difference between the high temperature heat source temperature T H and the low temperature heat source temperature T C (T H -T C) increases, improved as performance index Z is increased. FIG. 6 is a diagram showing the figure of merit of the first thermoelectric element 10 and the second thermoelectric element 20 in the power generation apparatus 1. The solid line in FIG. 6 indicates the performance index of the first thermoelectric element 10, and the broken line indicates the performance index of the second thermoelectric element 20. The horizontal axis in the figure indicates the temperature, the temperature difference between the high-temperature heat source temperature T H and the low temperature heat source temperature T C in the figure (the effective temperature difference) is one of factors that determine the performance of the power plant 1 (power generation efficiency) The power generation efficiency increases as the effective temperature difference increases. The vertical axis in FIG. 6 indicates the performance index. The higher the performance index corresponding to the temperature value during power generation of the first thermoelectric element 10 or the second thermoelectric element 20, the higher the power generation efficiency of the power generator 1 is. Rise. Here, the optimum temperature T B the temperature value of the performance index of the performance index and the second thermoelectric element 20 of the first thermoelectric element 10 shown in FIG. 6 are identical. As shown in FIG. 6, the optimum temperature T at high temperatures than B, the performance index of the first thermoelectric element 10 is higher than the performance index of the second thermoelectric element 20, a temperature lower than the optimum temperature T B, the second thermoelectric element The figure of merit of 20 is higher than the figure of merit of the first thermoelectric element 10.

続いて、発電装置1の作動方針について説明する。発電装置1は熱輸送媒体の温度が最適温度Tとなるように、熱輸送路33内の熱輸送媒体の流量、すなわち制御弁35の開度を制御する。第1熱電素子10と第2熱電素子20との間に位置する熱輸送路33内の熱輸送媒体の温度が最適温度Tとなることにより、第1熱電素子10を最適温度Tよりも高温に維持し、第2熱電素子20を最適温度Tよりも低温に維持する。これにより、第1熱電素子10と第2熱電素子20がともに、性能指数の高い温度域で発電することになる。このように、発電装置1が熱輸送媒体の温度が最適温度Tとなるように、制御弁35の開度を制御することにより、高い発電効率を取得することとなる。なお、高温熱源13の温度Tが最適温度Tより低い場合や、低温熱源23の温度Tが最適温度Tより高い場合には、熱輸送媒体の温度を最適温度Tとすることができない。このような場合には、発電装置1は、熱輸送媒体の温度ができる限り最適温度Tに近づくように、制御弁35の開度を調節して熱輸送媒体の流量を制御する。 Next, the operation policy of the power generator 1 will be described. Generator 1, as the temperature of the heat transport medium is the optimum temperature T B, flow rate of the heat transport medium in the heat transport passage 33, i.e., controls the opening of the control valve 35. By the temperature of the heat transport medium in the heat transport passage 33 which is located between the first thermoelectric element 10 and the second thermoelectric element 20 is the optimum temperature T B, than the optimum temperature T B of the first thermoelectric element 10 and maintained at an elevated temperature, maintained at a temperature lower than the optimum temperature T B of the second thermoelectric element 20. Thereby, both the 1st thermoelectric element 10 and the 2nd thermoelectric element 20 generate electric power in the temperature range with a high figure of merit. Thus, the power generation apparatus 1 is such that the temperature of the heat transport medium is the optimum temperature T B, by controlling the opening degree of the control valve 35, and thus to obtain high power generation efficiency. In the case or the temperature T H is lower than the optimum temperature T B of the high-temperature heat source 13, when the temperature T C of the low-temperature heat source 23 is higher than the optimum temperature T B is to a temperature of the heat transport medium and the optimum temperature T B I can't. In such a case, the power generation apparatus 1, so as to approach the optimum temperature T B as possible the temperature of the heat transport medium, by adjusting the opening degree of the control valve 35 controls the flow rate of the heat transport medium.

次に、高温熱源13と低温熱源23の温度条件と発電装置1の発電効率について、制御弁35の開度を制御しない場合と比較して説明する。比較例の発電装置は、上記の発電装置1と比較して、制御弁35が設けられていない、または制御弁35の開度が全開のまま開度を調節しない構成とする。図7,8は高温熱源13及び低温熱源23の温度と熱電素子の性能指数との関係を示した図である。図7は本実施例の発電装置1に関し、図8は比較例の発電装置に関する。   Next, the temperature conditions of the high-temperature heat source 13 and the low-temperature heat source 23 and the power generation efficiency of the power generator 1 will be described in comparison with a case where the opening degree of the control valve 35 is not controlled. The power generation device of the comparative example has a configuration in which the control valve 35 is not provided or the opening degree of the control valve 35 is not fully adjusted while the opening degree of the control valve 35 is fully open as compared with the power generation device 1 described above. 7 and 8 are diagrams showing the relationship between the temperature of the high temperature heat source 13 and the low temperature heat source 23 and the figure of merit of the thermoelectric element. FIG. 7 relates to the power generation apparatus 1 of the present embodiment, and FIG. 8 relates to the power generation apparatus of the comparative example.

図7(a)、図8(a)は、高温熱源13が高温の状態で、低温熱源23が高温の状態を示している。ここでは、高温熱源13の温度Tは最適温度Tよりも高く、低温熱源23の温度Tは最適温度Tより低いものとする。本実施例の発電装置1は、熱輸送媒体の温度が最適温度Tとなるように調整する。図7(a)のような条件の場合、発電装置1は、例えば、制御弁35の開度を半開とし、熱輸送媒体の流量を中程度としながら、適宜、熱輸送媒体の温度が最適温度Tとなるようにする。これにより、第1熱電素子10の温度が最適温度T以上となり、第2熱電素子20の温度が最適温度T以下となる。このため、図7(a)に示すように、第1熱電素子10は、高温熱源13の温度Tと最適温度Tの間の性能指数ZH1で発電することになる。また、第2熱電素子20は、低温熱源23の温度Tと最適温度Tの間の性能指数ZC1で発電することになる。このように、発電装置1では、温度域に応じて性能指数が高い方の熱電素子が発電を行うため、発電効率が高くなる。この場合、発電装置1の性能指数は第1熱電素子10の特性が支配的となる。一方、比較例の発電装置は、熱輸送媒体の温度Tが高温熱源13の温度Tと低温熱源23の温度Tの中間となる。したがって、第1熱電素子10は、高温熱源13の温度Tと熱輸送媒体の温度Tとの間の性能指数YH1で発電し、第2熱電素子20は、低温熱源23の温度Tと熱輸送媒体の温度Tとの間の性能指数YC1で発電する。このため、最適温度Tより高く、熱輸送媒体の温度Tよりも低い温度域で、第1熱電素子10よりも性能指数の低い第2熱電素子20で発電することになり、発電効率が最適とはいえない。 FIG. 7A and FIG. 8A show a state where the high-temperature heat source 13 is at a high temperature and the low-temperature heat source 23 is at a high temperature. Here, the temperature T H of the high-temperature heat source 13 higher than the optimum temperature T B, the temperature T C of the low-temperature heat source 23 is set to be lower than the optimum temperature T B. Generator 1 of this embodiment, the temperature of the heat transport medium is adjusted to be optimum temperature T B. In the case of the conditions as shown in FIG. 7A, for example, the power generation device 1 appropriately sets the temperature of the heat transport medium to the optimum temperature while the control valve 35 is half open and the flow rate of the heat transport medium is moderate. T B is set. Accordingly, the temperature of the first thermoelectric element 10 becomes optimum temperature T B above, the temperature of the second thermoelectric element 20 is equal to or less than the optimum temperature T B. Therefore, as shown in FIG. 7 (a), the first thermoelectric element 10 will power at a temperature T H and the optimum temperature T performance index Z H1 between B of the high-temperature heat source 13. The second thermoelectric element 20 will power at a temperature T C and the optimum temperature T performance index Z C1 between the B cold heat source 23. As described above, in the power generation device 1, the thermoelectric element having the higher performance index according to the temperature range generates power, and thus the power generation efficiency is increased. In this case, the performance index of the power generator 1 is dominated by the characteristics of the first thermoelectric element 10. On the other hand, in the power generation device of the comparative example, the temperature T M of the heat transport medium is intermediate between the temperature T H of the high temperature heat source 13 and the temperature T C of the low temperature heat source 23. Therefore, the first thermoelectric element 10 generates power at a figure of merit Y H1 between the temperature T H of the high temperature heat source 13 and the temperature T M of the heat transport medium, and the second thermoelectric element 20 generates the temperature T C of the low temperature heat source 23. Is generated with a figure of merit Y C1 between the temperature and the temperature T M of the heat transport medium. Therefore, higher than the optimum temperature T B, at a temperature range lower than the temperature T M of the heat transport medium, it will be generated by the second thermoelectric element 20 less merit than the first thermoelectric element 10, power generation efficiency Not optimal.

図7(b)、図8(b)は、高温熱源13が高温の状態で、低温熱源23が低温の状態を示している。図7(b)のような条件の場合、例えば、制御弁35の開度は全開とし、熱輸送媒体の流量を多くする。ただし。この場合も、適宜、熱輸送媒体の温度が最適温度Tとなるよう制御弁35の開度を調整する。この条件の場合、図7(b)に示すように、第1熱電素子10は、高温熱源13の温度Tと最適温度Tの間の性能指数ZH2で発電し、第2熱電素子20は、低温熱源23の温度Tと最適温度Tの間の性能指数ZC2で発電する。このため、高い性能指数の温度域で発電が行われるので、発電装置1は高い発電効率を実現する。一方、比較例では、熱輸送媒体の温度Tが最適温度Tに一致することはまれであり、この場合も、熱輸送媒体の温度Tと最適温度Tとの間の温度域では、性能指数の低い方の熱電素子により発電することになり、最適な発電効率が得られることができない。 FIGS. 7B and 8B show a state where the high temperature heat source 13 is at a high temperature and the low temperature heat source 23 is at a low temperature. In the case of the condition as shown in FIG. 7B, for example, the opening degree of the control valve 35 is fully opened and the flow rate of the heat transport medium is increased. However. Again, as appropriate, to adjust the opening degree of the control valve 35 so that the temperature of the heat transport medium is the optimum temperature T B. In this condition, as shown in FIG. 7 (b), the first thermoelectric element 10 is generated by the performance index Z H2 between the temperature T H and the optimum temperature T B of the high-temperature heat source 13, the second thermoelectric element 20 It is generated by the temperature T C and the optimum temperature T performance index Z C2 between the B cold heat source 23. For this reason, since power generation is performed in a temperature range with a high performance index, the power generation apparatus 1 achieves high power generation efficiency. On the other hand, in the comparative example, the temperature T M of the heat transport medium is equal to the optimum temperature T B is rare, even in this case, in a temperature range between the temperature T M and the optimal temperature T B of the heat transport medium Therefore, power is generated by the thermoelectric element having the lower figure of merit, and optimal power generation efficiency cannot be obtained.

図7(c)、図8(c)は、高温熱源13が低温の状態で、低温熱源23が高温の状態を示している。このように7(c)のような条件、すなわち、第1熱電素子10と第2熱電素子20との温度差が小さい場合、発電装置1は制御弁35を閉じ、熱輸送媒体循環路30内の熱輸送媒体の流れを止めて、第1熱交換室31から第2熱交換室32への熱の輸送を停止する。この条件では、有効温度差が小さいため、発電効率が低下する。このため、熱の輸送を停止し、発電を停止する。   FIGS. 7C and 8C show a state where the high temperature heat source 13 is in a low temperature state and the low temperature heat source 23 is in a high temperature state. Thus, when the condition as in 7 (c), that is, when the temperature difference between the first thermoelectric element 10 and the second thermoelectric element 20 is small, the power generator 1 closes the control valve 35 and the heat transport medium circulation path 30 The flow of the heat transport medium is stopped, and the transport of heat from the first heat exchange chamber 31 to the second heat exchange chamber 32 is stopped. Under this condition, since the effective temperature difference is small, the power generation efficiency decreases. For this reason, the transportation of heat is stopped and the power generation is stopped.

図7(d)、図8(d)は、高温熱源13が低温の状態で、低温熱源23が低温の状態を示している。ここでは、高温熱源13の温度Tが最適温度Tを下回っているものとする。図7(d)のような条件の場合、発電装置1は、制御弁35の開度を絞り、熱輸送媒体の流量を少なくして、可能な限り熱輸送媒体の温度が最適温度Tに近くなるようにする。これにより、有効温度差を広げ、発電効率を高める。この場合、第1熱電素子10では発電が行われない。第2熱電素子20は、低温熱源23の温度Tと高温熱源13の温度Tの間の性能指数ZC4で発電する。ここでは、発電装置1の性能指数は第2熱電素子20の特性が支配的となる。一方、比較例の発電装置では、熱輸送媒体の温度Tは最適温度T以下となる。比較例では、第1熱電素子10よりも第2熱電素子20の方が効率よく発電する温度域において、第1熱電素子10が発電を行う。このため、発電効率が最適とはいえない。 FIGS. 7D and 8D show a state where the high temperature heat source 13 is at a low temperature and the low temperature heat source 23 is at a low temperature. Here, it is assumed that the temperature T H of the high-temperature heat source 13 is below the optimal temperature T B. For conditions such as in FIG. 7 (d), the power generation apparatus 1, stop the opening of the control valve 35, by reducing the flow rate of the heat transport medium, the temperature of the heat transport medium as possible to the optimum temperature T B Try to be close. This widens the effective temperature difference and increases power generation efficiency. In this case, the first thermoelectric element 10 does not generate power. The second thermoelectric element 20 is generated by the figure of merit Z C4 between the temperature T H of the temperature T C and high-temperature heat source 13 of the low-temperature heat source 23. Here, the performance index of the power generator 1 is dominated by the characteristics of the second thermoelectric element 20. On the other hand, in the power generation device of the comparative example, the temperature T M of the heat transport medium is as follows optimum temperature T B. In the comparative example, the first thermoelectric element 10 generates power in a temperature range where the second thermoelectric element 20 generates power more efficiently than the first thermoelectric element 10. For this reason, the power generation efficiency is not optimal.

また、図7により説明した例以外にも、例えば、高温熱源13の温度Tが最適温度Tよりも高く、低温熱源23の温度Tも最適温度Tより高い場合、発電装置1は、制御弁35の開度を制御し、熱輸送媒体の流量を調整して、可能な限り熱輸送媒体の温度が最適温度Tに近くなるようにすることとしてもよい。以上のように、本実施例の発電装置1は、本来、高温熱源13の温度と低温熱源23の温度により変動する熱輸送媒体の温度を最適温度Tとする。またはそれができない場合には最適温度Tに近づける。これにより、発電装置1は、高温熱源13と低温熱源23の温度条件が変化しても、熱源の環境から与えられる温度条件において性能指数が高い方の熱電素子により発電を行い、発電効率を向上することができる。 In addition to the example described with FIG. 7, for example, higher than the optimum temperature T B is the temperature T H of the high-temperature heat source 13, is higher than the temperature T C be the optimum temperature T B of the low-temperature heat source 23, the power generation apparatus 1 to control the opening degree of the control valve 35 adjusts the flow rate of the heat transport medium, the temperature of the heat transport medium as possible may be as close to the optimum temperature T B. As described above, the power generation apparatus 1 of this embodiment is essentially the temperature of the heat transport medium varies with the temperature of the temperature and the low temperature heat source 23 of the high-temperature heat source 13 and the optimum temperature T B. Or if it is unable to approach the optimum temperature T B. Thereby, even if the temperature conditions of the high temperature heat source 13 and the low temperature heat source 23 change, the power generator 1 generates power with the thermoelectric element having a higher performance index under the temperature condition given from the environment of the heat source, thereby improving the power generation efficiency. can do.

上記で説明してきた発電装置1は、高温熱源13と低温熱源23を備えた装置に組み込むことができる。その一例として、発電装置1をエンジン50に組み込んだ例を説明する。図9は発電装置1を組み込んだエンジン50を示した図である。エンジン50は車両等に搭載される内燃機関である。エンジン50は、燃焼室、動弁系等を備えるエンジン本体51、エンジン本体51の冷却水が循環する冷却水通路52、冷却水から放熱させるラジエータ53、燃焼室に吸気を取り込む吸気管54、燃焼室から燃焼後の排気を排出する排気管55を備えている。冷却水通路52には、エンジン本体51へ供給される本流から分岐する冷却水分岐通路56が設けられている。冷却水分岐通路56は、ラジエータ53の下流であって、エンジン本体51の上流において、冷却水通路52から分岐し、エンジン本体51の下流であって、ラジエータ53の上流において、冷却水通路52に合流する。このようなエンジン50において、第1熱電素子10が排気管55に接触し、第2熱電素子20が冷却水分岐通路56の配管に接触するように発電装置1が組みこまれている。発電装置1は排気管55を通る排気を高温熱源13とし、冷却水分岐通路56を通る冷却水を低温熱源23として発電を行う。   The power generation apparatus 1 described above can be incorporated into an apparatus including the high temperature heat source 13 and the low temperature heat source 23. As an example, an example in which the power generator 1 is incorporated in the engine 50 will be described. FIG. 9 is a view showing an engine 50 in which the power generator 1 is incorporated. The engine 50 is an internal combustion engine mounted on a vehicle or the like. The engine 50 includes an engine main body 51 having a combustion chamber, a valve operating system, etc., a cooling water passage 52 through which cooling water of the engine main body 51 circulates, a radiator 53 that radiates heat from the cooling water, an intake pipe 54 that takes intake air into the combustion chamber, An exhaust pipe 55 is provided for discharging exhaust gas after combustion from the chamber. The cooling water passage 52 is provided with a cooling water branch passage 56 that branches from the main flow supplied to the engine body 51. The cooling water branch passage 56 is branched from the cooling water passage 52 downstream of the radiator 53 and upstream of the engine body 51, and is downstream of the engine main body 51 and upstream of the radiator 53 to the cooling water passage 52. Join. In such an engine 50, the power generator 1 is incorporated such that the first thermoelectric element 10 contacts the exhaust pipe 55 and the second thermoelectric element 20 contacts the piping of the cooling water branch passage 56. The power generation apparatus 1 performs power generation using the exhaust gas passing through the exhaust pipe 55 as the high temperature heat source 13 and the cooling water passing through the cooling water branch passage 56 as the low temperature heat source 23.

発電装置1をエンジンに組み込んだ場合、排気温度が上昇すると、高温熱源13が高温となり、排気温度が低下すると、高温熱源13が低温となる。また、冷却水温度が上昇すると、低温熱源23が高温となり、冷却水温度が低下すると、低温熱源23が低温となる。発電装置1は、図7の説明において示したように、排気温度と冷却水温度に応じて、制御弁35の開度を調整し、発電効率を向上する。これにより、発電装置1はエンジンの排気が有する有効なエネルギーを効率よく回収することができる。また、発電装置1は、排気温度が低く、冷却水温度が高い条件で排気と冷却水の温度差が小さい場合には、図7(c)で示したように、制御弁35を閉じて発電を停止する。これにより、冷却水温度の上昇が抑えられるため、ラジエータ53の負荷を低減することができる。   When the power generator 1 is incorporated in an engine, the high temperature heat source 13 becomes high when the exhaust temperature rises, and the high temperature heat source 13 becomes low when the exhaust temperature falls. Further, when the cooling water temperature rises, the low temperature heat source 23 becomes high temperature, and when the cooling water temperature falls, the low temperature heat source 23 becomes low temperature. As shown in the description of FIG. 7, the power generation device 1 adjusts the opening degree of the control valve 35 according to the exhaust gas temperature and the cooling water temperature, and improves the power generation efficiency. Thereby, the electric power generating apparatus 1 can collect | recover efficiently the effective energy which the engine exhaust has. Further, when the temperature difference between the exhaust gas and the cooling water is small under the condition that the exhaust gas temperature is low and the cooling water temperature is high, the power generator 1 closes the control valve 35 to generate power as shown in FIG. To stop. Thereby, since the raise of a cooling water temperature is suppressed, the load of the radiator 53 can be reduced.

このような発電装置1の利用可能な領域は多岐に亘り、ここで説明した以外にも、高温熱源として、排気、冷却水、油、放熱空気、熱伝導する高温固体、高温潜熱冷媒、蓄熱、太陽光や排気管等からの輻射熱、故意的燃焼熱などを利用することができる。また、低温熱源として、空気、冷却水、油、ミスト、熱伝導する低温固体、潜熱冷媒、輻射放熱、蓄冷熱などを利用することができる。   There are a wide range of areas where such a power generator 1 can be used, and in addition to those described here, exhaust, cooling water, oil, radiating air, high-temperature solid that conducts heat, high-temperature latent heat refrigerant, heat storage, Radiant heat from sunlight, exhaust pipes, intentional combustion heat, or the like can be used. Moreover, as a low-temperature heat source, air, cooling water, oil, mist, a low-temperature solid that conducts heat, a latent heat refrigerant, radiation heat dissipation, cold storage heat, or the like can be used.

また、本発明の実施の形態を示すその他の構成として、図10に示すように、発電装置2は高温熱源と低温熱源の組合せを複数備えた多段式の構成としてもよい。また、このような高温熱源と低温熱源とを組み合わせる数は限定されない。また、図11に示すように、発電装置3は制御弁35の代わりにアキュムレータ36を備え、アキュムレータ36内の熱輸送媒体の容積を制御することにより、熱輸送媒体の流量を制御することとしてもよい。   As another configuration showing the embodiment of the present invention, as shown in FIG. 10, the power generation device 2 may have a multistage configuration including a plurality of combinations of high-temperature heat sources and low-temperature heat sources. The number of combinations of such a high temperature heat source and a low temperature heat source is not limited. In addition, as shown in FIG. 11, the power generation device 3 includes an accumulator 36 instead of the control valve 35, and controls the flow rate of the heat transport medium by controlling the volume of the heat transport medium in the accumulator 36. Good.

上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited thereto. Various modifications of these embodiments are within the scope of the present invention. It is apparent from the above description that various other embodiments are possible within the scope.

1,2,3 発電装置
10 第1熱電素子
13 高温熱源
20 第2熱電素子
23 低温熱源
30 熱輸送媒体循環路
33 熱輸送路
34 戻り路
35 制御弁
50 エンジン
1, 2, 3 Power generation device 10 First thermoelectric element 13 High temperature heat source 20 Second thermoelectric element 23 Low temperature heat source 30 Heat transport medium circulation path 33 Heat transport path 34 Return path 35 Control valve 50 Engine

Claims (6)

高温熱源と熱交換するように配置された第1熱電素子と、
低温熱源と熱交換するように配置された第2熱電素子と、
を備え、
前記高温熱源の温度において、前記第1熱電素子の性能指数が前記第2熱電素子の性能指数よりも高く、前記低温熱源の温度において、前記第2熱電素子の性能指数が前記第1熱電素子の性能指数よりも高い関係にあり、
前記第1熱電素子と前記第2熱電素子との間を循環して熱を輸送する熱輸送媒体の熱輸送量を制御することを特徴とする発電装置。
A first thermoelectric element arranged to exchange heat with a high temperature heat source;
A second thermoelectric element arranged to exchange heat with a low-temperature heat source;
With
The performance index of the first thermoelectric element is higher than the performance index of the second thermoelectric element at the temperature of the high temperature heat source, and the performance index of the second thermoelectric element is the temperature of the first thermoelectric element at the temperature of the low temperature heat source. The relationship is higher than the figure of merit,
A power generator that controls a heat transport amount of a heat transport medium that circulates between the first thermoelectric element and the second thermoelectric element to transport heat.
前記熱輸送媒体の温度が、前記第1熱電素子の性能指数と前記第2熱電素子の性能指数とが一致する温度になるように熱輸送量を制御することを特徴とする請求項1記載の発電装置。   The heat transport amount is controlled so that the temperature of the heat transport medium becomes a temperature at which the performance index of the first thermoelectric element and the performance index of the second thermoelectric element coincide with each other. Power generation device. 前記熱輸送媒体が前記第1熱電素子から前記第2熱電素子へ移動する熱輸送路と、
前記熱輸送媒体が前記第2熱電素子から前記第1熱電素子へ戻る戻り路と、
前記戻り路の流量を制御する制御弁とを備えたことを特徴とする請求項1または2記載の発電装置。
A heat transport path through which the heat transport medium moves from the first thermoelectric element to the second thermoelectric element;
A return path from which the heat transport medium returns from the second thermoelectric element to the first thermoelectric element;
The power generator according to claim 1, further comprising a control valve that controls a flow rate of the return path.
第1熱電素子と第2熱電素子との温度差が小さい場合、前記制御弁が閉弁することを特徴とする請求項3記載の発電装置。   The power generator according to claim 3, wherein the control valve is closed when a temperature difference between the first thermoelectric element and the second thermoelectric element is small. 前記高温熱源を、内燃機関から排出される排気とする請求項1から4のいずれか一項に記載の発電装置。   The power generator according to any one of claims 1 to 4, wherein the high-temperature heat source is exhaust discharged from an internal combustion engine. 前記低温熱源を、内燃機関内を循環冷却する冷却水とする請求項5記載の発電装置。   The power generator according to claim 5, wherein the low-temperature heat source is cooling water for circulating and cooling the internal combustion engine.
JP2012035582A 2012-02-21 2012-02-21 Power generator Pending JP2013172576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035582A JP2013172576A (en) 2012-02-21 2012-02-21 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035582A JP2013172576A (en) 2012-02-21 2012-02-21 Power generator

Publications (1)

Publication Number Publication Date
JP2013172576A true JP2013172576A (en) 2013-09-02

Family

ID=49266184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035582A Pending JP2013172576A (en) 2012-02-21 2012-02-21 Power generator

Country Status (1)

Country Link
JP (1) JP2013172576A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012957A (en) * 2014-06-27 2016-01-21 株式会社リコー Power generation device, image formation device, program, and power generation control method
WO2018079172A1 (en) * 2016-10-25 2018-05-03 ヤンマー株式会社 Thermoelectric generating system
JP2019114614A (en) * 2017-12-21 2019-07-11 株式会社デンソー Abnormality detection device of heat exchanger
JP2019204809A (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Thermoelectric conversion device
US11930707B2 (en) 2016-05-25 2024-03-12 Yanmar Co., Ltd. Thermoelectric power generation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012957A (en) * 2014-06-27 2016-01-21 株式会社リコー Power generation device, image formation device, program, and power generation control method
US11930707B2 (en) 2016-05-25 2024-03-12 Yanmar Co., Ltd. Thermoelectric power generation device
WO2018079172A1 (en) * 2016-10-25 2018-05-03 ヤンマー株式会社 Thermoelectric generating system
CN109863680A (en) * 2016-10-25 2019-06-07 洋马株式会社 Thermoelectric heat generation system
CN109863680B (en) * 2016-10-25 2020-08-04 洋马动力科技有限公司 Thermoelectric power generation system
US11532777B2 (en) 2016-10-25 2022-12-20 Yanmar Power Technology Co., Ltd. Thermoelectric power generation system
JP2019114614A (en) * 2017-12-21 2019-07-11 株式会社デンソー Abnormality detection device of heat exchanger
JP7087376B2 (en) 2017-12-21 2022-06-21 株式会社デンソー Heat exchanger anomaly detector
JP2019204809A (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Thermoelectric conversion device
JP7065687B2 (en) 2018-05-21 2022-05-12 三菱電機株式会社 Thermoelectric converter

Similar Documents

Publication Publication Date Title
US20100024859A1 (en) Thermoelectric power generator for variable thermal power source
US7608777B2 (en) Thermoelectric power generator with intermediate loop
US20060130888A1 (en) Thermoelectric generator
JP4023472B2 (en) Thermoelectric generator
US9470115B2 (en) Split radiator design for heat rejection optimization for a waste heat recovery system
US9145813B2 (en) Structure for utilizing exhaust heat of vehicle
JP2013172576A (en) Power generator
JP6417949B2 (en) Thermoelectric generator
KR20150136455A (en) Thermoelectric generation system and hybrid boiler using the same
Yang et al. Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery
US11031535B2 (en) Thermoelectric power generation system
WO2018083912A1 (en) Thermoelectric power generation heat exchanger
KR20170080029A (en) Integrated system of Exhaust Heat Recovery System and Thermo-Electric Generation system, and operating method thereof
JP2015148355A (en) Waste-heat recovery unit and waste-heat utilization system
US20160163947A1 (en) Structure for mounting thermoelectric generation element module
JP2016023608A (en) Generating set using heat of exhaust gas of internal combustion engine
JP6685880B2 (en) Thermoelectric generator
JP2019143621A (en) Intercooler with thermoelectric generator for internal combustion heat engine with turbocharger
JP6171699B2 (en) Exhaust heat recovery unit
EP3264479B1 (en) Thermoelectric heat recovery
JP5919668B2 (en) Cooling system
KR101689379B1 (en) Thermoelectric generator integrated exhaust heat recovery module and system
KR101927165B1 (en) Cooling and thermoelectric power generating system for vehicle
JP2007024023A (en) Rankine cycle engine
D BRENNAN et al. Heat exchanger design and analysis for an automotive thermoelectric generator