JP2007024023A - Rankine cycle engine - Google Patents

Rankine cycle engine Download PDF

Info

Publication number
JP2007024023A
JP2007024023A JP2005234977A JP2005234977A JP2007024023A JP 2007024023 A JP2007024023 A JP 2007024023A JP 2005234977 A JP2005234977 A JP 2005234977A JP 2005234977 A JP2005234977 A JP 2005234977A JP 2007024023 A JP2007024023 A JP 2007024023A
Authority
JP
Japan
Prior art keywords
heat
heater
temperature
water
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005234977A
Other languages
Japanese (ja)
Other versions
JP2007024023A5 (en
Inventor
Fusao Terada
房夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005234977A priority Critical patent/JP2007024023A/en
Publication of JP2007024023A publication Critical patent/JP2007024023A/en
Publication of JP2007024023A5 publication Critical patent/JP2007024023A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in a cogeneration system of a conventional Rankine cycle engine wherein the size is increased, the cost is increased, and the increase of performance is hard since a high temperature heat exchange part (heater) heating a working medium for driving and a water heating part (water heater) for generating hot water by exhaust heat are formed separately, and particularly excessive heat insulation is applied therearound to prevent the loss of heat radiation from these devices to the outside from occurring. <P>SOLUTION: In this system, the heater 10 is installed in a hot water device to minimize heat loss, and an efficiency is improved, device systems are facilitated, and cost is reduced. A heat medium provided from a high temperature heat source is introduced into the heater from the outside to heat and evaporate mainly a working fluid in a liquid state. To properly control the temperature, the periphery of the heater is simply insulated or the inflow state of the heat medium is controlled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はランキンサイクル機関の駆動用高温熱源の高効率利用とシステムの簡易化を図ろうとするものであり、同機関から得られる動力を発電機や、圧縮機の駆動に用いると同時にその排熱を給湯や温水として有効活用できるいわゆるコジェネ(熱電併給等)に用いるシステムに関する。これを他の各種熱機関、高温系燃料電池等と直結連動してその高温排熱を熱源とすればそれらを含めたシステム全体のエネルギー効率が飛躍的に向上し、同機関の特長である高効率、熱源の多様性、静粛性および排気の清浄性等を簡略な構造で実用化でき、従来の内燃機関等既存の機関で得られなかった利便性、省エネルギー性や環境調和性等を必要とするエネルギー機器応用分野全般に活用できる。The present invention is intended to achieve high efficiency utilization of a high-temperature heat source for driving a Rankine cycle engine and simplification of the system, and the power obtained from the engine is used to drive a generator or a compressor and at the same time exhaust heat thereof. The present invention relates to a system used for so-called cogeneration that can be effectively used as hot water or hot water. If this is directly linked to other various heat engines, high-temperature fuel cells, etc., and the high-temperature exhaust heat is used as a heat source, the energy efficiency of the entire system including them can be dramatically improved. Efficiency, diversity of heat sources, quietness, and cleanliness of exhaust gas can be put into practical use with a simple structure, and convenience, energy saving, environmental harmony, etc. not available with existing engines such as conventional internal combustion engines are required. It can be used in general energy equipment application fields.

ランキンサイクル機関は従来主流の内燃機関と異なり、上述のような優れた特性からその実用化が期待されてきた。しかし内燃機関に比べて外部との熱の授受や作動流体特性や高温高圧化対応の制約などから機構全体が複雑になる傾向にあり耐久性や応答性にも改良の余地が多くかつコスト的にも高くつきやすく、競争力に欠けていた。ただ近年エネルギー環境への対応がより優れたものを希求する方向に変化する中で、本機関は前述の特性から用途を選択してこれに適合したシステムとすれば充分実用化できることが見通されるようになりつつある。工場や店舗等の燃焼機器系から排出される高温排熱はもとより、小型ガスタービンや一般の内燃機関、あるいは固体酸化物形燃料電池(SOFC)や溶融炭酸塩形燃料電池(MCFC)で発電後まだ数百度レベルにある高温排熱を活用して新たに電力および温水を産出し全体の熱利用効率を向上できるようにはこの熱駆動機関が最適である。その一例として単体発電効率が約45パーセント程度のSOFCとの複合化では総合発電効率約60パーセント、発電コジェネとしては約80パーセント以上となる大変高い効率性が期待される。The Rankine cycle engine has been expected to be put to practical use because of its excellent characteristics as described above, unlike the conventional mainstream internal combustion engine. However, compared to internal combustion engines, the overall mechanism tends to be complicated due to external heat transfer, working fluid characteristics, restrictions on high temperature and high pressure, etc., and there is much room for improvement in durability and responsiveness and cost. It was also expensive and lacked competitiveness. However, in recent years, as the response to the energy environment has changed in the direction of seeking better ones, it is expected that this institution can be fully put into practical use by selecting a use from the aforementioned characteristics and making it a system compatible with this. It is becoming. After generating electricity with small gas turbines, general internal combustion engines, solid oxide fuel cells (SOFCs), and molten carbonate fuel cells (MCFCs), as well as high-temperature exhaust heat from combustion equipment systems in factories and stores This heat-driven engine is optimal so that high-temperature exhaust heat, which is still at the level of several hundred degrees, can be used to newly produce electric power and hot water to improve the overall heat utilization efficiency. As an example, when combined with an SOFC with a single power generation efficiency of about 45%, it is expected that the total power generation efficiency is about 60%, and the power generation cogeneration is about 80% or more.

従来コジェネ用のランキンサイクル機関ではその駆動用熱源の温度が比較的高温(およそ摂氏200度以上)で作動熱流体の加熱をする加熱器およびその余熱で水を加熱する温水器はそれより低温(およそ摂氏100度以下)なためそれぞれ異なる別体として設けられていた。このため高温側の加熱器は外部への熱漏れを減らすため重厚な断熱材でその外周を巻いており、かさばると同時にコスト高にもなっていたがそれでも熱損失は完璧には防げなかった。また両者を連結する作動流体や熱媒体の配管流路も複雑となり熱損失も大きかった。本発明はこれを解決すると同時に熱駆動機関の冷却排熱もあわせて有効に活用しシステム全体の簡易化と効率改善を図ろうとする。In conventional Rankine cycle engines for cogeneration, the temperature of the driving heat source is relatively high (approximately 200 degrees Celsius or higher) and the heater that heats the working thermal fluid and the water heater that heats the water with its residual heat are lower than that ( Therefore, they were provided as separate bodies. For this reason, the heater on the high temperature side was wrapped with a heavy insulating material to reduce heat leakage to the outside, and it was bulky and expensive, but still heat loss could not be prevented completely. Also, the working fluid and the heat medium pipe flow path connecting them are complicated and the heat loss is large. The present invention solves this problem and at the same time attempts to simplify and improve the efficiency of the entire system by effectively utilizing the cooling exhaust heat of the thermally driven engine.

本発明は高温度の熱源から得られる高温熱媒により、まず本機関の駆動力源となる加熱器内部の作動流体を高温部放熱器を通して熱交換することにより約摂氏200度以上の所定温度まで充分加熱し、その後それより低い温度で暖房や給湯用の水を温水器内で同じく低温部放熱器を用いて熱交換して加熱し約摂氏100度にする2段階の加熱システムにおいて、高温度側の加熱器を低温度側の温水器内部に包含させて課題を解決しようとし、あわせて本機関の冷却用放熱も適宜前記温水器内に行わせてさらに熱効率を高め課題を解決しようとするものである。The present invention uses a high-temperature heat medium obtained from a high-temperature heat source, and first exchanges the working fluid inside the heater, which is the driving force source of the engine, through a high-temperature section radiator to a predetermined temperature of about 200 degrees Celsius or higher. In a two-stage heating system that heats the water for heating and hot water supply at a lower temperature and then heat-exchanges in the water heater using the same low-temperature radiator and heats it to about 100 degrees Celsius. The heater on the side is included in the water heater on the low temperature side to solve the problem, and at the same time, heat radiation for cooling of the engine is also appropriately performed in the water heater to further improve the thermal efficiency and solve the problem. Is.

本発明は前述のような手段を用いることにより従来の課題を解決できる。高温度になる加熱器の周囲は従来常温であったが本案ではもっと高温の温水温度となる。この結果加熱器周囲の断熱は大幅に簡易化可能となりかつ温水器と一体構造化できるので全体としてコンパクト化が図れる。また加熱器から温水器への接続配管も断熱不要で成形も簡易になる。前項で述べたように熱駆動機関の冷却排熱も温水の加熱に有効に用いやすく効率改善が図れる。The present invention can solve the conventional problems by using the above-described means. The surroundings of the heater that reaches a high temperature were conventionally at room temperature, but in this plan, the temperature of the hot water is higher. As a result, the heat insulation around the heater can be greatly simplified and integrated with the water heater, so that the overall size can be reduced. In addition, the connecting pipe from the heater to the water heater does not require heat insulation, and molding is simplified. As described in the previous section, the cooling exhaust heat of the heat-driven engine can be used effectively for heating hot water, and the efficiency can be improved.

前述のごとく高温の加熱器をより低温の温水器の内部に設け高温部の断熱を簡易化し温水器中の温水は低温放熱器による加熱および熱駆動機関冷却器による構造を主体とする形態。As described above, a high-temperature heater is provided inside a lower-temperature water heater to simplify the heat insulation of the high-temperature portion, and the hot water in the water heater is mainly structured by heating with a low-temperature radiator and a heat-driven engine cooler.

本発明を実施例として図1の基本構成システム図に基づいて説明する。ランキンサイクル機関は作動流体(9)に水やR113等のフロン系、トルエンやオクタン等の有機物質等を用い加熱器(10)で約摂氏200度以上の高温に加熱され液状態から高圧の蒸気状態になったものが膨張機(11)に送られここで低圧までほぼ断熱膨張するとき動力を発生する。本例のような閉サイクル系ではこの後気体を冷却して液体にもどす(復液)ために冷却器(12)およびこの液体を加圧して高圧の加熱器(10)にふたたび送り込む加圧機(14)を設ける。ここに 加熱器(10)は内部に作動流体(9)をその液面(15)より下部では液体状態で保持しそこには高温部放熱器(6)が設けられその内部を通る摂氏200度以上の高温熱媒体により加熱され気化される。この高温熱媒体は入口(5)より流入し前記加熱後温水器本体(1)に送られる。ここに温水器本体(1)は前記加熱器(10)をその内部に包含するように設けられる。このため前述の熱媒体はただちに温水器本体(1)内部に設けられる低温部放熱器(7)を通して温水液面(4)下部の水を加熱し温水を生成しその後熱媒体出口(8)より外部に放出される。なお、温水の元の冷水は比較的下方に設けられる入口(2)より入いり温水出口(3)より所定の温度の温水として取り出される。ここに冷却器(12)は温水液面(4)より下部に設けられ水を加熱し温水を生成し同時に作動流体は冷やされて復液をはじめる。この復液が不十分なばあいは必要に応じてその後段に補助冷却器(13)を温水器本体(1)の外部に設け外気もしくは水等に適宜放熱して復液を完結させる。また、前記加熱器(10)の外周は必要に応じて簡易な断熱材(16)で適宜被覆し周囲の温水器内の温水への放熱を調節する。なお、同図中の矢印は流体の流れ方向を示す。The present invention will be described based on the basic configuration system diagram of FIG. 1 as an embodiment. The Rankine cycle engine uses water, fluorocarbons such as R113 as the working fluid (9), organic substances such as toluene and octane, etc., and is heated to a high temperature of about 200 degrees Celsius or higher by the heater (10). What is in a state is sent to the expander (11) where it generates power when it is adiabatically expanded to a low pressure. In the closed cycle system as in this example, in order to cool the gas and return it to the liquid (condensate), the cooler (12) and the pressurizer (pressurizing the liquid and feeding it again to the high-pressure heater (10) ( 14). Here, the heater (10) holds the working fluid (9) in a liquid state below the liquid level (15), and a high temperature radiator (6) is provided there, and 200 degrees Celsius passes through the inside. It is heated and vaporized by the above high-temperature heat medium. This high-temperature heat medium flows from the inlet (5) and is sent to the heated water heater main body (1). Here, the water heater main body (1) is provided so as to include the heater (10) therein. For this reason, the above-mentioned heat medium immediately heats the water under the warm water level (4) through the low temperature radiator (7) provided inside the water heater body (1) to generate hot water, and then from the heat medium outlet (8). Released to the outside. In addition, the original cold water of warm water enters from the inlet (2) provided relatively below, and is taken out as warm water of predetermined temperature from the warm water outlet (3). Here, the cooler (12) is provided below the warm water level (4) to heat the water to generate warm water, and at the same time, the working fluid is cooled and begins to recover. If this condensate is insufficient, an auxiliary cooler (13) is provided outside the water heater main body (1) at the subsequent stage as necessary, and heat is appropriately radiated to the outside air or water to complete the condensate. Moreover, the outer periphery of the heater (10) is appropriately covered with a simple heat insulating material (16) as necessary to adjust the heat radiation to the warm water in the surrounding water heater. In addition, the arrow in the figure shows the flow direction of the fluid.

前述の結果、本機関は簡略で高効率が期待できるシステムとなるが、一般的に作動流体が高温度ほど高効率が得られる。このため摂氏数百以上では水が、それ以下では有機系(オーガニック)物質が用いられることが多く加熱源の温度、必要とする性能特性の適合する構成が必要である。このため例えば高温部放熱器(6)にはその放熱能力を変化できるように高温熱媒体の流量や流れ方を制御する装置(図示せず)を設けたり断熱材(16)の性能を最適に選択することや、場合により作動流体(9)を過熱(スーパーヒート)するためにその一部を蒸気と接触するように構成したりすることも必要である。なお、断熱材(16)は既述のごとく従来のものに比較すれば簡略なものであることは当然である。また温水器本体(1)には従来レベルの被覆断熱(図示せず)が施されることも同様である。As a result of the foregoing, this engine is a simple system that can be expected to have high efficiency, but generally, the higher the temperature of the working fluid, the higher the efficiency. For this reason, water is often used at several hundred degrees Celsius or higher, and organic materials are often used at lower temperature, and a configuration that matches the temperature of the heat source and the required performance characteristics is required. For this reason, for example, the high-temperature part radiator (6) is provided with a device (not shown) for controlling the flow rate and flow of the high-temperature heat medium so that the heat radiation capacity can be changed, and the performance of the heat insulating material (16) is optimized. It is also necessary to make a selection or to make a part of the working fluid (9) come into contact with the vapor in order to superheat the working fluid (9). As described above, the heat insulating material (16) is naturally simpler than the conventional one. Similarly, the water heater body (1) is provided with conventional insulation (not shown).

以上説明したように、本発明によれば比較的簡単な熱交換器構造で実用性の高い高性能なランキンサイクル機関が実現可能となり冒頭に述べたごとく多くの技術産業分野への活用が可能となる。近時は太陽熱、バイオ産熱等いわゆる持続的(サステイナブル)エネルギーの有効活用へも検討され、経済性はもとよりエネルギー環境性の改善向上を必須とする多くの利用分野に広がるものと期待される。なお、ランキンサイクル機関以外のスターリングサイクルやブレイトンサイクル等の熱駆動機関を用いたコジェネシステムでも本発明の趣旨に沿った同様な原理を適用できることは自明である。As described above, according to the present invention, a highly practical Rankine cycle engine having a relatively simple heat exchanger structure and high practicality can be realized, and can be utilized in many technical industrial fields as described at the beginning. Become. Recently, it has been studied to make effective use of so-called sustainable energy such as solar heat and bio-productive heat, and it is expected to spread to many fields of use that require improvement of energy environment as well as economic efficiency. It is obvious that the same principle according to the gist of the present invention can be applied to a cogeneration system using a heat driven engine such as a Stirling cycle or a Brayton cycle other than the Rankine cycle engine.

本発明の基本構成システム図を示す。The basic composition system figure of the present invention is shown.

符号の説明Explanation of symbols

(1)温水器本体
(2)冷水入口
(3)温水出口
(4)温水液面
(5)高温熱媒体入口
(6)高温部放熱器
(7)低温部放熱器
(8)熱媒体出口
(10)加熱器
(11)膨張機
(12)冷却器
(13)補助冷却器
(14)加圧機
(15)作動流体液面
(16)断熱材
(1) Hot water heater body (2) Cold water inlet (3) Hot water outlet (4) Hot water liquid level (5) High temperature heat medium inlet (6) High temperature part radiator (7) Low temperature part radiator (8) Heat medium outlet ( 10) heater (11) expander (12) cooler (13) auxiliary cooler (14) pressurizer (15) working fluid liquid level (16) heat insulating material

Claims (3)

ランキンサイクル機関による動力取り出し後の排熱で温水を生成するシステムで、同機関の駆動用高温熱源を外部の高温熱源より高温作動媒体を導入して作動流体を加熱して得る熱交換器とその容器(加熱器)を前記排熱で温水を生成する熱交換器とその容器(温水器)に内包するように構成したシステム。A heat exchanger that generates hot water by exhaust heat after power is taken out by a Rankine cycle engine. A heat exchanger that drives the engine by introducing a high-temperature working medium from an external high-temperature heat source to heat the working fluid and its heat exchanger A system configured to enclose a container (heater) in a heat exchanger that generates warm water by the exhaust heat and the container (heater). 前記加熱器内の高温作動媒体の流量、流路の可変調整機構を設けあわせてその周囲の断熱も調整して加熱能力を制御できるように構成したシステム。A system configured to control the heating capacity by adjusting the flow rate of the high-temperature working medium in the heater and the variable adjustment mechanism of the flow path and adjusting the heat insulation around the mechanism. 同機関の作動流体を気体から液体に冷却して復液する冷却器を前記温水器内に設けその放熱で温水生成できるように構成したシステム。A system in which a cooler that cools the working fluid of the engine from a gas to a liquid and condenses is provided in the water heater so that hot water can be generated by heat dissipation.
JP2005234977A 2005-07-18 2005-07-18 Rankine cycle engine Pending JP2007024023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005234977A JP2007024023A (en) 2005-07-18 2005-07-18 Rankine cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234977A JP2007024023A (en) 2005-07-18 2005-07-18 Rankine cycle engine

Publications (2)

Publication Number Publication Date
JP2007024023A true JP2007024023A (en) 2007-02-01
JP2007024023A5 JP2007024023A5 (en) 2007-10-25

Family

ID=37785086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234977A Pending JP2007024023A (en) 2005-07-18 2005-07-18 Rankine cycle engine

Country Status (1)

Country Link
JP (1) JP2007024023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500159B2 (en) 2012-10-29 2016-11-22 Panasonic Intellectual Property Management Co., Ltd. Electricity generation unit and cogeneration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500159B2 (en) 2012-10-29 2016-11-22 Panasonic Intellectual Property Management Co., Ltd. Electricity generation unit and cogeneration system

Similar Documents

Publication Publication Date Title
JP4931614B2 (en) Cogeneration system using cold heat of liquefied gas and its operation method
US11656008B2 (en) Heat pump utilising the shape memory effect
KR101393315B1 (en) Cover of latent heat exchanger having cooling line
CN104697239B (en) A kind of new Organic Rankine Cycle cold, heat and power triple supply system of biomass driving
US10935287B2 (en) Heat pump system
JP2007064049A (en) Waste heat recovery system for gas turbine cogeneration equipment
CN102242698A (en) Distributed-type heat and power cogeneration set capable of accumulating energy and heat
CN112562879B (en) Energy cascade utilization multi-element energy supply system based on nuclear energy
TW200825280A (en) Power generating system driven by a heat pump
JP2022547653A (en) Pump mechanism for recovering heat from thermoelastic material in heat pump/refrigeration system
JP2006200431A (en) Engine system
WO2017159138A1 (en) Cogeneration device
US9146039B2 (en) Energy generation system
JP2001355797A (en) Hydrogen absorption and desorption device
CN101988442A (en) Conjugated zero-distance high-low temperature heat source thermomotor
KR101397621B1 (en) System for increasing energy efficiency of gas power plant
US6520249B2 (en) Low-temperature waste-heat-gas driven refrigeration system
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
JP2007024023A (en) Rankine cycle engine
GB2484254A (en) Gas turbine apparatus with energy recovery heat exchange system
GB2484326A (en) Energy generation system for converting solar and heat energy into electrical energy
JP2002256970A (en) Co-generation system
EP4314507A1 (en) Bottoming cycle power system
JP2003014316A (en) Hybrid solar heat temperature converter
JP2011038503A (en) Co-generation system with external combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809