WO2020077911A1 - 反射式超构表面主镜、辅镜和望远镜系统 - Google Patents

反射式超构表面主镜、辅镜和望远镜系统 Download PDF

Info

Publication number
WO2020077911A1
WO2020077911A1 PCT/CN2019/072941 CN2019072941W WO2020077911A1 WO 2020077911 A1 WO2020077911 A1 WO 2020077911A1 CN 2019072941 W CN2019072941 W CN 2019072941W WO 2020077911 A1 WO2020077911 A1 WO 2020077911A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
reflective
auxiliary
metasurface
primary
Prior art date
Application number
PCT/CN2019/072941
Other languages
English (en)
French (fr)
Inventor
李贵新
刘萱
邓俊鸿
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to DE112019005186.5T priority Critical patent/DE112019005186T5/de
Priority to JP2021521376A priority patent/JP2022505377A/ja
Priority to KR1020217014852A priority patent/KR20210074373A/ko
Priority to US17/286,101 priority patent/US20210382289A1/en
Publication of WO2020077911A1 publication Critical patent/WO2020077911A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/061Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams

Definitions

  • the embodiments of the present application relate to the technical field of metasurfaces, for example, to a reflective metasurface primary mirror, an auxiliary mirror, and a telescope system.
  • the traditional reflective telescope system mainly includes the Newton reflective telescope system, the Cassegrain reflective telescope system and the Gregorian reflective telescope system, which are composed of a primary mirror and an auxiliary mirror.
  • the external light can be focused and imaged after being reflected by the main mirror and the auxiliary mirror in turn.
  • the main mirrors of the above three reflective telescope systems are concave mirrors, and their auxiliary mirrors are plane mirrors, convex mirrors and concave mirrors, respectively.
  • the successful implementation of these systems requires careful design of the curved mirrors, through which the continuous geometric curvature of the curved mirror surface changes to achieve ideal phase tuning and wavefront shaping. Therefore, obtaining a high-quality two-mirror system has strict requirements on preparation processes such as grinding and polishing of the mirror surface, and the processing speed is slow and the cost is high.
  • telescopes used for astronomical observations in order to better see the faint starlight from distant stars, need a telescope system as large as possible to collect signals, which further increases the difficulty and cost of preparation.
  • the difficulty in preparation also limits the aperture of the telescope system, which in turn limits the ability of astronomical observations.
  • the volume occupied by the curved structure is often large, which restricts the development of large-aperture space telescope systems and is also not conducive to the development of micro telescope systems.
  • this application proposes a reflective metasurface primary mirror, secondary mirror and telescope system to realize the design of a planar reflective metasurface for a reflective telescope system, which solves the difficulty of preparing traditional reflective telescope systems , Slow processing speed, high cost and large volume.
  • an embodiment of the present application provides a reflective meta-surface primary mirror, including:
  • the primary mirror superstructured surface functional unit pattern on the transparent substrate satisfies the primary mirror phase distribution to reflect the external incident light to the reflective metasurface auxiliary mirror , And perform reflective focusing via the reflective metasurface auxiliary mirror;
  • the pattern of the superstructured surface functional unit of the main mirror includes a superstructured surface functional structure of the main mirror located in a set annular area, and the superstructured surface functional structure of the main mirror includes a plurality of superstructured surface functional units of the main mirror, the The superstructured surface functional unit of the main mirror includes an anisotropic subwavelength structure of the main mirror, the phase introduced by the subwavelength structure of the main mirror satisfies the phase distribution of the main mirror; The light reflected by the reflective meta-surface auxiliary mirror is focused through the light-transmitting holes.
  • an embodiment of the present application provides a reflective meta-surface auxiliary mirror, including:
  • auxiliary mirror superstructured surface functional unit pattern on the transparent substrate satisfies the auxiliary mirror phase distribution to reflect the reflective superstructured surface primary mirror to the reflective type
  • the incident light on the auxiliary mirror of the metasurface is reflected and focused;
  • the auxiliary mirror superstructured surface functional unit pattern includes auxiliary mirror superstructured surface functional structures located in a set circular area.
  • the auxiliary mirror superstructured surface functional structure includes a plurality of auxiliary mirror superstructured surface functional units.
  • the auxiliary mirror superstructure surface functional unit includes an anisotropic auxiliary mirror sub-wavelength structure, and the phase introduced by the auxiliary mirror sub-wavelength structure satisfies the auxiliary mirror phase distribution; the set circular area is used for the reflection
  • the light transmission holes on the primary mirror of the superstructured surface are aligned, so that the light reflected by the superstructured surface functional structure of the auxiliary mirror passes through the light transmission holes for focusing.
  • an embodiment of the present application provides a telescope system, including the reflective metamorphic surface primary mirror described in the first aspect above and the reflective metamorphic surface auxiliary mirror described in the second aspect above;
  • the side of the reflective metasurface primary mirror having the functional structure of the primary surface of the reflective mirror is disposed opposite to the side of the reflective metasurface secondary mirror having the functional structure of the auxiliary surface of the metasurface.
  • There is a set distance between the mirror and the reflective meta-surface auxiliary mirror, and the auxiliary mirror meta-surface functional structure on the reflective meta-surface auxiliary mirror and the reflective super-surface primary mirror The light transmission holes are aligned.
  • the reflective metamorphic surface primary mirror, auxiliary mirror and telescope system provided in this application form a ring-shaped primary mirror metamorphic surface functional structure that satisfies the phase distribution of the primary mirror on a transparent substrate of a planar reflective metamorphic surface primary mirror, and A disc-shaped auxiliary mirror superstructure surface functional structure that satisfies the phase distribution of the auxiliary mirror is formed on the transparent substrate of the planar reflective superstructure surface auxiliary mirror, so that the incident light is reflected to the auxiliary mirror superstructure through the main mirror superstructure surface functional structure After the surface functional structure, it can be reflected again by the super-structured surface functional structure of the auxiliary mirror and focused after passing through the light-transmitting holes on the main mirror of the reflective super-structured surface.
  • Figure 1 is a side view of a conventional reflective telescope system.
  • FIG. 2 is a schematic diagram of a planar metasurface mirror provided by an embodiment of the present application to reflect incident light.
  • FIG. 3 is a schematic structural diagram of a super-structured surface functional unit provided by an embodiment of the present application.
  • FIG. 4 is a side view of a reflective telescope system provided by an embodiment of the present application.
  • FIG. 5 is a top view of a reflective metasurface primary mirror provided by an embodiment of the present application.
  • FIG. 6 is a top view of a reflective metasurface auxiliary mirror provided by an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a method for preparing a reflective super-structured surface primary mirror provided by an embodiment of the present application.
  • FIGS. 8-12 are side views of the reflective metasurface primary mirror corresponding to each flow of the method for manufacturing the reflective metasurface primary mirror of FIG. 7.
  • FIG. 13 is a schematic flow chart of a method for preparing a reflective superstructured surface auxiliary mirror according to an embodiment of the present application.
  • FIG. 14-19 are side views of the reflective metasurface auxiliary mirror corresponding to each process of the method for manufacturing the reflective metasurface auxiliary mirror of FIG. 13.
  • FIG. 1 is a side view of a conventional reflective telescope system.
  • the reflective telescope system includes a curved primary mirror 10 and a curved secondary mirror 20.
  • the curved secondary mirror 20 is aligned with the opening in the curved primary mirror 10, and the incident light 100 is reflected by the reflective surface of the curved primary mirror 10
  • the traditional reflective telescope system requires continuous geometric curvature changes on the reflective surfaces of the curved primary mirror 10 and the curved secondary mirror 20 to achieve ideal phase tuning and wavefront shaping. Therefore, to obtain high-quality reflective focusing, Demanding preparation processes such as grinding and polishing are required.
  • the processing speed is slow and the cost is high.
  • the preparation of the large-diameter telescope system is limited, which limits the ability of astronomical observation.
  • the curved mirror takes up a large volume, which is not conducive to miniature telescopes. System development.
  • the superstructured surface provides an effective solution for this. It is an interface composed of spatially varying sub-wavelength superstructured surface functional units. By carefully designing the superstructured surface functional units, the subsurface wavelength scale can be achieved. Effective control of the polarization, amplitude and phase of electromagnetic waves.
  • the two-dimensional nature of the metasurface makes it possible to realize more compact, lighter, and lower-loss electromagnetic functional components.
  • the preparation process of the superstructured surface is compatible with the existing complementary metal oxide semiconductor technology, and it is easier to integrate into the existing optoelectronic technology.
  • Planar elements based on metasurface designs have a wide range of applications, such as holographic imaging, polarization conversion, spin-orbit angular momentum generating light, and abnormal reflection / refraction.
  • planar lens which can be used as a single lens, can also form a lens group, or even be combined into other more complex optical systems.
  • the super-structured surface lens makes the refractive optical element thin, compact and easy to integrate, and can play a more important role in ultra-small optical devices with more advanced functions.
  • the telescope system is rarely involved.
  • the present application realizes the design of a reflective telescope system using a planar reflective metasurface, which makes the reflective telescope system have the advantages of lightness, compactness and easy integration, and the preparation process of the metasurface also greatly reduces the traditional curved surface
  • the difficulty of preparing the reflector is beneficial to mass production and assembly of the reflective telescope system at low cost.
  • FIG. 2 is a schematic diagram of a planar super-surface mirror provided by an embodiment of the present application to reflect incident light
  • FIG. 3 is a schematic structural diagram of a super-surface functional unit provided by an embodiment of the present application.
  • the metasurface mirror 30 is designed according to the generalized reflection law, where the generalized reflection law can be understood that the wave vector component of the reflected light along the direction of the reflective interface is equal to the wave vector of the incident light along the direction of the reflective interface Vector sum of the component and the additional phase gradient introduced on the reflecting surface.
  • the metasurface mirror 30 has a gradient phase metasurface.
  • the dashed arrow in FIG. 2 represents horizontal specular reflection light, and the solid arrow indicates the gradient phase metasurface reflected by the metasurface mirror 30.
  • the reflected light of the gradient phase metasurface is deflected relative to the reflected light of the horizontal specular surface, which is caused by the additional phase gradient introduced by the metasurface.
  • the metasurface mirror may include a plurality of metasurface functions 31, and each metasurface function 31 includes at least an anisotropic sub-wavelength structure 311.
  • each metasurface function 31 includes at least an anisotropic sub-wavelength structure 311.
  • ⁇ 1 represents the circular polarization state of the incident light; Is the azimuth angle of the anisotropic nanostructure on the plane.
  • the continuous adjustment of the phase of the incident light from 0-2 ⁇ can be achieved, while the phase of the incident light is different
  • the reflected light can be deflected at different angles, and the deflection angle of the reflected light can be adjusted by setting the azimuth angle of the sub-wavelength structure 311.
  • the superstructured surface functional unit 31 may be a stacked structure of a metal reflective layer 313, a dielectric layer 312 and a sub-wavelength structure 311, or a stacked structure of a metal reflective layer 313 and a sub-wavelength structure 311,
  • the sub-wavelength structure 311 may be a metal sub-wavelength structure or a dielectric sub-wavelength structure, and the sub-wavelength structure 311 may be rod-shaped or elliptical, so as to achieve higher conversion efficiency of circularly polarized light.
  • FIG. 4 is a side view of a reflective telescope system provided by an embodiment of the present application.
  • the reflective telescope system includes a reflective metasurface primary mirror 1 and a reflective metamorphism disposed oppositely
  • the surface auxiliary mirror 2, the reflective metasurface primary mirror 1 and the reflective metasurface secondary mirror 2 have a certain distance, and referring to FIGS.
  • the reflective metasurface primary mirror 1 includes a ring-shaped primary mirror
  • the structured surface functional structure 11 and the primary mirror superstructured surface functional structure 11 surround the circular light-transmitting hole 12 described above.
  • the primary mirror superstructured surface functional structure 11 includes a plurality of primary mirror superstructured surface functional units (not shown in FIG. 5) 3, the structure of the superstructured surface functional unit of FIG.
  • the superstructured surface functional unit of the main mirror includes the main mirror subwavelength structure 111, and the main mirror subwavelength structure 111 is arranged on the main mirror superstructure surface at a specific azimuth
  • the functional structure 11; the reflective metasurface auxiliary mirror 2 includes a disc-shaped auxiliary mirror superstructure surface functional structure 21, and the auxiliary mirror superstructure surface functional structure 21 includes a plurality of auxiliary mirror superstructure surface functional units (not shown in FIG. 6).
  • the auxiliary mirror superstructure surface functional unit includes the auxiliary mirror subwavelength structure 211, and the auxiliary mirror subwavelength structure 211 is arranged on the auxiliary mirror superstructure surface functional structure 21 at a specific azimuth angle, wherein the reflective superstructure surface main
  • the mirror 1 has a side of the primary mirror superstructured surface functional structure 11 opposite to the side of the reflective metasurface auxiliary mirror 2 with the auxiliary mirror superstructured surface functional structure 21, and the auxiliary mirror superstructured surface of the reflective metasurface auxiliary mirror 2
  • the functional structure 21 is aligned with the light transmission hole 12 of the reflective metasurface primary mirror 1, and the incident light 100 that reaches the primary mirror metasurface functional structure 11 is directed in a specific direction due to the additional phase gradient introduced by the submirror structure 111 of the primary mirror Reflect and reflect to the auxiliary mirror superstructure surface functional structure 21, and then the additional phase gradient introduced by the auxiliary mirror sub-wavelength structure 211 causes the reflected light reflected by the reflective supersurface master mirror
  • the reflective metasurface primary mirror includes:
  • the main mirror superficial surface functional unit pattern includes a main mirror supersurface functional structure 11 located in a set annular area.
  • the main mirror supersurface functional structure 11 includes a plurality of main mirror supersurface functional units, the main mirror supersurface functional
  • the unit includes an anisotropic main mirror sub-wavelength structure 111.
  • the phase introduced by the main mirror sub-wavelength structure 111 satisfies the phase distribution of the main mirror; the ring-shaped area is set to surround a light-transmitting hole 12, which is reflected by the reflective superstructure surface auxiliary mirror The light is transmitted through the light transmission hole 12 for focusing.
  • the phase distribution of the primary mirror can be designed according to the geometry of the Newton reflective telescope system, the Cassegrain reflective telescope system, the Gregorian reflective telescope system, or the curved mirror.
  • the phase distribution of the primary mirror is determined according to the first set parameters combined with ray optics and generalized reflection law, where the first set parameters include the main mirror aperture and the system focal length Ratio and operating wavelength of the system. At this time, it is only necessary to determine the focusing characteristics of the reflective metasurface primary mirror.
  • the reflective metasurface secondary mirror is a traditional flat mirror, which is only used to change the propagation of light reflected by the reflective metasurface primary mirror. Direction, adjust the focus position.
  • the phase distribution of the primary mirror is determined according to the second set parameter combined with ray optics and the generalized reflection law.
  • Two setting parameters include primary mirror aperture, primary mirror focal ratio, system focal ratio, distance from the system's focal point to the primary mirror, system operating wavelength, and the position of incident light reaching the reflective metasurface.
  • the position of the primary mirror and the reflective metasurface The mapping relationship between the primary mirror reflecting the incident light and the position on the reflective metasurface auxiliary mirror.
  • the optical path after the incident light enters the telescope system can be determined according to the above second setting parameters, and then combined with the ray optics and the generalized reflection law to determine the additional phase gradient to be introduced at each position of the primary mirror of the reflective metasurface,
  • the phase distribution of the main mirror of the whole reflective metasurface main mirror can be determined.
  • the phase distribution of the primary mirror can also be determined according to the geometry of the curved primary mirror in the set reflective telescope system.
  • the set reflective telescope system may be any existing curved reflective telescope system or a curved reflective telescope system set according to requirements.
  • the curved primary mirror in the set curved reflective telescope system The phase tuning function determines the phase of the corresponding position on the reflective metasurface primary mirror of the present application, thereby determining the main mirror phase distribution of the entire reflective metasurface primary mirror.
  • the curved reflective telescope system may be a Richey-Klein telescope system, which can effectively eliminate coma and spherical aberration on the focal plane.
  • the phase distribution required to be introduced on the reflective metasurface primary mirror can be determined according to the direction angle of the parallel light that is normally incident on the curved primary mirror at each position of the reflected light, and combined with the generalized reflection law.
  • the primary mirror superstructured surface functional unit may include a stacked structure of a metal reflective layer, a dielectric layer and an anisotropic metal sub-wavelength structure; or, the primary mirror superstructured surface functional unit includes a metal reflective layer and each The laminated structure of the subwavelength structure of the anisotropic metal main mirror, or the laminated structure of the subwavelength structure of the metal reflective layer and the anisotropic dielectric main mirror.
  • the reflective metasurface primary mirror designed according to the principle of Bailey geometric phase, the azimuth of the sub-wavelength structure of the main mirror corresponding to different phases is different, that is, the main mirror sub The azimuth angle of the wavelength structure, so that the incident light is reflected by the primary mirror of the reflective metasurface to the corresponding position of the secondary mirror of the reflective metasurface.
  • the sub-wavelength structure of the main mirror may be rod-shaped and / or elliptical, so as to achieve higher conversion efficiency of circularly polarized light.
  • the superstructured surface functional unit of the primary mirror includes a metal reflective layer, a dielectric layer, and a metal sub-wavelength structure
  • the material of the metal reflective layer and the metal sub-wavelength structure is gold
  • the material of the dielectric layer is silicon dioxide
  • the conversion efficiency of circularly polarized light can be as high as 80% in the near infrared band.
  • the reflective meta-surface auxiliary mirror may include:
  • the incident light on is reflected and focused;
  • the pattern of the auxiliary mirror superstructured surface functional unit includes the auxiliary mirror superstructured surface functional structure 21 located in the set circular area, and the auxiliary mirror superstructured surface functional structure 21 includes a plurality of auxiliary mirror superstructured surface functional units.
  • the constitutive surface functional unit includes an anisotropic auxiliary mirror sub-wavelength structure 211, the phase introduced by the auxiliary mirror sub-wavelength structure 211 satisfies the phase distribution of the auxiliary mirror; the circular area is set for light transmission with the reflective superstructure surface main mirror The holes are aligned so that the light reflected by the auxiliary mirror super-structured surface functional structure can be focused through the light-transmitting holes.
  • the phase distribution of the primary mirror can be designed according to the geometry of the Cassegrain reflective telescope system, the Gregorian reflective telescope system, or the curved mirror.
  • the phase distribution of the auxiliary mirror is determined according to the third setting parameter combined with ray optics and the generalized reflection law.
  • Three setting parameters include the aperture of the auxiliary mirror, the focal ratio of the auxiliary mirror, the focal ratio of the system, the distance from the focal point of the system to the auxiliary mirror, the operating wavelength of the system and the position where the incident light reaches the reflective metasurface
  • the main mirror and the reflective metasurface The mapping relationship between the primary mirror reflecting the incident light and the position on the reflective metasurface auxiliary mirror.
  • the optical path after the incident light enters the system can be determined according to the above third setting parameter, and then combined with the ray optics and the generalized reflection law to determine the additional phase gradient to be introduced at each position of the reflective metasurface auxiliary mirror, by This can determine the auxiliary mirror phase distribution of the entire reflective metasurface auxiliary mirror.
  • the secondary mirror phase distribution can also be determined according to the geometry of the curved secondary mirror in the set reflective telescope system.
  • the phase of the surface auxiliary mirror in the curved reflective telescope system can be used to determine the phase of the corresponding position on the reflective metasurface auxiliary mirror of the present application, thereby determining the entire reflective metasurface auxiliary Mirror secondary mirror phase distribution.
  • the curved reflective telescope system may be a traditional Rich-Claine telescope system, which can effectively eliminate coma and spherical aberration on the focal plane.
  • the phase distribution needed to be introduced on the reflective metasurface auxiliary mirror can be determined according to the direction angle of the parallel light being incident on the curved auxiliary mirror at each position on the curved auxiliary mirror, and combining with the generalized reflection law.
  • the auxiliary mirror superstructured surface functional unit may include a stacked structure of a metal reflective layer, a dielectric layer and an anisotropic metal sub-wavelength structure; or, the auxiliary mirror superstructured surface functional unit includes a metal reflective layer and each Anisotropic metal auxiliary mirror sub-wavelength laminated structure, or metal reflective layer and anisotropic dielectric auxiliary mirror sub-wavelength laminated structure.
  • the reflective metasurface auxiliary mirror designed according to the principle of Bailey geometric phase, the azimuth of the auxiliary wavelength sub-wavelength structure corresponding to different phases is different, that is, the auxiliary mirror sub at different positions is set according to the required phase distribution
  • the azimuth angle of the wavelength structure is used to realize the reflection and focusing of light by the reflective metasurface auxiliary mirror.
  • the sub-wavelength structure of the auxiliary mirror may be rod-shaped and / or elliptical to achieve higher conversion efficiency of circularly polarized light.
  • the telescope system provided in the embodiments of the present application includes a reflective meta-surface primary mirror and a reflective meta-surface secondary mirror.
  • a reflective meta-surface primary mirror By forming a ring-shaped primary mirror that satisfies the phase distribution of the primary mirror on a transparent substrate of a planar reflective meta-surface primary mirror Mirror superstructured surface functional structure, and a disc-shaped auxiliary mirror superstructured surface functional structure that meets the phase distribution of the auxiliary mirror is formed on the transparent substrate of the flat reflective superstructured surface auxiliary mirror, so that the incident light passes through the superstructured surface of the main mirror After the functional structure is reflected on the auxiliary mirror superstructured surface functional structure, it can be reflected again by the auxiliary mirror superstructured surface functional structure, and then focused through the light-transmitting holes on the main mirror of the reflective superstructured surface.
  • the embodiments of the present application respectively provide a preparation method of a reflective superstructured surface primary mirror and a preparation method of a reflective metastructured surface secondary mirror.
  • the super structured surface functional unit of the primary mirror and the super structured surface functional unit of the auxiliary mirror both include a metal reflective layer, a dielectric layer, and an anisotropic metal sub-wavelength structure.
  • the preparation method of the reflective metasurface primary mirror includes:
  • Step 210 Provide a transparent substrate.
  • the transparent substrate in the corresponding working band is selected to adapt to the incident light in different working bands.
  • Step 220 an electron beam evaporation process or a thermal evaporation process is used to sequentially vaporize the stacked metal reflective layer and the dielectric layer on the transparent substrate.
  • the metal reflective layer 112 may be vapor-deposited on the transparent substrate 201 by an electron beam vapor deposition process, and then the dielectric layer 113 may be vapor-deposited on the metal reflective layer 112 by a thermal vapor deposition process.
  • the materials of the metal reflective layer 112 and the dielectric layer 113 can be selected according to the operating band of the system.
  • the material of the metal reflective layer 112 can be metal materials such as gold, silver, or aluminum.
  • the material may be silicon dioxide or titanium dioxide; in the infrared band, the material of the metal reflective layer 112 may be gold, silver, aluminum, silicon dioxide or titanium dioxide, and the material of the dielectric layer 113 may be CaF 2 , MgF 2 , Ge, polytetrazol Media such as vinyl fluoride; in the microwave band, the material of the metal reflective layer 112 may be metal materials such as gold, silver, aluminum, or copper, and the material of the dielectric layer 113 may be transparent ceramics.
  • Step 230 Spin-coating the electronic adhesive or photoresist on the dielectric layer, and patterning the portion of the electronic adhesive or photoresist located in the set annular area using an electron beam exposure or photomask exposure process to make the patterned electronic adhesive Or the photoresist meets the superstructured surface functional unit pattern of the main mirror phase distribution.
  • a photoresist 114 is spin-coated on the dielectric layer 113, and an electron beam exposure or a mask exposure process is used to pattern the portion of the photoresist 114 located in the set annular area (all patterns can also be patterned) Only the patterned photoresist located in the set annular area satisfies the phase distribution of the main mirror), so that the patterned photoresist satisfies the phase distribution of the main mirror.
  • the set ring-shaped area is an area surrounding the light-transmitting hole, and the size of the inner aperture of the ring-shaped area can be designed according to the set size of the reflective metasurface auxiliary mirror.
  • the electronic glue should be patterned using electron beam lithography, and the photoresist should be patterned using ultraviolet lithography.
  • the size of the sub-wavelength structure of the main mirror to be formed later will be different, and the lithography process used in this step will also be different.
  • the visible light band electron beam lithography is mostly used; in the infrared band, Optional UV lithography.
  • the microwave band printed circuit board technology can be used.
  • Step 240 Use an electron beam evaporation process or a thermal evaporation process to evaporate a metal layer on the surface of the dielectric layer and the surface of the remaining electronic adhesive or photoresist, and remove the remaining electronic adhesive or photoresist to retain the surface of the dielectric layer
  • the metal layer forms a pattern of the sub-wavelength structure of the main mirror.
  • an electron beam evaporation process may be used to vaporize a metal layer 115 on the surface of the dielectric layer 113 and the surface of the remaining photoresist 114 (patterned photoresist), wherein the remaining photoresist 114
  • the opening defines the shape, size and azimuth of the sub-wavelength structure of the primary mirror formed on the surface of the dielectric layer 113.
  • the remaining photoresist 114 is removed using a corresponding stripping solution, and at the same time, the metal layer 115 formed on the surface of the remaining photoresist 114 is stripped away, and the metal layer on the surface of the dielectric layer 113 is retained, thereby forming the main mirror sub Wavelength structure 111.
  • Step 250 a focused ion beam etching process, a reactive ion beam etching process, an inductively coupled plasma etching process, an ion thinning process, a photolithography process or a laser process are used to remove the metal reflective layer and the medium surrounded by the set annular region Layer to form a circular and flat light-transmitting hole.
  • any one of a focused ion beam etching process, a reactive ion beam etching process, an inductively coupled plasma etching process, an ion thinning process, a photolithography process, or a laser process may be used for removal
  • using a photolithography process to pattern the portion of the electronic adhesive or photoresist located in the set annular area may further include:
  • electron beam exposure or photomask exposure process is used to pattern the portion of the electronic glue or photoresist located in the set annular area.
  • an embodiment of the present application provides a reflective superstructured surface primary mirror, which can be prepared by using the preparation method of the reflective superstructured surface primary mirror provided by any embodiment of the application.
  • the reflective superstructured surface primary mirror includes: a transparent substrate; a main mirror superstructured surface functional unit pattern on the transparent substrate, the main mirror superstructured surface functional unit pattern satisfies the phase distribution of the main mirror The incident light reflected by the auxiliary mirror of the constitutive surface onto the main mirror of the reflective metasurface is reflected and focused.
  • FIG. 13 is a schematic flow chart of a method for preparing a reflective metasurface auxiliary mirror provided by an embodiment of the present application. As shown in FIG. 13, the preparation method of the reflective metasurface auxiliary mirror includes:
  • Step 410 Provide a transparent substrate.
  • the transparent substrate in the corresponding working band is selected to adapt to the incident light in different working bands.
  • Step 420 Spin-coat the photoresist on the transparent substrate, and remove the portion of the photoresist located in the set circular area.
  • the photoresist 212 is spin-coated on the transparent substrate 200, the photoresist 212 is exposed using a mask plate with the same opening as the set circular area, and developed in a developing solution, The portion where the photoresist 212 is located in the set circular area is removed.
  • the circular area is set to correspond to the light-transmitting hole of the reflective metasurface primary mirror.
  • Step 430 Use an electron beam evaporation process or a thermal evaporation process to sequentially vaporize the stacked metal reflective layer and the dielectric layer on the surface of the transparent substrate and the surface of the remaining photoresist, and remove the remaining photoresist.
  • the metal reflective layer 213 may be vapor-deposited on the surface of the transparent substrate 200 and the surface of the remaining photoresist 212 using an electron beam vapor deposition process, and then on the surface of the metal reflective layer 213 using a thermal vapor deposition process Plating dielectric layer 214.
  • the materials of the metal reflection layer 213 and the dielectric layer 214 can be selected according to the operating band of the system. For example, in the visible near infrared band, the material of the metal reflection layer 213 can be metal materials such as gold, silver, or aluminum.
  • the material may be silicon dioxide or titanium dioxide; in the infrared band, the material of the metal reflective layer 213 may be gold, silver, aluminum, silicon dioxide, or titanium dioxide, and the material of the dielectric layer 214 may be CaF 2 , MgF 2 , Ge, polytetrafluoroethylene Media such as vinyl fluoride; in the microwave band, the material of the metal reflective layer 213 may be metal materials such as gold, silver, copper, or aluminum, and the material of the dielectric layer 214 may be transparent ceramics.
  • the remaining photoresist 212 is removed using a corresponding stripping solution, and a stacked structure of the metal reflective layer 213 and the dielectric layer 214 is formed in the set circular area.
  • Step 440 Spin-coat the electronic adhesive or photoresist on the dielectric layer and the transparent substrate. Based on the principle of Bailey geometric phase, use an electron beam exposure or photomask exposure process to pattern the electronic adhesive or photoresist on the dielectric layer In order to make the patterned electronic glue or photoresist satisfy the superstructure surface functional unit pattern of the auxiliary mirror phase distribution.
  • a photoresist 215 is spin-coated on the dielectric layer 214 and the exposed transparent substrate 200. Based on the principle of Bailey geometric phase, the photoresist 215 is located in a set circular area using a photolithography process. Partially patterned so that the patterned photoresist 215 satisfies the auxiliary mirror phase distribution.
  • the electronic glue should be patterned using electron beam lithography, and the photoresist should be patterned using ultraviolet lithography.
  • the size of the sub-wavelength structure of the main mirror to be formed later will be different, and the lithography process used in this step will also be different.
  • the visible light band electron beam lithography is mostly used; in the infrared band, Optional UV lithography.
  • the microwave band printed circuit board technology can be used.
  • Step 450 A metal layer is evaporated on the surface of the dielectric layer and the surface of the remaining electronic adhesive or photoresist by using an electron beam evaporation process or a thermal evaporation process, and the remaining electronic adhesive or photoresist is removed to retain the surface of the dielectric layer
  • the metal layer forms a sub-wavelength pattern of the auxiliary mirror.
  • an electron beam evaporation process may be used to vaporize a metal layer 216 on the surface of the dielectric layer 214 and the surface of the remaining photoresist 215 (patterned photoresist), wherein the remaining photoresist 215
  • the opening defines the shape, size and azimuth of the sub-wavelength structure of the auxiliary mirror formed on the surface of the dielectric layer 214.
  • the remaining photoresist 215 is removed using a corresponding stripping solution, and at the same time, the metal layer 216 formed on the surface of the remaining photoresist 114 is stripped away, and the metal layer on the surface of the dielectric layer 113 is retained, thereby forming a secondary mirror sub
  • the wavelength structure 211 completes the preparation of the reflective metasurface auxiliary mirror.
  • using a photolithography process to pattern the electronic adhesive or photoresist on the dielectric layer may further include:
  • a photolithography process is used to pattern the electronic or photoresist on the dielectric layer.
  • the geometry of the sub-wavelength structure of the auxiliary mirror formed later can be adjusted to achieve high optical reflection efficiency in the required working band, thereby improving the utilization of incident light and reducing the loss of incident light. For focusing and imaging systems, it can improve imaging the quality of.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Telescopes (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

反射式超构表面主镜、辅镜和望远镜系统。反射式超构表面主镜包括:透明衬底;位于透明衬底之上的主镜超构表面功能单元图案;主镜超构表面功能单元图案包括位于设定环形区域内的各向异性的主镜亚波长结构,主镜亚波长结构引入的相位满足主镜相位分布;设定环形区域围成一透光孔,经反射式超构表面辅镜反射的光透过透光孔进行聚焦。

Description

反射式超构表面主镜、辅镜和望远镜系统
本申请要求在2018年10月18日提交中国专利局、申请号为201811214236.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及超构表面技术领域,例如涉及一种反射式超构表面主镜、辅镜和望远镜系统。
背景技术
传统的反射式望远镜系统主要包括牛顿反射式望远镜系统、卡塞格林反射式望远镜系统和格里高里反射式望远镜系统,它们均由主镜和辅镜构成。外界光依次经过主镜和辅镜的反射后可实现聚焦与成像。上述三种反射式望远镜系统的主镜都为凹面反射镜,它们的辅镜分别为平面反射镜、凸面反射镜和凹面反射镜。这些系统的成功实施需要精心地设计其中的曲面反射镜,通过曲面反射镜表面连续的几何曲率变化来实现理想的相位调谐和波前整形。因此,获得高质量的两反射镜系统对镜面的研磨、抛光等制备工艺的要求十分严格,加工速度慢且成本高昂。
另外,用于天文观测的望远镜,为了能更好地看清来自遥远星体传来的微弱星光,需要尽可能大口径的望远镜系统来收集信号,进一步加大了其制备难度和成本。同时,制备上的困难也限制了望远镜系统口径的大小,进而限制了天文观测的能力。此外,曲面结构占用的体积往往较大,这一方面限制了大口径空间望远镜系统的发展,同时也不利于微型望远镜系统的发展。
发明内容
有鉴于此,本申请提出一种反射式超构表面主镜、辅镜和望远镜系统,以实现平面反射式超构表面用于反射式望远镜系统的设计,解决传统的反射式望远镜系统制备难度高、加工速度慢、成本高以及体积大的问题。
本申请采用如下技术方案:
第一方面,本申请实施例提供了一种反射式超构表面主镜,包括:
透明衬底;和
位于所述透明衬底之上的主镜超构表面功能单元图案,所述主镜超构表面功能单元图案满足主镜相位分布,以将外界的入射光反射到反射式超构表面辅镜上,并经所述反射式超构表面辅镜进行反射聚焦;
其中,所述主镜超构表面功能单元图案包括位于设定环形区域内的主镜超构表面功能结构,所述主镜超构表面功能结构包括多个主镜超构表面功能单元,所述主镜超构表面功能单元包括各向异性的主镜亚波长结构,所述主镜亚波长结构引入的相位满足所述主镜相位分布;所述设定环形区域围成一透光孔,经所述反射式超构表面辅镜反射的光透过所述透光孔进行聚焦。
第二方面,本申请实施例提供了一种反射式超构表面辅镜,包括:
透明衬底;和
位于所述透明衬底之上的辅镜超构表面功能单元图案,所述辅镜超构表面功能单元图案满足辅镜相位分布,以对经反射式超构表面主镜反射到所述反射式超构表面辅镜上的入射光进行反射聚焦;
其中,所述辅镜超构表面功能单元图案包括位于设定圆形区域内的辅镜超构表面功能结构,所述辅镜超构表面功能结构包括多个辅镜超构表面功能单元,所述辅镜超构表面功能单元包括各向异性的辅镜亚波长结构,所述辅镜亚波长结构引入的相位满足所述辅镜相位分布;所述设定圆形区域用于与所述反射式超构表面主镜上的透光孔相对准,以使经所述辅镜超构表面功能结构反射的光透过所述透光孔进行聚焦。
第三方面,本申请实施例提供了一种望远镜系统,包括上述第一方面所述的反射式超构表面主镜和上述第二方面所述的反射式超构表面辅镜;
所述反射式超构表面主镜具有主镜超构表面功能结构的一面与所述反射式超构表面辅镜具有辅镜超构表面功能结构的一面相对设置,所述反射式超构表面主镜与所述反射式超构表面辅镜之间间隔一设定距离,且所述反射式超构表面辅镜上的辅镜超构表面功能结构与所述反射式超构表面主镜上的透光孔相对准。
本申请提供的反射式超构表面主镜、辅镜和望远镜系统,在平面的反射式超构表面主镜的透明衬底上形成满足主镜相位分布的环形主镜超构表面功能结构,并在平面的反射式超构表面辅镜的透明衬底上形成满足辅镜相位分布的圆盘状辅镜超构表面功能结构,使得入射光经主镜超构表面功能结构反射到辅镜 超构表面功能结构上后,可由辅镜超构表面功能结构再次反射,经反射式超构表面主镜上的透光孔后聚焦。由此通过上述反射式超构表面主镜和反射式超构表面辅镜的组合设计,实现了基于平面反射式超构表面的望远镜系统的设计,解决了传统的反射式望远镜系统制备难度高、加工速度慢、成本高以及体积大的问题。本申请利用平面反射式超构表面来替代传统的曲面反射镜,具有轻薄紧致和便于集成的优点,且超构表面的制备工艺也大大降低了传统的曲面反射镜的制备难度,有利于实现大口径反射式望远镜系统和便携且易于集成的微型望远镜系统。
附图说明
图1是传统的反射式望远镜系统的侧视图。
图2是本申请一实施例提供的平面的超构表面反射镜反射入射光的示意图。
图3是本申请一实施例提供的超构表面功能单元的结构示意图。
图4是本申请一实施例提供的反射式望远镜系统的侧视图。
图5是本申请一实施例提供的反射式超构表面主镜的俯视图。
图6是本申请一实施例提供的反射式超构表面辅镜的俯视图。
图7是本申请一实施例提供的一种反射式超构表面主镜的制备方法的流程示意图。
图8-图12是图7的反射式超构表面主镜的制备方法的每个流程对应的反射式超构表面主镜的侧视图。
图13是本申请一实施例提供的一种反射式超构表面辅镜的制备方法的流程示意图。
图14-图19是图13的反射式超构表面辅镜的制备方法的每个流程对应的反射式超构表面辅镜的侧视图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。 另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1是传统的反射式望远镜系统的侧视图。如图1所示,该反射式望远镜系统包括曲面主镜10和曲面辅镜20,曲面辅镜20与曲面主镜10上的开孔相对准,入射光100经曲面主镜10的反射面反射至曲面辅镜20的反射面上,再经曲面辅镜20反射并透过曲面主镜10的开孔聚焦至A点。然而,该传统的反射式望远镜系统需要通过曲面主镜10和曲面辅镜20反射面连续的几何曲率变化来实现理想的相位调谐和波前整形,因此,要想获得高质量的反射式聚焦,需要苛刻的研磨和抛光等制备工艺,加工速度慢且成本高昂,同时大口径的望远镜系统的制备受限,进而限制了天文观测的能力,且曲面反射镜占用的体积较大,不利于微型望远镜系统的发展。
超构表面为此提供了一种有效的解决方案,它是由具有空间变化的亚波长超构表面功能单元构成的界面,通过精心地设计超构表面功能单元,可以在亚波长尺度下实现对电磁波的偏振、振幅和相位的有效调控。超构表面的二维属性使其能实现体积更紧凑,质量更轻,损耗更低的电磁功能元件。且超构表面的制备工艺与现有的互补金属氧化物半导体技术兼容,更容易集成到现有的光电技术中。基于超构表面设计的平面元件具有广泛的应用,例如实现全息成像、偏振转换、产生光的自旋轨道角动量和异常反射/折射等。在基于超构表面的精密光学元件中,最有吸引力和应用前景的要数平面透镜,它既可以作为单个透镜,也能构成透镜组,甚至组合成其它更复杂的光学系统。超构表面透镜使折射光学元件变得轻薄紧凑易于集成,可以在具有更先进功能的超小型光学设备中发挥更重要的作用。但望远镜系统作为重要的科学研究工具,却少有涉及。
基于此,本申请利用平面的反射式超构表面实现了反射式望远镜系统的设计,使得反射式望远镜系统具有轻薄紧致和便于集成的优点,且超构表面的制备工艺也大大降低了传统曲面反射镜的制备难度,有利于实现反射式望远镜系统大批量低成本地生产及装配。
图2是本申请一实施例提供的平面的超构表面反射镜反射入射光的示意图;图3是本申请一实施例提供的超构表面功能单元的结构示意图。如图2所示,超构表面反射镜30是根据广义的反射定律设计的,其中,广义的反射定律可理解为反射光沿反射界面方向的波矢分量等于入射光沿反射界面方向的波矢分量与反射面上引入的额外相位梯度的矢量和。示例性的,该超构表面反射镜30具有梯度相位超构表面,图2中虚线箭头表示水平镜面反射光,实线箭头表示该超构表面反射镜30实现的梯度相位超构表面反射光,显然,梯度相位超构表面反射光相对于水平镜面反射光反射光发生了偏转,这正是由于超构表面引入的额外相位梯度引起的。
如图3所示,该超构表面反射镜可以包括多个超构表面功能单元31,每个超构表面功能单元31至少包括具有各向异性的亚波长结构311。由贝里几何相位原理,即圆偏振光与各向异性的亚波长结构相互作用,可以使入射圆偏振光的圆偏振态发生反转同时引入几何相位因子
Figure PCTCN2019072941-appb-000001
其中σ=±1代表入射光的圆偏振态;
Figure PCTCN2019072941-appb-000002
是各向异性纳米结构在平面上的方位角,可以看出,通过简单改变各向异性的亚波长结构的方位角可实现对入射光相位从0-2π的连续调控,而入射光不同的相位可以引起反射光不同角度的偏转,进而可以通过设置亚波长结构311的方位角来调节反射光的偏转角度。在一实施例中,上述超构表面功能单元31可以为金属反射层313、介质层312和亚波长结构311的叠层结构,也可以为金属反射层313和亚波长结构311的叠层结构,亚波长结构311可以为金属亚波长结构或介质亚波长结构,亚波长结构311可以为棒状或椭圆状,以实现较高的圆偏振光转换效率。
基于上述超构表面反射镜的结构及原理,本申请可通过设置超构表面反射镜每个超构表面功能单元的亚波长结构的方位角,使整个超构表面反射镜满足特定的相位分布,利用至少两个超构表面反射镜组合成反射式望远镜系统。示例性的,图4是本申请一实施例提供的反射式望远镜系统的侧视图,如图4所示,该反射式望远镜系统包括相对设置的反射式超构表面主镜1和反射式超构表面辅镜2,反射式超构表面主镜1和反射式超构表面辅镜2之间具有一定间距, 同时结合图5和图6,反射式超构表面主镜1包括环形的主镜超构表面功能结构11和主镜超构表面功能结构11所述围绕的圆形的透光孔12,主镜超构表面功能结构11包括多个主镜超构表面功能单元(图5中未示出,可参考图3的超构表面功能单元的结构),主镜超构表面功能单元包括主镜亚波长结构111,主镜亚波长结构111以特定的方位角排布于主镜超构表面功能结构11上;反射式超构表面辅镜2包括圆盘状的辅镜超构表面功能结构21,辅镜超构表面功能结构21包括多个辅镜超构表面功能单元(图6中未示出,可参考图3的超构表面功能单元的结构),辅镜超构表面功能单元包括辅镜亚波长结构211,辅镜亚波长结构211以特定的方位角排布于辅镜超构表面功能结构21上,其中,反射式超构表面主镜1具有主镜超构表面功能结构11的一面与反射式超构表面辅镜2具有辅镜超构表面功能结构21的一面相对设置,反射式超构表面辅镜2的辅镜超构表面功能结构21与反射式超构表面主镜1的透光孔12相对准,到达主镜超构表面功能结构11的入射光100由于主镜亚波长结构111引入的额外相位梯度而向特定的方向反射,并反射至辅镜超构表面功能结构21,再由辅镜亚波长结构211引入的额外相位梯度使得经反射式超构表面主镜1反射形成的反射光透过透光孔12聚焦于B点。由此,本实施例可通过反射式超构表面主镜1和反射式超构表面辅镜2组合,实现反射式望远镜系统的设计。
示例性的,可参考图5和图12,反射式超构表面主镜包括:
透明衬底201;
位于透明衬底201之上的主镜超构表面功能单元图案,主镜超构表面功能单元图案满足主镜相位分布,以将外界的入射光反射到反射式超构表面辅镜上,并经反射式超构表面辅镜进行反射聚焦;
主镜超构表面功能单元图案包括位于设定环形区域内的主镜超构表面功能结构11,主镜超构表面功能结构11包括多个主镜超构表面功能单元,主镜超构表面功能单元包括各向异性的主镜亚波长结构111,主镜亚波长结构111引入的相位满足主镜相位分布;设定环形区域围成一透光孔12,经反射式超构表面辅镜反射的光透过透光孔12进行聚焦。
本实施例可根据牛顿反射式望远镜系统、卡塞格林反射式望远镜系统、格里高里反射式望远镜系统或曲面反射镜的几何形状,设计主镜相位分布。
根据牛顿反射式望远镜系统设计的反射式超构表面主镜,主镜相位分布根据第一设定参数结合射线光学及广义的反射定律确定,其中,第一设定参数包括主镜口径、系统焦比和系统工作波长。此时,只需要确定反射式超构表面主镜的聚焦特性即可,反射式超构表面辅镜为传统的平面反射镜,仅用于改变经反射式超构表面主镜反射的光线的传播方向,调节焦点的位置。
根据卡塞格林反射式望远镜系统或格里高里反射式望远镜系统设计的反射式超构表面主镜,主镜相位分布根据第二设定参数结合射线光学及广义的反射定律确定,其中,第二设定参数包括主镜口径、主镜焦比、系统焦比、系统的焦点到主镜的距离、系统工作波长和入射光到达反射式超构表面主镜上的位置与反射式超构表面主镜反射入射光至反射式超构表面辅镜上的位置的映射关系。本实施例可根据上述第二设定参数,确定入射光进入望远镜系统后的光路,再结合射线光学及广义的反射定律,确定反射式超构表面主镜每个位置需要引入的额外相位梯度,由此可确定整个反射式超构表面主镜的主镜相位分布。
主镜相位分布还可根据设定的反射式望远镜系统中的曲面主镜的几何形状确定。设定的反射式望远镜系统可以为已有的任一曲面反射式望远镜系统或根据需求设置的曲面反射式望远镜系统,本实施例可根据设定的曲面反射式望远镜系统中曲面主镜对光的相位调谐作用,确定本申请的反射式超构表面主镜上对应位置的相位,从而确定整个反射式超构表面主镜的主镜相位分布。示例性的,曲面反射式望远镜系统可以为里奇-克莱琴望远镜系统,能够有效地消除焦平面上的彗差和球差。示例性的,可以根据平行光正入射到曲面主镜上每个位置处反射光线的方向角,并结合广义的反射定律确定反射式超构表面主镜上所需引入的相位分布。
在一实施例中,主镜超构表面功能单元可以包括金属反射层、介质层和各向异性的金属亚波长结构的叠层结构;或者,主镜超构表面功能单元包括金属反射层及各向异性的金属主镜亚波长结构的叠层结构,或金属反射层及各向异 性的介质主镜亚波长结构的叠层结构。
在一实施例中,根据贝里几何相位原理设计的反射式超构表面主镜,不同相位对应的主镜亚波长结构的方位角不同,即根据所需相位分布设置不同位置处的主镜亚波长结构的方位角,以使入射光经反射式超构表面主镜反射至反射式超构表面辅镜对应的位置。
在一实施例中,主镜亚波长结构可以呈棒状和/或椭圆形,以实现较高的圆偏振光转换效率。示例性的,主镜超构表面功能单元包括金属反射层、介质层和金属亚波长结构的叠层结构时,金属反射层和金属亚波长结构的材料为金,介质层的材料为二氧化硅,金属亚波长结构呈棒状时,在近红外波段,圆偏振光转换效率可高达80%。
示例性的,参考图6和图19,反射式超构表面辅镜可以包括:
透明衬底200;
位于透明衬底200之上的辅镜超构表面功能单元图案,辅镜超构表面功能单元图案满足辅镜相位分布,以对经反射式超构表面主镜反射到反射式超构表面辅镜上的入射光进行反射聚焦;
其中,辅镜超构表面功能单元图案包括位于设定圆形区域内的辅镜超构表面功能结构21,辅镜超构表面功能结构21包括多个辅镜超构表面功能单元,辅镜超构表面功能单元包括各向异性的辅镜亚波长结构211,辅镜亚波长结构211引入的相位满足辅镜相位分布;设定圆形区域用于与反射式超构表面主镜上的透光孔相对准,以使经辅镜超构表面功能结构反射的光透过透光孔进行聚焦。
本实施例可根据卡塞格林反射式望远镜系统、格里高里反射式望远镜系统或曲面反射镜的几何形状,设计主镜相位分布。
根据卡塞格林反射式望远镜系统或格里高里反射式望远镜系统设计的反射式超构表面辅镜,辅镜相位分布根据第三设定参数结合射线光学及广义的反射定律确定,其中,第三设定参数包括辅镜口径、辅镜焦比、系统焦比、系统的焦点到辅镜的距离、系统工作波长和入射光到达反射式超构表面主镜上的位置与反射式超构表面主镜反射入射光至反射式超构表面辅镜上的位置的映射关 系。本实施例可根据上述第三设定参数,确定入射光进入系统后的光路,再结合射线光学及广义的反射定律,确定反射式超构表面辅镜每个位置需要引入的额外相位梯度,由此可确定整个反射式超构表面辅镜的辅镜相位分布。
辅镜相位分布还可根据设定的反射式望远镜系统中的曲面辅镜的几何形状确定。本实施例可根据设定的曲面反射式望远镜系统中曲面辅镜对光的相位调谐作用,确定本申请的反射式超构表面辅镜上对应位置的相位,从而确定整个反射式超构表面辅镜的辅镜相位分布。示例性的,曲面反射式望远镜系统可以为传统的里奇-克莱琴望远镜系统,能够有效地消除焦平面上的彗差和球差。示例性的,可以根据平行光正入射到曲面辅镜上每个位置处反射光线的方向角,并结合广义的反射定律确定反射式超构表面辅镜上所需引入的相位分布。
在一实施例中,辅镜超构表面功能单元可以包括金属反射层、介质层和各向异性的金属亚波长结构的叠层结构;或者,辅镜超构表面功能单元包括金属反射层及各向异性的金属辅镜亚波长结构的叠层结构,或金属反射层及各向异性的介质辅镜亚波长结构的叠层结构。
在一实施例中,根据贝里几何相位原理设计的反射式超构表面辅镜,不同相位对应的辅镜亚波长结构的方位角不同,即根据所需相位分布设置不同位置处的辅镜亚波长结构的方位角,以实现反射式超构表面辅镜对光的反射聚焦。
在一实施例中,辅镜亚波长结构可以呈棒状和/或椭圆形,以实现较高的圆偏振光转换效率。
本申请实施例提供的望远镜系统包括反射式超构表面主镜和反射式超构表面辅镜,通过在平面的反射式超构表面主镜的透明衬底上形成满足主镜相位分布的环形主镜超构表面功能结构,并在平面的反射式超构表面辅镜的透明衬底上形成满足辅镜相位分布的圆盘状辅镜超构表面功能结构,使得入射光经主镜超构表面功能结构反射到辅镜超构表面功能结构上后,可由辅镜超构表面功能结构再次反射,经反射式超构表面主镜上的透光孔后聚焦。由此通过上述反射式超构表面主镜和反射式超构表面辅镜的组合设计,实现了基于平面反射式超构表面的望远镜系统的设计,解决了传统的反射式望远镜系统制备难度高、加 工速度慢、成本高以及体积大的问题。本申请利用平面反射式超构表面来替代传统的曲面反射镜,具有轻薄紧致和便于集成的优点,且超构表面的制备工艺也大大降低了传统的曲面反射镜的制备难度,有利于实现大口径反射式望远镜系统和便携且易于集成的微型望远镜系统。
此外,本申请实施例还分别提供了反射式超构表面主镜的制备方法和反射式超构表面辅镜的制备方法。
本实施例以主镜超构表面功能单元和辅镜超构表面功能单元均包括金属反射层、介质层和各向异性的金属亚波长结构的叠层结构为例进行说明。
图7是本申请一实施例提供的一种反射式超构表面主镜的制备方法的流程示意图。如图7所示,该反射式超构表面主镜的制备方法包括:
步骤210、提供透明衬底。
示例性的,根据透明衬底之上的主镜超构表面功能单元图案的材料,选择相应工作波段内的透明衬底,以适应不同工作波段的入射光。
步骤220、采用电子束蒸镀工艺或热蒸镀工艺在透明衬底之上依次蒸镀叠层的金属反射层和介质层。
示例性的,参考图8,可先采用电子束蒸镀工艺在透明衬底201之上蒸镀金属反射层112,再采用热蒸镀工艺在金属反射层112上蒸镀介质层113。其中,金属反射层112和介质层113的材料可根据系统的工作波段进行选择,例如,在可见近红外波段,金属反射层112的材料可以为金、银或铝等金属材料,介质层113的材料可以为二氧化硅或二氧化钛;在红外波段,金属反射层112的材料可以为金、银、铝、二氧化硅或二氧化钛,介质层113的材料可以为CaF 2、MgF 2、Ge、聚四氟乙烯等介质;在微波波段,金属反射层112的材料可以为金、银、铝或铜等金属材料,介质层113的材料可以为透明陶瓷等。
步骤230、在介质层上旋涂电子胶或光刻胶,采用电子束曝光或光罩曝光工艺对电子胶或光刻胶位于设定环形区域的部分进行图案化,以使图案化的电子胶或光刻胶满足主镜相位分布的超构表面功能单元图案。
示例性的,参考图9,在介质层113上旋涂光刻胶114,采用电子束曝光或 光罩曝光工艺对光刻胶114位于设定环形区域的部分进行图案化(也可全部进行图案化,仅位于设定环形区域的图案化的光刻胶满足主镜相位分布),以使图案化的光刻胶满足主镜相位分布。其中,设定环形区域是围绕透光孔的区域,环形区域的内孔径大小可根据设定的反射式超构表面辅镜的大小进行设计。
本实施例中,电子胶应采用电子束光刻进行图案化,光刻胶应采用紫外光刻进行图案化。对于不同的工作波段,后续形成的主镜亚波长结构的尺寸会有所不同,进而该步骤采用的光刻工艺也会不同,例如,在可见光波段,多采用电子束光刻;在红外波段,可选择紫外光刻。另外,在微波波段,可采用印刷电路板技术。
步骤240、采用电子束蒸镀工艺或热蒸镀工艺在介质层表面和残留的电子胶或光刻胶表面蒸镀金属层,并去除残留的电子胶或光刻胶,以保留介质层表面的金属层,形成主镜亚波长结构的图案。
示例性的,参考图10,可采用电子束蒸镀工艺在介质层113表面和残留的光刻胶114(图案化的光刻胶)表面蒸镀金属层115,其中,残留的光刻胶114的开口限定出了形成于介质层113表面的主镜亚波长结构的形状、尺寸及方位角。参考图11,利用相应的去胶液去除残留的光刻胶114,进而同时剥离掉形成于残留的光刻胶114表面的金属层115,保留介质层113表面的金属层,从而形成主镜亚波长结构111。
步骤250、采用聚焦离子束刻蚀工艺、反应离子束刻蚀工艺、感应耦合等离子体刻蚀工艺、离子减薄工艺、光刻工艺或激光工艺去除设定环形区域所围绕的金属反射层和介质层,形成圆形平整的透光孔。
示例性的,参考图12,可采用聚焦离子束刻蚀工艺、反应离子束刻蚀工艺、感应耦合等离子体刻蚀工艺、离子减薄工艺、光刻工艺或激光工艺中的任一种工艺去除待形成的透光孔所对应区域的金属反射层112和介质层113,形成圆形平整的透光孔12,同时形成环形的主镜超构表面功能结构,完成反射式超构表面主镜的制备。
在一实施例中,采用光刻工艺对电子胶或光刻胶位于设定环形区域的部分 进行图案化,还可以包括:
基于表面等离激元共振或者纳米结构散射理论,采用电子束曝光或光罩曝光工艺对电子胶或光刻胶位于设定环形区域的部分进行图案化。
通过调整后续形成的主镜亚波长结构的几何尺寸,在所需的工作波段实现高的光学反射效率,进而提高入射光的利用率,减少入射光的损失,对于聚焦与成像系统,可提高成像的质量。
相应的,本申请一实施例提供了一种反射式超构表面主镜,可采用本申请任一实施例提供的反射式超构表面主镜的制备方法制备。该反射式超构表面主镜包括:透明衬底;位于透明衬底之上的主镜超构表面功能单元图案,主镜超构表面功能单元图案满足主镜相位分布,以对经反射式超构表面辅镜反射到反射式超构表面主镜上的入射光进行反射聚焦。
此外,图13是本申请一实施例提供的反射式超构表面辅镜的制备方法的流程示意图。如图13所示,该反射式超构表面辅镜的制备方法包括:
步骤410、提供透明衬底。
示例性的,根据透明衬底之上的辅镜超构表面功能单元图案的材料,选择相应工作波段内的透明衬底,以适应不同工作波段的入射光。
步骤420、在透明衬底之上旋涂光刻胶,并去除光刻胶位于设定圆形区域的部分。
示例性的,参考图14,在透明衬底200之上旋涂光刻胶212,采用开口与设定圆形区域相同的掩膜板对光刻胶212进行曝光,并在显影液中显影,去除光刻胶212位于设定圆形区域的部分。其中,设定圆形区域与反射式超构表面主镜的透光孔相对应。
步骤430、采用电子束蒸镀工艺或热蒸镀工艺在透明衬底表面及残留的光刻胶表面依次蒸镀叠层的金属反射层和介质层,并去除残留的光刻胶。
示例性的,参考图15,可先采用电子束蒸镀工艺在透明衬底200表面及残留的光刻胶212表面蒸镀金属反射层213,再采用热蒸镀工艺在金属反射层213表面蒸镀介质层214。其中,金属反射层213和介质层214的材料可根据系统的 工作波段进行选择,例如,在可见近红外波段,金属反射层213的材料可以为金、银或铝等金属材料,介质层214的材料可以为二氧化硅或二氧化钛;在红外波段,金属反射层213的材料可以为金、银、铝、二氧化硅或二氧化钛,介质层214的材料可以为CaF 2、MgF 2、Ge、聚四氟乙烯等介质;在微波波段,金属反射层213的材料可以为金、银、铜或铝等金属材料,介质层214的材料可以为透明陶瓷等。之后,参考图16,利用相应的去胶液去除残留的光刻胶212,在设定圆形区域内形成金属反射层213和介质层214的叠层结构。
步骤440、在介质层及透明衬底上旋涂电子胶或光刻胶,基于贝里几何相位原理,采用电子束曝光或光罩曝光工艺对位于介质层上的电子胶或光刻胶进行图案化,以使图案化的电子胶或光刻胶满足辅镜相位分布的超构表面功能单元图案。
示例性的,参考图17,在介质层214及暴露的透明衬底200上旋涂光刻胶215,基于贝里几何相位原理,采用光刻工艺对光刻胶215位于设定圆形区域的部分进行图案化,以使图案化的光刻胶215满足辅镜相位分布。
本实施例中,电子胶应采用电子束光刻进行图案化,光刻胶应采用紫外光刻进行图案化。对于不同的工作波段,后续形成的主镜亚波长结构的尺寸会有所不同,进而该步骤采用的光刻工艺也会不同,例如,在可见光波段,多采用电子束光刻;在红外波段,可选择紫外光刻。另外,在微波波段,可采用印刷电路板技术。
步骤450、采用电子束蒸镀工艺或热蒸镀工艺在介质层表面和残留的电子胶或光刻胶表面蒸镀金属层,并去除残留的电子胶或光刻胶,以保留介质层表面的金属层,形成辅镜亚波长结构的图案。
示例性的,参考图18,可采用电子束蒸镀工艺在介质层214表面和残留的光刻胶215(图案化的光刻胶)表面蒸镀金属层216,其中,残留的光刻胶215的开口限定出了形成于介质层214表面的辅镜亚波长结构的形状、尺寸及方位角。参考图19,利用相应的去胶液去除残留的光刻胶215,进而同时剥离掉形成于残留的光刻胶114表面的金属层216,保留介质层113表面的金属层,从而 形成辅镜亚波长结构211,完成反射式超构表面辅镜的制备。
在一实施例中,采用光刻工艺对位于介质层上的电子胶或光刻胶进行图案化,还可以包括:
基于表面等离激元共振或者纳米结构散射理论,采用光刻工艺对位于介质层上的电子胶或光刻胶进行图案化。
可调整后续形成的辅镜亚波长结构的几何尺寸,在所需的工作波段实现高的光学反射效率,进而提高入射光的利用率,减少入射光的损失,对于聚焦与成像系统,可提高成像的质量。

Claims (11)

  1. 一种反射式超构表面主镜,包括:
    透明衬底;和
    位于所述透明衬底之上的主镜超构表面功能单元图案,所述主镜超构表面功能单元图案满足主镜相位分布,以将外界的入射光反射到反射式超构表面辅镜上,并经所述反射式超构表面辅镜进行反射聚焦;
    其中,所述主镜超构表面功能单元图案包括位于设定环形区域内的主镜超构表面功能结构,所述主镜超构表面功能结构包括多个主镜超构表面功能单元,所述主镜超构表面功能单元包括各向异性的主镜亚波长结构,所述主镜亚波长结构引入的相位满足所述主镜相位分布;所述设定环形区域围成一透光孔,经所述反射式超构表面辅镜反射的光透过所述透光孔进行聚焦。
  2. 根据权利要求1所述的反射式超构表面主镜,其中,所述反射式超构表面主镜是根据牛顿反射式望远镜系统设计的主镜,所述主镜相位分布根据第一设定参数结合射线光学及广义的反射定律确定,所述第一设定参数包括主镜口径、系统焦比和系统工作波长;或者,
    所述反射式主镜是根据卡塞格林反射式望远镜系统或格里高里反射式望远镜系统设计的主镜,所述主镜相位分布根据第二设定参数结合射线光学及广义的反射定律确定,所述第二设定参数包括主镜口径、主镜焦比、系统焦比、系统的焦点到主镜的距离、系统工作波长和入射光到达所述反射式超构表面主镜上的位置与所述反射式超构表面主镜反射所述入射光至所述反射式超构表面辅镜上的位置的映射关系;或者,
    所述主镜相位分布根据设定的反射式望远镜系统中的曲面主镜的几何形状确定。
  3. 根据权利要求1所述的反射式超构表面主镜,其中,所述主镜超构表面功能单元包括以下叠层结构中的一种:
    金属反射层、介质层和各向异性的金属亚波长结构的叠层结构;
    金属反射层及各向异性的金属主镜亚波长结构的叠层结构;和
    金属反射层及各向异性的介质主镜亚波长结构的叠层结构。
  4. 根据权利要求1所述的反射式超构表面主镜,其中,所述反射式超构表面主镜是根据贝里几何相位原理设计的主镜,所述主镜相位分布中不同相位对 应的所述主镜亚波长结构的方位角不同。
  5. 根据权利要求4所述的反射式超构表面主镜,其中,所述主镜亚波长结构包括棒状和椭圆形中的至少一种。
  6. 一种反射式超构表面辅镜,包括:
    透明衬底;和
    位于所述透明衬底之上的辅镜超构表面功能单元图案,所述辅镜超构表面功能单元图案满足辅镜相位分布,以对经反射式超构表面主镜反射到所述反射式超构表面辅镜上的入射光进行反射聚焦;
    其中,所述辅镜超构表面功能单元图案包括位于设定圆形区域内的辅镜超构表面功能结构,所述辅镜超构表面功能结构包括多个辅镜超构表面功能单元,所述辅镜超构表面功能单元包括各向异性的辅镜亚波长结构,所述辅镜亚波长结构引入的相位满足所述辅镜相位分布;所述设定圆形区域用于与所述反射式超构表面主镜上的透光孔相对准,以使经所述辅镜超构表面功能结构反射的光透过所述透光孔进行聚焦。
  7. 根据权利要求6所述的反射式超构表面辅镜,其中,所述反射式超构表面辅镜是根据卡塞格林反射式望远镜系统或格里高里反射式望远镜系统设计的辅镜,所述辅镜相位分布根据第三设定参数结合射线光学及广义的反射定律确定,所述第三设定参数包括辅镜口径、辅镜焦比、系统焦比、系统的焦点到辅镜的距离、系统工作波长和入射光到达所述反射式超构表面主镜上的位置与所述反射式超构表面主镜反射所述入射光至所述反射式超构表面辅镜上的位置的映射关系;或者,
    所述辅镜相位分布根据设定的反射式望远镜系统中的曲面辅镜的几何形状确定。
  8. 根据权利要求6所述的反射式超构表面辅镜,其中,所述辅镜超构表面功能单元包括以下层叠结构中的一种:
    金属反射层、介质层和各向异性的金属亚波长结构的叠层结构;
    金属反射层及各向异性的金属辅镜亚波长结构的叠层结构;和
    金属反射层及各向异性的介质辅镜亚波长结构的叠层结构。
  9. 根据权利要求6所述的反射式超构表面辅镜,其中,所述反射式超构表 面辅镜是根据贝里几何相位原理设计的辅镜,所述辅镜相位分布中不同相位对应的所述辅镜亚波长结构的方位角不同。
  10. 根据权利要求9所述的反射式超构表面辅镜,其中,所述辅镜亚波长结构包括棒状和椭圆形中的至少一种。
  11. 一种望远镜系统,包括如权利要求1-5任一项所述的反射式超构表面主镜和如权利要求6-10任一项所述的反射式超构表面辅镜;
    所述反射式超构表面主镜具有主镜超构表面功能结构的一面与所述反射式超构表面辅镜具有辅镜超构表面功能结构的一面相对设置,所述反射式超构表面主镜与所述反射式超构表面辅镜之间间隔一设定距离,且所述反射式超构表面辅镜上的辅镜超构表面功能结构与所述反射式超构表面主镜上的透光孔相对准。
PCT/CN2019/072941 2018-10-18 2019-01-24 反射式超构表面主镜、辅镜和望远镜系统 WO2020077911A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019005186.5T DE112019005186T5 (de) 2018-10-18 2019-01-24 Reflektierender hauptoberflächen-primärspiegel, hilfsspiegel und teleskopsystem
JP2021521376A JP2022505377A (ja) 2018-10-18 2019-01-24 反射式メタサーフェス主鏡、補助鏡および望遠鏡システム
KR1020217014852A KR20210074373A (ko) 2018-10-18 2019-01-24 반사식 메타 표면 프라이머리 미러, 세컨더리 미러 및 망원경 시스템
US17/286,101 US20210382289A1 (en) 2018-10-18 2019-01-24 Reflective mastersurface primary mirror, auxiliary mirror, and telescope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811214236.X 2018-10-18
CN201811214236.XA CN109143567A (zh) 2018-10-18 2018-10-18 一种反射式超构表面主镜、辅镜和望远镜系统

Publications (1)

Publication Number Publication Date
WO2020077911A1 true WO2020077911A1 (zh) 2020-04-23

Family

ID=64808303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072941 WO2020077911A1 (zh) 2018-10-18 2019-01-24 反射式超构表面主镜、辅镜和望远镜系统

Country Status (6)

Country Link
US (1) US20210382289A1 (zh)
JP (1) JP2022505377A (zh)
KR (1) KR20210074373A (zh)
CN (1) CN109143567A (zh)
DE (1) DE112019005186T5 (zh)
WO (1) WO2020077911A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983337B (zh) * 2018-07-23 2021-08-27 南方科技大学 超构表面主镜、辅镜及主镜、辅镜制备方法和光学系统
CN109143567A (zh) * 2018-10-18 2019-01-04 南方科技大学 一种反射式超构表面主镜、辅镜和望远镜系统
CN110244388B (zh) * 2019-05-24 2021-03-26 华中科技大学 一种基于超表面的电可调卡塞格林反射系统
CN110460756B (zh) * 2019-08-12 2021-06-08 杭州电子科技大学 一种场景实时自动去雨成像处理方法及装置
CN110459133A (zh) * 2019-08-19 2019-11-15 南方科技大学 图像显示系统以及反射式超构表面器件的制备方法
CN111175960B (zh) * 2020-02-28 2023-07-04 中国科学院上海技术物理研究所 整体式镜面加工免装校光学望远镜及其加工方法
CN113820853B (zh) * 2020-06-18 2022-09-23 华为技术有限公司 多平面光转换器的加工方法和多平面光转换器
CN114879355B (zh) * 2021-02-05 2024-09-20 中国科学院苏州纳米技术与纳米仿生研究所 一种望远镜结构及其制作方法
CN113504593B (zh) * 2021-07-26 2023-11-14 北京京东方技术开发有限公司 一种镜子及其状态切换方法
WO2023235186A2 (en) * 2022-05-24 2023-12-07 The Penn State Research Foundation Large-scale, mass-producible, high efficiency metalenses
CN117849912A (zh) * 2023-11-20 2024-04-09 天津大学四川创新研究院 一种大视场角的折叠光学系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630027A (zh) * 2009-08-20 2010-01-20 中国科学院微电子研究所 一种大口径成像光子筛及其制作方法
CN104199180A (zh) * 2014-09-19 2014-12-10 江苏卡罗卡国际动漫城有限公司 一种带有曼金次镜的卡赛格林系统
CN104749665A (zh) * 2015-04-08 2015-07-01 哈尔滨工业大学深圳研究生院 基于介质材料的平面透镜单元、平面透镜及制备方法
CN108983337A (zh) * 2018-07-23 2018-12-11 南方科技大学 超构表面主镜、辅镜及主镜、辅镜制备方法和光学系统
CN109143567A (zh) * 2018-10-18 2019-01-04 南方科技大学 一种反射式超构表面主镜、辅镜和望远镜系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057946B2 (ja) * 1993-01-29 2000-07-04 キヤノン株式会社 収差補正系及びそれを用いた天体望遠鏡
JPH08122641A (ja) * 1994-10-24 1996-05-17 Canon Inc 一体型反射光学系
JPH1164734A (ja) * 1997-08-22 1999-03-05 Canon Inc 撮影光学系及びそれを用いた撮像装置
JPH11202205A (ja) * 1997-10-16 1999-07-30 Canon Inc 光学素子及びそれを用いた光学系
DE10004891C2 (de) * 2000-02-04 2002-10-31 Astrium Gmbh Fokalfläche und Detektor für optoelektronische Bildaufnahmesysteme, Herstellungsverfahren und optoelektronisches Bildaufnahmesystem
US20140085693A1 (en) * 2012-09-26 2014-03-27 Northeastern University Metasurface nanoantennas for light processing
CN106199997B (zh) * 2016-07-15 2018-08-17 中国科学院光电技术研究所 一种大视场超分辨成像器件
CN106054287B (zh) * 2016-08-03 2018-08-10 哈尔滨工业大学深圳研究生院 一种可见光波段变换的光学器件结构单元及光学器件
CN106646715B (zh) * 2016-11-28 2019-03-08 南京大学 一种对称l形金属超构表面分束器以及制备方法
CN107561857A (zh) * 2017-09-20 2018-01-09 南方科技大学 一种基于纳米压印制备光学超构表面的方法
CN107807416A (zh) * 2017-11-16 2018-03-16 厦门大学 一种基于各向同性陶瓷超构材料的高效率宽带反射镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630027A (zh) * 2009-08-20 2010-01-20 中国科学院微电子研究所 一种大口径成像光子筛及其制作方法
CN104199180A (zh) * 2014-09-19 2014-12-10 江苏卡罗卡国际动漫城有限公司 一种带有曼金次镜的卡赛格林系统
CN104749665A (zh) * 2015-04-08 2015-07-01 哈尔滨工业大学深圳研究生院 基于介质材料的平面透镜单元、平面透镜及制备方法
CN108983337A (zh) * 2018-07-23 2018-12-11 南方科技大学 超构表面主镜、辅镜及主镜、辅镜制备方法和光学系统
CN109143567A (zh) * 2018-10-18 2019-01-04 南方科技大学 一种反射式超构表面主镜、辅镜和望远镜系统

Also Published As

Publication number Publication date
DE112019005186T5 (de) 2021-07-29
CN109143567A (zh) 2019-01-04
JP2022505377A (ja) 2022-01-14
US20210382289A1 (en) 2021-12-09
KR20210074373A (ko) 2021-06-21

Similar Documents

Publication Publication Date Title
WO2020077911A1 (zh) 反射式超构表面主镜、辅镜和望远镜系统
CN108983337B (zh) 超构表面主镜、辅镜及主镜、辅镜制备方法和光学系统
CN107315206B (zh) 基于全介质超表面结构的高效红外光学透镜及其制备方法
WO2020140392A1 (zh) 线偏振光转换元件、制备方法和线偏振光转换系统
US10677992B2 (en) Device for forming at least one focused beam in the near zone, from incident electromagnetic waves
WO2017181530A1 (zh) 宽带电磁波相位调控的方法和超表面亚波长结构
US20190025463A1 (en) Substrate-formed metasurface devices
CN104749665B (zh) 基于介质材料的平面透镜单元、平面透镜及制备方法
CN114265132B (zh) 一种单片混合式透镜及其制备方法
US10061139B2 (en) Optical devices based on non-periodic sub-wavelength gratings
WO2019196077A1 (zh) 一种低折射率全介质平面透镜的制作方法
CN112987290A (zh) 一种可见光消色差超构透镜及其制备方法
CN111948806B (zh) 超构表面彩虹系统的设计与实现方法
CN109188665B (zh) 基于平板相位元件的离轴三反成像系统
CN110244388B (zh) 一种基于超表面的电可调卡塞格林反射系统
CN114815277B (zh) 基于超薄平面结构实现光场紧聚焦的方法及装置
US8515223B2 (en) Lens
CN113325496A (zh) 亚波长天线、波长可控的超透镜及超透镜设计方法
CN115236851B (zh) 基于全局调控原理的平面超透镜及其设计方法
KR102603484B1 (ko) 편광제어로 향상된 빔 조향을 가능케 하는 유전체 메타표면 더블렛 장치
Voelkel et al. Optical microsystems for imaging
KR20230158302A (ko) 렌즈 및 이를 포함하는 카메라 장치
CN116125568A (zh) 一种双焦消色差超构透镜及其设计制备方法与应用的成像装置
CN114296154A (zh) 一种基于超表面的轻小型相机
CN116661024A (zh) 基于几何相位的集成超透镜设计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521376

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217014852

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19873899

Country of ref document: EP

Kind code of ref document: A1