WO2019196077A1 - 一种低折射率全介质平面透镜的制作方法 - Google Patents

一种低折射率全介质平面透镜的制作方法 Download PDF

Info

Publication number
WO2019196077A1
WO2019196077A1 PCT/CN2018/082920 CN2018082920W WO2019196077A1 WO 2019196077 A1 WO2019196077 A1 WO 2019196077A1 CN 2018082920 W CN2018082920 W CN 2018082920W WO 2019196077 A1 WO2019196077 A1 WO 2019196077A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive index
low refractive
dielectric
columnar
Prior art date
Application number
PCT/CN2018/082920
Other languages
English (en)
French (fr)
Inventor
董建文
范智斌
陈钰杰
邵增凯
余思远
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to US16/474,931 priority Critical patent/US11454739B2/en
Publication of WO2019196077A1 publication Critical patent/WO2019196077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Definitions

  • the present invention relates to the field of micro/nano optical and optical imaging, and more particularly to a method of fabricating a low refractive index all-media planar lens.
  • the traditional optical imaging lens is limited by strict geometric relationship. It depends on the shape of the lens surface and the natural optical material to realize the catadioptric imaging.
  • the optical lens has low design freedom and large volume, which is not conducive to optoelectronic technology and application.
  • optical imaging technology has once again ushered in a new leap.
  • the optical superstructure surface enables precise light field control at the nanoscale, including wavelength, amplitude, phase, polarization, and more.
  • planar lenses composed of nanostructures combine traditional optical imaging technology with modern optical metamaterial technology, and have obvious advantages such as high degree of freedom of regulation, rich optical characteristics, light weight, and high degree of integration.
  • optical planar lenses can be light weight and extremely thin by micro-nano technology, most of the materials used are metal or high refractive index dielectric materials, such as gold and silicon, and the wavelengths are concentrated in the near-infrared band. The absorption of visible light is quite large, and the transmittance in the visible light region is low.
  • the present invention provides a metal or high refractive index dielectric material which is mostly used for the optical planar lens produced by the micro-nano technology, and has a relatively large absorption of visible light and a low transmittance in the visible light region.
  • a method of fabricating a low refractive index all-media planar lens is a method of fabricating a low refractive index all-media planar lens.
  • a method for fabricating a low refractive index all-media planar lens includes the following steps:
  • S1 selecting a dielectric substrate material and a lens structural material in a low refractive index dielectric material composed of a low refractive index dielectric column structure having a refractive index of not less than 2.5;
  • S4 determining a lens radius R, a lens focal length f, and a lens type, periodically sampling a circular area having a radius R on the medium substrate to obtain a plurality of sampling points;
  • r is the distance from the center of the planar lens
  • step S6 comparing the obtained phase modulation with the phase modulation corresponding to each columnar structural unit obtained in step S3, to obtain a columnar structure corresponding to each sampling point;
  • the low refractive index substrate material and the lens structural material described in step S1 are quartz, silicon nitride, titanium dioxide, diamond, silicon dioxide or gallium nitride.
  • the thickness of the columnar structure described in step S3 is 0.2 ⁇ 3 ⁇ , that is, the wavelength or sub-wavelength level, wherein ⁇ is the incident wavelength.
  • the columnar structure described in step S3 is a circular, square or planar pattern having a rotational symmetry of 90° as seen from a plan view.
  • the invention provides a method for fabricating a low-refractive-index all-media planar lens, and produces a plane-diffusion lens with high transmittance in a visible light wavelength range of 480 nm to 780 nm, and provides a low refractive index medium instead of metal and high refractive index.
  • 1 is a flow chart of a method for fabricating a low refractive index all-media planar lens.
  • FIG. 2 is a schematic view of a low refractive index all-media planar diverging lens.
  • Fig. 3 is a schematic view showing a plane wave having a virtual focus at the rear thereof after being modulated by a diverging lens.
  • FIG. 4 is a schematic illustration of a periodic cylindrical nanostructure unit.
  • Figure 5 is a simulation result (top view and side view) of a periodic cylindrical structure magnetic field distribution with a diameter of 200 nm.
  • Figure 6 shows the simulation results of phase and amplitude modulation of periodic cylindrical structures with different diameters.
  • Embodiment 7 is a simulation and experimental result of a virtual focal spot of a planar lens in incident light of different wavelengths in Embodiment 1.
  • Embodiment 8 is a simulation and experimental result of a longitudinal section near a virtual focus of a planar lens in incident light of different wavelengths in Embodiment 1.
  • Figure 9 is a diagram showing the virtual focal length and transmittance of a planar lens in incident light of different wavelengths in Example 1.
  • a method for manufacturing a low refractive index all-media plane lens comprises the following steps:
  • S1 selecting a dielectric substrate material and a lens structural material in a low refractive index dielectric material composed of a low refractive index dielectric column structure having a refractive index of not less than 2.5;
  • S4 determining a lens radius R, a lens focal length f, and a lens type, periodically sampling a circular area having a radius R on the medium substrate to obtain a plurality of sampling points;
  • r is the distance from the center of the planar lens
  • step S6 comparing the obtained phase modulation with the phase modulation corresponding to each columnar structural unit obtained in step S3, to obtain a columnar structure corresponding to each sampling point;
  • the low refractive index substrate material and the lens structural material described in step S1 are quartz, silicon nitride, titanium dioxide, diamond, silicon dioxide or gallium nitride.
  • the columnar structure described in step S3 has a thickness of 0.2 ⁇ to 3 ⁇ , that is, a wavelength or a subwavelength level, wherein ⁇ is an incident wavelength.
  • the columnar structure described in step S3 is a circular, square or planar pattern having a rotational symmetry of 90° as seen from a plan view.
  • the lens comprises a substrate made of a low refractive index all-dielectric material, and is composed of a low refractive index dielectric column structure having a refractive index of 2.5 or less.
  • the substrate material is silicon dioxide
  • the refractive index is 1.45
  • the lens structure material is silicon nitride
  • the refractive index is 2
  • the selected lens sampling mode is hexagonal sampling.
  • the columnar structure is a hexagonal cylindrical structure
  • the selected periodic lattice constant is 416 nm
  • the columnar structure thickness is 695 nm
  • the field distribution, amplitude and phase modulation of the periodic cylindrical nanostructure are calculated by simulation
  • lens focal length f 10 ⁇ m
  • the numerical aperture NA of the lens is ⁇ 0.98, and the lens is determined to be a divergent planar lens.
  • phase modulation required for each sampling point of the lens can be obtained; the phase modulation result of the calculated sampling point and the field distribution and amplitude of the periodic cylindrical nanostructure are calculated by simulation.
  • the phase modulation is contrasted to obtain the cylindrical nanostructures required for each sampling point and arranged on the substrate to obtain a planar lens.
  • the planar lens is simulated by using normal light of different wavelengths, and the planar lens has better modulation of light of different wavelengths. Function, the focal spot effect is better.
  • the substrate material is silicon dioxide
  • the refractive index is 1.45
  • the lens structural material is silicon nitride
  • the refractive index is 2.
  • the selected lens sampling mode is hexagonal sampling, that is, the columnar structure is a hexagonal cylindrical structure, the selected periodic lattice constant is 416 nm and the columnar structure thickness is 695 nm;
  • the field distribution, amplitude and phase modulation of periodic cylindrical nanostructures are calculated by simulation, and the simulation results are obtained.
  • phase modulation required for each sampling point of the lens can be obtained; the phase modulation result of the calculated sampling point and the field distribution and amplitude of the periodic cylindrical nanostructure are calculated by simulation.
  • the phase modulation is contrasted to obtain the cylindrical nanostructures required for each sampling point and arranged on the substrate to obtain a planar lens.

Abstract

一种低折射率全介质平面透镜的制作方法,包括以下步骤:选择介质衬底材料、透镜结构材料;确定入射波长λ;计算出每种柱状结构单元所对应的相位调制;对介质衬底上半径为R的圆形区域进行周期性取样,得到多个取样点;计算出各个取样点位置r处所需的相位调制;得到每一个取样点所对应的柱状结构;在介质衬底上排列出相同厚度的低折射率的不同柱状介质结构,从而得到低折射率全介质平面透镜。

Description

一种低折射率全介质平面透镜的制作方法 技术领域
本发明涉及微纳光学及光学成像领域,更具体的,涉及一种低折射率全介质平面透镜的制作方法。
背景技术
在几何光学框架下,传统光学成像透镜受到严格几何关系限制,需要依赖透镜表面形状和天然的光学材料来实现折反射成像,导致光学透镜设计自由度低、体积质量大,不利于光电子技术及应用的集成化、轻量化和微型化发展需求。随着纳米制备技术的发展,光学成像技术则再次迎来了新的飞跃。光学超构表面能够实现纳米尺度下的精准光场调控,包括波长、振幅、相位、偏振等等。与传统光学透镜相比,由纳米结构组成的平面透镜,结合了传统光学成像技术与现代光学超材料技术,具有调控自由度高、光学特性丰富、轻量化和集成化程度高等明显的优势。
虽然借由微纳技术,光学平面透镜能具有重量轻、厚度极薄等特点,但其所使用的材料大多为金属或高折射率介质材料,如金和硅,所适用波长集中在近红外波段,对可见光吸收相当大,可见光区域透过率低。
发明内容
本发明为克服上述现有技术由微纳技术制得的光学平面透镜使用的材料大多为金属或高折射率介质材料,对可见光吸收相当大,可见光区域透过率低的技术问题,提供一种低折射率全介质平面透镜的制作方法。
为解决上述技术问题,本发明的技术方案如下:
一种低折射率全介质平面透镜的制作方法,包括以下步骤:
S1:在由折射率不小于2.5的低折射率介质柱状结构构成低折射率全介质材料中选择介质衬底材料、透镜结构材料;
S2:在可见光390nm~780nm范围内确定入射波长λ;
S3:根据选择的介质衬底材料、透镜结构材料选择确定厚度的柱状结构并选定周期排列方式,根据每种柱状结构按选定的周期排列方式,计算出每种柱状结构单元所对应的相位调制;
S4:确定透镜半径R、透镜焦距f以及透镜类型,对介质衬底上半径为R的圆形区域进行周期性取样,得到多个取样点;
S5:计算出各个取样点位置r处所需的相位调制,其计算公式为:
发散透镜:
Figure PCTCN2018082920-appb-000001
聚焦透镜:
Figure PCTCN2018082920-appb-000002
其中,r为距离平面透镜中心距离;
S6:将得到的相位调制对比步骤S3中得到的每种柱状结构单元所对应的相位调制,得到每一个取样点所对应的柱状结构;
S7:根据得到的柱状结构,在介质衬底上排列出相同厚度的低折射率的不同柱状介质结构,从而得到低折射率全介质平面透镜。
其中,步骤S1中所述的低折射率衬底材料和透镜结构材料为石英、氮化硅、二氧化钛、金刚石、二氧化硅或氮化镓。
其中,步骤S3所述的柱状结构厚度为0.2λ~3λ,即波长或亚波长量级,其中λ为入射波长。
其中,步骤S3所述的柱状结构,从俯视图看为圆形、正方形或具有90°旋转对称性的平面图形。
与现有技术相比,本发明技术方案的有益效果是:
本发明提供的一种低折射率全介质平面透镜的制作方法,制作出在480nm~780nm的可见光波长范围内高透率的平面发散透镜,提供一种通过低折射率介质代替金属和高折射率介质的方法来提高可见光区域透过率的低折射率全介质平面透镜。
附图说明
图1为一种低折射率全介质平面透镜的制作方法流程图。
图2为低折射率全介质平面发散透镜的示意图。
图3为平面波经过发散透镜调制后在其后方成虚焦点的示意图。
图4为周期性的圆柱纳米结构单元的示意图。
图5为直径为200nm的周期性圆柱结构磁场分布仿真结果(俯视图和侧视图)。
图6为不同直径下周期性圆柱结构的相位和振幅调制仿真结果。
图7为实施例1中平面透镜在不同波长的入射光下虚焦斑的仿真和实验结果。
图8为实施例1中平面透镜在不同波长的入射光下虚焦点附近纵向剖面的仿真和实验结果。
图9为实施例1中平面透镜在不同波长的入射光下虚焦距和透过率。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1、图2、图3所示,一种低折射率全介质平面透镜的制作方法,包括以下步骤:
S1:在由折射率不小于2.5的低折射率介质柱状结构构成低折射率全介质材料中选择介质衬底材料、透镜结构材料;
S2:在可见光390nm~780nm范围内确定入射波长λ;
S3:根据选择的介质衬底材料、透镜结构材料选择确定厚度的柱状结构并选定周期排列方式,根据每种柱状结构按选定的周期排列方式,计算出每种柱状结构单元所对应的相位调制;
S4:确定透镜半径R、透镜焦距f以及透镜类型,对介质衬底上半径为R的圆形区域进行周期性取样,得到多个取样点;
S5:计算出各个取样点位置r处所需的相位调制,其计算公式为:
发散透镜:
Figure PCTCN2018082920-appb-000003
聚焦透镜:
Figure PCTCN2018082920-appb-000004
其中,r为距离平面透镜中心距离;
S6:将得到的相位调制对比步骤S3中得到的每种柱状结构单元所对应的相位调制,得到每一个取样点所对应的柱状结构;
S7:根据得到的柱状结构,在介质衬底上排列出相同厚度的低折射率的不同柱状介质结构,从而得到低折射率全介质平面透镜。
更具体的,步骤S1中所述的低折射率衬底材料和透镜结构材料为石英、氮化硅、二氧化钛、金刚石、二氧化硅或氮化镓。
更具体的,步骤S3所述的柱状结构厚度为0.2λ~3λ,即波长或亚波长量级,其中λ为入射波长。
更具体的,步骤S3所述的柱状结构,从俯视图看为圆形、正方形或具有90°旋转对称性的平面图形。
在具体实施过程中,所述的透镜包括衬底在内均由低折射率全介质材料制作,由折射率小于等于2.5的低折射率介质柱状结构构成。
在具体实施过程中,选取入射波长为λ=633nm,衬底材料为二氧化硅,其折射率为1.45,透镜结构材料为氮化硅,其折射率为2;选定透镜采样方式为六角采样,即柱状结构为六角排布的圆柱结构,选定周期性晶格常数为416nm以及柱状结构厚度为695nm;通过仿真计算出周期性圆柱纳米结构的场分布、振幅和相位调制;确定透镜半径为R=50μm,透镜焦距f=10μm,则透镜的数值孔径NA≈0.98,确定透镜为发散型平面透镜,在正入射情况下通过求解发散透镜相位分布公式:
Figure PCTCN2018082920-appb-000005
其中,r为距离平面透镜中心距离,便可得到透镜每一采样点所需的相位调制;将计算得到的采样点所需相位调制结果与仿真计算出周期性圆柱纳米结构的场分布、振幅和相位调制作对比,获得每一采样点所需的圆柱纳米结构,并排布在衬底上,得到一平面透镜。
在具体实施过程中,如图3所示,当入射光正入射到该平面透镜时,在平面透镜后方会观察到相应的虚焦点。
更具体的,如图7、图8、图9所示,将所得到的平面透镜对不同波长的正入射光进行仿真后的结果,所述平面透镜对不同波长的光都有较好的调制作用,焦斑效果较好。
实施例2
如图4、5、6所示,选取入射波长为λ=633nm,衬底材料为二氧化硅,折射率为1.45,透镜结构材料为氮化硅,折射率为2;
选定透镜采样方式为六角采样,即柱状结构为六角排布的圆柱结构,选定周期性晶格常数为416nm以及柱状结构厚度为695nm;
通过仿真计算出周期性圆柱纳米结构的场分布、振幅和相位调制,得到其模拟结果;
确定透镜直径为D=1cm,透镜焦距f=4mm,则透镜的数值孔径NA≈0.78,确定透镜为发散型平面透镜,在正入射情况下通过求解发散透镜相位分布公式:
Figure PCTCN2018082920-appb-000006
其中,r为距离平面透镜中心距离,便可得到透镜每一采样点所需的相位调制;将计算得到的采样点所需相位调制结果与仿真计算出周期性圆柱纳米结构的场分布、振幅和相位调制作对比,获得每一采样点所需的圆柱纳米结构,并排布在衬底上,得到一平面透镜。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (4)

  1. 一种低折射率全介质平面透镜的制作方法,其特征在于:包括以下步骤:
    S1:在由折射率不小于2.5的低折射率介质柱状结构构成低折射率全介质材料中选择介质衬底材料、透镜结构材料;
    S2:在可见光390nm~780nm范围内确定入射波长λ;
    S3:根据选择的介质衬底材料、透镜结构材料选择确定厚度的柱状结构并选定周期排列方式,根据每种柱状结构按选定的周期排列方式,计算出每种柱状结构单元所对应的相位调制;
    S4:确定透镜半径R、透镜焦距f以及透镜类型,对介质衬底上半径为R的圆形区域进行周期性取样,得到多个取样点;
    S5:计算出各个取样点位置r处所需的相位调制,其计算公式为:
    发散透镜:
    Figure PCTCN2018082920-appb-100001
    聚焦透镜:
    Figure PCTCN2018082920-appb-100002
    其中,r为距离平面透镜中心距离;
    S6:将得到的相位调制对比步骤S3中得到的每种柱状结构单元所对应的相位调制,得到每一个取样点所对应的柱状结构;
    S7:根据得到的柱状结构,在介质衬底上排列出相同厚度的低折射率的不同柱状介质结构,从而得到低折射率全介质平面透镜。
  2. 根据权利要求1所述的一种低折射率全介质平面透镜的制作方法,其特征在于:步骤S1中所述的低折射率衬底材料和透镜结构材料为石英、氮化硅、二氧化钛、金刚石、二氧化硅或氮化镓。
  3. 根据权利要求1所述的一种低折射率全介质平面透镜的制作方法,其特征在于:步骤S3所述的柱状结构厚度为0.2λ~3λ,即波长或亚波长量级,其中λ为入射波长。
  4. 根据权利要求1所述的一种低折射率全介质平面透镜的制作方法,其特征在于:步骤S3所述的柱状结构,从俯视图看为圆形、正方形或具有90°旋转对称性的平面图形。
PCT/CN2018/082920 2018-04-08 2018-04-13 一种低折射率全介质平面透镜的制作方法 WO2019196077A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,931 US11454739B2 (en) 2018-04-08 2018-04-13 Method of fabricating all-dielectric flat lens with low refractive index

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810307848.7A CN108318947A (zh) 2018-04-08 2018-04-08 一种低折射率全介质平面透镜的制作方法
CN201810307848.7 2018-04-08

Publications (1)

Publication Number Publication Date
WO2019196077A1 true WO2019196077A1 (zh) 2019-10-17

Family

ID=62897000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082920 WO2019196077A1 (zh) 2018-04-08 2018-04-13 一种低折射率全介质平面透镜的制作方法

Country Status (3)

Country Link
US (1) US11454739B2 (zh)
CN (1) CN108318947A (zh)
WO (1) WO2019196077A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031477A (zh) * 2018-09-20 2018-12-18 中山大学 一种全介质超表面级联的广角平面镜头制作方法
CN111380612A (zh) * 2020-03-02 2020-07-07 华中科技大学 一种高光谱成像系统
CN113219577A (zh) * 2021-05-25 2021-08-06 中山大学 一种超构表面实现高消光比红外带通偏振片及逆向设计法
CN114488519B (zh) * 2021-12-23 2023-03-10 北京理工大学 大角度入射焦距连续可调的衍射光学透镜及其设计方法
CN114325886B (zh) * 2022-02-23 2023-08-25 深圳迈塔兰斯科技有限公司 超表面及其设计方法、装置及电子设备
CN115349806B (zh) * 2022-08-04 2024-05-07 精微视达医疗科技(苏州)有限公司 一种基于超透镜的超细胆胰管光学探头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604034A (zh) * 2009-07-10 2009-12-16 中国科学院光电技术研究所 一种亚波长高折射率介质孔金属结构透镜
WO2011100070A1 (en) * 2010-02-12 2011-08-18 The Regents Of The University Of California Metamaterial-based optical lenses
CN105487145A (zh) * 2016-01-20 2016-04-13 浙江大学 一种基于人工微结构超表面构造超薄光学透镜的方法
CN106094066A (zh) * 2016-08-04 2016-11-09 浙江大学 一种基于人工微结构超表面构造超薄彩色光学透镜的方法
CN107315206A (zh) * 2017-06-23 2017-11-03 南京大学 基于全介质超表面结构的高效红外光学透镜及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10001090C2 (de) * 2000-01-13 2002-12-12 Eschenbach Optik Gmbh & Co Miniaturisiertes optisches Abbildungssystem
KR100658163B1 (ko) * 2005-04-15 2006-12-15 한국생산기술연구원 반도체 리플로우 공정를 이용한 도광판의 연속마이크로렌즈제조 방법 및 이의 방법에 의해 제조된 도광판
WO2015163958A2 (en) * 2014-01-31 2015-10-29 President And Fellows Of Harvard College Integrated impedance-matched photonic zero-index metamaterials
CN104377452B (zh) * 2014-11-06 2017-05-24 南京邮电大学 一种基于人工电磁表面的纯介质电磁透镜的设计方法
US11092717B2 (en) * 2016-04-05 2021-08-17 President And Fellows Of Harvard College Meta-lenses for sub-wavelength resolution imaging
US10408416B2 (en) * 2017-01-31 2019-09-10 President And Fellows Of Harvard College Achromatic metalens and metalens with reverse chromatic dispersion
US10488651B2 (en) * 2017-04-10 2019-11-26 California Institute Of Technology Tunable elastic dielectric metasurface lenses
TWI696297B (zh) * 2017-12-26 2020-06-11 中央研究院 可見光寬頻消色差的超穎透鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604034A (zh) * 2009-07-10 2009-12-16 中国科学院光电技术研究所 一种亚波长高折射率介质孔金属结构透镜
WO2011100070A1 (en) * 2010-02-12 2011-08-18 The Regents Of The University Of California Metamaterial-based optical lenses
CN105487145A (zh) * 2016-01-20 2016-04-13 浙江大学 一种基于人工微结构超表面构造超薄光学透镜的方法
CN106094066A (zh) * 2016-08-04 2016-11-09 浙江大学 一种基于人工微结构超表面构造超薄彩色光学透镜的方法
CN107315206A (zh) * 2017-06-23 2017-11-03 南京大学 基于全介质超表面结构的高效红外光学透镜及其制备方法

Also Published As

Publication number Publication date
US20190339417A1 (en) 2019-11-07
CN108318947A (zh) 2018-07-24
US11454739B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2019196077A1 (zh) 一种低折射率全介质平面透镜的制作方法
CN107315206B (zh) 基于全介质超表面结构的高效红外光学透镜及其制备方法
CN105487145B (zh) 一种基于人工微结构超表面构造超薄光学透镜的方法
US11150387B2 (en) Planar metalens and cover glass including the same
JP6356557B2 (ja) レンズおよびその製造方法
US9507064B2 (en) Dielectric metasurface optical elements
JP7199224B2 (ja) 中空ナノジェットレンズによる近傍界フォーカシング
US9988724B2 (en) Inorganic polarizing plate having trapezoid shaped metal layers and production method thereof
US9151891B2 (en) Metamaterial-based optical lenses
WO2021233416A1 (zh) 一种超透镜与折射和或反射透镜的混合光学系统
CN108983337B (zh) 超构表面主镜、辅镜及主镜、辅镜制备方法和光学系统
WO2020077911A1 (zh) 反射式超构表面主镜、辅镜和望远镜系统
CN109683334B (zh) 一种透射式光分束器及其制造方法
CN104749665B (zh) 基于介质材料的平面透镜单元、平面透镜及制备方法
CN106199997B (zh) 一种大视场超分辨成像器件
WO2023160228A1 (zh) 无热化超透镜及其设计方法
US8952403B2 (en) Optical devices based on non-periodic sub-wavelength gratings
EP3667376B1 (en) Flat metalens and cover glass comprising same
CN114265132A (zh) 一种单片混合式透镜及其制备方法
JP2018045073A (ja) メタサーフェス
TW200928598A (en) Inclined exposure lithography system
CN111948806B (zh) 超构表面彩虹系统的设计与实现方法
CN103886928A (zh) 用于软X射线波段透射式Fibonacci薄膜透镜及其设计、制备方法
WO2023188946A1 (ja) 光学レンズ
WO2023188771A1 (ja) 光学レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914068

Country of ref document: EP

Kind code of ref document: A1