WO2020147825A1 - 确定参数值的方法和设备 - Google Patents

确定参数值的方法和设备 Download PDF

Info

Publication number
WO2020147825A1
WO2020147825A1 PCT/CN2020/072705 CN2020072705W WO2020147825A1 WO 2020147825 A1 WO2020147825 A1 WO 2020147825A1 CN 2020072705 W CN2020072705 W CN 2020072705W WO 2020147825 A1 WO2020147825 A1 WO 2020147825A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
value
information
time
mapping relationship
Prior art date
Application number
PCT/CN2020/072705
Other languages
English (en)
French (fr)
Inventor
彭淑燕
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20741834.4A priority Critical patent/EP3914033A4/en
Priority to JP2021540553A priority patent/JP7203231B2/ja
Publication of WO2020147825A1 publication Critical patent/WO2020147825A1/zh
Priority to US17/376,444 priority patent/US11979776B2/en
Priority to JP2022208391A priority patent/JP2023052082A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of communication technology, and more specifically to methods and devices for determining parameter values.
  • a sidelink refers to a link between a terminal equipment (User Equipment, UE) and the UE for direct communication without going through the network.
  • Long Term Evolution (LTE) Sidelink includes device-to-device (D2D) communication and vehicle-to-everything (V2X) communication.
  • New Radio (NR) Sidelink currently includes V2X communications.
  • LTE Sidelink two resource allocation modes are supported: scheduling resource allocation mode and UE autonomous resource selection mode.
  • the scheduling resource allocation mode the network device configures resources for Sidelink; in the UE autonomous resource selection mode, the UE will periodically reserve certain resources based on the monitoring results over a period of time.
  • the parameter value that the UE depends on in the process of resource monitoring is a fixed value, which affects the probability of the UE to select a suitable resource, and is not conducive to balancing the reliability of the UE and the packet loss rate of the system.
  • One of the objectives of the embodiments of the present disclosure is to provide a method for determining parameter values, so as to solve the problem that the terminal device influences the probability of selecting suitable resources according to the fixed parameter value in the resource monitoring process, which is not conducive to balancing the reliability of the terminal device and the system The problem of packet loss rate.
  • a method for determining parameter values is provided, which is applied to a terminal device in sidelink communication.
  • the method includes: if the current time is the parameter value adjustment time, determining that the target parameter is in the current The target value at the time, the target parameter includes at least one of an interference threshold, a signal strength threshold, a channel occupancy rate threshold, a channel busy rate threshold, and a distance threshold, and the target manner is one of the following manners:
  • the target value is determined according to a target mapping relationship, the target mapping relationship includes a mapping relationship between the value of the target parameter and first target information, and the first target information includes a target duration, a target duration ratio, and a counter value And at least one of the number of retransmissions; and
  • the target value is determined by adjusting the step size according to the initial value and the numerical value of the target parameter, wherein the initial value of the target parameter is related to the first target information.
  • a method for determining parameter values is provided, which is applied to a terminal device in sidelink communication, and the method includes:
  • the transmission resource is not occupied, the value of the counter is adjusted, and the counter is used for resource allocation.
  • a terminal device which is applied to sidelink communication, and the terminal device includes:
  • the processing module is configured to determine the target value of the target parameter at the current moment according to the target mode if the current moment is the parameter value adjustment moment, and the target parameter includes an interference threshold, a signal strength threshold, a channel occupancy rate threshold, and a channel busy rate At least one of a threshold and a distance threshold, and the target mode is one of the following modes:
  • the target value is determined according to a target mapping relationship, the target mapping relationship includes a mapping relationship between the value of the target parameter and first target information, and the first target information includes a target duration, a target duration ratio, and a counter value And at least one of the number of retransmissions; and
  • the target value is determined by adjusting the step size according to the initial value and the numerical value of the target parameter, wherein the initial value of the target parameter is related to the first target information.
  • a terminal device which is applied to sidelink communication, and the terminal device includes:
  • the first processing module is used to determine the occupancy of the corresponding transmission resources at the current moment
  • the second processing module is configured to adjust the value of a counter if the transmission resource is not occupied, and the counter is used for resource allocation.
  • a terminal device which is used in sidelink communication, including: a memory, a processor, and a program stored on the memory and running on the processor, and the program is The processor implements the steps of the method for determining parameter values as described in the first aspect or the second aspect when executed.
  • a computer-readable medium stores a program, and when the program is executed by a processor, the method for determining parameter values as described in the first or second aspect is implemented A step of.
  • the terminal device when the terminal device judges that the current moment is the parameter value adjustment moment, it will determine the target value of the target parameter at the current moment according to the target method, so that the terminal device can dynamically adjust the value of the target parameter so that the terminal The device can perform resource monitoring based on dynamically adjusted parameter values, which improves the probability that the terminal device selects a suitable resource, thereby balancing the reliability of the terminal device and the system packet loss rate.
  • Fig. 1 is a schematic flowchart of a method for determining a parameter value according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart of a method for determining a parameter value according to another embodiment of the present disclosure.
  • Fig. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a terminal device according to still another embodiment of the present disclosure.
  • LTE Long Term Evolution
  • NR New Radio
  • terminal equipment which may also be referred to as a mobile terminal (Mobile Terminal), mobile user equipment, etc.
  • UE can be connected to a wireless access network (for example, Radio Access Network, RAN) Or multiple core networks for communication.
  • User equipment can be mobile terminals, such as mobile phones (or “cellular” phones) and computers with mobile terminals. For example, they can be portable, pocket-sized, handheld, or built-in computers. Vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • a network device is a device deployed in a wireless access network device to provide wireless communication functions for terminal devices.
  • the network device may be a base station, for example, and the base station may be an evolved base station (eNB) in LTE. Or e-NodeB, evolutional Node B) and 5G base station (gNB).
  • eNB evolved base station
  • gNB 5G base station
  • a side link may also be referred to as: a secondary link, a side link, and a side link.
  • a side link may also be referred to as: a secondary link, a side link, and a side link.
  • Sidelink may also be referred to as: a secondary link, a side link, and a side link.
  • the terminal device may be a transmitting terminal device (transmitting UE) in Sidelink communication, or a receiving terminal device (receiving UE) in Sidelink communication.
  • Fig. 1 shows a method for determining parameter values according to an embodiment of the present disclosure.
  • the method shown in Fig. 1 can be executed by a terminal device in sidelink communication.
  • the method includes:
  • the target parameter includes an interference threshold, a signal strength threshold, a channel occupancy rate threshold, a channel busy rate threshold, and a distance At least one of the thresholds, and the target mode is one of the following modes:
  • the target value is determined according to a target mapping relationship, the target mapping relationship includes a mapping relationship between the value of the target parameter and first target information, and the first target information includes a target duration, a target duration ratio, and a counter value And at least one of the number of retransmissions; and
  • the target value is determined by adjusting the step size according to the initial value and the numerical value of the target parameter, wherein the initial value of the target parameter is related to the first target information.
  • the effective time period of the target value of the target parameter at the current moment may be the time period between the effective moment of the target value and the effective moment of the value of the target parameter at the next adjustment moment.
  • the counter in S110 may be used for resource allocation.
  • the target method is to determine the target value according to a target mapping relationship; wherein, the first target information includes a target duration or a target duration ratio, and the target duration includes a first duration or a second duration.
  • the first time length is the time length between the timing start time and the current time
  • the second time length is the time length between the current time and the latest time that meets the transmission delay requirement
  • the terminal device No information transmission is performed within the first time length
  • the target time length ratio is the ratio of the time length between the timing start time and the current start time to the delay demand.
  • the target method is to determine the target value according to the target mapping relationship, and the first target information includes the target duration
  • the target method is to determine the target value according to the target mapping relationship, and the first target information includes the target duration ratio
  • the timing start time here may be one of the following moments: the arrival time of the data packet, the receiving time of the second target information, and the time indicated by the second target information; when the terminal device is the sending end terminal device, the second target information Including at least one of the following information: high-level signaling, Downlink Control Information (DCI), and Sidelink Control Information (SCI); when the terminal device is the receiving end terminal device, the second target
  • the information includes at least one of the following information: high-level signaling, DCI, scheduling request (Scheduling Request, SR), and buffer status including (Buffer Status Report, BSR) and SCI.
  • the high-level signaling here may be, for example, radio resource control (Radio Resource Control, RRC) signaling, broadcast signaling, side link broadcast information or side link system information.
  • the latest time to meet the transmission delay requirement can also be understood as the time when the terminal device determines the packet loss. Or it can be understood that the time interval from the time when the data packet is generated is the time required for the transmission delay.
  • the target parameter is the interference measurement threshold or the signal strength threshold as an example.
  • the first duration is t
  • the second duration res_t L-t
  • the mapping relationship between the interference measurement threshold or the signal strength threshold and the first duration or the second duration can be predefined or preconfigured (the mapping relationship can be a table).
  • the value of the interference threshold or the signal strength threshold can be determined according to the value of t or res_t at the current moment and the mapping relationship.
  • the current time is the parameter adjustment time according to the granularity of the adjustment time. Or according to the first duration or the second duration, it is determined whether the current moment is the parameter adjustment moment. For example, if at the current moment, t is greater than T1, or res_t is smaller than T2, then the current moment is the parameter adjustment moment.
  • the adjustment time granularity and the values of T1 and T2 may be predefined, or may be pre-configured, or may be configured by a network device, or may be configured by a terminal device.
  • the adjustment time granularity can be, for example, one of the following granularities: millisecond (ms), subframe (subframe), N time slots (slot), multi-slot (multi-slot), N symbols (symbol), frame (frame) And a time pattern (Time Pattern), N is a positive integer greater than or equal to 1.
  • the target parameter is a channel occupancy rate threshold or a channel busy rate threshold
  • the first target information includes a counter (counter) as an example.
  • the mapping relationship between the channel occupancy rate threshold or the channel busy rate threshold and the value of the counter can be predefined or preconfigured (the mapping relationship can be a table).
  • the mapping relationship can be a table.
  • the value of the channel occupancy threshold or the value of the channel busy rate at each time of parameter adjustment can be determined. In this example, you can determine whether the current time is the parameter adjustment time according to the granularity of the adjustment time.
  • the target parameter as the distance threshold
  • taking the first target information including the number of retransmissions as an example.
  • the mapping relationship between the distance threshold and the number of retransmissions can be predefined or pre-configured.
  • the value of the distance threshold at each parameter adjustment moment can be determined according to the number of retransmissions and the mapping relationship at the parameter adjustment moment. In this example, you can determine whether the current time is the parameter adjustment time according to the granularity of the adjustment time.
  • the initial transmission can be regarded as the corresponding number of retransmissions as 0.
  • the above-mentioned distance threshold may be understood as the threshold of the distance between the terminal device and the terminal device. For example, if the number of retransmissions corresponding to a parameter adjustment moment is 0 and the distance threshold value is 1000 meters, the terminal device considers resources occupied by other terminal devices within 1000 meters away from itself as occupied resources. The number of retransmissions corresponding to the next parameter adjustment moment is 1, and the value of the distance threshold is 500 meters, and the terminal device considers the resources occupied by other terminal devices within 500 meters from itself as occupied resources.
  • the target mode is to adjust the step size according to the initial value and the value of the target parameter to determine the target value.
  • the method shown in Figure 1 also includes:
  • the initial value of the target parameter is determined according to the initial value corresponding to the first target information and the mapping relationship between the value of the target parameter and the first target information.
  • the terminal device adjusts the step size according to the initial value and the numerical value of the target parameter to determine the target value.
  • the terminal device actually adjusts the step size according to the value and the numerical value of the target parameter before the current time to determine the target value of the target parameter.
  • the first target information includes the target duration
  • the target duration includes the first duration or the second duration
  • the first duration is the duration between the timing start time and the current moment
  • the second duration is the current moment and meeting the transmission delay requirement
  • the terminal device did not perform information transmission within the first time period.
  • it can be determined whether the current time is the parameter adjustment time according to the granularity of the adjustment time, or whether the current time is the parameter adjustment time according to the target time length and the preset time length.
  • the timing start time here may be one of the following moments: the arrival time of the data packet, the activation time of the counter, the reception time of the third target information, and the time indicated by the third target information; the terminal device is the sending end terminal
  • the third target information includes at least one of the following information: high-level signaling, DCI, and SCI
  • the third target information includes at least one of the following information: Signaling, DCI, SR, BSR and SCI.
  • the target parameter is the interference measurement threshold or the signal strength threshold as an example.
  • the first duration is t
  • the second duration res_t L-t
  • the target parameter is a channel occupancy rate threshold or a channel busy rate threshold
  • the first target information includes a counter (counter) as an example.
  • the mapping relationship between the channel occupancy rate threshold or the channel busy rate threshold and the value of the counter can be predefined or preconfigured (the mapping relationship can be a table).
  • the initial value of the channel occupancy threshold or the channel busy rate threshold can be determined according to the value of the arrival time timer of the data packet and the mapping relationship.
  • the mapping relationship between the distance threshold and the number of retransmissions can be predefined or pre-configured.
  • the initial value of the distance threshold can be determined according to the mapping relationship and the number of retransmissions 0.
  • the numerical adjustment step can be further determined.
  • the value adjustment step size can be pre-configured, predefined, network device configuration or terminal device configuration.
  • the numerical adjustment step size may also be determined based on the mapping relationship.
  • the value adjustment step size is determined by the terminal device according to the mapping relationship between the target duration and the value adjustment step size.
  • the mapping relationship between the interference measurement threshold and the first duration can be pre-defined or pre-configured, and the pre-defined or pre-configured adjustment time granularity is 1 slot. Assuming that t is in [a,b], the value adjustment step is 3dB, and in [b,c], the value adjustment step is 6dB.
  • the interference threshold value is the interference at the current moment The value of the threshold minus 6dB.
  • the first target information further includes the granularity of the frequency domain resource unit
  • the numerical adjustment step is determined by the terminal device according to the granularity of the frequency domain resource unit and the numerical adjustment step.
  • the mapping relationship between is determined.
  • the numerical adjustment step is determined by the terminal device according to the mapping relationship between the number of retransmissions and the numerical adjustment step.
  • different retransmissions correspond to different numerical adjustment steps, which can balance reliability and system congestion.
  • the above-mentioned schemes for determining the initial value and determining the numerical value adjustment step length according to the mapping relationship at least include the following technical schemes: (1) Determine the initial value of the target parameter according to the initial value of the target time length, and adjust the step length according to the target time length and numerical value The mapping relationship between determines the numerical adjustment step; (2) Determine the initial value of the target parameter according to the initial value of the target duration, and determine the numerical adjustment step according to the mapping relationship between the granularity of the frequency domain resource unit and the numerical adjustment step; (3) Determine the initial value of the target parameter according to the initial value of the target duration, and determine the numerical adjustment step according to the mapping relationship between the number of retransmissions and the numerical adjustment step; (4) Determine the initial value of the target parameter according to the initial value of the counter , Determine the value adjustment step size according to the mapping relationship between the target duration and the value adjustment step size; (5) Determine the initial value of the target parameter according to the initial value of the counter, and adjust the step size according to the granularity and value of
  • the method for determining parameter values may include the following steps:
  • Step 1 The mapping relationship between the value of the pre-defined counter and the priority, the mapping relationship between the value of the reference signal receiving power (Reference Signal Receiving Power, RSRP) threshold and the second duration is preconfigured, the time granularity is adjusted to N, and the value is adjusted by the step size Is A.
  • RSRP Reference Signal Receiving Power
  • Step 2 When the data arrives at the transmission time interval (Transmission Time Interval, TTI) n, according to the priority of the data packet and the mapping relationship between the value of the counter and the priority, the value of the initialization counter is M.
  • TTI Transmission Time Interval
  • the RSRP threshold value RSRP_thresh is obtained according to the second duration and the mapping relationship between the second duration and the RSRP threshold value.
  • TTI n corresponds to the initial value of RSRP threshold RSRP_thresh_initial.
  • the value of RSRP threshold needs to be adjusted.
  • the value of the RSRP threshold at other times remains unchanged, that is, except for the time when the value of the RSRP threshold is initialized or the value of the RSRP threshold is adjusted, the value of the RSRP threshold corresponding to other times remains consistent with the previous TTI at that time.
  • the RSRP on the resource where the scheduling assignment (Scheduling Assignment, SA) is located can be measured, and if the RSRP is greater than RSRP_thresh, it is considered to be occupied.
  • Step 4 If it is occupied, the value of the counter remains unchanged, TTI+1, if it is not occupied, the value of the counter decrements, TTI+1.
  • Step 5 If the value of the counter is less than or 0, then send the information in the next available TTI, otherwise, perform step 3 and subsequent steps.
  • steps 1-5 do not limit the method steps, and the sequence of the above steps is specifically determined by the logical relationship between the steps.
  • Fig. 2 shows a method for determining parameter values according to another embodiment of the present disclosure.
  • the method shown in FIG. 2 can be executed by a terminal device in sidelink communication.
  • the method includes:
  • the occupancy of the transmission resource corresponding to the current moment may be determined according to at least one of the following methods:
  • the SA information is used for scheduling the transmission resource corresponding to the current moment
  • the SA information determines the occupancy of the transmission resource corresponding to the current moment.
  • the occupancy of the transmission resource is judged according to the scheduling allocation SA information, and the SA information is used to schedule the transmission resource corresponding to the current moment.
  • the occupancy of the transmission resource corresponding to the current moment is determined according to the measurement information of the SA information that is scheduled and allocated, and the SA information is used to schedule the transmission resource corresponding to the current moment.
  • the Received Signal Strength Indication (RSSI) of the SA is measured, and if the RSSI is higher than the threshold, it is considered that the transmission resource is not occupied. And, it can be understood that the RSSI threshold can be adjusted according to the method shown in FIG. 1.
  • the occupancy of the transmission resource corresponding to the current moment is determined according to the measurement information of the information indicated by the SA information for scheduling allocation, and the SA information is used to schedule the transmission resource corresponding to the current moment; Or, judging the occupancy of the transmission resource corresponding to the current moment according to the measurement information of the transmission resource indicated by the scheduling and allocation SA information, and the SA information is used to schedule the transmission resource corresponding to the current moment.
  • the RSRP threshold can be adjusted according to the method shown in FIG. 1.
  • the adjustment granularity of the counter value is the time domain adjustment granularity, or the adjustment granularity of the counter value is the time-frequency domain adjustment granularity.
  • the time-domain adjustment granularity here can be one of slot, ms, and time-pattern.
  • the time-domain granularity in the time-frequency domain adjustment granularity is one of slot, ms, and time-pattern.
  • the time-frequency domain adjustment granularity is the frequency in the time-frequency domain adjustment granularity.
  • the domain granularity is one of sub-channel (sub-channel), resource block (Resource Block, RB), and F resource block groups (Resource Block Group, RBG).
  • the method shown in FIG. 2 further includes: determining the initial value of the counter.
  • the initial value is determined according to a Quality of Service (QoS) requirement and a first mapping relationship, and the first mapping relationship includes the range between the QoS requirement and the initial value range.
  • QoS Quality of Service
  • the mapping relationship may include at least one of the following: priority, delay, reliability, and service type.
  • the determining the initial value according to the quality of service QoS requirement and the first mapping relationship includes: determining the target initial value range in which the initial value is located according to the first mapping relationship; According to the first target information, the initial value is determined from the range of the target initial value, and the first target information includes at least one of the following information: the geographic location of the terminal device, the speed of the terminal device, and the distance between the terminal devices The distance, the terminal device density within the preset area, the type of bearer, the type of service, the size of the packet, and the arrival rate of the packet.
  • the packet arrival rate can be understood as the frequency of data packets.
  • the value range of the initial value of the counter can be determined based on the QoS requirements, and then a value from the initial value range is further selected as the initial value of the counter according to the first target information.
  • mapping relationship between the priority and the value range of the initial value of the counter is pre-configured, and the mapping relationship here may be a one-to-many, many-to-one or many-to-many mapping relationship.
  • the value range of the counter's initial value can be selected according to the configured priority, and then randomly select a value from the value range as the counter's initial value.
  • the configured priority select the value range of the initial value of the counter, and then select a value as the initial value of the counter according to the ID of the terminal device or the geographic location of the terminal device, so that different terminal devices with the same priority can be made
  • the initial value of the corresponding counter is different.
  • select the value range of the initial value of the counter and then select a value from the value range as the initial value of the counter based on the indication of DCI or SCI.
  • the DCI or SCI can indicate the sequence number of the initial value of the counter in the value range, or can directly indicate the initial value.
  • the initial value is determined according to second target information and a second mapping relationship, and the second mapping relationship includes a mapping relationship between the second target information and the initial value .
  • the second target information includes at least one of the following information: service quality QoS requirements, geographic location of terminal equipment, speed of terminal equipment, distance between terminal equipment, terminal equipment density corresponding to a preset area range, bearer Type, business type, package size and package arrival rate.
  • the initial value can be determined directly according to the mapping relationship between the second target information and the initial value.
  • the initial value of each type of counter can be determined according to the above method of determining the initial value, and the initial value of each type of counter can be configured differently or the same The value of is not limited in the embodiment of the present disclosure.
  • Fig. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device shown in Figure 3 is used in Sidelink communication.
  • the terminal device 10 shown in FIG. 3 includes:
  • the processing module is configured to determine the target value of the target parameter at the current moment according to the target mode if the current moment is the parameter value adjustment moment, and the target parameter includes an interference threshold, a signal strength threshold, a channel occupancy rate threshold, and a channel busy rate At least one of a threshold and a distance threshold, and the target mode is one of the following modes:
  • the target value is determined according to a target mapping relationship, the target mapping relationship includes a mapping relationship between the value of the target parameter and first target information, and the first target information includes a target duration, a target duration ratio, and a counter value And at least one of the number of retransmissions; and
  • the step size is adjusted according to the initial value and the numerical value of the target parameter to determine the target value, and the initial value of the target parameter is related to the first target information.
  • the target mode is to determine the target value according to a target mapping relationship
  • the first target information includes a target duration or a target duration ratio
  • the target duration includes a first duration or a second duration
  • the first duration is the duration between the timing start time and the current time
  • the The second time length is the time length between the current time and the latest time that meets the transmission delay requirement
  • the terminal device does not transmit information within the first time length
  • the target time length ratio is the timing start time The ratio of the time between the current time and the time delay requirement.
  • the timing start time is one of the following times: the arrival time of the data packet, the reception time of the second target information, and the time indicated by the second target information;
  • the second target information includes at least one of the following information: high-level signaling, downlink control information DCI, and sidelink control information SCI.
  • the second target information includes at least one of the following information: high-level signaling, DCI, scheduling request SR, and buffer status report BSR And SCI.
  • the target mode is to determine the target value by adjusting the step size according to the initial value and the value of the target parameter
  • the processing module 11 is further configured to:
  • the initial value of the target parameter is determined according to the initial value corresponding to the first target information and the mapping relationship between the value of the target parameter and the first target information.
  • the first target information includes a target duration
  • the target duration includes a first duration or a second duration
  • the first duration is the duration between the timing start time and the current time
  • the second time length is the time length between the current time and the latest time that meets the transmission delay requirement, and the terminal device does not transmit information within the first time length.
  • the timing start time is one of the following times: the arrival time of the data packet, the activation time of the counter, the third target information receiving time, and the time indicated by the third target information;
  • the third target information includes at least one of the following information: high-level signaling, DCI, and SCI;
  • the third target information includes at least one of the following information: high-level signaling, DCI, SR, BSR, and SCI.
  • processing module 11 is further configured to:
  • the adjustment time granularity it is determined whether the current time is the parameter adjustment time.
  • the adjustment time granularity is determined by one of the following methods: pre-defined, pre-configured, network device configuration, and terminal device configuration.
  • processing module 11 is further configured to:
  • the target duration and the preset duration it is determined whether the current moment is the parameter adjustment moment.
  • the numerical adjustment step size is determined by the terminal device according to a mapping relationship between the target duration and the numerical adjustment step size.
  • the first target information further includes the granularity of the frequency domain resource unit
  • the numerical adjustment step is adjusted by the terminal device according to the granularity of the frequency domain resource unit and the numerical value.
  • the mapping relationship between the steps is determined.
  • the numerical adjustment step size is determined by the terminal device according to the mapping relationship between the number of retransmissions and the numerical adjustment step size.
  • the terminal device provided in the embodiment of the present disclosure can implement each process implemented by the terminal device in the method embodiment in FIG. 1, and to avoid repetition, details are not described herein again.
  • Fig. 4 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device shown in Figure 4 is used in Sidelink communication.
  • the terminal device 20 shown in FIG. 4 includes:
  • the first processing module 21 is used to determine the occupancy of the transmission resource corresponding to the current moment
  • the second processing module 22 is configured to adjust the value of a counter if the transmission resource is not occupied, and the counter is used for resource allocation.
  • the first processing module 21 is specifically configured to:
  • the occupancy of the transmission resource is determined according to the scheduling allocation SA information, and the SA information is used to schedule the transmission resource corresponding to the current moment.
  • the first processing module 21 is specifically configured to:
  • the occupancy of the transmission resource corresponding to the current moment is determined according to the measurement information of the SA information for scheduling allocation, and the SA information is used to schedule the transmission resource corresponding to the current moment.
  • the first processing module 21 is specifically configured to:
  • the occupancy of the transmission resource corresponding to the current moment is determined, and the SA information is used to schedule the transmission resource corresponding to the current moment.
  • the adjustment granularity of the counter value is a time domain adjustment granularity, or the adjustment granularity of the counter value is a time-frequency domain adjustment granularity.
  • the first processing module 21 is further configured to:
  • the first processing module 21 is specifically configured to:
  • the initial value is determined according to the quality of service QoS requirement and a first mapping relationship, and the first mapping relationship includes a mapping relationship between the QoS requirement and the initial value range.
  • the first processing module 21 is specifically configured to:
  • the initial value is determined from the range of the target initial value, and the first target information includes at least one of the following information: the geographic location of the terminal device, the speed of the terminal device, and the distance between the terminal devices The distance, the terminal device density within the preset area, the bearer type, service type, packet size and packet arrival rate.
  • the first processing module 21 is specifically configured to:
  • the initial value is determined according to the second target information and a second mapping relationship, the second mapping relationship includes a mapping relationship between the second target information and the initial value, and the second target information includes the following information At least one of: service quality QoS requirements, geographic location of terminal equipment, speed of terminal equipment, distance between terminal equipment, terminal equipment density corresponding to a preset area range, bearer type, service type, packet size and packet The arrival rate.
  • the terminal device provided in the embodiment of the present disclosure can implement the various processes implemented by the terminal device in the method embodiment in FIG. 2. To avoid repetition, details are not described herein again.
  • Fig. 5 is a block diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 500 shown in FIG. 5 includes: at least one processor 501, a memory 502, a user interface 503, and at least one network interface 504.
  • the various components in the terminal device 500 are coupled together through the bus system 505.
  • the bus system 505 is used to implement connection and communication between these components.
  • the bus system 505 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 505 in FIG. 5.
  • the user interface 503 may include a display, a keyboard, a pointing device (for example, a mouse, a trackball), a touch panel or a touch screen, etc.
  • the memory 502 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM DRRAM
  • the memory 502 of the system and method described in the embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 502 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 5022.
  • the terminal device 500 further includes: a computer program that is stored in the memory 502 and can run on the processor 501.
  • a computer program that is stored in the memory 502 and can run on the processor 501.
  • the method described in FIGS. 1 and 2 is implemented. Each process can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the computer-readable storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 501, each step of the method embodiment described in FIG. 1 and FIG. 2 is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing module can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing devices (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASICs application specific integrated circuits
  • DSP digital signal processors
  • DSP Device digital signal processing devices
  • DPD digital signal processing devices
  • PLD programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, the processes of the foregoing method embodiments are implemented, and the same technical effect can be achieved. To avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or part that contributes to the existing technology, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk,
  • a storage medium such as ROM/RAM, magnetic disk,
  • the CD-ROM includes several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定参数值的方法和设备,该方法包括:若当前时刻为参数值调整时刻,则根据目标方式确定目标参数在当前时刻的目标数值,目标参数包括干扰门限、信号强度门限、信道占用率门限、信道忙率门限和距离门限中的至少一种,目标方式为以下一种:根据目标映射关系确定目标数值,目标映射关系包括目标参数的值与第一目标信息之间的映射关系,第一目标信息包括目标时长、目标时长比例、计数器的值和重传次数中的至少一种;以及,根据目标参数的初始值和数值调整步长,确定目标数值,目标参数的初始值与第一目标信息相关。

Description

确定参数值的方法和设备
相关申请的交叉引用
本申请主张在2019年1月18日在中国提交的中国专利申请号No.201910049780.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,更具体地涉及确定参数值的方法和设备。
背景技术
旁链路(Sidelink)是指终端设备(User Equipment,UE)和UE之间不通过网络进行直连通信的链路。长期演进(Long Term Evolution,LTE)Sidelink包括设备到设备(Device to Device,D2D)通信、车联网(Vehicle to Everything,V2X)通信。新空口(New Radio,NR)Sidelink目前包括V2X通信。在LTE Sidelink中支持两种资源分配模式:调度资源分配模式和UE自主资源选择模式。调度资源分配模式下,网络设备为Sidelink配置资源;UE自主资源选择模式下,UE会基于一段时间的监测结果,周期性的预留一定的资源。
相关技术中,UE在进行资源监测的过程中依据的参数值为固定值,影响UE选择到合适资源的概率,不利于平衡UE的可靠性和系统的丢包率。
发明内容
本公开实施例的目的之一是提供一种确定参数值的方法,以解决终端设备在资源监测过程中依据固定的参数值影响选择到合适资源的概率、不利于平衡终端设备的可靠性和系统的丢包率的问题。
第一方面,提供了一种确定参数值的方法,应用于旁链路Sidelink通信中的终端设备,该方法包括:若当前时刻为参数值调整时刻,则根据目标方式确定目标参数在所述当前时刻的目标数值,所述目标参数包括干扰门限、信号强度门限、信道占用率门限、信道忙率门限和距离门限中的至少一种,所述目标方式为以下方式中的一种:
根据目标映射关系确定所述目标数值,所述目标映射关系包括所述目标参数的值与第一目标信息之间的映射关系,所述第一目标信息包括目标时长、目标时长比例、计数器的值和重传次数中的至少一种;以及
根据所述目标参数的初始值和数值调整步长,确定所述目标数值,其中,所述目标参数的初始值与所述第一目标信息相关。
第二方面,提供了一种确定参数值的方法,应用于旁链路Sidelink通信中的终端设备,该方法包括:
判断当前时刻对应的传输资源的占用情况;
若所述传输资源未被占用,则调整计数器的值,所述计数器用于资源分配。
第三方面,提供了一种终端设备,应用于旁链路Sidelink通信中,该终端设备包括:
处理模块,用于若当前时刻为参数值调整时刻,则根据目标方式确定目标参数在所述当前时刻的目标数值,所述目标参数包括干扰门限、信号强度门限、信道占用率门限、信道忙率门限和距离门限中的至少一种,所述目标方式为以下方式中的一种:
根据目标映射关系确定所述目标数值,所述目标映射关系包括所述目标参数的值与第一目标信息之间的映射关系,所述第一目标信息包括目标时长、目标时长比例、计数器的值和重传次数中的至少一种;以及
根据所述目标参数的初始值和数值调整步长,确定所述目标数值,其中,所述目标参数的初始值与所述第一目标信息相关。
第四方面,提供了一种终端设备,应用于旁链路Sidelink通信中,该终端设备包括:
第一处理模块,用于判断当前时刻对应的传输资源的占用情况;
第二处理模块,用于若所述传输资源未被占用,则调整计数器的值,所述计数器用于资源分配。
第五方面,提供了一种终端设备,应用于旁链路Sidelink通信中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面或第二方面所述的确定参数值的 方法的步骤。
第六方面,提供了一种计算机可读介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如第一方面或第二方面所述的确定参数值的方法的步骤。
在本公开实施例中,终端设备在判断当前时刻为参数值调整时刻时,会根据目标方式确定目标参数在当前时刻的目标数值,由此终端设备能够对目标参数的值进行动态调整,使得终端设备可以基于动态调整的参数值进行资源监测,提高终端设备选择到合适资源的概率,进而可以平衡终端设备的可靠性和系统丢包率。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开的一个实施例的确定参数值的方法的示意性流程图。
图2是根据本公开的另一个实施例的确定参数值的方法的示意性流程图。
图3是根据本公开的一个实施例的终端设备的结构示意图。
图4是根据本公开的一个实施例的终端设备的结构示意图。
图5是根据本公开的再一个实施例的终端设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)旁链路(Sidelink)系统,新空口(New Radio,NR)Sidelink系统等。
在本公开实施例中,终端设备(User Equipment,UE),也可称之为移动 终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
在本公开实施例中,网络设备为一种部署在无线接入网设中用于为终端设备提供无线通信功能的装置,网络设备例如可以是基站,基站可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB)。
在本公开实施例中,旁链路(Sidelink)还可以被称为:副链路、侧链路和边链路。并且可以理解的是,本公开实施例对Sidelink对应的具体中文翻译不作限制。
在本公开实施例中,终端设备可以是Sidelink通信中的发送端终端设备(发送UE),也可以是Sidelink通信中的接收端终端设备(接收UE)。
以下结合附图,详细说明本公开各实施例提供的技术方案。
图1示出了根据本公开一个实施例的确定参数值的方法。图1所示的方法可以由旁链路Sidelink通信中的终端设备执行。如图1所示,方法包括:
S110,若当前时刻为参数值调整时刻,则根据目标方式确定目标参数在所述当前时刻的目标数值,所述目标参数包括干扰门限、信号强度门限、信道占用率门限、信道忙率门限和距离门限中的至少一种,所述目标方式为以下方式中的一种:
根据目标映射关系确定所述目标数值,所述目标映射关系包括所述目标参数的值与第一目标信息之间的映射关系,所述第一目标信息包括目标时长、目标时长比例、计数器的值和重传次数中的至少一种;以及
根据所述目标参数的初始值和数值调整步长,确定所述目标数值,其中,所述目标参数的初始值与所述第一目标信息相关。
可以理解的是,在S110中的目标时长、计数器的值和重传次数实际上是随时间变化的值。目标参数在当前时刻的目标数值的有效时间段可以为该目标数值的生效时刻与目标参数在下一个调整时刻的值的生效时刻之间的时间段。
可选地,作为一个例子,S110中的计数器可以用于资源分配。
可选地,在一些实施例中,目标方式为根据目标映射关系确定所述目标数值;其中,所述第一目标信息包括目标时长或目标时长比例,所述目标时长包括第一时长或第二时长,所述第一时长为计时开始时刻与所述当前时刻之间的时长,所述第二时长为所述当前时刻与满足传输时延需求的最晚时刻之间的时长,所述终端设备在所述第一时长内未进行信息传输,所述目标时长比例为所述计时开始时刻与所述当前开始时刻之间的时长与时延需求的比值。
在目标方式为根据目标映射关系确定所述目标数值,所述第一目标信息包括目标时长的情况下,可以根据调整时间粒度,确定当前时刻是否为参数调整时刻,或者根据目标时长和预设时长,确定当前时刻是否为参数调整时刻。在目标方式为根据目标映射关系确定所述目标数值,所述第一目标信息包括目标时长比例的情况下,可以根据调整时间粒度,确定当前时刻是否为参数调整时刻,或者根据目标时长比例和预设时长比例,确定当前时刻是否为参数调整时刻。例如,时延需求为100ms,预设时长比例为40%,则当已经过去的时间为40ms时,触发参数调整。
这里的计时开始时刻可以为以下时刻中的一种:数据包的到达时刻、第二目标信息的接收时刻和第二目标信息指示的时刻;在终端设备为发送端终端设备时,第二目标信息包括以下信息中的至少一种:高层信令、下行控制信息(Downlink Control Information,DCI)和旁链路控制信息(Sidelink Control Information,SCI);在终端设备为接收端终端设备时,第二目标信息包括以下信息中的至少一种:高层信令、DCI、调度请求(Scheduling Request,SR)、缓存状态包括(Buffer Status Report,BSR)和SCI。这里的高层信令例如可以是无线资源控制(Radio Resource Control,RRC)信令、广播信令、旁链路广播信息或旁链路系统信息。
需要说明的是,满足传输时延需求的最晚时刻还可以理解为终端设备确定丢包的时刻。或者可以理解为与数据包的生成时刻之间的时间间隔为传输时延需求的时刻。
以第一时长和第二时长的和为时延L,目标参数为干扰测量门限或信号 强度门限为例。若第一时长为t,则第二时长res_t=L-t,可以预定义或预配置干扰测量门限或信号强度门限与第一时长或第二时长的映射关系(映射关系可以为表格)。根据t=0或res_t=L与映射关系,可以得到干扰测量门限值或信号强度门限的初始值。如果当前时刻为干扰测量门限或信号强度门限的调整时刻,则可以根据当前时刻的t或res_t的值和映射关系确定出干扰门限或信号强度门限的值。
在这个例子中,可以根据调整时间粒度,确定当前时刻是否为参数调整时刻。或者根据第一时长或第二时长,确定当前时刻是否为参数调整时刻。例如,如果在当前时刻,t大于T1,或者res_t小于T2,则当前时刻为参数调整时刻。这里调整时间粒度、T1和T2的值可以是预定义的,或者可以是预配置的,或者可以是网络设备配置的,或者可以是终端设备配置的。调整时间粒度例如可以是以下粒度中的一个:毫秒(ms)、子帧(subframe)、N个时隙(slot)、多时隙(multi-slot)、N个符号(symbol)、帧(frame)和一个时间样式(Time Pattern),N为大于或等于1的正整数。
或者,以目标参数为信道占用率门限或信道忙率门限,以第一目标信息包括计数器(counter)的值为例。可以预定义或预配置信道占用率门限或信道忙率门限与计数器的值的映射关系(映射关系可以为表格)。每个参数调整时刻,根据参数调整时刻的计数器的值和映射关系,即可以确定出每个参数调整时刻的信道占有率门限的值或信道忙率的值。在这个例子中,可以根据调整时间粒度,确定当前时刻是否为参数调整时刻。
或者,以目标参数为距离门限,以第一目标信息包括重传次数为例。可以预定义或预配置距离门限与重传次数的映射关系。每个参数调整时刻,根据参数调整时刻的重传次数和映射关系,即可以确定出每个参数调整时刻的距离门限的值。在这个例子中,可以根据调整时间粒度,确定当前时刻是否为参数调整时刻。初传可以认为对应的重传次数为0。
上述的距离门限可以理解为终端设备与终端设备之间的距离的门限。例如,一个参数调整时刻对应的重传次数为0,距离门限的值为1000米,则终端设备将与自己相距1000米以内的其他终端设备占用的资源认为是被占用的资源。下一个参数调整时刻对应的重传次数为1,距离门限的值为500米, 则终端设备将与自己相距500米以内的其他终端设备占用的资源认为是被占用资源。
可选地,在一些实施例中,目标方式为根据目标参数的初始值和数值调整步长,确定所述目标数值。图1所示的方法还包括:
根据所述第一目标信息对应的初始值以及目标参数的值与所述第一目标信息之间的映射关系,确定所述目标参数的初始值。
可以理解的是,在当前时刻为第一次对目标参数的值进行调整的参数调整时刻时,终端设备根据目标参数的初始值和数值调整步长,确定目标数值。当在当前时刻不是第一次对目标参数的值进行调整的参数调整时刻时,终端设备实际根据当前时刻之前目标参数的值和数值调整步长,确定目标参数的目标数值。
举例来说,第一目标信息包括目标时长,目标时长包括第一时长或第二时长,第一时长为计时开始时刻与当前时刻之间的时长,第二时长为当前时刻与满足传输时延需求的最晚时刻之间的时长,终端设备在所述第一时长内未进行信息传输。在这种情况下,可以根据调整时间粒度,确定当前时刻是否为参数调整时刻,或者根据目标时长和预设时长,确定当前时刻是否为参数调整时刻。
这里的计时开始时刻可以为以下时刻中的一种:数据包的到达时刻、计数器的激活时刻、第三目标信息的接收时刻和第三目标信息指示的时刻;在所述终端设备为发送端终端设备时,第三目标信息包括以下信息中的至少一种:高层信令、DCI和SCI;在所述终端设备为接收端终端设备时,第三目标信息包括以下信息中的至少一种:高层信令、DCI、SR、BSR和SCI。
以第一时长和第二时长的和为时延L,目标参数为干扰测量门限或信号强度门限为例。若第一时长为t,则第二时长res_t=L-t,可以预定义或预配置干扰测量门限或信号强度门限与第一时长或第二时长的映射关系(映射关系可以为表格)。根据t=0或res_t=L与映射关系,可以得到干扰测量门限值或信号强度门限的初始值。
或者,以目标参数为信道占用率门限或信道忙率门限,以第一目标信息包括计数器(counter)的值为例。可以预定义或预配置信道占用率门限或信 道忙率门限与计数器的值的映射关系(映射关系可以为表格)。可以根据数据包的到达时刻计时器的值与映射关系,确定信道占用门限或信道忙率门限的初始值。
或者,以目标参数为距离门限,以第一目标信息包括重传次数为例。可以预定义或预配置距离门限与重传次数的映射关系。可以根据该映射关系和重传次数0,确定距离门限的初始值。
在确定出目标参数的初始值之后,可以进一步确定数值调整步长。数值调整步长可以是预配置、预定义、网络设备配置或终端设备配置的。数值调整步长也可以是基于映射关系确定的。
在一些实施例中,数值调整步长由终端设备根据目标时长和数值调整步长之间的映射关系确定。
例如,以第一时长和第二时长的和为时延L,目标参数为干扰测量门限为例。若第一时长为t,则第二时长res_t=L-t,可以预定义或预配置干扰测量门限与第一时长的映射关系,预定义或预配置调整时间粒度为1个slot。假设t在[a,b]内,数值调整步长为3dB,在[b,c]内,数值调整步长为6dB。A=0,b=5,c=50,若t=48ms,则t在[b,c]内,则在下一个slot中,判断资源是否被预留时,干扰门限的值为当前时刻的干扰门限的值减去6dB。
在一些实施例中,所述第一目标信息中还包括频域资源单元的粒度,所述数值调整步长由所述终端设备根据所述频域资源单元的粒度和所述数值调整步长之间的映射关系确定。或者,所述数值调整步长由所述终端设备根据所述重传次数和所述数值调整步长之间的映射关系确定。这里不同次的重传对应的数值调整步长不同,能够平衡可靠性和系统拥塞。
可以理解的是,上述确定初始值和根据映射关系确定数值调整步长的方案至少包括以下技术方案:(1)根据目标时长的初始值确定目标参数的初始值,根据目标时长和数值调整步长之间的映射关系确定数值调整步长;(2)根据目标时长的初始值确定目标参数的初始值,根据频域资源单元的粒度和数值调整步长之间的映射关系确定数值调整步长;(3)根据目标时长的初始值确定目标参数的初始值,根据重传次数和数值调整步长之间的映射关系确定数值调整步长;(4)根据计数器的初始值确定目标参数的初始值,根据目 标时长和数值调整步长之间的映射关系确定数值调整步长;(5)根据计数器的初始值确定目标参数的初始值,根据频域资源单元的粒度和数值调整步长之间的映射关系确定数值调整步长;(6)根据计数器的初始值确定目标参数的初始值,根据重传次数和数值调整步长之间的映射关系确定数值调整步长;(7)根据重传次数为0确定目标参数的初始值,根据目标时长和数值调整步长之间的映射关系确定数值调整步长;(8)根据重传次数为0确定目标参数的初始值,根据频域资源单元的粒度和数值调整步长之间的映射关系确定数值调整步长;(9)根据重传次数为0确定目标参数的初始值,根据重传次数和数值调整步长之间的映射关系确定数值调整步长。
作为一个具体的例子,确定参数值的方法可以包括以下步骤:
步骤1、预定义计数器的值和优先级的映射关系,预配置参考信号接收功率(Reference Signal Receiving Power,RSRP)门限的值和第二时长的映射关系,调整时间粒度为N,数值调整步长为A。
步骤2、数据到在传输时间间隔(Transmission Time Interval,TTI)n时刻到达,根据数据包的优先级,以及计数器的值和优先级的映射关系,初始化计数器的值为M。
步骤3、若M=0,则在当前slot上传输信息。若M>0,则判断当前TTI是否被占用。
具体在判断当前TTI是否被占用时,根据第二时长以及第二时长和RSRP门限的值的映射关系得到RSRP门限的值RSRP_thresh。
可以理解的是,TTI n对应RSRP门限的初始值RSRP_thresh_initial,在TTI n*k*N,需要调整RSRP门限的值,TTI n*k*N对应的RSRP门限的值为RSRP_thresh_initial-k*A,k=1,2,3…floor(L/N),L为时延。其他时刻RSRP门限的值保持不变,即除了初始化RSRP门限的值或调整RSRP的门限的值的时刻,其他时刻对应的RSRP门限的值保持和该时刻的上一个TTI一致。
在判断当前TTI是否被占用时,可以测量调度分配(Scheduling Assignment,SA)所在资源上的RSRP,若RSRP大于RSRP_thresh,则认为被占用。
步骤4、若被占用,则计数器的值保持不变,TTI+1,若未被占用,计数 器的值递减,TTI+1。
步骤5、若计数器的值小于或0,则在下一个可用的TTI发送信息,否则执行步骤3及其后续步骤。
需要说明的是,上述步骤1-5并不是对方法步骤的限定,上述步骤的先后具体以步骤之间的逻辑关系确定。
图2示出了根据本公开另一个实施例的确定参数值的方法。图2所示的方法可以由旁链路Sidelink通信中的终端设备执行。如图2所示,方法包括:
S210,判断当前时刻对应的传输资源的占用情况;
S220,若所述传输资源未被占用,则调整计数器的值,所述计数器用于资源分配。
可选地,在S210中,可以根据以下方式中的至少一种确定当前时刻对应的传输资源的占用情况:
根据调度分配SA信息,判断所述传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源;
根据调度分配SA信息的测量信息,判断所述当前时刻对应的传输资源的占用情况;
根据调度分配SA信息指示的信息的测量信息,判断所述当前时刻对应的传输资源的占用情况;以及,
根据所述SA信息指示的传输资源的测量信息,判断所述当前时刻对应的传输资源的占用情况。
作为一个实施例,在S210中,根据调度分配SA信息,判断所述传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
举例来说,解调SA得到数据包的业务优先级。如果得到的业务优先级高于待传输业务的优先级,则确定传输资源未被占用。
作为一个实施例,在S210中,根据调度分配SA信息的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
举例来说,测量SA的接收信号强度指示(Received Signal Strength Indication,RSSI),若RSSI高于门限值,则认为传输资源未被占用。并且, 可以理解的是,RSSI的门限值可以根据图1所示的方法进行调整。
作为一个实施例,在S210中,根据调度分配SA信息指示的信息的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源;或,根据调度分配SA信息指示的传输资源的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
举例来说,测量SA指示的数据的RSRP,若RSRP高于门限值,则认为传输资源未被占用。并且,可以理解的是,RSRP的门限值可以根据图1所示的方法进行调整。
在S220中,所述计数器的值的调整粒度为时域调整粒度,或所述计数器的值的调整粒度为时频域调整粒度。
这里的时域调整粒度可以是slot、ms和time-pattern中的一种,时频域调整粒度中的时域粒度slot、ms和time-pattern中的一种,时频域调整粒度中的频域粒度为子信道(sub-channel)、资源块(Resource Block,RB)、F个资源块组(Resource Block Group,RBG)中的一种。
可选地,图2所示的方法还包括:确定所述计数器的初始值。
可选地,在一些实施例中,根据服务质量(Quality of Service,QoS)需求和第一映射关系,确定所述初始值,所述第一映射关系包括所述QoS需求和初始值范围之间的映射关系。这里的QoS需求可以包括以下至少一种:优先级、时延、可靠性和业务类型。
具体地,在一些实施例中,所述根据服务质量QoS需求和第一映射关系,确定所述初始值,包括:根据所述第一映射关系,确定所述初始值所在的目标初始值范围;根据第一目标信息,从所述目标初始值范围内确定所述初始值,所述第一目标信息包括以下信息中的至少一种:终端设备的地理位置、终端设备的速度、终端设备之间的距离、预设区域范围内的终端设备密度、承载类型、业务类型、包的大小和包的到达率。这里包的到达率可以理解为数据包产生的频率。
也就是说,可以基于QoS需求确定计数器的初始值的取值范围,然后进一步根据第一目标信息从初始值范围中选择出一个值作为计数器的初始值。
举例来说,预先配置优先级和计数器的初始值的取值范围的映射关系,这里的映射关系可以是一对多、多对一或多对多的映射关系。
如果为一对多或多对多的映射关系,可以根据配置的优先级,选择计数器的初始值的取值范围,然后从取值范围中随机选择一个值作为计数器的初始值。或者根据配置的优先级,选择计数器的初始值的取值范围,然后根据终端设备的ID或终端设备的地理位置选择一个值作为计数器的初始值,由此可以使得具有相同优先级的不同终端设备对应的计数器的初始值不同。或者,根据配置的优先级,选择计数器的初始值的取值范围,然后基于DCI或SCI的指示从取值范围中选择一个值作为计数器的初始值。在这种情况下,DCI或SCI可以指示计数器的初始值在取值范围中的序号,也可以直接指示该初始值。
可选地,在一些实施例中,根据第二目标信息和第二映射关系,确定所述初始值,所述第二映射关系包括所述第二目标信息和所述初始值之间的映射关系,所述第二目标信息包括以下信息中的至少一种:服务质量QoS需求、终端设备的地理位置、终端设备的速度、终端设备之间的距离、预设区域范围对应的终端设备密度、承载类型、业务类型、包的大小和包的到达率。也就是说,可以直接根据第二目标信息和初始值的映射关系,确定出初始值。
可以理解的是,如果终端设备配置了不同类型的计数器,则每种类型的计数器的初始值均可以根据上述确定初始值的方法来确定,并且每种类型的计数器的初始值可以配置不同或相同的值,本公开实施例对此不作限定。
以上结合图1和图2详细描述了根据本公开实施例的确定参数值的方法,下面将结合图3详细描述根据本公开实施例的终端设备。
图3是根据本公开一个实施例的终端设备的结构示意图。如图3所示出的终端设备应用于Sidelink通信中。图3所示的终端设备10包括:
处理模块,用于若当前时刻为参数值调整时刻,则根据目标方式确定目标参数在所述当前时刻的目标数值,所述目标参数包括干扰门限、信号强度门限、信道占用率门限、信道忙率门限和距离门限中的至少一种,所述目标方式为以下方式中的一种:
根据目标映射关系确定所述目标数值,所述目标映射关系包括所述目标 参数的值与第一目标信息之间的映射关系,所述第一目标信息包括目标时长、目标时长比例、计数器的值和重传次数中的至少一种;以及
根据所述目标参数的初始值和数值调整步长,确定所述目标数值,所述目标参数的初始值与所述第一目标信息相关。
可选地,作为一个实施例,所述目标方式为根据目标映射关系确定所述目标数值;
其中,所述第一目标信息包括目标时长或目标时长比例,所述目标时长包括第一时长或第二时长,所述第一时长为计时开始时刻与所述当前时刻之间的时长,所述第二时长为所述当前时刻与满足传输时延需求的最晚时刻之间的时长,所述终端设备在所述第一时长内未进行信息传输,所述目标时长比例为所述计时开始时刻与所述当前时刻之间的时长与时延需求的比值。
可选地,作为一个实施例,所述计时开始时刻为以下时刻中的一种:数据包的到达时刻、第二目标信息的接收时刻和第二目标信息指示的时刻;
在所述终端设备为发送端终端设备时,所述第二目标信息包括以下信息中的至少一种:高层信令、下行控制信息DCI和旁链路控制信息SCI。
可选地,作为一个实施例,在所述终端设备为接收端终端设备时,所述第二目标信息包括以下信息中的至少一种:高层信令、DCI、调度请求SR、缓存状态报告BSR和SCI。
可选地,作为一个实施例,所述目标方式为根据所述目标参数的初始值和数值调整步长,确定所述目标数值,所述处理模块11还用于:
根据所述第一目标信息对应的初始值以及目标参数的值与所述第一目标信息之间的映射关系,确定所述目标参数的初始值。
可选地,作为一个实施例,所述第一目标信息包括目标时长,所述目标时长包括第一时长或第二时长,所述第一时长为计时开始时刻与所述当前时刻之间的时长,所述第二时长为所述当前时刻与满足传输时延需求的最晚时刻之间的时长,所述终端设备在所述第一时长内未进行信息传输。
可选地,作为一个实施例,所述计时开始时刻为以下时刻中的一种:数据包的到达时刻、所述计数器的激活时刻、第三目标信息接收时刻和第三目标信息指示的时刻;
在所述终端设备为发送端终端设备时,所述第三目标信息包括以下信息中的至少一种:高层信令、DCI和SCI;
可选地,作为一个实施例,在所述终端设备为接收端终端设备时,所述第三目标信息包括以下信息中的至少一种:高层信令、DCI、SR、BSR和SCI。
可选地,作为一个实施例,所述处理模块11还用于:
根据调整时间粒度,确定所述当前时刻是否为参数调整时刻。
可选地,作为一个实施例,所述调整时间粒度由以下方式中的一种确定:预定义、预配置、网络设备配置和终端设备配置。
可选地,作为一个实施例,所述处理模块11还用于:
根据所述目标时长和预设时长,确定所述当前时刻是否为参数调整时刻。
可选地,作为一个实施例,所述数值调整步长由所述终端设备根据所述目标时长和所述数值调整步长之间的映射关系确定。
可选地,作为一个实施例,所述第一目标信息中还包括频域资源单元的粒度,所述数值调整步长由所述终端设备根据所述频域资源单元的粒度和所述数值调整步长之间的映射关系确定。
可选地,作为一个实施例,所述数值调整步长由所述终端设备根据所述重传次数和所述数值调整步长之间的映射关系确定。
本公开实施例提供的终端设备能够实现图1方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
图4是根据本公开另一个实施例的终端设备的结构示意图。如图4所示出的终端设备应用于Sidelink通信中。图4所示的终端设备20包括:
第一处理模块21,用于判断当前时刻对应的传输资源的占用情况;
第二处理模块22,用于若所述传输资源未被占用,则调整计数器的值,所述计数器用于资源分配。
可选地,作为一个实施例,所述第一处理模块21具体用于:
根据调度分配SA信息,判断所述传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
可选地,作为一个实施例,所述第一处理模块21具体用于:
根据调度分配SA信息的测量信息,判断所述当前时刻对应的传输资源 的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
可选地,作为一个实施例,所述第一处理模块21具体用于:
根据调度分配SA信息指示的信息的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源;或,
根据调度分配SA信息指示的传输资源的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
可选地,作为一个实施例,所述计数器的值的调整粒度为时域调整粒度,或所述计数器的值的调整粒度为时频域调整粒度。
可选地,作为一个实施例,所述第一处理模块21还用于:
确定所述计数器的初始值。
可选地,作为一个实施例,所述第一处理模块21具体用于:
根据服务质量QoS需求和第一映射关系,确定所述初始值,所述第一映射关系包括所述QoS需求和初始值范围之间的映射关系。
可选地,作为一个实施例,所述第一处理模块21具体用于:
根据所述第一映射关系,确定所述初始值所在的目标初始值范围;
根据第一目标信息,从所述目标初始值范围内确定所述初始值,所述第一目标信息包括以下信息中的至少一种:终端设备的地理位置、终端设备的速度、终端设备之间的距离、预设区域范围内的终端设备密度、承载类型、业务类型、包的大小和包的到达率。
可选地,作为一个实施例,所述第一处理模块21具体用于:
根据第二目标信息和第二映射关系,确定所述初始值,所述第二映射关系包括所述第二目标信息和所述初始值之间的映射关系,所述第二目标信息包括以下信息中的至少一种:服务质量QoS需求、终端设备的地理位置、终端设备的速度、终端设备之间的距离、预设区域范围对应的终端设备密度、承载类型、业务类型、包的大小和包的到达率。
本公开实施例提供的终端设备能够实现图2方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
图5是本公开另一个实施例的终端设备的框图。图5所示的终端设备500包括:至少一个处理器501、存储器502、用户接口503和至少一个网络接口504。终端设备500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘、点击设备(例如,鼠标,轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用 于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序5022中。
在本公开实施例中,终端设备500还包括:存储在存储器502上并可在处理器501上运行的计算机程序,计算机程序被处理器501执行时实现上述图1和图2所述的方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器501执行时实现如上述图1和图2所述的方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理模块可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制 器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (27)

  1. 一种确定参数值的方法,应用于旁链路Sidelink通信中的终端设备,包括:
    若当前时刻为参数值调整时刻,则根据目标方式确定目标参数在所述当前时刻的目标数值,所述目标参数包括干扰门限、信号强度门限、信道占用率门限、信道忙率门限和距离门限中的至少一种,所述目标方式为以下方式中的一种:
    根据目标映射关系确定所述目标数值,所述目标映射关系包括所述目标参数的值与第一目标信息之间的映射关系,所述第一目标信息包括目标时长、目标时长比例、计数器的值和重传次数中的至少一种;以及
    根据所述目标参数的初始值和数值调整步长,确定所述目标数值,其中,所述目标参数的初始值与所述第一目标信息相关。
  2. 根据权利要求1所述的方法,其中,所述目标方式为根据目标映射关系确定所述目标数值;
    其中,所述第一目标信息包括目标时长或目标时长比例,所述目标时长包括第一时长或第二时长,所述第一时长为计时开始时刻与所述当前时刻之间的时长,所述第二时长为所述当前时刻与满足传输时延需求的最晚时刻之间的时长,所述终端设备在所述第一时长内未进行信息传输,所述目标时长比例为所述计时开始时刻与所述当前时刻之间的时长与时延需求的比值。
  3. 根据权利要求2所述的方法,其中,所述计时开始时刻为以下时刻中的一种:数据包的到达时刻、第二目标信息的接收时刻和第二目标信息指示的时刻;
    在所述终端设备为发送端终端设备时,所述第二目标信息包括以下信息中的至少一种:高层信令、下行控制信息DCI和旁链路控制信息SCI。
  4. 根据权利要求3所述的方法,其中,在所述终端设备为接收端终端设备时,所述第二目标信息包括以下信息中的至少一种:高层信令、DCI、调度请求SR、缓存状态报告BSR和SCI。
  5. 根据权利要求1所述的方法,其中,所述目标方式为根据所述目标参 数的初始值和数值调整步长,确定所述目标数值,所述方法还包括:
    根据所述第一目标信息对应的初始值以及目标参数的值与所述第一目标信息之间的映射关系,确定所述目标参数的初始值。
  6. 根据权利要求5所述的方法,其中,所述第一目标信息包括目标时长,所述目标时长包括第一时长或第二时长,所述第一时长为计时开始时刻与所述当前时刻之间的时长,所述第二时长为所述当前时刻与满足传输时延需求的最晚时刻之间的时长,所述终端设备在所述第一时长内未进行信息传输。
  7. 根据权利要求6所述的方法,其中,
    所述计时开始时刻为以下时刻中的一种:数据包的到达时刻、所述计数器的激活时刻、第三目标信息接收时刻和第三目标信息指示的时刻;
    在所述终端设备为发送端终端设备时,所述第三目标信息包括以下信息中的至少一种:高层信令、DCI和SCI。
  8. 根据权利要求7所述的方法,其中,
    在所述终端设备为接收端终端设备时,所述第三目标信息包括以下信息中的至少一种:高层信令、DCI、SR、BSR和SCI。
  9. 根据权利要求1至4、5至8中任一项所述的方法,还包括:
    根据调整时间粒度,确定所述当前时刻是否为参数调整时刻。
  10. 根据权利要求9所述的方法,其中,所述调整时间粒度由以下方式中的一种确定:预定义、预配置、网络设备配置和终端设备配置。
  11. 根据权利要求2至4、6至8中任一项所述的方法,还包括:
    根据所述目标时长和预设时长,确定所述当前时刻是否为参数调整时刻。
  12. 根据权利要求5至8中任一项所述的方法,其中,所述数值调整步长由所述终端设备根据所述目标时长和所述数值调整步长之间的映射关系确定。
  13. 根据权利要求5所述的方法,其中,所述第一目标信息中还包括频域资源单元的粒度,所述数值调整步长由所述终端设备根据所述频域资源单元的粒度和所述数值调整步长之间的映射关系确定。
  14. 根据权利要求5所述的方法,其中,所述数值调整步长由所述终端设备根据所述重传次数和所述数值调整步长之间的映射关系确定。
  15. 一种确定参数值的方法,应用于旁链路Sidelink通信中的终端设备,包括:
    判断当前时刻对应的传输资源的占用情况;
    若所述传输资源未被占用,则调整计数器的值,所述计数器用于资源分配。
  16. 根据权利要求15所述的方法,其中,所述确定当前时刻对应的传输资源的占用情况,包括:
    根据调度分配SA信息,判断所述传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
  17. 根据权利要求15或16所述的方法,其中,所述判断当前时刻对应的传输资源的占用情况,包括:
    根据调度分配SA信息的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
  18. 根据权利要求15至17中任一项所述的方法,其中,所述判断当前时刻对应的传输资源的占用情况,包括:
    根据调度分配SA信息指示的信息的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源;或,
    根据调度分配SA信息指示的传输资源的测量信息,判断所述当前时刻对应的传输资源的占用情况,所述SA信息用于调度所述当前时刻对应的传输资源。
  19. 根据权利要求15至18中任一项所述的方法,其中,所述计数器的值的调整粒度为时域调整粒度,或所述计数器的值的调整粒度为时频域调整粒度。
  20. 根据权利要求19所述的方法,还包括:
    确定所述计数器的初始值。
  21. 根据权利要求20所述的方法,其中,所述确定所述计数器的初始值,包括:
    根据服务质量QoS需求和第一映射关系,确定所述初始值,所述第一映 射关系包括所述QoS需求和初始值范围之间的映射关系。
  22. 根据权利要求21所述的方法,其中,所述根据服务质量QoS需求和第一映射关系,确定所述初始值,包括:
    根据所述第一映射关系,确定所述初始值所在的目标初始值范围;
    根据第一目标信息,从所述目标初始值范围内确定所述初始值,所述第一目标信息包括以下信息中的至少一种:终端设备的地理位置、终端设备的速度、终端设备之间的距离、预设区域范围内的终端设备密度、承载类型、业务类型、包的大小和包的到达率。
  23. 根据权利要求20所述的方法,其中,所述确定所述计数器的初始值,包括:
    根据第二目标信息和第二映射关系,确定所述初始值,所述第二映射关系包括所述第二目标信息和所述初始值之间的映射关系,所述第二目标信息包括以下信息中的至少一种:服务质量QoS需求、终端设备的地理位置、终端设备的速度、终端设备之间的距离、预设区域范围对应的终端设备密度、承载类型、业务类型、包的大小和包的到达率。
  24. 一种终端设备,应用于旁链路Sidelink通信中,包括:
    处理模块,用于若当前时刻为参数值调整时刻,则根据目标方式确定目标参数在所述当前时刻的目标数值,所述目标参数包括干扰门限、信号强度门限、信道占用率门限、信道忙率门限和距离门限中的至少一种,所述目标方式为以下方式中的一种:
    根据目标映射关系确定所述目标数值,所述目标映射关系包括所述目标参数的值与第一目标信息之间的映射关系,所述第一目标信息包括目标时长、目标时长比例、计数器的值和重传次数中的至少一种;以及
    根据所述目标参数的初始值和数值调整步长,确定所述目标数值,其中,所述目标参数的初始值与所述第一目标信息相关。
  25. 一种终端设备,应用于旁链路Sidelink通信中,包括:
    第一处理模块,用于判断当前时刻对应的传输资源的占用情况;
    第二处理模块,用于若所述传输资源未被占用,则调整计数器的值,所述计数器用于资源分配。
  26. 一种终端设备,应用于旁链路Sidelink通信中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至23中任一项所述的确定参数值的方法的步骤。
  27. 一种计算机可读介质,所述计算机可读介质上存储有程序,所述程序被处理器执行时实现如权利要求1至23中任一项所述的确定参数值的方法的步骤。
PCT/CN2020/072705 2019-01-18 2020-01-17 确定参数值的方法和设备 WO2020147825A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20741834.4A EP3914033A4 (en) 2019-01-18 2020-01-17 METHOD AND DEVICE FOR DETERMINING PARAMETER VALUE
JP2021540553A JP7203231B2 (ja) 2019-01-18 2020-01-17 パラメータ値を決定する方法及び機器
US17/376,444 US11979776B2 (en) 2019-01-18 2021-07-15 Method and device for determining a parameter value
JP2022208391A JP2023052082A (ja) 2019-01-18 2022-12-26 パラメータ値を決定する方法、端末機器、およびコンピュータ可読媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910049780.1 2019-01-18
CN201910049780.1A CN111263469B (zh) 2019-01-18 2019-01-18 确定参数值的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/376,444 Continuation US11979776B2 (en) 2019-01-18 2021-07-15 Method and device for determining a parameter value

Publications (1)

Publication Number Publication Date
WO2020147825A1 true WO2020147825A1 (zh) 2020-07-23

Family

ID=70953779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072705 WO2020147825A1 (zh) 2019-01-18 2020-01-17 确定参数值的方法和设备

Country Status (5)

Country Link
US (1) US11979776B2 (zh)
EP (1) EP3914033A4 (zh)
JP (2) JP7203231B2 (zh)
CN (1) CN111263469B (zh)
WO (1) WO2020147825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050030A1 (en) * 2021-09-28 2023-04-06 Qualcomm Incorporated Resource selection for self-contained inter-user-equipment coordination message

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079355A (zh) * 2021-03-29 2021-07-06 西安万像电子科技有限公司 图像传输方法和装置、存储介质及电子设备
CN113079105B (zh) * 2021-03-30 2023-03-24 联芸科技(杭州)股份有限公司 数据传输方法、系统、计算机设备和介质
CN113098667B (zh) * 2021-03-30 2023-06-23 联芸科技(杭州)股份有限公司 数据传输方法、系统、计算机设备和介质
US11706596B2 (en) * 2021-06-17 2023-07-18 Ford Global Technologies, Llc Vehicle roadside unit interference detection
CN113872733B (zh) * 2021-09-29 2024-01-05 天翼物联科技有限公司 报文重发方法、装置、计算机设备及计算机可读存储介质
CN115085771B (zh) * 2022-08-23 2022-11-18 北京紫光青藤微系统有限公司 一种nfc信号的通道选择方法及装置
CN117540588B (zh) * 2024-01-10 2024-06-11 宁德时代新能源科技股份有限公司 电池仿真的时间步长调整方法、计算方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164008A (zh) * 2011-04-22 2011-08-24 华南理工大学 一种无控制信道的水下动态频谱接入方法
JP2011166431A (ja) * 2010-02-09 2011-08-25 Anritsu Corp 誤り率測定装置及び方法
CN103052164A (zh) * 2012-12-27 2013-04-17 北京邮电大学 蜂窝与d2d混合网络中终端直通通信的干扰控制协调方法
CN107509226A (zh) * 2016-06-14 2017-12-22 屈银翔 一种有选择传输的路由寻址方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906867B1 (ko) 2011-09-27 2018-10-11 한양대학교 산학협력단 채널 상태를 이용한 적응적 채널 전송 장치 및 방법
CA2943557C (en) 2015-01-30 2022-08-16 Nec Corporation Method and apparatus for performing fractional subframe transmission
US10631352B2 (en) * 2015-04-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Joint WAN and sidelink transmission methods for device-to-device capable user equipment
CN106470492B (zh) * 2015-08-14 2020-07-07 中兴通讯股份有限公司 资源占用方法、装置及用户设备
US11147044B2 (en) * 2016-03-04 2021-10-12 Lg Electronics Inc. V2X transmission resource selecting method implemented by terminal in wireless communication system and terminal using same
EP3411996B1 (en) 2016-04-01 2019-12-18 Motorola Mobility LLC Method and apparatus for scheduling uplink transmissions with reduced latency
CN107645774B (zh) * 2016-07-20 2020-07-28 普天信息技术有限公司 V2x网络中调度pc5口资源的确认方法
JP6921181B2 (ja) * 2016-08-11 2021-08-18 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末が他の端末にデータを伝送する方法
CN107889158B (zh) * 2016-09-29 2023-11-10 北京三星通信技术研究有限公司 传输控制和数据的方法及设备
WO2018084608A2 (en) * 2016-11-03 2018-05-11 Lg Electronics Inc. Method for determining retransmission numbers of sidelink data in wireless communication system and a device therefor
CN115589617A (zh) 2016-11-03 2023-01-10 松下电器(美国)知识产权公司 无线通信装置和方法
CN108541017B (zh) 2017-03-02 2023-04-28 中兴通讯股份有限公司 一种无线资源配置的方法及装置
US11317382B2 (en) * 2017-09-29 2022-04-26 Lg Electronics Inc. Method for transmitting V2X message by terminal in wireless communication system, and terminal using same method
US10917180B2 (en) * 2018-07-24 2021-02-09 Comcast Cable Communications, Llc Controlling vibration output from a computing device
US20200100284A1 (en) * 2018-09-24 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for contention window size adaptation of nr unlicensed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166431A (ja) * 2010-02-09 2011-08-25 Anritsu Corp 誤り率測定装置及び方法
CN102164008A (zh) * 2011-04-22 2011-08-24 华南理工大学 一种无控制信道的水下动态频谱接入方法
CN103052164A (zh) * 2012-12-27 2013-04-17 北京邮电大学 蜂窝与d2d混合网络中终端直通通信的干扰控制协调方法
CN107509226A (zh) * 2016-06-14 2017-12-22 屈银翔 一种有选择传输的路由寻址方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050030A1 (en) * 2021-09-28 2023-04-06 Qualcomm Incorporated Resource selection for self-contained inter-user-equipment coordination message

Also Published As

Publication number Publication date
EP3914033A4 (en) 2022-03-23
EP3914033A1 (en) 2021-11-24
JP2022517027A (ja) 2022-03-03
CN111263469B (zh) 2022-02-15
JP2023052082A (ja) 2023-04-11
US20210345180A1 (en) 2021-11-04
US11979776B2 (en) 2024-05-07
JP7203231B2 (ja) 2023-01-12
CN111263469A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2020147825A1 (zh) 确定参数值的方法和设备
JP2023100858A (ja) ニューラジオ車車間/路車間通信(nr v2x)における自律的リソース選択のための方法および装置
US10785678B2 (en) Congestion control method, base station, and user equipment
TW201919431A (zh) D2d通訊中資源配置的方法、終端設備和網路設備
US20210051675A1 (en) Communication method and device
JP2019510386A (ja) サービス伝送方法及び装置
JP7493077B2 (ja) Sl sr/bsr処理のための方法
WO2021022508A1 (zh) 边链路调度请求的触发方法、装置和系统
WO2018177115A1 (zh) 一种免调度传输的方法及装置
WO2021018171A1 (zh) 上行传输方法、资源指示方法、装置、服务节点及介质
JP2020506590A (ja) データパケット伝送方法および端末
US11582736B2 (en) Communication method and apparatus and communication system
WO2022077519A1 (zh) 一种信息传输方法及装置
US20210345346A1 (en) Resource allocation method and device
WO2020088400A1 (zh) 资源调度方法、装置及设备
WO2020192444A1 (zh) 一种数据传输方法及设备
CN110225594B (zh) 一种调整调度请求周期的方法及装置
US20230074305A1 (en) Resource determining method, apparatus, and system
WO2020124534A1 (zh) 数据传输的方法和设备
EP4346303A1 (en) Resource reselection method and apparatus, device, and storage medium
WO2018090317A1 (zh) 一种资源调度方法及相关设备、系统
US20240073875A1 (en) Terminal device and method therein for resource reservation
WO2022236503A1 (zh) 资源确定方法、设备及存储介质
WO2021138955A1 (zh) 通知发送时间信息的方法以及装置
WO2023206042A1 (en) Coexistence of different sidelink protocols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020741834

Country of ref document: EP

Effective date: 20210818