WO2021023068A1 - 一种发送和接收调度请求的方法及通信装置 - Google Patents

一种发送和接收调度请求的方法及通信装置 Download PDF

Info

Publication number
WO2021023068A1
WO2021023068A1 PCT/CN2020/105314 CN2020105314W WO2021023068A1 WO 2021023068 A1 WO2021023068 A1 WO 2021023068A1 CN 2020105314 W CN2020105314 W CN 2020105314W WO 2021023068 A1 WO2021023068 A1 WO 2021023068A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sent
resource
scheduling request
size
Prior art date
Application number
PCT/CN2020/105314
Other languages
English (en)
French (fr)
Inventor
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021023068A1 publication Critical patent/WO2021023068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method and communication device for sending and receiving scheduling requests.
  • LTE long term evolution, LTE
  • 5G fifth generation
  • 5G fifth generation
  • 5G fifth generation
  • 5G supports inter-device-side rows (sidelink) communications, such as,,: communication device to the device (device to device, D2D) , Vehicle to everything (V2X) communication, etc., that is, the time-frequency resources configured for D2D communication can be used for side-line communication between terminal devices.
  • D2D communication device to the device
  • V2X Vehicle to everything
  • the base station needs to indicate which resources are used for Sidelink transmission.
  • the UE when user equipment (UE) has data to be transmitted on the Sidelink link, the UE first sends a scheduling request (Scheduling Request, SR) to the base station, and the base station sends uplink authorization information to the UE in response to the SR.
  • the UE can report the buffer status report (BSR) to the base station on the resources authorized by the uplink.
  • BSR buffer status report
  • the base station can determine the size of the data transmitted by the UE on the Sidelink link according to the BSR, and allocate the transmission of the UE on the Sidelink link according to the data size Resources.
  • the embodiments of the present application provide a method and a communication device for sending and receiving scheduling requests, which reduce the delay of applying for transmission resources for a terminal, meet the requirements of delay-sensitive services as much as possible, and improve transmission performance.
  • a method for sending a scheduling request including: a first terminal sends a first scheduling request to a network device on a first resource, the first scheduling request is used to request a resource for the data to be sent of the first terminal, and Sending the first scheduling request on the first resource is used to indicate the first transmission parameter of the data to be sent, where the first transmission parameter includes the size of the data to be sent, the quality of service parameter of the data to be sent, and the destination identifier of the data to be sent. At least one.
  • the first terminal may also receive downlink control information from the network device, where the downlink control information indicates a second resource for sending data to be sent, and the second resource is allocated by the network device according to the first transmission parameter.
  • the method further includes: the first terminal acquires first information, where the first information is used to indicate the correspondence between the first resource and the first transmission parameter .
  • the terminal can learn the correspondence between the SR resource (that is, the resource used to send the scheduling request) and the transmission parameter according to the first information. Before data needs to be sent, it can be based on the actual service requirements in the first information. Select a suitable first transmission parameter from the indicated transmission parameters, and send a first scheduling request on the first resource corresponding to the first transmission parameter, implicitly indicating the first transmission parameter.
  • the first information is used to indicate N resources for sending scheduling requests and M groups of transmissions
  • the corresponding relationship between the parameters, the N resources used to send the scheduling request include the first resource, and the transmission parameters include at least one of the size of the data, the quality of service parameter of the data, and the destination identifier of the data; wherein, N and M are both Is an integer greater than or equal to 1.
  • the first information indicates the correspondence between the SR resource and the transmission parameter.
  • the terminal or network device can directly determine one or more transmission parameters based on a certain SR resource, and the terminal does not need to report the time it takes to report the transmission parameters.
  • the network device can learn the transmission parameters of the data to be sent by the terminal, and then allocate resources for the terminal to send the data to be sent.
  • the corresponding relationship between the reference transmission parameter, the SR resource, and the offset is indicated by the first information, and the terminal sends a scheduling request on one SR resource, which implicitly indicates a reference transmission parameter and an offset ,
  • the transmission parameter of the data to be sent by the terminal can be determined. Since SR resources are limited, if the transmission parameters are directly indicated through the SR resources, the transmission parameters that can be indicated are also limited. However, if the SR resources are associated with reference transmission parameters and offsets, the limited SR resources can be used to indicate greater The range of transmission parameters can match more business needs of the terminal.
  • the first scheduling request indicates a first offset
  • the first offset is the relative value of the first transmission parameter to The offset of the first reference transmission parameter
  • the first reference transmission parameter is the reference transmission parameter corresponding to the group where the first resource is located among the Y reference transmission parameters.
  • sending the first scheduling request on the first resource may implicitly indicate the first offset, or the first scheduling request may include the first offset, so that the network device can be based on the first offset And the first reference transmission parameter to determine the transmission parameter of the data to be sent, and allocate resources for the terminal to send the data to be sent.
  • the first scheduling request includes the second transmission parameter
  • the second transmission parameter includes the size of the data to be sent, the quality of service parameter of the data to be sent, and At least one item of the purpose of the data.
  • the terminal when the terminal sends the first scheduling request on the first resource implicitly indicating some transmission parameters (for example, the size of the data to be sent, the quality of service parameters of the data to be sent), it can also be specified in the first scheduling request. Add other transmission parameters (for example, the destination identifier of the data to be sent) to enable the network device to more fully understand the attributes of the data to be sent, and allocate appropriate resources for the data to be sent on the terminal.
  • some transmission parameters for example, the size of the data to be sent, the quality of service parameters of the data to be sent
  • the first scheduling request is further used to indicate at least one of the first data size, the first quality of service parameter, and the first destination identifier;
  • Sending a first scheduling request on a resource is used to indicate at least one of a second data size, a second quality of service parameter, and a second destination identifier;
  • the first data size and the second data size are used to determine the size of the data to be sent,
  • the first service quality parameter and the second service quality parameter are used to determine the service quality parameter of the data to be sent, and the first destination identifier and the second destination identifier are used to determine the destination identifier of the data to be sent.
  • this value may not accurately reflect the service characteristics of the terminal. You can also add a bit in the first scheduling request to indicate the value Another value of the transmission parameter is combined with these two values to obtain a value closer to the service characteristics of the terminal, and appropriate resources are allocated according to the obtained value for the data to be sent by the terminal.
  • the first scheduling request includes a data size scaling factor, data
  • the size scaling factor is used to determine the size of the data to be sent.
  • the method provided in this embodiment of the application is applicable to a multicast scenario.
  • the terminal indicates the first data size by sending a first scheduling request on the first resource.
  • the first scheduling request includes a data size scaling factor, which is based on the data size scaling factor and the first data.
  • the size obtains the size of the data sent by the terminal to the group, allocates resources according to the size of the data sent by the terminal to the group, and supports the multicast service of the terminal.
  • the method further includes: the first terminal is in the second resource The data to be sent is sent upward to the network device or the second terminal.
  • the method provided in the embodiments of the present application is applicable to a cellular link, and can request resources for data to be sent by the terminal on the cellular link. It is also applicable to the side link, which can request resources for the data to be sent by the terminal on the side link.
  • a method for receiving a scheduling request including: a network device receives a first scheduling request from a first terminal on a first resource, the first scheduling request is used to request resources for the data to be sent by the first terminal. The network device determines the first transmission parameter of the data to be sent according to the first scheduling request received on the first resource, where the first transmission parameter includes the size of the data to be sent, the quality of service parameters of the data to be sent, and the data to be sent At least one of the destination identifiers; the network device sends downlink control information to the first terminal, and the downlink control information indicates the second resource used to send the data to be sent.
  • the behaviors of the network equipment and the terminal are agreed, and the terminal sends an SR (that is, a scheduling request) on a specific SR resource (that is, the resource used to send a scheduling request described in this embodiment of the application).
  • a specific SR resource that is, the resource used to send a scheduling request described in this embodiment of the application.
  • Contains or implicitly indicates a set of transmission parameters.
  • the network device can also determine the transmission parameters contained or implicitly indicated by the terminal when receiving the SR on the SR resource, and then can determine the size of the data to be sent by the terminal, QoS parameters, and destination identification At least one or a combination of multiple items. It can be seen that the terminal does not need to spend time sequentially reporting the SR and BSR to apply for transmission resources. After receiving the SR, the network device can allocate resources for the data to be sent by the terminal, reducing the delay of the terminal applying for transmission resources and meeting the delay sensitivity as much as possible. Business requirements have improved transmission performance.
  • the method further includes: the network device obtains first information, where the first information is used to indicate the correspondence between the first resource and the first transmission parameter.
  • the first information is used to indicate N resources and M groups for sending scheduling requests Correspondence between the transmission parameters, the N resources used to send scheduling requests include the first resource, and the transmission parameters include at least one of the size of the data, the quality of service parameter of the data, and the destination identifier of the data; where N, M Both are integers greater than or equal to 1.
  • the first information is used to indicate Y reference transmission parameters and Y groups for The correspondence between resources for sending scheduling requests, and the correspondence between X resources for sending scheduling requests and X offsets included in the resources for sending scheduling requests in the Y group;
  • the i-th group is used for sending
  • the offset corresponding to each resource in the resources of the scheduling request is the offset of the transmission parameter corresponding to each resource with respect to the reference transmission parameter corresponding to the i-th group of resources used to send the scheduling request, i is greater than or equal to 1 and less than An integer equal to Y; wherein, the X resources used to send the scheduling request include the first resource, and X and Y are integers greater than or equal to 1.
  • the first scheduling request indicates a first offset
  • the first offset is the relative value of the first transmission parameter to The offset of the first reference transmission parameter
  • the first reference transmission parameter is the reference transmission parameter corresponding to the group where the first resource is located among the Y reference transmission parameters.
  • the first scheduling request includes the second transmission parameter
  • the second transmission parameter includes the size of the data to be sent, the quality of service parameter of the data to be sent, and the At least one item of the purpose of the data.
  • the first scheduling request is further used to indicate at least one of the first data size, the first quality of service parameter, and the first destination identifier;
  • Sending a first scheduling request on a resource is used to indicate at least one of a second data size, a second quality of service parameter, and a second destination identifier;
  • the method further includes: determining the data to be sent according to the first data size and the second data size And/or determine the quality of service parameter of the data to be sent according to the first quality of service parameter and the second quality of service parameter, and/or determine the destination identifier of the data to be sent according to the first destination identifier and the second destination identifier.
  • the first scheduling request includes a data size scaling factor; data The size scaling factor is used to determine the size of the data to be sent.
  • receiving the first scheduling request on the first resource is used to indicate the first data size; the method further includes : Use the data size scaling factor to scale the first data size to obtain the size of the data to be sent.
  • the method further includes: receiving from the second resource The data to be sent from the first terminal.
  • the data to be sent is from the first terminal to the second terminal The data sent.
  • a communication device for sending a scheduling request which is characterized in that it includes:
  • the transceiver unit is configured to send a first scheduling request to the network device on the first resource, the first scheduling request is used to request the resource for the data to be sent of the first terminal, and the first scheduling request is sent on the first resource to indicate the to-be-sent
  • the first transmission parameter of the data where the first transmission parameter includes at least one of the size of the data to be sent, the quality of service parameter of the data to be sent, and the destination identifier of the data to be sent; the transceiver unit is also used to receive from the network device Downlink control information, where the downlink control information indicates the second resource used to send the data to be sent.
  • the communication device further includes a processing unit.
  • the processing unit is configured to obtain first information, where the first information is used to indicate the correspondence between the first resource and the first transmission parameter.
  • the first information is used to indicate the relationship between the N resources used to send the scheduling request and the M sets of transmission parameters
  • the N resources used to send the scheduling request include the first resource
  • the transmission parameters include at least one of the size of the data, the quality of service parameter of the data, and the destination identifier of the data; where N and M are both greater than or equal to 1. The integer.
  • the first information is used to indicate Y reference transmission parameters and Y groups for The correspondence between resources for sending scheduling requests, and the correspondence between X resources for sending scheduling requests and X offsets included in the resources for sending scheduling requests in the Y group;
  • the i-th group is used for sending
  • the offset corresponding to each resource in the resources of the scheduling request is the offset of the transmission parameter corresponding to each resource with respect to the reference transmission parameter corresponding to the i-th group of resources used to send the scheduling request, i is greater than or equal to 1 and less than An integer equal to Y; wherein, the X resources used to send the scheduling request include the first resource, and X and Y are integers greater than or equal to 1.
  • the first scheduling request indicates a first offset
  • the first offset is the offset of the first transmission parameter relative to the first reference transmission parameter ⁇
  • the first reference transmission parameter is the reference transmission parameter corresponding to the group where the first resource is located among the Y reference transmission parameters.
  • the first scheduling request includes the second transmission parameter
  • the second transmission parameter includes the size of the data to be sent, the quality of service parameter of the data to be sent, and At least one item of the purpose of the data.
  • the first scheduling request is further used to indicate at least one of the first data size, the first quality of service parameter, and the first destination identifier;
  • Sending a first scheduling request on a resource is used to indicate at least one of a second data size, a second quality of service parameter, and a second destination identifier;
  • the first data size and the second data size are used to determine the size of the data to be sent,
  • the first service quality parameter and the second service quality parameter are used to determine the service quality parameter of the data to be sent, and the first destination identifier and the second destination identifier are used to determine the destination identifier of the data to be sent.
  • the first scheduling request includes a data size scaling factor
  • the data size scaling factor is To determine the size of the data to be sent.
  • the transceiver unit is further configured to: The network device or the second terminal sends the data to be sent.
  • a communication device for receiving a scheduling request including: a transceiver unit, configured to receive a first scheduling request from a first terminal on a first resource, and the first scheduling request is used for waiting for the first terminal.
  • Sending a data request resource a processing unit, configured to determine the first transmission parameter of the data to be sent according to the first scheduling request received on the first resource, where the first transmission parameter includes the size of the data to be sent and the service of the data to be sent At least one of the quality parameter and the destination identifier of the data to be sent;
  • the transceiver unit is further configured to send downlink control information to the first terminal, and the downlink control information indicates the second resource used to send the data to be sent.
  • the processing unit is further configured to obtain first information, where the first information is used to indicate the correspondence between the first resource and the first transmission parameter.
  • the first information is used to indicate N resources for sending scheduling requests and M groups of transmissions
  • the corresponding relationship between the parameters, the N resources used to send the scheduling request include the first resource, and the transmission parameters include at least one of the size of the data, the quality of service parameter of the data, and the destination identifier of the data; wherein, N and M are both Is an integer greater than or equal to 1.
  • the first information is used to indicate Y reference transmission parameters and Y groups for The correspondence between resources for sending scheduling requests, and the correspondence between X resources for sending scheduling requests and X offsets included in the resources for sending scheduling requests in the Y group;
  • the i-th group is used for sending
  • the offset corresponding to each resource in the resources of the scheduling request is the offset of the transmission parameter corresponding to each resource with respect to the reference transmission parameter corresponding to the i-th group of resources used to send the scheduling request, i is greater than or equal to 1 and less than An integer equal to Y; wherein, the X resources used to send the scheduling request include the first resource, and X and Y are integers greater than or equal to 1.
  • the first scheduling request indicates a first offset
  • the first offset is the The offset of the first transmission parameter relative to the first reference transmission parameter
  • the first reference transmission parameter is a reference transmission parameter corresponding to the group where the first resource is located among the Y reference transmission parameters.
  • the first scheduling request includes the second transmission parameter
  • the second transmission parameter includes the size of the data to be sent, the quality of service parameter of the data to be sent, and At least one item of the purpose of the data.
  • the first scheduling request is further used to indicate at least one of the first data size, the first quality of service parameter, and the first destination identifier;
  • Sending a first scheduling request on a resource is used to indicate at least one of the second data size, the second quality of service parameter, and the second destination identifier;
  • the transceiver unit is further used to: determine the waiting time according to the first data size and the second data size.
  • the size of the data to be sent, and/or the service quality parameter of the data to be sent is determined according to the first service quality parameter and the second service quality parameter, and/or the purpose of the data to be sent is determined according to the first destination identifier and the second destination identifier Logo.
  • the first scheduling request includes a data size scaling factor; the data size scaling factor is used for Determine the size of the data to be sent.
  • receiving the first scheduling request on the first resource is used to indicate the size of the first data; the transceiver unit also uses Therefore, the first data size is scaled using the data size scaling factor to obtain the size of the data to be sent.
  • the data to be sent from the first terminal is received on the second resource.
  • a method for sending a scheduling request including: a first terminal sends a first scheduling request to a network device, where the first scheduling request is used to request resources for data to be sent by the terminal, and the first A scheduling request includes the information of the first transmission parameter.
  • the first transmission parameter includes at least one of the size of the data to be sent, the quality of service parameter of the data to be sent, and the destination identifier of the data to be sent.
  • the terminal can add a bit to the scheduling request to indicate the transmission parameters of the data to be sent.
  • the terminal does not need to spend time reporting the SR and BSR to apply for transmission resources.
  • the network device can be the terminal to send after receiving the SR.
  • Data allocation resources reduce the time delay for the terminal to apply for transmission resources, meet the needs of delay-sensitive services as much as possible, and improve transmission performance.
  • adding a small number of bits in the scheduling request indicates the information of the transmission parameters, and there is no need to tag all the transmission parameters in the scheduling request, which can also save overhead and improve communication performance.
  • the method further includes: the first terminal acquiring information of M groups of transmission parameters; the M groups of transmission parameters include the first transmission parameter.
  • multiple sets of transmission parameter information can be pre-configured in the network equipment and terminal.
  • the terminal can select appropriate transmission parameters according to actual service requirements, and add the transmission parameter information (for example, a few bits) to the scheduling request in.
  • the network device can parse the transmission parameter information from it, and determine the transmission parameter indicated by the information in the scheduling request according to the locally configured transmission parameter information. For example, the information of BSR1 is "00", the information of BSR2 is "01”, the information of BSR3 is "10”, and the information of BSR4 is "11". Add "00" to the scheduling request to indicate BSR1, and the network device can follow BSR1 Allocating resources.
  • the first scheduling request includes a data size scaling factor
  • the data size scaling factor is To determine the size of the data to be sent.
  • the method provided in this embodiment of the application is applicable to a multicast scenario.
  • the terminal indicates the first data size by sending a first scheduling request on the first resource.
  • the first scheduling request includes a data size scaling factor, which is based on the data size scaling factor and the first data.
  • the size obtains the size of the data sent by the terminal to the group, allocates resources according to the size of the data sent by the terminal to the group, and supports the multicast service of the terminal.
  • the method further includes: the first terminal is in the second Sending the data to be sent to the network device or the second terminal on the resource.
  • the method provided in the embodiments of the present application is applicable to a cellular link, and can request resources for data to be sent by the terminal on the cellular link. It is also applicable to the side link, which can request resources for the data to be sent by the terminal on the side link.
  • a communication device which includes a processor coupled with a memory; the memory is used to store a computer program; and the processor is used to execute the computer program stored in the memory to cause the
  • the communication device implements the method described in any one of the foregoing first aspect and the first aspect, any one of the second and second aspects, and any one of the fifth aspect and the fifth aspect.
  • the communication The device may be a baseband chip, and the baseband chip reads a computer program so that the device on which the baseband chip is installed implements the method described in any one of the foregoing aspects.
  • a computer-readable storage medium including: instructions are stored in the computer-readable storage medium; when the computer-readable storage medium is implemented in any one of the foregoing third aspect and the third aspect, the fourth aspect And when running on the communication device described in any one of the implementation manners of the fourth aspect, the communication device is enabled to implement the above-mentioned first aspect and any one of the implementation manners of the first aspect, the second aspect, and any one of the implementation manners of the second aspect. The method described.
  • a wireless communication device including: instructions stored in the wireless communication device; when the wireless communication device is implemented in any one of the foregoing third aspect and the third aspect, or any of the foregoing fourth aspect and the fourth aspect When running on the communication device described in an implementation manner, the communication device is enabled to implement the method described in any one of the foregoing first aspect and the first aspect, and the second aspect and any one of the second aspect.
  • the wireless communication device is a chip.
  • a communication system including a terminal and a network device.
  • the terminal sends a first scheduling request to the network device on the first resource, the first scheduling request is used to request resources for the data to be sent of the first terminal, and the first scheduling request is sent on the first resource to indicate the data to be sent.
  • the first transmission parameter may also receive downlink control information from the network device, where the downlink control information indicates a second resource for sending data to be sent, and the second resource is allocated by the network device according to the first transmission parameter.
  • the first transmission parameter includes at least one of the size of the data to be sent, the quality of service parameter of the data to be sent, and the destination identifier of the data to be sent.
  • the network device may receive the first scheduling request from the terminal on the first resource, and determine the first transmission parameter of the data to be sent by the terminal according to the first scheduling request received on the first resource, and the first transmission parameter is the The data to be sent allocates the second resource. Finally, the downlink control information is sent to the terminal to indicate the second resource.
  • the terminal may also send the to-be-sent data to the network device or other terminals through the second resource.
  • Figure 1 is a schematic diagram of SR resources provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a BSR provided by an embodiment of the application.
  • FIG. 3 is an architecture diagram of a communication system provided by an embodiment of the application.
  • FIG. 4 is another architecture diagram of a communication system provided by an embodiment of this application.
  • Figure 5 is a schematic diagram of a resource request process provided by an embodiment of the application.
  • FIG. 6A is a structural block diagram of a communication device provided by an embodiment of this application.
  • FIG. 6B is another structural block diagram of the communication device provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a method for sending a scheduling request according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of SR resource indication transmission parameters provided by an embodiment of this application.
  • FIG. 9 is another schematic diagram of SR resource indication transmission parameters provided by an embodiment of this application.
  • FIG. 10 is another schematic diagram of SR resource indication transmission parameters provided by an embodiment of this application.
  • FIG. 11 is another schematic diagram of SR resource indication transmission parameters provided by an embodiment of this application.
  • FIG. 12 is another schematic diagram of SR resource indication transmission parameters provided by an embodiment of this application.
  • FIG. 13 is another schematic flowchart of a method for sending a scheduling request provided by an embodiment of the application.
  • FIG. 14 is another structural block diagram of a communication device provided by an embodiment of the application.
  • 15 is another structural block diagram of a communication device provided by an embodiment of this application.
  • FIG. 16 is another structural block diagram of a communication device provided by an embodiment of this application.
  • FIG. 17 is another structural block diagram of a communication device provided by an embodiment of the application.
  • the terminal needs to send an SR to the base station to inform the base station of its own data transmission requirements.
  • the SR can request resources for the data to be sent by the terminal.
  • the base station After receiving the SR, the base station can decide whether to allocate resources for the terminal.
  • the base station allocates dedicated resources (hereinafter referred to as SR resources) for the SR, and different SR resources occupy different time-domain positions or frequency-domain positions, or the time-domain and frequency-domain positions are different.
  • SR resources dedicated resources
  • the terminal can send the SR on the SR resource.
  • the base station does not know when the terminal sends the SR, and needs to detect whether there is an SR report on the SR resource.
  • the base station can learn the data transmission requirements of the terminal, and then decide whether to allocate resources for the terminal.
  • the specific allocation of resources to the terminal depends on the implementation of the base station, and generally enough resources are allocated to send the BSR.
  • the terminal also needs to inform the terminal whether there is a data transmission requirement on the sidelink link through the SR, so that the base station can decide whether to allocate resources for the data sent by the terminal on the sidelink link.
  • SR may be 1 bit.
  • “0” means that the terminal has a data transmission demand, and the base station needs to allocate resources for the data to be sent by the terminal;
  • “1” means that the terminal has no data transmission demand, and the base station does not need to allocate resources for the terminal.
  • “1” means that the terminal has a data transmission demand, and the base station needs to allocate resources for the data to be sent by the terminal;
  • “0” means that the terminal has no data transmission demand, and the base station does not need to allocate resources for the terminal.
  • the terminal can also use the BSR to report the size of the data to be sent.
  • the BSR includes destination ID (destination identifier), logical channel identifier (logic channel group ID, LCG ID), and buffer size (buffer data size).
  • destination ID destination identifier
  • logical channel identifier logic channel group ID, LCG ID
  • buffer size buffer data size
  • the BSR only includes LCG ID and buffer size.
  • destination ID is the identification of the data receiver.
  • the destination ID may be an identification (target UE ID or target ID) of a destination user equipment (user equipment, UE), and the destination ID may also be an identification of a service type.
  • the service type identifier may be at least one of unicast service identifier, multicast service identifier, and broadcast service identifier.
  • the destination ID can be a few bits and is used to indicate different service type identifiers.
  • the unicast service identifier is 00
  • the multicast service identifier is 01
  • the broadcast service identifier is 10.
  • the service type identifier may also be a periodic service identifier or a non-periodic service identifier.
  • the LCG ID is the identifier of the logical channel or logical channel group bound to the BSR, and the BSR is used to indicate the size of the data to be transmitted on the logical channel or logical channel group bound to it.
  • the logical channel group may include one or more logical channels.
  • the buffer size is used to describe the size of the data to be transmitted by the terminal.
  • the field reserved for buffer size in the BSR can be filled with an index value (index).
  • index value corresponds to the buffer size, and different index values indicate different buffer sizes.
  • the value of index is any value from 0 to 63, and different index values indicate different data sizes.
  • the index filled in the buffer size field may be referred to as the BSR value.
  • the QoS mechanism is a network security mechanism that can provide different quality of service for different data streams, that is, the QoS parameters of different data streams are different.
  • Different QoS parameters have different QoS levels, and the QoS level of the data stream can mark the priority of the data stream.
  • data streams with high priority are processed first, and data streams with lower priority are provided with lower processing priority. For example, data streams with lower priority can be discarded when the network is congested.
  • the QoS parameter may be the QoS level of the terminal data service, for example, it may be a packet priority (prose per packet priority, PPPP), or it may be a QoS index. Among them, the QoS index can be 5QI.
  • PPPP can be divided into 8 levels at present, and different PPPP parameters can have different QoS levels.
  • 5QI can be divided into 5 QoS levels at present, and different 5QI parameters can have different QoS levels.
  • PPPP can also be divided into more QoS levels, which is not limited by the QoS embodiment of this application.
  • QoS parameters can also be used to distinguish service types. For example, according to the QoS parameters of the service, it is distinguished whether it is an enhanced mobile broadband (eMBB) service or an ultra-reliable low latency communication (URLLC) service.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communication
  • FIG. 3 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include multiple network devices (only network device 100 is shown) and multiple terminals (only shown in the figure). Terminal 201 and terminal 202).
  • FIG. 3 is only a schematic diagram, and does not constitute a limitation on the application scenarios of the technical solutions provided in this application.
  • the network equipment and the terminal can perform uplink and downlink transmission through the cellular link (Uu link), and the terminal can communicate through the sidelink link, such as D2D communication, V2X communication, and machine type communication. (machine type communication, MTC) etc.
  • the network equipment may be a transmission reception point (TRP), a base station, a relay station, or an access point.
  • the network device can be a network device in a 5G communication system or a network device in a future evolution network; it can also be a wearable device or a vehicle-mounted device.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the NB (NodeB) in wideband code division multiple access (WCDMA) may also be the eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • CRAN cloud radio access network
  • the terminal can be user equipment (UE), access terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE devices, etc.
  • the access terminal equipment can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless Communication function handheld devices, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, or future evolution public land mobile network (PLMN) networks Terminal equipment, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the terminal device of the present application may also be an on-board module, on-board module, on-board component, on-board chip, or on-board unit built into a vehicle as one or more components or units.
  • the vehicle passes through the built-in on-board module, on-board module, An on-board component, on-board chip, or on-board unit can implement the method of the present application.
  • the communication system shown in Fig. 3 may also include a Road Side Unit (RSU).
  • the RSU unit may integrate the functions of vehicle equipment or network equipment (e.g., eNB or gNB). It can be a function of vehicle equipment and network equipment.
  • the RSU may be a UE type RSU (UE type RSU).
  • the RSU can receive data from the application server, and send the received data to the terminal 201 or the terminal 202 through the PC5 interface with the terminal.
  • the terminal 201 or the terminal 202 when the terminal 201 or the terminal 202 sends uplink data to the network device through the Uu link, or when the terminal 201 and the terminal 202 send data through the sidelink link, they need to send data to the network
  • the device requests transmission resources. For example, referring to FIG. 5, after the data to be sent arrives at the terminal 201, the terminal 201 sends an SR to the network device 100. After receiving the SR, the terminal sends downlink control information (DCI) 1 to the terminal 201, and DCI 1 is used to indicate the uplink resource for sending the BSR. The terminal 201 sends the BSR on the resource indicated by the DCI1, and the BSR is used to indicate the size of the data to be sent.
  • DCI downlink control information
  • the network device After receiving the BSR, the network device allocates resources for the data to be sent according to the BSR, and sends DCI2 to the terminal 201.
  • the DCI2 may indicate the resources allocated for the data to be sent.
  • the terminal 201 receives DCI2, and sends data on the resource indicated by DCI2.
  • An embodiment of the present application provides a resource allocation method.
  • a terminal sends a first scheduling request to a network device on a first resource.
  • the first scheduling request is used to request resources for data to be sent by the terminal.
  • the first scheduling request sent above is used to indicate the first transmission parameter of the data to be sent, where the first transmission parameter includes the size of the data to be sent, the quality of service parameter of the data to be sent, and the At least one of the destination identifiers of the data to be sent.
  • the network device may allocate a second resource for the data to be sent according to the first transmission parameter, and send downlink control information to the terminal, where the downlink control information includes information about the resource used to send the data to be sent, and the terminal The data to be sent may be sent through the second resource.
  • the behaviors of the network equipment and the terminal are agreed upon.
  • the terminal sends an SR on a specific SR resource, which may include or implicitly indicate a set of transmission parameters.
  • the network equipment also receives the SR on the SR resource.
  • the transmission parameters contained or implicitly indicated by the terminal can be determined, and then at least one or a combination of multiple of the size of the data to be sent by the terminal, QoS parameters, and destination identifiers can be determined. It can be seen that the terminal does not need to spend time sequentially reporting the SR and BSR to apply for transmission resources.
  • the network device can allocate resources for the data to be sent by the terminal, reducing the delay of the terminal applying for transmission resources and meeting the delay sensitivity as much as possible. Business requirements have improved transmission performance.
  • FIG. 6A shows a schematic diagram of the hardware structure of a communication device 610 provided by an embodiment of the application.
  • the communication device 610 includes a processor 6101, a memory 6102, and at least one communication interface (in FIG. 6A, it is only exemplary and the communication interface 6103 is included as an example for description).
  • the processor 6101, the memory 6102, and the communication interface 6103 are connected to each other.
  • the processor 6101 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication interface 6103 using any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 6102 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through a communication line 6102.
  • the memory can also be integrated with the processor.
  • the memory 6102 is used to store computer-executed instructions for executing the solutions of the present application, and the processor 6101 controls the execution.
  • the processor 6101 is configured to execute computer-executable instructions stored in the memory 6102, so as to implement the intention processing method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program code, which is not specifically limited in the embodiments of the present application.
  • the processor 6101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 6A.
  • the communication device 610 may include multiple processors, such as the processor 6101 and the processor 6106 in FIG. 6A. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 610 may further include an output device 6104 and an input device 6105.
  • the output device 6104 communicates with the processor 6101, and can display information in a variety of ways.
  • the output device 6104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 6105 communicates with the processor 6101 and can receive user input in a variety of ways.
  • the input device 6105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the aforementioned communication device 610 may be a general-purpose device or a dedicated device.
  • the communication device 610 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in FIG. 6A equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 610.
  • the communication device 610 may be a complete terminal machine, may also be a functional component or component that implements the terminal, or may be a communication chip, such as a baseband chip.
  • the communication interface may be a radio frequency module.
  • the communication interface 6103 may be an input and output interface circuit of the chip, and the input and output interface circuit is used to read in and output baseband signals.
  • Fig. 6B is a schematic structural diagram of a network device.
  • the structure of the network device 620 may refer to the structure shown in FIG. 6B.
  • the network device 620 includes at least one processor 6201, at least one memory 6202, at least one transceiver 6203, at least one network interface 6204, and one or more antennas 6205.
  • the processor 6201, the memory 6202, the transceiver 6203 and the network interface 6204 are connected, for example, by a bus.
  • the antenna 6205 is connected to the transceiver 6203.
  • the network interface 6204 is used to connect the network device to other communication devices through the communication link, for example, the network device is connected to the core network element through the S1 interface.
  • the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor in the embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (CPU), a digital signal processor (DSP), a microprocessor, Application-Specific Integrated Circuit (ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit used to implement logic operations .
  • the processor 6201 may be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the at least one processor 6201 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, and may also be electrically erasable programmable read-only memory (Electrically erasable programmabler-only memory, EEPROM).
  • ROM read-only memory
  • RAM random access memory Random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 6202 may exist independently and is connected to the processor 6201.
  • the memory 6202 may also be integrated with the processor 6201, for example, integrated in one chip.
  • the memory 6202 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 6201 controls execution, and various types of computer program codes executed can also be regarded as drivers of the processor 6201.
  • the processor 6201 is configured to execute computer program codes stored in the memory 6202, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 6203 may be used to support the reception or transmission of radio frequency signals between the network device and the terminal, and the transceiver 6203 may be connected to the antenna 6205.
  • one or more antennas 6205 can receive radio frequency signals
  • the transceiver 6203 can be used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals or
  • the digital intermediate frequency signal is provided to the processor 6201, so that the processor 6201 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transceiver 6203 can be used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 6201, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through one or more antennas 6205 Sending the radio frequency signal.
  • the transceiver 6203 can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transceiver 6203 can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and the digital-to-analog conversion processing The order of precedence is adjustable. Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may be called a transceiver circuit, a transceiver unit, a transceiver device, a transmission circuit, a transmission unit, or a transmission device, etc.
  • the communication device 620 may be a complete network device, a component or component that realizes the function of the network device, or a communication chip.
  • the transceiver 6203 may be an interface circuit of the chip, and the interface circuit is used to read in and output baseband signals.
  • the embodiment of the present application provides a resource allocation method. As shown in FIG. 7, the method includes the following steps:
  • a terminal sends a first scheduling request to a network device on a first resource, where the first scheduling request is used to request resources for data to be sent of the terminal, and the first scheduling request is used to send the first scheduling request on the first resource.
  • the first transmission parameter includes at least one of the size of the data to be sent, the quality of service parameter of the data to be sent, and the destination identifier of the data to be sent.
  • the scheduling request may be the SR described in the embodiment of the present application
  • the first resource is any one of the SR resources described in the embodiment of the present application
  • the first resource is different from the one configured to the side in the current communication system.
  • the resources used for SR transmission of uplink terminals are different from the resources used for transmission of SRs configured for UU link terminals in the current communication system.
  • a side link terminal refers to a terminal that communicates with other terminals through a side link
  • a UU link terminal refers to a terminal that communicates with a network device (for example, a base station) through a UU link.
  • the size of the data to be sent can be the data size indicated by the buffer size field in the BSR described in the embodiment of this application
  • the quality of service parameters of the data to be sent can be the QoS parameters described in the embodiment of this application
  • the destination identifier of the data to be sent It may be the destination ID described in the embodiment of this application.
  • the data to be sent may be data to be sent on the Uu link between the terminal and the network device, or data to be sent on the sidelink link between the terminal and other terminals.
  • the first information is configured in the terminal in advance, or the network device configures the first information to the terminal through signaling.
  • the signaling may be at least one of radio resource control (radio resource control, RRC) signaling, media access control (media access control, MAC) signaling, or physical layer signaling.
  • RRC radio resource control
  • MAC media access control
  • the first information may indicate the correspondence between SR resources and transmission parameters.
  • the first information has the following two possible realizations:
  • the correspondence between multiple SR resources and multiple sets of transmission parameters is preconfigured, and the first information may indicate the correspondence between multiple SR resources and multiple sets of transmission parameters.
  • the terminal queries the pre-configured first information, and can determine a group (or groups) of transmission parameters corresponding to a certain SR resource.
  • the terminal is pre-configured with first information, and the first information is used to indicate the correspondence between N resources for sending scheduling requests and M groups of transmission parameters.
  • N and M are integers greater than or equal to 1.
  • N can be equal to or different from M.
  • the resource used to send the scheduling request corresponds to the transmission parameter one-to-one, and different resources correspond to different transmission parameters; when N and M are different, one resource used to send the scheduling request can correspond to multiple sets of transmission parameters .
  • the resource used to send the scheduling request may be the SR resource described in the embodiment of this application, and each of the M groups of transmission parameters may include the size of the data, the quality of service parameters of the data, and the destination identifier of the data.
  • the N resources used for sending the scheduling request include the first resource, so the terminal can determine a group (or groups) of transmission parameters corresponding to the first resource according to the first information. For example, the terminal queries the first information to determine the transmission parameter corresponding to the first resource.
  • the correspondence between the SR resource and the transmission parameter indicated by the first information may refer to the following Table 1.
  • the transmission parameters corresponding to the SR resources in Table 1 may include a default item (N/A), that is, the transmission parameters corresponding to the SR resources include one or more of data size, purpose identifier, and QoS parameters.
  • the transmission parameters in a row with the SR resource in Table 1 are called the transmission parameters corresponding to the SR resource.
  • the SR resource there is a correspondence between the SR resource and the BSR.
  • the corresponding relationship between the SR resource and the BSR may be configured in the terminal in advance.
  • the terminal may send an SR on a certain SR resource, implicitly indicating the BSR corresponding to the SR resource.
  • the network device detects the SR on the SR resource, it can determine the size of the data to be sent by the terminal and the destination identifier of the data to be sent according to the BSR corresponding to the SR (implicitly indicated), and according to the determined data to be sent
  • the size and purpose identifier allocate resources for the terminal.
  • different SR resources can be distinguished according to the time domain position of the SR resource, different SR resources can be distinguished according to the frequency domain position of the SR resource, and different SR resources can be distinguished according to the time domain position and frequency domain position of the SR resource. Resources.
  • different BSRs can be distinguished based on the BSR value.
  • SR resource 1 to SR resource 4 can be considered as four different SR resources, corresponding to four different BSRs respectively.
  • SR resource 1 corresponds to BSR1
  • SR resource 2 corresponds to BSR2
  • SR resource 3 corresponds to BSR3
  • SR resource 4 corresponds to BSR4.
  • the second type, multiple SR resources can be divided into multiple groups, and each group of SR resources corresponds to a reference transmission parameter.
  • the terminal can configure the correspondence between multiple groups of SR resources and multiple reference transmission parameters, and each SR resource Correspondence with offset.
  • the offset corresponding to the SR resource refers to the offset of the SR resource relative to the corresponding reference transmission parameter.
  • corresponding reference transmission parameter refers to the reference transmission parameter corresponding to the group where the SR resource is located.
  • the terminal sends a scheduling request on a certain SR resource, which implicitly indicates an offset corresponding to the SR resource.
  • the offset is the offset between the transmission parameter of the data to be sent by the terminal and the corresponding reference transmission parameter .
  • the terminal is configured with first information, and the first information is used to indicate the correspondence between Y reference transmission parameters and Y groups of resources used to send scheduling requests, and all X pieces of resources included in the Y groups The correspondence between the resources used to send the scheduling request and the X offsets.
  • the X resources used for sending the scheduling request include the first resource, and the X and Y are integers greater than or equal to 1.
  • the correspondence between the SR resource indicated by the first information, the reference transmission parameter, and the offset can refer to the following Table 2.
  • the transmission parameter range can be divided according to the value of the transmission parameter.
  • the transmission parameters include the size of the data to be sent by the terminal, and different transmission parameter ranges can be divided according to a certain data size.
  • a BSR value of 1 to 50 is a transmission parameter range
  • a BSR value of 51 to 100 is a transmission parameter range
  • a BSR value of 101 to 150 is a transmission parameter range... and so on.
  • the transmission parameters include service quality parameters of the data to be sent, and different transmission parameter ranges may be divided according to the basic QoS level.
  • different transmission parameter ranges can be divided according to the QoS level of PPPP.
  • PPPP includes at least 8 QoS levels. Among them, QoS level 1 to 3 is a range, and QoS level 4 to 6 is a range. , QoS level 7 to 8 is a range... and so on to divide different ranges.
  • QoS level 1 is a range
  • QoS level 2 is a range
  • QoS level 3 is a range...and so on to divide different ranges.
  • the transmission parameter includes the destination identifier of the data to be sent by the terminal, and different transmission parameter ranges may be divided according to the service type indicated by the destination identifier. Assume that the destination identifier 00 indicates a unicast service, the destination identifier 01 indicates a multicast service, and the destination identifier 10 indicates a broadcast service. Different transmission parameter ranges are divided according to whether the destination ID is 00, 01, or 10. For example, all transmission parameters with a destination ID of 00 are a transmission parameter range, and all transmission parameters with a destination ID of 10 are a transmission Parameter range, all transmission parameters with the purpose identifier 01 are a transmission parameter range.
  • any combination of the size of the data to be sent, the quality of service parameter, and the destination identifier can also be used to divide the transmission parameter range.
  • transmission parameters with a BSR value of 1-50 and a QoS of 1 to 3 are a range
  • a transmission parameter with a BSR value of 1-50 and a QoS level of 4-6 are a range
  • the BSR value is 51-100 and QoS
  • the transmission parameters with levels 1 to 3 are a range
  • the transmission parameters with a BSR value of 51 to 100 and QoS levels 4 to 6 are a range... and so on to divide into different ranges.
  • the first scheduling request sent by the terminal on the first resource may also indicate a first offset, where the first offset is the amount of the first transmission parameter relative to the first reference transmission parameter. Offset; the first reference transmission parameter is a reference transmission parameter corresponding to the group where the first resource is located among the Y reference transmission parameters. For example, the time-frequency position of the first resource corresponds to the first offset, and the terminal sends the first scheduling request on the first resource, which implicitly indicates the first offset.
  • the first offset may be tagged in the first scheduling request, that is, the first scheduling request includes the first offset.
  • SR resource there is a correspondence between the SR resource and the BSR.
  • SR resources and BSR ranges that is, the transmission parameter ranges described in the embodiments of the present application
  • the SR resources can be divided into multiple groups, and different groups of SR resources correspond to different BSR values or BSR ranges.
  • the BSR range can be divided according to the BSR value.
  • BSR range 1 is BSR value 1-10
  • BSR range 2 is BSR value 11-20
  • BSR range 3 is BSR value 21-30
  • BSR range 4 is BSR value 31-40.
  • SR resource resources can also be divided into 4 groups, for example, the first group includes SR1 ⁇ SR3, corresponding to BSR range 1, the second group includes SR4 ⁇ SR6, corresponding to BSR range 2, and the third group includes SR7 ⁇ SR9, and BSR range 3 corresponds; the fourth group includes SR10 to SR12, which corresponds to BSR range 4.
  • each BSR range has a reference BSR value (that is, the reference transmission parameter described in the embodiment of this application), that is, each group of SR resources corresponds to a reference BSR value.
  • Each SR resource can also correspond to an offset. It needs to be said that the offset corresponding to the SR resource is the offset between the BSR value indicated by the SR resource and the reference BSR value corresponding to the SR resource group where the SR resource is located.
  • the reference BSR value in BSR range 1 is 4
  • the reference BSR value corresponding to the first group of SR resources ie SR1 to SR3
  • the offset corresponding to SR1 is A
  • A is the offset relative to the BSR value 4.
  • the reference BSR value within BSR range 2 is 16
  • the reference BSR value corresponding to the first group of SR resources ie SR4 ⁇ SR7
  • the offset corresponding to SR4 is B
  • B is relative to the BSR value 16. Offset.
  • the time-frequency position of the SR resource may be used to indicate the reference transmission parameter and the offset corresponding to the SR resource.
  • there is a correspondence between the time domain position of the SR resource and the reference transmission parameter and there is a correspondence between the frequency domain position of the SR resource and the offset
  • the time domain position of the SR resource can implicitly indicate the reference transmission parameter.
  • the frequency domain position of the resource can implicitly indicate the offset; or, there is a correspondence between the frequency domain position of the SR resource and the reference transmission parameter, and there is a correspondence between the time domain position and the offset of the SR resource.
  • the frequency domain position can implicitly indicate the reference transmission parameter, and the time domain position of the SR resource can implicitly indicate the offset.
  • time domain position of the SR resource indicates different BSR ranges
  • the frequency domain position of the SR resource indicates different offsets.
  • time domain position 1 corresponds to BSR range 1
  • immediate domain position 1 indicates that the reference BSR value in BSR range 1 is A
  • the frequency domain position of SR1 indicates offset 1, which is the offset relative to A.
  • the frequency domain position of SR2 indicates the offset offset2, which is the offset relative to A; the frequency domain position of SR3 indicates the offset offset3, which is the offset relative to A.
  • Time domain position 2 corresponds to BSR range 2
  • instant domain position 2 indicates that the reference BSR value in BSR range 2 is B
  • the frequency domain position of SR4 indicates offset 4, which is the offset relative to B
  • the frequency domain of SR5 The position indicates the offset offset5, which is the offset relative to B
  • the frequency domain position of SR6 indicates the offset 6, which is the offset relative to B.
  • the frequency domain position of the SR resource can indicate different BSR ranges and different offsets.
  • band 1 indicates that the reference BSR value in BSR range 1 is A
  • the frequency domain position of SR1 indicates the offset offset1, which is relative to The offset of A
  • the frequency domain position of SR2 indicates the offset offset2, which is the offset relative to A
  • the frequency domain position of SR3 indicates the offset 3, which is the offset relative to A.
  • SR4 ⁇ SR6 belong to frequency band 2, and frequency band 2 is BSR range 2, that is, frequency band 2 indicates that the reference BSR value in BSR range 2 is B, the frequency domain position of SR4 indicates offset 4, and offset 4 is the offset relative to B;
  • the frequency domain position of SR5 indicates the offset offset5, which is the offset relative to B;
  • the frequency domain position of SR6 indicates the offset 6, which is the offset relative to B.
  • the time-frequency position of the SR resource only indicates the reference BSR value, and an extra bit may be added to the actually sent scheduling request (SR) to indicate the corresponding offset.
  • SR actually sent scheduling request
  • the frequency domain positions of SR1 to SR3 are the same, but the time domain positions are different.
  • the time domain position indication of SR1 refers to the BSR value "4"
  • the time domain position indication of SR2 refers to the BSR value "30”
  • the time domain position indication of SR3 refers to the BSR value "50".
  • the terminal sends a scheduling request on the resource of SR1, implicitly indicating the reference BSR value "4", the scheduling request includes the offset Q1, Q1 is the offset of the BSR value of the data to be sent relative to the reference BSR value "4"
  • the network device can determine the BSR value of the data to be sent according to the offset Q1 and the reference BSR value "4", and can also determine the size of the data to be sent, and then allocate resources according to the size of the data to be sent.
  • the time-frequency position of the SR resource only indicates the offset, and an extra bit may be added to the actually sent scheduling request (SR) to indicate the reference BSR value.
  • SR actually sent scheduling request
  • the time domain positions of SR1 to SR3 are the same, but the frequency domain positions are different.
  • the frequency domain position of SR1 indicates the offset Q1
  • the frequency domain position of SR2 indicates the offset Q2
  • the frequency domain position of SR3 indicates the offset Q3.
  • the terminal sends a scheduling request on the resources of SR2, implicitly indicating the offset Q2, the scheduling request includes the reference BSR value "15", Q2 is the offset of the BSR value of the data to be sent relative to the reference BSR value "15"
  • the network device can determine the BSR value of the data to be sent according to the offset Q2 and the reference BSR value "15", and can also determine the size of the data to be sent, and then allocate resources according to the size of the data to be sent.
  • the time domain position of the SR resource is indicated in different time granularities or time units, where the time unit or time granularity can be a positive integer number of symbols, mini-slots, time slots, subframes, etc. in the time domain. Or 0.5 milliseconds (millisecond, ms), 1ms, 5ms, and other positive milliseconds or positive integer seconds in the time domain.
  • the positive integer may be an integer greater than or equal to 1, for example, an integer of 1, 2, 3 or greater.
  • the mini-slot can be any natural number of symbols such as 3 symbols, 4 symbols or 7 symbols.
  • the frequency domain position of any SR resource among physical resource blocks (physical resource block, PRB), resource element (RE), subband, and bandwidth partial (BWP).
  • the first information can be obtained locally, and the first transmission parameter matching the data transmission requirement of the terminal and the first resource corresponding to the first transmission parameter can be determined according to the first information.
  • the SR resources corresponding to the data sizes (units: bits) 100, 150, 200, and 300 in the first information are SR resources 1, SR resources 2, SR resources 3, and SR resources 4, respectively.
  • the actual size of the data to be sent by the terminal is 80 bits, which is the closest to 100 bits, it can be considered that the first transmission parameter matching the data transmission requirement of the terminal is "100".
  • the first resource is the SR resource 1 corresponding to the data size "100" in the first information.
  • the terminal may send the first scheduling request on the first resource. Since there is a pre-configured correspondence between the first resource and the first transmission parameter, the behavior of the terminal sending the first scheduling request on the first resource may implicitly indicate: terminal The transmission parameter of the data to be sent is the first transmission parameter corresponding to the first resource.
  • the network device receives the first scheduling request on the first resource, and determines the first transmission parameter.
  • the first information is also configured in the network device in advance, and the first information may indicate the correspondence between the first resource and the first transmission parameter.
  • the first information refer to the description of step 701, which is not repeated here. Therefore, when the network device receives the first scheduling request on the first resource, the network device can determine the first transmission parameter corresponding to the first resource.
  • the network device obtains the first information to determine the correspondence between the N resources used to send the scheduling request and the M sets of transmission parameters. After receiving the first scheduling request on the first resource, the first information can be queried to determine a set of transmission parameters corresponding to the first resource, as the transmission parameters of the data to be sent by the terminal.
  • the network device receives the scheduling request on the SR resource 2, and looks up the table 1 to determine the transmission parameters corresponding to the SR resource 2, namely the data size 2, the destination identifier 2, and the QoS parameter 2.
  • the network device obtains the first information to determine the correspondence between the Y reference transmission parameters and the Y group of resources used to send the scheduling request, and all Xs included in the Y group of resources.
  • the first information can be queried to determine the reference transmission parameter and offset corresponding to the first resource, and the transmission parameter of the data to be sent by the terminal is determined according to the reference transmission parameter and offset .
  • the first information is configured on the network device in the form of Table 2.
  • the network device receives the scheduling request on the SR resource 3, and the query table 2 determines the reference transmission parameter A and the offset Q3 corresponding to the SR resource 3, that is, the transmission parameter of the data to be sent by the terminal is A+Q3.
  • the network device determines the second resource according to the first transmission parameter.
  • the first transmission parameter includes the size of the data to be sent
  • the second resource may be allocated according to the data size, and the second resource is sufficient to carry the data to be sent.
  • the first transmission parameter includes the destination identifier of the data to be sent. Assuming that the destination identifier of the data to be sent is used to indicate the service type of the terminal, the second resource may be allocated according to the service type.
  • unicast, multicast, and broadcast services have their own corresponding resource pools.
  • the service type indicated by the destination identifier of the data to be sent is a unicast service
  • resources are allocated for the data to be sent of the terminal in the resource pool corresponding to the unicast service to support the unicast service of the terminal.
  • the resource pool corresponding to the multicast service allocates resources for the terminal data to be sent to support the terminal's multicast service; when the destination identifier of the data to be sent indicates If the service type is a broadcast service, the resource pool corresponding to the broadcast service configures resources for the data to be sent by the terminal.
  • the first transmission parameter includes the quality of service parameter of the data to be sent
  • the second resource may be allocated according to the quality of service parameter, and the second resource can support the quality of service parameter of the data to be sent.
  • the first transmission parameter includes a QoS parameter (for example, PPPP or 5QI)
  • the QoS level of the QoS parameter is higher, larger resources are allocated to meet the data service quality requirements of the terminal service.
  • the QoS level of the QoS parameter is higher, the earlier resources in the time domain are allocated.
  • the QoS level of the QoS parameter is higher, the number of allocated resources should be at least lower than the modulation and coding scheme (MCS) to still meet the data service quality requirements of the terminal service.
  • MCS modulation and coding scheme
  • the QoS level of the QoS parameter is relatively high, and the first scheduling request is responded to in priority when resources are limited, and the second resource is allocated to the terminal.
  • the QoS level of the QoS parameter is higher, and the service corresponding to the first scheduling request is configured with a larger target power value during resource sharing.
  • the QoS level of the QoS parameter is lower, smaller resources are allocated to meet the data service quality requirements of terminal services. Or, if the QoS level of the QoS parameter is lower, the later resources in the time domain are allocated. Or, the QoS level of the QoS parameter is low, and the first scheduling request is not responded to when the resources are limited, and the second resource is not allocated to the terminal. Or, the QoS level of the QoS parameter is lower, and the service corresponding to the first scheduling request is configured with a lower target power value during resource sharing.
  • the network device sends downlink control information to the terminal, where the downlink control information indicates a second resource used to send the data to be sent.
  • the terminal sends the to-be-sent data to the network device or other terminal through the second resource.
  • the terminal may communicate with other terminals (for example, the second terminal) through the side link. Before sending data to other terminals, the terminal requests the network device for the second resource for the data to be sent through the first scheduling request. It can be understood that after receiving the first scheduling request, the network device allocates resources for the data to be sent in the side link resource pool, that is, the second resource may be a resource in the side link resource pool. Of course, the second resource may also belong to the resources available on the side link, and is not limited to the side link resource pool. In step 705, the terminal may send the data to be sent to other terminals through the second resource, that is, the data to be sent is data on the side link.
  • the terminal can also communicate with network equipment through a cellular link.
  • the terminal sends a first scheduling request to the network device to request a second resource for the data to be sent from the network device.
  • the network device allocates resources for the data to be sent in the cellular link resource pool, that is, the second resource may be a resource in the cellular link resource pool.
  • the second resource may also belong to the resource available for the cellular link, and is not limited to the cellular link resource pool.
  • the terminal may send the data to be sent to the network device through the second resource, that is, the data to be sent is data on the cellular link.
  • the first scheduling request may further include a second transmission parameter
  • the second transmission parameter includes the size of the data to be sent, the quality of service parameter of the data to be sent, and the purpose of the data to be sent At least one item in the logo.
  • the parameters included in the first transmission parameter and the second transmission parameter may be different, and the network device can learn the attributes of the data to be sent according to the combination of the first transmission parameter and the second transmission parameter.
  • the first transmission parameter includes the size of the data to be sent and the destination identifier of the data to be sent
  • the second transmission parameter includes the quality of service parameters of the data to be sent.
  • the first transmission parameter includes the destination identifier of the data to be sent
  • the second transmission parameter includes the size of the data to be sent and the quality of service parameter of the data to be sent.
  • the terminal may also add (tag) extra bits in the first scheduling request to indicate some transmission parameters.
  • the network device receives the first scheduling request on the first resource, which implicitly indicates some transmission parameters.
  • the network device may determine the transmission parameters of the data to be sent by the terminal in combination with the transmission parameters implicitly indicated and the transmission parameters indicated by the bits of the first scheduling request tag. For example, sending the first scheduling request on the first resource indicates the size A of the data to be sent, and the bits in the first scheduling request tag indicate the quality of service parameter B of the data to be sent, and the network device can according to the size A of the data to be sent ,
  • the service quality parameter B of the data to be sent is used to determine the second resource for sending the data to be sent.
  • the t bits in the first scheduling request can indicate 2 t states of a certain transmission parameter.
  • adding 3 bits to the first scheduling request may indicate 8 states, and these 8 states may correspond to 8 different BSRs.
  • different BSRs may be BSRs with different BSR values.
  • the first scheduling request received by the network device on the first resource implicitly indicates the reference transmission parameter corresponding to the first scheduling request.
  • An extra bit is added to indicate the offset corresponding to the first scheduling request.
  • the network device can determine the waiting parameter according to the reference transmission parameter A and the offset Q1. The transmission parameters of the sent data.
  • the network device receiving the first scheduling request on the first resource implicitly indicates the offset corresponding to the first scheduling request, and the An extra bit is added to indicate the reference transmission parameter corresponding to the first scheduling request.
  • the network device can determine the waiting time according to the reference transmission parameter B and the offset Q2. The transmission parameters of the sent data.
  • the terminal may send a scheduling request to the network device to request resources for all data to be sent.
  • the terminal may send the first scheduling request on the first resource, implicitly indicating the size of the data sent to a terminal.
  • an extra bit is added to the first scheduling request to indicate a data size scaling factor, and the data size scaling factor is used to determine the size of all data to be sent by the terminal.
  • the network device may use the data size scaling factor to perform scaling processing on the first data size to obtain the waiting The size of the sent data.
  • the sending UE needs to send data to multiple UEs in the group.
  • the sending UE can send the first scheduling request in one SR resource to implicitly indicate the BSR value "15" according to the correspondence between the transmission parameter and the SR resource.
  • the data size scaling factor indicated by the additional bits in the first scheduling request is "3".
  • the network device receives the first scheduling request in the SR resource, it can determine the BSR value "15".
  • the extra bits can also be parsed from the first scheduling request. The parsed bits indicate that the data size scaling factor is "3", and the network device determines that the actual BSR value is 15*3, that is, the actual BSR value "45” determines the actual to-be-sent The size of the data.
  • adding s bits to the first scheduling request can indicate 2 s different data size scaling factors.
  • the additional 2 bits can represent 4 different data size scaling factors. Among them, "00" represents data size scaling factor 2, "01” represents data size scaling factor 3, "10” represents data size scaling factor 4, and "11” represents data size scaling factor 5.
  • the data size scaling factor may be the number of terminals in the group that need to receive data, or other values, which are not limited in the embodiment of the present application.
  • the corresponding relationship between each state value of the additional bit and the data size scaling may be pre-configured, or may also be configured through signaling.
  • the first scheduling request received by the network device on the first resource implicitly indicates the reference transmission parameter corresponding to the first scheduling request, and the first scheduling request is added
  • the extra bit indicates the offset corresponding to the first scheduling request. Assuming that 3 bits are added to indicate the offset, it is also necessary to add 1 bit to indicate that the added 3 bits indicate the offset. For example, the first scheduling request adds 4 additional bits "0001". One bit "0" is used to indicate that the additional bit added by the first scheduling request is used to indicate the offset, and the last three bits "001" are used to indicate the offset.
  • bit “1010” where the first bit “1” is used to indicate the additional bit added by the first scheduling request is used to indicate the data size scaling factor, and the last bit “010” is used to indicate the data size scaling factor.
  • the first few bits added in the first scheduling request are the offset, and the last few bits are the data size scaling factor.
  • the first few bits added in the first scheduling request are the data size scaling factor, and the last few bits are the data offset.
  • the first scheduling request is further used to indicate at least one of a first data size, a first quality of service parameter, and a first destination identifier; and the sending the first scheduling on the first resource
  • the request is used to indicate at least one of the second data size, the second quality of service parameter, and the second destination identifier.
  • the first data size and the second data size are used to determine the size of the data to be sent, and the first quality of service parameter and the second quality of service parameter are used to determine the quality of service of the data to be sent Parameters, the first destination identifier and the second destination identifier are used to determine the destination identifier of the data to be sent.
  • the waiting data can be determined according to the first data size and the second data size.
  • the size of the sent data For example, a special function is set.
  • the input of the function is the first data size and the second data size, and the output is the data size to be sent.
  • the function may or may perform a weighted summation of the first data size and the second data size, and the weight coefficient of the first data size and the weight coefficient of the second data size may be the same or different.
  • the weight coefficients of the first data size and the second data size are both 0.5.
  • the service of the terminal may change at different times.
  • the effective duration of the correspondence between SR resources and transmission parameters can be set according to the duration of the service, and the corresponding correspondence may be activated at the beginning of the effective duration. Deactivate the corresponding relationship at the end. It may also be that the network device activates the corresponding relationship between the corresponding SR resource and the transmission parameter in different durations, and the terminal applies the corresponding relationship between the corresponding SR resource and the transmission parameter according to the corresponding activation.
  • the terminal’s service in the first time period is different from the terminal’s service in the second time period.
  • the correspondence between SR resources and transmission parameters in the first time period may be the same as the relationship between SR resources and transmission parameters in the second time period. The corresponding relationship is different.
  • the corresponding relationship 1 between SR resources and transmission parameters in the first duration includes: SR resource 1 corresponds to BSR1, SR resource 1 corresponds to QoS level 3; SR resource 2 corresponds to BSR2, and SR resource 2 to QoS level 1 Correspondence; the corresponding relationship between SR resources and transmission parameters within the second duration 2 includes: SR resource 1 corresponds to BSR2, SR resource 1 corresponds to QoS level 3; SR resource 2 corresponds to BSR1, SR resource 2 corresponds to QoS level 1 . Correspondence 1 is activated in the first duration, and correspondence 2 is activated in the second duration.
  • the embodiment of the present application also provides a resource allocation method. As shown in FIG. 13, the method includes the following steps:
  • a terminal sends a first scheduling request to a network device, where the first scheduling request is used to request resources for data to be sent by the terminal, and the first scheduling request includes information about a first transmission parameter.
  • the first transmission parameter includes at least one of the size of the data to be sent, the quality of service parameter of the data to be sent, and the destination identifier of the data to be sent.
  • an extra bit is added to the first scheduling request, and the added bit may be referred to as the information of the first transmission parameter.
  • the network device may determine the first transmission parameter according to the information of the first transmission parameter.
  • 2 r BSR values can be indicated by r bits.
  • the terminal configures the corresponding relationship between the state of r bits and different BSR values in advance, and the terminal may add corresponding bits to the first scheduling request according to actual transmission requirements to indicate the corresponding BSR value.
  • 4 BSR values are indicated by 2 bits, where "00" indicates the BSR value "15", “01” indicates the BSR value "30", “10” indicates the BSR value "50”, and "11” indicates the BSR The value "100”. Assuming that "10" is added to the first scheduling request, it indicates the BSR value "50".
  • the destination identifier may indicate the service type.
  • Three different service types, unicast, multicast, and broadcast, can be indicated by 2 bits.
  • the terminal is configured with the corresponding relationship between the state of 2 bits and unicast, multicast, and broadcast in advance, and the terminal can add corresponding bits to the first scheduling request according to the actual service type to indicate the service type.
  • the service type is indicated by 2 bits, where "00" indicates unicast, "01" indicates multicast, and "10" indicates broadcast. Assuming that "10" is added to the first scheduling request, the indicated service type is broadcast.
  • 5QI includes 5 QoS levels, where "000” represents QoS level 1, "001" represents QoS level 2, "010” represents QoS level 3, "011” represents QoS level 4, and "100” represents QoS Level 5. Assuming that "010” is added to the first scheduling request, it indicates QoS level 3.
  • additional bits are needed to indicate which bits are used to indicate the size of the data to be sent, and which bits are used to indicate the size of the data to be sent.
  • the quality of service parameters of the sent data which bits are used to indicate the purpose of the data to be sent, and which bits are used to indicate the scaling factor of the data to be sent.
  • pre-appoint which bits are used to indicate the size of the data to be sent, which bits are used to indicate the quality of service parameters of the data to be sent, which bits are used to indicate the purpose of the data to be sent, and which bits are used to indicate the data to be sent
  • the zoom factor which bits are used to indicate the size of the data to be sent, which bits are used to indicate the quality of service parameters of the data to be sent, which bits are used to indicate the purpose of the data to be sent, and which bits are used to indicate the data to be sent The zoom factor.
  • the network device receives the first scheduling request, and obtains the information of the first transmission parameter.
  • the network device receives the first scheduling request, and determines the first transmission parameter information according to the additional bits in the first scheduling request.
  • r bits are added to the first scheduling request to indicate the BSR value.
  • the network device is configured with the corresponding relationship between the status of r bits and different BSR values in advance. For example, 2 bits are used to indicate 4 BSR values, where "00" indicates the BSR value "15”, “ 01” indicates the BSR value "30", “10” indicates the BSR value "50”, and "11” indicates the BSR value "100”. Assuming that the network device recognizes that the added bit in the first scheduling request is "10”, it determines that the information of the first transmission parameter is "10", that is, the first transmission parameter includes: the BSR value "50".
  • two bits are added to the first scheduling request to indicate three different service types: unicast, multicast, and broadcast.
  • the corresponding relationship between the state of 2 bits and unicast, multicast, and broadcast is configured in the network device in advance.
  • the service type is indicated by 2 bits, where "00" indicates unicast, "01" indicates multicast, and "10" indicates broadcast.
  • the network device recognizes that the added bit in the first scheduling request is "10”, and the information for determining the first transmission parameter is "10", that is, the first transmission parameter includes the broadcast service type.
  • p bits are added to the first scheduling request to indicate 2 p QoS levels, and the corresponding relationship between the state of p bits and different QoS levels is configured in the network device in advance.
  • 5QI includes 5 QoS levels, where "000” represents QoS level 1, "001” represents QoS level 2, "010” represents QoS level 3, "011” represents QoS level 4, and "100” represents QoS Level 5.
  • the network device recognizes that the added bit in the first scheduling request is "010”
  • the information that determines the first transmission parameter is "010"
  • the first transmission parameter includes: QoS level 3.
  • the network device determines a first transmission parameter according to the information of the first transmission parameter, and allocates resources according to the first transmission parameter.
  • the resource is used to send the transmission data.
  • step 703 in the method shown in FIG. 7, and details are not described herein.
  • the network device sends downlink control information to the terminal, where the downlink control information indicates a second resource used to send the data to be sent.
  • the terminal sends the to-be-sent data to the network device or other terminals through the second resource.
  • step 705 in the method shown in FIG. 7, and details are not described herein.
  • the method further includes: the first terminal acquiring information of M groups of transmission parameters; the M groups of transmission parameters include the first transmission parameters.
  • multiple sets of transmission parameter information can be pre-configured in the network equipment and terminal.
  • the terminal can select appropriate transmission parameters according to actual service requirements, and add the transmission parameter information (for example, a few bits) to the scheduling request in.
  • the network device can parse the transmission parameter information from it, and determine the transmission parameter indicated by the information in the scheduling request according to the locally configured transmission parameter information. For example, the information of BSR1 is "00", the information of BSR2 is "01”, the information of BSR3 is "10”, and the information of BSR4 is "11". Add "00" to the scheduling request to indicate BSR1, and the network device can follow BSR1 Allocating resources.
  • the first transmission parameter when the first transmission parameter includes the size of the data to be sent, the first transmission parameter may also include a data size scaling factor.
  • the terminal may send a scheduling request to the network device to request resources for all data to be sent.
  • the terminal may send a first scheduling request to the network device, adding bits to the first scheduling request, and the added bits are called the information of the first transmission parameter, which can indicate the size of the data to be sent and the data size scaling factor.
  • the network device can use the data size scaling factor to scale the first data size to obtain the size of the data to be sent (that is, the terminal sends a group of The size of all the data to be sent sent by the terminal). For example, the sending UE needs to send data to multiple UEs in the group, and the sending UE may add a bit to indicate the BSR value "15" in the first scheduling request. In addition, a bit may be added in the first scheduling request to indicate that the data size scaling factor is "3".
  • the network device When the network device receives the first scheduling request, it can determine the BSR value "15” and the data size scaling factor to "3", the network device determines the actual BSR value is 15*3, that is, the actual data to be sent is determined according to the BSR value "45" the size of.
  • adding s bits to the first scheduling request can indicate 2 s different data size scaling factors.
  • the additional 2 bits can represent 4 different data size scaling factors. Among them, “00" represents the data size scaling factor 2, "01” represents the data size scaling factor 3, "10” represents the data size scaling factor 4, and "11” represents the data size scaling factor 5.
  • the data size scaling factor may be the number of terminals in the group that need to receive data, or other values, which are not limited in the embodiment of the present application.
  • the corresponding relationship between each state value of the additional bit and the data size scaling may be pre-configured, or may also be configured through signaling.
  • the terminal can add a bit to the scheduling request to indicate the transmission parameters of the data to be sent.
  • the terminal does not need to spend time reporting the SR and BSR to apply for transmission resources.
  • the network device can wait for the terminal after receiving the SR.
  • the transmitted data allocates resources, reduces the time delay of the terminal applying for transmission resources, meets the demand of delay-sensitive services as much as possible, and improves the transmission performance.
  • adding a small number of bits in the scheduling request indicates the information of the transmission parameters, and there is no need to tag all the transmission parameters in the scheduling request, which can also save overhead and improve communication performance.
  • FIG. 14 shows a possible schematic diagram of the structure of the communication device involved in the foregoing embodiment.
  • the communication device shown in FIG. 14 may be the terminal described in the embodiment of the present application, or may be a component in the terminal that implements the foregoing method.
  • the communication device includes a processing unit 1401 and a transceiving unit 1402.
  • the processing unit may be one or more processors, and the transceiving unit may be a transceiver.
  • the processing unit 1401 is configured to support the terminal to generate the first scheduling request, and/or other processes used in the technology described herein.
  • the transceiver unit 1402 is used for the terminal to perform step 701, step 704, step 705, step 1301, and step 1305, and/or other processes used in the technology described herein.
  • the communication device shown in FIG. 14 may also be a chip applied to a terminal.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • SOC System-On-a-Chip
  • the above transceiver unit 1402 used for receiving/sending may be an interface circuit of the device for receiving signals from other devices.
  • the transceiver unit 1402 is an interface circuit of the chip, and the interface circuit is used to read in or output baseband signals.
  • the communication device includes: a processing module 1501 and a communication module 1502.
  • the processing module 1501 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1401, and/or to perform other processes of the technology described herein.
  • the communication module 1502 is configured to perform the steps performed by the above-mentioned transceiving unit 1402, and supports the interaction between the communication device and other devices, such as interaction with other terminal devices.
  • the communication device may further include a storage module 1503, and the storage module 1503 is used to store the program code and data of the communication device.
  • the processing module 1501 is a processor
  • the communication module 1502 is a transceiver
  • the storage module 1503 is a memory
  • the communication device is the communication device shown in FIG. 6A.
  • FIG. 16 shows a possible structural schematic diagram of the communication device involved in the foregoing embodiment.
  • the communication device shown in FIG. 16 may be the network device described in the embodiment of the present application, or may be a component of the network device that implements the foregoing method.
  • the communication device includes a processing unit 1601 and a transceiver unit 1602.
  • the processing unit may be one or more processors, and the transceiving unit may be a transceiver.
  • the processing unit 1601 is configured to support the network device to perform step 702, step 703, step 1302, and step 1303, and/or other processes used in the technology described herein.
  • the transceiver unit 1602 is used to support communication between the communication device and other communication devices, for example, to support network equipment to perform step 701, step 704, step 1301, and step 1304, and/or other processes used in the technology described herein .
  • the communication device shown in FIG. 16 may also be a chip applied to a network device.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • SOC System-On-a-Chip
  • the above transceiver unit 1602 for receiving/sending may be an interface circuit of the device for reading in baseband signals.
  • the transceiver unit 1602 is an interface circuit for the chip to read in baseband signals, or the transceiver unit 1602 is an interface circuit for the chip to output baseband signals.
  • the communication device includes: a processing module 1701 and a communication module 1702.
  • the processing module 1701 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1601, and/or to perform other processes of the technology described herein.
  • the communication module 1702 is configured to perform the steps performed by the above-mentioned transceiver unit 1602, and supports interaction between the communication device and other devices, such as interaction with other terminal devices.
  • the communication device may further include a storage module 1703, and the storage module 1703 is used to store the program code and data of the communication device.
  • the processing module 1701 is a processor
  • the communication module 1702 is a transceiver
  • the storage module 1703 is a memory
  • the communication device is the communication device shown in FIG. 6B.
  • the embodiment of the present application provides a computer-readable storage medium in which instructions are stored; the instructions are used to execute the method shown in FIG. 7 or FIG. 13.
  • the embodiments of the present application provide a computer program product including instructions, which when running on a communication device, enable the communication device to implement the method shown in FIG. 7 or FIG. 13.
  • a wireless communication device includes: instructions stored in the wireless communication device; when the wireless communication device runs on the communication device shown in FIG. 6A, FIG. 6B, and FIG. The method shown in Figure 7 or Figure 13.
  • the wireless communication device may be a chip or the like.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种发送和接收调度请求的方法及通信装置,涉及通信领域,能够减少为终端申请传输资源的时延,尽可能满足时延敏感业务的需求,提高传输性能。方法包括:第一终端在第一资源向网络设备发送第一调度请求,第一调度请求用于为第一终端的待发送数据请求资源,在第一资源上发送第一调度请求用于指示待发送数据的第一传输参数,第一终端从网络设备接收下行控制信息,下行控制信息指示用于发送待发送数据的第二资源。其中,第一传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项。该方法可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于智能驾驶,智能网联车等领域。

Description

一种发送和接收调度请求的方法及通信装置
本申请要求于2019年8月2日提交国家知识产权局、申请号为201910713311.5、申请名称为“一种发送和接收调度请求的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉通信领域,尤其涉及一种发送和接收调度请求的方法及通信装置。
背景技术
长期演进(long term evolution,LTE)通信系统、第五代(5 th generation,5G)通信系统中,支持设备间的侧行(sidelink)通信,如:设备到设备(device to device,D2D)通信、车对一切(vehicle to everything,V2X)通信等,即终端设备之间可以利用为D2D通信配置的时频资源进行侧行通信。在做D2D或V2X的传输时,基站需要指示哪些资源用于Sidelink传输。
现有技术中,用户设备(user equipment,UE)有数据需要在Sidelink链路上传输时,UE先向基站发送调度请求(Scheduling Request,SR),基站响应SR向UE发送上行授权的信息。UE可以在上行授权的资源上向基站缓存状态报告(buffer status report,BSR),基站可以根据BSR确定UE在Sidelink链路上传输的数据大小,根据数据大小为UE在Sidelink链路上的传输分配资源。
上述方案导致为UE申请传输资源时有较大的时延,不能满足时延敏感业务的需求,影响传输性能。
发明内容
本申请实施例提供一种发送和接收调度请求的方法及通信装置,减少为终端申请传输资源的时延,尽可能满足时延敏感业务的需求,提高传输性能。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供了一种发送调度请求的方法,包括:第一终端在第一资源向网络设备发送第一调度请求,第一调度请求用于为第一终端的待发送数据请求资源,在第一资源上发送第一调度请求用于指示待发送数据的第一传输参数,其中,第一传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项。此外,第一终端还可以从网络设备接收下行控制信息,下行控制信息指示用于发送待发送数据的第二资源,第二资源是网络设备根据第一传输参数分配的。
本申请实施例中,对网络设备和终端的行为进行了约定,终端在特定的SR资源(即本申请实施例所述的用于发送调度请求的资源)上发送SR(即调度请求),可以包含或隐含指示一组传输参数,相应的,网络设备在该SR资源接收SR也可以确定终端所包含或隐含指示的传输参数,进而可以确定终端待发送数据的大小、QoS参数、目的标识等中的至少一项或多项的组合。可见,终端不需要花费时间先后上报SR和BSR来申请传输资源,网络设备在接收SR后就可以为终端待发送的数据分配资源,减少了终端申请传输资源的时延,尽可能满足时延敏感业务的需求,提高了传输性能。
结合第一方面,在第一方面的第一种可能的实现方式中,方法还包括:第一终端 获取第一信息,第一信息用于指示第一资源与第一传输参数之间的对应关系。
本申请实施例中,终端可以根据第一信息获知SR资源(即用于发送调度请求的资源)和传输参数之间的对应关系,在需要发送数据之前,可以根据实际的业务需求在第一信息指示的传输参数中选择合适的第一传输参数,并在第一传输参数对应的第一资源上发送第一调度请求,隐含指示第一传输参数。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,N个用于发送调度请求的资源包括第一资源,传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;其中,N、M均为大于等于1的整数。
本申请实施例中,通过第一信息指示SR资源与传输参数之间的对应关系,终端或网络设备可以直接根据某个SR资源确定一个或多个传输参数,终端无需上报花费时间上报传输参数,网络设备就可以获知终端待发送数据的传输参数,进而为终端分配资源以发送所述待发送数据。
结合第一方面或第一方面的第一或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为每个资源对应的传输参数相对于第i组用于发送调度请求的资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;其中,X个用于发送调度请求的资源包括第一资源,X、Y为大于等于1的整数。
本申请实施例中,通过第一信息指示参考传输参数、SR资源以及偏移量之间的对应关系,终端在一个SR资源上发送调度请求,隐含指示了一个参考传输参数和一个偏移量,根据参考传输参数和偏移量可以确定终端待发送数据的传输参数。由于SR资源是有限的,如果通过SR资源直接指示传输参数,能够指示的传输参数也是有限的,但是如果SR资源关联的是参考传输参数和偏移量,就可以通过有限的SR资源指示较大的传输参数范围,能够匹配终端更多的业务需求。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,第一调度请求指示第一偏移量,第一偏移量为第一传输参数相对于第一参考传输参数的偏移量;第一参考传输参数为Y个参考传输参数中,与第一资源所在组对应的参考传输参数。
本申请实施例中,在第一资源上发送第一调度请求可以隐含指示第一偏移量,或者,第一调度请求可以包括第一偏移量,使得网络设备可以根据第一偏移量和第一参考传输参数确定待发送数据的传输参数,为终端分配资源用来发送所述待发送数据。
结合第一方面,在第一方面的第五种可能的实现方式中,第一调度请求包括第二传输参数,第二传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项。
本申请实施例中,当终端在第一资源上发送第一调度请求隐含指示了一些传输参数(例如,待发送数据的大小、待发送数据的服务质量参数),还可以在第一调度请 求中增加其他的传输参数(例如,待发送数据的目的标识),使网络设备更全面地了解待发送数据的属性,为终端的待发送数据分配合适的资源。
结合第一方面,在第一方面的第六种可能的实现方式中,第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;在第一资源上发送第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;第一数据大小和第二数据大小用于确定待发送数据的大小,第一服务质量参数和第二服务质量参数用于确定待发送数据的服务质量参数,第一目的标识和第二目的标识用于确定待发送数据的目的标识。
本申请实施例中,通过在第一资源上发送第一调度请求指示某个传输参数的一个值,这个值可能不能准确地体现终端的业务特性,还可以在第一调度请求中增加比特指示该传输参数的另外一个值,结合这两个值得到一个更贴近终端业务特性的值,根据获得的值为终端的待发送数据分配合适的资源。
结合第一方面或第一方面的第一至第六种可能的实现方式中的任意一种,在第一方面的第七种可能的实现方式中,第一调度请求包括数据大小缩放因子,数据大小缩放因子用于确定待发送数据的大小。
本申请实施例提供的方法适用于组播场景,终端通过在第一资源上发送第一调度请求指示第一数据大小,第一调度请求包括数据大小缩放因子,根据数据大小缩放因子和第一数据大小获得终端向群组发送数据的大小,根据终端向群组发送数据的大小分配资源,支持终端的组播业务。
结合第一方面或第一方面的第一至第七种可能的实现方式中的任意一种,在第一方面的第八种可能的实现方式中,方法还包括:第一终端在第二资源上向网络设备或第二终端发送待发送数据。
本申请实施例提供的方法适用于蜂窝链路,可以为终端在蜂窝链路上待发送的数据请求资源。还适用于侧行链路,可以为终端在侧行链路上待发送的数据请求资源。
第二方面,提供了一种接收调度请求的方法,包括:网络设备在第一资源上接收来自第一终端的第一调度请求,第一调度请求用于为第一终端的待发送数据请求资源;网络设备根据在第一资源上接收到第一调度请求确定待发送数据的第一传输参数,其中,第一传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项;网络设备向第一终端发送下行控制信息,下行控制信息指示用于发送待发送数据的第二资源。
本申请实施例中,对网络设备和终端的行为进行了约定,终端在特定的SR资源(即本申请实施例所述的用于发送调度请求的资源)上发送SR(即调度请求),可以包含或隐含指示一组传输参数,相应的,网络设备在该SR资源接收SR也可以确定终端所包含或隐含指示的传输参数,进而可以确定终端待发送数据的大小、QoS参数、目的标识等中的至少一项或多项的组合。可见,终端不需要花费时间先后上报SR和BSR来申请传输资源,网络设备在接收SR后就可以为终端待发送的数据分配资源,减少了终端申请传输资源的时延,尽可能满足时延敏感业务的需求,提高了传输性能。
结合第二方面,在第二方面的第一种可能的实现方式中,方法还包括:网络设备获取第一信息,第一信息用于指示第一资源与第一传输参数之间的对应关系。
结合第二方面或第二方面的第一种可能的实现方式中,在第二方面的第二种可能的实现方式中,第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,N个用于发送调度请求的资源包括第一资源,传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;其中,N、M均为大于等于1的整数。
结合第二方面或第二方面的第一或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为每个资源对应的传输参数相对于第i组用于发送调度请求的资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;其中,X个用于发送调度请求的资源包括第一资源,X、Y为大于等于1的整数。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,第一调度请求指示第一偏移量,第一偏移量为第一传输参数相对于第一参考传输参数的偏移量;第一参考传输参数为Y个参考传输参数中,与第一资源所在组对应的参考传输参数。
结合第二方面,在第二方面的第五种可能的实现方式中,第一调度请求包括第二传输参数,第二传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项。
结合第二方面,在第二方面的第六种可能的实现方式中,第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;在第一资源上发送第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;方法还包括:根据第一数据大小和第二数据大小确定待发送数据的大小,和/或,根据第一服务质量参数和第二服务质量参数确定待发送数据的服务质量参数,和/或,根据第一目的标识和第二目的标识确定待发送数据的目的标识。
结合第二方面或第二方面的第一至第六种可能的实现方式中的任意一种,在第二方面的第七种可能的实现方式中,第一调度请求包括数据大小缩放因子;数据大小缩放因子用于确定待发送数据的大小。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,在第一资源上接收第一调度请求用于指示第一数据大小;所述方法还包括:利用数据大小缩放因子对第一数据大小进行缩放处理,获得待发送数据的大小。
结合第二方面或第二方面的第一至第八种可能的实现方式中的任意一种,在第二方面的第九种可能的实现方式中,方法还包括:在第二资源上接收来自第一终端的待发送数据。
结合第二方面或第二方面的第一至第八种可能的实现方式中的任意一种,在第二方面的第十种可能的实现方式中,待发送数据为第一终端向第二终端发送的数据。
第三方面,提供一种发送调度请求的通信装置,其特征在于,包括:
收发单元,用于在第一资源向网络设备发送第一调度请求,第一调度请求用于为第一终端的待发送数据请求资源,在第一资源上发送第一调度请求用于指示待发送数 据的第一传输参数,其中,第一传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项;收发单元还用于,从网络设备接收下行控制信息,下行控制信息指示用于发送待发送数据的第二资源。
结合第三方面,在第三方面的第一种可能的实现方式中,所述通信装置还包括处理单元。处理单元用于,获取第一信息,第一信息用于指示第一资源与第一传输参数之间的对应关系。
结合第三方面或第三方面的第一种,在第三方面的第二种可能的实现方式中,第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,N个用于发送调度请求的资源包括第一资源,传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;其中,N、M均为大于等于1的整数。
结合第三方面或第三方面的第一或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为每个资源对应的传输参数相对于第i组用于发送调度请求的资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;其中,X个用于发送调度请求的资源包括第一资源,X、Y为大于等于1的整数。
结合第三方面,在第三方面的第四种可能的实现方式中,第一调度请求指示第一偏移量,第一偏移量为第一传输参数相对于第一参考传输参数的偏移量;第一参考传输参数为Y个参考传输参数中,与第一资源所在组对应的参考传输参数。
结合第三方面,在第三方面的第五种可能的实现方式中,第一调度请求包括第二传输参数,第二传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项。
结合第三方面,在第三方面的第六种可能的实现方式中,第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;在第一资源上发送第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;第一数据大小和第二数据大小用于确定待发送数据的大小,第一服务质量参数和第二服务质量参数用于确定待发送数据的服务质量参数,第一目的标识和第二目的标识用于确定待发送数据的目的标识。
结合第三方面在第三方面的第一至第六种可能的实现方式中,在第三方面的第七种可能的实现方式中,第一调度请求包括数据大小缩放因子,数据大小缩放因子用于确定待发送数据的大小。
结合第三方面在第三方面的第一至第七种可能的实现方式中,在第三方面的第八种可能的实现方式中,收发单元还用于,第一终端在第二资源上向网络设备或第二终端发送待发送数据。
第四方面,提供了一种接收调度请求的通信装置,包括:收发单元,用于在第一资源上接收来自第一终端的第一调度请求,第一调度请求用于为第一终端的待发送数据请求资源;处理单元,用于根据在第一资源上接收到第一调度请求确定待发送数据的第一传输参数,其中,第一传输参数包括待发送数据的大小、待发送数据的服务质 量参数和待发送数据的目的标识中的至少一项;收发单元还用于,向第一终端发送下行控制信息,下行控制信息指示用于发送待发送数据的第二资源。
结合第四方面,在第四方面的第一种可能的实现方式中,处理单元还用于,获取第一信息,第一信息用于指示第一资源与第一传输参数之间的对应关系。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,N个用于发送调度请求的资源包括第一资源,传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;其中,N、M均为大于等于1的整数。
结合第四方面或第四方面的第一或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为每个资源对应的传输参数相对于第i组用于发送调度请求的资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;其中,X个用于发送调度请求的资源包括第一资源,X、Y为大于等于1的整数。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述第一调度请求指示第一偏移量,所述第一偏移量为所述第一传输参数相对于第一参考传输参数的偏移量;所述第一参考传输参数为所述Y个参考传输参数中,与所述第一资源所在组对应的参考传输参数。
结合第四方面,在第四方面的第五种可能的实现方式中,第一调度请求包括第二传输参数,第二传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项。
结合第四方面,在第四方面的第六种可能的实现方式中,第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;在第一资源上发送第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;收发单元还用于:根据第一数据大小和第二数据大小确定待发送数据的大小,和/或,根据第一服务质量参数和第二服务质量参数确定待发送数据的服务质量参数,和/或,根据第一目的标识和第二目的标识确定待发送数据的目的标识。
结合第四方面或第六方面的第一至第六种可能的实现方式,在第四方面的第七种可能的实现方式中,第一调度请求包括数据大小缩放因子;数据大小缩放因子用于确定待发送数据的大小。
结合第四方面的第七种可能的实现方式中,在第四方面的第八种可能的实现方式中,在第一资源上接收第一调度请求用于指示第一数据大小;收发单元还用于,利用数据大小缩放因子对第一数据大小进行缩放处理,获得待发送数据的大小。
结合第四方面或第六方面的第一至第六种可能的实现方式,在第四方面的第七种可能的实现方式中,在第二资源上接收来自第一终端的待发送数据。
第五方面,提供了一种发送调度请求的方法,包括:第一终端向网络设备发送第一调度请求,所述第一调度请求用于为所述终端的待发送数据请求资源,所述第一调 度请求包含第一传输参数的信息。所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数、所述待发送数据的目的标识中的至少一项。从网络设接收下行控制信息,所述下行控制信息指示用于发送所述待发送数据的资源。
本申请实施例中,终端可以在调度请求中增加比特指示待发送数据的传输参数,终端不需要花费时间先后上报SR和BSR来申请传输资源,网络设备在接收SR后就可以为终端待发送的数据分配资源,减少了终端申请传输资源的时延,尽可能满足时延敏感业务的需求,提高了传输性能。另外,在调度请求中增加少量比特就指示传输参数的信息,无需在调度请求中tag全部的传输参数,也可以节省开销,提高通信性能。
结合第五方面,在第五方面的第一种可能的实现方式中,所述方法还包括:所述第一终端获取M组传输参数的信息;所述M组传输参数包括所述第一传输参数。
本申请实施例,可以预先将多组传输参数的信息配置在网络设备和终端,终端可以根据实际的业务需求选择合适的传输参数,将该传输参数的信息(例如,几比特)增加到调度请求中。网络设备接收调度请求后,可以从中解析出该传输参数的信息,根据本地配置的传输参数的信息,确定调度请求中的信息指示的传输参数。例如,BSR1的信息是“00”,BSR2的信息是“01”,BSR3的信息是“10”,BSR4的信息是“11”,在调度请求中增加“00”指示BSR1,网络设备可以根据BSR1分配资源。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述第一调度请求包括数据大小缩放因子,所述数据大小缩放因子用于确定所述待发送数据的大小。
本申请实施例提供的方法适用于组播场景,终端通过在第一资源上发送第一调度请求指示第一数据大小,第一调度请求包括数据大小缩放因子,根据数据大小缩放因子和第一数据大小获得终端向群组发送数据的大小,根据终端向群组发送数据的大小分配资源,支持终端的组播业务。
结合第五方面或第五方面的第一或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述方法还包括:所述第一终端在所述第二资源上向所述网络设备或第二终端发送所述待发送数据。
本申请实施例提供的方法适用于蜂窝链路,可以为终端在蜂窝链路上待发送的数据请求资源。还适用于侧行链路,可以为终端在侧行链路上待发送的数据请求资源。
第六方面,提供了一种通信装置,包括处理器,所述处理器与存储器耦合;存储器,用于存储计算机程序;处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置实现如上述第一方面以及第一方面任意一种实现方式、第二方面以及第二方面任意一种实现方式、第五方面以及第五方面任意一种实现方式所述的方法,该通信装置可以是基带芯片,该基带芯片读取计算机程序,使得安装该基带芯片的装置实现上述方面任一种实现方式所述的方法。
第七方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第三方面以及第三方面任意一种实现方式、第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置实现如上述第一方面以及第一方面任意一种实现方式、第二方面以及第二方面任意一种实 现方式所述的方法。
第八方面,提供了一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在上述第三方面以及第三方面任意一种实现方式、上述第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置实现如上述第一方面以及第一方面任意一种实现方式、第二方面以及第二方面任意一种实现方式所述的方法。该无线通信装置为芯片。
第九方面,提供了一种通信系统,包括终端和网络设备。
其中,终端在第一资源向网络设备发送第一调度请求,第一调度请求用于为第一终端的待发送数据请求资源,在第一资源上发送第一调度请求用于指示待发送数据的第一传输参数。此外,第一终端还可以从网络设备接收下行控制信息,下行控制信息指示用于发送待发送数据的第二资源,第二资源是网络设备根据第一传输参数分配的。其中,第一传输参数包括待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识中的至少一项。
网络设备可以在第一资源上接收到来自终端的第一调度请求,并且根据在第一资源上接收到第一调度请求确定终端待发送数据的第一传输参数,根据第一传输参数为所述待发送数据分配第二资源。最后,向终端发送下行控制信息指示第二资源。
终端还可以通过第二资源向网络设备或其他终端发送所述待发送数据。
附图说明
图1为本申请实施例提供的SR资源示意图;
图2为本申请实施例提供的BSR示意图;
图3为本申请实施例提供的通信系统的架构图;
图4为本申请实施例提供的通信系统的另一架构图;
图5为本申请实施例提供的资源请求过程示意图;
图6A为本申请实施例提供的通信装置的结构框图;
图6B为本申请实施例提供的通信装置的另一结构框图;
图7为本申请实施例提供的发送调度请求的方法的流程示意图;
图8为本申请实施例提供的SR资源指示传输参数的示意图;
图9为本申请实施例提供的SR资源指示传输参数的另一示意图;
图10为本申请实施例提供的SR资源指示传输参数的另一示意图;
图11为本申请实施例提供的SR资源指示传输参数的另一示意图;
图12为本申请实施例提供的SR资源指示传输参数的另一示意图;
图13为本申请实施例提供的发送调度请求的方法的另一流程示意图;
图14为本申请实施例提供的通信装置的另一结构框图;
图15为本申请实施例提供的通信装置的另一结构框图;
图16为本申请实施例提供的通信装置的另一结构框图;
图17为本申请实施例提供的通信装置的另一结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先,对本发明实施例涉及的术语进行解释说明。
(1)调度请求(Scheduling Request,SR)
LTE中,如果终端有上行数据需要发送,终端需要向基站发送SR告知基站自己的数据传输需求,SR可以为终端待发送的数据请求资源。基站接收SR后可以决定是否为终端分配资源。
如图1所示,基站为SR分配了专用的资源(以下简称SR资源),不同的SR资源占用不用的时域位置或频域位置,或时域位置、频域位置均不同,本申请实施例对此不做限制。终端可以在SR资源上发送SR。基站不知道终端什么时候发送SR,需要在SR资源上检测是否有SR上报。基站检测到SR后,可以获知终端的数据传输需求,进而决定是否为终端分配资源。具体为终端分配多少资源取决于基站的实现,一般分配足够发送BSR的资源。
同样在侧行链路(sidelink)通信中,终端也需要通过SR告知终端在sidelink链路上是否有数据传输需求,以便基站决定是否为终端在sidelink链路上发送的数据分配资源。
一种可能的实现方式中,SR可以是1比特。例如,“0”代表终端有数据传输需求,基站需要为终端待发送的数据分配资源;“1”代表终端没有数据传输需求,基站不需要为终端分配资源。或者,“1”代表终端有数据传输需求,基站需要为终端待发送的数据分配资源;“0”代表终端没有数据传输需求,基站不需要为终端分配资源。
(2)缓存状态报告(buffer status report,BSR)
终端除了利用SR告知基站自己的数据传输需求以外,还可以利用BSR上报待发送数据的大小。
示例的,参考图2,BSR包括destination ID(目的标识)、逻辑信道标识(logic channel group ID,LCG ID)以及buffer size(缓存数据大小)。一种可能的实现方式中,BSR只包括LCG ID以及buffer size。
其中,destination ID是数据接收方的标识。示例的,该destination ID可以是目的用户设备(user equipment,UE)的标识(target UE ID或者target ID),destination ID也可以是业务类型的标识。示例的,业务类型的标识可以是单播业务标识、组播业务标识、广播业务标识中的至少一项。destination ID可以是几比特,用来表示不同的业务类型标识。例如,单播业务标识为00,组播业务标识为01,广播业务标识为10。业务类型的标识还可以是周期性业务标识或者非周期性业务标识。
LCG ID是与BSR绑定的逻辑信道或者逻辑信道组的标识,BSR用于指示与其绑定的逻辑信道或者逻辑信道组上的待传输数据的大小。逻辑信道组可以包括一个或者多个逻辑信道。
buffer size用于描述终端待传输数据的大小。例如,BSR中为buffer size预留的字段可以用索引值(index)来填充。索引值与buffer size对应,不同的索引值指示不同的buffer size。例如,index的取值为0~63中任一数值,不同的索引值表示不同的数据大小。本申请实施例中,可以将buffer size字段中填充的index称为BSR值。
(3)服务质量(quality of service,QoS)参数
QoS机制是一种网络安全机制,可以对不同的数据流提供不同的服务质量,即不同的数据流的QoS参数是不同的。不同的QoS参数有不同的QoS级别,数据流的QoS 级别可以标记数据流的优先级。通常,优先处理优先级高的数据流,为优先级较低的数据流提供较低的处理优先级,例如,在网络拥塞时可以丢弃优先级较低的数据流。
QoS参数可以是终端数据业务的QoS级别,例如,可以是每包优先权(prose per packet priority,PPPP),也可以是QoS index。其中,QoS index可以是5QI。PPPP目前可以划分为8个级别,不同的PPPP参数可以有不同的QoS级别。5QI目前可以划分为5个QoS级别,不同的5QI参数可以有不同的QoS级别。当然,PPPP还可以划分为更多的QoS级别,QoS本申请实施例对此不作限制。
QoS参数还可以用来区分业务类型,例如,根据业务的QoS参数区分是增强型移动宽带(enhanced mobile broadband,eMBB)业务或者超可靠低时延通信(ultra reliable low latency communication,URLLC)业务。
图3给出了本申请提供的技术方案所适用的一种通信系统的示意图,该通信系统可以包括多个网络设备(仅示出了网络设备100)以及多个终端(图中仅示出了终端201和终端202)。图3仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
其中,网络设备和终端之间可以通过蜂窝链路(Uu链路)进行上下行传输,终端之间可以通过侧行链路(sidelink链路)进行通信,例如D2D通信、V2X通信、机器类型通信(machine type communication,MTC)等。
网络设备可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。本申请实施例将以基站为例进行说明。
终端可以是用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。接入终端设备可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
参考图4,图3所示的通信系统还可以包括路边单元(Road Side Unit,RSU),RSU单元可以集成车载设备的功能,也可以集成网络设备(例如,eNB或gNB)的功能,还可以是车载设备和网络设备设备的功能。一种可能的实现方式中,RSU可以是 UE类型的RSU(UE type RSU)。RSU可以接收来自应用服务器的数据,通过与终端之间的PC5接口将接收到的数据发送给终端201或终端202。
在图3或图4所示的通信系统中,终端201或终端202通过Uu链路向网络设备发送上行数据时,或者,终端201和终端202之间通过sidelink链路发送数据时,需要向网络设备请求传输资源。示例的,参考图5,待发送数据到达终端201后,终端201向网络设备100发送SR。终端接收SR后向终端201发送下行控制信息(downlink control information,DCI)1,DCI1用于指示发送BSR的上行资源。终端201在DCI1指示的资源上发送BSR,BSR用于指示待发送数据的大小。网络设备接收BSR后,根据BSR为待发送数据分配资源,向终端201发送DCI2,DCI2可以指示为待发送数据分配的资源。终端201接收DCI2,在DCI2指示的资源上发送数据。
值得注意的是,图5所示方案中,终端申请传输资源的过程有较大时延,不满足时延敏感业务的需求。
本申请实施例提供一种资源分配方法,终端在第一资源向网络设备发送第一调度请求,所述第一调度请求用于为所述终端的待发送数据请求资源,在所述第一资源上发送所述第一调度请求用于指示所述待发送数据的第一传输参数,其中,所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项。网络设备可以根据第一传输参数为所述待发送数据分配第二资源,并向所述终端发送下行控制信息,所述下行控制信息中包含用于发送所述待发送数据的资源的信息,终端可以通过第二资源发送所述待发送数据。本申请实施例中,对网络设备和终端的行为进行了约定,终端在特定的SR资源上发送SR,可以包含或隐含指示一组传输参数,相应的,网络设备在该SR资源接收SR也可以确定终端所包含或隐含指示的传输参数,进而可以确定终端待发送数据的大小、QoS参数、目的标识等中的至少一项或多项的组合。可见,终端不需要花费时间先后上报SR和BSR来申请传输资源,网络设备在接收SR后就可以为终端待发送的数据分配资源,减少了终端申请传输资源的时延,尽可能满足时延敏感业务的需求,提高了传输性能。
本申请实施例所述的终端,可以通过图6A中的通信装置610来实现。图6A所示为本申请实施例提供的通信装置610的硬件结构示意图。该通信装置610包括处理器6101、存储器6102以及至少一个通信接口(图6A中仅是示例性的以包括通信接口6103为例进行说明)。其中,处理器6101、存储器6102以及通信接口6103之间互相连接。
处理器6101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口6103,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器6102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact  disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路6102与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器6102用于存储执行本申请方案的计算机执行指令,并由处理器6101来控制执行。处理器6101用于执行存储器6102中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器6101可以包括一个或多个CPU,例如图6A中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置610可以包括多个处理器,例如图6A中的处理器6101和处理器6106。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置610还可以包括输出设备6104和输入设备6105。输出设备6104和处理器6101通信,可以以多种方式来显示信息。例如,输出设备6104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备6105和处理器6101通信,可以以多种方式接收用户的输入。例如,输入设备6105可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置610可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置610可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图6A中类似结构的设备。本申请实施例不限定通信装置610的类型。
需要说明的是,通信装置610可以是终端整机,也可以是实现终端上的功能部件或组件,也可以是通信芯片,例如基带芯片等。通信装置610是终端整机时,通信接口可以是射频模块。当通信装置610为通信芯片,通信接口6103可以是该芯片的输入输出接口电路,输入输出接口电路用于读入和输出基带信号。
图6B是一种网络设备的结构示意图。网络设备620的结构可以参考图6B所示的结构。
网络设备620包括至少一个处理器6201、至少一个存储器6202、至少一个收发器6203、至少一个网络接口6204和一个或多个天线6205。处理器6201、存储器6202、收发器6203和网络接口6204相连,例如通过总线相连。天线6205与收发器6203相连。网络接口6204用于使得网络设备通过通信链路,与其它通信设备相连,例如网络设备通过S1接口,与核心网网元相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器6201,可以包括如下至少一种类型:通用 中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器6201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器6201可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器6202,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器6202可以是独立存在,与处理器6201相连。可选的,存储器6202也可以和处理器6201集成在一起,例如集成在一个芯片之内。其中,存储器6202能够存储执行本申请实施例的技术方案的程序代码,并由处理器6201来控制执行,被执行的各类计算机程序代码也可被视为是处理器6201的驱动程序。例如,处理器6201用于执行存储器6202中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器6203可以用于支持网络设备与终端之间射频信号的接收或者发送,收发器6203可以与天线6205相连。具体地,一个或多个天线6205可以接收射频信号,该收发器6203可以用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器6201,以便处理器6201对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器6203可以用于从处理器6201接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线6205发送所述射频信号。具体地,收发器6203可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。收发器6203可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。收发器可以称为收发电路、收发单元、收发器件、发送电路、发送单元或者发送器件等等。
需要说明的是,通信装置620可以是网络设备整机,也可以是实现网络设备功能的部件或组件,也可以是通信芯片。当通信装置620为通信芯片,收发器6203可以是该芯片的接口电路,该接口电路用于读入和输出基带信号。
本申请实施例提供一种资源分配方法,如图7所示,所述方法包括以下步骤:
701、终端在第一资源向网络设备发送第一调度请求,所述第一调度请求用于为所 述终端的待发送数据请求资源,在所述第一资源上发送所述第一调度请求用于指示所述待发送数据的第一传输参数。所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项。
需要说明的是,调度请求可以是本申请实施例所述的SR,第一资源是本申请实施例所述的SR资源中的任意一个,所述第一资源不同于目前通信系统中配置给侧行链路终端的用于传输SR的资源,不同于目前通信系统中配置给UU链路终端的用于传输SR的资源。其中,侧行链路终端指的是通过侧行链路与其他终端进行通信的终端,UU链路终端指的是通过UU链路与网络设备(例如,基站)进行通信的终端。待发送数据的大小可以是本申请实施例所述的BSR中的buffer size字段指示的数据大小,待发送数据的服务质量参数可以是本申请实施例所述的QoS参数,待发送数据的目的标识可以是本申请实施例所述的destination ID。所述待发送数据可以是终端与网络设备之间的Uu链路上待发送的数据,也可以是终端与其他终端之间的sidelink链路上待发送的数据。
具体实现中,预先在终端配置了第一信息,或者,网络设备通过信令向终端配置了第一信息。所述信令可以为无线资源控制(radio resource control,RRC)信令,媒体访问控制(media access control,MAC)信令或者物理层信令中的至少一项。此外,第一信息可以指示SR资源和传输参数之间的对应关系。本申请实施例中,第一信息有以下两种可能的实现:
第一种、预配置了多个SR资源和多组传输参数之间的对应关系,第一信息可以指示多个SR资源和多组传输参数之间的对应关系。终端查询预配置的第一信息,可以确定其中某个SR资源对应的一组(或多组)传输参数。
例如,在终端预配置了第一信息,所述第一信息用于指示N个用于发送调度请求的资源与M组传输参数之间的对应关系。所述N、M均为大于等于1的整数。其中,N可以等于M,也可以不同于M。当N与M相同,用于发送调度请求的资源与传输参数一一对应,不同的资源对应不同的传输参数;当N与M不同,一个用于发送调度请求的资源可以对应多组传输参数。
此外,用于发送调度请求的资源可以是本申请实施例所述的SR资源,所述M组传输参数中的每一组可以包括数据的大小、数据的服务质量参数和数据的目的标识中的一项或多项。所述N个用于发送调度请求的资源包括所述第一资源,因此终端根据第一信息可以确定与第一资源对应的一组(或多组)传输参数。示例的,所述终端查询第一信息确定与第一资源对应的传输参数。
示例的,第一信息指示的SR资源与传输参数之间的对应关系可以参考以下表1。
表1
Figure PCTCN2020105314-appb-000001
Figure PCTCN2020105314-appb-000002
需要说明的是,表1中与SR资源对应的传输参数可以包括缺省项(N/A),即SR资源对应传输参数包括数据大小、目的标识、QoS参数中的一项或多项。表1中与SR资源在一行的传输参数称为与该SR资源对应的传输参数。
一种可能的实现方式中,以传输参数包括终端待发送数据的大小和目的标识为例,SR资源与BSR之间存在对应关系。示例的,可以预先将SR资源与BSR之间的对应关系配置在终端。终端可以在某个SR资源上发送SR,隐含指示该SR资源对应的BSR。相应的,网络设备在该SR资源上检测到SR,就可以根据该SR对应的(隐含指示的)BSR确定终端待发送数据的大小、待发送数据的目的标识,根据确定的待发送数据的大小、目的标识为终端分配资源。
具体实现中,可以根据SR资源的时域位置区分不同的SR资源,也可以根据SR资源的频域位置区分不同的SR资源,也可以根据SR资源的时域位置和频域位置区分不同的SR资源。此外,可以根据BSR值区分不同的BSR。
示例的,参考图8,SR资源1~SR资源4的时域位置相同,频域位置互不相同。SR资源1~SR资源4可以认为是四个不同的SR资源,分别对应四个不同的BSR。例如,SR资源1与BSR1对应,SR资源2与BSR2对应,SR资源3与BSR3对应,SR资源4与BSR4对应。
其中,BSR1~BSR4的值不同,例如,BSR1~BSR4的值分别为30、150、200、300bytes,或者30、150、200、300Kbytes。假设终端在SR资源2上发送SR,基站在SR资源2上检测到SR,可以根据BSR2为终端的待发送数据分配资源。
第二种、多个SR资源可以被划分成多组,每组SR资源对应一个参考传输参数,可以在终端配置多组SR资源与多个参考传输参数之间的对应关系,以及每个SR资源与偏移量的对应关系。SR资源对应的偏移量指的是该SR资源相对于相应的参考传输参数的偏移量,所谓“相应的参考传输参数”即该SR资源所在组对应的参考传输参数。终端在某个SR资源上发送调度请求,隐含指示了与该SR资源对应的一个偏移量,该偏移量为终端待发送数据的传输参数与相应的参考传输参数之间的偏移量。
示例的,在终端配置了第一信息,所述第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及这Y组资源包括的所有X个用于发送调度请求的资源与X个偏移量之间的对应关系。其中,所述X个用于发送调度请求的资源包括所述第一资源,所述X、Y为大于等于1的整数。终端在第一资源上发送第一调度请求时,隐含指示了与第一资源对应的一个偏移量,网络设备可以根据该偏移量和以及第一资源所在组对应的参考传输参数来确定待发送数据的传输参数。
需要说明的是,X个用于发送调度请求的资源被划分成Y组,一组资源与一个传输参数范围建立对应关系。对于一个传输参数范围,确定一个参考传输参数,可以根据该参考传输参数和一个偏移量来确定该范围内的一个传输参数。因此,Y组资源可以对应Y个参考传输参数。此外,第i组用于发送调度请求的资源中的每个资源对应的偏移量为所述每个资源对应的传输参数相对于所述第i组用于发送所述调度请求的 资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数。
示例的,第一信息指示的SR资源与参考传输参数、偏移量之间的对应关系可以参考以下表2。
表2
Figure PCTCN2020105314-appb-000003
参考表2,第一信息可以指示SR资源所在的资源组,资源组对应的参考传输参数,SR资源对应的偏移量以及SR资源指示的传输参数。具体地,可以将SR资源、参考传输参数以及偏移量这三项的对应关系配置在终端,终端在一个SR资源上发送调度请求,隐含指示一个参考传输参数、一个偏移量,还可以指示待发送数据的传输参数。例如,终端在SR资源1上发送调度请求,隐含指示参考传输A以及偏移量Q1,即待发送数据的传输参数为A+Q1。
需要说明的是,根据参考传输参数和偏移量计算传输参数的方法不限于表2所示,即传输参数=参考传输参数+偏移量,还可以是其他算法,例如,传输参数=参考传输参数-偏移量,还可以是传输参数为任何根据参考传输参数以及偏移量作为输入参数的函数,该函数可以为线性函数或非线性函数。
一种可能的实现方式中,可以按照传输参数的值来划分传输参数范围。示例的,传输参数包括终端待发送数据的大小,可以根据一定的数据大小来划分不同的传输参数范围。以BSR为例,BSR值1~50为一个传输参数范围,BSR值51~100为一个传输参数范围,BSR值101~150为一个传输参数范围……依次类推。
或者,传输参数包括待发送数据的服务质量参数,可以根据QoS级别的基本来划分不同的传输参数范围。以PPPP为例,可以按照PPPP的QoS级别来进行划分不同的传输参数范围,示例的,PPPP至少包括8个QoS级别,其中,QoS级别1~3为一个范围,QoS级别4~6为一个范围,QoS级别7~8为一个范围……依次类推划分不同的范围。以5QI为例,可以根据5QI的QoS级别来划分不同的传输参数范围,QoS级别1为一个范围,QoS级别2为一个范围,QoS级别3为一个范围……依次类推划分不同的范围。
又或者,传输参数包括终端待发送数据的目的标识,可以根据目的标识指示的业务类型来划分不同的传输参数范围。假设目的标识00指示单播业务,目的标识01指示组播业务,目的标识10指示广播业务。根据目的标识是否为00,是否为01,或是 否为10来划分不同的传输参数范围,例如,目的标识为00的所有传输参数为一个传输参数范围,目的标识为10的所有传输参数为一个传输参数范围,目的标识为01的所有传输参数为一个传输参数范围。
此外,还可以是上述待发送数据的大小,服务质量参数和目的标识中的任意组合划分传输参数范围。例如,BSR值是1~50且QoS基本为1~3的传输参数为一个范围,BSR值是1~50且QoS级别为4~6的传输参数为一个范围,BSR值是51~100且QoS级别为1~3为的传输参数为一个范围,BSR值是51~100且QoS级别为4~6的传输参数为一个范围……依次类推划分不同的范围。
一种可能的实现中,终端在第一资源上发送的第一调度请求还可以指示第一偏移量,所述第一偏移量为所述第一传输参数相对于第一参考传输参数的偏移量;所述第一参考传输参数为所述Y个参考传输参数中,与所述第一资源所在组对应的参考传输参数。示例的,第一资源的时频位置与第一偏移量对应,终端在第一资源上发送第一调度请求,隐含指示了第一偏移量。或者,可以将第一偏移量tagged在第一调度请求中,即第一调度请求包括第一偏移量。
一种可能的实现方式中,以传输参数包括数据大小为例,SR资源与BSR之间存在对应关系。示例的,可以建立SR资源与BSR范围(即本申请实施例所述的传输参数范围)之间的对应关系,将SR资源划分为多组,不同组SR资源对应不同的BSR值或者BSR范围。
具体地,可以根据BSR值来划分BSR范围,例如,BSR范围1是BSR值1~10,BSR范围2是BSR值11~20,BSR范围3是BSR值21~30,BSR范围4是BSR值31~40。还可以将SR资源资源划分成4组,例如,第一组包括SR1~SR3,与BSR范围1对应;第二组包括SR4~SR6,与BSR范围2对应;第三组包括SR7~SR9,与BSR范围3对应;第四组包括SR10~SR12,与BSR范围4对应。
此外,每个BSR范围有一个参考BSR值(即本申请实施例所述的参考传输参数),即每组SR资源对应一个参考BSR值。每个SR资源还可以对应一个偏移量。需要说的是,SR资源对应的偏移量为该SR资源指示的BSR值,与该SR资源所在SR资源组对应的参考BSR值之间的偏移量。例如,BSR范围1内的参考BSR值为4,第一组SR资源(即SR1~SR3)对应的参考BSR值为4,SR1对应的偏移量为A,A是相对于BSR值4的偏移量;BSR范围2内的参考BSR值为16,第一组SR资源(即SR4~SR7)对应的参考BSR值为16,SR4对应的偏移量为B,B是相对于BSR值16的偏移量。
一种可能的实现方式中,可以通过SR资源的时频位置来指示SR资源对应的参考传输参数和偏移量。具体地,SR资源的时域位置与参考传输参数之间存在对应关系,SR资源的频域位置与偏移量之间存在对应关系,SR资源的时域位置可以隐式指示参考传输参数,SR资源的频域位置可以隐式指示偏移量;或者,SR资源的频域位置与参考传输参数之间存在对应关系,SR资源的时域位置与偏移量之间存在对应关系,SR资源的频域位置可以隐式指示参考传输参数,SR资源的时域位置可以隐式指示偏移量。
一种实施例中,SR资源的时域位置指示不同的BSR范围,SR资源的频域位置指示不同的偏移量。例如,参考图9,时域位置1对应BSR范围1,即时域位置1指示BSR范围1内的参考BSR值为A,SR1的频域位置指示偏移量offset1,offset1是相对 于A的偏移量;SR2的频域位置指示偏移量offset2,offset2是相对于A的偏移量;SR3的频域位置指示偏移量offset3,offset3是相对于A的偏移量。
时域位置2对应BSR范围2,即时域位置2指示BSR范围2内的参考BSR值为B,SR4的频域位置指示偏移量offset4,offset4是相对于B的偏移量;SR5的频域位置指示偏移量offset5,offset5是相对于B的偏移量;SR6的频域位置指示偏移量offset6,offset6是相对于B的偏移量。
作为另一种实施例,SR资源的频域位置既可以指示不同的BSR范围,还可以指示不同的偏移量。例如,参考图10,SR1~SR3属于频段1,频段1为BSR范围1,即频段1指示BSR范围1内的参考BSR值为A,SR1的频域位置指示偏移量offset1,offset1是相对于A的偏移量;SR2的频域位置指示偏移量offset2,offset2是相对于A的偏移量;SR3的频域位置指示偏移量offset3,offset3是相对于A的偏移量。
SR4~SR6属于频段2,频段2为BSR范围2,即频段2指示BSR范围2内的参考BSR值为B,SR4的频域位置指示偏移量offset4,offset4是相对于B的偏移量;SR5的频域位置指示偏移量offset5,offset5是相对于B的偏移量;SR6的频域位置指示偏移量offset6,offset6是相对于B的偏移量。
作为另一种实施例,SR资源的时频位置只指示参考BSR值,可以在实际发送的调度请求(SR)中增加额外的比特指示对应的偏移量。例如,参考图11,SR1~SR3的频域位置相同,时域位置不同。SR1的时域位置指示参考BSR值“4”,SR2的时域位置指示参考BSR值“30”,SR3的时域位置指示参考BSR值“50”。假设终端在SR1的资源上发送调度请求,隐含指示参考BSR值“4”,该调度请求中包括偏移量Q1,Q1为待发送数据的BSR值相对于参考BSR值“4”的偏移量,网络设备可以根据偏移量Q1和参考BSR值“4”确定待发送数据的BSR值,也可以确定待发送数据的大小,进而分配根据待发送数据的大小分配资源。
作为另一种实施例,SR资源的时频位置只指示偏移量,可以在实际发送的调度请求(SR)中增加额外的比特指示参考BSR值。例如,参考图12,SR1~SR3的时域位置相同,频域位置不同。SR1的频域位置指示偏移量Q1,SR2的频域位置指示偏移量Q2,SR3的频域位置指示偏移量Q3。假设终端在SR2的资源上发送调度请求,隐含指示偏移量Q2,该调度请求中包括参考BSR值“15”,Q2为待发送数据的BSR值相对于参考BSR值“15”的偏移量,网络设备可以根据偏移量Q2和参考BSR值“15”确定待发送数据的BSR值,也可以确定待发送数据的大小,进而分配根据待发送数据的大小分配资源。
需要说明的是,以不同的时间粒度或时间单元进行指示SR资源的时域位置,其中,时间单元或时间粒度可以是时域内的正整数个符号、迷你时隙、时隙、子帧等,或者时域内0.5毫秒(millisecond,ms)、1ms、5ms等正整毫秒或正整数秒。在本申请实施例中,正整数可以是大于等于1的整数,例如1、2、3或更大的整数。其中,迷你时隙可以为3个符号,4个符号或者7个符号等任何自然数个符号。此外,以物理资源块(physical resource block,PRB)、资源元(resource element,RE)、subband、带宽部分(bandwidth partial,BWP)中的任意一个SR资源的频域位置。
具体实现方式中,终端有数据传输需求之后,可以在本地获取第一信息,根据第 一信息确定与终端的数据传输需求匹配的第一传输参数以及第一传输参数对应的第一资源。示例的,第一信息中数据大小(单位:比特)100、150、200、300对应的SR资源分别为SR资源1、SR资源2、SR资源3、SR资源4。假设终端实际待发送的数据大小为80比特,与100比特最接近,可以认为与终端的数据传输需求匹配的第一传输参数为“100”。相应的,第一资源为第一信息中与数据大小“100”对应的SR资源1。
此外,终端可以在第一资源上发送第一调度请求,由于第一资源与第一传输参数存在预配置的对应关系,终端在第一资源上发送第一调度请求的行为可以隐含指示:终端待发送数据的传输参数为与第一资源对应的第一传输参数。
702、网络设备在第一资源上接收第一调度请求,确定第一传输参数。
可以理解的是,预先在网络设备也配置了第一信息,第一信息可以指示第一资源与第一传输参数之间的对应关系。第一信息的具体实现参考步骤701的描述,在此不做赘述。因此,当网络设备在第一资源上接收到第一调度请求,网络设备可以确定与第一资源对应的第一传输参数。
在第一信息的第一种实现方式中,网络设备获取第一信息可以确定N个用于发送调度请求的资源与M组传输参数之间的对应关系。在第一资源上接收到第一调度请求后,可以查询第一信息确定与第一资源对应的一组传输参数,作为终端待发送数据的传输参数。
示例的,假设第一信息以表1的形式配置在网络设备。网络设备在SR资源2上接收到调度请求,查询表1确定与SR资源2对应的传输参数,即数据大小2、目的标识2以及QoS参数2。
在第一信息的第二种实现方式中,网络设备获取第一信息可以确定Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及这Y组资源包括的所有X个用于发送调度请求的资源与X个偏移量之间的对应关系。在第一资源上接收到第一调度请求后,可以查询第一信息确定与第一资源对应的参考传输参数和偏移量,根据该参考传输参数和偏移量确定终端待发送数据的传输参数。
示例的,假设第一信息以表2的形式配置在网络设备。网络设备在SR资源3上接收调度请求,查询表2确定与SR资源3对应的参考传输参数A以及偏移量Q3,即终端待发送数据的传输参数为A+Q3。
703、网络设备根据第一传输参数确定第二资源。
一种可能的实现方式中,第一传输参数包括待发送数据的大小,可以根据数据大小分配第二资源,第二资源足够承载待发送数据。
另一种可能的实现方式中,第一传输参数包括待发送数据的目的标识,假设待发送数据的目的标识用于指示终端的业务类型,可以根据业务类型分配第二资源。
在不同类型的业务不共享资源池的场景下,即单播、组播及广播业务有各自对应的资源池。当待发送数据的目的标识指示的业务类型为单播业务,则在单播业务对应的资源池为终端的待发送数据分配资源,以支持终端的单播业务。当待发送数据的目的标识指示的业务类型为组播业务,则在组播业务对应的资源池为终端的待发送数据分配资源,以支持终端的组播业务;当待发送数据的目的标识指示的业务类型为广播 业务,则在广播业务所对应的资源池为终端的待发送数据配置资源。
另一种可能的实现方式中,第一传输参数包括待发送数据的服务质量参数,可以根据服务质量参数分配第二资源,第二资源能够支持待发送数据的服务质量参数。例如,第一传输参数包括QoS参数(例如,PPPP或5QI),且QoS参数的QoS级别较高,则分配较大的资源,以满足终端业务的数据服务质量需求。或者,QoS参数的QoS级别较高,则分配时域上较早的资源。或者,QoS参数的QoS级别较高,则分配的资源数至少应该在调制解调编码策略(modulation and coding scheme,MCS)较低仍可以满足终端业务的数据服务质量需求。或者,QoS参数的QoS级别较高,在资源有限的情况下优先响应第一调度请求,为终端分配第二资源。或者,QoS参数的QoS级别较高,在资源共享时将第一调度请求对应的业务配置较大的目标功率值。
相应的,QoS参数的QoS级别较低,则分配较小的资源,以满足终端业务的数据服务质量需求。或者,QoS参数的QoS级别较低,则分配时域上较晚的资源。或者,QoS参数的QoS级别较低,在资源有限的情况下不响应第一调度请求,不为终端分配第二资源。或者,QoS参数的QoS级别较低,在资源共享时将第一调度请求对应的业务配置较低的目标功率值。
704、网络设备向终端发送下行控制信息,所述下行控制信息指示用于发送所述待发送数据的第二资源。
705、终端通过第二资源向网络设备或其他终端发送所述待发送数据。
需要说明的是,终端可以通过侧行链路与其他终端(例如,第二终端)进行通信。在向其他终端发送数据之前,终端通过第一调度请求向网络设备请求用于待发送数据的第二资源。可以理解的是,网络设备接收第一调度请求后,在侧行链路资源池中为待发送数据分配资源,即第二资源可以是侧行链路资源池中的资源。当然,第二资源也可以属于侧行链路可用的资源,而不受限于侧行链路资源池。在步骤705中,终端可以通过第二资源向其他终端发送所述待发送数据,即所述待发送数据为侧行链路上的数据。
此外,终端还可以通过蜂窝链路与网络设备进行通信。在向网络设备发送数据之前,终端向网络设备发送第一调度请求向网络设备请求用于待发送数据的第二资源。可以理解的是,网络设备接收第一调度请求后,在蜂窝链路资源池中为待发送数据分配资源,即第二资源可以是蜂窝链路资源池中的资源。当然,第二资源也可以属于蜂窝链路可用的资源,而不受限于蜂窝链路资源池。在步骤705中,终端可以通过第二资源向网络设备发送所述待发送数据,即所述待发送数据为蜂窝链路上的数据。
可选的,所述第一调度请求还可以包括第二传输参数,所述第二传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项。第一传输参数和第二传输参数包括的参数可以不同,网络设备可以根据结合第一传输参数和第二传输参数了解待发送数据的属性。例如,第一传输参数包括待发送数据的大小和待发送数据的目的标识,第二传输参数包括待发送数据的服务质量参数。或者,第一传输参数包括待发送数据的目的标识,第二传输参数包括待发送数据的大小和待发送数据的服务质量参数。
可选的,终端还可以在第一调度请求中增加(tag)额外的比特来指示一些传输参 数。另外,网络设备在第一资源上接收到第一调度请求,隐含指示了一些传输参数。网络设备可以结合隐含指示的传输参数以及第一调度请求tag的比特指示的传输参数来确定终端待发送数据的传输参数。例如,在第一资源上发送第一调度请求指示了待发送数据的大小A,在第一调度请求tag的比特指示了待发送数据的服务质量参数B,网络设备可以根据待发送数据的大小A、待发送数据的服务质量参数B来确定用于发送所述待发送数据的第二资源。
具体实现中,第一调度请求中t个比特,可以指示某个传输参数的2 t个状态。例如,第一调度请求中额外增加3bit,可以表示8种状态,这8个状态可以对应8个不同的BSR。其中,不同的BSR可以是BSR值不同的BSR。
可选的,在第一信息的第二种实现方式中,网络设备在第一资源上接收到第一调度请求隐含指示了第一调度请求对应的参考传输参数,还可以在第一调度请求中增加额外的比特指示第一调度请求对应的偏移量。例如,第一调度请求中增加t个比特,可以指示2 t个不同的偏移量。取t=2,可以指示4个不同的偏移量。具体地,00指示偏移量Q1,01指示偏移量Q2,10指示偏移量Q3,11指示偏移量Q4。假设网络设备在第一资源上接收到第一调度请求隐含指示了参考传输参数A,第一调度请求中额外增加的比特为00,网络设备可以根据参考传输参数A以及偏移量Q1确定待发送数据的传输参数。
可选的,在第一信息的第二种实现方式中,网络设备在第一资源上接收到第一调度请求隐含指示了第一调度请求对应的偏移量,还可以在第一调度请求中增加额外的比特指示第一调度请求对应的参考传输参数。例如,第一调度请求中增加t个比特,可以指示2 t个不同的参考传输参数。取t=1,可以指示2个不同的参考传输参数。具体地,0指示参考传输参数A,1指示参考传输参数B。假设网络设备在第一资源上接收到第一调度请求隐含指示了偏移量Q2,第一调度请求中额外增加的比特为1,网络设备可以根据参考传输参数B以及偏移量Q2确定待发送数据的传输参数。
可选的,当终端在侧行链路上有组播业务,终端要向一组终端发送数据之前,终端可以向网络设备发送调度请求为所有待发送的数据请求资源。一种可能的实现方式中,终端可以在第一资源上发送第一调度请求,隐式指示向一个终端发送的数据的大小。另外,在第一调度请求中增加额外的比特指示数据大小缩放因子,所述数据大小缩放因子用于确定该终端所有待发送数据的大小。假设所述在所述第一资源上接收所述第一调度请求用于指示第一数据大小,网络设备可以利用所述数据大小缩放因子对所述第一数据大小进行缩放处理,获得所述待发送数据的大小。例如,发送UE需要向群组中的多个UE发送数据,发送UE可以根据传输参数与SR资源的对应关系,在一个SR资源发送第一调度请求隐式指示BSR值“15”。另外,第一调度请求中额外增加的比特指示的数据大小缩放因子为“3”。网络设备在该SR资源接收到第一调度请求,就可以确定BSR值“15”。还可以从第一调度请求中解析出额外的比特,解析出的比特指示数据大小缩放因子为“3”,网络设备确定实际BSR值为15*3,即根据BSR值“45”确定实际待发送数据的大小。
具体地,在第一调度请求中增加s个比特,可以指示2 s个不同的数据大小缩放因子。例如,该额外增加2比特,可以表示4个不同的数据大小缩放因子。其中,“00” 代表数据大小缩放因子2,“01”代表数据大小缩放因子3,“10”代表数据大小缩放因子4,“11”代表数据大小缩放因子5。
需要说明的是,数据大小缩放因子可以是群组中需要接收数据的终端数量,也可以是其他数值,本申请实施例对此不作限制。额外增加的比特的各个状态值与数据大小缩放因此之间的对应关系可以是预配置的,或者,也可以是通过信令配置的。
此外,当额外增加比特指示传输参数,且额外增加比特指示数据缩放因子,需要增加比特指示增加的比特指示的是传输参数还是数据缩放因子。例如,在第一信息的第二种可能的实现方式中,网络设备在第一资源上接收到第一调度请求隐含指示了第一调度请求对应的参考传输参数,在第一调度请求中增加额外的比特指示第一调度请求对应的偏移量。假设增加3比特来指示偏移量,则还需要在增加1比特来指示增加的这3比特指示的是偏移量,例如,第一调度请求中额外增加了4比特“0001”,其中,第一个比特“0”用于指示第一调度请求额外增加的比特用于指示偏移量,后三个比特“001”用于指示偏移量。
或者,第一调度请求中增加2比特来指示数据大小缩放因子,则还需要在增加1比特来指示增加的这3比特指示的是数据大小缩放因子,例如,第一调度请求中额外增加了4比特“1010”,其中,第一个比特“1”用于指示第一调度请求额外增加的比特用于指示数据大小缩放因子,后个比特“010”用于指示数据大小缩放因子。
或者,可以约定第一调度请求中增加的前几比特为偏移量,后几比特为数据大小缩放因子。或者,约定第一调度请求中增加的前几比特为数据大小缩放因子,后几比特为数据偏移量。
可选的,所述第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;所述在所述第一资源上发送所述第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项。
所述第一数据大小和所述第二数据大小用于确定所述待发送数据的大小,所述第一服务质量参数和所述第二服务质量参数用于确定所述待发送数据的服务质量参数,所述第一目的标识和所述第二目的标识用于确定所述待发送数据的目的标识。
例如,当在第一资源上发送第一调度请求隐含指示了第一数据大小,第一调度请求tag的比特也指示了第二数据大小,可以根据第一数据大小、第二数据大小确定待发送数据的大小。示例的,设置特殊的函数,该函数的输入为第一数据大小、第二数据大小,输出为待发送数据的大小。该函数可以是也可以对第一数据大小和第二数据大小进行加权求和,第一数据大小的权重系数、第二数据大小的权重系数可以相同也可以不同。例如,第一数据大小、第二数据大小的权重系数均为0.5。
可选的,终端在不同时间的业务可能发生变化,可以根据业务的持续时长设置SR资源与传输参数之间的对应关系的有效时长,并在有效时长开始时激活相应的对应关系,在有效时长结束时去激活该对应关系。也可以为网络设备在不同的持续时长内激活相应的SR资源与传输参数之间的对应关系,终端根据相应的激活应用相应的SR资源与传输参数之间的对应关系。
例如,终端在第一时长内终端的业务与终端在第二时长的业务不同,第一时长内SR资源与传输参数之间的对应关系,可以与第二时长内SR资源与传输参数之间的对 应关系不同。示例的,第一时长内SR资源与传输参数之间的对应关系1包括:SR资源1与BSR1对应、SR资源1与QoS级别3对应;SR资源2与BSR2对应、SR资源2与QoS级别1对应;第二时长内SR资源与传输参数之间的对应关系2包括:SR资源1与BSR2对应、SR资源1与QoS级别3对应;SR资源2与BSR1对应、SR资源2与QoS级别1对应。在第一时长内激活对应关系1,在第二时长内激活对应关系2。
本申请实施例还提供一种资源分配方法,如图13所示,所述方法包括以下步骤:
1301、终端向网络设备发送第一调度请求,所述第一调度请求用于为所述终端的待发送数据请求资源,所述第一调度请求包含第一传输参数的信息。所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数、所述待发送数据的目的标识中的至少一项。
本申请实施例中,在第一调度请求中增加额外的比特,增加的比特可以称为是第一传输参数的信息。网络设备可以根据第一传输参数的信息确定第一传输参数。
以第一传输参数包括待发送数据的大小为例,可以通过r个比特指示2 r个BSR值。具体地,预先在终端配置r个比特的状态与不同的BSR值之间的对应关系,终端可以根据实际的发送需求在第一调度请求中增加相应的比特,指示相应的BSR值。示例的,通过2个比特指示4个BSR值,其中,“00”指示BSR值“15”,“01”指示BSR值“30”,“10”指示BSR值“50”,“11”指示BSR值“100”。假设在第一调度请求中增加“10”,则指示BSR值“50”。
以第一传输参数包括待发送数据的目的标识为例,目标标识可以表示业务类型。可以通过2个比特指示单播、组播、广播这三种不同的业务类型。具体地,预先在终端配置2个比特的状态与单播、组播、广播之间的对应关系,终端可以根据实际的业务类型在第一调度请求中增加相应的比特,指示业务类型。示例的,通过2个比特指示业务类型,其中,“00”指示单播,“01”指示组播,“10”指示广播。假设在第一调度请求中增加“10”,则指示的业务类型为广播。
以第一传输参数包括待发送数据的服务质量参数为例,可以通过p个比特指示2 p个QoS级别,预先在终端配置p个比特的状态与不同的QoS级别之间的对应关系。以5QI为例,5QI包括5个QoS级别,其中“000”代表QoS级别1,“001”代表QoS级别2,“010”代表QoS级别3,“011”代表QoS级别4,“100”代表QoS级别5。假设在第一调度请求中增加“010”,则指示QoS级别3。
此外,当额外增加比特指示待发送数据的大小、待发送数据的服务质量参数和待发送数据的目的标识,需要额外增加比特指示哪些比特用于指示待发送数据的大小,哪些比特用于指示待发送数据的服务质量参数,哪些比特用于指示待发送数据的目的标识,哪些比特用于指示所述待发送数据的缩放因子。或者,预先约定哪些比特用于指示待发送数据的大小,哪些比特用于指示待发送数据的服务质量参数,哪些比特用于指示待发送数据的目的标识,哪些比特用于指示所述待发送数据的缩放因子。
1302、网络设备接收第一调度请求,获取第一传输参数的信息。
网络设备接收第一调度请求,根据第一调度请求中额外增加的比特确定第一传输参数的信息。
例如,第一调度请求中增加r个比特指示BSR值。具体地,预先在网络设备配置 r个比特的状态与不同的BSR值之间的对应关系,示例的,通过2个比特指示4个BSR值,其中,“00”指示BSR值“15”,“01”指示BSR值“30”,“10”指示BSR值“50”,“11”指示BSR值“100”。假设网络设备识别出第一调度请求中增加的比特是“10”,则确定第一传输参数的信息是“10”,即第一传输参数包括:BSR值“50”。
或者,第一调度请求中增加2个比特指示单播、组播、广播这三种不同的业务类型。具体地,预先在网络设备配置2个比特的状态与单播、组播、广播之间的对应关系。示例的,通过2个比特指示业务类型,其中,“00”指示单播,“01”指示组播,“10”指示广播。假设网络设备识别出第一调度请求中增加的比特是“10”,确定第一传输参数的信息是“10”,即第一传输参数包括:广播业务类型。
又或者,在第一调度请求中增加p个比特指示2 p个QoS级别,预先在网络设备配置p个比特的状态与不同的QoS级别之间的对应关系。以5QI为例,5QI包括5个QoS级别,其中“000”代表QoS级别1,“001”代表QoS级别2,“010”代表QoS级别3,“011”代表QoS级别4,“100”代表QoS级别5。假设网络设备识别出第一调度请求中增加的比特是“010”,确定第一传输参数的信息是“010”,即第一传输参数包括:QoS级别3。
1303、网络设备根据第一传输参数的信息确定第一传输参数,根据第一传输参数分配资源。所述资源用于发送所述发送数据。
具体实现参考图7所示方法关于步骤703的描述,在此不做赘述。
1304、网络设备向终端发送向终端发送下行控制信息,所述下行控制信息指示用于发送所述待发送数据的第二资源。
1305、终端通过第二资源向网络设备或其他终端发送所述待发送数据。
具体实现参考图7所示方法关于步骤705的描述,在此不做赘述。
可选的,所述方法还包括:所述第一终端获取M组传输参数的信息;所述M组传输参数包括所述第一传输参数。
本申请实施例,可以预先将多组传输参数的信息配置在网络设备和终端,终端可以根据实际的业务需求选择合适的传输参数,将该传输参数的信息(例如,几比特)增加到调度请求中。网络设备接收调度请求后,可以从中解析出该传输参数的信息,根据本地配置的传输参数的信息,确定调度请求中的信息指示的传输参数。例如,BSR1的信息是“00”,BSR2的信息是“01”,BSR3的信息是“10”,BSR4的信息是“11”,在调度请求中增加“00”指示BSR1,网络设备可以根据BSR1分配资源。
可选的,当第一传输参数包括待发送数据的大小,第一传输参数还可以包括数据大小缩放因子。
可以理解的是,当终端在侧行链路上有组播业务,终端要向一组终端发送数据之前,终端可以向网络设备发送调度请求为所有待发送的数据请求资源。一种可能的实现方式中,终端可以向网络设备发送第一调度请求,第一调度请求中增加比特,增加的比特称为第一传输参数的信息,可以指示待发送数据的大小以及数据大小缩放因子。
假设第一调度请求中增加的比特指示第一数据大小,网络设备可以利用所述数据大小缩放因子对所述第一数据大小进行缩放处理,获得所述待发送数据的大小(即终 端向一组终端发送的所有待发送数据的大小)。例如,发送UE需要向群组中的多个UE发送数据,发送UE可以在第一调度请求中增加比特指示BSR值“15”。另外,第一调度请求中还可以增加比特指示数据大小缩放因子为“3”。网络设备接收到第一调度请求,就可以确定BSR值“15”和数据大小缩放因子为“3”,网络设备确定实际BSR值为15*3,即根据BSR值“45”确定实际待发送数据的大小。
具体地,在第一调度请求中增加s个比特,可以指示2 s个不同的数据大小缩放因子。例如,该额外增加2比特,可以表示4个不同的数据大小缩放因子。其中,“00”代表数据大小缩放因子2,“01”代表数据大小缩放因子3,“10”代表数据大小缩放因子4,“11”代表数据大小缩放因子5。
需要说明的是,数据大小缩放因子可以是群组中需要接收数据的终端数量,也可以是其他数值,本申请实施例对此不作限制。额外增加的比特的各个状态值与数据大小缩放因此之间的对应关系可以是预配置的,或者,也可以是通过信令配置的。
图13所示的方法中,终端可以在调度请求中增加比特指示待发送数据的传输参数,终端不需要花费时间先后上报SR和BSR来申请传输资源,网络设备在接收SR后就可以为终端待发送的数据分配资源,减少了终端申请传输资源的时延,尽可能满足时延敏感业务的需求,提高了传输性能。另外,在调度请求中增加少量比特就指示传输参数的信息,无需在调度请求中tag全部的传输参数,也可以节省开销,提高通信性能。
在采用对应各个功能划分各个功能模块的情况下,图14示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图14所示的通信装置可以是本申请实施例所述的终端,也可以是终端中实现上述方法的部件。如图14所示,通信装置包括处理单元1401以及收发单元1402。处理单元可以是一个或多个处理器,收发单元可以是收发器。
处理单元1401,用于支持终端生成第一调度请求,和/或用于本文所描述的技术的其它过程。
收发单元1402,用于终端执行步骤701、步骤704、步骤705、步骤1301以及步骤1305,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实现方式中,图14所示的通信装置也可以是应用于终端中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。
其中,以上用于接收/发送的收发单元1402可以是该装置的一种接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该收发单元1402是该芯片的接口电路,该接口电路用于读入或输出基带信号。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图15所示。在图15中,该通信装置包括:处理模块1501和通信模块1502。处理模块1501用于对通信装置的动作进行控制管理,例如,执行上述处理单元1401执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1502用于执行上述收发单元1402执行的步骤,支持通信装置与其他设备之间的交互,如与其他终端装置之间的交互。如图15所示,通信装置还可以包括存储模块1503,存储模块1503 用于存储通信装置的程序代码和数据。
当处理模块1501为处理器,通信模块1502为收发器,存储模块1503为存储器时,通信装置为图6A所示的通信装置。
在采用对应各个功能划分各个功能模块的情况下,图16示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图16所示的通信装置可以是本申请实施例所述的网络设备,也可以是网络设备中实现上述方法的部件。如图16所示,通信装置包括处理单元1601以及收发单元1602。处理单元可以是一个或多个处理器,收发单元可以是收发器。
处理单元1601,用于支持网络设备执行步骤702、步骤703、步骤1302以及步骤1303,和/或用于本文所描述的技术的其它过程。
收发单元1602,用于支持该通信装置与其他通信装置之间的通信,例如,支持网络设备执行步骤701、步骤704、步骤1301以及步骤1304,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实现方式中,图16所示的通信装置也可以是应用于网络设备中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。
其中,以上用于接收/发送的收发单元1602可以是该装置的一种接口电路,用于读入基带信号。例如,当该装置以芯片的方式实现时,该收发单元1602是该芯片用于读入基带信号的接口电路,或,收发单元1602是该芯片用于输出基带信号的接口电路。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图17所示。在图17中,该通信装置包括:处理模块1701和通信模块1702。处理模块1701用于对通信装置的动作进行控制管理,例如,执行上述处理单元1601执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1702用于执行上述收发单元1602执行的步骤,支持通信装置与其他设备之间的交互,如与其他终端装置之间的交互。如图17所示,通信装置还可以包括存储模块1703,存储模块1703用于存储通信装置的程序代码和数据。
当处理模块1701为处理器,通信模块1702为收发器,存储模块1703为存储器时,通信装置为图6B所示的通信装置。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如图7或图13所示的方法。
本申请实施例提供一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置实现如图7或图13所示的方法。
本申请实施例一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在图6A、图6B、图14~图17所示的通信装置上运行时,使得通信装置实现如图7或图13所示的方法。该无线通信装置可以为芯片等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要 而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种发送调度请求的方法,其特征在于,包括:
    第一终端在第一资源向网络设备发送第一调度请求,所述第一调度请求用于为所述第一终端的待发送数据请求资源,在所述第一资源上发送所述第一调度请求用于指示所述待发送数据的第一传输参数,其中,所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项;
    所述第一终端从所述网络设备接收下行控制信息,所述下行控制信息指示用于发送所述待发送数据的第二资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端获取第一信息,所述第一信息用于指示所述第一资源与所述第一传输参数之间的对应关系。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,所述N个用于发送调度请求的资源包括所述第一资源,所述传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;
    其中,所述N、M均为大于等于1的整数。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及所述Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为所述每个资源对应的传输参数相对于所述第i组用于发送所述调度请求的资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;
    其中,所述X个用于发送调度请求的资源包括所述第一资源,所述X、Y为大于等于1的整数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一调度请求指示第一偏移量,所述第一偏移量为所述第一传输参数相对于第一参考传输参数的偏移量;所述第一参考传输参数为所述Y个参考传输参数中,与所述第一资源所在组对应的参考传输参数。
  6. 根据权利要求1所述的方法,其特征在于,所述第一调度请求包括第二传输参数,所述第二传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项。
  7. 根据权利要求1所述的方法,其特征在于,所述第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;
    所述在所述第一资源上发送所述第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;
    所述第一数据大小和所述第二数据大小用于确定所述待发送数据的大小,所述第一服务质量参数和所述第二服务质量参数用于确定所述待发送数据的服务质量参数,所述第一目的标识和所述第二目的标识用于确定所述待发送数据的目的标识。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一调度请求包括数据大小缩放因子,
    所述数据大小缩放因子用于确定所述待发送数据的大小。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端在所述第二资源上向所述网络设备或第二终端发送所述待发送数据。
  10. 一种接收调度请求的方法,其特征在于,包括:
    网络设备在第一资源上接收来自第一终端的第一调度请求,所述第一调度请求用于为所述第一终端的待发送数据请求资源;
    所述网络设备根据在所述第一资源上接收到所述第一调度请求确定所述待发送数据的第一传输参数,其中,所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项;
    所述网络设备向所述第一终端发送下行控制信息,所述下行控制信息指示用于发送所述待发送数据的第二资源。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备获取第一信息,所述第一信息用于指示所述第一资源与所述第一传输参数之间的对应关系。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,所述N个用于发送调度请求的资源包括所述第一资源,所述传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;
    其中,所述N、M均为大于等于1的整数。
  13. 根据权利要求11或12一项所述的方法,其特征在于,
    所述第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及所述Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为所述每个资源对应的传输参数相对于所述第i组用于发送所述调度请求的资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;
    其中,所述X个用于发送调度请求的资源包括所述第一资源,所述X、Y为大于等于1的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述第一调度请求指示第一偏移量,所述第一偏移量为所述第一传输参数相对于第一参考传输参数的偏移量;所述第一参考传输参数为所述Y个参考传输参数中,与所述第一资源所在组对应的参考传输参数。
  15. 根据权利要求10所述的方法,其特征在于,所述第一调度请求包括第二传输参数,所述第二传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项。
  16. 根据权利要求10所述的方法,其特征在于,所述第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;
    所述在所述第一资源上发送所述第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;
    所述方法还包括:
    根据所述第一数据大小和所述第二数据大小确定所述待发送数据的大小,和/或,根据所述第一服务质量参数和所述第二服务质量参数确定所述待发送数据的服务质量参数,和/或,根据所述第一目的标识和所述第二目的标识确定所述待发送数据的目的标识。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述第一调度请求包括数据大小缩放因子;所述数据大小缩放因子用于确定所述待发送数据的大小。
  18. 根据权利要求17所述的方法,其特征在于,所述在所述第一资源上接收所述第一调度请求用于指示第一数据大小;
    所述方法还包括:
    利用所述数据大小缩放因子对所述第一数据大小进行缩放处理,获得所述待发送数据的大小。
  19. 根据权利要求10-18任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二资源上接收来自所述第一终端的所述待发送数据。
  20. 根据权利要求10-18任一项所述的方法,其特征在于,所述待发送数据为所述第一终端向第二终端发送的数据。
  21. 一种发送调度请求的通信装置,其特征在于,包括:
    收发单元,用于在第一资源向网络设备发送第一调度请求,所述第一调度请求用于为第一终端的待发送数据请求资源,在所述第一资源上发送所述第一调度请求用于指示所述待发送数据的第一传输参数,其中,所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项;
    所述收发单元还用于,从所述网络设备接收下行控制信息,所述下行控制信息指示用于发送所述待发送数据的第二资源。
  22. 根据权利要求21所述的通信装置,其特征在于,所述通信装置还包括处理单元,
    所述处理单元用于,获取第一信息,所述第一信息用于指示所述第一资源与所述第一传输参数之间的对应关系。
  23. 根据权利要求22所述的通信装置,其特征在于,
    所述第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,所述N个用于发送调度请求的资源包括所述第一资源,所述传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;
    其中,所述N、M均为大于等于1的整数。
  24. 根据权利要求22或23任一项所述的通信装置,其特征在于,
    所述第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及所述Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为所述每个资源对应的传输参数相对于所述第i组用于发送所述调度请求的资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;
    其中,所述X个用于发送调度请求的资源包括所述第一资源,所述X、Y为大于等于1的整数。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第一调度请求指示第一偏移量,所述第一偏移量为所述第一传输参数相对于第一参考传输参数的偏移量;所述第一参考传输参数为所述Y个参考传输参数中,与所述第一资源所在组对应的参考传输参数。
  26. 根据权利要求21所述的通信装置,其特征在于,所述第一调度请求包括第二传输参数,所述第二传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项。
  27. 根据权利要求21所述的通信装置,其特征在于,所述第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;
    所述在所述第一资源上发送所述第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;
    所述第一数据大小和所述第二数据大小用于确定所述待发送数据的大小,所述第一服务质量参数和所述第二服务质量参数用于确定所述待发送数据的服务质量参数,所述第一目的标识和所述第二目的标识用于确定所述待发送数据的目的标识。
  28. 根据权利要求21-27任一项所述的通信装置,其特征在于,所述第一调度请求包括数据大小缩放因子,
    所述数据大小缩放因子用于确定所述待发送数据的大小。
  29. 根据权利要求21-28任一项所述的通信装置,其特征在于,所述收发单元还用于,在所述第二资源上向所述网络设备或第二终端发送所述待发送数据。
  30. 一种接收调度请求的通信装置,其特征在于,包括:
    收发单元,用于在第一资源上接收来自第一终端的第一调度请求,所述第一调度请求用于为所述第一终端的待发送数据请求资源;
    处理单元,用于根据在所述第一资源上接收到所述第一调度请求确定所述待发送数据的第一传输参数,其中,所述第一传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项;
    所述收发单元还用于,向所述第一终端发送下行控制信息,所述下行控制信息指示用于发送所述待发送数据的第二资源。
  31. 根据权利要求30所述的通信装置,其特征在于,所述处理单元还用于,获取第一信息,所述第一信息用于指示所述第一资源与所述第一传输参数之间的对应关系。
  32. 根据权利要求31所述的通信装置,其特征在于,
    所述第一信息用于指示N个用于发送调度请求的资源和M组传输参数之间的对应关系,所述N个用于发送调度请求的资源包括所述第一资源,所述传输参数包括数据的大小、数据的服务质量参数和数据的目的标识中的至少一项;
    其中,所述N、M均为大于等于1的整数。
  33. 根据权利要求31或32所述的通信装置,其特征在于,
    所述第一信息用于指示Y个参考传输参数与Y组用于发送调度请求的资源之间的对应关系,以及所述Y组用于发送调度请求的资源包括的X个用于发送调度请求的资源与X个偏移量之间的对应关系;第i组用于发送调度请求的资源中的每个资源对应的偏移量为所述每个资源对应的传输参数相对于所述第i组用于发送所述调度请求的 资源对应的参考传输参数的偏移量,i为大于等于1小于等于Y的整数;
    其中,所述X个用于发送调度请求的资源包括所述第一资源,所述X、Y为大于等于1的整数。
  34. 根据权利要求33所述的通信装置,其特征在于,所述第一调度请求指示第一偏移量,所述第一偏移量为所述第一传输参数相对于第一参考传输参数的偏移量;所述第一参考传输参数为所述Y个参考传输参数中,与所述第一资源所在组对应的参考传输参数。
  35. 根据权利要求30所述的通信装置,其特征在于,所述第一调度请求包括第二传输参数,所述第二传输参数包括所述待发送数据的大小、所述待发送数据的服务质量参数和所述待发送数据的目的标识中的至少一项。
  36. 根据权利要求30所述的通信装置,其特征在于,所述第一调度请求还用于指示第一数据大小、第一服务质量参数和第一目的标识中的至少一项;
    所述在所述第一资源上发送所述第一调度请求用于指示第二数据大小、第二服务质量参数和第二目的标识中的至少一项;
    所述处理单元还用于,根据所述第一数据大小和所述第二数据大小确定所述待发送数据的大小,和/或,根据所述第一服务质量参数和所述第二服务质量参数确定所述待发送数据的服务质量参数,和/或,根据所述第一目的标识和所述第二目的标识确定所述待发送数据的目的标识。
  37. 根据权利要求30-36任一项所述的通信装置,其特征在于,所述第一调度请求包括数据大小缩放因子;所述数据大小缩放因子用于确定所述待发送数据的大小。
  38. 根据权利要求37所述的通信装置,其特征在于,所述在所述第一资源上接收所述第一调度请求用于指示第一数据大小;
    所述处理单元还用于,利用所述数据大小缩放因子对所述第一数据大小进行缩放处理,获得所述待发送数据的大小。
  39. 根据权利要求30-38任一项所述的通信装置,其特征在于,所述收发单元还用于,在所述第二资源上接收来自所述第一终端的所述待发送数据。
  40. 根据权利要求30-38任一项所述的通信装置,其特征在于,所述待发送数据为所述第一终端向第二终端发送的数据。
PCT/CN2020/105314 2019-08-02 2020-07-28 一种发送和接收调度请求的方法及通信装置 WO2021023068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910713311.5 2019-08-02
CN201910713311.5A CN112312557B (zh) 2019-08-02 2019-08-02 一种发送和接收调度请求的方法及通信装置

Publications (1)

Publication Number Publication Date
WO2021023068A1 true WO2021023068A1 (zh) 2021-02-11

Family

ID=74485979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105314 WO2021023068A1 (zh) 2019-08-02 2020-07-28 一种发送和接收调度请求的方法及通信装置

Country Status (2)

Country Link
CN (1) CN112312557B (zh)
WO (1) WO2021023068A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777928B (zh) * 2022-05-09 2023-03-21 华能国际电力股份有限公司井冈山电厂 一种红外成像监测和预警方法及系统
CN114979976B (zh) * 2022-05-11 2023-11-03 中国电信股份有限公司 数据处理方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578816A (zh) * 2007-01-08 2009-11-11 交互数字技术公司 在无线通信中用于上行链路调度信令的方法和设备
CN102316582A (zh) * 2010-07-06 2012-01-11 中兴通讯股份有限公司 一种上行资源分配方法及系统
US20140036885A1 (en) * 2008-03-21 2014-02-06 Telefonaktiebolaget L M Ericsson (Publ) Prohibiting unnecessary scheduling requests for uplink grants
WO2016106656A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 一种传输资源请求的方法和装置
CN109417812A (zh) * 2016-08-11 2019-03-01 三星电子株式会社 移动通信系统中用于调度上行链路数据的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578816A (zh) * 2007-01-08 2009-11-11 交互数字技术公司 在无线通信中用于上行链路调度信令的方法和设备
US20140036885A1 (en) * 2008-03-21 2014-02-06 Telefonaktiebolaget L M Ericsson (Publ) Prohibiting unnecessary scheduling requests for uplink grants
CN102316582A (zh) * 2010-07-06 2012-01-11 中兴通讯股份有限公司 一种上行资源分配方法及系统
WO2016106656A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 一种传输资源请求的方法和装置
CN109417812A (zh) * 2016-08-11 2019-03-01 三星电子株式会社 移动通信系统中用于调度上行链路数据的方法和设备

Also Published As

Publication number Publication date
CN112312557B (zh) 2023-03-24
CN112312557A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021027872A1 (zh) 信号发送、接收、信息反馈方法、装置、通信节点及介质
WO2019157947A1 (zh) 数据发送的方法和通信设备
CN111586643B (zh) 单播传输的方法和通信装置
WO2020056578A1 (en) Device discovery using sidelink discovery messages
CN111727613B (zh) 一种数据传输方法和装置
US20210250878A1 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
WO2020147825A1 (zh) 确定参数值的方法和设备
WO2018141244A1 (zh) 一种资源调度方法、装置及系统
WO2017128454A1 (zh) 通信方法、网络侧设备及终端
WO2019184784A1 (zh) 一种通信方法及相关设备
CN110690944B (zh) 信道状态信息的优先级发送、确定方法及装置、存储介质、用户设备
US20220159696A1 (en) Wireless communication method, terminal device, and network device
TW202017402A (zh) 用於側行鏈路的通信方法和設備
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2021023068A1 (zh) 一种发送和接收调度请求的方法及通信装置
WO2021081898A1 (zh) 通信方法和通信装置
WO2021244299A1 (zh) 通信方法及通信设备
WO2019029739A1 (zh) 一种多载频传输方法、设备及系统
CN111148074B (zh) 传输方法和通信设备
WO2020098801A1 (zh) 使用资源的方法和通信设备
CN112737755B (zh) 通信方法和通信装置
WO2020024299A1 (zh) 资源使用状况的上报方法及通信装置
WO2022121726A1 (zh) 一种资源分配方法及装置
CN113453341B (zh) 随机接入消息的发送方法、用户设备类型确定方法及设备
WO2018090317A1 (zh) 一种资源调度方法及相关设备、系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849333

Country of ref document: EP

Kind code of ref document: A1