WO2019196071A1 - 无线充电装置及方法 - Google Patents

无线充电装置及方法 Download PDF

Info

Publication number
WO2019196071A1
WO2019196071A1 PCT/CN2018/082881 CN2018082881W WO2019196071A1 WO 2019196071 A1 WO2019196071 A1 WO 2019196071A1 CN 2018082881 W CN2018082881 W CN 2018082881W WO 2019196071 A1 WO2019196071 A1 WO 2019196071A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
connecting portion
wireless charging
drive
driving
Prior art date
Application number
PCT/CN2018/082881
Other languages
English (en)
French (fr)
Inventor
万世铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/082881 priority Critical patent/WO2019196071A1/zh
Priority to CN201880094307.9A priority patent/CN112272912A/zh
Publication of WO2019196071A1 publication Critical patent/WO2019196071A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices

Definitions

  • the present application relates to the field of wireless charging and, more particularly, to a wireless charging apparatus and method.
  • the embodiment of the present application provides a wireless charging apparatus and method.
  • the wireless charging apparatus can intelligently identify the location of the device to be charged, and then mechanically align the transmitting coil of the wireless charging device with the receiving coil of the device to be charged, thereby It is ensured that the transmitting coil is in an optimal position with respect to the receiving coil, thereby improving the wireless charging efficiency.
  • an embodiment of the present application provides a wireless charging device, including: a housing, a first rail, a second rail, a connecting portion, a driving portion, and a transmitting coil, wherein the transmitting coil is fixed to the connecting portion
  • the first rail is movably connected to the second rail through the connecting portion
  • the driving portion is configured to: drive the connecting portion to drive the second rail to move along the first rail, and/or drive the connecting portion to drive the first rail to move along the second rail;
  • the transmitting coil is configured to: emit an electromagnetic signal to wirelessly charge a device to be charged provided with a receiving coil.
  • a wireless charging method comprising:
  • the transmitting coil is fixed to the connecting portion, and the first rail is movably connected to the second rail through the connecting portion.
  • the driving portion may drive the connecting portion to drive the second rail to move along the first rail, and/or the driving connecting portion drives the first rail to move along the second rail, so that the position of the transmitting coil can be adjusted.
  • the transmission coil is ensured to be in an optimal position relative to the receiving coil, thereby improving the wireless charging efficiency.
  • FIG. 1 is a schematic block diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a wireless charging device in accordance with an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a device to be charged according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of another device to be charged according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of another wireless charging device in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of still another wireless charging apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of still another wireless charging apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another wireless charging apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another wireless charging apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another wireless charging apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic view of an arrangement of an infrared thermal sensor according to an embodiment of the present application.
  • Figure 12 is a schematic illustration of a resistive pressure sensing screen in accordance with an embodiment of the present application.
  • Figure 13 is a schematic illustration of another resistive pressure sensing screen in accordance with an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a positional relationship of a transmitting coil and a receiving coil according to an embodiment of the present application.
  • 15 is a schematic block diagram of still another wireless charging device in accordance with an embodiment of the present application.
  • FIG. 16 is a schematic flowchart of a wireless charging method according to an embodiment of the present application.
  • the charging device is charged based on the wireless charging technology, and the wireless charging technology can complete the power transmission without using a cable, and the operation in the charging preparation phase can be simplified.
  • the wireless charging technology generally connects a power supply device (such as an adapter) with a wireless charging device (such as a wireless charging base), and transmits the output power of the power supply device to the wireless device (such as an electromagnetic signal) to be charged by the wireless charging device.
  • the device is to wirelessly charge the charging device.
  • wireless charging methods are mainly divided into magnetic coupling (or electromagnetic induction), magnetic resonance and radio waves.
  • mainstream wireless charging standards include the QI standard, the power matters alliance (PMA) standard, and the alliance for wireless power (A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance to wirelessly charge.
  • FIG. 1 is a schematic block diagram of a wireless communication system 10 in accordance with an embodiment of the present application.
  • the wireless charging system 100 includes a power supply device 10, a wireless charging device 20, and a device to be charged 30.
  • the power supply device 10 is configured to provide DC power to the wireless charging device 20.
  • the power supply device 10 can include a rectifier circuit, a transformer circuit, a control circuit, a charging interface, etc., and can convert the AC input into a DC output for providing to the wireless charging device 20.
  • the power supply device 10 can be an adapter, a charging treasure, or a vehicle power source or the like.
  • the power supply device 10 can also directly provide the alternating current to the wireless charging device 20.
  • the power supply device 10 can be an AC power source.
  • the wireless charging device 20 further includes a circuit or module for converting AC power to DC power, for example, a rectification filter circuit, a DC/DC conversion circuit, and the like.
  • the wireless charging device 20 is configured to convert the direct current or alternating current provided by the power supply device 10 into an electromagnetic signal to perform power transmission by wireless.
  • the interface between the power supply device 10 and the wireless charging device 20 may be a universal serial bus USB interface or a lightning interface.
  • FIG. 2 is a schematic block diagram of a wireless charging device 20 in accordance with an embodiment of the present application.
  • the wireless charging device 20 includes: a rectifying and filtering circuit (not shown), a DC/DC converting circuit (not shown), a wireless transmitting circuit 201 including a transmitting coil 202, and a first control circuit. 204 and first communication circuit 205.
  • the 220V alternating current can be converted into a stable direct current through a rectifying and filtering circuit, and then adjusted to a fixed value to the wireless transmitting circuit 201 by a conversion of a DC/DC converting circuit (not shown).
  • the rectifying filter circuit and the DC/DC converting circuit are optional.
  • the wireless charging device 20 may be provided with a rectifying filter circuit and a DC/DC converting circuit.
  • the power supply device 10 can provide stable direct current, the rectification filter circuit and the DC/DC conversion circuit can be removed.
  • the wireless transmitting circuit 201 is configured to convert direct current supplied from a DC power or a power supply device provided by the DC/DC converting circuit into alternating current that can be coupled to the transmitting coil 202, and convert the alternating current into an electromagnetic signal through the transmitting coil 202 for transmitting.
  • the wireless transmitting circuit 201 may include: an inverter circuit and a resonant circuit.
  • the inverter circuit can include a plurality of switching tubes, and the output power can be adjusted by controlling the conduction time (duty ratio) of the switching tubes.
  • a resonant circuit for transmitting electrical energy can include a capacitor and a transmitting coil. The magnitude of the output power of the wireless transmitting circuit 201 can be adjusted by adjusting the resonant frequency of the resonant circuit.
  • the wireless charging device 20 may be a wireless charging base or a device having an energy storage function.
  • the wireless charging device 20 is a device having an energy storage function, it further includes an energy storage module (for example, a lithium battery) that can be taken from an external power supply device and stored.
  • the energy storage module can provide power to the wireless transmitting circuit 201.
  • the wireless charging device 20 can obtain power from an external power supply device by wire or wirelessly.
  • the wired method for example, is connected to an external power supply device through a charging interface (for example, a Type-C interface) to obtain power.
  • the wireless charging device 20 includes a wireless receiving circuit that can wirelessly acquire power from a device having a wireless charging function.
  • the first control circuit 204 is configured to control the wireless charging process.
  • the first control circuit 204 can control communication of the first communication circuit 205 with the power supply device to determine an output voltage and/or an output current of the power supply device.
  • the first control circuit 204 can also control communication between the first communication circuit 205 and the device to be charged, and realize interaction of charging information (eg, battery 305 voltage information of the device to be charged, battery 305 temperature information, charging mode information, etc.), Charging parameters (eg, charging voltage and/or charging current) for wireless charging are determined.
  • charging information eg, battery 305 voltage information of the device to be charged, battery 305 temperature information, charging mode information, etc.
  • Charging parameters eg, charging voltage and/or charging current
  • the wireless charging device 20 may also include other related hardware, logic, circuitry, and/or code to implement the corresponding functions.
  • the wireless charging device 20 can also include a display module (eg, can be a light emitting diode or LED display) for displaying the state of charge (eg, charging in progress or termination, etc.) in real time during wireless charging.
  • a display module eg, can be a light emitting diode or LED display
  • the state of charge eg, charging in progress or termination, etc.
  • the wireless charging device 20 further includes: a voltage conversion circuit 203.
  • the voltage conversion circuit 203 is configured to perform voltage conversion on the current supplied to the wireless transmission circuit 201 when the voltage of the current supplied to the wireless transmission circuit 201 does not satisfy the preset condition.
  • the current provided to the wireless transmit circuit 201 can be provided by a DC/DC converter circuit, provided by a power supply device or provided by the aforementioned energy storage module, and the like.
  • the voltage supplied to the wireless transmitting circuit 201 can reach the voltage requirement of the wireless transmitting circuit 201 for the input voltage
  • the voltage converting circuit 203 can be omitted to simplify the implementation of the wireless charging device.
  • the voltage requirement of the wireless transmitting circuit 201 for the input voltage can be set according to actual needs, for example, set to 10V.
  • the voltage of the current provided to the wireless transmitting circuit 201 cannot satisfy the preset condition, that is, the voltage is lower than the required voltage of the wireless transmitting circuit 201 or the voltage is higher than the wireless transmitting circuit 201.
  • Demand voltage For example, if wireless charging is performed using a high voltage, low current (eg, 20V/1A) charging mode, this charging mode requires a higher input voltage to the wireless transmitting circuit 201 (eg, a voltage requirement of 10V or 20V).
  • the voltage converting circuit 203 can boost the input voltage to reach the voltage demand of the wireless transmitting circuit 201.
  • the voltage conversion circuit 203 can step down the input voltage to reach the voltage requirement of the wireless transmission circuit 201.
  • 3 and 4 are schematic block diagrams of a device 30 to be charged according to an embodiment of the present application.
  • the device to be charged 30 includes a wireless receiving circuit 301 including a receiving coil 311, a second control circuit 302, a step-down circuit 303, a detecting circuit 304, a battery 305, and first charging channels 306 and a second.
  • Communication circuit 309 the wireless receiving circuit 301 including a receiving coil 311, a second control circuit 302, a step-down circuit 303, a detecting circuit 304, a battery 305, and first charging channels 306 and a second.
  • Communication circuit 309 including a wireless receiving coil 311, a second control circuit 302, a step-down circuit 303, a detecting circuit 304, a battery 305, and first charging channels 306 and a second.
  • the wireless receiving circuit 301 is configured to convert the electromagnetic signal emitted by the wireless transmitting circuit 201 of the wireless charging device 20 into an alternating current through the receiving coil 311, and rectify and/or filter the alternating current. The operation converts the alternating current into a stable direct current to charge the battery 305.
  • the wireless receiving circuit 301 includes: a receiving coil 311 and an AC/DC converting circuit.
  • An AC/DC conversion circuit for converting the alternating current received by the receiving coil 311 into direct current.
  • the battery 305 may include a single battery or multiple batteries.
  • the battery 305 includes a plurality of cells, the plurality of cells are in a series relationship. Therefore, the charging voltage that the battery 305 can withstand is the sum of the charging voltages that the plurality of batteries can withstand, and the charging speed can be increased, and the charging heat can be reduced.
  • the voltage of the internal single cell is generally between 3.0V and 4.35V.
  • the total voltage of the two cells in series is 6.0V-8.7V.
  • the output voltage of the wireless receiving circuit 301 can be improved when the plurality of cells are connected in series compared to the single cell.
  • the charging current required for multi-cell cells is about 1/N of the charging current required for a single cell (N is the series-connected electricity in the device to be charged) The number of cores).
  • the multi-cell cell scheme can reduce the charging current, thereby reducing the heat generation of the device to be charged during the charging process.
  • the multi-cell series scheme can be used to increase the charging voltage and thereby increase the charging speed.
  • the first charging channel 306 can be a wire.
  • a buck circuit 303 can be disposed on the first charging channel 306.
  • the step-down circuit 303 is configured to step down the DC power outputted by the wireless receiving circuit 301 to obtain an output voltage and an output current of the first charging channel 306.
  • the voltage and current values of the direct current output by the first charging channel 306 are in accordance with the charging requirements of the battery 305 and can be directly loaded into the battery 305.
  • the detecting circuit 304 is configured to detect a voltage value and/or a current value of the first charging channel 306.
  • the voltage value and/or current value of the first charging channel 306 may refer to a voltage value and/or a current value between the wireless receiving circuit 301 and the step-down circuit 303, that is, an output voltage value and/or a current value of the wireless receiving circuit 301.
  • the voltage value and/or current value on the first charging channel 306 may also refer to a voltage value and/or a current value between the buck circuit 303 and the battery 305, that is, an output voltage and/or an output current of the buck circuit 303.
  • the detecting circuit 304 may include: a voltage detecting circuit and a current detecting circuit.
  • the voltage detection circuit can be used to sample the voltage on the first charging channel 306 and send the sampled voltage value to the second control circuit 302.
  • the voltage sensing circuit can sample the voltage on the first charging channel 306 by series voltage division.
  • the current detection circuit 304 can be used to sample the current on the first charging channel 306 and send the sampled current value to the second control circuit 302.
  • current sensing circuit 304 can sample detect current on first charging channel 306 via a current sense resistor and a galvanometer.
  • the second control circuit 302 can control the second communication circuit 309 to communicate with the wireless charging device, and the detection circuit 304 detects the voltage value and/or the current value to be fed back to the wireless charging device.
  • the first control circuit 204 of the wireless charging device can adjust the transmit power of the wireless transmit circuit 201 according to the feedback voltage value and/or the current value, such that the voltage value and/or current of the direct current output by the first charging channel 306. The value matches the value of the charging voltage and/or current required by battery 305.
  • matching the charging voltage value and/or current value required by the battery 305" includes: the voltage value and/or current value of the direct current output by the first charging channel 306 and the battery 305
  • the required charging voltage value and/or current value are equal or floating preset ranges (for example, the voltage value fluctuates from 100 millivolts to 200 millivolts).
  • the implementation of the step-down circuit 303 can be various.
  • the buck circuit 303 can be a Buck circuit.
  • the buck circuit 303 can be a charge pump.
  • the charge pump is composed of a plurality of switching devices, and the heat generated by the current flowing through the switching device is small, and is almost equivalent to the current directly passing through the wires. Therefore, the charge pump is used as the step-down circuit 303, which not only can reduce the voltage, but also has a low heat generation.
  • the buck circuit 303 can also be a half voltage circuit.
  • the boosting multiple of the voltage conversion circuit 203 of the wireless charging device 20 and the step-down multiple of the step-down circuit 303 of the device to be charged 30 are set and the output voltage that the power supply device can provide,
  • the charging voltage and the like required by the battery 305 are related to each other, and the two may be equal or unequal.
  • the boosting multiple of the voltage conversion circuit 203 and the step-down multiple of the step-down circuit 303 may be set to be equal.
  • the voltage conversion circuit 203 may be a voltage multiplying circuit for boosting the output voltage of the power supply device by a factor of two; the step-down circuit 303 may be a half voltage circuit for reducing the output voltage of the wireless receiving circuit 301 by half.
  • the boosting multiple of the voltage conversion circuit 203 and the step-down multiple of the step-down circuit 303 are set to 1:1, which can make the output voltage and output of the step-down circuit 303.
  • the current is consistent with the output voltage and output current of the power supply device, which is beneficial to simplify the implementation of the control circuit. For example, when the second control circuit 302 knows that the output current of the step-down circuit 303 is 4.5A through the detection circuit 304, the output power of the power supply device needs to be adjusted, so that the step-down circuit 303 is required. The output current reaches 5A.
  • the first control circuit 204 or the second control circuit 302 needs to be based on the adjustment of the output power of the power supply device.
  • the difference between the current output current of the step-down circuit 303 and the expected value recalculates the adjustment value of the output power of the power supply device.
  • the ratio of the boosting multiple of the voltage conversion circuit 203 to the step-down factor of the step-down circuit 303 is set to 1:1, and the second control circuit 302 notifies the first control circuit 204 to increase the output current to 5A. Yes, which simplifies the feedback adjustment of the wireless charging path.
  • the device to be charged 30 may further include: a second charging channel 308 .
  • the second charging channel 308 can be a wire.
  • a conversion circuit 307 is provided on the second charging channel 308 for voltage control of the direct current output from the wireless receiving circuit 301 to obtain an output voltage and an output current of the second charging channel 308 to charge the battery 305.
  • the transform circuit 307 includes: a circuit for voltage stabilization and a circuit for implementing constant current and constant voltage.
  • the circuit for voltage regulation is connected to the wireless receiving circuit 301, and the circuit for realizing constant current and constant voltage is connected to the battery 305.
  • the wireless transmitting circuit 201 can adopt a constant transmitting power.
  • the converting circuit 307 processes the voltage and current to meet the charging requirement of the battery 305.
  • Input battery 305 enables charging of battery 305.
  • the constant transmit power does not have to be that the transmit power remains completely unchanged, which may vary over a range, for example, the transmit power is 7.5 W up and down by 0.5 W.
  • the wireless charging device and the device to be charged may be wirelessly charged according to the Qi standard.
  • a voltage conversion circuit is disposed at the wireless charging device end.
  • a first charging channel 306 (eg, a wire) connected to the battery 305 is disposed at the device to be charged.
  • the first charging channel 306 is provided with a step-down circuit 303 for stepping down the output voltage of the wireless receiving circuit 301 such that the output voltage and the output current of the first charging channel 306 satisfy the charging requirement of the battery 305.
  • the wireless charging device 20 charges the single-cell battery 305 in the charging device with an output power of 20 W
  • the single-cell battery 305 is charged by using the second charging channel 308.
  • the input voltage of the wireless transmitting circuit 201 needs to be 5V
  • the input current needs to be 4A
  • the current of 4A inevitably causes the coil to generate heat and reduce the charging efficiency.
  • the step-down circuit 303 is provided on the first charging channel 306, in the case where the transmitting power of the wireless transmitting circuit 201 does not change (the aforementioned 20 W)
  • the input voltage of the wireless transmitting circuit 201 can be increased, whereby the input current of the wireless transmitting circuit 201 can be reduced.
  • the step-down circuit 303 can adopt a half-voltage circuit, that is, the ratio of the input voltage and the output voltage of the step-down circuit 303 is a fixed 2:1 to further reduce the step-down circuit 303. Fever.
  • the wireless receiving circuit 301 can charge the battery 305 in an intermittent manner, and the period of the output current of the wireless receiving circuit 301 can be changed according to the frequency of the alternating current input to the wireless charging system, such as the frequency of the alternating current network, for example, the wireless receiving circuit 301.
  • the frequency corresponding to the period of the output current is an integer multiple or a reciprocal of the grid frequency.
  • the current waveform corresponding to the output current of the wireless receiving circuit 301 may be composed of one or a group of pulses synchronized with the power grid. The pulsating form of the voltage/current is periodically changed.
  • the conventional constant direct current it can reduce the lithium deposition of the lithium battery, improve the service life of the battery, and help reduce the polarization effect of the battery, increase the charging speed, and reduce The heat of the battery ensures safe and reliable charging of the device to be charged.
  • the wireless charging device 20 may be configured in various shapes, for example, a circle, a square, or the like.
  • a plurality of other communication information may be exchanged between the first communication circuit 205 and the second communication circuit 309.
  • information for security protection, anomaly detection, or fault handling such as temperature information of battery 305, entering overvoltage protection or overcurrent protection, may be exchanged between first communication circuit 205 and second communication circuit 309.
  • Information such as information, power transmission efficiency information (this power transmission efficiency information can be used to indicate power transmission efficiency between the wireless transmission circuit 201 and the wireless reception circuit 301).
  • the first control circuit 204 and/or the second control circuit 302 can control the charging circuit to enter a protection state, such as controlling the charging circuit to stop wireless charging.
  • the first control circuit 204 may reduce the transmission power or control the wireless transmission circuit. 201 stopped working.
  • the wireless transmitting circuit 201 can be controlled to stop working and provide the user to the user. This event is notified, such as the power transmission efficiency is too low through the display, or the power transmission efficiency can be indicated by the indicator light, so that the user can adjust the wireless charging environment.
  • the first communication circuit 205 and the second communication circuit 309 can exchange other information, such as the temperature information of the battery 305, that can be used to adjust the transmission power adjustment of the wireless transmission circuit 201.
  • the second communication circuit 309 can transmit power transmission efficiency information to the first communication circuit 205, and the first control circuit 204 can determine the adjustment range of the transmission power of the wireless transmission circuit 201 according to the power transmission efficiency information received by the first communication circuit 205. Specifically, if the power transmission efficiency information indicates that the power transmission efficiency between the wireless transmission circuit 201 and the wireless reception circuit 301 is low, the first control circuit 204 can increase the adjustment range of the transmission power of the wireless transmission circuit 201, so that the wireless transmission circuit The transmit power of 201 quickly reaches the target power.
  • the second control circuit 302 can send a peak to the first control circuit 204 indicating the output voltage and/or output current of the first charging channel 306 or The information of the mean value, the first control circuit 204 can determine whether the peak value or the average value of the output voltage and/or the output current of the first charging channel 306 matches the current charging voltage and/or charging current required by the battery 305, if not, Then, the transmission power of the wireless transmission circuit 201 can be adjusted.
  • the second communication circuit 309 can transmit the temperature information of the battery 305 to the first communication circuit 205. If the temperature of the battery 305 is too high, the first control circuit 204 can reduce the transmission power of the wireless transmission circuit 201 to reduce the wireless receiving circuit. The output current of 301, thereby reducing the temperature of the battery 305.
  • the charging process of the battery may include one or more of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the trickle charge phase the current entering the battery 305 satisfies the magnitude of the charge current expected by the battery 305 (e.g., the first charge current).
  • the constant current charging phase the current entering the battery 305 satisfies the magnitude of the charging current expected by the battery 305 (e.g., the second charging current, which may be greater than the first charging current).
  • the magnitude of the voltage applied across the battery 305 satisfies the magnitude of the charging voltage expected by the battery 305.
  • the transmitting coil 202 and the receiving coil 311 are spatially aligned, the charging efficiency is the highest.
  • the transmitting coil 202 is generally disposed within the housing of the wireless charging device 20. If the transmitting coil 202 is fixed in the housing, this requires the user to locate the device to be charged when placed on the wireless charging device 20. Position, once the position is biased, the charging efficiency will decrease, seriously affecting the user experience.
  • the embodiment of the present application provides an adjustment mechanism in the wireless charging device, which can adjust the position of the transmitting coil in the housing.
  • the wireless charging device 200 provided by the embodiment of the present application is described in detail below with reference to FIG. 5 to FIG.
  • the wireless charging device 200 may include a housing 210 , a first rail 220 , a second rail 230 , a connecting portion 240 , a driving portion 250 , and a transmitting coil 260 .
  • the transmitting coil 260 is fixed to the connecting portion 240, and the first rail 220 is movably connected to the second rail 230 through the connecting portion 240.
  • the housing 210 can be circular, square or elliptical, and the like.
  • the driving portion 250 can be used to drive the connecting portion 240 to move the second rail 230 along the first rail 220, and/or the driving connecting portion 240 to move the first rail 220 along the second rail 230.
  • the driving portion 250 can drive the transmitting coil 260 to move along the first rail 220 and/or along the second rail 230.
  • the area of the moving area of the transmitting coil 260 may be smaller than the area of the inner area of the housing 210, and the shape of the moving area of the transmitting coil 260 may be the same as or different from the shape of the housing 210.
  • the transmitting coil 260 may be disposed in the housing 210 and configured to emit an electromagnetic signal to wirelessly charge the device to be charged provided with the receiving coil.
  • the transmitting coil 260 may be a coil that is coiled from a metal wire or an antenna made of a metal wire.
  • the transmit coil 260 is coupled to a wireless transmit drive circuit that can be used to generate higher frequency alternating current, and the transmit coil 260 can be used to convert the higher frequency alternating current into an electromagnetic signal for transmission.
  • the transmitting coil in the embodiment of the present application may also be referred to as a transmitting antenna
  • the receiving coil of the embodiment of the present application may also be referred to as a receiving antenna.
  • the embodiment of the present application does not specifically limit the configuration of the transmitting coil and the receiving coil.
  • the transmitting coil or the receiving coil may be circular, square or elliptical, and the transmitting coil may be larger than the receiving coil. It can be smaller than the receiving coil and can be as large as the receiving coil.
  • a receiving coil in the device to be charged is used to convert the received electromagnetic signal into a charging power signal to charge the battery of the device to be charged.
  • the receiving coil may be a coil wound by a metal wire or an antenna made of a metal wire.
  • the receiving coil is connected to a shaping circuit such as a rectifying circuit and/or a filtering circuit, and after the receiving coil converts the received electromagnetic signal into a charging power signal, the shaping circuit can be used to convert the charging power signal for charging The output voltage and output current of the device's battery for charging.
  • the wireless charging efficiency is maximized when the positions of the transmitting coil and the receiving coil coincide.
  • the wireless charging device 200 requires a power supply device such as an adapter or a computer to provide power.
  • the center point of the transmitting coil 260 may be fixed to the connecting portion 240, or other positions of the transmitting coil 260 may be fixed to the connecting portion 240.
  • the fixing method is not limited.
  • the transmitting coil 260 may be fixed to the connecting portion 240 by bolts, or may be fixed to the connecting portion 240 by bolts and nuts, or may be fixed to the connecting portion 240 by welding.
  • the driving portion may drive the connecting portion to drive the second rail to move along the first rail, and/or the driving connecting portion drives the first rail to move along the second rail, so that the transmitting coil can be adjusted in the shell
  • the position in the body ensures that the transmitting coil is in an optimal position relative to the receiving coil, thereby improving the wireless charging efficiency and improving the user experience.
  • the driving portion 250 includes a first pull line 251, a first return spring 252, a second pull line 253, a second return spring 254, and at least one motor 255;
  • one end of the first traction wire 251 passes through the first rail 220 and is connected to the at least one motor 255, and the other end of the first traction wire 251 is connected to the a connecting portion 240, one end of the first return spring 252 is connected to the connecting portion 240, the other end of the first return spring 252 is fixed on the first rail 220;
  • one end of the second pull wire 253 passes through one end of the second rail 230 and is connected to the at least one motor 255, and the other end of the second pull wire 253 is connected.
  • the connecting portion 240 has one end of the second return spring 254 connected to the connecting portion 240, and the other end of the second return spring 254 is fixed to the second guiding rail 230.
  • the driving portion 250 includes a motor 2551 and a motor 2552.
  • the motor 2551 is coupled to the first pull wire 251, and the motor 2552 is coupled to the second pull wire 253.
  • the motor 2551 controls the connecting portion 240 to drive the transmitting coil 260 to move by the first pulling line 251 and the first returning spring 252.
  • the motor 2551 controls the stretching of the first pulling wire 251, so that the connecting portion 240 drives the transmitting coil 260 to move in the direction A, the first return spring 252 is in the stretched state; when it is required to move in the direction B
  • the motor 2551 controls the contraction of the first pull wire 251 such that the first return spring 252 in the stretched state, when reset, controls the connecting portion 240 to move the transmitting coil 260 in the direction B.
  • the motor 2552 controls the connecting portion 240 to drive the transmitting coil 260 to move by the second pulling wire 253 and the second returning spring 254.
  • the motor 2552 controls to stretch the second pull line 253, so that the connecting portion 240 drives the transmitting coil 260 to move in the direction C, the second return spring 254 is in the stretched state; when it is required to move in the direction D
  • the motor 2552 controls the contraction of the second pull line 253, the second return spring 254 in the stretched state, when resetting, controls the connecting portion 240 to move the transmitting coil 260 in the direction D.
  • a support portion (not shown) may be provided, which may, for example, keep the transmitting coil 260 horizontal.
  • the support portion can include a tray in which the transmitting coil 260 is placed, and a leg for supporting the tray, the leg being movable.
  • the first rail 220 and/or the second rail 230 may be provided with a slot, and the connecting portion 240 (for example, a slider) may have a first portion disposed in the first rail 220, and A second portion within the second rail 230, the first pull wire 251 and the first return spring 252 can be coupled to the first portion, and the second pull wire 253 and the second return spring 254 can be coupled to the second portion.
  • the connecting portion 240 for example, a slider
  • the connecting portion 240 may have a first portion disposed in the first rail 220, and A second portion within the second rail 230, the first pull wire 251 and the first return spring 252 can be coupled to the first portion, and the second pull wire 253 and the second return spring 254 can be coupled to the second portion.
  • the driving portion 250 includes a motor 2553 including a switching portion which may be composed of a gear A, a gear B and a gear C, the gear A being connected to the first pulling wire 251, and the gear B connecting The second pull line 253, the motor 2553 drive gear C meshes with the gear A and the gear B, respectively.
  • a motor 2553 including a switching portion which may be composed of a gear A, a gear B and a gear C, the gear A being connected to the first pulling wire 251, and the gear B connecting The second pull line 253, the motor 2553 drive gear C meshes with the gear A and the gear B, respectively.
  • a moving member (not shown) may be provided on the motor 2553 for moving the gear C such that the gear C meshes with the gear A and the gear B, respectively.
  • a moving member (not shown) may be provided on the housing of the wireless charging device for moving the gear A or the gear B such that the gear A or the gear B meshes with the gear C.
  • the motor 2553 drives the gear C to mesh with the gear A.
  • the motor 2553 drives the gear C to drive the gear A to rotate, and then the gear A passes.
  • the first pull wire 251 and the first return spring 252 control the connecting portion 240 to drive the transmitting coil 260 to move.
  • the gear A controls to stretch the first pulling wire 251, so that the connecting portion 240 drives the transmitting coil 260 to move in the direction X, the first return spring 252 is in a stretched state; when it is required to move in the direction Y At the time, the gear A controls the contraction of the first pull wire 251, so that the first return spring 252 in the stretched state controls the connecting portion 240 to move the transmitting coil 260 in the direction Y.
  • the motor 2553 drives the gear C to mesh with the gear B.
  • the motor 2553 controls the rotation of the gear B, and then the gear B passes through the second pulling line 253 and the second return spring 254.
  • the control connection portion 240 drives the transmitting coil 260 to move.
  • the motor 2553 drives the gear C to drive the gear B to rotate, and then the gear B controls to stretch the second traction line 253, so that the connecting portion 240 drives the transmitting coil 260 to move in the direction K, and secondly
  • the return spring 254 is in a stretched state; when it is required to move in the direction T, the gear B controls to contract the second pull wire 253, so that the second return spring 254 in the stretched state controls the connecting portion 240 to move the transmitting coil 260 in the direction T.
  • one end of the first pull wire 251 passes through the first rail 220, and is connected to the gear A on the motor 2553 via a fixing portion 256 fixed with respect to the housing 210.
  • the first pulling wire 251 may pass through the fixing portion 256 in such a manner that the first pulling wire 251 passes through the hole opened by the fixing portion 256 or is wound around the fixing portion 256 or the pulley provided on the fixing portion 256.
  • a support portion (not shown) may be provided, which may, for example, keep the transmitting coil 260 horizontal.
  • the support portion can include a tray in which the transmitting coil 260 is placed, and a leg for supporting the tray, the leg being movable.
  • the first rail 220 and/or the second rail 230 may be provided with a slot, and the connecting portion 240 (for example, a slider) may have a first portion disposed in the first rail 220, and A second portion within the second rail 230, the first pull wire 251 and the first return spring 252 can be coupled to the first portion, and the second pull wire 253 and the second return spring 254 can be coupled to the second portion.
  • the connecting portion 240 for example, a slider
  • first rail and the second rail are linear rails.
  • first rail 220 and the second rail 230 are linear rails.
  • the angle between the first rail 220 and the second rail 230 may be an acute angle or a right angle.
  • the movable area of the transmitting coil 260 may be determined according to the position of the first rail 220 and the second rail 230, for example, between the first rail 220 and the second rail 230. When the angle between the two is a right angle, the moving area of the transmitting coil 260 may be square.
  • the first rail is a circular arc or a circular rail
  • the second rail is a linear rail.
  • the first guide rail 220 is a circular arc guide rail
  • the second guide rail 230 is a linear guide rail.
  • the first rail 220 is a circular rail
  • the second rail 230 is a linear rail.
  • first rail and/or the second rail may also be rails of other shapes, for example, a triangular, a diamond, or the like, which is not specifically limited in the embodiment of the present application.
  • the motor in the embodiment of the present application may be a stepping motor, an asynchronous motor, or another type of motor, which is not specifically limited in this embodiment of the present application.
  • the return spring in the embodiment of the present application may be replaced by another implementation.
  • the first return spring 252 as shown in FIG. 6 or FIG. 7 may be replaced by another traction line, and the other traction line and the other A motor is coupled, and the other motor can pull one end of the other traction wire such that the connecting portion 240 moves on the first rail 220, so that the transmitting coil 260 can be moved on the first rail 220.
  • the second return spring 254 as shown in FIG. 6 or FIG. 7 can be replaced by another pull line connected to another motor, which can pull one end of the other pull line, so that The connecting portion 240 moves on the second rail 230 so that the transmitting coil 260 can be moved on the second rail 230.
  • the wireless charging device 200 may further include a control circuit 270, which can control the operation of the driving portion 250, so that the transmitting coil 260 can be adjusted in the housing 210.
  • the control circuit 270 of the embodiment of the present application may be implemented by, for example, a micro control unit (MCU), or may be implemented by an MCU together with an application processor (AP) inside the device to be charged.
  • MCU micro control unit
  • AP application processor
  • the charging efficiency of the device to be charged is related to the positional relationship of the transmitting coil and the receiving coil of the device to be charged. Therefore, the position of the receiving coil of the device to be charged can be determined, and the position of the transmitting coil in the casing can be adjusted based on the position of the receiving coil.
  • the wireless charging device 200 may further include an infrared thermal sensor, configured to acquire a heating characteristic of the device to be charged when the device to be charged performs charging; and then the control circuit may determine to receive according to the heating feature. The position of the coil.
  • the collected fever features can be embodied in the form of a fever cloud map, which shows the fever of each part.
  • the heat cloud image can also be called a thermal imaging cloud image or a temperature cloud image.
  • the infrared thermal sensor can be fixed under the transmitting coil and kept at a certain distance. Wherein, the distance can be determined according to the surface area of the wireless charging device for placing the device to be charged, thereby ensuring the range of infrared heat sensing as much as possible, for example, as shown in FIG.
  • control circuit may determine the location of the receiving coil according to the preset information and the heat generating feature acquired by the infrared thermal sensor, where the preset information includes each known part of the device to be charged at a specific charging stage. And/or a heating characteristic under charging efficiency, the heat generating characteristic acquired by the infrared thermal sensor being a heating characteristic at the specific charging phase and/or charging efficiency.
  • a heat generation cloud map of the device to be charged at each charging phase and/or charging efficiency may be collected, and the heat generating cloud map may include information such as a highest temperature point and a heat generating region, and establish a database.
  • the database information may be input into the wireless charging device, and the position of the device to be charged corresponding to each part of the heat generating cloud image is known, and the control circuit may be combined with a preset heat cloud image at a specific efficiency and/or charging efficiency, and A heat cloud map of the device to be charged at a particular charging phase and/or charging efficiency determines the position of the receiving coil.
  • the control circuit determines, according to the preset information and the heat generation feature of the device to be charged, a specific heat generating feature at a position corresponding to the device to be charged; and according to a specific heat generating feature, a position corresponding to the device to be charged, The position of the receiving coil is determined.
  • the specific heat generation feature in the heat cloud image of the device to be charged acquired by the infrared heat sensor at a specific charging phase and/or charging efficiency is set to be preset with the specific charging phase and/or charging efficiency.
  • the device to be charged and the device to be charged that determines the receiving coil in real time in the preset information may be the same device to be charged or the device to be charged in the same model.
  • the wireless charging device will be a wireless charging base, and the device to be charged is a mobile phone and will be described with reference to FIG. 11 as an example.
  • the thermal imaging cloud image of the mobile phone 40 can be modeled, and the heat cloud image of the mobile phone 40 under various charging efficiency and/or charging phases of the wireless charging can be collected, and the heat generating characteristics of the mobile phone 40, such as the highest temperature point and the heating area, can be collected. Information, and a database is created and entered into the wireless charging dock 50.
  • the receiving coil 41 of the mobile phone 40 and the transmitting coil 51 of the wireless charging base 50 may be misaligned, so that the charging efficiency is relatively low, and is maintained for a period of time.
  • the infrared thermal sensor 52 can be turned on for detection, the heat cloud image of the mobile phone 40 is obtained, and the heat generation features in the database are compared, and a heat generating feature point is obtained on the coordinates of the wireless charging base 50.
  • the path of the moving transmitting coil 51 is determined, thereby controlling the transmitting coil. 51 Move to the best position to maximize charging efficiency.
  • the wireless charging device may further include a pressure sensor for performing pressure sensing on a portion of the wireless charging device that carries the device to be charged, and inputting a pressure sensing result to the control circuit; and the control circuit may be based on the pressure sensing result. Determining the area where the device to be charged is located, and determining the position of the receiving coil according to the area where the device to be charged is located.
  • the contact surface of the wireless charging device that is in contact with the device to be charged is a resistance pressure sensing screen
  • the resistive pressure sensing screen is a sensor.
  • the specific structure may be as shown in FIG. 12, which is a film layer 61 plus glass.
  • the structure of the layer 62, the adjacent side of the film layer 61 and the glass layer 62 are coated with a nano-indium tin metal oxide coating 63, for example, an indium tin oxide (ITO) coating, and the ITO has a good Electrical conductivity and transparency.
  • a nano-indium tin metal oxide coating 63 for example, an indium tin oxide (ITO) coating
  • the ITO layer 63 on the lower surface of the film layer 61 on the contact surface contacts the ITO layer 63 on the upper surface of the glass layer 62 (for example, as shown in FIG. 13).
  • the corresponding electrical signal is transmitted through the sensor, sent to the control circuit through the conversion circuit, and converted into coordinate values by calculation, thereby obtaining a pressure sensing region.
  • sensing screens shown in Figures 12 and 13 are schematic views, and the sensing screen may have other portions in addition to the film layer 61, the glass layer 62, and the ITO layer 63.
  • control circuit may determine at least one possible position of the receiving coil according to the area where the device to be charged is located; adjust the transmitting coil to be respectively aligned with the at least one position, according to each position of the at least one position to be charged
  • the charging efficiency of the device determines the position of the receiving coil. Wherein, the position with the highest charging efficiency in at least one position can be determined as the position of the receiving coil.
  • the control circuit can scan the X-axis for a pressure change on the abscissa, extract the X coordinate of the pressure change, and then scan the ordinate along the Y-axis. Whether there is pressure change on the top, extracting the Y coordinate of the pressure change, thus synthesizing a pressure change plane, so that the placement position of the device to be charged can be determined, and the coordinates of the center point of the device to be charged are defined as (Xt, Yt). Further, the position of the receiving coil can be located.
  • the exclusion method can be used to find the position, because the receiving coil is fixed relative to the device to be charged, taking the mobile phone as an example.
  • the position of the receiving coil on the mobile phone is symmetrical, but it is either upward or downward, that is, the coordinates of the receiving coil relative to the wireless charging device should be (Xt+L, Yt) or (Xt-L, Yt).
  • the L value is the value of the receiving coil on the mobile phone relative to the center point of the mobile phone
  • the wireless charging efficiency at the (Xt-L, Yt) position and (Xt-L, Yt) position is calculated by comparing the coordinates of the center point of the receiving coil to the position of the receiving coil.
  • the charging efficiency is the correct position.
  • the charging efficiency of the last possible position of the adjustment is the highest, it is determined that the last position is the position of the receiving coil, and at this time, the alignment of the receiving coil and the transmitting coil has been achieved, that is, the transmission is not required to be adjusted again.
  • the position of the coil is the position of the receiving coil.
  • the control circuit can control the driving portion to adjust the position of the transmitting coil in the housing based on the position of the receiving coil.
  • adjusting the position of the transmitting coil may be such that the transmitting coil is away from the receiving coil (for example, when the user desires to perform slow charging of the battery to be charged), or the transmitting coil may be brought close to or aligned with the receiving coil (for example, at the user's wish When the battery of the charging device is fast charged, specifically, the position of the transmitting coil can be adjusted by using the mechanical structure shown in FIGS. 6-9.
  • the wireless charging device is a wireless charging base
  • the device to be charged is a mobile phone as an example.
  • the center coordinate of the receiving coil 41 of the mobile phone 40 is determined to be (x1, y1)
  • the wireless charging base 50 is After the center coordinates (x0, y0) of the transmitting coil 51, the position of the transmitting coil 51 can be adjusted such that the center coordinate of the transmitting coil 51 is moved from (x0, y0) to (x1, y1).
  • the position of the transmitting coil 260 (the transmitting coil 51 in Fig. 11 or Fig. 14) is adjusted based on the position of the receiving coil.
  • the embodiment of the present application can also control the driving portion to adjust the position of the transmitting coil 260 (the transmitting coil 51 in FIG. 11 or FIG. 14) in the housing 210 in combination with the receiving power or charging efficiency of the device to be charged.
  • the wireless charging device 200 has a housing 210 (not shown), a first rail 220 (not shown), a second rail 230 (not shown), and a connecting portion 240. (not shown), the driving portion 250, the transmitting coil 260, the control circuit 270, and the communication circuit 280.
  • the wireless charging device 200 can perform wireless communication with the device to be charged through the communication circuit 280 to obtain the current received power of the device to be charged.
  • the specific structure of the device to be charged 300 can be as shown in FIG. 3 and FIG. 4 , and details are not described herein for brevity.
  • the wireless charging device 200 can directly adjust the position of the transmitting coil 260 in the housing 210 according to the received power; or, based on the received power and the transmitting power of the wireless charging device 200, The charging efficiency value is calculated, and based on the charging efficiency value, the position of the transmitting coil 260 in the housing 210 is adjusted.
  • control circuit 270 can adjust the position of the transmit coil 260 within the housing 210 based on the current received power of the device to be charged and the desired received power of the device to be charged, in order to achieve the desired condition of the device to be charged. Receive power.
  • the desired receiving power of the device to be charged may be transmitted by the device to be charged to the wireless charging device 200. Assuming that the device to be charged is a terminal, the user can set a desired received power through the user interface on the terminal and transmit the received power to the wireless charging device 200.
  • the expected receiving power of the device to be charged may be less than the current receiving power. For example, if the device to be charged wishes to slowly charge the battery, the control circuit 270 may adjust the position of the transmitting coil 260 with the control driving portion 250 to lower the receiving coil. Power. Alternatively, the expected receiving power of the device to be charged may be greater than the current receiving power. For example, if the device to be charged wishes to fast charge the battery, the control circuit 270 may control the driving portion 250 to adjust the position of the transmitting coil 260 to enhance the receiving coil. power.
  • the driving portion 250 can adjust the position of the transmitting coil 260 such that the transmitting coil 260 is away from the receiving coil or closer to the receiving coil.
  • the position of the receiving coil can be known to the control circuit 270, for example, by a pressure sensor or an infrared sensor.
  • control circuit 270 can determine a current charging efficiency value based on the received power of the device to be charged and the transmit power of the transmitting coil 260, based on the current charging efficiency value, the position of the transmitting coil 260 within the housing 210. Make adjustments.
  • control circuit 270 may stop adjusting when the position of the transmitting coil 260 is within the housing 210 based on the current charging efficiency value, and may adjust the charging efficiency value when adjusting to a specific charging efficiency value. The adjustment is stopped when the value is less than the error.
  • the specific charging efficiency value may be a maximum achievable charging efficiency value (that is, a charging efficiency value when the transmitting coil and the receiving coil are coincident), or a charging efficiency value desired by the device to be charged.
  • the desired charging efficiency value of the device to be charged may be sent to the wireless charging device 200 by the device to be charged. Assuming that the device to be charged is a terminal, the user can set a desired charging efficiency value through the user interface on the terminal and transmit the charging efficiency value to the wireless charging device 200.
  • the expected charging efficiency value of the device to be charged may be less than the current charging efficiency value.
  • the control circuit 270 may control the driving portion 250 to adjust the position of the transmitting coil 260 to reduce charging. Efficiency value.
  • the desired charging efficiency value of the device to be charged may be greater than the current charging efficiency value. For example, if the device to be charged wishes to fast charge the battery, the control circuit 270 may control the driving portion 250 to adjust the position of the transmitting coil 260 to improve Charging efficiency value.
  • the driving portion 250 can adjust the position of the transmitting coil 260 such that the transmitting coil 260 is away from the receiving coil or closer to the receiving coil.
  • the position of the receiving coil can be known to the control circuit 270, for example, by a pressure sensor or an infrared sensor.
  • the position of the receiving coil may also be unknown to the control circuit 270.
  • the receiving power or charging efficiency of the device to be charged may be made by attempting to move the transmitting coil 260. The value satisfies the predetermined condition.
  • control circuit 270 may control the driving portion to adjust the position of the transmitting coil 260 in the housing 210 according to a change in the received power of the device to be charged 300 or a charging efficiency value during the movement of the transmitting coil 260.
  • the driving portion 250 drives the connecting portion 240 to drive the second rail 230 to move along the first rail 220 in the first direction.
  • the driving portion 250 continues to drive the connecting portion 240 to drive the second rail 230 to move along the first rail 220 in the first direction until the progressive value of the charging efficiency value is less than or equal to the first value, or
  • the driving portion 250 continues to drive the connecting portion 240 to drive the second rail 230 to move along the first rail 220 in a second direction opposite to the first direction, and if the charging efficiency value increases, continue to move until The progressive value of the charging efficiency value is less than or equal to the first value.
  • the first value is a minimum step efficiency value when the connecting portion 240 drives the second rail 230 to move along the first rail 220.
  • the driving portion 250 drives the connecting portion 240 to drive the second rail 230 to move along the first rail 220, if the progressive value of the charging efficiency value is less than or equal to the first value, and When the charging efficiency value does not reach the maximum charging efficiency value, the driving portion 250 drives the connecting portion 240 to move the second rail 230 along the first rail 220 such that the transmitting coil 260 moves between one end and the other end of the first rail 220.
  • the driving portion 250 drives the connecting portion 240 to drive the first rail 220 to move along the second rail 230 in the third direction.
  • control driving portion 250 continues to drive the connecting portion 240 to drive the first rail 220 to move along the second rail 230 in the third direction until the progressive value of the charging efficiency value is less than or equal to the second value, or
  • the control driving portion 250 continues to drive the connecting portion 240 to drive the first rail 220 to move along the second rail 230 in a fourth direction opposite to the third direction. If the charging efficiency value increases, the motion continues. Until the progressive value of the charging efficiency value is less than or equal to the second value.
  • the second value is a minimum step efficiency value when the connecting portion 240 drives the first rail 220 to move along the second rail 230.
  • the control driving portion 250 drives the connecting portion 240 to move the first rail 220 along the second rail 230 such that the transmitting coil 260 moves between one end and the other end of the second rail 230.
  • the wireless charging device 200 shown in FIG. 7 and FIG. 14 will be described.
  • the coordinates of the center of the transmitting coil 260 are (x0, y0), and the coordinates of the center of the receiving coil 41 of the cellular phone 40 are (x1, y1).
  • the control circuit 270 can preset a maximum efficiency value ⁇ max, which can be the maximum efficiency value defined during the test.
  • the mobile phone 40 When the mobile phone 40 is initially placed on the wireless charging base 50, the mobile phone 40 can still be wirelessly charged, but the efficiency is relatively low. Through the communication between the mobile phone 40 and the wireless charging base 50, the wireless charging base 50 can know the power value received by the mobile phone 40. The control circuit 270 can then calculate the current wireless charging efficiency ⁇ 0. When ⁇ 0 ⁇ ⁇ max, the charging efficiency is relatively low, and the transmitting coil 260 (the transmitting coil 51 in FIG. 14) needs to be adjusted, otherwise the transmitting coil 260 need not be moved (the transmitting in FIG. 14) The coil 51); how the movement of the transmitting coil 260 (the transmitting coil 51 in Fig. 14) is performed when it is necessary to move the transmitting coil 260 (the transmitting coil 51 in Fig. 14).
  • the gear C is meshed with the gear B, the motor 2553 is controlled to operate at an angle ⁇ , the second pull line 253 is extended (or shortened) by a length ⁇ l, and the connecting portion 240 drives the transmitting coil 260 (the transmitting coil 51 in FIG. 14) along the second The guide rail moves.
  • the efficiency value ⁇ 1 at the position is calculated. If ⁇ 1> ⁇ 0, it indicates that the transmitting coil 260 (the transmitting coil 51 in FIG. 14) moves in the correct direction and can continue to adjust along the direction; if ⁇ 1 ⁇ 0, the transmitting coil is illustrated. (Transmission coil 51 in Fig. 14) is operated in the opposite direction and needs to be adjusted in the opposite direction; until the difference between ⁇ t and ⁇ t-1 is adjusted to be smaller than the minimum step efficiency value, indicating that the position is appropriate and no further adjustment is needed.
  • the gear C is meshed with the gear A
  • the motor 2553 is controlled to operate at an angle ⁇
  • the first traction line 251 is extended (or shortened) by a length ⁇ l
  • the connecting portion 240 drives the transmitting coil 260 (the transmitting coil 51 in FIG. 14) along the first
  • the guide rail moves, at this time, the efficiency value ⁇ 1 at the position is calculated. If ⁇ 1> ⁇ 0, it indicates that the transmitting coil 260 (the transmitting coil 51 in Fig. 14) is running in the correct direction and can continue to adjust along the direction; if ⁇ 1 ⁇ ⁇ 0, the transmitting coil 260 (transmitting coil 51 in Fig. 14) is operated in the opposite direction and needs to be adjusted in the opposite direction; until the difference between ⁇ t and ⁇ t-1 is less than the minimum step efficiency value, the position is already at the maximum efficiency position, and the coil is aligned .
  • the above description can drive the motor to drive the second traction line, so that the connecting portion 240 drives the transmitting coil 260 (the transmitting coil 51 in FIG. 14) to move along the second rail. If the charging efficiency value is not met, the driving motor continues to drive the motor.
  • the first pull wire causes the connecting portion 240 to drive the transmitting coil 260 (the transmitting coil 51 in FIG. 14) to move along the first rail.
  • the first driving line may be driven by the driving motor, so that the connecting portion 240 drives the transmitting coil 260 (the transmitting coil 51 in FIG. 14) to move along the first guiding rail, if the charging is not reached. If the efficiency value does not meet the desired value, the motor drives the second pull line so that the connecting portion 240 drives the transmitting coil 260 (the transmitting coil 51 in FIG. 14) to move along the second rail.
  • the driving portion drives the connecting portion to drive the first rail to move along the second rail in a third direction
  • the driving portion continues to drive the connecting portion to drive the first rail to move along the second rail in the third direction until the progressive value of the charging efficiency value is less than or equal to the second value. ,or,
  • the driving portion continues to drive the connecting portion to drive the first rail to move along the second rail in a fourth direction opposite to the third direction, and if the charging efficiency value increases, Movement continues until the progressive value of the charging efficiency value is less than or equal to the second value.
  • the second value is a minimum step efficiency value when the connecting portion drives the first rail to move along the second rail.
  • the driving portion drives the connecting portion to drive the first rail to move along the second rail, if the progressive value of the charging efficiency value is less than or equal to the second value, And when the charging efficiency value does not reach the maximum charging efficiency value, the driving portion drives the connecting portion to drive the first rail to move along the second rail, so that the transmitting coil is at one end of the second rail Move between the other end.
  • the alignment of the transmitting coil and the receiving coil can be achieved by comparing the change in the charging efficiency value during the movement of the transmitting coil.
  • the above wireless charging device 200 may be configured as the wireless charging device 20 in FIG. 2, and is not described herein for brevity.
  • FIG. 16 is a schematic flowchart of a wireless charging method 500 according to an embodiment of the present invention.
  • the method can be applied to a wireless charging device, such as the wireless charging device 200 described above.
  • the method 500 includes:
  • step S510 a wireless electromagnetic signal is transmitted using a transmitting coil provided in a housing of the wireless charging device for wirelessly charging the device to be charged provided with the receiving coil.
  • step S520 controlling the driving portion to drive the connecting portion to drive the second rail to move along the first rail, and/or driving the connecting portion to move the first rail along the second rail.
  • the transmitting coil is fixed to the connecting portion, and the first rail is movably connected to the second rail through the connecting portion.
  • control driving portion driving the driving portion drives the second rail to move along the first rail, and/or the driving the connecting portion to move the first rail along the second rail, the method comprising:
  • determining the location of the receiving coil includes:
  • the position of the receiving coil is determined.
  • determining the location of the receiving coil includes:
  • the preset information characterizing a heating characteristic of each known portion of the device to be charged at a specific charging phase and/or charging efficiency
  • the infrared The heat signature acquired by the thermal sensor is a heating characteristic at that particular charging phase and/or charging efficiency.
  • determining the location of the receiving coil includes:
  • the position of the receiving coil is determined according to a specific transmitting characteristic at a position corresponding to the device to be charged.
  • determining the location of the receiving coil includes:
  • the area where the device to be charged is located is determined, and the position of the receiving coil is determined according to the area where the device to be charged is located.
  • determining the location of the receiving coil includes:
  • the position of the receiving coil is determined based on the charging efficiency of the device to be charged at each of the at least one location.
  • determining the location of the receiving coil includes:
  • the position in which the charging efficiency is the highest in the at least one position is determined as the position of the receiving coil.
  • control driving portion driving the driving portion drives the second rail to move along the first rail, and/or the driving the connecting portion to move the first rail along the second rail, the method comprising:
  • the method further includes:
  • control driving portion driving the driving portion drives the second rail to move along the first rail, and/or the driving the connecting portion to move the first rail along the second rail, the method comprising:
  • control driving portion driving the driving portion drives the second rail to move along the first rail, and/or the driving the connecting portion to move the first rail along the second rail, the method comprising:
  • controlling the driving portion to continue driving the connecting portion to drive the second rail to move along the first rail in the first direction until the progressive value of the charging efficiency value is less than or equal to the first value, or
  • the driving portion controls the driving portion to continue driving the connecting portion to drive the second rail to move along the first rail in a second direction opposite to the first direction, and if the charging efficiency value increases, continue to move until The progressive value of the charging efficiency value is less than or equal to the first value.
  • the first value is a minimum step efficiency value when the connecting portion drives the second rail to move along the first rail.
  • control driving portion driving the driving portion drives the second rail to move along the first rail, and/or the driving the connecting portion to move the first rail along the second rail, the method comprising:
  • the driving portion drives the connecting portion to move the second rail along the first rail, if the progressive value of the charging efficiency value is less than or equal to the first value, and the charging efficiency value does not reach the maximum charging efficiency In the value, controlling the driving portion to drive the connecting portion to move the second rail along the first rail, so that the transmitting coil moves between one end and the other end of the first rail.
  • control driving portion driving the driving portion drives the second rail to move along the first rail, and/or the driving the connecting portion to move the first rail along the second rail, the method comprising:
  • controlling the driving portion to continue driving the connecting portion to drive the first rail to move along the second rail in the third direction until the progressive value of the charging efficiency value is less than or equal to the second value, or
  • controlling the driving portion to continue driving the connecting portion to drive the first rail to move along the second rail in a fourth direction opposite to the third direction, and if the charging efficiency value increases, continue to move until The progressive value of the charging efficiency value is less than or equal to the second value.
  • the second value is a minimum step efficiency value when the connecting portion drives the first rail to move along the second rail.
  • control driving portion driving the driving portion drives the second rail to move along the first rail, and/or the driving the connecting portion to move the first rail along the second rail, the method comprising:
  • the driving portion drives the connecting portion to move the first rail along the second rail, if the progressive value of the charging efficiency value is less than or equal to the second value, and the charging efficiency value does not reach the maximum charging efficiency And controlling the driving portion to drive the connecting portion to move the first rail along the second rail, so that the transmitting coil moves between one end and the other end of the second rail.
  • the driving portion includes a first traction line, a first return spring, a second traction line, a second return spring, and at least one motor;
  • one end of the first traction line passes through the first rail and is connected to the motor, and the other end of the first traction line is connected to the connecting portion, and one end of the first return spring is connected to the connection.
  • the other end of the first return spring is fixed on the first rail;
  • one end of the second traction wire passes through the second rail and is connected to the motor, and the other end of the second traction wire is connected to the connecting portion, and one end of the second return spring is connected to the connection.
  • the other end of the second return spring is fixed to the second rail.
  • the driving portion includes a first motor and a second motor, wherein the first motor is connected to the first traction line, and the connecting portion is driven by the first traction line to drive the second rail along the first rail Movement, the second motor is coupled to the second traction line, and the connection is driven by the second traction line to drive the first rail to move along the second guide.
  • the driving portion includes a third motor, the third motor includes a switching portion, wherein the switching portion controls the first traction line to drive the connecting portion to drive the second rail to move along the first rail, and to control The second traction line drives the connecting portion to drive the first rail to move along the second rail.
  • the switching portion includes a first gear, a second gear, and a third gear, wherein one end of the first traction line is connected to the first gear, and one end of the second traction line is connected to the second gear, the first The third motor drives the third gear to mesh with the first gear and the second gear, respectively.
  • the wireless charging method 500 can be implemented by the wireless charging device 20 or the wireless charging device 200 described above, and is not described herein for brevity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供了一种无线充电装置及方法,无线充电装置可以智能识别待充电设备的位置,再通过机械方式将无线充电装置的发射线圈与待充电设备的接收线圈对准,从而,可以保证发射线圈相对于接收线圈处于最佳位置,进而,提高了无线充电效率。该装置包括:壳体、第一导轨、第二导轨、连接部、驱动部分以及发射线圈,其中,所述发射线圈固定于所述连接部,所述第一导轨通过所述连接部活动连接至所述第二导轨,所述驱动部分用于:驱动所述连接部带动所述第二导轨沿所述第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动;所述发射线圈用于:发射电磁信号,以对设置有接收线圈的待充电设备进行无线充电。

Description

无线充电装置及方法 技术领域
本申请涉及无线充电领域,并且更具体地,涉及一种无线充电装置及方法。
背景技术
随着无线充电的普及,越来越多的电子设备都支持基于无线充电底座的无线充电或者无线传输功能,而现有的无线充电底座上的发射线圈基本都是固定在底座上的,这就导致了待充电的电子设备在放置到底座上时,需要找准位置,一旦位置偏差,充电效率就会降低,严重影响了用户体验。
发明内容
本申请实施例提供了一种无线充电装置及方法,无线充电装置可以智能识别待充电设备的位置,再通过机械方式将无线充电装置的发射线圈与待充电设备的接收线圈对准,从而,可以保证发射线圈相对于接收线圈处于最佳位置,进而,提高了无线充电效率。
第一方面,本申请实施例提供了一种无线充电装置,包括:壳体、第一导轨、第二导轨、连接部、驱动部分以及发射线圈,其中,所述发射线圈固定于所述连接部,所述第一导轨通过所述连接部活动连接至所述第二导轨,
所述驱动部分用于:驱动所述连接部带动所述第二导轨沿所述第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动;
所述发射线圈用于:发射电磁信号,以对设置有接收线圈的待充电设备进行无线充电。
第二方面,提供了一种无线充电方法,该方法包括:
利用设置于无线充电装置的壳体内的发射线圈发射无线电磁信号,以用于对设置有接收线圈的待充电设备进行无线充电;
控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动;
其中,所述发射线圈固定于所述连接部,所述第一导轨通过所述连接部活动连接至所述第二导轨。
因此,在本申请实施例中,驱动部分可以驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动连接部带动第一导轨沿第二导轨运动,从而,可以调整发射线圈的位置,保证发射线圈相对于接收线圈处于最佳位置,进而,提高了无线充电效率。
附图说明
图1是根据本申请实施例的无线通信系统的示意性框图。
图2是根据本申请实施例的一种无线充电装置的示意性框图。
图3是根据本申请实施例的一种待充电设备的示意性框图。
图4是根据本申请实施例的另一种待充电设备的示意性框图。
图5是根据本申请实施例的另一种无线充电装置的示意性框图。
图6是根据本申请实施例的又一种无线充电装置的结构示意图。
图7是根据本申请实施例的又一种无线充电装置的结构示意图。
图8是根据本申请实施例的再一种无线充电装置的结构示意图。
图9是根据本申请实施例的再一种无线充电装置的结构示意图。
图10是根据本申请实施例的再一种无线充电装置的结构示意图。
图11是根据本申请实施例的红外热传感器的设置的示意性图。
图12是根据本申请实施例的电阻压力感应屏的示意性图。
图13是根据本申请实施例的另一种电阻压力感应屏的示意性图。
图14是根据本申请实施例的发射线圈与接收线圈的位置关系的示意性图。
图15是根据本申请实施例的再一种无线充电装置的示意性框图。
图16是根据本申请实施例的无线充电方法的示意性流程图。
具体实施方式
本申请实施例基于无线充电技术对待充电设备进行充电,无线充电技术不需要电缆即可完成功率的传输,能够简化充电准备阶段的操作。
无线充电技术一般将电源提供设备(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供设备的输出功率以无线的方式(如电磁信号)传输至待充电设备,对待 充电设备进行无线充电。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(power matters alliance,PMA)标准、无线电源联盟(alliance for wireless power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
图1是根据本申请实施例的无线通信系统10的示意性框图。
如图1所示,无线充电系统100包括电源提供设备10、无线充电装置20以及待充电设备30。
可选地,在本申请实施例中,电源提供设备10,用于向无线充电装置20提供直流电。该电源提供设备10可包括:整流电路、变压电路、控制电路和充电接口等,可实现将交流电输入转换为直流电输出,以提供给无线充电装置20。例如,电源提供设备10可为适配器、充电宝或车载电源等。
可选地,在本申请实施例中,电源提供设备10还可直接将交流电提供给无线充电装置20。例如,电源提供设备10可为交流电源。当电源提供设备10为交流电源时,无线充电装置20还包括用于将交流电转换为直流电的电路或模块,例如,整流滤波电路和DC/DC变换电路等。
无线充电装置20,用于将电源提供设备10提供的直流电或交流电,转换成电磁信号,以通过无线的方式进行电力传输。
其中,电源提供设备10和无线充电装置20之间的接口可以为通用串行总线USB接口或lightning接口。
图2是根据本申请实施例的无线充电装置20的示意性框图。
如图2所示,无线充电装置20包括:整流滤波电路(图中未示出)、DC/DC变换电路(图中未示出)、包括发射线圈202的无线发射电路201、第一控制电路204和第一通信电路205。
220V交流电可以经过整流滤波电路变换成稳定的直流电,然后经过DC/DC变换电路(图中未示出)的变换将电压调节到一个固定值供给无线发射电路201。
应理解,整流滤波电路和DC/DC变换电路为可选地,如前所述,当电源提供设备10为交流电源时,无线充电装置20可设置整流滤波电路和DC/DC变换电路。当电源提供设备10可提供的为稳定的直流电时,可去除整流滤波电路和DC/DC变换电路。
无线发射电路201,用于将DC/DC变换电路提供的直流电或电源提供设备等提供的直流电转换为可耦合到发射线圈202的交流电,并通过发射线圈202将该交流电转换成电磁信号进行发射。
可选地,在本申请实施例中,无线发射电路201可包括:逆变电路和谐振电路。逆变电路可包括多个开关管,通过控制开关管的导通时间(占空比)可调节输出功率的大小。谐振电路,用于将电能传输出去,例如,谐振电路可包括电容和发射线圈。通过调整谐振电路的谐振频率,可以调节无线发射电路201输出功率的大小。
可选地,在本申请实施例中,无线充电装置20可为无线充电底座或具有储能功能的设备等。当无线充电装置20为具有储能功能的设备时,其还包括储能模块(例如,锂电池),可从外部电源提供设备获取电能并进行存储。由此,储能模块可将电能提供给无线发射电路201。应理解,无线充电装置20可通过有线或无线的方式从外部电源提供设备获取电能。有线的方式,例如,通过充电接口(例如,Type-C接口)与外部电源提供设备连接,获取电能。无线的方式,例如,无线充电装置20包括无线接收电路,其可通过无线的方式从具有无线充电功能的设备获取电能。
第一控制电路204,用于对无线充电过程进行控制。例如,第一控制电路204可控制第一通信电路205与电源提供设备的通信,以确定电源提供设备的输出电压和/或输出电流。或,第一控制电路204还可控制第一通信电路205与待充电设备的通信,实现充电信息(例如,待充电设备的电池305电压信息、电池305温度信息、充电模式信息等)的交互、进行无线充电的充电参数(例如,充电电压和/或充电电流)确定等。
应理解,无线充电装置20还可包括其它相关硬件、逻辑器件、电路和/或编码,以实现相应的功能。例如,无线充电装置20还可包括显示模块(例如,可为发光二极管或LED显示屏),用于在无线充电过程中,实时显示充电状态(例如,充电进行中或终止等)。
如图2所示,在本申请的一实施例中,无线充电装置20还包括:电压转换电路203。该电压转换电路203,用于在提供给无线发射电路201的电流的电压不满足预设条件时,对提供给无线发射电路201的电流进行电压变换。如前所述,在一个实施例中,提供给无线发射电路201的电流可为DC/DC变换电路提供的、电源提供设备提供的或前述储能模块提供的等。
当然,可替换地,如果提供给无线发射电路201的电压可以达到无线发射电路201对输入电压的电压需求,可以省去电压转换电路203,以简化无线充电装置的实现。无线发射电路201对输入电压的电压需求可根据实际需求进行设置,例如,设置为10V。
可选地,在本申请实施例中,提供给无线发射电路201的电流的电压不能满足预设条件是指,该电压低于无线发射电路201的需求电压或该电压高于无线发射电路201的需求电压。例如,若采用高压低电流(例如,20V/1A)的充电模式进行无线充电,这种充电模式对无线发射电路201的输入电压要求较高(如电压需求为10V或20V)。如果提供给无线发射电路201的电压无法达到无线发射电路201的电压需求,则电压转换电路203可以对输入电压进行升压,以达到无线发射电路201的电压需求。而如果电源提供设备的输出电压超过无线发射电路201的电压需求,电压转换电路203可以对输入电压进行降压,以达到无线发射电路201的电压需求。
图3和图4是根据本申请实施例的待充电设备30的示意性框图。
如图3和4所示,待充电设备30包括:包括接收线圈311的无线接收电路301、第二控制电路302、降压电路303、检测电路304、电池305和第一充电通道306和第二通信电路309。
可选地,在本申请实施例中,无线接收电路301,用于通过接收线圈311将无线充电装置20的无线发射电路201发射的电磁信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成稳定的直流电,以给电池305充电。
可选地,在本申请实施例中,无线接收电路301包括:接收线圈311和AC/DC变换电路。AC/DC变换电路,用于将接收线圈311接收到的交流电转换为直流电。
可选地,在本申请实施例中,电池305可包括单电芯或多电芯。电池305包括多电芯时,该多个电芯之间为串联关系。由此,电池305可承受的充电电压为多个电芯可承受的充电电压之和,可提高充电速度,减少充电发热。
以待充电设备为手机为例,待充电设备的电池305包括单电芯时,内部的单节电芯的电压一般在3.0V-4.35V之间。而待充电设备的电池305包括两节串联的电芯时,串联的两节电芯的总电压为6.0V-8.7V。由此,相比于单电芯,采用多节电芯串联时,无线接收电路301的输出电压可以提高。与单节电芯相比,达到同等的充电速度,多节电芯所需的充电电流约为单节电芯所需的充电电流的1/N(N为待充电设备内的相互串联的电芯的数目)。换句话说,在保证同等充电速度(充电功率相同)的前提下,采用多节电芯的方案,可以降低充电电流的大小,从而减少待充电设备在充电过程的发热量。另一方面,与单电芯方案相比,在充电电流保持相同的情况下,采用多电芯串联方案,可提高充电电压,从而提高充电速度。
可选地,在本申请实施例中,第一充电通道306可为导线。在第一充电通道306上可设置降压电路303。
降压电路303,用于对无线接收电路301输出的直流电进行降压,得到第一充电通道306的输出电压和输出电流。在一个可选的实施例中,该第一充电通道306输出的直流电的电压值和电流值,符合电池305的充电需求,可直接加载到电池305。
检测电路304,用于检测第一充电通道306的电压值和/或电流值。第一充电通道306的电压值和/或电流值可以指无线接收电路301与降压电路303之间的电压值和/或电流值,即无线接收电路301的输出电压值和/或电流值。或者,第一充电通道306上的电压值和/或电流值也可以指降压电路303与电池305之间电压值和/或电流值,即降压电路303的输出电压和/或输出电流。
可选地,在本申请实施例中,检测电路304可以包括:电压检测电路和电流检测电路。电压检测电路可用于对第一充电通道306上的电压进行采样,并将采样后的电压值发送给第二控制电路302。在一个可选的实施例中,电压检测电路可以通过串联分压的方式对第一充电通道306上的电压进行采样。电流检测电路304可用于对第一充电通道306上的电流进行采样,并将采样后的电流值发送给第二控制电路302。在一些实施例中,电流检测电路304可以通过检流电阻和检流计对第一充电通道306上的电流进行采样检测。
可选地,在本申请实施例中,第二控制电路302可以控制第二通信电路309与无线充电装置进行通信,将检测电路304检测到电压值和/或电流值反馈给无线充电装置。由此,无线充电装置的第一控制电路204可根据该反馈的电压值和/或电流值,调整无线发射电路201的发射功率,使得第一充电通道306输出的直流电的电压值和/或电流值与电池305所需的充电电压值和/或电流值相匹配。
应理解,在本申请实施例中,“与电池305所需的充电电压值和/或电流值相匹配”包括:第一充电通道306输出的直流电的电压值和/或电流值与电池305所需的充电电压值和/或电流值相等或浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏)。
在本申请的实施例中,降压电路303的实现形式可以有多种。作为一个示例,降压电路303可以为Buck电路。作为另一个示例,降压电路303可以为电荷泵(charge pump)。电荷泵由多个开关器件构成,电流流过开关器件产生的热量很小,几乎与电流直接经过导线相当,所以采用电荷泵作为降压电路303,不但可以起到降压效果,而且发热较低。作为一个示例,降压电路303还可为半压电路。
可选地,在本申请实施例中,无线充电装置20的电压转换电路203的升压倍数和待充电设备30的降压电路303的降压倍数的设置与电源提供设备能够提供的输出电压、电池305需要的充电电压等参数有关,二者可以相等也可以不相等,本申请实施例对此不做具体限定。
可选地,在本申请实施例中,可以将电压转换电路203的升压倍数与降压电路303的降压倍数设置为相等。例如,电压转换电路203可以是倍压电路,用于将电源提供设备的输出电压提升2倍;降压电路303可以是半压电路,用于将无线接收电路301的输出电压降低一半。
可选地,在本申请实施例中,将电压转换电路203的升压倍数与降压电路303的降压倍数设置为1:1,这种设置方式可以使得降压电路303的输出电压和输出电流分别与电源提供设备的输出电压和输出电流相一致,有利于简化控制电路的实现。以电池305对充电电流的需求为5A为例,当第二控制电路302通过检测电路304获知降压电路303的输出电流为4.5A时,需要调整电源提供设备的输出功率,使得降压电路303的输出电流达到5A。如果电压转换电路203的升压倍数与降压电路303的降压倍数之比不等于1:1,则在调整电源提供设备的输出功率时,第一控制电路204或第二控制电路302需要基于降压电路303的当前输出电流与期望值之间的差距,重新计算电源提供设备的输出功率的调整值。本申请一实施例将电压转换电路203的升压倍数与降压电路303的降压倍数之比设置为1:1,则第二控制电路302通知第一控制电路204将输出电流提升至5A即可,从而简化了无线充电通路的反馈调整方式。
如图4所示,在本申请的实施例中,待充电设备30还可以包括:第二充电通道308。第二充电通道308可为导线。在第二充电通道308上可设置变换电路307,用于对无线接收电路301输出的直流电进行电压控制,得到第二充电通道308的输出电压和输出电流,以对电池305进行充电。
可选地,在本申请实施例中,变换电路307包括:用于稳压的电路和用于实现恒流和恒压的电路。其中,用于稳压的电路与无线接收电路301连接,用于实现恒流和恒压的电路与电池305连接。
当采用第二充电通道308对电池305进行充电时,无线发射电路201可采用恒定发射功率,无线接收电路301接收电磁信号后,由变换电路307处理为满足电池305充电需求的电压和电流后,输入电池305实现对电池305的充电。应理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射功率为7.5W上下浮动0.5W。
可选地,在本申请实施例中,通过第二充电通道308对电池305进行充电时,无线充电装置和待充电设备可按照Qi标准进行无线充电。
可选地,在本申请实施例中,在无线充电装置端设置电压转换电路。在待充电设备端设置与电池305连接的第一充电通道306(例如,为导线)。其中,第一充电通道306设置降压电路303,用于对无线接收电路301的输出电压进行降压,以使第一充电通道306的输出电压和输出电流满足电池305的充电需求。
可选地,在本申请实施例中,若无线充电装置20采用20W的输出功率对待充电设备中的单电芯电池305进行充电,则采用第二充电通道308对该单电芯电池305进行充电时,无线发射电路201的输入电压需为5V,输入电流需为4A,而采用4A的电流必然会导致线圈发热,降低充电效率。
当采用第一充电通道306对该单电芯电池305进行充电时,由于第一充电通道306上设置了降压电路303,在无线发射电路201的发射功率不变(前述的20W)的情况下,可提高无线发射电路201的输入电压,由此,可降低无线发射电路201的输入电流。
可选地,在本申请实施例中,降压电路303可采用半压电路,即该降压电路303的输入电压和输出电压的比值为固定的2:1,以进一步减小降压电路303的发热。
可以理解是,无线接收电路301可以以间歇的方式为电池305充电,该无线接收电路301的输出电流的周期可以跟随输入无线充电系统的交流电例如交流电网的频率进行变化,例如,无线接收电路301的输出电流的周期所对应的频率为电网频率的整数倍或倒数倍。并且,无线接收电路301的输出电流可以以间歇的方式为电池305充电时,无线接收电路301的输出电流对应的电流波形可以是与电网同步的一个或一组脉冲组成。脉动形式的电压/电流的大小周期性变换,与传统的恒定直流电相比,能够降低锂电池的析锂现象,提高电池的使用寿命,并且有利于降低电池的极化效应、提高充电速度、减少电池的发热,从而保证待充电设备充电时的安全可靠。
可选地,在本申请实施例中,无线充电装置20可设置为各种形状,例如,圆形、方形等。
可选地,在本申请实施例中,第一通信电路205和第二通信电路309之间还可以交互许多其他通信信息。在一些实施例中,第一通信电路205和第二通信电路309之间可以交互用于安全保护、异常检测或故障处理的信息,如电池305的温度信息,进入过压保护或过流保护的指示信息等信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路201和无线接收电路301之间的功率传输效率)。
例如,当电池305的温度过高时,第一控制电路204和/或第二控制电路302可以控制充电回路进入保护状态,如控制充电回路停止无线充电。又如,第一控制电路204接收到第二控制电路302通过第二通信电路309发送的过压保护或过流保护的指示信息之后,第一控制电路204可以降低发射功率,或控制无线发射电路201停止工作。又如第一控制电路204接收到第二控制电路302通过第二通信电路309发送的功率传输效率信息之后,如果功率传输效率低于预设阈值,可以控制无线发射电路201停止工作,并向用户通知这一事件,如通过显示屏显示功率传输效率过低,或者可以通过指示灯指示功率传输效率过低,以便用户调整无线充电的环境。
可选地,在本申请实施例中,第一通信电路205和第二通信电路309之间可以交互能够用于调整无线发射电路201的发射功率调整的其他信息,如电池305的温度信息,指示第一充电通道306上的电压和/或电流的峰值或均值的信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路201和无线接收电路301之间的功率传输效率)等。
例如,第二通信电路309可以向第一通信电路205发送功率传输效率信息,第一控制电路204可根据第一通信电路205接收的功率传输效率信息确定无线发射电路201的发射功率的调整幅度。具体地,如果功率传输效率信息指示无线发射电路201与无线接收电路301之间的功率传输效率低,则第一控制电路204可以增大无线发射电路201的发射功率的调整幅度,使得无线发射电路201的发射功率快速达到目标功率。
又如,如果无线接收电路301输出的是脉动波形的电压和/或电流,第二控制电路302可以向第一控制电路204发送指示第一充电通道306的输出电压和/或输出电流的峰值或均值的信息,第一控制电路204可以判断第一充电通道306的输出电压和/或输出电流的峰值或均值是否与电池305当前所需的充电电压和/或充电电流相匹配,如果不匹配,则可以调整无线发射电路201的发射功率。
又如,第二通信电路309可以向第一通信电路205发送电池305的温度信息,如果电池305的温度过高,第一控制电路204可以降低无线发射电路201的发射功率,以降低无线接收电路301的输出电流,从而降低电池305的温度。
电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,进入到电池305的电流满足电池305所预期的充电电流大小(譬如第一充电电流)。在恒流充电阶段,进入电池305的电流满足电池305所预期的充电电流大小(譬如第二充电电流,该第二充电电流可大于第一充电电流)。在恒压充电阶段,加载到电池305两端的电压的大小满足电池305所预期的充电电压大小。
在无线充电过程中,发射线圈202和接收线圈311在空间上是对准状态时,充电效率是最高的。然而,发射线圈202一般是设置在无线充电装置20的壳体内的,如果将发射线圈202固定在壳体中,这就使得用户在将待充电设备放置在无线充电装置20上时,需要找准位置,一旦位置偏差,充电效率就会降低,严重影响用户体验。
为此,本申请实施例在无线充电装置中设置调整机构,该调整机构可以调整发射线圈在壳体中的位置。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合图5至图15,对本申请实施例提供的无线充电装置200进行详细介绍。
如图5所示,本申请实施提供的无线充电装置200可以包括:壳体210、第一导轨220、第二导轨230、连接部240、驱动部分250以及发射线圈260。
发射线圈260固定于连接部240,第一导轨220通过连接部240活动连接至第二导轨230。
壳体210可以是圆形的,方形的或椭圆形的等。
驱动部分250可用于驱动连接部240带动第二导轨230沿第一导轨220运动,和/或,驱动连接部240带动第一导轨220沿第二导轨230运动。换句话说,由于发射线圈260固定于连接部240上,驱动部分250可以驱动发射线圈260沿第一导轨220运动,和/或,沿第二导轨230运动。
需要说明的是,发射线圈260的运动区域面积可以小于壳体210内部区域面积,发射线圈260的运动区域形状可以与壳体210的形状相同或者不相同。
发射线圈260可以设置于壳体210内,可用于发射电磁信号,以对设置有接收线圈的待充电设备进行无线充电。在一些实施例中,发射线圈260可以是由金属线材盘绕而成的线圈,也可以是由金属线材制成的天线。在一些实施例中,发射线圈260连接无线发射驱动电路,无线发射驱动电路可用于生成较高频率的交流电,发射线圈260可用于将该较高频率的交流电转换成电磁信号发射出去。
应理解,本申请实施例中的发射线圈还可以称为发射天线,以及本申请实施例的接收线圈还可以 称为接收天线。
以及,本申请实施例对发射线圈和接收线圈的结构形态不作具体限定,例如,发射线圈或接收线圈可以是圆形的,方形的或椭圆形的等,同时,发射线圈可以大于接收线圈,也可以小于接收线圈,还可以与接收线圈一样大。
在一些实施例中,待充电设备中的接收线圈用于将接收到的电磁信号转换成充电功率信号,以对待充电设备的电池充电。接收线圈可以是由金属线材盘绕而成的线圈,也可以是由金属线材制成的天线。在一些实施例中,接收线圈连接整流电路和/或滤波电路等整形电路,在接收线圈将接收到的电磁信号转换成充电功率信号之后,整形电路可用于将充电功率信号转换成用于对待充电设备的电池进行充电的输出电压和输出电流。
应理解,在发射线圈与接收线圈的位置重合时,无线充电效率最大。
需要说明的是,无线充电装置200需要诸如适配器、计算机等电源提供设备提供电能。
可选地,可以是发射线圈260的中心点固定于连接部240,也可以是发射线圈260的其他位置固定于连接部240。
具体地固定方式本申请不作限定,例如,发射线圈260可以通过螺栓固定于连接部240,也可以通过螺栓与螺母配合固定于连接部240,还可以通过焊接固定于连接部240。
因此,在本申请实施例中,驱动部分可以驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动连接部带动第一导轨沿第二导轨运动,从而,可以调整发射线圈在壳体内的位置,保证发射线圈相对于接收线圈处于最佳位置,进而,提高了无线充电效率,提升用户体验。
在一些实施例中,驱动部分250包括第一牵引线251、第一复位弹簧252、第二牵引线253、第二复位弹簧254和至少一个电机255;
在所述第一导轨220内,所述第一牵引线251的一端穿出所述第一导轨220,并与所述至少一个电机255连接,所述第一牵引线251的另一端连接所述连接部240,所述第一复位弹簧252的一端连接所述连接部240,所述第一复位弹簧252的另一端固定在所述第一导轨220上;
在所述第二导轨230内,所述第二牵引线253的一端穿出所述第二导轨230的一端,并与所述至少一个电机255连接,所述第二牵引线253的另一端连接所述连接部240,所述第二复位弹簧254的一端连接所述连接部240,所述第二复位弹簧254的另一端固定在所述第二导轨230上。
作为一个示例,如图6所示,驱动部分250包括电机2551和电机2552,电机2551连接第一牵引线251,电机2552连接第二牵引线253。
具体地,如图6所示,在需要发射线圈260在第一导轨220上运动时,电机2551通过第一牵引线251和第一复位弹簧252控制连接部240带动发射线圈260运动。例如,在需要向方向A运动时,电机2551控制拉伸第一牵引线251,从而连接部240带动发射线圈260向方向A运动,第一复位弹簧252处于拉伸状态;在需要向方向B运动时,电机2551控制收缩第一牵引线251,从而处于拉伸状态的第一复位弹簧252在复位时,控制连接部240带动发射线圈260向方向B运动。
在需要发射线圈260在第二导轨230上运动时,电机2552通过第二牵引线253和第二复位弹簧254控制连接部240带动发射线圈260运动。例如,在需要向方向C运动时,电机2552控制拉伸第二牵引线253,从而连接部240带动发射线圈260向方向C运动,第二复位弹簧254处于拉伸状态;在需要向方向D运动时,电机2552控制收缩第二牵引线253,从而处于拉伸状态的第二复位弹簧254在复位时,控制连接部240带动发射线圈260向方向D运动。
可选地,如图6所示,为了避免发射线圈260在上下方向的倾斜,可以设置支持部(图中未示出),该支持部例如可以使得发射线圈260保持水平。例如,该支持部可以包括放置发射线圈260的托盘,以及用于支撑托盘的支腿,该支腿是可活动的。
可选地,如图6所示,第一导轨220和/或第二导轨230可以开设有槽,连接部240(例如,滑块)可以具有设置在第一导轨220内的第一部分,以及在第二导轨230内的第二部分,第一牵引线251和第一复位弹簧252可以连接到该第一部分上,以及第二牵引线253和第二复位弹簧254可以连接到该第二部分上。
作为一个示例,如图7所示,驱动部分250包括电机2553,电机2553包括切换部,切换部可以由齿轮A,齿轮B和齿轮C组成,齿轮A连接第一牵引线251,齿轮B连接第二牵引线253,电机2553驱动齿轮C分别与齿轮A和齿轮B啮合。
需要说明的是,可以在电机2553上设置移动部件(图中未示出),用于移动齿轮C,从而使得齿轮C分别与齿轮A和齿轮B啮合。
或者,可以在无线充电装置的壳体上设置移动部件(图中未示出),用于移动齿轮A或齿轮B,使得齿轮A或齿轮B与齿轮C啮合。
应理解,本申请实施例的切换部分还可以是其它的实现形式,本申请实施例对此不作具体限定。
具体地,如图7所示,在需要发射线圈260在第一导轨220上运动时,电机2553驱动齿轮C与齿轮A啮合,首先,电机2553驱动齿轮C带动齿轮A转动,然后,齿轮A通过第一牵引线251和第一复位弹簧252控制连接部240带动发射线圈260运动。例如,在需要向方向X运动时,齿轮A控制拉伸第一牵引线251,从而连接部240带动发射线圈260向方向X运动,第一复位弹簧252处于拉伸状态;在需要向方向Y运动时,齿轮A控制收缩第一牵引线251,从而处于拉伸状态的第一复位弹簧252控制连接部240带动发射线圈260向方向Y运动。
在需要发射线圈260在第二导轨230上运动时,电机2553驱动齿轮C与齿轮B啮合,首先,电机2553控制齿轮B的转动,然后,齿轮B通过第二牵引线253和第二复位弹簧254控制连接部240带动发射线圈260运动。例如,在需要向方向K运动时,首先,电机2553驱动齿轮C带动齿轮B转动,然后,齿轮B控制拉伸第二牵引线253,从而连接部240带动发射线圈260向方向K运动,第二复位弹簧254处于拉伸状态;在需要向方向T运动时,齿轮B控制收缩第二牵引线253,从而处于拉伸状态的第二复位弹簧254控制连接部240带动发射线圈260向方向T运动。
可选地,如图7所示,第一牵引线251的一端穿出第一导轨220,以及经由相对于壳体210固定的固定部256与电机2553上的齿轮A连接。例如,第一牵引线251经由固定部256的方式可以是:第一牵引线251穿过固定部256开设的孔,或者缠绕该固定部256,或者,缠绕固定部256上设置的滑轮。
可选地,如图7所示,为了避免发射线圈260在上下方向的倾斜,可以设置支持部(图中未示出),该支持部例如可以使得发射线圈260保持水平。例如,该支持部可以包括放置发射线圈260的托盘,以及用于支撑托盘的支腿,该支腿是可活动的。
可选地,如图7所示,第一导轨220和/或第二导轨230可以开设有槽,连接部240(例如,滑块)可以具有设置在第一导轨220内的第一部分,以及在第二导轨230内的第二部分,第一牵引线251和第一复位弹簧252可以连接到该第一部分上,以及第二牵引线253和第二复位弹簧254可以连接到该第二部分上。
可选地,所述第一导轨和所述第二导轨为直线形导轨。例如,如图6和图7所示,第一导轨220和第二导轨230为直线形导轨。
可选地,在所述第一导轨220和所述第二导轨230为直线形导轨时,所述第一导轨220与所述第二导轨230之间的夹角可以是锐角,也可以是直角,还可以是钝角,发射线圈260的可移动区域可以根据所述第一导轨220与所述第二导轨230所处位置确定,例如,在所述第一导轨220与所述第二导轨230之间的夹角为直角时,发射线圈260的移动区域可以是方形的。
可选地,所述第一导轨为圆弧形或圆形导轨,所述第二导轨为直线形导轨。例如,如图8所示,第一导轨220为圆弧形导轨,第二导轨230为直线形导轨。又例如,如图9所示,第一导轨220为圆形导轨,第二导轨230为直线形导轨。
应理解,所述第一导轨和/或所述第二导轨还可以是其他形状的导轨,例如,三角形、菱形等导轨,本申请实施例对此不作具体限定。
可选地,本申请实施例中的电机可以为步进电机,也可以是异步电机,还可以是其他形式的电机,本申请实施例对此不作具体限定。
可选地,本申请实施例中的复位弹簧可以被其他实现方式代替,例如,如图6或者图7所示的第一复位弹簧252可以被另一牵引线代替,该另一牵引线与另一电机连接,该另一电机可以拉动该另一牵引线的一端,使得连接部240在第一导轨220上运动,从而可以带动发射线圈260在第一导轨220上运动。
以及,如图6或者图7所示的第二复位弹簧254可以被另一牵引线代替,该另一牵引线与另一电机连接,该另一电机可以拉动该另一牵引线的一端,使得连接部240在第二导轨230上运动,从而可以带动发射线圈260在第二导轨230上运动。
可选地,在本申请实施例中,如图10所示,无线充电装置200还可以包括控制电路270,该控制电路270可以控制驱动部分250的工作,从而可以调整发射线圈260在壳体210中的位置。本申请实施例的控制电路270例如可以通过微控制单元(micro control unit,MCU)实现,或者可以通过MCU与待充电设备内部的应用处理器(application processor,AP)共同实现。
由于待充电设备的充电效率是与发射线圈与待充电设备的接收线圈的位置关系相关的。因此,可以确定待充电设备的接收线圈的位置,并基于该接收线圈的位置,来调整发射线圈在壳体中的位置。
以下将结合几种实现方式来介绍如何确定接收线圈的位置。
在一种实现方式中,无线充电装置200还可以包括红外热传感器,用于在待充电设备进行充电时, 获取所述待充电设备的发热特征;则控制电路可以根据所述发热特征,确定接收线圈的位置。
收集到的发热特征可以以发热云图的方式体现,发热云图体现了各个部分的发热情况。发热云图也可以称为热成像云图或温度云图等。
红外热传感器可以固定在发射线圈下方,并保持一定距离。其中,该距离大小可以根据无线充电装置的用于放置待充电设备的表面区域来确定,由此可以尽量保证红外热感应的范围,例如,如图11所示。
可选地,控制电路可以根据预设信息以及所述红外热传感器获取的发热特征,确定所述接收线圈的位置,所述预设信息包括所述待充电设备的各个已知部分在特定充电阶段和/或充电效率下的发热特征,所述红外热传感器获取的发热特征为该特定充电阶段和/或充电效率下的发热特征。
具体地,可以收集待充电设备在各个充电阶段和/或充电效率下的发热云图,该发热云图可以包括最高温度点和发热区域等信息,并建立一个数据库。可以将该数据库信息输入到无线充电装置中,该发热云图中各个部分对应的待充电设备的位置已知的,控制电路可以结合预设的在特定效率和/或充电效率下的发热云图,以及待充电设备在特定充电阶段和/或充电效率下的发热云图,确定接收线圈的位置。
其中,控制电路根据所述预设信息以及所述待充电设备的发热特征,确定特定发热特征在所述待充电设备所对应的位置;根据特定发热特征在所述待充电设备所对应的位置,确定所述接收线圈的位置。
也就是,在将红外热传感器获取到的待充电设备在特定充电阶段和/或充电效率下的发热云图中的特定发热特征,去与预设的在该特定充电阶段和/或充电效率下的发热云图中发热特征匹配,基于预设的发热云图,确定该匹配的发热特征在待充电设备上的位置,由于接收线圈针对具有特定发热特征的位置是固定的,从而可以基于该位置,确定接收线圈的位置。
其中,预设信息中的发热云图针对的待充电设备与实时确定接收线圈的待充电设备可以是同一待充电设备或者是同一型号待充电设备等。
以下将以无线充电装置为无线充电底座,待充电设备为手机以及结合图11为例进行说明。
首先,可以对手机40无线充电状态进行热成像云图的建模,收集手机40在无线充电各个充电效率和/或充电阶段下的发热云图,收集手机40发热特征,例如最高温度点和发热区域等信息,并建立数据库,并输入到无线充电底座50中。
然后,当手机40放置在无线充电底座50上时,初始位置下,手机40的接收线圈41和无线充电底座50的发射线圈51可能是没有对准的,这样充电效率比较低,保持一段时间,使接收线圈41和手机40的发热保持稳定后,可以开启红外热传感器52进行检测,获取手机40的发热云图,数据库中的发热特征进行对比,获取一个发热特征点在无线充电底座50坐标上的位置,因为手机40上的接收线圈41相对于发热特征点位置是固定的,这样的话就可通过发热特征点计算出手机40的接收线圈41中心点的坐标,也就是(x1,y1)。
最后,根据无线充电底座50的发射线圈51的中心点坐标(x0,y0)和手机40的接收线圈41的中心点坐标(x1,y1),确定移动发射线圈51的路径,从而,控制发射线圈51移动到最佳位置,实现充电效率最大化。
在一种实现方式中,无线充电装置还可以包括压力传感器,用于对无线充电装置的承载待充电设备的部分进行压力感应,并向控制电路输入压力感应结果;则控制电路可以根据压力感应结果,确定待充电设备所在的区域,并根据待充电设备所在的区域,确定接收线圈的位置。
其中,可以将无线充电装置中与待充电设备相接触的接触面采用电阻压力感应屏,电阻式压力感应屏是一种传感器,具体的结构可以如图12所示,是薄膜层61加上玻璃层62的结构,薄膜层61和玻璃层62相邻的一面上均涂有纳米铟锡金属氧化物涂层63,例如,氧化铟锡(Indium Tin Oxide,ITO)涂层,ITO具有很好的导电性和透明性。当有物体(例如,手机60)放置在上面时,该接触面上的薄膜层61下表面的ITO层63会接触到玻璃层62上表面的ITO层63(例如,如图13所示),经由传感器传出相应的电信号,经过转换电路送到控制电路,通过运算转化为坐标值,从而获得压力感应区域。
应理解,图12和图13所示的感应屏是示意性图,除了薄膜层61、玻璃层62和ITO层63,该感应屏还可以有其他的部分。
可选地,控制电路可以根据待充电设备所在的区域,确定接收线圈的可能的至少一个位置;将发射线圈调整到分别与该至少一个位置对准,根据至少一个位置中每个位置的待充电设备的充电效率,确定接收线圈的位置。其中,可以将至少一个位置中充电效率最高的位置确定为接收线圈的位置。其中,充电效率的计算公式为:η=Pout/Pin,Pout为待充电设备的功率,Pin为发射线圈输出的功率。
具体地,当待充电设备(例如,手机)放置在无线充电装置上时,控制电路可以沿X轴扫描横坐标上是否有压力变化,提取出压力变化的X坐标,然后沿Y轴扫描纵坐标上是否有压力变化,提取出压力变化的Y坐标,这样合成一个压力变化平面,从而可以确定待充电设备的放置位置,定义待充电设备的中心点的坐标为(Xt,Yt)。进一步可以定位接收线圈的位置,由于电阻压力感应屏并不能区别待充电设备的朝向,所以可以采用排除法来找位置,因为接收线圈相对于待充电设备来说是固定的,以手机为例,手机上的接收线圈位置上左右是对称的,只是偏上或者偏下,也就是说,接收线圈相对无线充电装置的坐标应该是(Xt+L,Yt)或者是(Xt-L,Yt),L值是手机上的接收线圈相对于手机中心点的值,分别对比计算接收线圈的中心点坐标移动到(Xt+L,Yt)位置上和(Xt-L,Yt)位置上的无线充电效率,充电效率较大的就是正确的位置。
其中,如果调整的最后一个可能的位置的充电效率最高,则确定该最后一个位置即为接收线圈的位置,此时,已经实现了接收线圈与发射线圈的对准,也即,无需再调整发射线圈的位置。
以上已经介绍了两种确定待充电设备的接收线圈的位置方式,但本申请实施例并不限于此。
在确定了接收线圈的位置之后,控制电路可以基于该接收线圈的位置,控制驱动部分调整发射线圈在壳体中的位置。其中,调整发射线圈的位置可以是使得发射线圈远离接收线圈(例如,在用户希望对待充电设备的电池进行慢充时),也可以是使得发射线圈靠近或对准接收线圈(例如,在用户希望对待充电设备的电池进行快充时),具体地,可以采用图6-图9所示的机械结构对发射线圈的位置进行调整。
例如,以无线充电装置为无线充电底座,待充电设备为手机为例进行说明,如图14所示,在确定手机40的接收线圈41的中心坐标为(x1,y1),无线充电底座50的发射线圈51的中心坐标(x0,y0)之后,则可以调整发射线圈51的位置,使得发射线圈51的中心坐标从(x0,y0)移动到(x1,y1)。
以上已经介绍了基于接收线圈的位置,来调整发射线圈260(图11或者图14中发射线圈51)的位置。本申请实施例还可以结合待充电设备的接收功率或充电效率,控制驱动部分调整发射线圈260(图11或者图14中发射线圈51)在壳体210中的位置。
如图15所示,无线充电装置200除了具有壳体210(图中未示出)、第一导轨220(图中未示出)、第二导轨230(图中未示出)、连接部240(图中未示出)、驱动部分250、发射线圈260、控制电路270,还可以具有通信电路280。无线充电装置200可以通过通信电路280与待充电设备进行无线通信,以获取待充电设备当前的接收功率。
其中,待充电设备300具体的结构可以如图3和4所示,为了简洁,在此不再赘述。
无线充电装置200在获取到待充电设备的接收功率之后,可以直接根据该接收功率,调整发射线圈260在壳体210中的位置;或者,也可以基于接收功率以及无线充电装置200的发射功率,计算充电效率值,基于该充电效率值,调整发射线圈260在壳体210中的位置。
在一种实现方式中,控制电路270可以基于待充电设备的当前的接收功率和待充电设备期望的接收功率,对发射线圈260在壳体210内的位置进行调整,以期达到待充电设备期望的接收功率。
其中,待充电设备期望的接收功率可以由待充电设备发送给无线充电装置200。假设待充电设备为终端,则用户可以在终端上通过用户界面设置期望的接收功率,并将该接收功率发送给无线充电装置200。
其中,待充电设备期望的接收功率可以小于当前的接收功率,例如,假设待充电设备希望对电池进行慢充,则控制电路270可与控制驱动部分250调整发射线圈260的位置,以降低接收线圈的功率。或者,待充电设备期望的接收功率可以大于当前的接收功率,例如,假设待充电设备希望对电池进行快充,则控制电路270可以控制驱动部分250调整发射线圈260的位置,以提升接收线圈的功率。
也就是说,驱动部分250可以调整发射线圈260的位置,使得发射线圈260远离接收线圈或更靠近接收线圈。其中,该接收线圈的位置对于控制电路270而言可以是已知的,例如,可以通过压力传感器或红外传感器获取的。
在一种实现方式中,控制电路270可以基于待充电设备的接收功率和发射线圈260的发射功率,确定当前充电效率值,基于该当前充电效率值,对发射线圈260在壳体210内的位置进行调整。
具体地,控制电路270基于该当前充电效率值,对发射线圈260在壳体210内的位置进行调整时,可以在调整到特定充电效率值时停止调整,和/或在调整充电效率值的变化值小于误差时停止调整。
其中,该特定充电效率值可以是最大能达到的充电效率值(也即,发射线圈与接收线圈重合时的充电效率值),或待充电设备期望的充电效率值。
其中,待充电设备期望的充电效率值可以由待充电设备发送给无线充电装置200。假设待充电设备为终端,则用户可以在终端上通过用户界面设置期望的充电效率值,并将该充电效率值发送给无线 充电装置200。
其中,待充电设备期望的充电效率值可以小于当前的充电效率值,例如,假设待充电设备希望对电池进行慢充,则控制电路270可以控制驱动部分250调整发射线圈260的位置,以降低充电效率值。或者,待充电设备期望的接充电效率值可以大于当前的充电效率值,例如,假设待充电设备希望对电池进行快充,则控制电路270可以控制驱动部分250调整发射线圈260的位置,以提升充电效率值。
也就是说,驱动部分250可以调整发射线圈260的位置,使得发射线圈260远离接收线圈或更靠近接收线圈。其中,该接收线圈的位置对于控制电路270而言可以是已知的,例如,可以通过压力传感器或红外传感器获取的。
可选地,在本申请实施例中,接收线圈的位置对于控制电路270而言也可以是未知的,则此时,可以通过尝试移动发射线圈260,来使得待充电设备的接收功率或充电效率值满足预定条件。
具体地,控制电路270可以根据在移动发射线圈260的过程中,待充电设备300的接收功率的变化或充电效率值,控制驱动部分调整发射线圈260在壳体210中的位置。
为了便于理解,以下以期望达到最大充电效率为例进行说明。
在一种实现方式中,驱动部分250驱动连接部240带动第二导轨230按照第一方向沿第一导轨220运动,
如果充电效率值增加,驱动部分250继续驱动连接部240带动第二导轨230按照第一方向沿第一导轨220运动,直到所述充电效率值的递进值小于或等于第一值,或者,
如果充电效率值减小,驱动部分250继续驱动连接部240带动第二导轨230按照相反于所述第一方向的第二方向沿第一导轨220运动,如果充电效率值增加,则继续运动,直到所述充电效率值的递进值小于或等于所述第一值。
可选地,所述第一值为连接部240带动第二导轨230沿第一导轨220运动时的最小步进效率值。
需要说明的是,在驱动部分250驱动连接部240带动第二导轨230沿第一导轨220运动的情况下,如果所述充电效率值的递进值小于或等于所述第一值,且所述充电效率值未达到最大充电效率值时,驱动部分250驱动连接部240带动第二导轨230沿第一导轨220运动,使得发射线圈260在第一导轨220的一端与另一端之间运动。
在另一种实现方式中,驱动部分250驱动连接部240带动第一导轨220按照第三方向沿第二导轨230运动,
如果充电效率值增加,控制驱动部分250继续驱动连接部240带动第一导轨220按照第三方向沿第二导轨230运动,直到所述充电效率值的递进值小于或等于第二值,或者,
如果充电效率值减小,控制驱动部分250继续驱动连接部240带动第一导轨220按照相反于所述第三方向的第四方向沿第二导轨230运动,如果充电效率值增加,则继续运动,直到所述充电效率值的递进值小于或等于所述第二值。
可选地,所述第二值为连接部240带动第一导轨220沿第二导轨230运动时的最小步进效率值。
需要说明的是,在驱动部分250驱动连接部240带动第一导轨220沿第二导轨230运动的情况下,如果所述充电效率值的递进值小于或等于所述第二值,且所述充电效率值未达到最大充电效率值时,控制驱动部分250驱动连接部240带动第一导轨220沿第二导轨230运动,使得发射线圈260在第二导轨230的一端与另一端之间运动。
以下将结合图7所示的无线充电装置200以及图14进行说明。如图14所示,假设发射线圈260(图14中发射线圈51)中心的坐标为(x0,y0),手机40的接收线圈41中心的坐标为(x1,y1)。其中,控制电路270可以预设最大效率值ηmax,该效率值可以是在测试过程中定义的最大效率值。
在手机40初始放置到无线充电底座50时,手机40还是能无线充电的,只是效率比较低,通过手机40与无线充电底座50的通信,无线充电底座50可以获知手机40接收到的功率值,然后控制电路270可以计算当前的无线充电效率η0,在η0<ηmax时,说明充电效率比较低,需要调节发射线圈260(图14中发射线圈51),否则无需移动发射线圈260(图14中发射线圈51);以下将介绍在需要移动发射线圈260(图14中发射线圈51)时,如何进行发射线圈260(图14中发射线圈51)的移动。
首先:将齿轮C与齿轮B啮合,控制电机2553运转△θ角度,第二牵引线253延长(或缩短)△l长度,连接部240带动发射线圈260(图14中发射线圈51)沿第二导轨运动,此时计算该位置下的效率值η1,若η1>η0,说明发射线圈260(图14中发射线圈51)运动方向正确,可以继续沿该方向调整;若η1<η0,说明发射线圈(图14中发射线圈51)运转方向相反,需要向相反方向调整;直到调整到ηt和ηt-1的差值小于最小步进效率值,说明位置合适,无需再调整。
然后,将齿轮C与齿轮A啮合,控制电机2553运转△θ角度,第一牵引线251延长(或缩短) △l长度,连接部240带动发射线圈260(图14中发射线圈51)沿第一导轨运动,此时计算该位置下的效率值η1,若η1>η0,说明发射线圈260(图14中发射线圈51)运转方向正确,可以继续沿该方向调整;若η1<η0,说明发射线圈260(图14中发射线圈51)运转方向相反,需要向相反方向调整;直到调整到ηt和ηt-1的差值小于最小步进效率值,此时位置已处于效率最大位置,线圈已对准。
以上介绍了可以先驱动电机带动第二牵引线,使得连接部240带动发射线圈260(图14中发射线圈51)沿第二导轨运动,如果未达到充电效率值未满足期望值,则继续驱动电机带动第一牵引线,使得连接部240带动发射线圈260(图14中发射线圈51)沿第一导轨上移动。
但应理解,本申请实施例并不限于此,也可以先驱动电机带动第一牵引线,使得连接部240带动发射线圈260(图14中发射线圈51)沿第一导轨运动,如果未达到充电效率值未满足期望值,电机带动第二牵引线,使得连接部240带动发射线圈260(图14中发射线圈51)沿第二导轨运动。
具体地,所述驱动部分驱动所述连接部带动所述第一导轨按照第三方向沿所述第二导轨运动,
如果充电效率值增加,所述驱动部分继续驱动所述连接部带动所述第一导轨按照第三方向沿所述第二导轨运动,直到所述充电效率值的递进值小于或等于第二值,或者,
如果充电效率值减小,所述驱动部分继续驱动所述连接部带动所述第一导轨按照相反于所述第三方向的第四方向沿所述第二导轨运动,如果充电效率值增加,则继续运动,直到所述充电效率值的递进值小于或等于所述第二值。
可选地,所述第二值为所述连接部带动所述第一导轨沿所述第二导轨运动时的最小步进效率值。
可选地,在所述驱动部分驱动所述连接部带动所述第一导轨沿所述第二导轨运动的情况下,如果所述充电效率值的递进值小于或等于所述第二值,且所述充电效率值未达到最大充电效率值时,所述驱动部分驱动所述连接部带动所述第一导轨沿所述第二导轨运动,使得所述发射线圈在所述第二导轨的一端与另一端之间运动。
因此,在本申请实施例中,通过在发射线圈的移动过程中,比较充电效率值的变化,从而可以实现发射线圈与接收线圈的对准。
以上对无线充电装置的各个部分进行了介绍,但应理解,本申请实施例并不限于此。
例如,以上的无线充电装置200包括的结构可以如图2中的无线充电装置20,为了简洁,在此不再赘述。
图16是本发明一个实施例提供的无线充电方法500的示意性流程图。该方法可应用于无线充电装置,例如可以是上文描述的无线充电装置200。该方法500包括:
在步骤S510中,利用设置于无线充电装置的壳体内的发射线圈发射无线电磁信号,以用于对设置有接收线圈的待充电设备进行无线充电。
在步骤S520中,控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动。
其中,该发射线圈固定于该连接部,该第一导轨通过该连接部活动连接至该第二导轨。
可选地,该控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,包括:
确定该接收线圈的位置;
基于该接收线圈的位置,控制该驱动部分驱动该连接部带动该第二导轨沿该第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动。
可选地,该确定该接收线圈的位置,包括:
在该待充电设备进行充电时,获取该待充电设备的发热特征;
根据该发热特征,确定该接收线圈的位置。
可选地,该确定该接收线圈的位置,包括:
根据预设信息以及该待充电设备的发热特征,确定该接收线圈的位置,该预设信息表征该待充电设备的各个已知部分在特定充电阶段和/或充电效率下的发热特征,该红外热感应器获取的发热特征为该特定充电阶段和/或充电效率下的发热特征。
可选地,该确定该接收线圈的位置,包括:
根据该预设信息以及该红外热感应器获取的发热特征,确定特定发射特征在该待充电设备所对应的位置;
根据特定发射特征在该待充电设备所对应的位置,确定该接收线圈的位置。
可选地,该确定该接收线圈的位置,包括:
对该无线充电装置中承载该待充电设备的部分进行压力感应,以获取压力感应结果;
根据该压力感应结果,确定该待充电设备所在的区域,并根据该待充电设备所在的区域,确定该 接收线圈的位置。
可选地,该确定该接收线圈的位置,包括:
根据该待充电设备所在的区域,确定该接收线圈的可能的至少一个位置;
将发射线圈调整到分别与该至少一个位置对准;
根据该至少一个位置中每个位置的该待充电设备的充电效率,确定该接收线圈的位置。
可选地,该确定该接收线圈的位置,包括:
将该至少一个位置中充电效率最高的位置确定为该接收线圈的位置。
可选地,该控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,包括:
根据在移动该发射线圈的过程中,该待充电设备的接收功率的变化或充电效率值的变化,控制该驱动部分驱动该连接部带动该第二导轨沿该第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,以调整该发射线圈的位置。
可选地,该方法还包括:
与该待充电设备通信,以获取该接收功率。
可选地,该控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,包括:
基于该接收功率,以及该发射线圈的发射功率,计算充电效率值;
基于该充电效率值的变化,控制该驱动部分驱动该连接部带动该第二导轨沿该第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动。
可选地,该控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,包括:
控制该驱动部分驱动该连接部带动该第二导轨按照第一方向沿该第一导轨运动,
如果充电效率值增加,控制该驱动部分继续驱动该连接部带动该第二导轨按照第一方向沿该第一导轨运动,直到该充电效率值的递进值小于或等于第一值,或者,
如果充电效率值减小,控制该驱动部分继续驱动该连接部带动该第二导轨按照相反于该第一方向的第二方向沿该第一导轨运动,如果充电效率值增加,则继续运动,直到该充电效率值的递进值小于或等于该第一值。
可选地,该第一值为该连接部带动该第二导轨沿该第一导轨运动时的最小步进效率值。
可选地,该控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,包括:
在该驱动部分驱动该连接部带动该第二导轨沿该第一导轨运动的情况下,如果该充电效率值的递进值小于或等于该第一值,且该充电效率值未达到最大充电效率值时,控制该驱动部分驱动该连接部带动该第二导轨沿该第一导轨运动,使得该发射线圈在该第一导轨的一端与另一端之间运动。
可选地,该控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,包括:
控制该驱动部分驱动该连接部带动该第一导轨按照第三方向沿该第二导轨运动,
如果充电效率值增加,控制该驱动部分继续驱动该连接部带动该第一导轨按照第三方向沿该第二导轨运动,直到该充电效率值的递进值小于或等于第二值,或者,
如果充电效率值减小,控制该驱动部分继续驱动该连接部带动该第一导轨按照相反于该第三方向的第四方向沿该第二导轨运动,如果充电效率值增加,则继续运动,直到该充电效率值的递进值小于或等于该第二值。
可选地,该第二值为该连接部带动该第一导轨沿该第二导轨运动时的最小步进效率值。
可选地,该控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动该连接部带动该第一导轨沿该第二导轨运动,包括:
在该驱动部分驱动该连接部带动该第一导轨沿该第二导轨运动的情况下,如果该充电效率值的递进值小于或等于该第二值,且该充电效率值未达到最大充电效率值时,控制该驱动部分驱动该连接部带动该第一导轨沿该第二导轨运动,使得该发射线圈在该第二导轨的一端与另一端之间运动。
可选地,该驱动部分包括第一牵引线、第一复位弹簧、第二牵引线、第二复位弹簧和至少一个电机;
在该第一导轨内,该第一牵引线的一端穿出该第一导轨,并与该电机连接,该第一牵引线的另一端连接该连接部,该第一复位弹簧的一端连接该连接部,该第一复位弹簧的另一端固定在该第一导轨上;
在该第二导轨内,该第二牵引线的一端穿出该第二导轨,并与该电机连接,该第二牵引线的另一端连接该连接部,该第二复位弹簧的一端连接该连接部,该第二复位弹簧的另一端固定在该第二导轨上。
可选地,该驱动部分包括第一电机和第二电机,其中,该第一电机连接该第一牵引线,以及通过该第一牵引线驱动该连接部带动该第二导轨沿该第一导轨运动,该第二电机连接该第二牵引线,以及通过该第二牵引线驱动该连接部带动该第一导轨沿该第二导轨运动。
可选地,该驱动部分包括第三电机,该第三电机包括切换部,其中,该切换部分别控制该第一牵引线驱动该连接部带动该第二导轨沿该第一导轨运动,以及控制该第二牵引线驱动该连接部带动该第一导轨沿该第二导轨运动。
可选地,该切换部包括第一齿轮、第二齿轮和第三齿轮,其中,该第一牵引线的一端连接该第一齿轮,该第二牵引线的一端连接该第二齿轮,该第三电机驱动该第三齿轮分别与该第一齿轮和该第二齿轮啮合。
应理解,该无线充电方法500可以由以上描述的无线充电装置20或者无线充电装置200实现,为了简洁,在此不再赘述。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (48)

  1. 一种无线充电装置,其特征在于,包括:壳体、第一导轨、第二导轨、连接部、驱动部分以及发射线圈,其中,所述发射线圈固定于所述连接部,所述第一导轨通过所述连接部活动连接至所述第二导轨,
    所述驱动部分用于:驱动所述连接部带动所述第二导轨沿所述第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动;
    所述发射线圈用于:发射电磁信号,以对设置有接收线圈的待充电设备进行无线充电。
  2. 根据权利要求1所述的无线充电装置,其特征在于,所述驱动部分包括第一牵引线、第一复位弹簧、第二牵引线、第二复位弹簧和至少一个电机;
    在所述第一导轨内,所述第一牵引线的一端穿出所述第一导轨,并与所述电机连接,所述第一牵引线的另一端连接所述连接部,所述第一复位弹簧的一端连接所述连接部,所述第一复位弹簧的另一端固定在所述第一导轨上;
    在所述第二导轨内,所述第二牵引线的一端穿出所述第二导轨,并与所述电机连接,所述第二牵引线的另一端连接所述连接部,所述第二复位弹簧的一端连接所述连接部,所述第二复位弹簧的另一端固定在所述第二导轨上。
  3. 根据权利要求2所述的无线充电装置,其特征在于,所述驱动部分包括第一电机和第二电机,其中,所述第一电机连接所述第一牵引线,以及通过所述第一牵引线驱动所述连接部带动所述第二导轨沿所述第一导轨运动,所述第二电机连接所述第二牵引线,以及通过所述第二牵引线驱动所述连接部带动所述第一导轨沿所述第二导轨运动。
  4. 根据权利要求2所述的无线充电装置,其特征在于,所述驱动部分包括第三电机,所述第三电机包括切换部,其中,所述切换部分别控制所述第一牵引线驱动所述连接部带动所述第二导轨沿所述第一导轨运动,以及控制所述第二牵引线驱动所述连接部带动所述第一导轨沿所述第二导轨运动。
  5. 根据权利要求4所述的无线充电装置,其特征在于,所述切换部包括第一齿轮、第二齿轮和第三齿轮,其中,所述第一牵引线的一端连接所述第一齿轮,所述第二牵引线的一端连接所述第二齿轮,所述第三电机驱动所述第三齿轮分别与所述第一齿轮和所述第二齿轮啮合。
  6. 根据权利要求1至5中任一项所述的无线充电装置,其特征在于,所述第一导轨为圆弧形或圆形导轨,所述第二导轨为直线形导轨。
  7. 根据权利要求1至5中任一项所述的无线充电装置,其特征在于,所述第一导轨和所述第二导轨为直线形导轨。
  8. 根据权利要求7所述的无线充电装置,其特征在于,所述第一导轨与所述第二导轨相垂直。
  9. 根据权利要求1至8中任一项所述的无线充电装置,其特征在于,所述无线充电装置还包括:
    控制电路,用于确定所述接收线圈的位置,并基于所述接收线圈的位置控制所述电机的运动。
  10. 根据权利要求9所述的无线充电装置,其特征在于,所述无线充电装置还包括:
    红外热传感器,用于在所述待充电设备进行充电时,获取所述待充电设备的发热特征;
    所述控制电路进一步用于:根据所述发热特征,确定所述接收线圈的位置。
  11. 根据权利要求10所述的无线充电装置,其特征在于,所述控制电路具体用于:
    根据预设信息以及所述待充电设备的发热特征,确定所述接收线圈的位置,所述预设信息表征所述待充电设备的各个已知部分在特定充电阶段和/或充电效率下的发热特征,所述红外热传感器获取的发热特征为所述特定充电阶段和/或充电效率下的发热特征。
  12. 根据权利要求11所述的无线充电装置,其特征在于,所述控制电路进一步用于:
    根据所述预设信息以及所述待充电设备的发热特征,确定具有特定发热特征在所述待充电设备所对应的位置;
    根据具有特定发热特征在所述待充电设备所对应的位置,确定所述发射线圈的位置。
  13. 根据权利要求9所述的无线充电装置,其特征在于,所述无线充电装置还包括:
    压力传感器,用于对所述无线充电装置中承载所述待充电设备的部分进行压力感应,并向所述控制电路输入压力感应结果;
    其中,所述控制电路具体用于:根据所述压力感应结果,确定所述待充电设备所在的区域,并根据所述待充电设备的位置,确定所述接收线圈的位置。
  14. 根据权利要求13所述的无线充电装置,其特征在于,所述控制电路具体用于:
    根据所述待充电设备所在的区域,确定所述接收线圈的可能的至少一个位置;
    根据所述至少一个位置中每个位置处所述待充电设备的充电效率,确定所述接收线圈的位置。
  15. 根据权利要求14所述的无线充电装置,其特征在于,所述根据所述至少一个位置中每个位 置处所述待充电设备的充电效率,确定所述接收线圈的位置,包括:
    将所述至少一个位置中充电效率最高的位置确定为所述接收线圈的位置。
  16. 根据权利要求13至15中任一项所述的无线充电装置,其特征在于,所述压力传感器为电阻式压力传感器。
  17. 根据权利要求1至8中任一项所述的无线充电装置,其特征在于,所述无线充电装置还包括:
    控制电路,用于根据在移动所述发射线圈的过程中,所述待充电设备的接收功率的变化或充电效率值的变化,控制所述驱动部分调整所述发射线圈在所述壳体中的位置。
  18. 根据权利要求17所述的无线充电装置,其特征在于,所述无线充电装置还包括:
    通信电路,用于与所述待充电设备通信,以获取所述接收功率。
  19. 根据权利要求17或18所述的无线充电装置,其特征在于,所述控制电路进一步用于:
    基于所述接收功率,以及所述发射线圈的发射功率,计算充电效率值;
    基于所述充电效率值的变化,控制所述驱动部分调整所述发射线圈在所述壳体中的位置。
  20. 根据权利要求17至19中任一项所述的无线充电装置,其特征在于,所述驱动部分进一步用于:
    驱动所述连接部带动所述第二导轨按照第一方向沿所述第一导轨运动,
    如果充电效率值增加,所述驱动部分继续驱动所述连接部带动所述第二导轨按照第一方向沿所述第一导轨运动,直到所述充电效率值的递进值小于或等于第一值,或者,
    如果充电效率值减小,所述驱动部分继续驱动所述连接部带动所述第二导轨按照相反于所述第一方向的第二方向沿所述第一导轨运动,如果充电效率值增加,则继续运动,直到所述充电效率值的递进值小于或等于所述第一值。
  21. 根据权利要求20所述的无线充电装置,其特征在于,所述第一值为所述连接部带动所述第二导轨沿所述第一导轨运动时的最小步进效率值。
  22. 根据权利要求20或21所述的无线充电装置,其特征在于,在所述驱动部分驱动所述连接部带动所述第二导轨沿所述第一导轨运动的情况下,如果所述充电效率值的递进值小于或等于所述第一值,且所述充电效率值未达到最大充电效率值时,所述驱动部分驱动所述连接部带动所述第二导轨沿所述第一导轨运动,使得所述发射线圈在所述第一导轨的一端与另一端之间运动。
  23. 根据权利要求17至19中任一项所述的无线充电装置,其特征在于,所述驱动部分进一步用于:
    驱动所述连接部带动所述第一导轨按照第三方向沿所述第二导轨运动,
    如果充电效率值增加,所述驱动部分继续驱动所述连接部带动所述第一导轨按照第三方向沿所述第二导轨运动,直到所述充电效率值的递进值小于或等于第二值,或者,
    如果充电效率值减小,所述驱动部分继续驱动所述连接部带动所述第一导轨按照相反于所述第三方向的第四方向沿所述第二导轨运动,如果充电效率值增加,则继续运动,直到所述充电效率值的递进值小于或等于所述第二值。
  24. 根据权利要求23所述的无线充电装置,其特征在于,所述第二值为所述连接部带动所述第一导轨沿所述第二导轨运动时的最小步进效率值。
  25. 根据权利要求23或24所述的无线充电装置,其特征在于,在所述驱动部分驱动所述连接部带动所述第一导轨沿所述第二导轨运动的情况下,如果所述充电效率值的递进值小于或等于所述第二值,且所述充电效率值未达到最大充电效率值时,所述驱动部分驱动所述连接部带动所述第一导轨沿所述第二导轨运动,使得所述发射线圈在所述第二导轨的一端与另一端之间运动。
  26. 如权利要求1至25中任一项所述的无线充电装置,其特征在于,所述无线充电装置为无线充电底座。
  27. 如权利要求1至26中任一项所述的无线充电装置,其特征在于,所述待充电设备为终端。
  28. 一种无线充电方法,其特征在于,包括:
    利用设置于无线充电装置的壳体内的发射线圈发射无线电磁信号,以用于对设置有接收线圈的待充电设备进行无线充电;
    控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动;
    其中,所述发射线圈固定于所述连接部,所述第一导轨通过所述连接部活动连接至所述第二导轨。
  29. 根据权利要求28所述的无线充电方法,其特征在于,所述控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,包括:
    确定所述接收线圈的位置;
    基于所述接收线圈的位置,控制所述驱动部分驱动所述连接部带动所述第二导轨沿所述第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动。
  30. 根据权利要求29所述的无线充电方法,其特征在于,所述确定所述接收线圈的位置,包括:
    在所述待充电设备进行充电时,获取所述待充电设备的发热特征;
    根据所述发热特征,确定所述接收线圈的位置。
  31. 根据权利要求30所述的无线充电方法,其特征在于,所述确定所述接收线圈的位置,包括:
    根据预设信息以及所述待充电设备的发热特征,确定所述接收线圈的位置,所述预设信息表征所述待充电设备的各个已知部分在特定充电阶段和/或充电效率下的发热特征,所述红外热感应器获取的发热特征为所述特定充电阶段和/或充电效率下的发热特征。
  32. 根据权利要求31所述的无线充电方法,其特征在于,所述确定所述接收线圈的位置,包括:
    根据所述预设信息以及所述红外热感应器获取的发热特征,确定特定发射特征在所述待充电设备所对应的位置;
    根据特定发射特征在所述待充电设备所对应的位置,确定所述接收线圈的位置。
  33. 根据权利要求29所述的无线充电方法,其特征在于,所述确定所述接收线圈的位置,包括:
    对所述无线充电装置中承载所述待充电设备的部分进行压力感应,以获取压力感应结果;
    根据所述压力感应结果,确定所述待充电设备所在的区域,并根据所述待充电设备所在的区域,确定所述接收线圈的位置。
  34. 根据权利要求33所述的无线充电方法,其特征在于,所述确定所述接收线圈的位置,包括:
    根据所述待充电设备所在的区域,确定所述接收线圈的可能的至少一个位置;
    将发射线圈调整到分别与该至少一个位置对准;
    根据所述至少一个位置中每个位置的所述待充电设备的充电效率,确定所述接收线圈的位置。
  35. 根据权利要求34所述的无线充电方法,其特征在于,所述确定所述接收线圈的位置,包括:
    将所述至少一个位置中充电效率最高的位置确定为所述接收线圈的位置。
  36. 根据权利要求28所述的无线充电方法,其特征在于,所述控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,包括:
    根据在移动所述发射线圈的过程中,所述待充电设备的接收功率的变化或充电效率值的变化,控制所述驱动部分驱动所述连接部带动所述第二导轨沿所述第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,以调整所述发射线圈的位置。
  37. 根据权利要求36所述的无线充电方法,其特征在于,所述方法还包括:
    与所述待充电设备通信,以获取所述接收功率。
  38. 根据权利要求36或37所述的无线充电方法,其特征在于,所述控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,包括:
    基于所述接收功率,以及所述发射线圈的发射功率,计算充电效率值;
    基于所述充电效率值的变化,控制所述驱动部分驱动所述连接部带动所述第二导轨沿所述第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动。
  39. 根据权利要求38所述的无线充电方法,其特征在于,所述控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,包括:
    控制所述驱动部分驱动所述连接部带动所述第二导轨按照第一方向沿所述第一导轨运动,
    如果充电效率值增加,控制所述驱动部分继续驱动所述连接部带动所述第二导轨按照第一方向沿所述第一导轨运动,直到所述充电效率值的递进值小于或等于第一值,或者,
    如果充电效率值减小,控制所述驱动部分继续驱动所述连接部带动所述第二导轨按照相反于所述第一方向的第二方向沿所述第一导轨运动,如果充电效率值增加,则继续运动,直到所述充电效率值的递进值小于或等于所述第一值。
  40. 根据权利要求39所述的无线充电方法,其特征在于,所述第一值为所述连接部带动所述第二导轨沿所述第一导轨运动时的最小步进效率值。
  41. 根据权利要求39或40所述的无线充电方法,其特征在于,所述控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,包括:
    在所述驱动部分驱动所述连接部带动所述第二导轨沿所述第一导轨运动的情况下,如果所述充电效率值的递进值小于或等于所述第一值,且所述充电效率值未达到最大充电效率值时,控制所述驱动部分驱动所述连接部带动所述第二导轨沿所述第一导轨运动,使得所述发射线圈在所述第一导轨的一端与另一端之间运动。
  42. 根据权利要求38所述的无线充电方法,其特征在于,所述控制驱动部分驱动连接部带动第 二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,包括:
    控制所述驱动部分驱动所述连接部带动所述第一导轨按照第三方向沿所述第二导轨运动,
    如果充电效率值增加,控制所述驱动部分继续驱动所述连接部带动所述第一导轨按照第三方向沿所述第二导轨运动,直到所述充电效率值的递进值小于或等于第二值,或者,
    如果充电效率值减小,控制所述驱动部分继续驱动所述连接部带动所述第一导轨按照相反于所述第三方向的第四方向沿所述第二导轨运动,如果充电效率值增加,则继续运动,直到所述充电效率值的递进值小于或等于所述第二值。
  43. 根据权利要求42所述的无线充电方法,其特征在于,所述第二值为所述连接部带动所述第一导轨沿所述第二导轨运动时的最小步进效率值。
  44. 根据权利要求42或43所述的无线充电方法,其特征在于,所述控制驱动部分驱动连接部带动第二导轨沿第一导轨运动,和/或,驱动所述连接部带动所述第一导轨沿所述第二导轨运动,包括:
    在所述驱动部分驱动所述连接部带动所述第一导轨沿所述第二导轨运动的情况下,如果所述充电效率值的递进值小于或等于所述第二值,且所述充电效率值未达到最大充电效率值时,控制所述驱动部分驱动所述连接部带动所述第一导轨沿所述第二导轨运动,使得所述发射线圈在所述第二导轨的一端与另一端之间运动。
  45. 根据权利要求28至44中任一项所述的无线充电方法,其特征在于,所述驱动部分包括第一牵引线、第一复位弹簧、第二牵引线、第二复位弹簧和至少一个电机;
    在所述第一导轨内,所述第一牵引线的一端穿出所述第一导轨,并与所述电机连接,所述第一牵引线的另一端连接所述连接部,所述第一复位弹簧的一端连接所述连接部,所述第一复位弹簧的另一端固定在所述第一导轨上;
    在所述第二导轨内,所述第二牵引线的一端穿出所述第二导轨,并与所述电机连接,所述第二牵引线的另一端连接所述连接部,所述第二复位弹簧的一端连接所述连接部,所述第二复位弹簧的另一端固定在所述第二导轨上。
  46. 根据权利要求45所述的无线充电方法,其特征在于,所述驱动部分包括第一电机和第二电机,其中,所述第一电机连接所述第一牵引线,以及通过所述第一牵引线驱动所述连接部带动所述第二导轨沿所述第一导轨运动,所述第二电机连接所述第二牵引线,以及通过所述第二牵引线驱动所述连接部带动所述第一导轨沿所述第二导轨运动。
  47. 根据权利要求45所述的无线充电方法,其特征在于,所述驱动部分包括第三电机,所述第三电机包括切换部,其中,所述切换部分别控制所述第一牵引线驱动所述连接部带动所述第二导轨沿所述第一导轨运动,以及控制所述第二牵引线驱动所述连接部带动所述第一导轨沿所述第二导轨运动。
  48. 根据权利要求47所述的无线充电方法,其特征在于,所述切换部包括第一齿轮、第二齿轮和第三齿轮,其中,所述第一牵引线的一端连接所述第一齿轮,所述第二牵引线的一端连接所述第二齿轮,所述第三电机驱动所述第三齿轮分别与所述第一齿轮和所述第二齿轮啮合。
PCT/CN2018/082881 2018-04-12 2018-04-12 无线充电装置及方法 WO2019196071A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/082881 WO2019196071A1 (zh) 2018-04-12 2018-04-12 无线充电装置及方法
CN201880094307.9A CN112272912A (zh) 2018-04-12 2018-04-12 无线充电装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082881 WO2019196071A1 (zh) 2018-04-12 2018-04-12 无线充电装置及方法

Publications (1)

Publication Number Publication Date
WO2019196071A1 true WO2019196071A1 (zh) 2019-10-17

Family

ID=68163021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082881 WO2019196071A1 (zh) 2018-04-12 2018-04-12 无线充电装置及方法

Country Status (2)

Country Link
CN (1) CN112272912A (zh)
WO (1) WO2019196071A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968531A (zh) * 2021-03-09 2021-06-15 歌尔科技有限公司 一种游戏手柄及其充电系统和充电控制方法
CN113026319A (zh) * 2021-03-09 2021-06-25 江南大学 采用无线电能传输的智能衣架系统
CN113809833A (zh) * 2021-09-22 2021-12-17 Oppo广东移动通信有限公司 无线充电方法、装置、待充电设备及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629832B (zh) * 2021-10-12 2021-12-24 景昱医疗器械(长沙)有限公司 体外充电器的充电控制方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570543A (zh) * 2010-12-14 2012-07-11 德利信电子有限公司 磁感应式线圈移动型无触点充电器
CN103401320A (zh) * 2013-07-26 2013-11-20 深圳市合元科技有限公司 线圈移动式无线充电装置
CN105449766A (zh) * 2015-12-17 2016-03-30 深圳罗马仕科技有限公司 无线充电设备
CN205453182U (zh) * 2015-12-28 2016-08-10 王勇刚 手机智能感应充电器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034773A (ko) * 2009-09-29 2011-04-06 삼성전자주식회사 유도성 결합 방식을 이용한 무선 충전기
DE102011077427A1 (de) * 2011-06-10 2012-12-13 Bayerische Motoren Werke Aktiengesellschaft Ladevorrichtung und Ladeverfahren mit schwimmender Ladeeinheit
CN103441579A (zh) * 2013-08-07 2013-12-11 深圳市合元科技有限公司 无线充电能量发射装置
KR102432321B1 (ko) * 2015-09-16 2022-08-12 한국단자공업 주식회사 충전 호환성 확보를 위한 무선 충전 장치
KR101704934B1 (ko) * 2015-11-25 2017-02-23 성균관대학교산학협력단 최대수신전력 자동 위치정렬을 이용한 무선충전패드 및 이를 이용한 무선충전방법
CN106464116B (zh) * 2015-11-26 2020-04-03 广东易百珑智能科技有限公司 动能发电装置和无线发射器及其制造方法和应用
CN206117316U (zh) * 2016-05-30 2017-04-19 成都利弗德科技有限公司 一种自对中电动汽车无线充电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570543A (zh) * 2010-12-14 2012-07-11 德利信电子有限公司 磁感应式线圈移动型无触点充电器
CN103401320A (zh) * 2013-07-26 2013-11-20 深圳市合元科技有限公司 线圈移动式无线充电装置
CN105449766A (zh) * 2015-12-17 2016-03-30 深圳罗马仕科技有限公司 无线充电设备
CN205453182U (zh) * 2015-12-28 2016-08-10 王勇刚 手机智能感应充电器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968531A (zh) * 2021-03-09 2021-06-15 歌尔科技有限公司 一种游戏手柄及其充电系统和充电控制方法
CN113026319A (zh) * 2021-03-09 2021-06-25 江南大学 采用无线电能传输的智能衣架系统
CN113809833A (zh) * 2021-09-22 2021-12-17 Oppo广东移动通信有限公司 无线充电方法、装置、待充电设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN112272912A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2019196071A1 (zh) 无线充电装置及方法
WO2018184583A1 (zh) 待充电设备、无线充电装置、无线充电方法及系统
WO2019218162A1 (zh) 待充电设备、无线充电方法及系统
CN107994660B (zh) 无线电力传送器及其控制电力的方法
CN110739752B (zh) 一种根据电池电压自动调整电压输入的充电电路及方法
CN102868232A (zh) 磁谐振无线充电装置
CN202034798U (zh) 可携式无线充电装置
CN208522514U (zh) 无线充电装置和系统
CN202103463U (zh) 磁谐振无线充电装置
WO2020215849A1 (zh) 无线充电方法、接收器、终端设备及充电器
WO2019196070A1 (zh) 无线充电装置和调整发射线圈位置的方法
CN103248138A (zh) 一种移动设备无线供电系统的功率跟踪控制装置及方法
WO2021082907A1 (zh) 无线充电系统、充电线缆、电子设备及其无线充电方法
WO2019196072A1 (zh) 无线充电装置、系统和方法
CN109217497A (zh) 一种高频、高效率的无线充电方法及装置
CN106787262A (zh) 无线充电装置及其充电方法
WO2020124591A1 (zh) 电源提供装置、无线充电装置、系统及无线充电方法
WO2022166420A1 (zh) 一种充电控制方法、电子设备、无线充电系统
CN110707945A (zh) 整流电路、无线充电装置、电源提供设备及无线充电系统
CN110126648B (zh) 电动汽车无线充电最大电流跟踪的自寻优调谐控制方法
WO2019196069A1 (zh) 无线充电装置和无线充电的方法
CN110336361A (zh) 无线充电器及其控制方法
CN207664720U (zh) 无线供电系统的接收设备、无线供电系统和无线照明系统
CN106981906B (zh) 一种太阳能智能无线充电设备
CN110758132A (zh) 用于电动汽车无线充电最优化效率的变角移相控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914633

Country of ref document: EP

Kind code of ref document: A1