WO2018068320A1 - 通信方法、装置和通信系统 - Google Patents

通信方法、装置和通信系统 Download PDF

Info

Publication number
WO2018068320A1
WO2018068320A1 PCT/CN2016/102174 CN2016102174W WO2018068320A1 WO 2018068320 A1 WO2018068320 A1 WO 2018068320A1 CN 2016102174 W CN2016102174 W CN 2016102174W WO 2018068320 A1 WO2018068320 A1 WO 2018068320A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
target
target terminal
time
communication
Prior art date
Application number
PCT/CN2016/102174
Other languages
English (en)
French (fr)
Inventor
杨宁
林亚男
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to PCT/CN2016/102174 priority Critical patent/WO2018068320A1/zh
Priority to US16/311,379 priority patent/US20190335444A1/en
Priority to CN201680087302.4A priority patent/CN109417727B/zh
Priority to EP16918591.5A priority patent/EP3468248B1/en
Priority to TW106130664A priority patent/TWI690232B/zh
Publication of WO2018068320A1 publication Critical patent/WO2018068320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication method, apparatus, and communication system.
  • the car network also known as the car area network, is a local area network built inside the vehicle.
  • the Internet of Vehicles there are mainly a variety of communication methods, which may include: Vehicle to Vehicle (V2V) communication, Vehicle to Roadside unit (V2R) communication, Vehicle and people (depending on communication objects).
  • Vehicle to Pedestrian, V2P) Communication methods such as communication, vehicle to infrastructure (V2I) communication.
  • VANET Vehicular ad-hoc network
  • LTE Long Term Evolution
  • VANET mainly includes vehicle terminals and roadside units (RSUs).
  • RSU roadside units
  • the in-vehicle terminal is capable of providing a short range of wireless communication, thereby forming a wireless ad hoc network.
  • the RSU is connected to the backbone network to assist in communication.
  • VANET has the advantages of easy deployment, mature technology, and support for V2V, but the technology faces shortcomings such as poor scalability, unpredictable delay, and lack of quality of service (QoS) guarantee;
  • QoS quality of service
  • LTE has the advantages of low delay, fast transmission rate and wide coverage.
  • LTE is used in the Internet of Vehicles to face the following problems.
  • the spectrum resources of LTE system are very valuable.
  • LTE is applied to the Internet of Vehicles, and a large number of them will be added in the same cell.
  • the vehicle node accesses the cell, and the total number of resource blocks in the cell is constant, which causes problems such as lack of spectrum resources, increased interference, and degraded system performance.
  • the present application proposes a communication method, apparatus and communication system capable of reducing interference and improving resource utilization.
  • a communication method including: receiving, by a target terminal, resource allocation information sent by a network, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located in a base station coverage In the cell, the cell is divided into a plurality of regions, wherein time slots of the same type of terminal are allocated in any two adjacent regions of the plurality of regions
  • the sources are mutually orthogonal; the target terminal communicates using the target time-frequency resource according to the resource allocation information.
  • the time-frequency resources allocated by the different types of terminals in the same area of the multiple areas are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area are orthogonal to each other, thereby reducing communication interference between different types of terminals, and improving communication efficiency.
  • the type of the target terminal is one of the following types: an in-vehicle terminal and a cellular terminal .
  • the method further includes: the target terminal sends a communication request to the network, where the communication request is used to request the target The terminal allocates time-frequency resources required for communication.
  • the communication request includes information indicating a location of the target terminal, so that the network is configured according to the target The location of the terminal determines a target time-frequency resource allocated for the target terminal.
  • the communication request includes at least one of: a geographic location of the target terminal Location information, speed information of the target terminal, and moving direction information of the target terminal.
  • the resource allocation information includes information about a first target time-frequency resource used in a current area allocated to the target terminal And information for the second target time-frequency resource used in the second area allocated to the target terminal, where the second area is an area adjacent to the current area to be moved by the target terminal, A target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the target terminal is an in-vehicle terminal
  • the target terminal receives resource allocation information sent by the network, including: the target terminal And receiving, by the first roadside unit, the resource allocation information, where the first roadside unit is configured to allocate time-frequency resources to the vehicle-mounted terminal in the cell covered by the base station.
  • an eighth possible implementation of the first aspect includes: receiving, by the target terminal, the resource allocation information sent by the base station.
  • a second aspect provides a communication method, including: a network side device receiving a communication request of a target terminal, where the communication request is used to request a time-frequency resource required for the target terminal to be allocated for communication;
  • the target terminal sends resource allocation information, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located in a cell covered by the base station, and the cell is divided into multiple areas.
  • the time-frequency resources allocated by the same type of terminal in any two adjacent areas of the multiple areas are mutually orthogonal.
  • the time-frequency resources allocated by the different types of terminals in the same area of the multiple areas are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area are orthogonal to each other, thereby reducing communication interference between different types of terminals, and improving communication efficiency.
  • the type of the target terminal is one of the following types: an in-vehicle terminal and a cellular terminal .
  • the communication request includes information indicating a location of the target terminal
  • the communication method further includes: the network The side device determines an area where the target terminal is located according to the communication request, and the network side device determines the target time-frequency resource according to the area where the target terminal is located.
  • the communication request includes at least one of the following information: geographic location information of the target terminal, the target terminal Speed information, moving direction information of the target terminal.
  • the network side device determines a current area where the target terminal is located And a second area adjacent to the current cell to which the target terminal is to be moved; the network side device determines a first target time-frequency resource used in the current area allocated to the target terminal and is the target a second target time-frequency resource allocated by the terminal in the second area, where the first target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the resource allocation information includes information of a first target time-frequency resource used in the current area allocated to the target terminal, and information of a second target time-frequency resource used in the second area allocated to the target terminal.
  • the second area is an area adjacent to the current area to which the target terminal is to be moved, and the first target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the network side device is a base station.
  • the target terminal is an in-vehicle terminal
  • the network side device is a first roadside unit
  • the first roadside The unit is configured to allocate time-frequency resources to the in-vehicle terminal in the cell covered by the base station.
  • the network side device receiving the communication request of the target terminal includes: the first roadside unit passing the other roadside unit Receiving the communication request.
  • the first roadside unit belongs to a central roadside unit set, and each center in the central roadside unit set The roadside unit corresponds to one of the plurality of areas, and the central roadside unit is configured to allocate time-frequency resources to the in-vehicle terminal in the corresponding area.
  • a terminal comprising means for performing the method of the first aspect.
  • the terminal comprising means for performing the method of the first aspect.
  • a network side device comprising means for performing the method of the second aspect.
  • the implementation of the network side device can refer to the implementation of the method, and the details of the method are not described in detail, because the principle of the network side device is the same as the solution in the method design of the second aspect.
  • a communication system comprising the terminal of the above third aspect and the network side device of the above fourth aspect.
  • a terminal including a memory for storing a program, a transceiver for communicating with other devices, and a processor for executing a program in the memory, when the program is executed, The processor is operative to perform the method of the first aspect when the program is executed.
  • a network side device including a memory for storing a program, a transceiver for communicating with other devices, and a processor for executing a program in the memory when When the program is executed, the processor is configured to perform the method of the second aspect when the program is executed.
  • a communication system comprising the terminal of the sixth aspect, and the network side device of the seventh aspect.
  • a ninth aspect a computer storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a tenth aspect a computer storage medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or the second aspect of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a communication method according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal according to still another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network side device according to still another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the cellular terminal may be referred to as a terminal, a mobile station (Mobile Station, or simply a "MS"), or a mobile terminal (Mobile Terminal), etc., and the cellular terminal may be connected to the base station.
  • the cellular terminal can be a mobile telephone (or "cellular" telephone) or a computer with a mobile terminal or the like.
  • the vehicle-mounted terminal may be an in-vehicle information installed in a car, an abbreviation of an in-vehicle communication or an in-vehicle entertainment product (also referred to as a car machine), and the vehicle-mounted terminal can realize V2V communication and V2R communication in function.
  • Information communication such as V2P communication and V2I communication, which are collectively referred to as V2X services.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (Node B) in WCDMA, or may be an evolved base station (eNB in LTE). Or e-NodeB, evolutional Node B), may also be a future evolution technology (5G (5th Generation) base station, New Radio (NR) base station), the invention is not limited.
  • BTS Base Transceiver Station
  • Node B base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • 5G 5th Generation
  • NR New Radio
  • an embodiment of the present invention provides a communication method, which can be applied to a scenario in which a vehicle network user and a cellular network user multiplex time-frequency resources.
  • the central idea of the method is that a cell covered by a base station can be divided into multiple areas, and a roadside unit exists in a cell covered by the base station.
  • the in-vehicle terminal and the cellular terminal in the plurality of areas may multiplex time-frequency resources.
  • the base station can be used to allocate time-frequency resources to the cellular terminal, and the roadside unit is configured to allocate time-frequency resources to the vehicle-mounted terminal.
  • Different types of terminals in each of the plurality of regions may use time-frequency resources that are orthogonal to each other, and terminals of the same type in adjacent ones of the plurality of regions use mutually orthogonal time-frequency resources. Thereby interference between terminals of the same type can be reduced.
  • the roadside unit allocates time-frequency resources to the vehicle-mounted terminal, and avoids using the base station to allocate time-frequency resources for the vehicle-mounted terminal, thereby effectively reducing the load of the base station.
  • FIG. 1 is a schematic diagram of an application scenario of a communication method according to an embodiment of the present invention.
  • there are two types of terminals namely, an in-vehicle terminal and a cellular terminal, within a cell coverage area covered by the base station.
  • the vehicle terminal and the cellular terminal can reuse time-frequency resources.
  • the cell covered by the base station further includes a plurality of roadside units.
  • the roadside unit can be used to allocate time-frequency resources to the vehicle-mounted terminal, and the base station can be used to allocate time-frequency resources to the cellular terminal.
  • the cell covered by the base station may be divided into multiple areas.
  • Each of the plurality of areas may include a central roadside unit (CRSU), which may be used to allocate time-frequency resources to the in-vehicle terminals of the area in which it is located.
  • CRSU central roadside unit
  • the time-frequency resource allocated for the in-vehicle terminal and the time-frequency resource allocated to the cellular terminal are orthogonal to each other; in any two adjacent regions of the plurality of regions, the same
  • the time-frequency resources allocated by the terminal of the type are orthogonal to each other. That is, the time-frequency resources allocated to the in-vehicle terminals of the two adjacent areas are orthogonal to each other, and the time-frequency resources allocated to the cellular terminals of the two adjacent areas are also orthogonal to each other.
  • terminals of the same type may refer to terminals in the same type of network
  • terminals of different types may refer to terminals in different types of networks.
  • terminals of the same type may refer to terminals that are both connected to the cellular network (which may be referred to as cellular terminals), or both connected to terminals in the car network (which may be referred to as in-vehicle terminals).
  • Different types of terminals may refer to terminals in different types of networks.
  • an in-vehicle terminal and a cellular terminal are different types of terminals.
  • the central roadside unit in each of the above areas may be a central roadside unit for managing roadside units in each of the above areas.
  • the central roadside unit may receive request information for requesting allocation of resources sent by the in-vehicle terminal through the roadside unit in the area it manages, and then allocate time-frequency resources to the in-vehicle terminal.
  • the central roadside unit may be a common roadside unit, or may be a dedicated roadside unit that manages the roadside unit cluster.
  • the central roadside unit may not be used, and the roadside unit that receives the request information of the in-vehicle terminal is responsible for allocating time-frequency resources to the in-vehicle terminal.
  • the base station may divide the time-frequency resources in the cell covered by the base station into two-part time-frequency resources that are orthogonal to each other.
  • the first time-frequency resource pool and the second time-frequency resource pool are divided, and the time-frequency resources in the first time-frequency resource pool and the time-frequency resources in the second time-frequency resource pool are orthogonal to each other.
  • the base station indicates a time-frequency resource pool to which the central roadside unit in each of the plurality of areas can be allocated.
  • a in FIG. 1 represents a first time-frequency resource pool
  • B represents a second time-frequency resource pool.
  • the time-frequency resources in the first time-frequency resource pool are orthogonal to the time-frequency resources in the second time-frequency resource pool.
  • the heart roadside unit is configured to allocate time-frequency resources in the first time-frequency resource pool for the vehicle-mounted terminal in the first area.
  • FIG. 2 is a specific embodiment of an application scenario of a communication method according to an embodiment of the present invention.
  • a base station in a cell center, and there may be several roads in a cell covered by the base station, and a roadside location exists at a road intersection.
  • the unit, the roadside unit can cover a circular area centered on the intersection. Multiple roadside units at intersections can cover all road ranges.
  • a communication request may be sent to the roadside unit.
  • the communication request is forwarded by the roadside unit to the central roadside unit (CRSU) of the associated area, and then the central roadside unit allocates time-frequency resources to the vehicle-mounted terminal.
  • the location of the other party can be known to each other between the roadside unit and the base station.
  • FIG. 3 is a schematic flow chart of a communication aspect 300 of an embodiment of the present invention.
  • the method 300 of FIG. 3 may be performed by a target terminal, which may be an in-vehicle terminal or a cellular terminal, or may be other types of terminals.
  • Method 300 includes:
  • the target terminal receives resource allocation information that is sent by the network, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located in a cell covered by the base station, and the cell is divided into multiple Regions in which time-frequency resources allocated by any terminal of the same type in any two adjacent regions of the plurality of regions are orthogonal to each other.
  • the target terminal may be a cellular terminal, an in-vehicle terminal or other types of terminals.
  • the foregoing network may be a network side device.
  • the network side device may include a base station, a roadside unit, or other types of network side devices.
  • the time-frequency resources allocated by the terminals of the same type in the adjacent areas are orthogonal to each other, and the time-frequency resources allocated by the terminals of different types in the same area are orthogonal to each other.
  • the target terminal may be located in a first area of the multiple areas, and the first area may be any one of the multiple areas.
  • a cell covered by a base station may be divided into multiple areas, and the first area may be one of a plurality of areas, and the first area may include multiple intersections, and one roadside exists at each intersection
  • a unit, each roadside unit has a unique identifier, and all roadside units in the first area may be referred to as a roadside unit cluster or a roadside unit set.
  • a central roadside unit that centrally manages the roadside unit can be assigned to each cluster of roadside units. In other words, each area corresponds to a central roadside unit, which is used for the set. Manage all roadside units in the area.
  • the resource allocation information may be used to indicate that the in-vehicle terminal allocates a target time-frequency resource in the first time-frequency resource pool, where the first time The time-frequency resource in the frequency resource pool is orthogonal to the time-frequency resource in the second time-frequency resource pool, and the time-frequency resource in the first time-frequency resource pool is used for providing the vehicle-mounted terminal located in the first area.
  • Communicating with a cellular terminal located in the second area where the time-frequency resource in the second time-frequency resource pool is used for communication between the cellular terminal located in the first area and the in-vehicle terminal located in the second area, The first area is adjacent to the second area;
  • the base station may be configured to allocate time-frequency resources to the cellular terminals in the multiple areas in the cell covered by the base station.
  • the base station may determine the area where the cellular terminal is located according to the location information of the cellular terminal, and allocate the time-frequency resource in the first time-frequency resource pool or the time-frequency in the second time-frequency resource pool to the cellular terminal according to the area where the cellular terminal is located. Resources.
  • the target terminal performs communication by using the target time-frequency resource according to the resource allocation information.
  • the method 300 further includes: the target terminal sending a communication request to the network, where the communication request is used to request a time-frequency resource required for the target terminal to be allocated for communication.
  • the communication request includes information indicating a location of the target terminal, so that the network determines a target time-frequency resource allocated to the target terminal according to the location of the target terminal.
  • the communication request may include at least one of the following information: geographic location information of the target terminal, speed information of the target terminal, and moving direction information of the target terminal.
  • FIG. 4 is a schematic structural diagram of a communication request of the in-vehicle terminal according to the embodiment of the present invention.
  • the communication request may include vehicle position information, traveling speed information, estimated traveling direction information, and communication type information of the in-vehicle terminal.
  • the communication type information may indicate that the communication type requested by the vehicle-mounted terminal is one of the following communication types: V2V, V2R, V2P, V2I.
  • the vehicle-mounted terminal is a relatively high-speed moving device, and its real-time geographic location can be located through a Global Positioning System (GPS) satellite. Way to get.
  • GPS Global Positioning System
  • the in-vehicle terminal can acquire information such as the geographical location information of the vehicle in which the in-vehicle terminal is located, the current driving direction information of the vehicle, and the estimated traveling direction of the vehicle through the in-vehicle navigation device.
  • the central roadside unit may determine the geographic location of the vehicle according to the information included in the communication request, thereby determining the location of the vehicle-mounted terminal. region. Whether it belongs to the area managed by the central roadside unit, if the vehicle terminal belongs to the area managed by the central roadside unit, the central roadside unit allocates corresponding time-frequency resources for the vehicle terminal.
  • the cellular terminal is a relatively low-speed mobile handheld device, and its geographic location can be obtained by the base station through network positioning.
  • the base station may transmit the geographical location information of the cellular terminal to the central roadside unit of each area.
  • the central roadside unit can determine the target time-frequency resource allocated to the target vehicle terminal according to the communication request of the target vehicle terminal and the geographical location information of the cellular terminal.
  • the first cellular terminal moves from the second area to the first area
  • the base station allocates time-frequency resources for the first cellular terminal
  • the first cellular terminal is located at the first The second area, so the first cellular terminal uses the time-frequency resource in the first time-frequency resource pool, and the central roadside unit allocates the time-frequency resource in the first time-frequency resource pool to the target vehicle-mounted terminal, and should avoid being the target vehicle.
  • the terminal allocates the same time-frequency resource as the first cellular terminal, thereby preventing the first cellular terminal and the target in-vehicle terminal from interfering with each other when communicating.
  • the time-frequency resource is allocated to the vehicle-mounted terminal through the roadside unit, thereby avoiding the use of the base station to allocate time-frequency resources, thereby effectively reducing the load of the base station.
  • the resource allocation information includes information about a first target time-frequency resource used in a current area allocated to the target terminal, and a second used in the second area allocated to the target terminal.
  • the network may estimate the moving direction of the target terminal according to the location information carried in the communication request of the target terminal, thereby not only allocating the target time-frequency resource of the current local area to the target terminal, and allocating the target time-frequency resource to the target terminal.
  • the in-vehicle terminal is divided in the first of the plurality of regions
  • the allocated time-frequency resources are orthogonal to the time-frequency resources allocated by the cellular terminal in the first area, and the first area is any one of the multiple areas.
  • the target terminal when the target terminal is an in-vehicle terminal, the target terminal is an in-vehicle terminal, and the target terminal receives the resource allocation information sent by the network, including: the in-vehicle terminal receives the first roadside The resource allocation information sent by the unit, where the first roadside unit is configured to allocate time-frequency resources to the vehicle-mounted terminal in the cell covered by the base station.
  • the first roadside unit may be a normal roadside unit, or may be a central roadside unit of the area where the target terminal is located.
  • the first roadside unit may belong to a central roadside unit set, and each of the central roadside unit sets corresponds to one of the plurality of areas, the central roadside unit It is used to allocate time-frequency resources to the in-vehicle terminals in the corresponding area.
  • the method 400 of the embodiment of the present invention is described below.
  • the method 400 may be performed by a network side device, and the network side device may be a base station, a roadside unit, a central roadside unit, or other types of network side devices.
  • the content of the method 400 which is the same as or similar to that of FIG. 3, reference may be made to the related description of FIG. 4, and details are not described herein again.
  • the method 400 includes:
  • the network side device receives a communication request of the target terminal, where the communication request is used to request a time-frequency resource required for the target terminal to be allocated for communication.
  • the network side device sends resource allocation information to the target terminal, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located in a cell covered by the base station,
  • the cell is divided into a plurality of regions, wherein time-frequency resources allocated by any terminal of the same type in any two adjacent regions of the plurality of regions are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area of the plurality of areas are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area are orthogonal to each other, thereby reducing communication interference between different types of terminals, and improving communication efficiency.
  • the type of the target terminal is one of the following types: an in-vehicle terminal and a cellular terminal.
  • the communication request includes information indicating a location of the target terminal
  • the communication method further includes: determining, by the network side device, the location of the target terminal according to the communication request. An area; the network side device is according to an area where the target terminal is located, Determining the target time-frequency resource.
  • the information indicating the location of the target terminal may include geographic location information of the target terminal, speed information of the target terminal, and moving direction information of the target terminal.
  • the communication request includes at least one of the following information: geographic location information of the target terminal, speed information of the target terminal, and moving direction information of the target terminal.
  • the method 400 further includes: determining, by the network side device, a current area where the target terminal is located and a second area adjacent to the current cell to which the target terminal is to be moved according to the communication request; Determining, by the network side device, a first target time-frequency resource used in the current area and a second target time-frequency resource used in the second area allocated to the target terminal, where A target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the network side device may determine the current area of the target terminal and the second area adjacent to the current area to which the target terminal is to be moved according to the geographical location information, the traveling direction information, and the speed information of the target terminal included in the communication request.
  • the resource allocation information includes information about a first target time-frequency resource used in the current area allocated to the target terminal, and a second target time-frequency resource used in the second area allocated to the target terminal.
  • the second area is an area that is to be moved by the target terminal to be adjacent to the current area, where the first target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the time-frequency resource allocated by the in-vehicle terminal in the first region of the multiple regions and the time-frequency resource allocated by the cellular terminal in the first region are orthogonal to each other.
  • the first area is any one of the plurality of areas.
  • the target terminal is an in-vehicle terminal
  • the network side device is a first roadside unit
  • the first roadside unit is configured to allocate an in-vehicle terminal in a cell covered by the base station. Time-frequency resources.
  • the network side device receiving the communication request of the target terminal includes: the first roadside unit receiving the communication request by using other roadside units.
  • the first roadside unit belongs to a central roadside unit set, and each of the central roadside unit sets corresponds to one of the plurality of areas.
  • the central roadside unit is configured to allocate time-frequency resources to the vehicle-mounted terminals in the corresponding area.
  • FIG. 1 to FIG. 4 The communication method of the embodiment of the present invention is described above with reference to FIG. 1 to FIG. 4 , which will be described below in conjunction with FIG. 5 .
  • the terminal and the network side device in the embodiment of the present invention are described in detail in FIG.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 500 shown in FIG. 5 includes: a processing module 510 and a communication module 520, and the terminal 500 shown in FIG. 5 may be a target terminal.
  • the processing module 510 is configured to receive, by using the communication module 520, resource allocation information that is sent by the network, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located in a cell covered by the base station.
  • the cell is divided into a plurality of regions, wherein time-frequency resources allocated by any terminal of the same type in any two adjacent regions of the plurality of regions are mutually orthogonal; the processing module 510 And for communicating, using the target time-frequency resource according to the resource allocation information.
  • the time-frequency resources allocated by the different types of terminals in the same area of the multiple areas are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area are orthogonal to each other, thereby reducing communication interference between different types of terminals, and improving communication efficiency.
  • the type of the target terminal is one of the following types: an in-vehicle terminal and a cellular terminal.
  • the processing module 510 is further configured to send, by using the communication module 520, a communication request to the network, where the communication request is used to request a time-frequency resource required for the target terminal to be allocated for communication.
  • the communication request includes information indicating a location of the target terminal, so that the network determines a target time-frequency resource allocated to the target terminal according to the location of the target terminal.
  • the communication request includes at least one of the following information: geographic location information of the target terminal, speed information of the target terminal, and moving direction information of the target terminal.
  • the resource allocation information includes information about a first target time-frequency resource used in the current area allocated to the target terminal, and a second target time-frequency resource used in the second area allocated to the target terminal.
  • the second area is an area that is to be moved by the target terminal to be adjacent to the current area, where the first target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the target terminal is an in-vehicle terminal
  • the processing module 510 is specifically configured to pass the
  • the communication module 520 receives the resource allocation information sent by the first roadside unit, and the first roadside unit is configured to allocate time-frequency resources to the vehicle-mounted terminal in the cell covered by the base station.
  • the processing module 510 is specifically configured to receive, by using the communications module 520, the resource allocation information sent by the base station.
  • FIG. 6 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • the network side device 600 shown in FIG. 6 includes: a processing module 610 and a communication module 620.
  • the processing module is configured to receive, by using the communication module, a communication request of a target terminal, where the communication request is used to request a time-frequency resource required for the target terminal to be allocated for communication;
  • the processing module is further configured to send resource allocation information to the target terminal by using the communication module, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located at a base station coverage
  • the cell is divided into a plurality of regions, wherein time-frequency resources allocated by any terminal of the same type in any two adjacent regions of the plurality of regions are mutually orthogonal.
  • the time-frequency resources allocated by the different types of terminals in the same area of the multiple areas are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area are orthogonal to each other, thereby reducing communication interference between different types of terminals, and improving communication efficiency.
  • the type of the target terminal is one of the following types: an in-vehicle terminal and a cellular terminal.
  • the communication request includes information indicating a location of the target terminal
  • the processing module is further configured to determine, according to the communication request, an area where the target terminal is located; and according to where the target terminal is located A region, the target time-frequency resource is determined.
  • the communication request includes at least one of the following information: geographic location information of the target terminal, speed information of the target terminal, and moving direction information of the target terminal.
  • the processing module is further configured to: determine, according to the communication request, a current area where the target terminal is located and a second area that is to be moved to the current cell to which the target terminal is to be moved; and determine a first target time-frequency resource used by the target terminal in the current area and a second target time-frequency resource allocated to the target terminal in the second area, the first target time-frequency resource and the The second target time-frequency resources are orthogonal to each other.
  • the resource allocation information includes information about a first target time-frequency resource used in the current area allocated to the target terminal, and a second target time-frequency resource used in the second area allocated to the target terminal.
  • the second area is an area that is to be moved by the target terminal to be adjacent to the current area, where the first target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the network side device is a base station.
  • the target terminal is an in-vehicle terminal
  • the network side device is a first roadside unit
  • the first roadside unit is configured to allocate time-frequency resources to the in-vehicle terminal in the cell covered by the base station.
  • the processing module is specifically configured to receive, by using the communication module, the communication request by using other roadside units.
  • the first roadside unit belongs to a central roadside unit set, and each of the central roadside unit sets corresponds to one of the plurality of areas, the central roadside The unit is used to allocate time-frequency resources to the in-vehicle terminal in its corresponding area.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 700 shown in FIG. 7 may be a target terminal, and the terminal 700 shown in FIG. 7 includes:
  • a memory 710 configured to store a program
  • the transceiver 720 is configured to communicate with other devices;
  • the processor 730 is configured to execute a program in the memory 710, when the program is executed, the processor 730 is configured to receive, by using the transceiver 720, resource allocation information sent by a network, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located in a cell covered by the base station, where the cell is divided into multiple areas, wherein the same type of terminal is in any two of the multiple areas.
  • the allocated time-frequency resources in the adjacent areas are mutually orthogonal; the processor 730 is further configured to perform communication by using the target time-frequency resources according to the resource allocation information.
  • the time-frequency resources allocated by the different types of terminals in the same area of the multiple areas are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area are orthogonal to each other, thereby reducing communication interference between different types of terminals, and improving communication efficiency.
  • the type of the target terminal is one of the following types: an in-vehicle terminal and a cellular terminal end.
  • the processor 730 is further configured to send, by using the transceiver 720, a communication request to the network, where the communication request is used to request a time-frequency resource required for the target terminal to be allocated for communication.
  • the communication request includes information indicating a location of the target terminal, so that the network determines a target time-frequency resource allocated to the target terminal according to the location of the target terminal.
  • the communication request includes at least one of the following information: geographic location information of the target terminal, speed information of the target terminal, and moving direction information of the target terminal.
  • the resource allocation information includes information about a first target time-frequency resource used in the current area allocated to the target terminal, and a second target time-frequency resource used in the second area allocated to the target terminal.
  • the second area is an area that is to be moved by the target terminal to be adjacent to the current area, where the first target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the target terminal is an in-vehicle terminal
  • the processor 730 is specifically configured to receive, by using the transceiver 720, the resource allocation information sent by a first roadside unit, where the first roadside unit is used to The vehicle-mounted terminal in the cell covered by the base station allocates time-frequency resources.
  • the processor 730 is specifically configured to receive, by using the transceiver 720, the resource allocation information sent by the base station.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • the network side device 800 shown in FIG. 8 includes:
  • a memory 810 configured to store a program
  • transceiver 820 configured to communicate with other devices
  • a processor 830 configured to execute a program in the memory 810, when the program is executed, the processor 830 is configured to receive, by the transceiver 820, a communication request of a target terminal, where the communication request is for a request Describe the time-frequency resources required for the target terminal to allocate communication;
  • the processor 830 is further configured to send resource allocation information to the target terminal by using the transceiver 820, where the resource allocation information is used to indicate a target time-frequency resource allocated to the target terminal, where the target terminal is located at a base station.
  • the cell is divided into a plurality of regions, wherein time-frequency resources allocated by any terminal of the same type in any two adjacent regions of the plurality of regions are mutually orthogonal.
  • the time-frequency resources allocated by the different types of terminals in the same area of the multiple areas are mutually orthogonal.
  • time-frequency resources allocated by different types of terminals in the same area are orthogonal to each other, thereby reducing communication interference between different types of terminals, and improving communication efficiency.
  • the type of the target terminal is one of the following types: an in-vehicle terminal and a cellular terminal.
  • the communication request includes information indicating a location of the target terminal
  • the processor 830 is further configured to determine, according to the communication request, an area where the target terminal is located; and according to the target terminal The area, the target time-frequency resource is determined.
  • the communication request includes at least one of the following information: geographic location information of the target terminal, speed information of the target terminal, and moving direction information of the target terminal.
  • the processor 830 is further configured to: determine, according to the communication request, a current area where the target terminal is located, and a second area that is to be moved to the current cell to which the target terminal is to be moved; Decoding, by the target terminal, a first target time-frequency resource used in the current area, and a second target time-frequency resource allocated to the target terminal in the second area, the first target time-frequency resource and The second target time-frequency resources are orthogonal to each other.
  • the resource allocation information includes information about a first target time-frequency resource used in the current area allocated to the target terminal, and a second target time-frequency resource used in the second area allocated to the target terminal.
  • the second area is an area that is to be moved by the target terminal to be adjacent to the current area, where the first target time-frequency resource and the second target time-frequency resource are orthogonal to each other.
  • the network side device is a base station.
  • the target terminal is an in-vehicle terminal
  • the network side device is a first roadside unit
  • the first roadside unit is configured to allocate time-frequency resources to the in-vehicle terminal in the cell covered by the base station.
  • the processor 830 is specifically configured to receive, by using the transceiver 820, the communication request by using other roadside units.
  • the first roadside unit belongs to a central roadside unit set, and each of the central roadside unit sets corresponds to one of the plurality of areas, the central roadside The unit is used to allocate time-frequency resources to the in-vehicle terminal in its corresponding area.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this article is merely an association describing the associated object, indicating that there can be three types. Relationships, for example, A and/or B, may indicate that there are three cases where A exists separately, and both A and B exist, and B exists alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory.
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM Direct Memory Bus
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the present invention
  • the technical solution in essence or the part contributing to the prior art or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making one
  • the computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置和通信系统,能够减少干扰和提高资源利用率。包括:目标终端接收网络发送的资源分配信息,资源分配信息用于指示为目标终端分配的目标时频资源,目标终端位于基站覆盖的小区中,小区被划分为多个区域,其中,相同类型的终端在多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的;目标终端根据资源分配信息,使用目标时频资源进行通信。

Description

通信方法、装置和通信系统 技术领域
本发明涉及通信领域,尤其涉及通信方法、装置和通信系统。
背景技术
近年来,随着智能交通系统的提出和发展,车联网受到越来越广泛的关注和研究。车联网又称车域网,是建立于车辆内部的局域网络。在车联网中主要包括多种通信方式,依据通信对象不同,可以包括:车与车(Vehicle to Vehicle,V2V)通信、车与路边单元(Vehicle to Roadside unit,V2R)通信、车与人(Vehicle to Pedestrian,V2P)通信、车与基础设施(Vehicle to Infrastructure,V2I)通信等通信方式。
目前,应用于车联网的通信技术主要包括车辆自组网(Vehicular ad-hoc network,VANET)和长期演进(Long Term Evolution,LTE)网络。VANET主要包括车载终端和路边单元(Roadside unit,RSU)。车载终端能够提供短范围的无线通信,由此形成无线自组织网络。RSU与主干网相连,起到辅助通信的作用。从技术层面来讲,VANET具有容易部署、技术成熟、能支持V2V等优点,但是该技术面临扩展性不强,时延不可预测和没有确定服务质量(Quality of Service,QoS)保障等缺点;相对于VANET,LTE具有低延时、传输速率快、覆盖范围广等优点,但LTE应用于车联网会面对如下问题,LTE系统频谱资源非常宝贵,LTE应用于车联网,同一小区内会增加大量车辆节点接入小区,而小区内总的资源块数量是不变的,这会造成频谱资源匮乏,干扰增加、系统性能下降等问题。
发明内容
本申请提出了一种通信方法、装置和通信系统,能够减少干扰和提高资源利用率。
第一方面,提供了一种通信方法,包括:目标终端接收网络发送的资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资 源是相互正交的;所述目标终端根据所述资源分配信息,使用所述目标时频资源进行通信。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高通信效率。
结合第一方面,在第一方面的第一种可能的实现方式中,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
在本发明实施例中,不同类型的终端在相同区域中被分配的时频资源相互正交,从而可以减少不同类型的终端之间的通信干扰,提高了通信效率。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
结合上述任一种可能的实现方式,在第一方面的第三种可能的实现方式中,还包括:所述目标终端向所述网络发送通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述通信请求中包含指示所述目标终端所在位置的信息,以便于网络根据所述目标终端的位置,确定为所述目标终端分配的目标时频资源。
结合第一方面的第三种或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
结合上述任一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
结合上述任一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述目标终端为车载终端,所述目标终端接收网络发送的资源分配信息,包括:所述目标终端接收第一路边单元发送的所述资源分配信息,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
结合上述任一种可能的实现方式,在第一方面的第八种可能的实现方式 中,所述目标终端接收网络发送的资源分配信息,包括:所述目标终端接收所述基站发送的所述资源分配信息。
第二方面,提供了一种通信方法,包括:网络侧设备接收目标终端的通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源;所述网络侧设备向所述目标终端发送资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高通信效率。
结合第二方面,在第二方面的第一种可能的实现方式中,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
在本发明实施例中,不同类型的终端在相同区域中被分配的时频资源相互正交,从而可以减少不同类型的终端之间的通信干扰,提高了通信效率。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
结合以上任一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述通信请求中包含指示所述目标终端所在位置的信息,所述通信方法还包括:所述网络侧设备根据所述通信请求,确定所述目标终端所在的区域;所述网络侧设备根据所述目标终端所在的区域,确定所述目标时频资源。
结合以上任一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,还包括:所述网络侧设备根据所述通信请求,确定所述目标终端所在的当前区域以及所述目标终端将要移动至的与当前小区相邻的第二区域;所述网络侧设备确定为所述目标终端分配的在所述当前区域使用的第一目标时频资源以及为所述目标终端分配的在所述第二区域使用的第二目标时频资源,所述第一目标时频资源和所述第二目标时频资源相互正交。
结合以上任一种可能的实现方式,在第二方面的第六种可能的实现方式 中,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
结合以上任一种可能的实现方式,在第二方面的第七种可能的实现方式中,所述网络侧设备为基站。
结合以上任一种可能的实现方式,在第二方面的第八种可能的实现方式中,所述目标终端为车载终端,所述网络侧设备为第一路边单元,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
结合以上任一种可能的实现方式,在第二方面的第九种可能的实现方式中,所述网络侧设备接收目标终端的通信请求,包括:所述第一路边单元通过其他路边单元接收所述通信请求。
结合以上任一种可能的实现方式,在第二方面的第十种可能的实现方式中,所述第一路边单元属于中心路边单元集合,所述中心路边单元集合中的每个中心路边单元对应于所述多个区域中的一个区域,所述中心路边单元用于为其所对应的区域中的车载终端分配时频资源。
第三方面,提供了一种终端,所述终端包括用于执行第一方面的方法的模块。基于同一发明构思,由于该终端解决问题的原理与第一方面的方法设计中的方案对应,因此该终端的实施可以参见方法的实施,重复之处不再赘述。
第四方面,提供了一种网络侧设备,所述网络侧设备包括用于执行第二方面的方法的模块。基于同一发明构思,由于该网络侧设备解决问题的原理与第二方面的方法设计中的方案对应,因此该网络侧设备的实施可以参见方法的实施,重复之处不再赘述。
第五方面,提供了一种通信系统,所述通信系统包括上述第三方面的终端以及上述第四方面的网络侧设备。
第六方面,提供了一种终端,包括存储器,用于存储程序;收发器,用于和其他设备进行通信;处理器,用于执行存储器中的程序,当所述程序被执行时,当所述程序被执行时,所述处理器用于执行第一方面的方法。
第七方面,提供了一种网络侧设备,包括存储器,用于存储程序;收发器,用于和其他设备进行通信;处理器,用于执行存储器中的程序,当所述 程序被执行时,当所述程序被执行时,所述处理器用于执行第二方面的方法。
第八方面,提供了一种通信系统,所述通信系统包括上述第六方面的终端以及上述第七方面的网络侧设备。
第九方面,提供了一种计算机存储介质,用于储存计算机程序,该计算机程序包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的指令。
第十方面,提供了一种计算机存储介质,用于储存计算机程序,该计算机程序包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的应用场景示意图。
图2是本发明另一实施例的应用场景示意图。
图3是本发明实施例的通信方法的示意性流程图。
图4是本发明又一实施例的通信方法的示意性流程图。
图5是本发明实施例的终端的结构示意图。
图6是本发明实施例的网络侧设备的结构示意图。
图7是本发明又一实施例的终端的结构示意图。
图8是本发明又一实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code  Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE)等。
还应理解,在本发明实施例中,蜂窝终端可称之为终端(Terminal)、移动台(Mobile Station,简称为“MS”)或移动终端(Mobile Terminal)等,该蜂窝终端可以经基站与一个或多个核心网进行通信,例如,蜂窝终端可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等。
应理解,本发明实施例中,车载终端可以是安装在汽车里面的车载信息,车载通信或者车载娱乐产品的简称(又被称为车机),车载终端在功能上能够实现V2V通信、V2R通信、V2P通信、V2I通信等业务的信息通讯,这些业务统称V2X业务。
应理解,在本发明实施例中,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(Node B),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),还可以是未来演进技术(5G(5th Generation)的基站,新空口(New Radio,NR)基站),本发明并不限定。
在现有技术中,少有考虑车联网用户和传统蜂窝用户复用LTE资源的场景,另外,现有技术在实现资源复用时往往将LTE分出独立的资源供车联网用户使用。这种方法在车载终端较少时会造成比较大的资源浪费,使得系统谱效(即系统的频谱效率)无法得到提升。除此之外,还会限制车载终端在某一特定区域内(例如十字口附近)使用LTE资源,受限性较强。
为了解决上述问题,本发明实施例提供了一种通信方法,该通信方法可以应用于车联网用户和蜂窝网用户复用时频资源的场景。该方法的中心思想在于可以将基站覆盖的小区划分为多个区域,在基站覆盖的小区中还存在有路边单元。在上述多个区域中的车载终端和蜂窝终端可以复用时频资源。其中,基站可以用于为蜂窝终端分配时频资源,路边单元用于为车载终端分配时频资源。上述多个区域中的每个区域中的不同类型的终端可以使用相互正交的时频资源,上述多个区域中的相邻区域中的相同类型的终端使用相互正交的时频资源。从而可以减少在相同类型的终端之间的干扰。并且通过路边单元为车载终端分配时频资源,而避免利用基站为车载终端分配时频资源,有效地降低了基站的负载。
图1是本发明实施例的通信方法的应用场景的示意图。在图1的应用场景中,在基站覆盖的小区范围内,存在有车载终端和蜂窝终端两种类型的终端。其中,车载终端和蜂窝终端可以复用时频资源。基站覆盖的小区中还包括多个路边单元。路边单元可以用于为车载终端分配时频资源,基站可以用于为蜂窝终端分配时频资源。可选地,如图1所示,基站覆盖的小区可以被划分为多个区域。该多个区域中的每个区域可以包括一个中心路边单元(Center roadside unit,CRSU),中心路边单元可以用于为其所在区域的车载终端分配时频资源。在该多个区域中的每个区域中,为车载终端分配的时频资源与为蜂窝终端分配的时频资源相互正交;在该多个区域中的任两个相邻区域中,为同一类型的终端分配的时频资源相互正交。即为两个相邻区域的车载终端分配的时频资源相互正交,以及为两个相邻区域的蜂窝终端分配的时频资源也相互正交。
需要说明的是,在本发明实施例中,相同类型的终端可以指接入相同类型网络中的终端,不同类型的终端可以指接入不同类型网络中的终端。例如,相同类型的终端可以指都接入蜂窝网络中的终端(可以称为蜂窝终端),或者都接入车联网中的终端(可以称为车载终端)。不同类型的终端可以指接入不同类型网络中的终端。例如,车载终端和蜂窝终端是不同类型的终端。
可选地,上述每个区域中的中心路边单元可以是用于管理上述每个区域中的路边单元的中心路边单元。例如,中心路边单元可以通过其所管理的区域中的路边单元接收车载终端发送的用于请求分配资源的请求信息,然后为车载终端分配时频资源。
可选地,上述中心路边单元可以是普通的路边单元,也可以是专用的管理路边单元簇的路边单元。或者,在图1例示的场景中,也可以不采用中心路边单元,由接收到车载终端的请求信息的路边单元负责为车载终端分配时频资源。
可选地,基站可以把基站覆盖的小区中的时频资源划分为相互正交的两部分时频资源。比如,划分为第一时频资源池和第二时频资源池,第一时频资源池中的时频资源与第二时频资源池中的时频资源相互正交。基站指示上述多个区域中的每个区域中的中心路边单元其可分配的时频资源池。例如,图1中的A表示第一时频资源池,B表示第二时频资源池,第一时频资源池中的时频资源与第二时频资源池中的时频资源相互正交。在第一区域中的中 心路边单元用于为第一区域中的车载终端分配第一时频资源池中的时频资源。
图2是本发明实施例的通信方法的应用场景的具体实施例,以单小区为例,小区中心存在有基站,基站覆盖的小区内可以存在若干条道路,道路交叉口处的位置存在路边单元,路边单元可以覆盖以十字路口为中心的一片圆形区域。多个位于十字路口的路边单元可以将所有道路范围覆盖。当小区中车载终端有通信需求需要接入网络时,可以向路边单元发送通信请求。由路边单元向所属区域的中心路边单元(CRSU)转发通信请求,然后由中心路边单元为车载终端分配时频资源。另外,路边单元与基站之间可以互相已知对方的位置。
图3是本发明实施例的通信方面300的示意性流程图。图3的方法300可以由目标终端执行,该目标终端可以是车载终端或蜂窝终端,也可以为其他类型的终端。方法300包括:
S301,目标终端接收网络发送的资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的。
可选地,上述目标终端可以是蜂窝终端、车载终端或者其他类型的终端。可选地,上述网络可以是网络侧设备。网络侧设备可以包括基站、路边单元或其他类型的网络侧设备。
可选地,在上述多个区域中,相同类型的终端在相邻区域被分配的时频资源相互正交,不同类型的终端在同一区域被分配的时频资源相互正交。采用本发明实施例中分配资源的方式,可以减少同类型终端之间的信号干扰,提高了通信质量和分配资源的效率。
可选地,目标终端可以位于所述多个区域中的第一区域,所述第一区域可以是所述多个小区中的任一区域。例如,基站覆盖的小区内可以被划分为多个区域,第一区域可以是多个区域中的其中一个区域,第一区域内可以包括多个十字路口,每个十字路口处均存在一个路边单元,每个路边单元均具有一个唯一的标识,第一区域中的所有路边单元可以称为一个路边单元簇或路边单元集合。可以为每簇路边单元分配一个集中管理路边单元的中心路边单元。或者说,每个区域都对应一个中心路边单元,该中心路边单元用于集 中管理该区域中的所有路边单元。
可选地,以所述目标终端为车载终端为例,所述资源分配信息可以用于指示为所述车载终端分配第一时频资源池中的目标时频资源,其中,所述第一时频资源池中的时频资源与第二时频资源池中的时频资源相互正交,所述第一时频资源池中的时频资源用于提供给位于所述第一区域的车载终端和位于第二区域的蜂窝终端进行通信,所述第二时频资源池中的时频资源用于提供给位于所述第一区域的蜂窝终端和位于所述第二区域的车载终端进行通信,所述第一区域与所述第二区域相邻;
可选地,基站可以用于为基站覆盖的小区中的多个区域中的蜂窝终端分配时频资源。基站可以根据蜂窝终端的位置信息,确定蜂窝终端所在的区域;并根据蜂窝终端所在的区域,为蜂窝终端分配第一时频资源池中的时频资源或第二时频资源池中的时频资源。
S302,所述目标终端根据所述资源分配信息,使用所述目标时频资源进行通信。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高了通信效率。
可选地,方法300还包括:所述目标终端向所述网络发送通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源。
可选地,在方法300中,所述通信请求中包含指示所述目标终端所在位置的信息,以便于网络根据所述目标终端的位置,确定为所述目标终端分配的目标时频资源。
可选地,在方法300中,所述通信请求可以包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
作为一个具体示例,当目标终端为车载终端的情况下,图4示出了本发明实施例的车载终端的通信请求的结构示意图。如图4所示,通信请求可以包括车载终端的车辆位置信息、行驶速度信息、预计行驶方向信息以及通信类型信息。其中,通信类型信息可以指示车载终端请求的通信类型为以下通信类型中的一种:V2V、V2R、V2P、V2I。
本领域技术人员可以理解,车载终端为相对高速运动的设备,其实时地理位置可以通过全球定位系统(Global Positioning System,GPS)卫星定位的 方式获得。例如,车载终端可以通过车载导航设备获取车载终端所在的车辆的地理位置信息、车辆当前的行驶方向信息和车辆的预计行驶方向等信息。
可选地,在网络为中心路边单元的情况下,中心路边单元在获取车载终端的通信请求之后,可以根据通信请求中包含的信息,确定车辆的地理位置,进而确定车载终端所处的区域。是否属于中心路边单元所管理的区域,若车载终端属于中心路边单元管理的区域,中心路边单元为车载终端分配相应的时频资源。
本领域技术人员可以理解,蜂窝终端为相对低速运动的手持设备,其地理位置可以由基站通过网络定位的方式获得。可选地,基站可以向每个区域的中心路边单元发送蜂窝终端的地理位置信息。中心路边单元可以根据目标车载终端的通信请求和蜂窝终端的地理位置信息,确定为目标车载终端分配的目标时频资源。例如,对于第一区域的中心路边单元来说,若获知第一蜂窝终端从第二区域移动到第一区域时,由于基站为第一蜂窝终端分配时频资源时,第一蜂窝终端位于第二区域,所以第一蜂窝终端使用的是第一时频资源池中的时频资源,中心路边单元为目标车载终端分配第一时频资源池中的时频资源时,应避免为目标车载终端分配与第一蜂窝终端相同的时频资源,从而避免第一蜂窝终端和目标车载终端在通信时互相干扰。
在本发明实施例中,通过为同一区域中的不同类型的终端分配相互正交的时频资源,以及为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰。并且通过路边单元为车载终端分配时频资源,从而避免利用基站分配时频资源,有效地降低了基站的负载。
可选地,在方法300中,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和第二目标时频资源相互正交。
在本发明实施例中,网络可以根据目标终端的通信请求中所携带的位置信息,估计目标终端的移动方向,从而不仅为目标终端分配当前所在区域的目标时频资源,并且为目标终端分配其在将要移动至的第二区域的目标时频资源,提高了分配资源的效率。
可选地,在方法300中,车载终端在所述多个区域中的第一区域中被分 配的时频资源与蜂窝终端在所述第一区域中被分配的时频资源相互正交,所述第一区域为所述多个区域中的任一区域。
可选地,在方法300中,当目标终端为车载终端的情况下,所述目标终端为车载终端,所述目标终端接收网络发送的资源分配信息,包括:所述车载终端接收第一路边单元发送的所述资源分配信息,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。可选地,该第一路边单元可以是普通的路边单元,也可以是该目标终端所在区域的中心路边单元。
例如,所述第一路边单元可以属于中心路边单元集合,所述中心路边单元集合中的每个中心路边单元对应于所述多个区域中的一个区域,所述中心路边单元用于为其所对应的区域中的车载终端分配时频资源。
下文将介绍本发明实施例的方法400,该方法400可以由网络侧设备执行,网络侧设备可以是基站、路边单元、中心路边单元或其他类型的网络侧设备。方法400中与图3相同或相似的内容可以参考图4相关的描述,此处不再赘述,该方法400包括:
S401,网络侧设备接收目标终端的通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源。
S402,所述网络侧设备向所述目标终端发送资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高通信效率。
可选地,在方法400中,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
在本发明实施例中,不同类型的终端在相同区域中被分配的时频资源相互正交,从而可以减少不同类型的终端之间的通信干扰,提高了通信效率。
可选地,在方法400中,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
可选地,在方法400中,所述通信请求中包含指示所述目标终端所在位置的信息,所述通信方法还包括:所述网络侧设备根据所述通信请求,确定所述目标终端所在的区域;所述网络侧设备根据所述目标终端所在的区域, 确定所述目标时频资源。
例如,上述指示所述目标终端所在位置的信息可以包括目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
可选地,在方法400中,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
可选地,方法400还包括:所述网络侧设备根据所述通信请求,确定所述目标终端所在的当前区域以及所述目标终端将要移动至的与当前小区相邻的第二区域;所述网络侧设备确定为所述目标终端分配的在所述当前区域使用的第一目标时频资源以及为所述目标终端分配的在所述第二区域使用的第二目标时频资源,所述第一目标时频资源和所述第二目标时频资源相互正交。
例如,网络侧设备可以根据通信请求中包含的目标终端的地理位置信息、行驶方向信息以及速度信息,确定目标终端的当前区域以及目标终端将要移动至的与当前区域相邻的第二区域。
可选地,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和第二目标时频资源相互正交。
可选地,在方法400中,车载终端在所述多个区域中的第一区域中被分配的时频资源与蜂窝终端在所述第一区域中被分配的时频资源相互正交,所述第一区域为所述多个区域中的任一区域。
可选地,在方法400中,所述目标终端为车载终端,所述网络侧设备为第一路边单元,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
可选地,在方法400中,所述网络侧设备接收目标终端的通信请求,包括:所述第一路边单元通过其他路边单元接收所述通信请求。
可选地,在方法400中,所述第一路边单元属于中心路边单元集合,所述中心路边单元集合中的每个中心路边单元对应于所述多个区域中的一个区域,所述中心路边单元用于为其所对应的区域中的车载终端分配时频资源。
上文结合图1至图4介绍了本发明实施例的通信方法,下文将结合图5 至图8详细介绍本发明实施例的终端和网络侧设备。
图5示出了本发明实施例的终端的示意性结构图。图5所示的终端500包括:处理模块510和通信模块520,图5所示的终端500可以是目标终端,
所述处理模块510用于通过所述通信模块520接收网络发送的资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的;所述处理模块510还用于根据所述资源分配信息,使用所述目标时频资源进行通信。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高通信效率。
可选地,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
在本发明实施例中,不同类型的终端在相同区域中被分配的时频资源相互正交,从而可以减少不同类型的终端之间的通信干扰,提高了通信效率。
可选地,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
可选地,所述处理模块510还用于通过所述通信模块520向所述网络发送通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源。
可选地,所述通信请求中包含指示所述目标终端所在位置的信息,以便于网络根据所述目标终端的位置,确定为所述目标终端分配的目标时频资源。
可选地,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
可选地,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
可选地,所述目标终端为车载终端,所述处理模块510具体用于通过所 述通信模块520接收第一路边单元发送的所述资源分配信息,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
可选地,所述处理模块510具体用于通过所述通信模块520接收所述基站发送的所述资源分配信息。
图6示出了本发明实施例的网络侧设备的示意性结构图。图6所示的网络侧设备600包括:处理模块610和通信模块620,
所述处理模块用于通过所述通信模块接收目标终端的通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源;
所述处理模块还用于通过所述通信模块向所述目标终端发送资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高通信效率。
可选地,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
在本发明实施例中,不同类型的终端在相同区域中被分配的时频资源相互正交,从而可以减少不同类型的终端之间的通信干扰,提高了通信效率。
可选地,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
可选地,所述通信请求中包含指示所述目标终端所在位置的信息,所述处理模块还用于根据所述通信请求,确定所述目标终端所在的区域;以及根据所述目标终端所在的区域,确定所述目标时频资源。
可选地,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
可选地,所述处理模块还用于根据所述通信请求,确定所述目标终端所在的当前区域以及所述目标终端将要移动至的与当前小区相邻的第二区域;以及确定为所述目标终端分配的在所述当前区域使用的第一目标时频资源以及为所述目标终端分配的在所述第二区域使用的第二目标时频资源,所述第一目标时频资源和所述第二目标时频资源相互正交。
可选地,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
可选地,所述网络侧设备为基站。
可选地,所述目标终端为车载终端,所述网络侧设备为第一路边单元,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
可选地,所述处理模块具体用于通过所述通信模块通过其他路边单元接收所述通信请求。
可选地,所述第一路边单元属于中心路边单元集合,所述中心路边单元集合中的每个中心路边单元对应于所述多个区域中的一个区域,所述中心路边单元用于为其所对应的区域中的车载终端分配时频资源。
图7示出了本发明实施例的终端的示意性结构图。图7所示的终端700可以是目标终端,图7所示的终端700包括:
存储器710,用于存储程序;
收发器720,用于和其他设备进行通信;
处理器730,用于执行存储器710中的程序,当所述程序被执行时,所述处理器730用于通过所述收发器720接收网络发送的资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的;所述处理器730还用于根据所述资源分配信息,使用所述目标时频资源进行通信。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高通信效率。
可选地,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
在本发明实施例中,不同类型的终端在相同区域中被分配的时频资源相互正交,从而可以减少不同类型的终端之间的通信干扰,提高了通信效率。
可选地,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终 端。
可选地,所述处理器730还用于通过所述收发器720向所述网络发送通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源。
可选地,所述通信请求中包含指示所述目标终端所在位置的信息,以便于网络根据所述目标终端的位置,确定为所述目标终端分配的目标时频资源。
可选地,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
可选地,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
可选地,所述目标终端为车载终端,所述处理器730具体用于通过所述收发器720接收第一路边单元发送的所述资源分配信息,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
可选地,所述处理器730具体用于通过所述收发器720接收所述基站发送的所述资源分配信息。
图8示出了本发明实施例的网络侧设备的示意性结构图。图8所示的网络侧设备800包括:
存储器810,用于存储程序;
收发器820,用于和其他设备进行通信;
处理器830,用于执行存储器810中的程序,当所述程序被执行时,所述处理器830用于通过所述收发器820接收目标终端的通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源;
所述处理器830还用于通过所述收发器820向所述目标终端发送资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的。
在本发明实施例中,通过为相邻区域中的相同类型的终端分配相互正交的时频资源,从而可以减少在相同类型的终端之间的干扰,提高通信效率。
可选地,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
在本发明实施例中,不同类型的终端在相同区域中被分配的时频资源相互正交,从而可以减少不同类型的终端之间的通信干扰,提高了通信效率。
可选地,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
可选地,所述通信请求中包含指示所述目标终端所在位置的信息,所述处理器830还用于根据所述通信请求,确定所述目标终端所在的区域;以及根据所述目标终端所在的区域,确定所述目标时频资源。
可选地,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
可选地,所述处理器830还用于根据所述通信请求,确定所述目标终端所在的当前区域以及所述目标终端将要移动至的与当前小区相邻的第二区域;以及确定为所述目标终端分配的在所述当前区域使用的第一目标时频资源以及为所述目标终端分配的在所述第二区域使用的第二目标时频资源,所述第一目标时频资源和所述第二目标时频资源相互正交。
可选地,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
可选地,所述网络侧设备为基站。
可选地,所述目标终端为车载终端,所述网络侧设备为第一路边单元,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
可选地,所述处理器830具体用于通过所述收发器820通过其他路边单元接收所述通信请求。
可选地,所述第一路边单元属于中心路边单元集合,所述中心路边单元集合中的每个中心路边单元对应于所述多个区域中的一个区域,所述中心路边单元用于为其所对应的区域中的车载终端分配时频资源。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种 关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器 (Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    目标终端接收网络发送的资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的;
    所述目标终端根据所述资源分配信息,使用所述目标时频资源进行通信。
  2. 如权利要求1所述的通信方法,其特征在于,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
  3. 如权利要求1或2所述的通信方法,其特征在于,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
  4. 如权利要求1至3中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述目标终端向所述网络发送通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源。
  5. 如权利要求4所述的通信方法,其特征在于,所述通信请求中包含指示所述目标终端所在位置的信息,以便于网络根据所述目标终端的位置,确定为所述目标终端分配的目标时频资源。
  6. 如权利要求4或5所述的通信方法,其特征在于,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
  7. 如权利要求1至6中任一项所述的通信方法,其特征在于,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
  8. 如权利要求1至7中任一项所述的通信方法,其特征在于,所述目标终端为车载终端,所述目标终端接收网络发送的资源分配信息,包括:
    所述目标终端接收第一路边单元发送的所述资源分配信息,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
  9. 如权利要求1至8中任一项所述的通信方法,其特征在于,所述目 标终端接收网络发送的资源分配信息,包括:
    所述目标终端接收所述基站发送的所述资源分配信息。
  10. 一种通信方法,其特征在于,包括:
    网络侧设备接收目标终端的通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源;
    所述网络侧设备向所述目标终端发送资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的。
  11. 如权利要求10所述的通信方法,其特征在于,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
  12. 如权利要求10或11所述的通信方法,其特征在于,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
  13. 如权利要求10至12中任一项所述的通信方法,其特征在于,所述通信请求中包含指示所述目标终端所在位置的信息,所述通信方法还包括:
    所述网络侧设备根据所述通信请求,确定所述目标终端所在的区域;
    所述网络侧设备根据所述目标终端所在的区域,确定所述目标时频资源。
  14. 如权利要求10至13中任一项所述的通信方法,其特征在于,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
  15. 如权利要求14所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络侧设备根据所述通信请求,确定所述目标终端所在的当前区域以及所述目标终端将要移动至的与当前小区相邻的第二区域;
    所述网络侧设备确定为所述目标终端分配的在所述当前区域使用的第一目标时频资源以及为所述目标终端分配的在所述第二区域使用的第二目标时频资源,所述第一目标时频资源和所述第二目标时频资源相互正交。
  16. 如权利要求10至15中任一项所述的通信方法,其特征在于,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的 区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
  17. 如权利要求10至16中任一项所述的通信方法,其特征在于,所述网络侧设备为基站。
  18. 如权利要求10至17中任一项所述的通信方法,其特征在于,所述目标终端为车载终端,所述网络侧设备为第一路边单元,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
  19. 如权利要求18所述的通信方法,其特征在于,所述网络侧设备接收目标终端的通信请求,包括:所述第一路边单元通过其他路边单元接收所述通信请求。
  20. 如权利要求18或19所述的通信方法,其特征在于,所述第一路边单元属于中心路边单元集合,所述中心路边单元集合中的每个中心路边单元对应于所述多个区域中的一个区域,所述中心路边单元用于为其所对应的区域中的车载终端分配时频资源。
  21. 一种终端,其特征在于,所述终端为目标终端,包括:处理模块和通信模块,
    所述处理模块用于通过所述通信模块接收网络发送的资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的;
    所述处理模块还用于根据所述资源分配信息,使用所述目标时频资源进行通信。
  22. 如权利要求21所述的终端,其特征在于,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
  23. 如权利要求21或22所述的终端,其特征在于,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
  24. 如权利要求21至23中任一项所述的终端,其特征在于,所述处理模块还用于通过所述通信模块向所述网络发送通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源。
  25. 如权利要求24所述的终端,其特征在于,所述通信请求中包含指示所述目标终端所在位置的信息,以便于网络根据所述目标终端的位置,确 定为所述目标终端分配的目标时频资源。
  26. 如权利要求24或25所述的终端,其特征在于,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
  27. 如权利要求21至26中任一项所述的终端,其特征在于,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
  28. 如权利要求21至27中任一项所述的终端,其特征在于,所述目标终端为车载终端,所述处理模块具体用于通过所述通信模块接收第一路边单元发送的所述资源分配信息,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
  29. 如权利要求21至28中任一项所述的终端,其特征在于,所述处理模块具体用于通过所述通信模块接收所述基站发送的所述资源分配信息。
  30. 一种网络侧设备,其特征在于,包括:处理模块和通信模块,
    所述处理模块用于通过所述通信模块接收目标终端的通信请求,所述通信请求用于请求为所述目标终端分配通信所需的时频资源;
    所述处理模块还用于通过所述通信模块向所述目标终端发送资源分配信息,所述资源分配信息用于指示为所述目标终端分配的目标时频资源,所述目标终端位于基站覆盖的小区中,所述小区被划分为多个区域,其中,相同类型的终端在所述多个区域中的任意两个相邻区域中被分配的时频资源是相互正交的。
  31. 如权利要求30所述的网络侧设备,其特征在于,不同类型的终端在所述多个区域中的相同区域中被分配的时频资源是相互正交的。
  32. 如权利要求30或31所述的网络侧设备,其特征在于,所述目标终端的类型为以下类型中的一种:车载终端和蜂窝终端。
  33. 如权利要求30至32中任一项所述的网络侧设备,其特征在于,所述通信请求中包含指示所述目标终端所在位置的信息,所述处理模块还用于根据所述通信请求,确定所述目标终端所在的区域;以及根据所述目标终端所在的区域,确定所述目标时频资源。
  34. 如权利要求30至33中任一项所述的网络侧设备,其特征在于,所述通信请求包含以下信息中的至少一种:所述目标终端的地理位置信息、所述目标终端的速度信息、所述目标终端的移动方向信息。
  35. 如权利要求34所述的网络侧设备,其特征在于,所述处理模块还用于根据所述通信请求,确定所述目标终端所在的当前区域以及所述目标终端将要移动至的与当前小区相邻的第二区域;以及确定为所述目标终端分配的在所述当前区域使用的第一目标时频资源以及为所述目标终端分配的在所述第二区域使用的第二目标时频资源,所述第一目标时频资源和所述第二目标时频资源相互正交。
  36. 如权利要求30至35中任一项所述的网络侧设备,其特征在于,所述资源分配信息包括为所述目标终端分配的在当前区域使用的第一目标时频资源的信息以及为所述目标终端分配的在第二区域使用的第二目标时频资源的信息,所述第二区域是所述目标终端要移动至的与所述当前区域相邻的区域,所述第一目标时频资源和所述第二目标时频资源相互正交。
  37. 如权利要求30至36中任一项所述的网络侧设备,其特征在于,所述网络侧设备为基站。
  38. 如权利要求30至37中任一项所述的网络侧设备,其特征在于,所述目标终端为车载终端,所述网络侧设备为第一路边单元,所述第一路边单元用于为所述基站覆盖的小区中的车载终端分配时频资源。
  39. 如权利要求38所述的网络侧设备,其特征在于,所述处理模块具体用于通过所述通信模块通过其他路边单元接收所述通信请求。
  40. 如权利要求38或39所述的网络侧设备,其特征在于,所述第一路边单元属于中心路边单元集合,所述中心路边单元集合中的每个中心路边单元对应于所述多个区域中的一个区域,所述中心路边单元用于为其所对应的区域中的车载终端分配时频资源。
PCT/CN2016/102174 2016-10-14 2016-10-14 通信方法、装置和通信系统 WO2018068320A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/102174 WO2018068320A1 (zh) 2016-10-14 2016-10-14 通信方法、装置和通信系统
US16/311,379 US20190335444A1 (en) 2016-10-14 2016-10-14 Communicaton method and device and communication system
CN201680087302.4A CN109417727B (zh) 2016-10-14 2016-10-14 通信方法、装置和通信系统
EP16918591.5A EP3468248B1 (en) 2016-10-14 2016-10-14 Communication method and device
TW106130664A TWI690232B (zh) 2016-10-14 2017-09-07 通信方法、裝置和通信系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102174 WO2018068320A1 (zh) 2016-10-14 2016-10-14 通信方法、装置和通信系统

Publications (1)

Publication Number Publication Date
WO2018068320A1 true WO2018068320A1 (zh) 2018-04-19

Family

ID=61905106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102174 WO2018068320A1 (zh) 2016-10-14 2016-10-14 通信方法、装置和通信系统

Country Status (5)

Country Link
US (1) US20190335444A1 (zh)
EP (1) EP3468248B1 (zh)
CN (1) CN109417727B (zh)
TW (1) TWI690232B (zh)
WO (1) WO2018068320A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027652A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 确定资源的方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809904A (zh) * 2017-07-01 2020-02-18 英特尔公司 用于运载工具无线电通信的方法和设备
CN112163720A (zh) * 2020-10-22 2021-01-01 哈尔滨工程大学 基于车联网的多智能体无人驾驶电动汽车换电调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977386A (zh) * 2010-10-12 2011-02-16 西安电子科技大学 蜂窝网中家庭基站分组的干扰协调方法
CN103596180A (zh) * 2012-08-15 2014-02-19 普天信息技术研究院有限公司 一种下行干扰协调方法
CN103987110A (zh) * 2014-05-28 2014-08-13 北京邮电大学 一种基于部分频率复用和功率控制的干扰管理机制
WO2015119448A1 (en) * 2014-02-07 2015-08-13 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources in carrier aggregation system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111992B2 (ja) * 1998-07-07 2000-11-27 日本電気株式会社 自動車通信方法及びシステム
KR100957318B1 (ko) * 2004-11-24 2010-05-12 삼성전자주식회사 다중 반송파 시스템에서의 자원할당 방법 및 장치
US8855046B2 (en) * 2006-03-30 2014-10-07 Broadcom Corporation Method and system for uplink coordinated reception in orthogonal frequency division multiple access systems
CN100456871C (zh) * 2007-03-22 2009-01-28 北京交通大学 一种基于ofdm的移动通信系统及切换信道分配方法
US8238323B2 (en) * 2009-06-11 2012-08-07 Intel Corporation OFDMA cellular network and method for mitigating interference
US8305987B2 (en) * 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
CN103220110B (zh) * 2013-03-29 2016-02-24 北京交通大学 高速场景下ofdma系统的无线资源分配方法
CN104981021B (zh) * 2014-04-14 2019-07-05 电信科学技术研究院 一种车联网系统中的资源调度方法和设备
KR101592788B1 (ko) * 2014-11-19 2016-02-18 현대자동차주식회사 이상 차량 처리 방법 및 이를 수행하는 v2x 통신 시스템
US10321353B2 (en) * 2015-09-23 2019-06-11 Electronics And Telecommunications Research Institute Operation methods of communication node supporting direct communications in network
US10681685B2 (en) * 2015-10-31 2020-06-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource indication method, base station and terminal
CN105391782B (zh) * 2015-11-16 2019-09-10 上海交通大学 一种基于认知ofdm的v2i/v2v车联网系统及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977386A (zh) * 2010-10-12 2011-02-16 西安电子科技大学 蜂窝网中家庭基站分组的干扰协调方法
CN103596180A (zh) * 2012-08-15 2014-02-19 普天信息技术研究院有限公司 一种下行干扰协调方法
WO2015119448A1 (en) * 2014-02-07 2015-08-13 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources in carrier aggregation system
CN103987110A (zh) * 2014-05-28 2014-08-13 北京邮电大学 一种基于部分频率复用和功率控制的干扰管理机制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468248A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027652A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 确定资源的方法和装置

Also Published As

Publication number Publication date
EP3468248A1 (en) 2019-04-10
TW201815208A (zh) 2018-04-16
CN109417727A (zh) 2019-03-01
CN109417727B (zh) 2020-04-17
TWI690232B (zh) 2020-04-01
US20190335444A1 (en) 2019-10-31
EP3468248B1 (en) 2020-10-07
EP3468248A4 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
US10142957B2 (en) Resource selection for vehicle (V2X) communications
US10728892B2 (en) Method and device for scheduling resources in internet of vehicles system
US11228869B2 (en) Roadway communication system with multicast
KR102317551B1 (ko) V2x 통신을 수행하는 방법 및 단말
CN1642144A (zh) 用于移动无线自组网的高效轻量信息传播方法和系统
JP6788732B2 (ja) デバイスツーデバイス通信方法および端末デバイス
WO2017166277A1 (zh) 资源分配方法、装置和通信系统
WO2020259525A1 (zh) 一种通信方法及装置
US10237866B2 (en) Adaptive transmission method and apparatus for improving vehicular communication performance
TWI690232B (zh) 通信方法、裝置和通信系統
WO2016086423A1 (zh) 资源调度方法、基站及用户设备
WO2019196706A1 (zh) 旁链路通信中的开环功率控制方法和设备
WO2016172972A1 (zh) 一种资源调度方法、装置及系统
US11057805B2 (en) Mobility management method, network side device, internet-of-vehicles terminal, and system
WO2021134596A1 (zh) 一种侧行通信方法及装置
WO2021114043A1 (zh) 设备到设备的通信方法和通信装置
KR20210154250A (ko) 통신 방법 및 장치
TWI740978B (zh) 資源分配的方法和裝置
WO2019153248A1 (zh) 发送同步信号的方法、设备及计算机存储介质
CN114554421B (zh) 一种通信方法及装置
WO2021022509A1 (zh) 无线通信的方法、终端设备和网络设备
CN114071395A (zh) 侧链协调资源请求方法及装置、存储介质、终端
WO2023109537A1 (zh) 定位参考信号资源指示方法、节点和存储介质
US11510199B2 (en) Wireless communication method, terminal device and network device
WO2021159511A1 (zh) 一种资源指示和确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016918591

Country of ref document: EP

Effective date: 20190107

NENP Non-entry into the national phase

Ref country code: DE