WO2019196959A1 - 风机及屋顶机 - Google Patents

风机及屋顶机 Download PDF

Info

Publication number
WO2019196959A1
WO2019196959A1 PCT/CN2019/084278 CN2019084278W WO2019196959A1 WO 2019196959 A1 WO2019196959 A1 WO 2019196959A1 CN 2019084278 W CN2019084278 W CN 2019084278W WO 2019196959 A1 WO2019196959 A1 WO 2019196959A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
air outlet
impeller
diameter
distance
Prior art date
Application number
PCT/CN2019/084278
Other languages
English (en)
French (fr)
Inventor
刘喜岳
李跃飞
靳晓钒
杨森
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2019196959A1 publication Critical patent/WO2019196959A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/02Roof ventilation
    • F24F7/025Roof ventilation with forced air circulation by means of a built-in ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/16Details or features not otherwise provided for mounted on the roof

Definitions

  • the present disclosure relates to the field of air conditioning equipment technology, and in particular to a wind turbine and a roofing machine.
  • the existing centrifugal fan since the distance from the starting point of the volute of the volute is shorter than the outlet of the fan, the kinetic energy of the airflow cannot be converted into static pressure energy in time, resulting in a large amount of aerodynamic losses, resulting in motor power. increase.
  • the existing DC frequency conversion roofing machine as shown in FIG. 1, is mainly composed of the heat exchanger 16', the first partition 18', the second partition 20', and the return air outlet 22'
  • the air outlet 24' and the fan 10' are configured. Since the fan 10' needs to supply a large amount of air to the air outlet 24', it is necessary to ensure that the power of the motor is large enough to realize the air supply amount, waste power, and the air supply effect is poor.
  • the present disclosure is intended to address at least one of the technical problems existing in the related art or related art.
  • one aspect of the present disclosure proposes a fan.
  • Another aspect of the disclosure provides a roofing machine.
  • a fan including: an impeller; a motor coupled to the impeller; and a volute including a spiral portion and an air outlet extending along a line direction of the spiral portion
  • the impeller is disposed in the spiral portion, and the port of the air outlet portion is an air outlet; the center line passing through the impeller is a reference plane perpendicular to the tangent line, and an angle between the section of the air outlet and the reference plane is formed.
  • the fan provided by the present disclosure deflects the air outlet by a certain angle, that is, the section of the air outlet is deflected by a certain angle compared with the reference surface, thereby prolonging the length of the airflow along the inner wall of the air outlet, and increasing the cross-sectional area of the air outlet. It is convenient for the air to flow, so that the airflow can obtain a certain degree of pressure at the air outlet, which is beneficial to convert the dynamic pressure energy into static pressure energy, reduce the resistance loss, and further improve the operating efficiency of the fan while ensuring the same air volume. , reduce the output power of the motor.
  • the section of the air outlet is compared with the reference plane, and the angle ⁇ can be deflected to the left side, that is, the direction of the impeller is deflected, or the angle ⁇ is deflected to the right side, that is, the direction of the wind is deflected, which can be determined according to the specificity of the fan.
  • the angle ⁇ can be deflected to the left side, that is, the direction of the impeller is deflected, or the angle ⁇ is deflected to the right side, that is, the direction of the wind is deflected, which can be determined according to the specificity of the fan.
  • the fan in the above technical solution provided by the present disclosure may further have the following additional technical features:
  • the distance between the outer edge of the air outlet and the reference surface is greater than the distance between the inner edge of the air outlet and the reference surface; wherein the outer edge of the air outlet is the air outlet and the air outlet
  • the intersection of the outer side wall and the inner edge of the air outlet are the intersection of the air outlet and the inner side wall of the air outlet.
  • the distance between the outer edge of the air outlet and the reference surface is greater than the distance between the inner edge of the air outlet and the reference surface, that is, the cross section enclosed by the air outlet and the outer side wall of the air outlet.
  • the angle is an acute angle.
  • the cross-sectional area of the air outlet is increased, and the flow length of the airflow inside the air outlet is prolonged, thereby facilitating the airflow at the air outlet and reducing the resistance loss;
  • the distance between the outer edge of the air outlet and the reference surface is greater than the distance between the inner edge of the air outlet and the reference surface, in other words, the angle between the air outlet and the outer side wall of the air outlet is an acute angle.
  • the airflow with a certain centrifugal action can be better guided and diffused, which is more favorable for the airflow.
  • the dynamic pressure energy is converted into static pressure energy, which reduces the loss of resistance. Under the premise of ensuring the same air volume, the operating efficiency of the motor of the fan is greatly improved.
  • the distance between the outer edge of the air outlet and the reference surface may also be smaller than the distance between the inner edge of the air outlet and the reference surface, that is, the angle between the section enclosed by the air outlet and the inner side wall of the air outlet.
  • the airflow has a tendency to flow toward the outer side wall of the air outlet portion under the action of the centrifugal force, part of the airflow flows out along the inner side wall of the air outlet portion, and the inner side wall of the air outlet portion is compared.
  • the extension of the outer side wall and the increase of the cross-sectional area of the air outlet are still beneficial to the expansion of the air flow to improve the operating efficiency of the motor of the fan.
  • the distance between the outer edge of the air outlet and the reference surface is L1
  • the diameter of the impeller is D
  • the range of L1/D is 0.7 to 1.3
  • the inner edge of the air outlet The distance from the reference plane is L2, the diameter of the impeller is D, and the range of L2/D is 0.7 to 1.
  • the ratio between the outer edge of the tuyere and the reference surface is L1 and the diameter D of the impeller is in the range of 0.7 to 1.3, and the distance between the inner edge of the tuyere and the reference plane is defined as The ratio of L2 to the diameter D of the impeller ranges from 0.7 to 1.
  • the distance between the inner and outer edges of the tuyere is determined to be different from the reference plane, so that the air outlet has a certain deflection, thereby increasing the cross-sectional area of the air outlet, which is favorable for diffusing; on the other hand, by specifically defining L1/D
  • the range is from 0.7 to 1.3
  • the range of L1/D is 0.7 to 1.3, and the range of L2/D is 0.7 to 1.
  • the operating efficiency of the motor is greatly improved under the premise of ensuring the same air volume.
  • the ratio of the width of the air outlet portion to the diameter of the impeller ranges from 1.2 to 2.
  • the width of the air outlet portion that is, the width of the cross section of the air outlet portion perpendicular to the extending direction thereof, is perpendicular to the extending direction of the air outlet portion, and defines the width of the wind portion and the diameter of the impeller.
  • the ratio ranges from 1.2 to 2, so that the width of the airflow in the air outlet can meet the demand of the air volume driven by the impeller, and the diameter of the impeller is too large, and the width of the outlet portion is too small, that is, the ratio between the two is less than 1.2.
  • the airflow resistance is large, the energy attenuation is fast, and the like, and the impeller diameter is too small, and the width of the air outlet portion is too large, that is, the air flow velocity caused by the ratio of the two is greater than 2.
  • the ratio of the height of the volute to the diameter of the impeller ranges from 1.2 to 2.
  • the space height inside the volute can satisfy the requirement of the air volume driven by the impeller, and the airflow driven by the impeller is convenient in the centrifugal force. Under the action, it flows toward the inner wall of the volute and flows out into the air outlet through the upper, lower and horizontal directions of the impeller to improve the air output efficiency.
  • a roofing machine comprising: a housing having a return air vent and an air vent; and a fan according to any one of the preceding claims, wherein the fan is disposed within the housing.
  • the roofing machine provided by the present disclosure has the beneficial effects of any of the above technical solutions due to the fan having any of the above technical solutions, and will not be further described herein.
  • the fan when the indoor side cavity and the outdoor side cavity are respectively in the housing, the fan may be disposed in the indoor side cavity or in the outdoor side cavity.
  • the distance between the fan and the top wall of the casing is L3
  • the distance between the fan and the bottom wall of the casing is L4
  • the height of the volute is L5
  • the range of L3/L5 is 0.07 to 0.5.
  • / or L4 / L5 range from 0.07 to 0.5.
  • the ratio of the distance L3 between the fan and the top wall of the casing to the height L5 of the volute is in the range of 0.07 to 0.5, and the distance L4 between the fan and the bottom wall of the casing and the height L5 of the volute are defined.
  • the ratio ranges from 0.07 to 0.5.
  • the size of the casing is effectively controlled, and the volume of the casing is too large and the space is too large, which is unfavorable for handling and placement, and the volume of the casing is too small to facilitate the placement of components such as fans;
  • the airflow in the fan is more evenly distributed, because the distance between the top of the fan and the top wall of the casing is equal to or similar to the distance between the bottom of the fan and the bottom wall of the casing, and then passes through the air return port on the casing.
  • the incoming airflow can flow into the fan evenly above and below the fan, and the wind speed of the air outlet of the fan is also relatively uniform, which is beneficial to uniform airflow, effectively reducing windage, reducing energy loss, and greatly improving the fan.
  • the operating efficiency of the motor is effective controlled, and the volume of the casing is too large and the space is too large, which is unfavorable for handling and placement, and the volume of the casing is too small to facilitate the placement of components such as fans;
  • the airflow in the fan
  • the minimum distance between the outer side wall of the fan and the housing is L6, the diameter of the impeller is D, and the range of L6/D is 0.2 to 0.3.
  • the minimum distance between the outer side wall of the fan and the inner side wall of the housing is L6, and the ratio of L6 to the diameter D of the impeller ranges from 0.2 to 0.3.
  • the minimum distance between the outer side wall of the fan and the casing is small, so that a large amount of airflow is accumulated there.
  • the ratio of the minimum distance L6 between the outer sidewall of the fan and the casing and the diameter D of the impeller is specifically limited, so that the amount of wind driven by the impeller can correspond to the minimum spacing of the outer wall of the fan and the casing, and the fan is increased.
  • the operating efficiency of the motor is specifically limited, so that the amount of wind driven by the impeller can correspond to the minimum spacing of the outer wall of the fan and the casing, and the fan is increased.
  • the roofing machine further includes: a plurality of first partitions disposed in the casing, one end of the first partition is connected to the air outlet of the fan, and the other end of the first partition is The inner side walls of the casing are connected, and the air outlet is located in the plurality of first partitions between any two adjacent first partitions.
  • the roofing machine further has a plurality of first partitions, and a plurality of first partitions enclose a wind passage between the air outlet of the fan and the air outlet on the casing to facilitate blowing out of the fan.
  • the wind is sent directly to the location of the exhaust vents for efficient air removal.
  • one of the plurality of partitions is connected to the air outlet of the fan, and the other end of each partition is connected to the inner side wall of the casing, and the air outlet is located at any adjacent two.
  • the adjacent two first partitions enclose an air outlet passage between the air outlet and the air outlet.
  • there is a first partition and one of the adjacent two first partitions and an inner side wall of the casing encloses a closed cavity for placement Other components within the housing.
  • the roofing machine further comprises: a heat exchanger disposed in the casing and located between the return air inlet and the fan.
  • the roofing machine further has a heat exchanger, and is located between the return air inlet and the fan, so that the airflow entering through the air returning port can first pass through the heat exchanger to exchange heat, and then enter the fan to heat the heat. The airflow is discharged directly.
  • the minimum distance between the heat exchanger and the plurality of first separators is L7
  • the diameter of the impeller is D
  • the range of L7/D is 0.3 to 0.6.
  • the ratio of the minimum distance L7 between the heat exchanger and the plurality of first partitions to the diameter D of the impeller ranges from 0.3 to 0.6, providing sufficient space for the flow of the gas to avoid the heat exchanger.
  • the minimum spacing between the plurality of first baffles is too small, and the airflow is exchanged between the heat exchanger and the plurality of first baffles after heat exchange by the heat exchanger, thereby being disadvantageous for entering the inside of the fan and reducing The operating efficiency of the fan.
  • the ratio of the minimum distance L7 between the heat exchanger and the plurality of first partitions to the diameter D of the impeller is specifically defined, so that the amount of wind driven by the impeller can be between the heat exchanger and the plurality of first partitions.
  • the components inside the housing are reasonably distributed, improving the operating efficiency of the motor of the fan.
  • the minimum distance between the heat exchanger and the outer sidewall of the fan is L8, the diameter of the impeller is D, and the range of L8/D is 0.1 to 0.3.
  • the ratio of the minimum distance L8 between the heat exchanger and the outer side wall of the fan to the diameter D of the impeller ranges from 0.1 to 0.3, on the one hand, providing sufficient space for gas circulation to avoid air flow exchange.
  • the airflow cannot enter the fan interior quickly and efficiently due to the close proximity to the fan.
  • the distance between the heat exchanger and the outer wall of the fan is prevented from being too far, so that the airflow flows through the heat exchanger. After flowing a large distance, it can enter the inside of the fan, resulting in a decrease in the heat exchange effect and a decrease in the operating efficiency of the fan.
  • the ratio of the minimum distance L8 between the heat exchanger and the outer side wall of the fan to the diameter D of the impeller is specifically defined, so that the amount of wind and the wind pressure driven by the impeller can be the same as between the heat exchanger and the outer side wall of the fan.
  • the components inside the casing are reasonably distributed, and the operating efficiency of the motor of the fan is improved.
  • the roofing machine further includes: a compressor disposed in the casing; a plurality of second partitions disposed in the casing and surrounding the compressor to enclose the compressor The fans are separated.
  • the roofing machine further includes a plurality of second partitions, and the plurality of second partitions are disposed around the periphery of the compressor and the like to block components such as the compressor, thereby effectively avoiding the airflow flowing through the return air inlet. Entering the area where the compressor is located affects the operation of each component, and avoids causing a large amount of airflow to collect in the area where the compressor is located, thereby reducing the airflow entering the fan and reducing the operating efficiency of the fan.
  • the minimum distance between the outer side wall of the fan and the plurality of second partitions is L9
  • the diameter of the impeller is D
  • the range of L9/D is 0.1 to 0.2.
  • the ratio of the minimum distance L9 between the outer side wall of the fan and the plurality of second partitions to the diameter D of the impeller is in the range of 0.1 to 0.2, on the one hand providing sufficient space for the circulation of the gas due to the gas passage.
  • the return air inlet After the return air inlet flows in, it can enter the inside of the fan through the upper and lower sides of the fan, and by leaving a certain gap between the outer side wall of the fan and the plurality of second partitions, the airflow can also flow through the gap, and further
  • the upper part of the fan and the lower part of the fan can be circulated through, so that the air volume and the wind pressure above the fan and the air volume and the wind pressure under the fan are more uniform, so that the air volume and the wind pressure inside the fan are relatively uniform, and the fan is improved. Uniform flow throughout the tuyere helps to reduce windage and reduce energy loss, thereby improving the operating efficiency of the fan.
  • the ratio of the minimum distance L9 between the outer side wall of the fan and the plurality of second partitions and the diameter D of the impeller is specifically limited, so that the air volume driven by the impeller can be the same as the outer wall of the fan and the minimum of the plurality of second partitions.
  • the spacing for example, when the diameter of the fan is small, the air volume driven by the fan is small, so that the minimum spacing between the outer wall of the fan and the plurality of second partitions is not required to be too large, so that the components inside the casing are reasonably distributed. Improve the operating efficiency of the motor of the fan.
  • the minimum distance between the heat exchanger and the plurality of second separators is L10
  • the diameter of the impeller is D
  • the range of L10/D is 0.3 to 0.6.
  • the airflow can flow through the heat exchanger, and there is sufficient space for circulation. It is convenient to enter the inside of the fan to avoid airflow gathering in a small gap between the heat exchanger and the plurality of second partitions.
  • the ratio of the minimum distance L10 between the heat exchanger and the plurality of second partitions to the diameter D of the impeller is specifically defined, so that the amount of wind driven by the impeller can be the same as the minimum spacing between the heat exchanger and the plurality of second partitions.
  • the air volume driven by the fan is small, so that the minimum spacing between the heat exchanger and the plurality of second partitions is not required to be too large, so that the components inside the casing are reasonably distributed, and the fan is improved.
  • the operating efficiency of the motor when the diameter of the fan is small, the air volume driven by the fan is small, so that the minimum spacing between the heat exchanger and the plurality of second partitions is not required to be too large, so that the components inside the casing are reasonably distributed, and the fan is improved.
  • FIG. 1 is a top plan view showing the internal structure of a roofer in the related art
  • FIG. 2 is a top plan view showing the internal structure of the roofer of the first embodiment of the present disclosure
  • Figure 3 is a top plan view showing the internal structure of the roofer of the second embodiment of the present disclosure.
  • FIG. 4 is a top plan view showing the internal structure of the roofer of the third embodiment of the present disclosure.
  • Figure 5 is a top plan view showing the internal structure of the roofer of the fourth embodiment of the present disclosure.
  • Fig. 6 is a front elevational view showing the internal structure of a roofer of one embodiment of the present disclosure.
  • FIGS. 1 to 5 the one-dot chain line passing through the center of the impeller is a reference surface, and the reference surface is not a solid structure.
  • the one-dot chain line adjacent to and intersecting the air outlet 14 is parallel to the one-dot chain line passing through the center of the impeller, so as to describe the angle ⁇ between the section of the tuyere 14 and the reference plane.
  • an embodiment of the present disclosure provides a fan 10 including: an impeller; a motor coupled to the impeller; and a volute including a spiral portion 12 and along the spiral portion 12.
  • the air outlet portion extending in the direction of the line; the impeller is disposed in the spiral portion 12, and the port of the air outlet portion is the air outlet 14; the center line passing through the impeller is a reference plane perpendicular to the tangent line, and the cross section of the air outlet 14 is between the reference plane and the reference plane With an angle.
  • a point may be first determined on the spiral portion 12, and a tangent of the spiral portion 12 is selected at the point, and the tangent line is perpendicular to the diameter of the point, and the diameter is passed.
  • the center line of the impeller and the plane perpendicular to the tangent are the reference planes.
  • Each of the spiral portions 12 has one such tangent line, and each such tangent line has a reference plane, and each of the reference planes and the air outlet 14 has an angle.
  • the fan 10 provided by the present disclosure deflects the air outlet 14 by a certain angle, that is, the cross section of the air outlet 14 is deflected by a certain angle compared with the reference surface, thereby prolonging the length of the airflow along the inner wall of the air outlet portion, and increasing the air outlet.
  • the cross-sectional area of 14 is convenient for air blowing, so that the airflow can obtain a certain degree of diffusing pressure at the air outlet 14, which is beneficial to convert the dynamic pressure energy into static pressure energy, reduce the resistance loss, and further ensure the air volume is constant, Improve the operating efficiency of the fan 10 and reduce the output power of the motor.
  • the cross section of the air outlet 14 can be deflected to the left side by the angle ⁇ , that is, the direction of the impeller, or the angle ⁇ to the right side, that is, the direction of the wind, which can be deflected according to the fan 10 Depending on the specific application scenario.
  • the distance between the outer edge of the air outlet 14 and the reference surface is greater than the distance between the inner edge of the air outlet 14 and the reference surface;
  • the outer edge of the air outlet 14 is the intersection of the air outlet 14 and the outer side wall of the air outlet, and the inner edge of the air outlet 14 is the intersection of the air outlet 14 and the inner side wall of the air outlet.
  • the distance between the outer edge of the air outlet 14 and the reference surface is greater than the distance between the inner edge of the air outlet 14 and the reference surface, that is, the cross section enclosed by the air outlet 14 and the outer side wall of the air outlet portion.
  • the angle between them is an acute angle.
  • the cross-sectional area of the air outlet 14 is increased, and the flow length of the airflow inside the air outlet portion is prolonged, thereby facilitating the airflow to be diffused at the air outlet 14 and reducing Resistance loss;
  • the distance between the outer edge of the air outlet 14 and the reference surface is greater than the distance between the inner edge of the air outlet 14 and the reference surface, in other words, the outer side wall of the air outlet 14 and the air outlet portion
  • the angle between the two is an acute angle, so that after the airflow enters the air outlet portion from the spiral portion 12 by the centrifugal force, the airflow with the centrifugal action can be better guided and diffused due to the extension of the outer side wall of the air outlet portion. It is more conducive to convert the dynamic pressure energy of the airflow into static pressure energy, reduce the resistance loss, and greatly improve the operating efficiency of the motor of the fan 10 under the premise of ensuring the same air volume.
  • the distance between the outer edge of the air outlet 14 and the reference surface may also be smaller than the distance between the inner edge of the air outlet 14 and the reference surface, that is, the cross section enclosed by the air outlet 14 and the inner side wall of the air outlet portion.
  • the angle is an acute angle.
  • the distance between the outer edge of the air outlet 14 and the reference surface is L1
  • the diameter of the impeller is D
  • the range of L1/D is 0.7.
  • the diameter of the impeller is D
  • the range of L2/D is 0.7 to 1.
  • the ratio of the distance between the outer edge of the tuyere 14 and the reference plane L1 to the diameter D of the impeller is in the range of 0.7 to 1.3, and the inner edge of the tuyere 14 is defined between the inner edge and the reference plane.
  • the ratio of the distance L2 to the diameter D of the impeller ranges from 0.7 to 1.
  • the distance between the inner and outer edges of the air outlet 14 is different from the reference surface, so that the air outlet 14 has a certain deflection, thereby increasing the cross-sectional area of the air outlet 14, which is favorable for diffusing;
  • the range of L1/D is 0.7 to 1.3
  • the width is such that the flow effect of the airflow in the air outlet portion and the diffusing effect at the air outlet 14 are better, the gas circulation is facilitated, and the dynamic pressure energy is converted into the pressure reducing energy, and the diameter of the impeller is prevented from being excessively large.
  • the range of L1/D is 0.7 to 1.3, and the range of L2/D is 0.7 to 1.
  • the operating efficiency of the motor is greatly improved under the premise of ensuring the same air volume.
  • the ratio of the width of the air outlet portion to the diameter of the impeller ranges from 1.2 to 2.
  • the width of the air outlet portion that is, the width of the cross section of the air outlet portion perpendicular to the extending direction thereof, is perpendicular to the extending direction of the air outlet portion, and defines the width of the wind portion and the diameter of the impeller.
  • the ratio ranges from 1.2 to 2, so that the width of the airflow in the air outlet can meet the demand of the air volume driven by the impeller, and the diameter of the impeller is too large, and the width of the outlet portion is too small, that is, the ratio between the two is less than 1.2.
  • the airflow resistance is large, the energy attenuation is fast, and the like, and the impeller diameter is too small, and the width of the air outlet portion is too large, that is, the air flow velocity caused by the ratio of the two is greater than 2.
  • the ratio of the height of the volute to the diameter of the impeller ranges from 1.2 to 2.
  • the space height inside the volute can satisfy the requirement of the air volume driven by the impeller, and the airflow driven by the impeller is facilitated by the centrifugal force. Under the action, it flows toward the inner wall of the volute and flows out into the air outlet through the upper, lower and horizontal directions of the impeller to improve the air output efficiency.
  • FIG. 2 to FIG. 6 another embodiment of the present disclosure provides a roofing machine, comprising: a casing having a return air outlet 22 and an air outlet 24; and In a fan 10, the fan 10 is disposed in the housing.
  • the roofing machine provided by the present disclosure has the beneficial effects of any of the above technical solutions, and the details of the above-mentioned technical solutions are not described herein.
  • the fan 10 may be disposed in the indoor side cavity or in the outdoor side cavity.
  • the distance between the fan 10 and the top wall of the casing is L3
  • the distance between the fan 10 and the bottom wall of the casing is L4
  • the height of the volute is L5.
  • L3/L5 ranges from 0.07 to 0.5
  • L4/L5 ranges from 0.07 to 0.5.
  • the ratio of the distance L3 between the fan 10 and the top wall of the casing to the height L5 of the volute is in the range of 0.07 to 0.5, and the distance between the fan 10 and the bottom wall of the casing L4 and the volute is defined.
  • the ratio of height L5 ranges from 0.07 to 0.5.
  • the size of the casing is effectively controlled, and the volume of the casing is too large and the space is too large, which is disadvantageous for handling and placement, and the volume of the casing is too small to facilitate the placement of components such as the fan 10; Ensure that the flow of air within the fan 10 is more uniform, since the distance between the top of the fan 10 and the top wall of the housing is equal or similar to the distance between the bottom of the fan 10 and the bottom wall of the housing, and The airflow entering the air return port 22 can flow into the fan 10 evenly above and below the fan 10, and the wind speed of the air outlet 14 of the fan 10 is relatively uniform, which is favorable for uniform airflow and effectively reduces windage. The energy loss is reduced, and the operating efficiency of the motor of the fan 10 is greatly improved.
  • the minimum distance between the outer side wall of the fan 10 and the casing is L6, the diameter of the impeller is D, and the range of L6/D is 0.2 to 0.3. .
  • the minimum spacing between the outer sidewall defining the fan 10 and the inner sidewall of the housing is L6, and the ratio of L6 to the diameter D of the impeller ranges from 0.2 to 0.3.
  • L6 the minimum spacing between the outer sidewall defining the fan 10 and the inner sidewall of the housing
  • the ratio of L6 to the diameter D of the impeller ranges from 0.2 to 0.3.
  • the ratio of the minimum distance L6 between the outer sidewall of the fan 10 and the casing to the diameter D of the impeller is specifically limited, so that the amount of wind driven by the impeller can correspond to the minimum spacing of the outer sidewall of the fan 10 and the casing.
  • the operating efficiency of the motor of the fan 10 is increased.
  • the roofing machine further includes: a plurality of first partitions 18 disposed in the casing, one end of the first partition plate 18 and the fan 10
  • the air outlets 14 are connected, the other end of the first partition plate 18 is connected to the inner side wall of the casing, and the air outlet 24 is located between the plurality of first partition plates 18 and between any two adjacent first partition plates 18.
  • the roofing machine further has a plurality of first partitions 18, and a plurality of first partitions 18 define a wind passage between the air outlet 14 of the fan 10 and the air outlet 24 on the casing. It is convenient to directly transfer the wind blown by the fan 10 to the position of the air outlet 24, so as to facilitate efficient air exhaust.
  • one of the plurality of partitions is connected to the air outlet 14 of the fan 10, and the other end of each partition is connected to the inner side wall of the casing, and the air outlet 24 is located at any Between adjacent two first partitions 18, and then the adjacent two first partitions 18 enclose an air outlet passage between the air outlet 14 and the air outlet 24.
  • a first partition plate 18 and one of the adjacent two first partition plates 18 and the inner side wall of the casing enclose a closed cavity. Used to position other components within the housing.
  • the roofing machine further includes a heat exchanger 16 disposed within the housing and located between the return air outlet 22 and the blower 10.
  • the roofing machine further has a heat exchanger 16 and is located between the return air outlet 22 and the fan 10, so that the airflow entering through the air returning port 22 can be exchanged by the heat exchanger 16 before entering the fan 10.
  • the gas stream after heat exchange is directly discharged.
  • the minimum distance between the heat exchanger 16 and the plurality of first partitions 18 is L7, and the diameter of the impeller is D, the range of L7/D. It is 0.3 to 0.6.
  • the ratio of the minimum distance L7 between the heat exchanger 16 and the plurality of first partitions 18 to the diameter D of the impeller ranges from 0.3 to 0.6, providing sufficient space for the flow of the gas to avoid replacement.
  • the minimum spacing between the heat exchanger 16 and the plurality of first partitions 18 is too small to cause the airflow to accumulate between the heat exchanger 16 and the plurality of first partitions 18 after heat exchange by the heat exchanger 16 It is not conducive to entering the inside of the fan 10, reducing the operating efficiency of the fan 10.
  • the ratio of the minimum distance L7 between the heat exchanger 16 and the plurality of first partitions 18 to the diameter D of the impeller is specifically defined, so that the amount of wind driven by the impeller can be different from the heat exchanger 16 and the plurality of first partitions.
  • the spacing between the plates 18 corresponds to the size, so that the components inside the casing are reasonably distributed, and the operating efficiency of the motor of the fan 10 is improved.
  • the minimum distance between the heat exchanger 16 and the outer side wall of the blower 10 is L8, the diameter of the impeller is D, and the range of L8/D is 0.1. To 0.3.
  • the ratio of the minimum distance L8 between the heat exchanger 16 and the outer side wall of the fan 10 to the diameter D of the impeller ranges from 0.1 to 0.3, on the one hand providing sufficient space for the circulation of the gas to avoid air flow.
  • the airflow cannot enter the fan 10 quickly and efficiently due to being too close to the fan 10.
  • the distance between the heat exchanger 16 and the outer wall of the fan 10 is also prevented from being too far. After the airflow flows through the heat exchanger 16, it can flow into the interior of the fan 10 after flowing a large distance, and the heat exchange effect is reduced, and the operating efficiency of the fan 10 is also reduced.
  • the ratio of the minimum distance L8 between the heat exchanger 16 and the outer side wall of the fan 10 to the diameter D of the impeller is specifically limited, so that the amount of wind and the wind pressure driven by the impeller can be the same as the heat exchanger 16 and the outside of the fan 10.
  • the minimum spacing between the walls corresponds to the proper distribution of the various components inside the housing, improving the operating efficiency of the motor of the fan 10.
  • the roofing machine further includes: a compressor disposed in the casing; and a plurality of second partitions 20 disposed in the casing and surrounding At the periphery of the compressor, the compressor is separated from the blower 10.
  • the roofing machine further includes a plurality of second partitions 20, and the plurality of second partitions 20 are disposed around the periphery of the compressor and the like to block components such as the compressor, thereby effectively avoiding the return air passages 22
  • the inflowing airflow enters the area where the compressor is located to affect the operation of each component, and also avoids causing a large amount of airflow to collect in the area where the compressor is located, thereby reducing the airflow entering the fan 10 and reducing the operating efficiency of the fan 10.
  • the minimum distance between the outer side wall of the fan 10 and the plurality of second partitions 20 is L9, and the diameter of the impeller is D, L9/D.
  • the range is from 0.1 to 0.2.
  • the ratio of the minimum distance L9 between the outer side wall of the fan 10 and the plurality of second partitions 20 to the diameter D of the impeller is in the range of 0.1 to 0.2, on the one hand providing sufficient space for the circulation of the gas due to After the gas flows in through the air return port 22, it can enter the inside of the fan 10 through the upper and lower sides of the fan 10, and by leaving a certain gap between the outer side wall of the fan 10 and the plurality of second partitions 20, the air flow can still be The gap is distributed in the gap, and the upper portion of the fan 10 and the lower portion of the fan 10 can be circulated therethrough, so that the air volume and the wind pressure above the fan 10 and the air volume and the wind pressure under the fan 10 are more uniform, so that the fan 10 is internally The air volume and the wind pressure are relatively uniform, and the flow rate of the air outlets 14 of the fan 10 is increased uniformly, which is beneficial to reducing wind resistance and reducing energy loss, thereby improving the operating efficiency of the fan 10.
  • the ratio of the minimum distance L9 between the outer side wall of the fan 10 and the plurality of second partitions 20 and the diameter D of the impeller is specifically limited, so that the air volume driven by the impeller can be the same as the outer side wall of the fan 10 and the plurality of second partitions.
  • the minimum spacing of the plates 20 corresponds to a small amount, for example, when the diameter of the fan 10 is small, the amount of wind driven by the fan 10 is small, so that the minimum spacing between the outer side wall of the fan 10 and the plurality of second partitions 20 is not required to be excessive.
  • the components inside the casing are reasonably distributed, and the operating efficiency of the motor of the fan 10 is improved.
  • the minimum distance between the heat exchanger 16 and the plurality of second separators 20 is L10, and the diameter of the impeller is D, the range of L10/D. It is 0.3 to 0.6.
  • the gas flow can be sufficient after flowing through the heat exchanger 16.
  • the space circulates to facilitate entry into the interior of the fan 10 to prevent airflow from collecting within the smaller gap between the heat exchanger 16 and the plurality of second diaphragms 20.
  • the ratio of the minimum distance L10 between the heat exchanger 16 and the plurality of second partitions 20 to the diameter D of the impeller is specifically defined, so that the amount of wind driven by the impeller can be the same as that of the heat exchanger 16 and the plurality of second partitions 20
  • the minimum spacing size corresponds to a small amount, for example, when the diameter of the fan 10 is small, the air volume driven by the fan 10 is small, so that the minimum spacing between the heat exchanger 16 and the plurality of second partitions 20 is not required to be too large, so that the housing The internal components are reasonably distributed to improve the operating efficiency of the motor of the fan 10.
  • the term “plurality” means two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly.
  • “connecting” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.

Abstract

一种风机(10)及屋顶机,其中,风机(10)包括叶轮、电机和蜗壳,电机与叶轮相连接,蜗壳包括螺旋部(12)和沿螺旋部(12)的一切线方向延伸的出风部,叶轮设置在螺旋部(12)内,出风部的端口为出风口(14),过叶轮的中心线作垂直于切线的基准面,出风口(14)所在截面与基准面之间具有夹角。通过将出风口偏转一定角度,延长了气流沿出风部的内壁流通的长度的同时,增加了出风口(14)的截面面积,便于出风,使得气流在出风口(14)处能够得到一定程度的扩压,有利于将动压能转化为静压能,降低阻力损失,进而在保证风量不变的前提下,提高风机(10)的运行效率,降低电机的输出功率。

Description

风机及屋顶机
相关申请的交叉引用
本申请要求广东美的暖通设备有限公司、美的集团股份有限公司于2018年04月10日提交的、发明名称为“风机及屋顶机”的、中国专利申请号“201810314762.7”的优先权。
技术领域
本公开涉及空调设备技术领域,具体而言,涉及一种风机和一种屋顶机。
背景技术
现有的离心风机,由于蜗壳的脱离螺旋延伸起点距风机的出风口的距离较短,进而并不能及时地将气流的动能转化为静压能,造成了大量的气动损失,导致电机功率的增加。尤其是当风机应用于屋顶机时,现有的直流变频屋顶机,如图1所示,主要由换热器16’、第一隔板18’、第二隔板20’、回风口22’、排风口24’及风机10’构成,由于风机10’需向排风口24’大量送风,需要保证电机的功率足够大才能实现送风量,浪费电力,且送风效果差。
发明内容
本公开旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本公开的一个方面提出一种风机。
本公开的另一个方面提出一种屋顶机。
有鉴于此,根据本公开的一个方面,提供了一种风机,包括:叶轮;电机,与叶轮相连接;和蜗壳,蜗壳包括螺旋部和沿螺旋部的一切线方向延伸的出风部;叶轮设置在螺旋部内,出风部的端口为出风口;过叶轮的中心线作垂直于切线的基准面,出风口所在截面与基准面之间具有夹角。
本公开提供的风机,通过将出风口偏转一定角度,即出风口所在截面与基准面相比,偏转一定角度,延长了气流沿出风部的内壁流通的长度的同时,增加了出风口的截面面积,便于出风,使得气流在出风口处能够得到一定程度的扩压,有利于将动压能转化为静压能,降低阻力损失,进而在保证风量不变的前提下,提高风机的运行效率,降低电机的输出功率。具体地,出风口所在截面与基准面相比,既可向左侧偏转θ角,即向叶轮所在方向偏转,也可向右侧偏转θ角,即沿风的流动方向偏转,可依据风机的具体应用场景而定。
另外,根据本公开提供的上述技术方案中的风机,还可以具有如下附加技术特征:
在上述技术方案中,优选地,出风口的外边沿与基准面之间的距离大于出风口的内边沿与基准面之间的距离;其中,出风口的外边沿为出风口与出风部的外侧壁的交线,出风口的内边沿为出风口与出风部的内侧壁的交线。
在该技术方案中,出风口的外边沿与基准面之间的距离大于出风口的内边沿与基准面之间的距离,即出风口所围成的截面与出风部的外侧壁之间的夹角为锐角。与出风口所在截面与基准面相互平行相比,一方面增加了出风口的截面面积,延长了气流在出风部内部的流动长度,进而有利于气流在出风口处扩压,降低阻力损失;另一方面由于出风口的外边沿与基准面之间的距离大于出风口的内边沿与基准面之间的距离,换句话说,出风口与出风部的外侧壁之间的夹角为锐角,使得气流在离心力的作用下从螺旋部进入出风部后,由于出风部外侧壁的延长,能够更好地对具有一定离心作用的气流进行导流与扩压,更有利于将气流的动压能转化为静压能,减少阻力损失,在保证风量不变的前提下,极大地提高风机的电机的运行效率。
当然,出风口的外边沿与基准面之间的距离也可以小于出风口的内边沿与基准面之间的距离,即出风口所围成的截面与出风部的内侧壁之间的夹角为锐角,此时,虽然气流在离心力的作用下具有向出风部的外侧壁所在方向流动的趋势,但依然有部分气流沿出风部的内侧壁流出,进而出风部的内侧壁相较于其外侧壁的延长,以及出风口截面面积的增加,依然有利于对气流进行扩压,以提高风机的电机的运行效率。
在上述任一技术方案中,优选地,出风口的外边沿与基准面之间的距离为L1,叶轮的直径为D,L1/D的范围为0.7至1.3;和/或出风口的内边沿与基准面之间的距离为L2,叶轮的直径为D,L2/D的范围为0.7至1。
在该技术方案中,通过限定出风口的外边沿与基准面之间的距离为L1与叶轮的直径D的比值范围为0.7至1.3,并限定出风口的内边沿与基准面之间的距离为L2与叶轮的直径D的比值范围为0.7至1。一方面限定出风口的内、外边沿距基准面之间的距离不等,使得出风口具有一定偏转,进而增加了出风口的截面面积,有利于扩压;另一方面通过具体限定L1/D的范围为0.7至1.3,L2/D的范围为0.7至1,进而限定了出风口所在截面与基准面之间的夹角θ=arctan[(L1-L2)/出风部的宽度]的大小,使得气流在出风部内的流通效果以及在出风口处的扩压效果更好,方便气体流通,且有利于将动压能转换为降压能,避免叶轮的直径过大或出风部的延伸长度过小,所带来的气流静压能低,动压能高而流动效果差的问题。经大量实验验证,限定L1/D的范围为0.7至1.3,L2/D的范围为0.7至1,在保证风量不变的前提下,电机的运行效率得到极大提升。
在上述任一技术方案中,优选地,出风部的宽度与叶轮的直径的比值范围为1.2至2。
在该技术方案中,出风部的宽度,即出风部的垂直于其延伸方向的截面的宽度,宽度方 向与出风部的延伸方向垂直,通过限定出风部的宽度与叶轮的直径的比值范围在1.2至2,使得出风部内供风流通的风道宽度能够满足叶轮所带动的风量的需求,避免叶轮直径过大,出风部的宽度过小,即两者比值小于1.2所带来的气流阻力大,能量衰减快等问题,也避免叶轮直径过小,而出风部的宽度过大,即两者比值大于2所带来的气流流速不足等问题。
在上述任一技术方案中,优选地,蜗壳的高度与叶轮的直径的比值范围为1.2至2。
在该技术方案中,通过限定蜗壳的高度与叶轮的直径的比值范围为1.2至2,使得蜗壳内部的空间高度能够满足叶轮所带动的风量的需求,方便叶轮所带动的气流在离心力的作用下向蜗壳的内壁方向流动,并经叶轮的上方、下方及水平方向流出进入出风部,提高出风效率。
本公开的另一方面提出了一种屋顶机,包括:壳体,壳体上设有回风口和排风口;和如上述技术方案中任一项的风机,风机设置在壳体内。
本公开提供的屋顶机,由于具有上述任一技术方案的风机,进而具有上述任一技术方案的有益效果,在此不一一赘述。其中,当壳体内分别室内侧腔体和室外侧腔体时,风机既可以设置在室内侧腔体内,也可以设置在室外侧腔体内。
在上述技术方案中,优选地,风机与壳体的顶壁的间距为L3,风机与壳体的底壁的间距为L4,蜗壳的高度为L5,L3/L5的范围为0.07至0.5,和/或L4/L5的范围为0.07至0.5。
在该技术方案中,通过限定风机与壳体的顶壁的间距L3与蜗壳的高度L5的比值范围为0.07至0.5,并限定风机与壳体的底壁的间距L4与蜗壳的高度L5的比值范围为0.07至0.5。一方面有效控制壳体的体积大小,避免壳体体积过大而占用空间过大,不利于搬运安放,也避免壳体的体积过小而不利于风机等部件的安放;另一方面有利于确保气流在风机内的流通更加均匀,由于风机的顶部距壳体的顶壁之间的距离与风机的底部与壳体的底壁之间的距离相等或相差不多,进而经壳体上的回风口进入的气流,能够经风机的上方、下方较为均匀流入风机中,进而风机的出风口的各处风速也较为均匀,有利于均匀出风,且有效降低风阻,减少能量损失,极大地提高风机的电机的运行效率。
在上述任一技术方案中,优选地,风机的外侧壁与壳体的最小间距为L6,叶轮的直径为D,L6/D的范围为0.2至0.3。
在该技术方案中,通过限定风机的外侧壁与壳体的内侧壁之间的最小间距为L6,且L6与叶轮的直径D的比值范围为0.2至0.3。一方面为气流的进入与流通留有足够的空间,避免外界的气流经壳体上的回风口进入后,因风机的外侧壁与壳体的最小间距较小,而使得大量气流在该处积留,影响气体流动,降低风机的运行效率;另一方面在提高壳体内部空间利用率的同时,为风机的安装留有足够的空间。其中,具体限定风机的外侧壁与壳体的 最小间距L6与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够与风机的外侧壁和壳体的最小间距的大小相对应,提高风机的电机的运行效率。
在上述任一技术方案中,优选地,屋顶机还包括:多个第一隔板,设置在壳体内,第一隔板的一端与风机的出风口相连接,第一隔板的另一端与壳体的内侧壁相连接,排风口位于多个第一隔板中,任意相邻两个第一隔板之间。
在该技术方案中,屋顶机还具有多个第一隔板,通过多个第一隔板将风机的出风口和壳体上的排风口之间围成一条风道,方便将风机吹出的风直接传送到排风口所在位置,便于高效地排风。具体地,多个隔板中,每个隔板的一端均与风机的出风口相连接,每个隔板的另一端均与壳体的内侧壁相连接,且排风口位于任意相邻两个第一隔板之间,进而该相邻两个第一隔板围成出风口与排风口之间的出风通道。另外,优选地,多个隔板中,还存在一个第一隔板与上述相邻两个第一隔板中的一个第一隔板及壳体的内侧壁围成密闭腔体,用于安置壳体内的其他部件。
在上述任一技术方案中,优选地,屋顶机还包括:换热器,设置在壳体内,并位于回风口与风机之间。
在该技术方案中,屋顶机还具有换热器,并位于回风口与风机之间,使得经回风口进入的气流能够先经过换热器换热后,再进入风机,以将换热后的气流直接排出。
在上述任一技术方案中,优选地,换热器与多个第一隔板的最小间距为L7,叶轮的直径为D,L7/D的范围为0.3至0.6。
在该技术方案中,通过限定换热器与多个第一隔板之间的最小间距L7与叶轮的直径D的比值范围为0.3至0.6,为气体的流动提供足够的空间,避免换热器与多个第一隔板之间的最小间距过小,而导致气流经换热器换热后,在换热器与多个第一隔板之间积留,从而不利于进入风机内部,降低风机的运行效率。其中,具体限定换热器与多个第一隔板之间的最小间距L7与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够与换热器和多个第一隔板之间的间距大小相对应,使得壳体内部各部件合理分布,提高风机的电机的运行效率。
在上述任一技术方案中,优选地,换热器与风机的外侧壁的最小间距为L8,叶轮的直径为D,L8/D的范围为0.1至0.3。
在该技术方案中,通过限定换热器与风机的外侧壁之间的最小间距L8与叶轮的直径D的比值范围为0.1至0.3,一方面为气体的流通提供足够的空间,避免气流经换热器换热后,由于距风机过近而使得气流无法快速高效地进入风机内部,另一方面也避免换热器与风机的外侧壁之间距离过远,而使得气流流经换热器后,再流动较大的距离后才能进入风机内部,导致换热效果下降的同时,风机的运行效率也降低。其中,具体限定换热器与风机的 外侧壁之间的最小间距L8与叶轮的直径D的比值,使得叶轮所带动的风量的大小及风压能够同换热器与风机的外侧壁之间的最小间距相对应,使得壳体内部各部件合理分布,提高风机的电机的运行效率。
在上述任一技术方案中,优选地,屋顶机还包括:压缩机,设置在壳体内;多个第二隔板,设置在壳体内,并围设在压缩机的外围,以将压缩机与风机隔开。
在该技术方案中,屋顶机还包括多个第二隔板,多个第二隔板围设在压缩机等部件的外围,以将压缩机等部件进行阻隔,有效避免经回风口流入的气流进入压缩机所在的区域内而影响各部件的运行,也避免导致大量的气流在压缩机所在区域聚集,而降低进入风机的气流量,降低风机的运行效率。
在上述任一技术方案中,优选地,风机的外侧壁与多个第二隔板的最小间距为L9,叶轮的直径为D,L9/D的范围为0.1至0.2。
在该技术方案中,通过限定风机的外侧壁与多个第二隔板的最小间距L9与叶轮的直径D的比值范围为0.1至0.2,一方面为气体的流通提供足够的空间,由于气体经回风口流入后,能够经风机的上方和下方进入风机内部,而通过将风机的外侧壁与多个第二隔板之间留有一定间隙,使得气流还能够在经该间隙内进行流通,进而使得风机的上方与风机的下方能够经该进行流通,使得风机的上方的风量及风压与风机下方的风量及风压更加均匀,从而使得风机内部的风量及风压较为均匀,提高风机的出风口的各处流量均匀,有利于减少风阻,降低能量损失,从而提高风机的运行效率。另一方面也为风机的安装提供方便,避免风机与多个第二隔板之间距离过近而出现磕碰损坏等。其中,具体限定风机的外侧壁与多个第二隔板的最小间距L9与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够同风机的外侧壁与多个第二隔板的最小间距大小相对应,例如风机的直径较小时,风机所带动的风量较小,进而无需使得风机的外侧壁与多个第二隔板之间的最小间距过大,使得壳体内部各部件合理分布,提高风机的电机的运行效率。
在上述任一技术方案中,优选地,换热器与多个第二隔板的最小间距为L10,叶轮的直径为D,L10/D的范围为0.3至0.6。
在该技术方案中,通过限定换热器与多个第二隔板的最小间距L10与叶轮的直径D的范围为0.3至0.6,使得气流流经换热器后,能够有足够的空间流通,便于进入风机内部,避免气流在换热器与多个第二隔板之间的较小的间隙内聚集。其中,具体限定换热器与多个第二隔板的最小间距L10与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够同换热器与多个第二隔板的最小间距大小相对应,例如风机的直径较小时,风机所带动的风量较小,进而无需使得换热器与多个第二隔板之间的最小间距过大,使得壳体内部各部件合理分布,提高风机的电机的运行效率。
本公开的附加方面和优点将在下面的描述部分中变得明显,或通过本公开的实践了解到。
附图说明
图1示出了相关技术中的屋顶机内部结构的俯视示意图;
图2示出了本公开的第一个实施例的屋顶机内部结构的俯视示意图;
图3示出了本公开的第二个实施例的屋顶机内部结构的俯视示意图;
图4示出了本公开的第三个实施例的屋顶机内部结构的俯视示意图;
图5示出了本公开的第四个实施例的屋顶机内部结构的俯视示意图;
图6示出了本公开的一个实施例的屋顶机内部结构的主视示意图。
其中,图1中附图标记与部件名称之间的对应关系为:
10’风机,16’换热器,18’第一隔板,20’第二隔板,22’回风口,24’排风口,L11’:出风部的宽度,D’:叶轮的直径,L1’:出风口的外边沿与基准面之间的距离,L2’:出风口的内边沿与基准面之间的距离;
图2至图6中附图标记与部件名称之间的对应关系为:
10风机,12螺旋部,14出风口,16换热器,18第一隔板,20第二隔板,22回风口,24排风口,L11:出风部的宽度,D:叶轮的直径,θ:出风口所在截面与基准面的夹角。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和具体实施方式对本公开进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是,本公开还可以采用其他不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
下面参照图2至图6描述根据本公开一些实施例所述的风机10和屋顶机。其中,图1至图5中,过叶轮的中心的单点划线为基准面,该基准面非实体结构。图2至图5中,与出风口14紧邻且相交的单点划线与过叶轮的中心的单点划线相平行,以便于描述出风口14所在截面与基准面的夹角θ。
如图2至图5所示,本公开的一个方面实施例提供了一种风机10,包括:叶轮;电机, 与叶轮相连接;和蜗壳,蜗壳包括螺旋部12和沿螺旋部12的一切线方向延伸的出风部;叶轮设置在螺旋部12内,出风部的端口为出风口14;过叶轮的中心线作垂直于切线的基准面,出风口14所在截面与基准面之间具有夹角。需要说明的是,在确定基准面时,可以先在螺旋部12上确定一点,在该点处选定一条螺旋部12的切线,该切线与过该点的直径垂直,过该直径、且过叶轮的中心线、且与该切线垂直的平面为基准面。螺旋部12上任意一点均具有一条这样的切线,每条这样的切线对应有一个基准面,每个基准面与出风口14所在截面均具有夹角。
本公开提供的风机10,通过将出风口14偏转一定角度,即出风口14所在截面与基准面相比,偏转一定角度,延长了气流沿出风部的内壁流通的长度的同时,增加了出风口14的截面面积,便于出风,使得气流在出风口14处能够得到一定程度的扩压,有利于将动压能转化为静压能,降低阻力损失,进而在保证风量不变的前提下,提高风机10的运行效率,降低电机的输出功率。具体地,出风口14所在截面与基准面相比,既可向左侧偏转θ角,即向叶轮所在方向偏转,也可向右侧偏转θ角,即沿风的流动方向偏转,可依据风机10的具体应用场景而定。
在本公开的一个实施例中,优选地,如图2至图5所示,出风口14的外边沿与基准面之间的距离大于出风口14的内边沿与基准面之间的距离;其中,出风口14的外边沿为出风口14与出风部的外侧壁的交线,出风口14的内边沿为出风口14与出风部的内侧壁的交线。
在该实施例中,出风口14的外边沿与基准面之间的距离大于出风口14的内边沿与基准面之间的距离,即出风口14所围成的截面与出风部的外侧壁之间的夹角为锐角。与出风口14所在截面与基准面相互平行相比,一方面增加了出风口14的截面面积,延长了气流在出风部内部的流动长度,进而有利于气流在出风口14处扩压,降低阻力损失;另一方面由于出风口14的外边沿与基准面之间的距离大于出风口14的内边沿与基准面之间的距离,换句话说,出风口14与出风部的外侧壁之间的夹角为锐角,使得气流在离心力的作用下从螺旋部12进入出风部后,由于出风部外侧壁的延长,能够更好地对具有一定离心作用的气流进行导流与扩压,更有利于将气流的动压能转化为静压能,减少阻力损失,在保证风量不变的前提下,极大地提高风机10的电机的运行效率。
当然,出风口14的外边沿与基准面之间的距离也可以小于出风口14的内边沿与基准面之间的距离,即出风口14所围成的截面与出风部的内侧壁之间的夹角为锐角,此时,虽然气流在离心力的作用下具有向出风部的外侧壁所在方向流动的趋势,但依然有部分气流沿出风部的内侧壁流出,进而出风部的内侧壁相较于其外侧壁的延长,以及出风口14截面面积的增加,依然有利于对气流进行扩压,以提高风机10的电机的运行效率。
在本公开的一个实施例中,优选地,如图2至图5所示,出风口14的外边沿与基准面之间的距离为L1,叶轮的直径为D,L1/D的范围为0.7至1.3;和/或出风口14的内边沿与基准面之间的距离为L2,叶轮的直径为D,L2/D的范围为0.7至1。
在该实施例中,通过限定出风口14的外边沿与基准面之间的距离为L1与叶轮的直径D的比值范围为0.7至1.3,并限定出风口14的内边沿与基准面之间的距离为L2与叶轮的直径D的比值范围为0.7至1。一方面限定出风口14的内、外边沿距基准面之间的距离不等,使得出风口14具有一定偏转,进而增加了出风口14的截面面积,有利于扩压;另一方面通过具体限定L1/D的范围为0.7至1.3,L2/D的范围为0.7至1,进而限定了出风口14所在截面与基准面之间的夹角θ=arctan[(L1-L2)/出风部的宽度]的大小,使得气流在出风部内的流通效果以及在出风口14处的扩压效果更好,方便气体流通,且有利于将动压能转换为降压能,避免叶轮的直径过大或出风部的延伸长度过小,所带来的气流静压能低,动压能高而流动效果差的问题。经大量实验验证,限定L1/D的范围为0.7至1.3,L2/D的范围为0.7至1,在保证风量不变的前提下,电机的运行效率得到极大提升。
在本公开的一个实施例中,优选地,出风部的宽度与叶轮的直径的比值范围为1.2至2。
在该实施例中,出风部的宽度,即出风部的垂直于其延伸方向的截面的宽度,宽度方向与出风部的延伸方向垂直,通过限定出风部的宽度与叶轮的直径的比值范围在1.2至2,使得出风部内供风流通的风道宽度能够满足叶轮所带动的风量的需求,避免叶轮直径过大,出风部的宽度过小,即两者比值小于1.2所带来的气流阻力大,能量衰减快等问题,也避免叶轮直径过小,而出风部的宽度过大,即两者比值大于2所带来的气流流速不足等问题。
在本公开的一个实施例中,优选地,蜗壳的高度与叶轮的直径的比值范围为1.2至2。
在该实施例中,通过限定蜗壳的高度与叶轮的直径的比值范围为1.2至2,使得蜗壳内部的空间高度能够满足叶轮所带动的风量的需求,方便叶轮所带动的气流在离心力的作用下向蜗壳的内壁方向流动,并经叶轮的上方、下方及水平方向流出进入出风部,提高出风效率。
如图2至图6所示,本公开的另一方面实施例提出了一种屋顶机,包括:壳体,壳体上设有回风口22和排风口24;和如上述技术方案中任一项的风机10,风机10设置在壳体内。
本公开提供的屋顶机,由于具有上述任一技术方案的风机10,进而具有上述任一技术方案的有益效果,在此不一一赘述。其中,当壳体内分别室内侧腔体和室外侧腔体时,风机10既可以设置在室内侧腔体内,也可以设置在室外侧腔体内。
在本公开的一个实施例中,优选地,如图6所示,风机10与壳体的顶壁的间距为L3,风机10与壳体的底壁的间距为L4,蜗壳的高度为L5,L3/L5的范围为0.07至0.5,和/或L4/L5的范围为0.07至0.5。
在该实施例中,通过限定风机10与壳体的顶壁的间距L3与蜗壳的高度L5的比值范围为0.07至0.5,并限定风机10与壳体的底壁的间距L4与蜗壳的高度L5的比值范围为0.07至0.5。一方面有效控制壳体的体积大小,避免壳体体积过大而占用空间过大,不利于搬运安放,也避免壳体的体积过小而不利于风机10等部件的安放;另一方面有利于确保气流在风机10内的流通更加均匀,由于风机10的顶部距壳体的顶壁之间的距离与风机10的底部与壳体的底壁之间的距离相等或相差不多,进而经壳体上的回风口22进入的气流,能够经风机10的上方、下方较为均匀流入风机10中,进而风机10的出风口14的各处风速也较为均匀,有利于均匀出风,且有效降低风阻,减少能量损失,极大地提高风机10的电机的运行效率。
在本公开的一个实施例中,优选地,如图2至图5所示,风机10的外侧壁与壳体的最小间距为L6,叶轮的直径为D,L6/D的范围为0.2至0.3。
在该实施例中,通过限定风机10的外侧壁与壳体的内侧壁之间的最小间距为L6,且L6与叶轮的直径D的比值范围为0.2至0.3。一方面为气流的进入与流通留有足够的空间,避免外界的气流经壳体上的回风口22进入后,因风机10的外侧壁与壳体的最小间距较小,而使得大量气流在该处积留,影响气体流动,降低风机10的运行效率;另一方面在提高壳体内部空间利用率的同时,为风机10的安装留有足够的空间。其中,具体限定风机10的外侧壁与壳体的最小间距L6与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够与风机10的外侧壁和壳体的最小间距的大小相对应,提高风机10的电机的运行效率。
在本公开的一个实施例中,优选地,如图2至图5所示,屋顶机还包括:多个第一隔板18,设置在壳体内,第一隔板18的一端与风机10的出风口14相连接,第一隔板18的另一端与壳体的内侧壁相连接,排风口24位于多个第一隔板18中,任意相邻两个第一隔板18之间。
在该实施例中,屋顶机还具有多个第一隔板18,通过多个第一隔板18将风机10的出风口14和壳体上的排风口24之间围成一条风道,方便将风机10吹出的风直接传送到排风口24所在位置,便于高效地排风。具体地,多个隔板中,每个隔板的一端均与风机10的出风口14相连接,每个隔板的另一端均与壳体的内侧壁相连接,且排风口24位于任意相邻两个第一隔板18之间,进而该相邻两个第一隔板18围成出风口14与排风口24之间的出风通道。另外,优选地,多个隔板中,还存在一个第一隔板18与上述相邻两个第一隔板18中的一个第一隔板18及壳体的内侧壁围成密闭腔体,用于安置壳体内的其他部件。
在本公开的一个实施例中,优选地,如图2至图5所示,屋顶机还包括:换热器16,设置在壳体内,并位于回风口22与风机10之间。
在该实施例中,屋顶机还具有换热器16,并位于回风口22与风机10之间,使得经回 风口22进入的气流能够先经过换热器16换热后,再进入风机10,以将换热后的气流直接排出。
在本公开的一个实施例中,优选地,如图2至图5所示,换热器16与多个第一隔板18的最小间距为L7,叶轮的直径为D,L7/D的范围为0.3至0.6。
在该实施例中,通过限定换热器16与多个第一隔板18之间的最小间距L7与叶轮的直径D的比值范围为0.3至0.6,为气体的流动提供足够的空间,避免换热器16与多个第一隔板18之间的最小间距过小,而导致气流经换热器16换热后,在换热器16与多个第一隔板18之间积留,从而不利于进入风机10内部,降低风机10的运行效率。其中,具体限定换热器16与多个第一隔板18之间的最小间距L7与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够与换热器16和多个第一隔板18之间的间距大小相对应,使得壳体内部各部件合理分布,提高风机10的电机的运行效率。
在本公开的一个实施例中,优选地,如图2至图5所示,换热器16与风机10的外侧壁的最小间距为L8,叶轮的直径为D,L8/D的范围为0.1至0.3。
在该实施例中,通过限定换热器16与风机10的外侧壁之间的最小间距L8与叶轮的直径D的比值范围为0.1至0.3,一方面为气体的流通提供足够的空间,避免气流经换热器16换热后,由于距风机10过近而使得气流无法快速高效地进入风机10内部,另一方面也避免换热器16与风机10的外侧壁之间距离过远,而使得气流流经换热器16后,再流动较大的距离后才能进入风机10内部,导致换热效果下降的同时,风机10的运行效率也降低。其中,具体限定换热器16与风机10的外侧壁之间的最小间距L8与叶轮的直径D的比值,使得叶轮所带动的风量的大小及风压能够同换热器16与风机10的外侧壁之间的最小间距相对应,使得壳体内部各部件合理分布,提高风机10的电机的运行效率。
在本公开的一个实施例中,优选地,如图2至图5所示,屋顶机还包括:压缩机,设置在壳体内;多个第二隔板20,设置在壳体内,并围设在压缩机的外围,以将压缩机与风机10隔开。
在该实施例中,屋顶机还包括多个第二隔板20,多个第二隔板20围设在压缩机等部件的外围,以将压缩机等部件进行阻隔,有效避免经回风口22流入的气流进入压缩机所在的区域内而影响各部件的运行,也避免导致大量的气流在压缩机所在区域聚集,而降低进入风机10的气流量,降低风机10的运行效率。
在本公开的一个实施例中,优选地,如图2至图5所示,风机10的外侧壁与多个第二隔板20的最小间距为L9,叶轮的直径为D,L9/D的范围为0.1至0.2。
在该实施例中,通过限定风机10的外侧壁与多个第二隔板20的最小间距L9与叶轮的直径D的比值范围为0.1至0.2,一方面为气体的流通提供足够的空间,由于气体经回风口 22流入后,能够经风机10的上方和下方进入风机10内部,而通过将风机10的外侧壁与多个第二隔板20之间留有一定间隙,使得气流还能够在经该间隙内进行流通,进而使得风机10的上方与风机10的下方能够经该进行流通,使得风机10的上方的风量及风压与风机10下方的风量及风压更加均匀,从而使得风机10内部的风量及风压较为均匀,提高风机10的出风口14的各处流量均匀,有利于减少风阻,降低能量损失,从而提高风机10的运行效率。另一方面也为风机10的安装提供方便,避免风机10与多个第二隔板20之间距离过近而出现磕碰损坏等。其中,具体限定风机10的外侧壁与多个第二隔板20的最小间距L9与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够同风机10的外侧壁与多个第二隔板20的最小间距大小相对应,例如风机10的直径较小时,风机10所带动的风量较小,进而无需使得风机10的外侧壁与多个第二隔板20之间的最小间距过大,使得壳体内部各部件合理分布,提高风机10的电机的运行效率。
在本公开的一个实施例中,优选地,如图2至图5所示,换热器16与多个第二隔板20的最小间距为L10,叶轮的直径为D,L10/D的范围为0.3至0.6。
在该实施例中,通过限定换热器16与多个第二隔板20的最小间距L10与叶轮的直径D的范围为0.3至0.6,使得气流流经换热器16后,能够有足够的空间流通,便于进入风机10内部,避免气流在换热器16与多个第二隔板20之间的较小的间隙内聚集。其中,具体限定换热器16与多个第二隔板20的最小间距L10与叶轮的直径D的比值,使得叶轮所带动的风量的大小能够同换热器16与多个第二隔板20的最小间距大小相对应,例如风机10的直径较小时,风机10所带动的风量较小,进而无需使得换热器16与多个第二隔板20之间的最小间距过大,使得壳体内部各部件合理分布,提高风机10的电机的运行效率。
在本公开中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种风机,其特征在于,包括:
    叶轮;
    电机,与所述叶轮相连接;和
    蜗壳,所述蜗壳包括螺旋部和沿所述螺旋部的一切线方向延伸的出风部;所述叶轮设置在所述螺旋部内,所述出风部的端口为出风口;
    过所述叶轮的中心线作垂直于所述切线的基准面,所述出风口所在截面与所述基准面之间具有夹角。
  2. 根据权利要求1所述的风机,其特征在于,
    所述出风口的外边沿与所述基准面之间的距离大于所述出风口的内边沿与所述基准面之间的距离;
    其中,所述出风口的外边沿为所述出风口与所述出风部的外侧壁的交线,所述出风口的内边沿为所述出风口与所述出风部的内侧壁的交线。
  3. 根据权利要求2所述的风机,其特征在于,
    所述出风口的外边沿与所述基准面之间的距离为L1,所述叶轮的直径为D,L1/D的范围为0.7至1.3;和/或
    所述出风口的内边沿与所述基准面之间的距离为L2,所述叶轮的直径为D,L2/D的范围为0.7至1。
  4. 根据权利要求1至3中任一项所述的风机,其特征在于,
    所述出风部的宽度与所述叶轮的直径的比值范围为1.2至2;和/或
    所述蜗壳的高度与所述叶轮的直径的比值范围为1.2至2。
  5. 一种屋顶机,其特征在于,包括:
    壳体,所述壳体上设有回风口和排风口;和
    如权利要求1至4中任一项所述的风机,所述风机设置在所述壳体内。
  6. 根据权利要求5所述的屋顶机,其特征在于,
    所述风机与所述壳体的顶壁的间距为L3,所述风机与所述壳体的底壁的间距为L4,所述蜗壳的高度为L5,所述L3/L5的范围为0.07至0.5,和/或所述L4/L5的范围为0.07至0.5;和/或
    所述风机的外侧壁与所述壳体的最小间距为L6,所述叶轮的直径为D,所述L6/D的范围为0.2至0.3。
  7. 根据权利要求5或6所述的屋顶机,其特征在于,所述屋顶机还包括:
    多个第一隔板,设置在所述壳体内,所述第一隔板的一端与所述风机的出风口相连接,所述第一隔板的另一端与所述壳体的内侧壁相连接,所述排风口位于所述多个第一隔板中,任意相邻两个所述第一隔板之间。
  8. 根据权利要求7所述的屋顶机,其特征在于,所述屋顶机还包括:
    换热器,设置在所述壳体内,并位于回风口与所述风机之间。
  9. 根据权利要求8所述的屋顶机,其特征在于,
    所述换热器与所述多个第一隔板的最小间距为L7,所述叶轮的直径为D,所述L7/D的范围为0.3至0.6,和/或
    所述换热器与所述风机的外侧壁的最小间距为L8,所述叶轮的直径为D,所述L8/D的范围为0.1至0.3。
  10. 根据权利要求8所述的屋顶机,其特征在于,所述屋顶机还包括:
    压缩机,设置在所述壳体内;
    多个第二隔板,设置在所述壳体内,并围设在所述压缩机的外围,以将所述压缩机与所述风机隔开;
    其中,所述风机的外侧壁与所述多个第二隔板的最小间距为L9,所述叶轮的直径为D,所述L9/D的范围为0.1至0.2,和/或
    所述换热器与所述多个第二隔板的最小间距为L10,所述叶轮的直径为D,所述L10/D的范围为0.3至0.6。
PCT/CN2019/084278 2018-04-10 2019-04-25 风机及屋顶机 WO2019196959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810314762.7 2018-04-10
CN201810314762.7A CN108626148B (zh) 2018-04-10 2018-04-10 风机及屋顶机

Publications (1)

Publication Number Publication Date
WO2019196959A1 true WO2019196959A1 (zh) 2019-10-17

Family

ID=63705033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084278 WO2019196959A1 (zh) 2018-04-10 2019-04-25 风机及屋顶机

Country Status (2)

Country Link
CN (1) CN108626148B (zh)
WO (1) WO2019196959A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626148B (zh) * 2018-04-10 2020-10-30 广东美的暖通设备有限公司 风机及屋顶机
CN110307597B (zh) * 2019-07-11 2023-07-21 珠海格力电器股份有限公司 一种分区控制的空调室内机、控制方法及空调机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735551A (en) * 1983-03-19 1988-04-05 Vaillant Gmbh U. Co. Radial blower
US20020025252A1 (en) * 2000-08-30 2002-02-28 Jakel Incorporated Stamped blower housing with 4" transition
CN202883488U (zh) * 2012-10-29 2013-04-17 宜兴台玉环境工程设备有限公司 一种玻璃钢风机蜗壳多方向悬挂装置
CN104564828A (zh) * 2015-01-29 2015-04-29 西安交通大学 用于扩大离心风机出口面积的降噪蜗壳
CN108626148A (zh) * 2018-04-10 2018-10-09 广东美的暖通设备有限公司 风机及屋顶机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742056Y2 (ja) * 1991-04-11 1995-09-27 ダイキン工業株式会社 屋根裏部屋用空調装置
JP5618951B2 (ja) * 2011-08-30 2014-11-05 日立アプライアンス株式会社 多翼送風機および空気調和機
CN202520656U (zh) * 2012-03-13 2012-11-07 美的集团有限公司 空调器的离心风机蜗壳
CN104422115A (zh) * 2013-09-05 2015-03-18 珠海格力电器股份有限公司 屋顶式空调机
CN106427474B (zh) * 2016-11-09 2019-07-26 珠海格力电器股份有限公司 客车及其车载空调

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735551A (en) * 1983-03-19 1988-04-05 Vaillant Gmbh U. Co. Radial blower
US20020025252A1 (en) * 2000-08-30 2002-02-28 Jakel Incorporated Stamped blower housing with 4" transition
CN202883488U (zh) * 2012-10-29 2013-04-17 宜兴台玉环境工程设备有限公司 一种玻璃钢风机蜗壳多方向悬挂装置
CN104564828A (zh) * 2015-01-29 2015-04-29 西安交通大学 用于扩大离心风机出口面积的降噪蜗壳
CN108626148A (zh) * 2018-04-10 2018-10-09 广东美的暖通设备有限公司 风机及屋顶机

Also Published As

Publication number Publication date
CN108626148A (zh) 2018-10-09
CN108626148B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
JP2002115866A (ja) 窓型エアコンのターボファンハウジング
WO2019196959A1 (zh) 风机及屋顶机
CN108119963A (zh) 室外机及具有其的空调器
CN1956176A (zh) 整流装置
CN216204482U (zh) 一种相变冷却系统用的高效换热器
CN204880381U (zh) 空调器室内机及空调器
CN207865567U (zh) 室外机及具有其的空调器
CN110410876B (zh) 一种空调器室外机以及空调器
CN205316624U (zh) 轴流柜机
JP2001124359A (ja) 空気調和機
CN107314604B (zh) 一种风冷冰箱的风循环系统及风冷冰箱
CN207225019U (zh) 车载空调及其离心风机安装结构
CN110440340A (zh) 风管机及空调
CN210399238U (zh) 一种空调器室外机以及空调器
CN208059076U (zh) 立式空调器
CN207697423U (zh) 一种车用空调系统及客车
CN207884441U (zh) 一种新型高压电机的空冷结构
CN215336667U (zh) 风机组件和空调器
CN210463256U (zh) 风管机及空调
CN210463255U (zh) 风管机及空调
CN110762636A (zh) 室内机和空调器
CN210014470U (zh) 一种穿墙式空调
CN219415164U (zh) 进出风格栅和空调器
CN220817910U (zh) 一种立式空调
CN217274783U (zh) 降噪空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785609

Country of ref document: EP

Kind code of ref document: A1