WO2019196706A1 - 旁链路通信中的开环功率控制方法和设备 - Google Patents

旁链路通信中的开环功率控制方法和设备 Download PDF

Info

Publication number
WO2019196706A1
WO2019196706A1 PCT/CN2019/080999 CN2019080999W WO2019196706A1 WO 2019196706 A1 WO2019196706 A1 WO 2019196706A1 CN 2019080999 W CN2019080999 W CN 2019080999W WO 2019196706 A1 WO2019196706 A1 WO 2019196706A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
target
power control
power
mapping relationship
Prior art date
Application number
PCT/CN2019/080999
Other languages
English (en)
French (fr)
Inventor
姜炜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019196706A1 publication Critical patent/WO2019196706A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Definitions

  • the present disclosure relates to the field of communication technologies, and more particularly to an open loop power control method and apparatus in side link communication.
  • the side link network usually has a power control mechanism, and the information sender in the side-link network can pass the power control mechanism.
  • the transmission power is adjusted so that the information receiver in the side link network always maintains a good reception effect.
  • the power control in the Sidelink network in the related art is implemented by an open-loop power control mechanism, that is, the information receiving party does not need to feedback the receiving situation, and the information transmitting party determines the sending power by itself to implement the sending power control.
  • the Sidelink network in the related technology follows the open-loop power control mechanism of the Long Term Evolution (LTE) system, and uses the path loss between the terminal device and the network device to implement the transmission of the terminal device in the Sidelink network.
  • LTE Long Term Evolution
  • the power centralized control causes the transmission power of the terminal equipment in the Sidelink network to be inaccurately determined, resulting in power waste and transmission interference.
  • An object of the embodiments of the present disclosure is to provide a method and a device for controlling open loop power in a side link communication, so as to solve the inaccuracy of determining the transmission power caused by determining the transmit power of the terminal device in the side link network. Power wastage and transmission interference problems.
  • the first aspect provides an open loop power control method in a side link communication, which is applied to a first terminal device, and the method includes:
  • the target power control parameter used by the target power control process associated with the second terminal device, the target power control parameter including a target path corresponding to the target side link between the first terminal device and the second terminal device Loss value
  • a second aspect provides an open loop power control method in a side link communication, which is applied to a second terminal device, where the method includes:
  • a third aspect provides an open loop power control method in a side link communication, which is applied to a second terminal device, where the method includes:
  • the second message carries a first mapping relationship, where the first mapping relationship includes a communication related parameter corresponding to the power control process, and an open loop power target value and a path loss compensation factor. Mapping relationship.
  • a fourth aspect provides a terminal device, where the terminal device includes:
  • a first processing module configured to determine a target power control parameter used by a target power control process associated with the second terminal device, where the target power control parameter includes a target sidechain between the terminal device and the second terminal device The target path loss value corresponding to the road;
  • the second processing module is configured to determine, according to the target power control parameter, a transmit power corresponding to the target power control process.
  • a fifth aspect provides a terminal device, where the terminal device includes:
  • a transceiver module configured to send a first message to the first terminal device, where the first message carries the transmit power of the terminal device, so that the first terminal device corresponds to the transmit power and the transmit power Receiving power, determining a target path loss value corresponding to the target side link between the first terminal device and the terminal device.
  • a terminal device where the terminal device includes:
  • the transceiver module is configured to send a second message to the first terminal device, where the second message carries a first mapping relationship, where the first mapping relationship includes a communication related parameter corresponding to the power control process and an open loop power target value and a path The mapping relationship between the loss compensation factors.
  • a terminal device comprising a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor.
  • a terminal device comprising a processor, a memory, and a computer program stored on the memory and operable on the processor, the computer program being executed by the processor.
  • a terminal device comprising a processor, a memory, and a computer program stored on the memory and operable on the processor, the computer program being executed by the processor.
  • a computer readable storage medium storing a computer program, the computer program being executed by a processor to implement the steps of the method as described in the first aspect.
  • a computer readable storage medium storing a computer program, the computer program being executed by a processor to implement the steps of the method of the second aspect.
  • a computer readable storage medium storing a computer program, the computer program being executed by a processor to implement the steps of the method as described in the third aspect.
  • the first terminal device can implement open loop power control by using a target path loss value corresponding to the target side link between the second terminal device, and can improve the transmit power of the terminal device in the side link network. Accuracy, avoiding power waste and transmission interference problems, thereby improving communication effectiveness.
  • FIG. 1 is a schematic flow chart of an open loop power control method in side link communication, in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of an open loop power control method in side link communication according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of an open loop power control method in side link communication according to still another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal device according to still another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal device according to still another embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-advanced
  • NR New Radio
  • V2X Vehicle Network
  • a user equipment which may also be called a mobile terminal, a mobile user equipment, or the like, may be connected to a radio access network (for example, a Radio Access Network, RAN) Or a plurality of core networks for communication
  • the terminal device may be a mobile terminal, such as a mobile phone (or "cellular" phone), a computer with a mobile terminal, and a vehicle, for example, may be portable, pocket, handheld, built-in computer Or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • the network device may be a base station, and the base station may be an evolved base station (evolutional Node B, eNB or e-NodeB) and a 5G base station (gNB) in LTE, and the network device may also be capable of scheduling V2X.
  • the Road Side Unit (RSU) of the terminal device optionally, the RSU is a smart traffic light, a traffic sign, and the like.
  • side link in the embodiment of the present disclosure refers to Sidelink
  • Sidelink can also be understood as “sub link”, “side link” or “edge link” and the like.
  • FIG. 1 illustrates an open loop power control method in side link communication in accordance with an embodiment of the present disclosure.
  • the method shown in FIG. 1 is performed by a first terminal device, which may be a device in a side link (SL) network that needs to transmit information.
  • the method includes:
  • S110 Determine a target power control parameter used by a target power control process associated with the second terminal device, where the target power control parameter includes a target side link between the first terminal device and the second terminal device.
  • Target path loss value is a target power control parameter used by a target power control process associated with the second terminal device, where the target power control parameter includes a target side link between the first terminal device and the second terminal device.
  • target power control process associated with the second terminal device may also be understood as a power control process associated with the target side link.
  • a power control process in an embodiment of the present disclosure may be associated with at least one second terminal device, or a power control process may be associated with at least one side link.
  • the first terminal device needs to determine the transmission power on the communication link with the network device, the first terminal device adopts the path loss value on its serving cell. The determination of the transmission power is performed.
  • the first terminal device may determine the transmit power P corresponding to the target power control process according to formula (1).
  • formula (1) is:
  • P CMAX is the maximum transmit power of the first terminal device (can be configured by the network device), and M is the bandwidth allocated by the first terminal device, in units of resource blocks (RBs), and PL is the target path loss value.
  • P O is the open loop power target value of the first terminal device, and ⁇ is the path loss factor.
  • the target path loss value in the formula (1) may be obtained by the first terminal device according to the following manner: receiving the first message sent by the second terminal device, where the first message includes the sending power of the second terminal device; Determining a received power corresponding to the transmit power of the second terminal device; determining a target path loss value according to the transmit power of the second terminal device and the received power corresponding to the transmit power of the second terminal device.
  • the transmission power of the second terminal device is 23 dBm
  • the received power corresponding to the transmission power of the second terminal device is 10 dBm
  • the target path loss value is 13 dBm.
  • the first terminal device can achieve open loop power control even without network coverage.
  • the first message described above is a broadcasted message or a periodically sent message.
  • the first message is a side link master information block (Master Information Block-SL, MIB-SL), a car network side link master information block MIB-SL-V2X, and a physical side link broadcast channel (Physical Sidelink Broadcast Channel). , one of PSBCH).
  • P O and ⁇ in formula (1) are configured by the network device to the first terminal device through higher layer signaling.
  • P O and ⁇ are determined by the first terminal device according to the first mapping relationship, where the first mapping relationship includes a mapping relationship between the communication related parameter corresponding to the power control process and the open loop power target value and the path loss compensation factor.
  • the first terminal device determines P O and ⁇ according to the first mapping relationship, the method shown in FIG.
  • 1 further includes: acquiring a first mapping relationship, where the first mapping relationship includes a communication related parameter corresponding to the power control process and the open loop a mapping relationship between the power target value and the path loss compensation factor; determining a target open loop power target value corresponding to the target power control process according to the communication related parameter corresponding to the target power control process and the first mapping relationship Target path loss compensation factor.
  • determining, according to the target power control parameter, determining a transmit power corresponding to the target power control process, according to the target path loss value, the target open loop power target value, and the target path loss compensation factor Determine the transmit power corresponding to the target power control process.
  • the communication related parameter corresponding to the target power control process includes at least one of the following parameters: a bandwidth part (BWP) occupied by the target side link, and a resource occupied by the target side link. a carrier, a carrier occupied by the target side link, a network slice corresponding to the target side link, and a quality of service (QoS) requirement of the second terminal device, a communication distance between the second terminal device and the first terminal device and a type of the second terminal device.
  • BWP bandwidth part
  • QoS quality of service
  • the foregoing first mapping relationship may be a direct mapping relationship between the communication-related parameters corresponding to the power control process and the open-loop power target value and the path loss compensation factor.
  • the first mapping relationship is a mapping relationship as shown in Tables 1 to 3. If the BWP occupied by the target side link between the first terminal device and the second terminal device is BWP2, the first terminal device determines that the target open loop power target value is P2, and the target path loss compensation factor is ⁇ 2. Alternatively, if the communication distance between the first terminal device and the second terminal device is 500 m (the disclosure does not limit the manner in which the communication distance is divided), the first terminal device determines that the target open loop power target value is P3, and the target path loss is The compensation factor is ⁇ 3. Alternatively, if the second terminal device is an in-vehicle vehicle, the first terminal device determines that the target open loop power target value is P1 and the target path loss compensation factor is ⁇ 1.
  • BWP Open loop power target value Road loss compensation factor BWP1 P1 11 BWP2 P2 22 BWP3 P3 33
  • the mapping relationship between the BWP and the open loop power target value and the target path loss compensation factor is taken as an example.
  • the first mapping relationship includes the communication distance and the open loop power target value and target.
  • the mapping relationship between the road loss compensation factors is taken as an example.
  • the mapping relationship between the type of the second terminal device and the open loop power target value and the path loss compensation factor in the first mapping relationship is taken as an example. An example, not a limitation.
  • the foregoing first mapping relationship may be an indirect mapping relationship between the communication-related parameters corresponding to the power control process and the open-loop power target value and the path loss compensation factor.
  • an implementation manner of the indirect mapping relationship is: the communication related parameter corresponding to the power control process has a direct mapping relationship with the power control process, and the power control process has a direct mapping between the open loop power target value and the path loss compensation factor.
  • the relationship is such that the power control process has an indirect mapping relationship with the open loop power target value and the path loss compensation factor.
  • the first mapping relationship is the mapping relationship shown in Table 4.
  • the target power control process initiated by the first terminal device is the power control process of ID3, and the target open loop power target value used by the target power control process is P3, and the target path loss compensation factor is used. Is ⁇ 3.
  • the mapping relationship between the QoS requirement, the power control process ID, and the open loop power target value and the target path loss compensation factor in the first mapping relationship in Table 4 is merely an example, not a limitation.
  • the foregoing first mapping relationship may be that the protocol is scheduled, or the network device is configured to the first terminal device by using the high-level signaling, or may be sent by the second terminal device to the first terminal device.
  • the first terminal device sends the first mapping relationship to the first terminal device
  • the first terminal device receives the second message sent by the second terminal device, where the second message includes the first mapping relationship.
  • the second message is a message transmitted by broadcasting or a message transmitted periodically.
  • the second message is one of MIB-SL, MIB-SL-V2X, and PSBCH.
  • the first terminal device determines the transmit power corresponding to the target power control process as the target transmission in the side link communication. power. If there are multiple target power control processes in the first terminal device, that is, the number of second terminal devices that communicate with the first terminal device is multiple, and the first terminal device turns on multiple target power control processes to perform power control,
  • the method shown in FIG. 1 further includes determining the target transmit power in the side link communication according to the transmit power and power determination rules corresponding to the plurality of target power control processes. Therefore, the open loop power control method of the embodiment of the present disclosure can enable multiple power control processes to make the determination of the transmit power more accurate, reduce power waste and transmission interference, and improve the overall performance of the communication system.
  • the power determination rule may be that the maximum transmit power corresponding to the multiple target power control processes is the target transmit power, or the second largest transmit power corresponding to the multiple target power control processes is the target transmit power.
  • the power determination rule is not limited in the embodiment of the present disclosure.
  • the target transmit power is a transmit power of a physical side link control channel (PSCCH)
  • the method shown in FIG. 1 further includes: determining the target transmit power. a transmit power of a physical side link shared channel (PSSCH); or a transmit power of a PSSCH according to a target transmit power and a second mapping relationship, where the second mapping relationship includes a transmit power of the PSCCH and a transmit power of the PSSCH Mapping relationship.
  • PSSCH physical side link control channel
  • FIG. 1 further includes: determining the target transmit power. a transmit power of a physical side link shared channel (PSSCH); or a transmit power of a PSSCH according to a target transmit power and a second mapping relationship, where the second mapping relationship includes a transmit power of the PSCCH and a transmit power of the PSSCH Mapping relationship.
  • the transmission power of the PSSCH can be determined by the determined transmission power of the PSCCH. It is to be understood that, in this case, the transmission power of the PSCCH may be determined by using the method shown in FIG. 1 or may be determined by other methods, which is not limited in this disclosure.
  • the embodiment of the present disclosure further provides an open loop power control method in side link communication, in which the first terminal device determines, according to the first mapping relationship, a target used by the target power control process associated with the second device.
  • the power control parameter, the target power control parameter includes a target open loop power target value and a target path loss compensation factor, and then the first terminal device determines the sending corresponding to the target open loop power control process according to the target open loop power target value and the target path loss compensation factor.
  • the first terminal device may determine, according to formula (1) above, the transmit power corresponding to the target open loop power control process, and in this case, determine the target path loss used when the transmit power corresponding to the target open loop power control process is determined.
  • the value may be a path loss value on the serving cell of the first terminal device, or may be a path loss value corresponding to the target side link between the first terminal and the second terminal device.
  • the manner in which the first mapping relationship is acquired, the path loss value corresponding to the target side link between the first terminal device and the second terminal device, and how to have multiple target open loop power control processes The manner of determining the target transmission power in the side-link communication is the same as the corresponding manner in the method shown in FIG. 1. To avoid repetition, details are not described herein again.
  • FIG. 2 illustrates an open loop power control method in side link communication in accordance with another embodiment of the present disclosure.
  • the method shown in FIG. 2 is performed by a second terminal device, which may be a device in the side-link network that communicates with the first terminal device. It can be understood that the interaction between the second terminal device and the first terminal device described on the second terminal device side is the same as the description from the first terminal device side in the method shown in FIG. 1. To avoid repetition, the related description is omitted as appropriate.
  • the method includes:
  • the first message is sent to the first terminal device, where the first message carries the sending power of the second terminal device, so that the first terminal device receives the corresponding power according to the sending power and the sending power. And determining a target path loss value corresponding to the target side link between the first terminal device and the second terminal device.
  • the second terminal device sends a first message carrying the transmission power of the second terminal device to the first terminal device, so that the first terminal device can be according to the second Determining, by the transmit power of the terminal device, the received power corresponding to the transmit power, determining a target path loss value corresponding to the target side link between the first terminal device and the second terminal device, thereby enabling the first terminal device to adopt the second
  • the target path loss value corresponding to the target side link between the terminal devices implements open loop power control, which can improve the accuracy of the transmission power of the terminal device in the side link network, avoid power waste and transmission interference, thereby improving communication effectiveness.
  • the first message is a message that is sent by broadcast or periodically.
  • FIG. 3 illustrates an open loop power control method in side link communication in accordance with still another embodiment of the present disclosure.
  • the method shown in FIG. 3 is performed by a second terminal device, which may be a device in the side-link network that communicates with the first terminal device. It can be understood that the interaction between the second terminal device and the first terminal device described on the second terminal device side is the same as the description from the first terminal device side in the method shown in FIG. 1. To avoid repetition, the related description is omitted as appropriate.
  • the method includes:
  • the second message is sent to the first terminal device, where the second message carries a first mapping relationship, where the first mapping relationship includes a communication related parameter, an open loop power target value, and a path loss compensation factor corresponding to the power control process.
  • the mapping relationship between them includes a communication related parameter, an open loop power target value, and a path loss compensation factor corresponding to the power control process.
  • the second terminal device sends the second message carrying the first mapping relationship to the first terminal device, so that the first terminal device can determine according to the first mapping relationship.
  • the open loop power target value and the path loss compensation factor used by the target power control process associated with the second terminal device thereby enabling the first terminal device to implement open loop power control without network coverage, and
  • the open loop power target value and the path loss compensation factor used by multiple power control processes may be different, which may improve the accuracy of the transmission power of the terminal device in the side link network, and avoid Power wastage and transmission interference problems improve communication effectiveness.
  • the second message is a message that is sent by broadcast or periodically.
  • the first mapping relationship is pre-configured by a protocol, or the first mapping relationship is configured by a network device by using high layer signaling.
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 4, the terminal device 40 includes:
  • a first processing module 41 configured to determine a target power control parameter used by a target power control process associated with the second terminal device, where the target power control parameter includes a target between the terminal device and the second terminal device The target path loss value corresponding to the link;
  • the second processing module 42 is configured to determine, according to the target power control parameter, a transmit power corresponding to the target power control process.
  • the terminal device receives the first message that is sent by the second terminal device and carries the transmission power of the second terminal device, and is determined according to the transmit power of the second terminal device and the received power corresponding to the transmit power.
  • the target path loss value corresponding to the target side link between the two terminal devices, and the open path power control can be implemented by using the target path loss value corresponding to the target side link between the second terminal device, which can improve the side link network.
  • the accuracy of the transmission power of the terminal device avoids power waste and transmission interference problems, thereby improving communication effectiveness.
  • the terminal device 40 further includes a transceiver module 43;
  • the transceiver module 43 is configured to receive a first message sent by the second terminal device, where the first message includes a sending power of the second terminal device;
  • the first determining module 41 is configured to determine a receiving power corresponding to the sending power of the second terminal device, and receive according to the sending power of the second terminal device and the sending power of the second terminal device. Power, determining the target path loss value.
  • the first message is a message that is sent by broadcast or periodically.
  • the first processing module 41 is further configured to:
  • the first mapping relationship includes a mapping relationship between a communication-related parameter corresponding to the power control process and an open-loop power target value and a path loss compensation factor;
  • the second processing module is specifically configured to: determine, according to the target path loss value, the target open loop power target value, and the target path loss compensation factor, a transmit power corresponding to the target power control process.
  • the transceiver module 43 is further configured to:
  • the second message is a message that is sent by broadcast or periodically.
  • the communication related parameter corresponding to the target power control process includes at least one of the following parameters: a bandwidth part BWP occupied by the target side link, and a resource occupied by the target side link. a pool, a carrier occupied by the target side link, a network slice corresponding to the target side link, a quality of service QoS requirement of the second terminal device, and between the second terminal device and the first terminal device Communication distance and type of the second terminal device.
  • the number of the second terminal devices is multiple, and the number of the target power control processes is multiple, and the second processing module 42 is further configured to:
  • the target transmission power in the side link communication is determined according to a transmission power and power determination rule corresponding to the plurality of target power control processes.
  • the target transmit power is a transmit power of a physical side link control channel PSCCH
  • the second processing module 42 is further configured to:
  • the transmit power of the PSSCH determining, according to the target transmit power and the second mapping relationship, the transmit power of the PSSCH, where the second mapping relationship includes a mapping relationship between a transmit power of the PSCCH and a transmit power of the PSSCH.
  • a terminal device may refer to a flow of the method illustrated in FIG. 1 corresponding to an embodiment of the present disclosure, and each unit/module in the terminal device and the other operations and/or functions described above are respectively implemented in FIG. The corresponding flow in the method shown is not repeated here for brevity.
  • FIG. 5 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure. As shown in FIG. 5, the terminal device 50 includes:
  • the transceiver module 51 is configured to send a first message to the first terminal device, where the first message carries the sending power of the terminal device, so that the first terminal device corresponds to the sending power and the sending power.
  • the received power determines a target path loss value corresponding to the target side link between the first terminal device and the terminal device.
  • the terminal device sends a first message carrying the transmission power of the terminal device to the first terminal device, so that the first terminal device can determine the first according to the transmission power of the terminal device and the received power corresponding to the transmission power.
  • the target path loss value corresponding to the target side link between the terminal device and the terminal device so that the first terminal device can implement the open loop power control by using the target path loss value corresponding to the target side link between the terminal device, which can improve
  • the accuracy of the transmission power of the terminal equipment in the side-link network avoids power waste and transmission interference problems, thereby improving communication effectiveness.
  • the first message is a message that is sent by broadcast or periodically.
  • a terminal device may refer to a flow of the method illustrated in FIG. 2 corresponding to an embodiment of the present disclosure, and each unit/module in the terminal device and the other operations and/or functions described above are respectively implemented in FIG. The corresponding flow in the method shown is not repeated here for brevity.
  • FIG. 6 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure. As shown in FIG. 6, the terminal device 60 includes:
  • the transceiver module 61 is configured to send a second message to the first terminal device, where the second message carries a first mapping relationship, where the first mapping relationship includes a communication related parameter and an open loop power target value corresponding to the power control process.
  • the terminal device sends a second message carrying the first mapping relationship to the first terminal device, so that the first terminal device can determine, according to the first mapping relationship, an open loop used by the target power control process associated with the terminal device.
  • the power target value and the path loss compensation factor thereby enabling the first terminal device to implement open loop power control without network coverage, and multiple power control when there are multiple power control processes in the first terminal device.
  • the open loop power target value and the path loss compensation factor used by the process may be different, which can improve the accuracy of the transmission power of the terminal equipment in the side link network, avoid power waste and transmission interference problems, thereby improving communication effectiveness.
  • the second message is a message that is sent by broadcast or periodically.
  • the first mapping relationship is pre-configured by a protocol, or the first mapping relationship is configured by a network device by using high layer signaling.
  • a terminal device may refer to a flow of the method illustrated in FIG. 3 corresponding to an embodiment of the present disclosure, and each unit/module in the terminal device and the other operations and/or functions described above are respectively implemented in FIG. The corresponding flow in the method shown is not repeated here for brevity.
  • FIG. 7 is a schematic structural diagram of a terminal device according to still another embodiment of the present disclosure.
  • the terminal device 700 includes: at least one processor 710, a memory 720, at least one network interface 730, and a user interface 740.
  • the various components in terminal device 700 are coupled together by a bus system 750.
  • the bus system 750 is used to implement connection communication between these components.
  • the bus system 750 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 750 in FIG.
  • the user interface 740 can include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 720 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 720 of the systems and methods described in the embodiments of the present disclosure is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 720 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 721 and application 722.
  • the operating system 721 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 722 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 722.
  • the terminal device 700 further includes: a computer program stored on the memory 720 and operable on the processor 710, the computer program being executed by the processor 710 to implement the method described above in FIGS. 1 to 3.
  • a computer program stored on the memory 720 and operable on the processor 710, the computer program being executed by the processor 710 to implement the method described above in FIGS. 1 to 3.
  • Each process can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • Processor 710 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the processor 710 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in a memory 720, and the processor 710 reads the information in the memory 720 and, in conjunction with its hardware, performs the steps of the above method.
  • the computer readable storage medium stores a computer program that, when executed by the processor 710, implements the steps of the method embodiment as shown in FIGS. 1 through 3 above.
  • the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSP devices, DSPDs), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure In an electronic unit or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSP devices digital signal processing devices
  • DSPDs digital signal processing devices
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the embodiment of the present disclosure further provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program.
  • the computer program is executed by the processor, the processes of the foregoing method embodiments are implemented, and the same technical effects can be achieved. To avoid repetition, we will not repeat them here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种旁链路通信中的开环功率控制方法和设备,该方法包括:确定与第二终端设备关联的目标功率控制进程使用的目标功率控制参数,所述目标功率控制参数包括所述第一终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值;根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率。

Description

旁链路通信中的开环功率控制方法和设备
相关申请的交叉引用
本申请主张在2018年4月12日在中国提交的中国专利申请号No.201810326558.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,更具体地涉及旁链路通信中的开环功率控制方法和设备。
背景技术
在第五代移动通信(5rd-generation,5G)网络及后续演进的无线通信网络中,旁链路(Sidelink)网络通常具备功率控制机制,旁链路网络中的信息发送方通过功率控制机制可以调整发送功率,使得该旁链路网络中的信息接收方始终保持较好的接收效果。
相关技术中的Sidelink网络中的功率控制通过开环功率控制机制实现,即采用不需要信息接收方对接收情况进行反馈,信息发送方自己判断发送功率的方式实现发送功率控制。但相关技术中的Sidelink网络沿用了长期演进(Long Term Evolution,LTE)系统的开环功率控制机制,使用终端设备与网络设备之间的路径损耗(Pathloss)实现对Sidelink网络中的终端设备的发送功率集中控制,导致Sidelink网络中的终端设备的发送功率确定不准确,带来功率浪费和传输干扰的问题。
发明内容
本公开实施例的目的是提供一种旁链路通信中的开环功率控制的方法和设备,以解决采用确定旁链路网络中的终端设备的发送功率导致的发送功率确定不准确,带来功率浪费和传输干扰的问题。
第一方面,提供了一种旁链路通信中的开环功率控制方法,应用于第一终端设备,该方法包括:
确定与第二终端设备关联的目标功率控制进程使用的目标功率控制参数,所述目标功率控制参数包括所述第一终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值;
根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率。
第二方面,提供了一种旁链路通信中的开环功率控制方法,应用于第二终端设备,该方法包括:
向第一终端设备发送第一消息,所述第一消息中携带所述第二终端设备的发送功率,以便于所述第一终端设备根据所述发送功率和所述发送功率对应的接收功率,确定所述第一终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值。
第三方面,提供了一种旁链路通信中的开环功率控制方法,应用于第二终端设备,该方法包括:
向第一终端设备发送第二消息,所述第二消息中携带第一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系。
第四方面,提供了一种终端设备,该终端设备包括:
第一处理模块,用于确定与第二终端设备关联的目标功率控制进程使用的目标功率控制参数,所述目标功率控制参数包括所述终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值;
第二处理模块,用于根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率。
第五方面,提供了一种终端设备,该终端设备包括:
收发模块,用于向第一终端设备发送第一消息,所述第一消息中携带所述终端设备的发送功率,以便于所述第一终端设备根据所述发送功率和所述发送功率对应的接收功率,确定所述第一终端设备与所述终端设备之间的目标旁链路对应的目标路径损耗值。
第六方面,提供了一种终端设备,该终端设备包括:
收发模块,用于向第一终端设备发送第二消息,所述第二消息中携带第 一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系。
第七方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第九方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第三方面所述的方法的步骤。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的方法的步骤。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第二方面所述的方法的步骤。
第十二方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第三方面所述的方法的步骤。
在本公开实施例中,第一终端设备能够采用与第二终端设备之间的目标旁链路对应的目标路径损耗值实现开环功率控制,可以提高旁链路网络中的终端设备的发送功率的准确性,避免功率浪费和传输干扰问题,从而提高通信有效性。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开的一个实施例的旁链路通信中的开环功率控制方法的示意性流程图。
图2是根据本公开的另一个实施例的旁链路通信中的开环功率控制方法的示意性流程图。
图3是根据本公开的再一个实施例的旁链路通信中的开环功率控制方法的示意性流程图。
图4是根据本公开的一个实施例的终端设备的结构示意图。
图5是根据本公开的另一个实施例的终端设备的结构示意图。
图6是根据本公开的再一个实施例的终端设备的结构示意图。
图7是根据本公开的再一个实施例的终端设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term Evolution-advanced,LTE-A)系统,新空口(New Radio,NR)系统,NR车联网(Vehicle To Everything,V2X)系统等。
在本公开实施例中,终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)、具有移动终端的计算机和车辆,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
在本公开实施例中,网络设备可以是基站,所述基站可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),网络设备还可以为能够调度V2X终端设备的路侧单元(Road Side Unit,RSU), 可选地,该RSU为智能交通灯、交通告示牌等设备。
需要说明的是,本公开实施例中的旁链路指的是Sidelink,其中,Sidelink还可以理解为“副链路”、“侧链路”或“边链路”等。
以下结合附图,详细说明本公开各实施例提供的技术方案。
图1示出了根据本公开一个实施例的旁链路通信中的开环功率控制方法。图1所示的方法由第一终端设备执行,第一终端设备可以是旁链路(Sidelink,SL)网络中需要发送信息的设备。如图1所示,方法包括:
S110,确定与第二终端设备关联的目标功率控制进程使用的目标功率控制参数,所述目标功率控制参数包括所述第一终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值。
需要说明的是,与第二终端设备关联的目标功率控制进程也可以理解为与目标旁链路关联的功率控制进程。本公开实施例中的一个功率控制进程可以与至少一个第二终端设备关联,或者说一个功率控制进程可以与至少一个旁链路关联。
还需要说明的是,在本公开实施例中,如果第一终端设备需要确定在与网络设备之间的通信链路上的发送功率,则第一终端设备采用其服务小区上的路径损耗值来进行发送功率的确定。
S120,根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率。
具体地,在一些实施例中,第一终端设备可以根据公式(1)确定目标功率控制进程对应的发送功率P。其中,公式(1)为:
Figure PCTCN2019080999-appb-000001
其中,P CMAX为第一终端设备的最大发射功率(可以由网络设备配置),M为第一终端设备被分配的带宽,以资源块(Resource Block,RB)为单位,PL为目标路径损耗值,P O为第一终端设备的开环功率目标值,α为路径损耗因子。
作为一个例子,公式(1)中的目标路径损耗值可以是第一终端设备根据以下方式获得的:接收第二终端设备发送的第一消息,第一消息中包括第二 终端设备的发送功率;确定第二终端设备的发送功率对应的接收功率;根据第二终端设备的发送功率和所述第二终端设备的发送功率对应的接收功率,确定目标路径损耗值。例如,第二终端设备的发送功率为23dBm,第二终端设备的发送功率对应的接受功率为10dBm,则目标路径损耗值为13dBm。在这种情况下,即使没有网络覆盖,第一终端设备也能够实现开环功率控制。
上述的第一消息是广播发送的消息或周期性发送的消息。例如,第一消息为旁链路主信息块(Master Information Block-SL,MIB-SL)、车联网旁链路主信息块MIB-SL-V2X、以及物理旁链路广播信道(Physical Sidelink Broadcast Channel,PSBCH)中的一种。
具体地,在一些实施例中,公式(1)中的P O和α是网络设备通过高层信令配置给第一终端设备的。或者P O和α是第一终端设备根据第一映射关系确定的,第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系。在第一终端设备根据第一映射关系确定P O和α的情况下,图1所示的方法还包括:获取第一映射关系,第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系;根据所述目标功率控制进程对应的通信相关参数与所述第一映射关系,确定所述目标功率控制进程对应的目标开环功率目标值和目标路损补偿因子。相对应的,在S120中,根据目标功率控制参数,确定与目标功率控制进程对应的发送功率包括:根据所述目标路径损耗值、所述目标开环功率目标值和所述目标路损补偿因子,确定目标功率控制进程对应的发送功率。
作为一个例子,上述的目标功率控制进程对应的通信相关参数包括以下参数中的至少一种:所述目标旁链路占用的带宽部分(Bandwidth Part,BWP)、所述目标旁链路占用的资源池、所述目标旁链路占用的载波(Carrier)、所述目标旁链路对应的网络切片(Network Slice)、所述第二终端设备的服务质量(Quality of Service,QoS)需求、所述第二终端设备与所述第一终端设备之间的通信距离以及所述第二终端设备的类型。
需要说明的是,上述的第一映射关系可以是功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的直接映射关系。例如,第一 映射关系为如表1至表3所示的映射关系。如果第一终端设备与第二终端设备之间的目标旁链路占用的BWP为BWP2,则第一终端设备确定目标开环功率目标值为P2,目标路损补偿因子为α2。或者,如果第一终端设备与第二终端设备之间的通信距离为500m(本公开对通信距离的划分方式不作限定),则第一终端设备确定目标开环功率目标值为P3,目标路损补偿因子为α3。或者,如果第二终端设备为车队内车辆,则第一终端设备确定标开环功率目标值为P1,目标路损补偿因子为α1。
表1
BWP 开环功率目标值 路损补偿因子
BWP1 P1 α1
BWP2 P2 α2
BWP3 P3 α3
表2
通信距离 开环功率目标值 路损补偿因子
小于50m P1 α1
50~200m P2 α2
大于200m P3 α3
表3
类型 开环功率目标值 路损补偿因子
车队内车辆 P1 α1
车队外车辆 P2 α2
上述表1中以第一映射关系包括BWP和开环功率目标值和目标路损补偿因子之间的映射关系为例,表2中以第一映射关系包括通信距离和开环功率目标值和目标路损补偿因子之间的映射关系为例,表3中以第一映射关系包括第二终端设备的类型和开环功率目标值和路损补偿因子之间的映射关系为例,仅仅是一种示例,而不是一种限定。
还需要说明的是,上述的第一映射关系可以是功率控制进程对应的通信 相关参数与开环功率目标值和路损补偿因子之间的间接映射关系。在这里,间接映射关系的一种实现方式为:功率控制进程对应的通信相关参数与功率控制进程具有直接的映射关系,功率控制进程与开环功率目标值和路损补偿因子之间具有直接映射关系,从而使得功率控制进程与开环功率目标值和路损补偿因子之间具有间接映射关系。例如,第一映射关系为表4所示的映射关系。如果第二终端设备的QoS需求为QoS3,则第一终端设备开启的目标功率控制进程为ID3的功率控制进程,且目标功率控制进程使用的目标开环功率目标值为P3,目标路损补偿因子为α3。表4中以第一映射关系包括QoS需求、功率控制进程ID,以及开环功率目标值和目标路损补偿因子之间的映射关系为例,仅仅是一种示例,而不是一种限定。
表4
Figure PCTCN2019080999-appb-000002
作为一个例子,上述的第一映射关系可以是协议预定的或者网络设备通过高层信令配置给第一终端设备的,还可以是第二终端设备发送给第一终端设备的。在由第二终端设备向第一终端设备发送第一映射关系的情况下,第一终端设备接收第二终端设备发送的第二消息,第二消息中包括第一映射关系。在这里,第二消息是广播发送的消息或者是周期性发送的消息。例如,第二消息是MIB-SL、MIB-SL-V2X、PSBCH中的一种。
在本公开实施例中,可选地,如果第一终端设备中只存在一个目标功率控制进程,则第一终端设备将目标功率控制进程对应的发送功率确定为在旁链路通信中的目标发送功率。如果第一终端设备中存在多个目标功率控制进程,即与第一终端设备进行通信的第二终端设备的数量为多个,且第一终端设备开启多个目标功率控制进程来进行功率控制,则图1所示的方法还包括:根据多个目标功率控制进程对应的发送功率和功率确定规则,确定在旁链路 通信中的目标发送功率。由此,本公开实施例的开环功率控制方法,能够开启多个功率控制进程,使得发送功率的确定更为准,减少功率浪费和传输干扰,提升通信系统的总性能。
作为一个例子,上述的功率确定规则可以是将多个目标功率控制进程对应的最大发送功率作为目标发送功率,或者将多个目标功率控制进程对应的第二大发送功率作为目标发送功率。本公开实施例对功率确定规则不作限定。
在上述所有实施例中,可选地,目标发送功率为物理旁链路控制信道(Physical Sidelink Control Channel,PSCCH)的发送功率,则图1所示的方法还包括:将所述目标发送功率确定为物理旁链路共享信道(Physical Sidelink Share Channel,PSSCH)的发送功率;或根据目标发送功率和第二映射关系,确定PSSCH的发送功率,第二映射关系包括PSCCH的发送功率和PSSCH的发送功率的映射关系。
也就是说,可以通过确定出的PSCCH的发送功率确定PSSCH的发送功率。可以理解的是,在这种情况下,PSCCH的发送功率可以采用图1所示的方法来确定,也可以采用其他的方法确定,本公开对此不作限定。
本公开实施例还提供了一种旁链路通信中的开环功率控制方法,在这种方法中,第一终端设备根据第一映射关系确定与第二设备关联的目标功率控制进程使用的目标功率控制参数,目标功率控制参数包括目标开环功率目标值和目标路损补偿因子,之后第一终端设备根据目标开环功率目标值和目标路损补偿因子确定目标开环功率控制进程对应的发送功率。具体地,第一终端设备可以根据上述的公式(1)确定目标开环功率控制进程对应的发送功率,在这种情况下,确定目标开环功率控制进程对应的发送功率时采用的目标路径损耗值可以是第一终端设备的服务小区上的路径损耗值,也可以是第一终端与第二终端设备之间的目标旁链路对应的路径损耗值。在这个实施例中第一映射关系的获取方式、第一终端设备与第二终端设备之间的目标旁链路对应的路径损耗值的确定方式、以及如何在有多个目标开环功率控制进程时确定在旁链路通信中的目标发送功率的方式,与图1所示的方法中的相应方式相同,为避免重复,在此不再赘述。
图2示出了根据本公开的另一个实施例的旁链路通信中的开环功率控制 方法。图2所示的方法由第二终端设备执行,第二终端设备可以是旁链路网络中与第一终端设备进行通信的设备。可以理解的是,从第二终端设备侧描述的第二终端设备与第一终端设备的交互与图1所示的方法中从第一终端设备侧的描述相同,为避免重复,适当省略相关描述。如图2所示,方法包括:
S210,向第一终端设备发送第一消息,所述第一消息中携带所述第二终端设备的发送功率,以便于所述第一终端设备根据所述发送功率和所述发送功率对应的接收功率,确定所述第一终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值。
根据本公开实施例的旁链路通信中的开环功率控制方法,第二终端设备向第一终端设备发送携带第二终端设备的发送功率的第一消息,使得第一终端设备能够根据第二终端设备的发送功率和该发送功率对应的接收功率,确定出第一终端设备与第二终端设备之间的目标旁链路对应的目标路径损耗值,进而使得第一终端设备能够采用与第二终端设备之间目标旁链路对应的目标路径损耗值实现开环功率控制,可以提高旁链路网络中的终端设备的发送功率的准确性,避免功率浪费和传输干扰问题,从而提高通信有效性。
可选地,作为一个实施例,所述第一消息是广播发送或者周期性发送的消息。
图3示出了根据本公开的再一个实施例的旁链路通信中的开环功率控制方法。图3所示的方法由第二终端设备执行,第二终端设备可以是旁链路网络中与第一终端设备进行通信的设备。可以理解的是,从第二终端设备侧描述的第二终端设备与第一终端设备的交互与图1所示的方法中从第一终端设备侧的描述相同,为避免重复,适当省略相关描述。如图3所示,方法包括:
S310,向第一终端设备发送第二消息,所述第二消息中携带第一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系。
根据本公开实施例的旁链路通信中的开环功率控制方法,第二终端设备向第一终端设备发送携带第一映射关系的第二消息,使得第一终端设备能够根据第一映射关系确定与第二终端设备相关联的目标功率控制进程使用的开环功率目标值和路损补偿因子,进而使得第一终端设备能够在无网络覆盖的 情况下也可以实现开环功率控制,并且在第一终端设备中有多个功率控制进程时,多个功率控制进程使用的开环功率目标值和路损补偿因子可能不同,可以提高旁链路网络中的终端设备的发送功率的准确性,避免功率浪费和传输干扰问题,从而提高通信有效性。
可选地,作为一个实施例,所述第二消息是广播发送或者周期性发送的消息。
可选地,作为一个实施例,所述第一映射关系由协议预配置,或所述第一映射关系由网络设备通过高层信令配置。
以上结合图1至图3详细描述了根据本公开实施例的旁链路通信中的开环功率控制。下面将结合图4详细描述根据本公开实施例的终端设备。
图4是根据本公开实施例的终端设备的结构示意图。如图4所示,终端设备40包括:
第一处理模块41,用于确定与第二终端设备关联的目标功率控制进程使用的目标功率控制参数,所述目标功率控制参数包括所述终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值;
第二处理模块42,用于根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率。
根据本公开实施例的终端设备接收第二终端设备发送的携带第二终端设备的发送功率的第一消息,能够根据第二终端设备的发送功率和该发送功率对应的接收功率,确定出与第二终端设备之间的目标旁链路对应的目标路径损耗值,进而能够采用与第二终端设备之间目标旁链路对应的目标路径损耗值实现开环功率控制,可以提高旁链路网络中的终端设备的发送功率的准确性,避免功率浪费和传输干扰问题,从而提高通信有效性。
可选地,作为一个实施例,如图4所示出的,终端设备40还包括收发模块43;
收发模块43,用于接收所述第二终端设备发送的第一消息,所述第一消息中包括所述第二终端设备的发送功率;
其中,所述第一确定模块41,用于确定所述第二终端设备的发送功率对应的接收功率;根据所述第二终端设备的发送功率和所述第二终端设备的发 送功率对应的接收功率,确定所述目标路径损耗值。
可选地,作为一个实施例,所述第一消息是广播发送或者周期性发送的消息。
可选地,作为一个实施例,所述第一处理模块41还用于:
获取第一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系;
根据所述目标功率控制进程对应的通信相关参数与所述第一映射关系,确定所述目标功率控制进程对应的目标开环功率目标值和目标路损补偿因子;
其中,所述第二处理模块具体用于:根据所述目标路径损耗值、所述目标开环功率目标值和所述目标路损补偿因子,确定所述目标功率控制进程对应的发送功率。
可选地,作为一个实施例,所述收发模块43还用于:
接收所述第二终端设备发送的第二消息,所述第二消息中包括所述第一映射关系。
可选地,作为一个实施例,所述第二消息是广播发送或者周期性发送的消息。
可选地,作为一个实施例,所述目标功率控制进程对应的通信相关参数包括以下参数中的至少一种:所述目标旁链路占用的带宽部分BWP、所述目标旁链路占用的资源池、所述目标旁链路占用的载波、所述目标旁链路对应的网络切片、所述第二终端设备的服务质量QoS需求、所述第二终端设备与所述第一终端设备之间的通信距离以及所述第二终端设备的类型。
可选地,作为一个实施例,所述第二终端设备的数量为多个,所述目标功率控制进程的数量为多个,所述第二处理模块42还用于:
根据多个目标功率控制进程对应的发送功率和功率确定规则,确定在旁链路通信中的目标发送功率。
可选地,作为一个实施例,所述目标发送功率为物理旁链路控制信道PSCCH的发送功率,所述第二处理模块42还用于:
将所述目标发送功率确定为物理旁链路共享信道PSSCH的发送功率;或,
根据所述目标发送功率和第二映射关系,确定所述PSSCH的发送功率, 所述第二映射关系包括PSCCH的发送功率和PSSCH的发送功率的映射关系。
根据本公开实施例的终端设备可以参照对应本公开实施例的图1所示的方法的流程,并且,该终端设备中的各个单元/模块和上述其他操作和/或功能分别为了实现图1所示的方法中的相应流程,为了简洁,在此不再赘述。
图5是根据本公开另一个实施例的终端设备的结构示意图。如图5所示,终端设备50包括:
收发模块51,用于向第一终端设备发送第一消息,所述第一消息中携带所述终端设备的发送功率,以便于所述第一终端设备根据所述发送功率和所述发送功率对应的接收功率,确定所述第一终端设备与所述终端设备之间的目标旁链路对应的目标路径损耗值。
根据本公开实施例的终端设备向第一终端设备发送携带终端设备的发送功率的第一消息,使得第一终端设备能够根据终端设备的发送功率和该发送功率对应的接收功率,确定出第一终端设备与终端设备之间的目标旁链路对应的目标路径损耗值,进而使得第一终端设备能够采用与终端设备之间目标旁链路对应的目标路径损耗值实现开环功率控制,可以提高旁链路网络中的终端设备的发送功率的准确性,避免功率浪费和传输干扰问题,从而提高通信有效性。
可选地,作为一个实施例,所述第一消息是广播发送或者周期性发送的消息。
根据本公开实施例的终端设备可以参照对应本公开实施例的图2所示的方法的流程,并且,该终端设备中的各个单元/模块和上述其他操作和/或功能分别为了实现图2所示的方法中的相应流程,为了简洁,在此不再赘述。
图6是根据本公开另一个实施例的终端设备的结构示意图。如图6所示,终端设备60包括:
收发模块61,用于向第一终端设备发送第二消息,所述第二消息中携带第一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系。
根据本公开实施例的终端设备向第一终端设备发送携带第一映射关系的第二消息,使得第一终端设备能够根据第一映射关系确定与终端设备相关联 的目标功率控制进程使用的开环功率目标值和路损补偿因子,进而使得第一终端设备能够在无网络覆盖的情况下也可以实现开环功率控制,并且在第一终端设备中有多个功率控制进程时,多个功率控制进程使用的开环功率目标值和路损补偿因子可能不同,可以提高旁链路网络中的终端设备的发送功率的准确性,避免功率浪费和传输干扰问题,从而提高通信有效性。
可选地,作为一个实施例,所述第二消息是广播发送或者周期性发送的消息。
可选地,作为一个实施例,所述第一映射关系由协议预配置,或所述第一映射关系由网络设备通过高层信令配置。
根据本公开实施例的终端设备可以参照对应本公开实施例的图3所示的方法的流程,并且,该终端设备中的各个单元/模块和上述其他操作和/或功能分别为了实现图3所示的方法中的相应流程,为了简洁,在此不再赘述。
图7示出了根据本公开再一实施例的终端设备的结构示意图,如图7所示,终端设备700包括:至少一个处理器710、存储器720、至少一个网络接口730和用户接口740。终端设备700中的各个组件通过总线系统750耦合在一起。可理解,总线系统750用于实现这些组件之间的连接通信。总线系统750除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统750。
其中,用户接口740可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等)。
可以理解,本公开实施例中的存储器720可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM, SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synclink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器720旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器720存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统721和应用程序722。
其中,操作系统721,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序722,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序722中。
在本公开实施例中,终端设备700还包括:存储在存储器上720并可在处理器710上运行的计算机程序,计算机程序被处理器710执行时实现上述图1至图3所述的方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法可以应用于处理器710中,或者由处理器710实现。处理器710可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器710可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程 存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器720,处理器710读取存储器720中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器710执行时实现如上述图1至图3所示的方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的 技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (20)

  1. 一种旁链路通信中的开环功率控制方法,应用于第一终端设备,包括:
    确定与第二终端设备关联的目标功率控制进程使用的目标功率控制参数,所述目标功率控制参数包括所述第一终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值;
    根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率。
  2. 根据权利要求1所述的方法,还包括:
    接收所述第二终端设备发送的第一消息,所述第一消息中包括所述第二终端设备的发送功率;
    确定所述第二终端设备的发送功率对应的接收功率;
    根据所述第二终端设备的发送功率和所述第二终端设备的发送功率对应的接收功率,确定所述目标路径损耗值。
  3. 根据权利要求2所述的方法,其中,所述第一消息是广播发送或者周期性发送的消息。
  4. 根据权利要求1至3中任一项所述的方法,还包括:
    获取第一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系;
    根据所述目标功率控制进程对应的通信相关参数与所述第一映射关系,确定所述目标功率控制进程对应的目标开环功率目标值和目标路损补偿因子;
    其中,所述根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率,包括:
    根据所述目标路径损耗值、所述目标开环功率目标值和所述目标路损补偿因子,确定所述目标功率控制进程对应的发送功率。
  5. 根据权利要求4所述的方法,其中,所述获取第一映射关系,包括:
    接收所述第二终端设备发送的第二消息,所述第二消息中包括所述第一映射关系。
  6. 根据权利要求5所述的方法,其中,所述第二消息是广播发送或者周 期性发送的消息。
  7. 根据权利要求4至6中任一项所述的方法,其中,所述目标功率控制进程对应的通信相关参数包括以下参数中的至少一种:所述目标旁链路占用的带宽部分BWP、所述目标旁链路占用的资源池、所述目标旁链路占用的载波、所述目标旁链路对应的网络切片、所述第二终端设备的服务质量QoS需求、所述第二终端设备与所述第一终端设备之间的通信距离以及所述第二终端设备的类型。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述第二终端设备的数量为多个,所述目标功率控制进程的数量为多个,所述方法还包括:
    根据多个目标功率控制进程对应的发送功率和功率确定规则,确定在旁链路通信中的目标发送功率。
  9. 根据权利要求8所述的方法,其中,所述目标发送功率为物理旁链路控制信道PSCCH的发送功率,所述方法还包括:
    将所述目标发送功率确定为物理旁链路共享信道PSSCH的发送功率;或,
    根据所述目标发送功率和第二映射关系,确定所述PSSCH的发送功率,所述第二映射关系包括PSCCH的发送功率和PSSCH的发送功率的映射关系。
  10. 一种旁链路通信中的开环功率控制方法,应用于第二终端设备,包括:
    向第一终端设备发送第一消息,所述第一消息中携带所述第二终端设备的发送功率,以便于所述第一终端设备根据所述发送功率和所述发送功率对应的接收功率,确定所述第一终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值。
  11. 根据权利要求10所述的方法,其中,所述第一消息是广播发送或者周期性发送的消息。
  12. 一种旁链路通信中的开环功率控制方法,应用于第二终端设备,包括:
    向第一终端设备发送第二消息,所述第二消息中携带第一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系。
  13. 根据权利要求12所述的方法,其中,所述第二消息是广播发送或者周期性发送的消息。
  14. 根据权利要求12或13所述的方法,其中,所述第一映射关系由协议预配置,或所述第一映射关系由网络设备通过高层信令配置。
  15. 一种终端设备,包括:
    第一处理模块,用于确定与第二终端设备关联的目标功率控制进程使用的目标功率控制参数,所述目标功率控制参数包括所述终端设备与所述第二终端设备之间的目标旁链路对应的目标路径损耗值;
    第二处理模块,用于根据所述目标功率控制参数,确定所述目标功率控制进程对应的发送功率。
  16. 一种终端设备,包括:
    收发模块,用于向第一终端设备发送第一消息,所述第一消息中携带所述终端设备的发送功率,以便于所述第一终端设备根据所述发送功率和所述发送功率对应的接收功率,确定所述第一终端设备与所述终端设备之间的目标旁链路对应的目标路径损耗值。
  17. 一种终端设备,包括:
    收发模块,用于向第一终端设备发送第二消息,所述第二消息中携带第一映射关系,所述第一映射关系包括功率控制进程对应的通信相关参数与开环功率目标值和路损补偿因子之间的映射关系。
  18. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至9中任一项所述的旁链路通信中的开环功率控制方法的步骤。
  19. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求10至11或12至14中任一项所述的旁链路通信中的开环功率控制方法的步骤。
  20. 一种计算机可读存储介质,存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述的旁链路通信中的开环功率 控制方法的步骤。
PCT/CN2019/080999 2018-04-12 2019-04-02 旁链路通信中的开环功率控制方法和设备 WO2019196706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810326558.7 2018-04-12
CN201810326558.7A CN110381574A (zh) 2018-04-12 2018-04-12 旁链路通信中的开环功率控制方法和设备

Publications (1)

Publication Number Publication Date
WO2019196706A1 true WO2019196706A1 (zh) 2019-10-17

Family

ID=68162817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080999 WO2019196706A1 (zh) 2018-04-12 2019-04-02 旁链路通信中的开环功率控制方法和设备

Country Status (2)

Country Link
CN (1) CN110381574A (zh)
WO (1) WO2019196706A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375034A (zh) * 2019-02-15 2022-04-19 成都华为技术有限公司 功率控制方法及功率控制装置
WO2021087809A1 (zh) * 2019-11-06 2021-05-14 北京小米移动软件有限公司 发送功率控制方法和装置、存储介质
WO2023245524A1 (zh) * 2022-06-22 2023-12-28 Oppo广东移动通信有限公司 功率控制方法和设备
WO2024031625A1 (en) * 2022-08-12 2024-02-15 Apple Inc. Power control for sidelink positioning reference symbols

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465284A (zh) * 2014-05-08 2017-02-22 华为技术有限公司 用于设备到设备传输的功率控制命令的系统与方法
WO2017039880A1 (en) * 2015-09-01 2017-03-09 Qualcomm Incorporated Method and apparatus for power control in d2d/wan coexistence networks
CN107431902A (zh) * 2015-02-06 2017-12-01 三星电子株式会社 在支持设备到设备方案的通信系统中发送和接收信号的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9049668B2 (en) * 2012-09-06 2015-06-02 Qualcomm Incorporated D2D relays as an underlay in LTE uplink
CN104105181B (zh) * 2013-04-10 2018-06-05 电信科学技术研究院 一种d2d传输的功率控制方法和设备
CN104349437B (zh) * 2013-08-09 2018-10-19 上海诺基亚贝尔股份有限公司 用于抑制干扰的方法和用户设备
US10306571B2 (en) * 2014-07-29 2019-05-28 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
CN105307256B (zh) * 2014-08-01 2019-05-03 电信科学技术研究院 一种d2d发射功率控制方法及装置
CN105813186B (zh) * 2014-12-31 2019-11-22 上海诺基亚贝尔股份有限公司 一种为用户设备确定发射功率的方法、装置与系统
CN106375930A (zh) * 2015-07-22 2017-02-01 中兴通讯股份有限公司 一种设备到设备通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465284A (zh) * 2014-05-08 2017-02-22 华为技术有限公司 用于设备到设备传输的功率控制命令的系统与方法
CN107431902A (zh) * 2015-02-06 2017-12-01 三星电子株式会社 在支持设备到设备方案的通信系统中发送和接收信号的方法和装置
WO2017039880A1 (en) * 2015-09-01 2017-03-09 Qualcomm Incorporated Method and apparatus for power control in d2d/wan coexistence networks

Also Published As

Publication number Publication date
CN110381574A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2019196706A1 (zh) 旁链路通信中的开环功率控制方法和设备
JP7018513B6 (ja) Harq-ackフィードバック時間の特定方法と指示方法、端末機器及びネットワーク機器
CN110754074B (zh) 车辆传感器信息的交互式共享
EP4013161B1 (en) Data transmission method and device
WO2017132825A1 (zh) 确定发射功率的方法、用户设备和基站
TWI748983B (zh) 業務傳輸的方法和裝置
US11979776B2 (en) Method and device for determining a parameter value
WO2016206083A1 (zh) 上行数据传输的方法和装置
CN115412216B (zh) 数据传输方法及装置
WO2019192471A1 (zh) Csi报告的传输方法、终端设备和网络设备
WO2021057564A1 (zh) 信道状态信息的优先级发送、确定方法及装置、存储介质、用户设备
WO2018058470A1 (zh) 传输数据的方法及其终端设备
EP3451774A1 (en) Service data transmission method, user equipment and network device
WO2018082620A1 (zh) 子帧配置方法及装置
WO2020223978A1 (zh) 无线通信方法、网络设备和终端设备
WO2020221220A1 (zh) 资源请求方法、资源分配方法、装置及介质
WO2016086423A1 (zh) 资源调度方法、基站及用户设备
CN112788647A (zh) 测量上报的方法、终端设备和网络设备
WO2020087446A1 (zh) 传输数据的方法和终端设备
WO2021088875A1 (zh) Gc-pdcch的传输方法和设备
CN111106863A (zh) 用于信号传输的方法和设备
WO2021023068A1 (zh) 一种发送和接收调度请求的方法及通信装置
WO2021134596A1 (zh) 一种侧行通信方法及装置
WO2018068320A1 (zh) 通信方法、装置和通信系统
US20230156669A1 (en) Method And Apparatus For Indicating Sidelink Coordinated Resource, Storage Medium, And Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785936

Country of ref document: EP

Kind code of ref document: A1