WO2019196229A1 - 一种任意三关节的逆运动学求解方法 - Google Patents

一种任意三关节的逆运动学求解方法 Download PDF

Info

Publication number
WO2019196229A1
WO2019196229A1 PCT/CN2018/095639 CN2018095639W WO2019196229A1 WO 2019196229 A1 WO2019196229 A1 WO 2019196229A1 CN 2018095639 W CN2018095639 W CN 2018095639W WO 2019196229 A1 WO2019196229 A1 WO 2019196229A1
Authority
WO
WIPO (PCT)
Prior art keywords
cos
sin
axis
formula
equation
Prior art date
Application number
PCT/CN2018/095639
Other languages
English (en)
French (fr)
Inventor
王海霞
卢晓
张志国
崔玮
盛春阳
李玉霞
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2019196229A1 publication Critical patent/WO2019196229A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Definitions

  • the invention belongs to the field of robot inverse kinematics, and particularly relates to an inverse kinematic solution method of an arbitrary three joints.
  • the core problem of the inverse solution is to solve the third-order sub-problem, because the general high-dimensional robot can not directly obtain its inverse solution, and often solves the problem of simplifying it to the third-order or less by using the elimination method.
  • the current third-order sub-problems are solved by further simplification to obtain second-order sub-problems and first-order sub-problems. There are few methods for directly solving them. Even if such methods are solved, it is very complicated, even There is no closed solution.
  • the second-order sub-problems currently used are solved by special geometric relations: parallel, intersecting, vertical and other constraints, but in practice these geometric relationships are difficult to guarantee, and these methods also limit the design of the mechanical structure of the robot. Therefore, there is a kind of direct solution to the third-order sub-problem, and it is of great theoretical and practical significance to obtain a unified solution method that is not subject to the robot geometry.
  • the present invention proposes an inverse kinematics solving method for an arbitrary three joints, which is reasonable in design, overcomes the deficiencies of the prior art, and has good effects.
  • Step 1 Solve ⁇ 1 and ⁇ 3
  • spin parameter Is the homogeneous coordinate of p,q, For the motion of the i-th joint, Including the axis direction vector of the joint axis And a little on the shaft ⁇ i and r i.
  • spin parameter Is the homogeneous coordinate of p,q, For the motion of the i-th joint, Including the axis direction vector of the joint axis And a little on the shaft ⁇ i and r i.
  • I 3 ⁇ 3 is a 3 ⁇ 3 unit matrix
  • Is a rotation matrix which can be expressed as Rodrigues:
  • a 1 , b 1 , c 1 , d 1 , a 2 , b 2 , c 2 , d 2 , k 1 , k 2 are known parameters;
  • m 1 (f s1 +v s1 ) 2 +(f c1 +v c1 ) 2 -1
  • the solution of t(12) quadratic equation can be used to obtain the solution of t.
  • the value of ⁇ 3 can be further determined:
  • ⁇ 1 a tan 2(f s1 -u s1 sin ⁇ 3 -v s1 cos ⁇ 3 , f c1 -u c1 sin ⁇ 3 -v c1 cos ⁇ 3 ) (14);
  • Step 2 Solve ⁇ 2
  • the implementation is simple; only need to solve a one-fourth equation and two arctangent functions to obtain a closed solution of the three joints;
  • Figure 1 is a schematic diagram of the inverse of the RRR of any relationship.
  • Step 1 Solve ⁇ 1 and ⁇ 3
  • spin parameter Is the homogeneous coordinate of p,q, For the motion of the i-th joint, Including the axis direction vector of the joint axis And a little on the shaft ⁇ i and r i.
  • spin parameter Is the homogeneous coordinate of p,q, For the motion of the i-th joint, Including the axis direction vector of the joint axis And a little on the shaft ⁇ i and r i.
  • I 3 ⁇ 3 is a 3 ⁇ 3 unit matrix
  • Is a rotation matrix which can be expressed as Rodrigues:
  • a 1 , b 1 , c 1 , d 1 , a 2 , b 2 , c 2 , d 2 , k 1 , k 2 are known parameters;
  • m 1 (f s1 +v s1 ) 2 +(f c1 +v c1 ) 2 -1
  • the solution of t(12) quadratic equation can be used to obtain the solution of t.
  • the value of ⁇ 3 can be further determined:
  • ⁇ 1 a tan 2(f s1 -u s1 sin ⁇ 3 -v s1 cos ⁇ 3 , f c1 -u c1 sin ⁇ 3 -v c1 cos ⁇ 3 ) (14);
  • Step 2 Solve ⁇ 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Computing Systems (AREA)
  • Manipulator (AREA)

Abstract

一种任意三关节的逆运动学求解方法,属于机器人逆运动学领域,在指数积模型的基础上,利用简单的几何约束方程、旋量理论的基本性质以及旋转矩阵的Rodrigues表达,将问题转化成关于三角函数的线性方程进行求解,实现了任意三个关节轴线的逆解问题,使机器人逆解的求解不再局限于相交、平行、垂直的约束关系中,可根据需求设计结构,安装或加工中存在的误差也不会影响最终的计算结果。一种灵活、方便、实用的机器人逆解方法,为机器人在实际中的应用提供了方便。

Description

一种任意三关节的逆运动学求解方法 技术领域
本发明属于机器人逆运动学领域,具体涉及一种任意三关节的逆运动学求解方法。
背景技术
在机器人指数积模型中,其逆解的核心问题就是求解三阶子问题,因为一般的高维机器人无法直接获得其逆解,往往采用消元方法将其化简为三阶以下的问题来解决,而目前的三阶子问题都是通过进一步化简得到二阶子问题和一阶子问题来求解,很少有直接对其进行求解的方法,即使有这样的方法求解也是很复杂的,甚至得不到封闭解。而目前所采用的二阶子问题都是利用了特殊的几何关系:平行、相交、垂直等约束条件来求解,但实际中这些几何关系难以保证,同时这些方法也限制了机器人机械结构的设计。所以,能够有一种直接针对三阶子问题进行求解,得到一种统一的、不受机器人几何结构的约束求解方法具有重要的理论意义和实际意义。
发明内容
针对现有技术中存在的上述技术问题,本发明提出了一种任意三关节的逆运动学求解方法,设计合理,克服了现有技术的不足,具有良好的效果。
为了实现上述目的,本发明采用如下技术方案:
一种任意三关节的逆运动学求解方法,包括以下步骤:
步骤1:求解θ 1和θ 3
空间点p绕轴ω 3旋转角度θ 3到点p 1,再绕轴ω 2旋转角度θ 2到点p 2,最后点p 2绕轴ω 1旋转角度θ 1到q点,这一过程可表示为:
Figure PCTCN2018095639-appb-000001
其中,
Figure PCTCN2018095639-appb-000002
是p,q的齐次坐标,
Figure PCTCN2018095639-appb-000003
为第i关节的运动旋量,
Figure PCTCN2018095639-appb-000004
包括关节轴的轴方向向量
Figure PCTCN2018095639-appb-000005
和轴上一点
Figure PCTCN2018095639-appb-000006
ω i和r i被称为旋量参数,
Figure PCTCN2018095639-appb-000007
的表达形式如下:
Figure PCTCN2018095639-appb-000008
其中,
Figure PCTCN2018095639-appb-000009
是ω i的反对称矩阵,如果ω i=[ω ixiyiz] T,则
Figure PCTCN2018095639-appb-000010
可表示成:
Figure PCTCN2018095639-appb-000011
其中,
Figure PCTCN2018095639-appb-000012
Figure PCTCN2018095639-appb-000013
均已知;
Figure PCTCN2018095639-appb-000014
是刚体变换的指数表达,对于转动关节其表达式为:
Figure PCTCN2018095639-appb-000015
其中,I 3×3为3×3的单位矩阵,
Figure PCTCN2018095639-appb-000016
是旋转矩阵,可用Rodrigues表示为:
Figure PCTCN2018095639-appb-000017
根据旋量理论的基本性质可得:
Figure PCTCN2018095639-appb-000018
其中,r 21和r 22分别为第二个轴上的两个点,将
Figure PCTCN2018095639-appb-000019
Figure PCTCN2018095639-appb-000020
以及
Figure PCTCN2018095639-appb-000021
Figure PCTCN2018095639-appb-000022
的Rodrigues公式,带入式(4)整理得:
a 1sin θ 1+b 1cos θ 1+c 1sin θ 3+d 1cos θ 3=k 1               (6);
a 2sin θ 1+b 2cos θ 1+c 2sin θ 3+d 2cos θ 3=k 2             (7);
其中,a 1,b 1,c 1,d 1,a 2,b 2,c 2,d 2,k 1,k 2均为已知参数;
当a 1b 2-b 1a 2≠0,对式(6)、(7)进行化简可得:
Figure PCTCN2018095639-appb-000023
其中,
Figure PCTCN2018095639-appb-000024
当c 1d 2-d 1c 2≠0时,公式(6)和(7)可整理为:
Figure PCTCN2018095639-appb-000025
其中,公式(10)中的系数可根据公式(9)中的a,b分别与c,d互换,下标不变得到:
Figure PCTCN2018095639-appb-000026
Figure PCTCN2018095639-appb-000027
Figure PCTCN2018095639-appb-000028
根据三角函数性质,将式(8)带入sin 2θ 1+cos 2θ 1=1中,整理可得:
(f s1-u s1sin θ 3-v s1cos θ 3) 2+(f c1-u c1sin θ 3-v c1cos θ 3) 2=1        (11);
Figure PCTCN2018095639-appb-000029
Figure PCTCN2018095639-appb-000030
将其带入sin 2θ 3+cos 2θ 3=1中,整理可得:
m 1t 4+m 2t 3+m 3t 2+m 4t+m 5=0         (12);
其中,
m 1=(f s1+v s1) 2+(f c1+v c1) 2-1
m 2=-4[(f s1+v s1)u s1+(f c1+v c1)u c1]
Figure PCTCN2018095639-appb-000031
m 4=-4[(f s1-v s1)u s1+(f c1-v c1)u c1]
m 5=(f s1-v s1) 2+(f c1-v c1) 2-1
根据费拉里法求解式(12)一元四次方程可得t的解,根据角度取值范围,可进一步确定θ 3的值:
θ 3=2arc tan(t)                (13);
将θ 3的值带入公式(8),可得θ 1
θ 1=a tan 2(f s1-u s1sin θ 3-v s1cos θ 3,f c1-u c1sin θ 3-v c1cos θ 3)            (14);
步骤2:求解θ 2
当θ 1和θ 3已知时,由
Figure PCTCN2018095639-appb-000032
Figure PCTCN2018095639-appb-000033
可获得p 1和p 2,而p 2和p 1之间有:
Figure PCTCN2018095639-appb-000034
将旋转矩阵
Figure PCTCN2018095639-appb-000035
的Rodrigues公式带入公式(15)可得:
x 2sin θ 2+y 2cos θ 2=z 2              (16);
其中,
Figure PCTCN2018095639-appb-000036
Figure PCTCN2018095639-appb-000037
Figure PCTCN2018095639-appb-000038
由于
Figure PCTCN2018095639-appb-000039
在公式(16)两边分别同乘以
Figure PCTCN2018095639-appb-000040
Figure PCTCN2018095639-appb-000041
可得:
Figure PCTCN2018095639-appb-000042
Figure PCTCN2018095639-appb-000043
则可得θ 2的值:
Figure PCTCN2018095639-appb-000044
本发明所带来的有益技术效果:
1、计算效率高;直接针对三关节机器人进行求解,不需要进行降阶来实现;
2、实现简单;只需要求解一个一元四次方程和两个反正切函数获得三个关节的封闭解;
3、应用范围广;可应用于任意关系的RRR机器人中,不需要考虑其轴线之间的几何关系。
附图说明
图1为任意关系的RRR逆解示意图。
具体实施方式
下面结合附图以及具体实施方式对本发明作进一步详细说明:
任意关系的RRR逆解如图1所示。
一种任意三关节的逆运动学求解方法,包括以下步骤:
步骤1:求解θ 1和θ 3
空间点p绕轴ω 3旋转角度θ 3到点p 1,再绕轴ω 2旋转角度θ 2到点p 2,最后点p 2绕轴ω 1旋转角度θ 1到q点,这一过程可表示为:
Figure PCTCN2018095639-appb-000045
其中,
Figure PCTCN2018095639-appb-000046
是p,q的齐次坐标,
Figure PCTCN2018095639-appb-000047
为第i关节的运动旋量,
Figure PCTCN2018095639-appb-000048
包括关节轴的轴方向向量
Figure PCTCN2018095639-appb-000049
和轴上一点
Figure PCTCN2018095639-appb-000050
ω i和r i被称为旋量参数,
Figure PCTCN2018095639-appb-000051
的表达形式如下:
Figure PCTCN2018095639-appb-000052
其中,
Figure PCTCN2018095639-appb-000053
是ω i的反对称矩阵,如果ω i=[ω ixiyiz] T,则
Figure PCTCN2018095639-appb-000054
可表示成:
Figure PCTCN2018095639-appb-000055
其中,
Figure PCTCN2018095639-appb-000056
Figure PCTCN2018095639-appb-000057
均已知;
Figure PCTCN2018095639-appb-000058
是刚体变换的指数表达,对于转动关节其表达式为:
Figure PCTCN2018095639-appb-000059
其中,I 3×3为3×3的单位矩阵,
Figure PCTCN2018095639-appb-000060
是旋转矩阵,可用Rodrigues表示为:
Figure PCTCN2018095639-appb-000061
根据旋量理论的基本性质可得:
Figure PCTCN2018095639-appb-000062
其中,r 21和r 22分别为第二个轴上的两个点,将
Figure PCTCN2018095639-appb-000063
Figure PCTCN2018095639-appb-000064
以及
Figure PCTCN2018095639-appb-000065
Figure PCTCN2018095639-appb-000066
的Rodrigues公式,带入式(4)整理得:
a 1sin θ 1+b 1cos θ 1+c 1sin θ 3+d 1cos θ 3=k 1           (6);
a 2sin θ 1+b 2cos θ 1+c 2sin θ 3+d 2cos θ 3=k 2          (7);
其中,a 1,b 1,c 1,d 1,a 2,b 2,c 2,d 2,k 1,k 2均为已知参数;
当a 1b 2-b 1a 2≠0,对式(6)、(7)进行化简可得:
Figure PCTCN2018095639-appb-000067
其中,
Figure PCTCN2018095639-appb-000068
当c 1d 2-d 1c 2≠0时,公式(6)和(7)可整理为:
Figure PCTCN2018095639-appb-000069
其中,公式(10)中的系数可根据公式(9)中的a,b分别与c,d互换,下标不变得到:
Figure PCTCN2018095639-appb-000070
Figure PCTCN2018095639-appb-000071
Figure PCTCN2018095639-appb-000072
根据三角函数性质,将式(8)带入sin 2θ 1+cos 2θ 1=1中,整理可得:
(f s1-u s1sin θ 3-v s1cos θ 3) 2+(f c1-u c1sin θ 3-v c1cos θ 3) 2=1        (11);
Figure PCTCN2018095639-appb-000073
Figure PCTCN2018095639-appb-000074
将其带入sin 2θ 3+cos 2θ 3=1中,整理可得:
m 1t 4+m 2t 3+m 3t 2+m 4t+m 5=0            (12);
其中,
m 1=(f s1+v s1) 2+(f c1+v c1) 2-1
m 2=-4[(f s1+v s1)u s1+(f c1+v c1)u c1]
Figure PCTCN2018095639-appb-000075
m 4=-4[(f s1-v s1)u s1+(f c1-v c1)u c1]
m 5=(f s1-v s1) 2+(f c1-v c1) 2-1
根据费拉里法求解式(12)一元四次方程可得t的解,根据角度取值范围,可进一步确定θ 3的值:
θ 3=2arc tan(t)                  (13);
将θ 3的值带入公式(8),可得θ 1
θ 1=a tan 2(f s1-u s1sin θ 3-v s1cos θ 3,f c1-u c1sin θ 3-v c1cos θ 3)         (14);
步骤2:求解θ 2
当θ 1和θ 3已知时,由
Figure PCTCN2018095639-appb-000076
Figure PCTCN2018095639-appb-000077
可获得p 1和p 2,而p 2和p 1之间有:
Figure PCTCN2018095639-appb-000078
将旋转矩阵
Figure PCTCN2018095639-appb-000079
的Rodrigues公式带入公式(15)可得:
x 2sin θ 2+y 2cos θ 2=z 2               (16);
其中,
Figure PCTCN2018095639-appb-000080
Figure PCTCN2018095639-appb-000081
Figure PCTCN2018095639-appb-000082
由于
Figure PCTCN2018095639-appb-000083
在公式(16)两边分别同乘以
Figure PCTCN2018095639-appb-000084
Figure PCTCN2018095639-appb-000085
可得:
Figure PCTCN2018095639-appb-000086
Figure PCTCN2018095639-appb-000087
则可得θ 2的值:
Figure PCTCN2018095639-appb-000088
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (1)

  1. 一种任意三关节的逆运动学求解方法,其特征在于:包括以下步骤:
    步骤1:求解θ 1和θ 3
    空间点p绕轴ω 3旋转角度θ 3到点p 1,再绕轴ω 2旋转角度θ 2到点p 2,最后点p 2绕轴ω 1旋转角度θ 1到q点,这一过程可表示为:
    Figure PCTCN2018095639-appb-100001
    其中,
    Figure PCTCN2018095639-appb-100002
    是p,q的齐次坐标,
    Figure PCTCN2018095639-appb-100003
    为第i关节的运动旋量,
    Figure PCTCN2018095639-appb-100004
    包括关节轴的轴方向向量
    Figure PCTCN2018095639-appb-100005
    和轴上一点
    Figure PCTCN2018095639-appb-100006
    ω i和r i被称为旋量参数,
    Figure PCTCN2018095639-appb-100007
    的表达形式如下:
    Figure PCTCN2018095639-appb-100008
    其中,
    Figure PCTCN2018095639-appb-100009
    是ω i的反对称矩阵,如果ω i=[ω ixiyiz] T,则
    Figure PCTCN2018095639-appb-100010
    可表示成:
    Figure PCTCN2018095639-appb-100011
    其中,
    Figure PCTCN2018095639-appb-100012
    Figure PCTCN2018095639-appb-100013
    均已知;
    Figure PCTCN2018095639-appb-100014
    是刚体变换的指数表达,对于转动关节其表达式为:
    Figure PCTCN2018095639-appb-100015
    其中,I 3×3为3×3的单位矩阵,
    Figure PCTCN2018095639-appb-100016
    是旋转矩阵,可用Rodrigues表示为:
    Figure PCTCN2018095639-appb-100017
    根据旋量理论的基本性质可得:
    Figure PCTCN2018095639-appb-100018
    其中,r 21和r 22分别为第二个轴上的两个点,将
    Figure PCTCN2018095639-appb-100019
    Figure PCTCN2018095639-appb-100020
    以及
    Figure PCTCN2018095639-appb-100021
    Figure PCTCN2018095639-appb-100022
    的Rodrigues公式,带入式(4)整理得:
    a 1 sinθ 1+b 1 cosθ 1+c 1 sinθ 3+d 1 cosθ 3=k 1    (6);
    a 2 sinθ 1+b 2 cosθ 1+c 2 sinθ 3+d 2 cosθ 3=k 2    (7);
    其中,a 1,b 1,c 1,d 1,a 2,b 2,c 2,d 2,k 1,k 2均为已知参数;
    当a 1b 2-b 1a 2≠0,对式(6)、(7)进行化简可得:
    Figure PCTCN2018095639-appb-100023
    其中,
    Figure PCTCN2018095639-appb-100024
    当c 1d 2-d 1c 2≠0时,公式(6)和(7)可整理为:
    Figure PCTCN2018095639-appb-100025
    其中,公式(10)中的系数可根据公式(9)中的a,b分别与c,d互换,下标不变得到:
    Figure PCTCN2018095639-appb-100026
    Figure PCTCN2018095639-appb-100027
    Figure PCTCN2018095639-appb-100028
    根据三角函数性质,将式(8)带入sin 2θ 1+cos 2θ 1=1中,整理可得:
    (f s1-u s1sinθ 3-v s1cosθ 3) 2+(f c1-u c1sinθ 3-v c1cosθ 3) 2=1  (11);
    Figure PCTCN2018095639-appb-100029
    Figure PCTCN2018095639-appb-100030
    将其带入sin 2θ 3+cos 2θ 3=1中,整理可得:
    m 1t 4+m 2t 3+m 3t 2+m 4t+m 5=0  (12);
    其中,
    m 1=(f s1+v s1) 2+(f c1+v c1) 2-1
    m 2=-4[(f s1+v s1)u s1+(f c1+v c1)u c1]
    Figure PCTCN2018095639-appb-100031
    m 4=-4[(f s1-v s1)u s1+(f c1-v c1)u c1]
    m 5=(f s1-v s1) 2+(f c1-v c1) 2-1
    根据费拉里法求解式(12)一元四次方程可得t的解,根据角度取值范围,可进一步确定θ 3的值:
    θ 3=2arc tan(t)    (13);
    将θ 3的值带入公式(8),可得θ 1
    θ 1=a tan2(f s1-u s1sinθ 3-v s1cosθ 3,f c1-u c1sinθ 3-v c1cosθ 3)    (14);
    步骤2:求解θ 2
    当θ 1和θ 3已知时,由
    Figure PCTCN2018095639-appb-100032
    Figure PCTCN2018095639-appb-100033
    可获得p 1和p 2,而p 2和p 1之间有:
    Figure PCTCN2018095639-appb-100034
    将旋转矩阵
    Figure PCTCN2018095639-appb-100035
    的Rodrigues公式带入公式(15)可得:
    x 2sinθ 2+y 2cosθ 2=z 2    (16);
    其中,
    Figure PCTCN2018095639-appb-100036
    Figure PCTCN2018095639-appb-100037
    Figure PCTCN2018095639-appb-100038
    由于
    Figure PCTCN2018095639-appb-100039
    在公式(16)两边分别同乘以
    Figure PCTCN2018095639-appb-100040
    Figure PCTCN2018095639-appb-100041
    可得:
    Figure PCTCN2018095639-appb-100042
    Figure PCTCN2018095639-appb-100043
    则可得θ 2的值:
    Figure PCTCN2018095639-appb-100044
PCT/CN2018/095639 2018-04-12 2018-07-13 一种任意三关节的逆运动学求解方法 WO2019196229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810323427.3 2018-04-12
CN201810323427.3A CN108763151A (zh) 2018-04-12 2018-04-12 一种任意三关节的逆运动学求解方法

Publications (1)

Publication Number Publication Date
WO2019196229A1 true WO2019196229A1 (zh) 2019-10-17

Family

ID=63981525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095639 WO2019196229A1 (zh) 2018-04-12 2018-07-13 一种任意三关节的逆运动学求解方法

Country Status (2)

Country Link
CN (1) CN108763151A (zh)
WO (1) WO2019196229A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115741672A (zh) * 2022-10-21 2023-03-07 杭州邦杰星医疗科技有限公司 一种基于刚体变换的dh推导方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362785A (zh) * 2019-06-13 2019-10-22 上海交通大学 基于多文件流的任意对角线性方程组并行求解方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140188273A1 (en) * 2012-12-31 2014-07-03 King Fahd University Of Petroleum And Minerals Control method for mobile parallel manipulators
CN106228260A (zh) * 2016-01-26 2016-12-14 西北工业大学 一种平面三自由度空间机器人逆运动学求解方法
CN106845037A (zh) * 2017-03-21 2017-06-13 山东科技大学 一种五自由度串联机器人的逆运动学通用求解方法
CN106991277A (zh) * 2017-03-21 2017-07-28 山东科技大学 一种任意关系的二阶子问题逆运动学求解方法
CN107203653A (zh) * 2017-04-12 2017-09-26 山东科技大学 一种六自由度串联机器人的逆运动学通用求解方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866722B (zh) * 2015-05-26 2018-09-28 宁波韦尔德斯凯勒智能科技有限公司 一种七轴工业机械臂的逆运动学求解方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140188273A1 (en) * 2012-12-31 2014-07-03 King Fahd University Of Petroleum And Minerals Control method for mobile parallel manipulators
CN106228260A (zh) * 2016-01-26 2016-12-14 西北工业大学 一种平面三自由度空间机器人逆运动学求解方法
CN106845037A (zh) * 2017-03-21 2017-06-13 山东科技大学 一种五自由度串联机器人的逆运动学通用求解方法
CN106991277A (zh) * 2017-03-21 2017-07-28 山东科技大学 一种任意关系的二阶子问题逆运动学求解方法
CN107203653A (zh) * 2017-04-12 2017-09-26 山东科技大学 一种六自由度串联机器人的逆运动学通用求解方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115741672A (zh) * 2022-10-21 2023-03-07 杭州邦杰星医疗科技有限公司 一种基于刚体变换的dh推导方法
CN115741672B (zh) * 2022-10-21 2024-04-19 杭州邦杰星医疗科技有限公司 一种基于刚体变换的dh推导方法

Also Published As

Publication number Publication date
CN108763151A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
Wieder et al. The axion insulator as a pump of fragile topology
CN107589934B (zh) 一种关节型机械臂逆运动学解析解的求取方法
CN102637158B (zh) 一种六自由度串联机器人运动学逆解的求解方法
WO2019196229A1 (zh) 一种任意三关节的逆运动学求解方法
CN106845037B (zh) 一种五自由度串联机器人的逆运动学通用求解方法
CN107203653B (zh) 一种六自由度串联机器人的逆运动学通用求解方法
CN107160401B (zh) 一种解决冗余度机械臂关节角偏移问题的方法
Xu Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces
Zhang et al. Comparisons among six numerical methods for solving repetitive motion planning of redundant robot manipulators
Li et al. Solving inverse kinematics model for 7-DoF robot arms based on space vector
Li et al. Using quadratic interpolated beetle antennae search to enhance robot arm calibration accuracy
Wang et al. Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism
Al-Ghefari et al. Kinematic geometry of a line trajectory in spatial motion
Xu et al. Inverse kinematics for 6-DOF serial manipulators with offset or reduced wrists via a hierarchical iterative algorithm
WO2018171467A1 (zh) 一种任意关系的二阶子问题逆运动学求解方法
Wang et al. Topology optimization for minimum stress design with embedded movable holes
CN109866224A (zh) 一种机器人雅可比矩阵计算方法、装置及存储介质
Zhao et al. Trajectory planning for 6-DOF robotic arm based on quintic polynormial
Harland The large N limit of the Nahm transform
CN103323025B (zh) 一种太阳光斑质心及其太阳输出角的误差修正方法
Wang et al. Kinematics of coupler curves for spherical four-bar linkages based on new spherical adjoint approach
Li et al. A fourier descriptor based approach to design space decomposition for planar motion approximation
Abdel-Malek et al. Workspace boundaries of serial manipulators using manifold stratification
Li et al. Structural disorder by octahedral tilting in inorganic halide perovskites: New insight with Bayesian optimization
Li et al. Kinematics analysis and optimization of 6R manipulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914578

Country of ref document: EP

Kind code of ref document: A1