WO2020215849A1 - 无线充电方法、接收器、终端设备及充电器 - Google Patents

无线充电方法、接收器、终端设备及充电器 Download PDF

Info

Publication number
WO2020215849A1
WO2020215849A1 PCT/CN2020/073867 CN2020073867W WO2020215849A1 WO 2020215849 A1 WO2020215849 A1 WO 2020215849A1 CN 2020073867 W CN2020073867 W CN 2020073867W WO 2020215849 A1 WO2020215849 A1 WO 2020215849A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
processor
module
voltage value
Prior art date
Application number
PCT/CN2020/073867
Other languages
English (en)
French (fr)
Inventor
周迪
王乐
张昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20795003.1A priority Critical patent/EP3952050A4/en
Publication of WO2020215849A1 publication Critical patent/WO2020215849A1/zh
Priority to US17/509,357 priority patent/US11699922B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of wireless charging technology, and in particular to a wireless charging method, receiver, terminal device and charger.
  • Wireless power transfer also known as wireless charging technology
  • the wireless charging transmitter can provide power to the wireless charging receiver without relying on the charging cable.
  • the wireless charging receiver can provide power to the wireless charging receiver without relying on the charging cable.
  • wireless charging technology In the field of consumer electronics, electromagnetic induction wireless charging technology is currently widely used. Based on the electromagnetic induction wireless charging technology, the Wireless Power Consortium (WPC) has formulated the international wireless charging standard Qi, which is compatible with all rechargeable electronic devices, referred to as the Qi standard.
  • WPC Wireless Power Consortium
  • the interaction between the transmitter and the receiver includes three phases, namely the selection phase, the ping phase, and the power transfer phase.
  • the transmitter tries to find whether the object contains a receiver by sending out ping pulse energy.
  • the receiver establishes a power connection with the transmitter, that is, when the transmitter
  • the power transfer phase is entered after ping.
  • the pingable space between the receiver and the transmitter is called the degree of freedom.
  • the receiver and the transmitter are to be pinged, the receiver is located within the range that the transmitter can ping, and its degree of freedom is low.
  • the embodiments of the present application provide a wireless charging method, a receiver, a terminal device, and a charger, so as to increase the charging freedom of the receiver.
  • an embodiment of the present application provides a receiver, which includes: an oscillation circuit, a power processor, a sampling control module, and an auxiliary power supply module; wherein the oscillation circuit is used to receive the first energy emitted by the transmitter , Wherein the first energy is pulse energy; a sampling control module for collecting a first voltage value output by the oscillating circuit according to the first energy, and when the first voltage value is less than that of the power processor When the voltage value is activated, the auxiliary power supply module is controlled to supply power to the power processor to start the power processor; the power processor is used to send a power transmission instruction to the transmitter to make the transmitter The second energy is issued according to the power transmission instruction, the second energy is not pulse energy, and the second energy is used to provide electrical energy to the load in the receiver.
  • the sampling control module can control the auxiliary power supply module to supply power to the power processor, so that the receiver and the transmitter On the device ping, enter the subsequent power transmission stage, which increases the degree of freedom of the system that cannot be charged.
  • the embodiment of the present application further includes the step of controlling the auxiliary power supply module to stop supplying power to the power processor, and there are two methods for controlling the auxiliary power supply module to stop supplying power to the power processor:
  • the above-mentioned oscillating circuit is also used to receive the second energy emitted by the transmitter; the above-mentioned sampling control module is also used to collect the second energy output by the oscillating circuit according to the second energy When the second voltage value is greater than the output voltage of the auxiliary power supply module, control the auxiliary power supply module to stop supplying power to the power processor.
  • the above-mentioned oscillating circuit is further used to receive the second energy emitted by the transmitter; the above-mentioned power processor is also used to obtain the first output of the oscillating circuit according to the second energy Two voltage values, and when the second voltage value is greater than the output voltage of the auxiliary power supply module, control the auxiliary power supply module to stop supplying power to the power processor. That is, in this implementation manner, the power processor controls the shutdown of the auxiliary power supply module, and the entire control process is simple and easy to implement.
  • the above-mentioned sampling control module includes: an application processor, which is respectively connected to the oscillation circuit and the auxiliary power supply module.
  • the above-mentioned sampling control module includes: an application processor and a sampling unit; wherein the sampling unit is respectively connected to the oscillation circuit and the application processor, and is configured to collect the first voltage value output by the oscillation circuit , And compare the first voltage value with the startup voltage value of the power processor to obtain a first comparison result, and send the first comparison result to the application processor; the application processor and the The auxiliary power supply module is connected to control the auxiliary power supply module to supply power to the power supply processor when the first comparison result is that the first voltage value is less than the startup voltage value of the power supply processor.
  • the above-mentioned sampling unit is further configured to collect the second voltage value output by the oscillating circuit, and compare the second voltage value with the output voltage value of the auxiliary power supply module , Obtain a second comparison result, and send the second comparison result to the application processor; the above application processor is further configured to: when the second comparison result is that the second voltage value is greater than the auxiliary power supply When the module output voltage, the auxiliary power supply module is controlled to stop supplying power to the power processor.
  • the sampling control module of the present application may include an AP, which is used to collect the voltage value output by the oscillating circuit and control the auxiliary power supply module to supply power to the power supply processor or stop power supply to the power supply processor according to the voltage value.
  • the entire implementation process is simple. Moreover, the functions of the AP are enriched, the utilization rate of the AP is improved, and the volume of the receiver is not increased.
  • the aforementioned sampling unit includes: a comparator and a reference voltage providing circuit, wherein the reference voltage providing circuit is used to provide the output voltage value of the auxiliary power supply module and the starting voltage value of the power processor;
  • the first input terminal is connected to the output terminal of the oscillating circuit and is used to collect the output voltage of the oscillating circuit;
  • the second input terminal of the comparator is connected to the reference voltage supply circuit and is used to obtain the reference voltage supply circuit
  • the output terminal of the comparator is connected to the application processor and is used to output the first comparison result to the application processor Or the second comparison result.
  • the above-mentioned auxiliary power supply module includes: a battery and a power supply control unit; wherein the first end of the power supply control unit is connected to the output end of the battery, and the second end of the power supply control unit is connected to the output end of the battery.
  • the sampling control module is connected, and the third end of the power supply control unit is connected to the power processor; the power supply control unit is configured to output the electric energy of the battery to the power supply under the control of the sampling control module processor.
  • the above-mentioned auxiliary power supply module further includes: an anti-backflow unit; the anti-backflow unit is connected between the third end of the power supply control unit and the power processor; the anti-backflow unit is used for When the voltage value output by the oscillating circuit is greater than the output voltage value of the power supply control unit, the electric energy output by the oscillating circuit is prohibited from being poured back into the power supply control unit.
  • the anti-irrigation unit includes a diode or a metal oxide semiconductor field effect MOS tube.
  • the above-mentioned power supply control unit includes: a power management integrated circuit and a DC converter; wherein the input end of the power management integrated circuit is connected to the output end of the battery, and the output of the power management integrated circuit is Terminal is connected with the first terminal of the DC converter, the second terminal of the DC converter is connected with the output terminal of the sampling control module, and the third terminal of the DC converter is connected with the power processor;
  • the sampling control module is used to enable the DC converter;
  • the power management integrated circuit is used to output the electric energy of the battery to the power processor through the enabled DC converter.
  • the above-mentioned power supply control unit includes: a power management integrated circuit, a DC converter, and a switching unit; wherein the input end of the power management integrated circuit is connected to the output end of the battery, and the power management The output terminal of the integrated circuit is connected with the input terminal of the DC converter, the output terminal of the DC converter is connected with the first terminal of the switch unit, and the second terminal of the switch unit is connected with the sampling control module.
  • the output end is connected, the third end of the switch unit is connected to the power processor; the sampling control module is used to control the on and off of the switch unit; the power management integrated circuit is used to close the switch unit At this time, the electric energy of the battery is output to the power processor through the DC converter.
  • the above-mentioned switch unit is a MOS tube.
  • the above DC converter is a DC converter in the power management integrated circuit.
  • the receiver of the present application further includes: a communication module; and a power processor, configured to send a power transmission instruction to the transmitter through the communication module. In this way, reliable communication between the receiver and the transmitter can be achieved.
  • the communication module includes: a communication modulation module; the above-mentioned power processor is specifically configured to generate the power transmission instruction by adjusting the communication modulation module, and send the power transmission instruction to the transmitter through the communication module instruction.
  • the communication modulation module includes: at least one capacitor or at least one resistor; a power processor, specifically configured to generate the power transmission instruction by adjusting the voltage value of the at least one capacitor or the at least one resistor, And send the power transmission instruction to the transmitter through the communication module.
  • the communication modulation module of the present application can include the following two structures, which are used to solve the problem that the AC energy signal induced on the oscillation circuit in the receiver will be very weak when the receiver is outside the original range of freedom of the transmitter during the ping phase. In this way, there may be a problem that the modulation depth of the in-band communication signal modulated by the receiver through the communication modulation module is insufficient, which will cause the communication failure between the receiver and the transmitter.
  • the communication modulation module includes: a first communication modulation module and a second communication modulation module; wherein, the power processor is configured to pass through the first communication modulation module when the auxiliary power supply module is in the on state Generate a first power transmission instruction, and send the first power transmission instruction to the transmitter through the communication module; when the auxiliary power supply module is in the off state, generate a second power through the second communication modulation module Transmitting instructions, and sending the second power transmission instruction to the transmitter through the communication module.
  • the communication modulation module includes: a third communication modulation module with adjustable parameters; wherein the power processor is configured to adjust the third communication modulation module when the auxiliary power supply module is in the on state When the auxiliary power supply module is in the off state, the second power transmission command is generated by adjusting the parameters of the third communication modulation module.
  • first communication modulation modules and second communication modulation modules are set to work when the auxiliary power supply module is in the activated state and the auxiliary power supply module is in the off state, or the third communication modulation module with adjustable parameters is set , Switch the parameters when the auxiliary power supply module is in the starting state and the auxiliary power supply module is in the off state, so as to improve the power processor to modulate a reliable communication signal when the auxiliary power supply module is working.
  • an embodiment of the present application provides a wireless charging method, which is applied to a receiver, the receiver includes: an oscillation circuit, a power processor, a sampling control module, and an auxiliary power supply module; the method includes: an oscillation circuit receives The first energy emitted by the transmitter, wherein the first energy is pulse energy; the sampling control module collects the first voltage value output by the oscillation circuit according to the first energy, and when the first voltage value is less than the When the startup voltage value of the power supply processor, the auxiliary power supply module is controlled to supply power to the power supply processor to start the power supply processor; the power supply processor sends a power transmission instruction to the transmitter so that the transmitter is based on The power transmission command sends out second energy, the second energy is not pulse energy, and the second energy is used to provide electrical energy to the load in the receiver.
  • the above method further includes: an oscillating circuit receiving the second energy emitted by the transmitter; a sampling control module collecting a second voltage value output by the oscillating circuit according to the second energy, And when the second voltage value is greater than the output voltage of the auxiliary power supply module, control the auxiliary power supply module to stop supplying power to the power processor.
  • the above method further includes: an oscillating circuit receiving the second energy emitted by the transmitter; a power processor acquiring a second voltage value output by the oscillating circuit according to the second energy, and When the second voltage value is greater than the output voltage of the auxiliary power supply module, controlling the auxiliary power supply module to stop supplying power to the power processor.
  • the aforementioned sampling control module includes: an application processor.
  • the aforementioned sampling control module includes: an application processor and a sampling unit; the sampling control module collects a first voltage value output by the oscillation circuit according to the first energy, and when the first voltage value is less than
  • controlling the auxiliary power supply module to supply power to the power supply processor includes: a sampling unit collects the first voltage value output by the oscillation circuit, and compares the first voltage value with the The start voltage value of the power processor is compared to obtain a first comparison result, and the first comparison result is sent to the application processor; when the first comparison result is that the first voltage value is less than the When the startup voltage value of the power processor is set, the application processor controls the auxiliary power supply module to supply power to the power processor.
  • the above-mentioned sampling control module collects the second voltage value output by the oscillation circuit according to the second energy, and when the second voltage value is greater than the output voltage of the auxiliary power supply module, Controlling the shutdown of the auxiliary power supply module includes: a sampling unit collects the second voltage value output by the oscillation circuit, and compares the second voltage value with the output voltage value of the auxiliary power supply module to obtain a second Compare the result, and send the second comparison result to the application processor; when the second comparison result is that the second voltage value is greater than the output voltage of the auxiliary power supply module, the application processor controls The auxiliary power supply module is turned off.
  • the foregoing sampling unit includes: a comparator and a first reference voltage providing circuit, wherein the first reference voltage providing circuit is used to provide the output voltage value of the auxiliary power supply module and the power supply The start-up voltage value of the processor, and the comparator is used to collect the output voltage of the oscillation circuit, and obtain the output voltage value of the auxiliary power supply module output by the reference voltage supply circuit or the start-up voltage value of the power processor , And output the first comparison result or the second comparison result to the application processor.
  • the above-mentioned auxiliary power supply module includes: a battery and a power supply control unit; the power supply control unit is configured to output the electric energy of the battery to the power processor under the control of the sampling control module.
  • the above-mentioned auxiliary power supply module further includes: an anti-reverse irrigation unit; wherein, the anti-reverse irrigation unit is configured to prohibit all outputs when the voltage value output by the oscillation circuit is greater than the output voltage value of the power supply control unit. The electric energy output by the oscillating circuit is fed back into the power supply control unit.
  • the anti-reverse irrigation unit includes a diode or a MOS tube.
  • the power supply control unit includes: a power management integrated circuit and a DC converter; wherein the sampling control module is used to enable the DC converter; the power management integrated circuit is used to pass The enabled DC converter outputs the electric energy of the battery to the power processor.
  • the above-mentioned power supply control unit includes: a power management integrated circuit, a DC converter, and a switching unit; wherein, the switching unit is used to close and disconnect under the control of the sampling control module; power management integration A circuit is used to output the electric energy of the battery to the power processor through the DC converter when the switch unit is closed.
  • the above-mentioned switch unit is a MOS tube.
  • the above DC converter is a DC converter in the power management integrated circuit.
  • the above-mentioned receiver further includes: a communication module; the power processor sending a power transmission instruction to the transmitter includes: the power processor sending power to the transmitter through the communication module Transmission instructions.
  • the above-mentioned communication module includes: a communication modulation module; the power supply processor sends a power transmission instruction to the transmitter through the communication module, including: the power supply processor adjusts the communication modulation The module generates the power transmission instruction, and sends the power transmission instruction to the transmitter through the communication module.
  • the above-mentioned communication modulation module includes: at least one capacitor or at least one resistor; the power processor generates the power transmission instruction by adjusting the communication modulation module, including: the power processor adjusts the at least one The voltage value of the capacitor or the at least one resistor generates the power transmission instruction, and sends the power transmission instruction to the transmitter through the communication module.
  • the above-mentioned communication modulation module includes: a first communication modulation module and a second communication modulation module; the power processor generates the power transmission instruction by adjusting the communication modulation module, including: When the auxiliary power supply module is in the on state, the power processor generates a first power transmission instruction through the first communication modulation module; when the auxiliary power supply module is in the off state, the power processor uses the second The communication modulation module generates a second power transmission instruction.
  • the above-mentioned communication modulation module includes: a third communication modulation module with adjustable parameters; the power supply processor generates the power transmission instruction by adjusting the communication modulation module, including: When the auxiliary power supply module is in the on state, the power processor generates the first power transmission instruction by adjusting the parameters of the third communication modulation module; when the auxiliary power supply module is in the off state, the power processor adjusts The parameters of the third communication modulation module generate a second power transmission instruction.
  • an embodiment of the present application provides a terminal device that includes the receiver described in the first aspect, and the terminal device can implement the functions corresponding to each step in the method involved in the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the terminal device includes a processor, and the processor is configured to support the apparatus to perform corresponding functions in the method involved in the second aspect.
  • the terminal device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • the receiver in the terminal device is used to support communication between the device and other network elements.
  • the receiver may be an independent receiver or a receiver with integrated transceiver functions.
  • an embodiment of the present application provides a terminal device, and the terminal device includes the receiver described in the first aspect.
  • an embodiment of the present application provides a charger including the receiver described in the first aspect.
  • an embodiment of the present application provides a computer storage medium.
  • the storage medium includes computer instructions. When the instructions are executed by a computer, the computer realizes the wireless charging according to any one of the second aspect. method.
  • embodiments of the present application provide a computer program product, the program product includes a computer program, the computer program is stored in a readable storage medium, and a terminal device or a charger can read from the readable storage medium The computer program and the execution of the computer program enable the terminal device or the charger to implement the wireless charging method of any one of the second aspect.
  • the wireless charging method, receiver, terminal equipment, and charger provided by the embodiments of the application are provided with an oscillating circuit, a power processor, a sampling control module, and an auxiliary power supply module; in the ping phase, the oscillating circuit is used to receive the first signal sent by the transmitter 1.
  • Energy The sampling control module collects the first voltage value output by the oscillating circuit according to the first energy, and when the first voltage value is less than the start-up voltage value of the power processor, controls the auxiliary power supply module to supply power to the power processor so that the power supply is processed
  • the device starts. Then enter the power transmission stage, the power processor sends a power transmission instruction to the transmitter, so that the transmitter sends out second energy according to the power transmission instruction to provide electrical energy to the load in the receiver.
  • the receiver by setting a sampling control module and an auxiliary power supply module, when the receiver is outside the original range of freedom of the transmitter, the sampling control module can control the auxiliary power supply module to supply power to the power processor, so that the receiver and the transmitter ping It enters the subsequent power transmission stage, which increases the degree of freedom of the system that cannot be charged.
  • FIG. 1 is a schematic diagram of a wireless charging system architecture related to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an equivalent circuit of a wireless charging system related to an embodiment of the present application
  • Figure 3a is a schematic diagram of degrees of freedom in an embodiment of the application.
  • Figure 3b is another schematic diagram of degrees of freedom in an embodiment of the application.
  • FIG. 4 is a schematic diagram of a receiver provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a controller provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a structure of the sampling unit shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a receiver in an embodiment of the application.
  • FIG. 8 is a schematic circuit diagram of a receiver provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another circuit of the receiver provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a receiver in an embodiment of the application.
  • FIG. 11 is a schematic diagram of another structure of a receiver in an embodiment of the application.
  • FIG. 12 is a schematic diagram of another structure of the receiver in an embodiment of the application.
  • FIG. 13 is a circuit diagram of a receiver provided by an embodiment of the application.
  • FIG. 14 is a circuit diagram of a receiver provided by an embodiment of the application.
  • 16 is a flowchart of another wireless charging method provided by an embodiment of the application.
  • FIG. 17 is a flowchart of another wireless charging method provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of a charger provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of the architecture of a wireless charging system related to an embodiment of the present application.
  • the wireless charging system includes a receiver 20 and a transmitter 10, wherein the transmitter 10 is capable of generating near-field induction power
  • the receiver 20 is a device that can utilize near-field induced electrical energy.
  • the transmitter 10 can transmit power to the receiver 20 to realize wireless charging of the receiver 20.
  • the receiver 20 may be a movable user equipment (UE), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a user terminal, or a user agent.
  • the access terminal can be a cellular phone, a handheld device with wireless communication function, a computing device or a vehicle-mounted device, a wearable device, a terminal in a 5G system, or a terminal in the future evolution of the public land mobile network (PLMN) Wait.
  • PLMN public land mobile network
  • the receiver 20 may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety (transportation safety) ), the wireless terminal in the smart city (smart city), the wireless terminal in the smart home (smart home), and so on.
  • VR virtual reality
  • AR augmented reality
  • industrial Wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical surgery wireless terminals in smart grid, transportation safety (transportation safety)
  • transportation safety transportation safety
  • the receiver 20 can also be a wireless charging electric car, a smart phone, an e-book reader, a desktop personal computer (PC), a laptop PC, a netbook computer, a workstation, a server, a personal digital assistant (PDA), a portable multimedia player ( PMP), MP3 players, mobile medical devices, cameras or wearable devices (such as smart glasses, head-mounted devices (HMD), electronic clothing, electronic bracelets, electronic necklaces, electronic application accessories (or accessories), electronic tattoos, smart Mirror or smart watch). It can also be a smart home appliance.
  • Smart home appliances can be, for example, televisions (TV), digital video disc (DVD) players, audio players, refrigerators, air conditioners, cleaners, ovens, microwave ovens, washing machines, air purifiers, set-top boxes, home automation control panels, security control panels , TV set-top boxes (for example, Samsung HomeSyncTM, Apple TVTM or Google TVTM), game consoles (for example XboxTM or PlayStationTM), electronic dictionaries, electronic keys, video cameras or digital photo frames, various medical equipment (for example, blood glucose meters, heart rate meters) , Sphygmomanometers, thermometers, etc.), magnetic resonance angiography (MRA) equipment, magnetic resonance imaging (MRI) equipment, computer tomography (CT) equipment, medical cameras, ultrasound devices, etc.), navigation devices, Global Positioning System (GPS) receiver, event data recorder (EDR), flight data recorder (FDR), car infotainment equipment, marine electronic equipment (for example, marine navigation equipment, gyro compass, etc.), avionics, safety Equipment,
  • the receiver 20 can also be part of furniture or buildings/structures, electronic boards, electronic signature receiving devices, projectors, or various meters (for example, meters for water, electricity, or gas).
  • the receiver 20 may be one or a combination of the aforementioned devices.
  • the receiver according to some embodiments may be a flexible electronic device.
  • the receiver according to the embodiment of the present application is not limited to the above-mentioned equipment, and may be a new receiver introduced with technological progress.
  • FIG. 2 is a schematic diagram of an equivalent circuit of a wireless charging system related to an embodiment of the present application.
  • the wireless charging system specifically includes a receiver 20 and a transmitter 10.
  • FIG. 2 is a schematic diagram of a series-series compensation (SS) equivalent circuit of a loosely coupled transformer composed of a transmitter 10 and a receiver 20.
  • the implementation of the transmitter 10 and the receiver 20 can also be parallel-parallel Compensation (PP), series-parallel compensation (SP) and parallel-series compensation (PS) equivalent circuit diagrams, the specific implementation manner is not limited here, and SS compensation is used for illustration in this application.
  • PP parallel-parallel Compensation
  • SP series-parallel compensation
  • PS parallel-series compensation
  • the receiver 20 proposed in the embodiments of the present application can be applied to electromagnetic induction wireless charging technology, magnetic resonance wireless charging technology, and near field communication (NFC) wireless charging technology.
  • NFC near field communication
  • the specific application technology is not limited here. In this application, only the electromagnetic induction wireless charging technology is used for illustration.
  • the transmitter 10 may include: a DC power supply 101, a rectifier module 102, a series matching capacitor (capacitance value Cp) 103, a transmitting coil 104, and a control module 105.
  • the DC power supply 101 is used to provide charging power
  • the rectifier module 102 is connected to the DC power supply 101 to receive the DC power output by the DC power supply 101 and convert the received DC power into AC power for output.
  • the series matching capacitor (capacitance value Cp) 103 and the transmitting coil 104 are connected to form an oscillating circuit.
  • the oscillating circuit is connected to the rectifier module 102 for receiving the alternating current output by the rectifying module 102 and supplying the alternating current to the transmitting coil 104.
  • the power of the transmitting coil 104 is transmitted to the receiving coil 201.
  • the control module 105 can be connected to the DC power supply 101, the rectifier module 102, the series matching capacitor (capacitance value Cp) 103, and the transmitting coil 104, respectively, for interacting with each module to control parameters to realize the control of each module.
  • the rectifier module 102 may be a full-bridge inverter circuit, a half-bridge inverter circuit, or another inverter circuit that converts DC to AC, which is not limited in the embodiment of the present application.
  • the receiver 20 may include: a receiving coil 201, a series matching capacitor (capacitance value Cs) 202, a rectifier module 203, a voltage stabilizing module 204, a load output 205, a communication module 206, and a control module 207.
  • the receiving coil 201 is connected with a series matching capacitor (capacitance value Cs) 202 to form an oscillating circuit on the receiver 20 side.
  • the receiving coil 201 receives the power transmitted by the transmitting coil 104 through the coil coupling, and is converted into alternating current through an oscillating circuit.
  • the rectifier module 203 is connected to the oscillating circuit, and is used to receive the alternating current output by the oscillating circuit, and rectify the alternating current to obtain the output direct current voltage Vrect.
  • the voltage stabilizing module 204 is connected to the rectifying module 203 and is used to eliminate fluctuations in the output voltage Vrect of the rectifying module 203 and output a stable voltage Vout.
  • the load output 205 is connected to the voltage stabilizing module 204 for receiving the supply voltage Vout output by the voltage stabilizing module 204.
  • the communication module 206 is used to implement the communication between the receiver 20 and the transmitter 10, and there are many ways of communication, such as in-band communication (intraband transmission, In-Band), Bluetooth communication, Zigbee communication (Zigbee), WiFi Communication and so on.
  • in-band communication is taken as an example for description, and the actual communication mode is not limited.
  • FIG. 3a is a schematic diagram of degrees of freedom in an embodiment of this application
  • FIG. 3b is another schematic diagram of degrees of freedom in an embodiment of this application.
  • Figures 3a and 3b illustrate the range of space where the receiver 20 can be charged when placed on the surface of the transmitter 10.
  • Figure 3a illustrates that after the receiver 20 has established a charging connection with the transmitter 10, the receiver 20 is controlled by the transmitter 10 The center point moves outwards to the boundary of the non-chargeable range.
  • the spatial range within the non-chargeable boundary is denoted as A. It should be noted that A is a three-dimensional variable representing the spatial range, and A in Figure 3a indicates the radius of the three-dimensional space cross section value.
  • the boundary condition of the non-chargeable range is: the power sent by the transmitter 10 to the receiver 20 reaches the upper limit of the output power of the transmitter 10, and the voltage Vrect output by the receiver 20 receiving the output power meets the control in the receiver 20
  • the operating voltage threshold of the module 207 Since the power emitted by the transmitter 10 at this time has reached the upper limit of the transmit power that the transmitter 10 can transmit, when the receiver 20 continues to move away from the transmitter 10, the receiver 20 receives the voltage output by the transmit power of the transmitter 10 Vrect is lower than the operating voltage threshold of the control module 207, the control module 207 cannot work normally, the charging connection established between the receiver 20 and the transmitter 10 is disconnected, and the receiver 20 cannot be charged.
  • the working state of the receiver 20 at the boundary of the non-chargeable range is called the critical power-down state.
  • Figure 3b shows that after the receiver 20 has not established a charging connection with the transmitter 10, the receiver 20 moves from the outer space of the transmitter 10 from the center point of the outward transmitter 10 to the boundary of the chargeable range, and the space within the boundary of the chargeable range Denoted as B, it should be noted that B is a three-dimensional variable that characterizes the spatial range, and B in Figure 3b indicates the radius value of the three-dimensional space cross section.
  • the boundary condition of the chargeable range is: when the receiver 20 has not established a charging connection with the transmitter 10, the energy emitted by the transmitter 10 through the transmitting coil is pulse energy, which is called ping pulse energy, so the receiver 20 has not yet
  • the phase between establishing a charging connection with the transmitter 10 and establishing a charging connection between the receiver 20 and the transmitter 10 is called the ping phase.
  • the voltage Vrect output by the receiver 20 receiving the ping pulse energy gradually increases.
  • Vrect reaches the operating voltage threshold of the control module 207 .
  • the control module 207 works normally, and sends a power transmission instruction to the transmitter 10 through the communication module 206, and the transmitter 10 stops sending ping pulse energy according to the power transmission instruction, and instead transmits non-pulse energy.
  • the state in which the operating voltage threshold of the control module 207 is reached is referred to as the receiver 20 being able to be pinged. At this position, the receiver 20 establishes a normal charging connection with the transmitter 10, and the receiver 20 can be charged normally.
  • the receivers 20 within A and B can be charged.
  • the range of A is greater than the range of B, so the range of B is defined as a degree of freedom.
  • the coupling coefficient is used to characterize the tightness of the coupling between the transmitting coil in the transmitter 10 and the receiving coil 101 in the receiver 20.
  • the higher the coupling coefficient the higher the efficiency of transmitting power from the transmitting coil 104 in the transmitter 10 to the receiving coil 101 in the receiver 20.
  • the coupling coefficient is related to the offset of the two (transmitter 10 and receiver 20). The greater the offset between the transmitter 10 and the receiver 20, the transmitting coil 104 in the transmitter 10 and the receiving coil 101 in the receiver 20 The smaller the tightness of the coupling, the smaller the coupling coefficient. Therefore, when performing wireless charging, the smaller the offset between the transmitter 10 and the receiver 20, the higher the charging efficiency of the wireless charging system. That is, the coupling coefficient is determined by the offset between the transmitter 10 and the receiver 20.
  • the offset here refers to the positional deviation of the transmitting coil 104 in the transmitter 10 and the receiving coil 101 in the receiver 20.
  • a and B are also a type of position offset, which will not be repeated here.
  • the physical quantity symbol of inductance is L, and its size is called inductance.
  • the alternating current resistance (ACR) and reactive power of the coil will limit the inductance to increase indefinitely.
  • the reasons are as follows: 1.
  • the inductance is proportional to the square of the coil turns, and the inductance should be increased in the same stacking space. It is necessary to increase the number of turns. After the number of turns increases, the wire diameter of the winding will inevitably become smaller, the ACR will become larger, the loss of the coil will become larger, and the efficiency will decrease; 2.
  • the power consumed by the coil generating magnetic field and capacitor charging and discharging is called Reactive power. Reactive power depends on the matching of the coil inductance and the capacitance in the resonant circuit. This leads to the lowest reactive power, the inductance must be controlled within a certain range and cannot be increased indefinitely.
  • the receiver 20 Since the Qi standard specifies the upper limit of the power of the ping pulse energy emitted by the transmitter 10; the receiver 20 is limited by the application environment. For example, when the receiver 20 is a smart watch, it is limited by the size of the smart watch. The size of the receiving coil 101 cannot be large, which makes the coupling coefficient between the receiver 20 and the transmitter 10 low; when the receiver 20 performs wireless charging, the receiving coil 101 is limited by reactive power, and the number of turns and coil size cannot Do too much. Due to the influence of the above-mentioned multiple factors, only when the receiver 20 is close to the transmitter 10, the receiver 20 can ping and establish a charging connection with the transmitter 10, which results in a low degree of freedom and affects the user's use of receiving Experience.
  • the present application provides a wireless charging method and receiver.
  • the receiver 10 provided in an embodiment of the present application will be described below.
  • FIG. 4 is a schematic diagram of a receiver provided by an embodiment of the application.
  • the receiver 20 of the embodiment of the present application includes: an oscillation circuit 210, a power processor 220, a sampling control module 230, and an auxiliary power supply module 240
  • the oscillating circuit 210 is respectively connected with the power processor 220 and the sampling control module 230
  • the auxiliary power supply module 240 is connected with the sampling control module 230 and the power processor 220, respectively.
  • the receiver 20 of the embodiment of the present application mainly adds a sampling control module 230 and an auxiliary power supply module 240.
  • the sampling control module 230 is used to collect the voltage output by the oscillation circuit 210.
  • the sampling control module 230 is also used to control the auxiliary power supply module 240 to supply power to the power processor 220 when it is determined that the output voltage of the oscillation circuit 210 is less than the startup voltage of the power processor 220.
  • the oscillation circuit 210 can sense To the first energy emitted by the transmitter, the first energy is ping pulse energy, and the first voltage value is output according to the first energy, but because the first voltage value is less than the working voltage value of the power processor 220, the power processor 220 cannot start.
  • the sampling control module 230 of the embodiment of the present application collects the first voltage value output by the oscillation circuit 210, and compares the first voltage value with the startup voltage value of the power processor 220.
  • the sampling control module 230 determines When the first voltage value is less than the startup voltage value of the power processor 220, the sampling control module 230 sends a control signal to the auxiliary power supply module 240 to control the auxiliary power supply module 240 to supply power to the power processor 220, and the power processor 220 starts, that is, receives The ping between the transmitter 20 and the transmitter can enter the subsequent power transmission phase. That is, in the embodiment of the present application, when the receiver 20 is outside the original range of freedom of the transmitter, the power processor 220 is powered by auxiliary power supply, so that the receiver 20 and the transmitter are pinged to enter the subsequent power transmission Phase, which increases the degree of freedom of the system that cannot be charged.
  • the power processor 220 In the power transmission phase, after the power processor 220 is started, it sends a power transmission instruction to the transmitter.
  • the power transmission instruction is used to instruct the transmitter to send second energy, and the second energy is used to provide electrical energy to the load in the receiver 20,
  • the second energy is continuous electrical energy.
  • the transmitter stops sending ping pulse energy according to the power transmission instruction, and instead sends continuous electric energy, that is, sends the second energy.
  • the receiver 20 receives the second energy sent by the transmitter and uses the second energy to power the load.
  • the specific process of the power transmission phase in the embodiment of the present application is the same as the specific process of the power transmission phase in the existing wireless charging system shown in FIG. 2, and will not be repeated here.
  • the positional relationship between the receiver 20 and the transmitter in the embodiment of the present application as long as the oscillation circuit 210 can receive the first energy sent by the transmitter, the receiver 20 and the transmitter can be pinged for subsequent steps. Power transmission. Compared with the receiver 20 shown in FIG. 3b that must be located within the freedom range B of the transmitter, this increases the charging distance between the receiver 20 and the transmitter, improves the freedom of wireless charging, and improves the user’s wireless Charging experience.
  • the oscillation circuit 210 in FIG. 4 may include the receiving coil, the inductance Ls, and the series matching capacitor Cs shown in FIG. 2, and the power processor 220 in FIG. 4 is equivalent to the control module in FIG. 2 described above.
  • the receiver 20 of the embodiment of the present application is provided with an oscillation circuit 210, a power processor 220, a sampling control module 230, and an auxiliary power supply module 240; in the ping phase, the oscillation circuit 210 is used to receive the first energy sent by the transmitter, and sample control
  • the module 230 collects the first voltage value output by the oscillating circuit 210 according to the first energy, and when the first voltage value is less than the start-up voltage value of the power processor 220, controls the auxiliary power supply module 240 to supply power to the power processor 220 so that the power supply is processed
  • the device 220 is activated.
  • the power processor 220 sends a power transmission instruction to the transmitter, so that the transmitter sends second energy according to the power transmission instruction to provide electrical energy to the load in the receiver 20.
  • the receiver 20 is equipped with a sampling control module 230 and an auxiliary power supply module 240.
  • the sampling control module 230 can control the auxiliary power supply module 240 to supply power to the power processor 220.
  • the receiver 20 and the transmitter are pinged to enter the subsequent power transmission phase, thereby increasing the degree of freedom of the system that cannot be charged.
  • the power processor 220 is started under the power of the auxiliary power supply module 240 and sends a power transmission instruction to the transmitter, so that the transmitter emits the second energy according to the power transmission instruction.
  • the process of the receiver 20 adjusting the second energy sent by the transmitter is a closed-loop feedback adjustment process.
  • the specific process is as follows: the receiver 20 compares the expected voltage value with the second voltage value currently received by the receiver 20, and sends the voltage difference between the expected voltage value and the actually received second voltage value to the transmitter.
  • the transmit power is adjusted according to the voltage difference.
  • the transmitter gradually increases the output power, and the voltage received by the receiver 20 from the transmitter gradually increases.
  • the auxiliary power supply module 240 In order to prevent the auxiliary power supply module 240 from continuously supplying power to the power processor 220 during the subsequent wireless charging process, which causes a waste of power of the auxiliary power supply module 240, when the power received by the receiver 20 from the transmitter is greater than the voltage value output by the auxiliary power supply module 240 Or when the power received by the receiver 20 from the transmitter reaches the desired voltage value of the receiver 20, the auxiliary power supply module 240 is controlled to stop supplying power to the power processor 220, and the power received by the receiver 20 from the transmitter is used as the power source.
  • the processor 220 supplies power.
  • the voltage value output by the auxiliary power supply module 240 is greater than or equal to the startup voltage of the power processor 220, and at the same time, the voltage value output by the auxiliary power supply module 240 is less than the expected voltage value of the receiver 20.
  • auxiliary power supply module 240 controls the auxiliary power supply module 240 to stop supplying power to the power processor 220.
  • the power processor 220 controls the auxiliary power supply module 240 to stop supplying power to the power processor 220. Specifically, because the power processor 220 is connected to the output terminal of the oscillating circuit 210, the power processor 220 can collect the second voltage value output by the oscillating circuit 210. At the same time, since the auxiliary power supply module 240 supplies power to the power processor 220, Therefore, the power processor 220 can obtain the voltage value output by the auxiliary power supply module 240.
  • the power processor 220 compares the second voltage value with the output voltage of the auxiliary power supply module 240, and when the second voltage value is greater than the output voltage of the auxiliary power supply module 240, the power processor 220 controls the auxiliary power supply module 240 and the power supply
  • the processor 220 is turned off and uses the second voltage output by the oscillation circuit 210 to supply power. That is, in this implementation manner, the power processor 220 controls the shutdown of the auxiliary power supply module 240, and the entire control process is simple and easy to implement.
  • the sampling control module 230 controls the auxiliary power supply module 240 to stop supplying power to the power processor 220. Specifically, since the sampling control module 230 is connected to the auxiliary power supply module 240, the voltage value output by the auxiliary power supply module 240 is obtained, and the sampling control module 230 collects the second voltage value output by the oscillation circuit 210 in real time. Next, the sampling control module 230 compares the second voltage value with the output voltage of the auxiliary power supply module 240. When the second voltage value is greater than the output voltage of the auxiliary power supply module 240, the sampling control module 230 controls the auxiliary power supply module 240 and the power supply. The processor 220 is disconnected. At this time, the power processor 220 uses the second voltage output by the oscillation circuit 210 to supply power.
  • the sampling control module 230 of the embodiment of the present application may have different structures.
  • the working principle of the receiver 20 will be described in detail below in conjunction with the sampling control module 230 of different structures.
  • the sampling control module 230 may be an application processor (Application Processor, AP), and the AP may be an existing AP of the receiver 20, and the AP may collect the voltage value output by the oscillation circuit 210, and use the The voltage value controls the connection and disconnection of the auxiliary power supply module 240 and the power processor 220.
  • the AP is used to collect the first voltage value output by the oscillation circuit 210, and when the first voltage value is less than the startup voltage of the power processor 220, the AP controls the auxiliary power supply module 240 to supply power to the power processor 220 .
  • the AP In the power transmission phase, the AP is used to collect the second voltage value output by the oscillation circuit 210, and when the second voltage value is greater than the output voltage of the auxiliary power supply module 240, the AP controls the auxiliary power supply module 240 to stop supplying power to the power processor 220.
  • the AP realizes the function of the sampling control module 230 described above, thereby enriching the functions of the AP and improving the utilization rate of the AP.
  • the above-mentioned AP includes an input/output (Input/Output Interface, I/O) interface and an analog-to-digital converter (Analog To Digital converter, ADC) interface.
  • I/O input/output
  • ADC Analog To Digital converter
  • the output terminal of the oscillation circuit 210 and the AP’s I/O interface or The ADC interface is connected.
  • the AP's I/O interface or ADC interface collects the voltage value output by the oscillation circuit 210, and the AP internal processing chip completes the voltage comparison, and controls the auxiliary power supply module 240 according to the comparison result.
  • the I/O interface or ADC interface of the AP collects the first voltage value output by the oscillation circuit 210, and sends the first voltage value to the processing chip inside the AP, and the power processor is stored in the processing chip 220.
  • the processing chip sends power supply control information to the auxiliary power supply module 240, for example, sends high-level information to the auxiliary power supply module 240.
  • the power supply module 240 supplies power to the power processor 220 when receiving the high-level signal sent by the AP.
  • the I/O interface or ADC interface of the AP collects the second voltage value output by the oscillation circuit 210, and sends the second voltage value to the processing chip inside the AP, and the auxiliary power supply module 240 is stored in the processing chip.
  • the processing chip sends shutdown control information to the auxiliary power supply module 240, for example, sends a low-level signal to the auxiliary power supply module 240, so that the auxiliary The power supply module 240 stops supplying power to the power processor 220 when receiving the low-level signal sent by the AP.
  • the aforementioned AP may send a low-level signal to the auxiliary power supply module 240.
  • the auxiliary power supply module 240 When the auxiliary power supply module 240 receives the low-level signal sent by the AP, it supplies power to the power processor 220; the AP sends a high-voltage signal to the auxiliary power supply module 240. When receiving a high level signal sent by the AP, the auxiliary power supply module 240 stops supplying power to the power processor 220.
  • FIG. 5 is a schematic structural diagram of a controller provided by an embodiment of the application.
  • the sampling control module 230 may include: an application processor 231 and a sampling unit 232.
  • the sampling unit 232 They are respectively connected to the oscillation circuit 210 and the application processor 231, and the application processor 231 is connected to the auxiliary power supply module 240.
  • the sampling unit 232 in the ping phase, is used to collect the first voltage value output by the oscillation circuit 210, and compare the first voltage value with the startup voltage value of the power processor 220 to obtain the first comparison result. Then, the sampling unit 232 sends the first comparison result to the application processor 231. When the first comparison result is that the first voltage value is less than the startup voltage value of the power processor 220, the application processor 231 is configured to control the auxiliary power supply module 240 to supply power to the power processor 220.
  • the sampling unit 232 is used to collect the second voltage value output by the oscillation circuit 210 and compare the second voltage value with the output voltage value of the auxiliary power supply module 240 to obtain a second comparison result. Then, the sampling unit 232 sends the second comparison result to the application processor 231.
  • the application processor 231 is configured to control the auxiliary power supply module 240 to stop supplying power to the power processor 220, so that the receiver 20 uses the slave transmitter The power received by the receiver is the power processor 220.
  • the sampling unit 232 may store the startup voltage value of the power processor 220 and the output voltage value of the auxiliary power supply module 240.
  • the sampling unit 232 collects the first voltage value, the first voltage value is compared with itself.
  • the stored start-up voltage values of the power processor 220 are compared, and the first comparison result is generated.
  • the second voltage value is collected, the second voltage value is compared with the output voltage value of the auxiliary power supply module 240 to generate a second comparison result.
  • the sampling control module of the embodiment of the present application may include an AP, which is used to collect the voltage value output by the oscillation circuit, and control the auxiliary power supply module to supply power to the power supply processor or stop power supply to the power supply processor according to the voltage value.
  • the entire implementation process is simple, and the functions of the AP are enriched, the utilization rate of the AP is improved, and the volume of the receiver is not increased.
  • FIG. 6 is a schematic structural diagram of the sampling unit shown in FIG. 5.
  • the sampling unit 232 includes: a comparator 2321 and a reference voltage providing circuit 2322 .
  • the reference voltage providing circuit 2322 can provide various voltage values according to actual needs.
  • the comparator 2321 has two input terminals and one output terminal.
  • the first input terminal of the comparator 2321 is the positive (+) input terminal of the comparator 2321, which is the same as the output terminal of the oscillation circuit 210.
  • the second input terminal of the comparator 2321 is the negative (-) input terminal of the comparator 2321, which is connected to the reference voltage supply circuit 2322, and the output terminal of the comparator 2321 is connected to the application processor 231.
  • the positional relationship between the receiver 20 and the transmitter needs to meet a preset condition.
  • the preset condition is that in the ping phase, the receiver 20 can receive the first sent by the transmitter.
  • An energy that is, the first voltage value output by the oscillation circuit 210 in the receiver 20 according to the first electric energy is greater than 0V.
  • the comparator 2321 can only determine the magnitude of the collected first voltage value through voltage comparison.
  • the reference voltage providing circuit 2322 of the embodiment of the present application can provide a preset reference voltage value Vref, and the reference voltage value Vref is greater than 0V and less than the starting voltage value of the power processor 220, the comparator 2321 can compare the collected first voltage value with the reference voltage value Vref to determine whether the positional relationship between the receiver 20 and the transmitter meets a preset condition After the positional relationship between the receiver 20 and the transmitter meets the preset condition, the receiver 20 executes the wireless charging process provided in the embodiment of the present application.
  • the reference voltage providing circuit 2322 may also provide the output voltage value of the auxiliary power supply module 240 and the starting voltage value of the power processor 220.
  • the reference voltage supply circuit 2322 includes three different voltage supply circuits and a controller, and the three different voltage supply circuits are respectively used to provide the reference voltage value Vref, the output voltage value of the auxiliary power supply module 240, and the power supply.
  • the controller can control which of the three voltage supply circuits is connected to the second input terminal of the comparator 2321.
  • the reference voltage supply circuit 2322 includes a voltage power supply circuit, and the voltage power supply circuit can provide the above three voltages.
  • the reference voltage providing circuit 2322 first outputs the reference voltage Vref to the second input terminal of the comparator 2321.
  • the first input terminal of the comparator 2321 collects the first voltage value output by the oscillation circuit 210, and the comparison circuit in the comparator 2321 compares the first voltage value with the reference voltage Vref. When the first voltage value is greater than the reference voltage Vref, the description Wireless charging can be performed between the receiver 20 and the transmitter.
  • the reference voltage providing circuit 2322 outputs the starting voltage value of the power processor 220 to the second input terminal of the comparator 2321, and the comparison circuit in the comparator 2321 compares the first voltage value with the starting voltage value of the power processor 220 To generate a first comparison result, and send the first comparison result to the AP.
  • the first comparison result is a high-level signal. For example, when the first voltage value is less than the startup voltage value of the power processor 220, the first comparison result is a high-level signal.
  • the first comparison result is a low-level signal; optionally, when the first voltage value is less than the start-up voltage value of the power processor 220, the first comparison result is a low-level signal.
  • the first comparison result is a high-level signal.
  • the AP controls the auxiliary power supply module 240 to supply power to the power processor 220.
  • the AP determines that the auxiliary power supply module 240 does not supply power to the power processor 220 , And when the high-level signal sent by the comparator 2321 is received, the auxiliary power supply module 240 is controlled to supply power to the power processor 220.
  • the reference voltage supply circuit 2322 outputs the output voltage value of the auxiliary power supply module 240 to the second input terminal of the comparator 2321, and the comparison circuit in the comparator 2321 compares the second voltage value with the output voltage value of the auxiliary power supply module 240 Perform the comparison, generate a second comparison result, and send the second comparison result to the AP.
  • the second comparison result is also a high-level signal.
  • the second comparison result when the second voltage value is greater than or equal to the output voltage value of the auxiliary power supply module 240, the second comparison result is a high-level signal, and when the second voltage value is less than the auxiliary power supply module 240 When the output voltage value of, the second comparison result is a low-level signal; optionally, when the second voltage value is greater than or equal to the output voltage value of the auxiliary power supply module 240, the second comparison result is a low-level signal, When the second voltage value is less than the output voltage value of the auxiliary power supply module 240, the second comparison result is a high-level signal.
  • the AP controls the auxiliary power supply module 240 to stop supplying power to the power processor 220. For example, the AP determines that the auxiliary power supply module 240 is working as the power processor. When 220 supplies power and receives a high-level signal sent by the comparator 2321, the auxiliary power supply module 240 is controlled to stop supplying power to the power processor 220.
  • the above-mentioned reference voltage providing circuit 2322 is connected to an auxiliary power supply module 240, and the auxiliary power supply module 240 provides electric energy for the reference voltage providing circuit 2322.
  • the sampling control module of the embodiment of the present application includes an application processor and a sampling unit.
  • the sampling unit is used to collect the voltage value output by the oscillation circuit.
  • the application processor is used to control the auxiliary power supply module according to the voltage value collected by the sampling unit.
  • the power supply processor supplies power or stops supplying power to the power supply processor, the circuit is easy to implement, and the cost is low, and the control strategy is simple.
  • FIG. 7 is a schematic structural diagram of a receiver in an embodiment of the application.
  • the auxiliary power supply module 240 in the receiver 20 will be described in detail below with reference to FIG. 7.
  • the auxiliary power supply module 240 of the embodiment of the present application includes: a battery 241 and a power supply control unit 242; the power supply control unit 242 includes three ports, and the first end of the power supply control unit 242 is connected to the output end of the battery 241 , The second end of the power supply control unit 242 is connected to the sampling control module 230, and the third end of the power supply control unit 242 is connected to the processor.
  • the power supply control unit 242 is configured to output the electric energy of the battery 241 to the power processor 220 under the control of the sampling control module 230.
  • the sampling control module 230 collects the first voltage value output by the oscillation circuit 210, and when judging that the first voltage value is less than the startup voltage value of the power processor 220, the sampling control module 230 sends the power supply control unit The second end of the 242 sends a control signal instructing the power processor 220 to supply power. After receiving the control signal, the power supply control unit 242 outputs the electric energy of the battery 241 to the power processor 220 to realize power supply to the power processor 220.
  • the power processor 220 or the sampling control module 230 sends a control signal to the power supply control unit 242 to stop power supply to the power processor 220.
  • the power supply control unit 242 controls the battery 241
  • the power supply to the power processor 220 is stopped.
  • the power supply control unit 242 is disconnected from the power processor 220, and the battery 241 is disconnected from the power processor 220, or the power supply control unit 242 is disconnected from the battery 241, and the battery 241 is disconnected from the power processor 220.
  • the device 220 is also disconnected.
  • an anti-reverse operation is provided between the third end of the power supply control unit 242 and the power processor 220.
  • Irrigation unit 243 can pass the electric energy output from the third end of the power supply control unit 242, so that the electric energy output by the oscillating circuit 210 cannot pass, that is, the anti-irrigation unit 243 has a unidirectional conduction function.
  • the power supply control unit 242 may be a diode or a metal oxide semiconductor (MOS) transistor.
  • MOS metal oxide semiconductor
  • the battery 241 may be a battery in the receiver 20 that supplies power to each load.
  • the battery 241 is a battery in the mobile phone.
  • the aforementioned battery 241 is a battery other than the battery that supplies power to each load in the receiver 20.
  • the battery 241 has electricity and can be a power processor. 220 provides power, so that when the receiver 20 is powered off, the wireless charging in the embodiment of the present application can still be performed.
  • FIG. 8 is a schematic diagram of a circuit of a receiver provided by an embodiment of the application
  • FIG. 9 is another circuit of a receiver provided by an embodiment of the application. Schematic.
  • the power supply control unit 242 described in the foregoing embodiment includes, but is not limited to, the structures shown in FIGS. 8 and 9.
  • the power supply control unit 242 may include: a power management integrated circuit (Power Management IC, PMIC) 2421 and a DC converter 2422; the input terminal of the power management integrated circuit 2421 Connected to the output end of the battery 241, the output end of the power management integrated circuit 2421 is connected to the first end of the DC converter 2422, and the second end of the DC converter 2422 is connected to the output end of the sampling control module 230 The third end of the DC converter 2422 is connected to the processor; the sampling control module 230 is used to enable the DC converter 2422; the power management integrated circuit 2421 is used to transfer the battery through the enabled DC converter 2422 The electric energy of 241 is output to the power processor 220.
  • a power management integrated circuit Power Management IC, PMIC
  • the sampling control module 230 collects the first voltage value output by the oscillation circuit 210, and when judging that the first voltage value is less than the starting voltage value of the power processor 220, the sampling control module 230 enables DC conversion After the DC converter 2422 works, the power management integrated circuit 2421 outputs the electric energy of the battery 241 to the power processor 220 through the DC converter 2422 to realize power supply to the power processor 220.
  • the power processor 220 or the sampling control module 230 controls the DC converter 2422 to stop working, that is, the DC converter 2422 is prohibited.
  • the power management integrated circuit 2421 cannot provide the energy of the battery 241 to the power processor 220 through the prohibited DC converter 2422, so that the battery 241 stops supplying power to the power processor 220.
  • the power supply control unit 242 includes: a power management integrated circuit 2421, a DC converter 2422, and a switching unit 2423; an input terminal of the power management integrated circuit 2421 and a battery 241
  • the output end of the power management integrated circuit 2421 is connected to the input end of the DC converter 2422, the output end of the DC converter 2422 is connected to the first end of the switch unit 2423, and the second end of the switch unit 2423 is connected to the sampling control
  • the output end of the module 230 is connected, and the third end of the switch unit 2423 is connected to the processor.
  • the sampling control module 230 is used to control the closing and opening of the switch unit 2423; the power management integrated circuit 2421 is used to output the electric energy of the battery 241 to the power processor 220 through the DC converter 2422 when the switch unit 2423 is closed.
  • the sampling control module 230 collects the first voltage value output by the oscillation circuit 210, and when judging that the first voltage value is less than the startup voltage value of the power processor 220, the sampling control module 230 controls the switch unit 2423 Closed, at this time, the battery 241, the power management integrated circuit 2421, the DC converter 2422 and the power processor 220 form a path.
  • the power management integrated circuit 2421 can output the electric energy of the battery 241 to the power processor 220 through the DC converter 2422 to achieve Power supply processor 220.
  • the power processor 220 or the sampling control module 230 controls the switch unit 2423 to turn off. At this time, the battery 241 is disconnected from the power processor 220, so that the battery 241 stops supplying power to the power processor 220.
  • the switch unit 2423 is a metal oxide semiconductor field-effect MOS transistor, the gate of the MOS transistor is connected to the sampling control module 230, and the drain of the MOS transistor is connected to the output of the DC converter 2422.
  • the source stage of the MOS tube is connected to the power processor 220 through the anti-reverse irrigation unit 243.
  • the aforementioned DC converter 2422 shown in FIGS. 8 and 9 may be a Boost converter, which is a non-isolated power electronic converter, that is, a direct current to direct current (DC-DC) type, and It has the function of boosting, for example, the direct voltage output by the battery 241 can be boosted and output to the power processor 220.
  • Boost converter which is a non-isolated power electronic converter, that is, a direct current to direct current (DC-DC) type, and It has the function of boosting, for example, the direct voltage output by the battery 241 can be boosted and output to the power processor 220.
  • the aforementioned power management integrated circuit 2421 includes a plurality of DC converters, and the DC converter 2422 shown in FIG. 8 and FIG. 9 may be a certain DC converter in the power management integrated circuit 2421.
  • FIG. 10 is a schematic structural diagram of the receiver in the embodiment of the present application.
  • the receiver 20 in the embodiment of the present application may further include: a communication module 250, power processing
  • the transmitter 220 sends a power transmission instruction to the transmitter through the communication module 250.
  • the aforementioned communication module 250 may be a wireless communication module 250, such as an in-band communication module, a Bluetooth communication module, a Zigbee communication module, a WiFi communication module, and so on.
  • the communication module 250 further includes: a communication modulation module 251, which is connected to the power processor 220.
  • the power processor 220 adjusts the communication modulation module 251.
  • Make the communication modulation module 251 generate a power transmission instruction, and send the power transmission instruction to the transmitter through the communication module 250.
  • the communication module 250 further includes: an ASK module 252, which is connected to the power processor 220 and the communication modulation module 251, respectively, and the ASK module 252 is controlled by the power processor 220
  • the communication modulation module 251 is adjusted so that the communication modulation module 251 generates a power transmission command, and sends the power transmission command to the transmitter through the communication module 250.
  • the communication modulation module 251 shown in FIGS. 11 and 12 may include: at least one capacitor or at least one resistor; the process of generating the above-mentioned power transmission instruction by the communication modulation module 251 may be that the power processor 220 adjusts at least one capacitor. Or the voltage value of at least one resistor generates a power transmission instruction, and sends the power transmission instruction to the transmitter through the communication module 250.
  • the power processor 220 issues a power transmission instruction to the ASK module 252 in the communication module 250, and the ASK module 252 in the communication module 250 can adjust the communication modulation module 251 to implement the receiver 20 and In-band communication between transmitters.
  • the specific method for adjusting the communication modulation module 251 is as follows: including using switched capacitor modulation and/or switch resistance modulation.
  • the communication module 250 modulates the power transmission command from the processor through the ASK module 252, and adjusts the connection and disconnection of the relevant capacitance and/or resistance in the communication modulation module 251 according to the power transmission command, so that the capacitance in the communication modulation module 251 is /Or the resistor is connected to the circuit of the receiver 20 or not connected to the circuit of the receiver 20, thereby changing the current or voltage in the receiving coil of the receiver 20, and changing the voltage or current of the transmitter.
  • the transmitter collects the voltage or current, performs demodulation processing and analysis, and then obtains the power transmission instruction sent by the receiver 20.
  • an embodiment of the present application proposes the following communication modulation module 251.
  • the communication modulation module 251 includes: a first communication modulation module and a second communication modulation module, wherein the first communication modulation module works when the auxiliary power supply module 240 is in the activated state, and the second communication modulation module works when the auxiliary power supply module 240 is in the activated state.
  • the module 240 works when it is closed.
  • the specific working process is: when the auxiliary power supply module 240 is in the on state, the power processor 220 generates a first power transmission instruction through the first communication modulation module, and sends the first power transmission instruction to the transmitter through the communication module 250; When the auxiliary power supply module 240 is in the off state, the second communication modulation module 1 generates a second power transmission instruction, and the communication module 250 sends the second power transmission instruction to the transmitter.
  • the communication modulation module 251 includes: a third communication modulation module with adjustable parameters; its specific working process is: when the auxiliary power supply module 240 is turned on, the power processor 220 adjusts the third communication modulation
  • the parameters of the module for example, the third communication modulation module includes a capacitor and/or resistance, and the modulation of the third communication modulation module is realized by adjusting the capacitance value and/or resistance value, thereby generating the first power transmission instruction; in the auxiliary power supply module 240 When in the off state, the power processor 220 generates the second power transmission instruction by adjusting the parameters of the third communication modulation module.
  • first communication modulation modules and second communication modulation modules in the embodiment of the present application, they work when the auxiliary power supply module 240 is in the activated state and the auxiliary power supply module 240 is in the off state, or by setting parameters
  • the adjustable third communication modulation module switches the parameters when the auxiliary power supply module 240 is in the activated state and the auxiliary power supply module 240 is in the off state, so as to improve the power processor 220 can modulate when the auxiliary power supply module 240 is working.
  • a reliable communication signal is possible.
  • Fig. 13 is a circuit diagram of a receiver provided by an embodiment of the application.
  • the receiver 20 of the embodiment of the present application further includes a rectification module 260 and a voltage reduction module 270, the rectification module 260 is respectively connected to the oscillation circuit 210 and the voltage reduction module 270, and the voltage reduction module 270 is connected to the load in the receiver 20.
  • the rectifier module 260 is configured to receive the AC power output by the oscillation circuit 210, transform the AC power to obtain a DC output voltage Vrect, and rectify the output voltage Vrect to eliminate output voltage fluctuations and output a stable output voltage Vrect.
  • the step-down module 270 is configured to step-down the stable output voltage Vrect output by the rectifier module 260, and output the voltage Vout required by the electrical load connected to the step-down module 270.
  • the rectifier module 260 specifically includes an uncontrolled rectifier module 260 or a synchronous rectifier module 260.
  • the uncontrolled rectifier module 260 includes at least one diode, and the synchronous rectifier module 260 includes at least one metal-oxide semiconductor field effect transistor.
  • the oscillation circuit 210 in the receiver 20 when the module included in the rectifier module 260 is an uncontrolled rectifier module, the oscillation circuit 210 in the receiver 20 is called a diode full bridge rectifier circuit, and when the module included in the rectifier module 260 is a synchronous rectifier module
  • the oscillating circuit 210 in the receiver 20 when the rectifier module 260 is another module, the oscillating circuit 210 in the receiver 20 can also be a half-bridge rectifier circuit, or it can be another implementation of AC conversion. It is a DC rectifier circuit, which is not limited in the embodiment of the present application.
  • the rectification module 260 is an uncontrolled rectification module composed of 4 diodes in parallel.
  • the step-down module 270 is composed of two low dropout linear regulators (LDO) in parallel, where LDO1 is responsible for supplying power to the electrical load, and LDO2 is responsible for supplying power to the power processor 220.
  • LDO1 is responsible for supplying power to the electrical load
  • LDO2 is responsible for supplying power to the power processor 220.
  • the power processor 220 is a microcontroller unit (microcontroller unit, MCU).
  • MCU microcontroller unit
  • the sampling control module 230 is connected to the oscillation circuit 210 through the rectification module 260, that is, the output end of the oscillation circuit 210 is connected to the input end of the rectification module 260, and the sampling control module 230 is connected to the rectification module 260.
  • Is connected to the output terminal of the rectifier module 260 for collecting the voltage value output by the rectifier module 260, that is, the first voltage value and the second voltage value output by the oscillation circuit 210 described in the foregoing embodiments are both rectified and stabilized by the rectifier module 260 Voltage value.
  • the specific implementation process is: in the ping phase, the sampling control module 230 collects the first voltage value output by the rectifier module 260, and when the first voltage value is less than the startup voltage value of the power processor 220, controls the auxiliary power supply module 240 to perform power processing
  • the power processor 220 supplies power to start the power processor 220. After the power supply processor 220 is started, it sends a power transmission instruction to the transmitter, so that the transmitter emits the second energy according to the power transmission instruction.
  • the sampling control module 230 collects the second voltage value output by the rectification module 260, and when the second voltage value is greater than the output voltage of the auxiliary power supply module 240, controls the auxiliary power supply module 240 to turn off.
  • the specific process can be described in the above embodiment in FIG. 4, which will not be repeated here.
  • the receiver 20 includes a display device 280, and the display device 180 is connected to the sampling control module 230.
  • the specific implementation process is: in the ping phase, sampling The control module 230 collects the first voltage value output by the rectification module 260 and compares the first voltage value with the startup voltage value of the power processor 220. If the first voltage value is less than the startup voltage value of the power processor 220, the sampling control module 230 sends a prompt message to the display device 280, for example, the prompt message is "The position of the receiving terminal device is deviated and needs to move to the center of the transmitting terminal". After the user obtains the prompt information through the display device 280, the position between the receiver 20 and the transmitter is adjusted so that the receiver 20 and the transmitter are pinged for subsequent power transmission. In this way, the degree of freedom of the wireless charging system can be improved indirectly.
  • FIG. 15 is a flowchart of a wireless charging method provided by an embodiment of the application.
  • the wireless charging method is applied to the receiver shown in FIG. 4.
  • the receiver includes: an oscillation circuit and a power processor , Sampling control module and auxiliary power supply module.
  • the charging method includes:
  • the oscillating circuit receives the first energy emitted by the transmitter, where the first energy is pulse energy.
  • the sampling control module collects the first voltage value output by the oscillating circuit according to the first energy, and when the first voltage value is less than the startup voltage value of the power processor, controls the auxiliary power supply module to supply power to the power processor, so that the power processor start up.
  • the power processor sends a power transmission instruction to the transmitter, so that the transmitter emits second energy according to the power transmission instruction.
  • the second energy is not pulse energy, and the second energy is used to provide electrical energy to a load in the receiver.
  • the oscillation circuit 210 is used to receive the first energy sent by the transmitter, and the sampling control module 230 collects the first voltage output by the oscillation circuit 210 according to the first energy.
  • the auxiliary power supply module 240 is controlled to supply power to the power processor 220 to start the power processor 220.
  • the power processor 220 sends a power transmission instruction to the transmitter, so that the transmitter sends second energy according to the power transmission instruction to provide electrical energy to the load in the receiver 20.
  • the receiver 20 is equipped with a sampling control module 230 and an auxiliary power supply module 240.
  • the sampling control module 230 can control the auxiliary power supply module 240 to supply power to the power processor 220.
  • the receiver 20 and the transmitter are pinged to enter the subsequent power transmission phase, thereby increasing the degree of freedom of the system that cannot be charged.
  • the wireless charging method of the embodiment of the present application further includes the step of stopping power supply to the power processor, where stopping power supply to the power processor includes two ways.
  • the power processor controls the auxiliary power supply module to stop supplying power to the power processor, which specifically includes:
  • the oscillation circuit receives the second energy emitted by the transmitter.
  • the power supply processor obtains the second voltage value output by the oscillating circuit according to the second energy, and when the second voltage value is greater than the output voltage of the auxiliary power supply module, controls the auxiliary power supply module to stop supplying power to the power supply processor.
  • the sampling control module controls the auxiliary power supply module to stop supplying power to the power processor, which specifically includes:
  • the oscillating circuit receives the second energy emitted by the transmitter.
  • the sampling control module collects the second voltage value output by the oscillation circuit according to the second energy, and controls the auxiliary power supply module to stop when the second voltage value is greater than the output voltage of the auxiliary power supply module
  • the power processor supplies power.
  • the sampling control module involved in the above embodiments may include different structures.
  • the sampling control module includes: an application processor.
  • the sampling control module includes: an application processor and a sampling unit.
  • the foregoing S102 may include the following:
  • Step A1 The sampling unit collects the first voltage value output by the oscillation circuit, and compares the first voltage value with the startup voltage value of the power processor to obtain a first comparison result, and compares the The first comparison result is sent to the application processor.
  • Step A2 When the first comparison result is that the first voltage value is less than the startup voltage value of the power processor, the application processor controls the auxiliary power supply module to supply power to the power processor.
  • S1052 may include:
  • Step B1 The sampling unit collects the second voltage value output by the oscillation circuit, and compares the second voltage value with the output voltage value of the auxiliary power supply module to obtain a second comparison result, and compare the The second comparison result is sent to the application processor.
  • Step B2 When the second comparison result is that the second voltage value is greater than the output voltage of the auxiliary power supply module, the application processor controls the auxiliary power supply module to turn off.
  • the foregoing sampling unit includes: a comparator and a first reference voltage providing circuit.
  • the first reference voltage providing circuit is used to provide the output voltage value of the auxiliary power supply module and the startup voltage value of the power processor.
  • the comparator is used to collect the output voltage of the oscillation circuit, and obtain the output voltage value of the auxiliary power supply module or the startup voltage value of the power processor output by the reference voltage supply circuit, and process the output voltage to the application
  • the device outputs the first comparison result or the second comparison result.
  • the auxiliary power supply module in the embodiment of the present application includes a battery and a power supply control unit.
  • the power supply control unit is used to output the electric energy of the battery to the power processor under the control of the sampling control module.
  • the auxiliary power supply module further includes an anti-reverse irrigation unit.
  • the anti-reverse irrigation unit is used to prohibit the electrical energy output by the oscillating circuit from being reversed into the power supply control unit when the voltage value output by the oscillation circuit is greater than the output voltage value of the power supply control unit.
  • the aforementioned anti-infusion unit includes a diode or a MOS tube.
  • the above-mentioned power supply control unit includes: a power management integrated circuit and a DC converter.
  • sampling control module is used to enable the DC converter.
  • the power management integrated circuit is used to output the electric energy of the battery to the power processor through the enabled DC converter.
  • the above-mentioned power supply control unit includes: a power management integrated circuit, a DC converter, and a switch unit.
  • the switch unit is used for closing and opening under the control of the sampling control module.
  • the power management integrated circuit is used to output the electric energy of the battery to the power processor through the DC converter when the switch unit is closed.
  • the above-mentioned switch unit is a metal oxide semiconductor field effect MOS transistor.
  • the above DC converter is a DC converter in the power management integrated circuit.
  • the receiver of the embodiment of the present application further includes a communication module.
  • the power processor in S103 sends a power transmission instruction to the transmitter, including:
  • the power processor sends a power transmission instruction to the transmitter through the communication module.
  • the above-mentioned communication module includes: a communication modulation module.
  • the above-mentioned S1031 may include:
  • the power processor generates the power transmission instruction by adjusting the communication modulation module, and sends the power transmission instruction to the transmitter through the communication module.
  • the aforementioned communication modulation module includes: at least one capacitor or at least one resistor; at this time, the power processor in S10311 generates the power transmission instruction by adjusting the communication modulation module, including:
  • the power processor generates the power transmission instruction by adjusting the voltage value of the at least one capacitor or the at least one resistor, and sends the power transmission instruction to the transmitter through the communication module.
  • the communication modulation module includes: a first communication modulation module and a second communication modulation module; at this time, the power supply processor in the above S10311 generates the power transmission instruction by adjusting the communication modulation module, including :
  • Step C1 When the auxiliary power supply module is in an on state, the power processor generates a first power transmission instruction through the first communication modulation module;
  • Step C2 When the auxiliary power supply module is in the off state, the power processor generates a second power transmission instruction through the second communication modulation module.
  • the communication modulation module includes: a third communication modulation module with adjustable parameters; in S10311, the power processor generates the power transmission instruction by adjusting the communication modulation module, including:
  • Step D1 When the auxiliary power supply module is in the on state, the power processor generates a first power transmission instruction by adjusting the parameters of the third communication modulation module;
  • Step D2 When the auxiliary power supply module is in the off state, the power processor generates a second power transmission instruction by adjusting the parameters of the third communication modulation module.
  • the specific implementation process can refer to the description of the embodiments shown in FIG. 10 to FIG. 12, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • the terminal device 500 described in this embodiment includes the receiver 505 shown in the foregoing embodiment, and the receiver 505 may be the receiver described in any one of FIGS. 4 to 14.
  • the receiver 505 can be used to implement the foregoing wireless charging method embodiment. For details, refer to the description in the foregoing method embodiment.
  • the terminal device 500 may include one or more processors 501, and the processor 501 may also be referred to as a processing unit, which may implement certain control or processing functions.
  • the processor 501 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the communication device, execute the software program, and process the data of the software program.
  • the processor 501 may also store instructions 503 or data (for example, intermediate data). Wherein, the instruction 503 may be executed by the processor, so that the terminal device 500 executes the foregoing wireless charging method embodiment.
  • the terminal device 500 may include a circuit, and the circuit may implement the sending or receiving or communication functions in the foregoing method embodiments.
  • the terminal device 500 may include one or more memories 502, on which instructions 504 may be stored, and the instructions may be executed on the processor, so that the terminal device 500 executes the foregoing method implementation The method described in the example.
  • processor 501 and the memory 502 may be provided separately or integrated together.
  • the terminal device 500 may further include a transmitter and/or an antenna 506.
  • the processor 501 may be referred to as a processing unit, and controls the terminal device 500.
  • the receiver 505 may be called a transceiving unit, a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving function of the terminal device.
  • the processor 501 and the receiver 505 described in this application can be implemented in integrated circuits (IC), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, and application specific integrated circuits (application specific integrated circuits). circuit, ASIC), printed circuit board (PCB), electronic equipment, etc.
  • the processor 501 and the receiver 505 can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gall
  • the structure of the terminal device 500 may not be limited by the FIG. 18.
  • the terminal device of the embodiment of the present application can be used to implement the above-mentioned wireless charging technical solution, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 19 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • the terminal device 600 includes a receiver 602, and the receiver 602 can perform the above-mentioned wireless charging method.
  • the receiver 602 can be the receiver described in any one of FIGS. 4 to 14.
  • the structure of the terminal device 600 includes a processor 601 and a memory 603, and the processor 601 is configured to support the terminal device 600 to perform corresponding functions in the foregoing method.
  • the receiver 602 is used to support communication between the terminal device 600 and other terminal devices or network devices.
  • the terminal device 600 may further include a memory 603, which is configured to be coupled with the processor 601 and stores necessary program instructions and data of the terminal device 600.
  • the processor 601 can read the program instructions and data in the memory 603, interpret and execute the program instructions, and process the data of the program instructions.
  • the processor 601 performs baseband processing on the data to be sent, and then outputs the baseband signal to the receiver 602.
  • the receiver 602 performs radio frequency processing on the baseband signal and sends the radio frequency signal out in the form of electromagnetic waves through an antenna.
  • the receiver 602 receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 601.
  • the processor 601 converts the baseband signal into data and performs the data To process.
  • FIG. 19 only shows one memory 603 and one processor 601. In the actual terminal device 600, there may be multiple processors 601 and multiple memories 603.
  • the memory 603 may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the terminal device of the embodiment of the present application can be used to implement the above-mentioned wireless charging technical solution, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 20 is a schematic structural diagram of a charger provided by an embodiment of the present application.
  • the charger 700 in an embodiment of the present application includes the receiver 701 as described in any one of FIGS. 4 to 14, and the receiver 701
  • the wireless charging method described above can be performed.
  • the charger in the embodiment of the present application can be used to implement the above-mentioned wireless charging technical solution, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the receiver chip realizes the function of the receiver in the foregoing embodiment of the wireless charging method.
  • the receiver chip sends information to other modules in the receiver (such as radio frequency modules or antennas), and the information is sent to the receiver via other modules in the receiver; or, the receiver chip can also be sent from other modules in the receiver. (For example, a radio frequency module or an antenna) receives information, which is sent by the receiver to the transmitter.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in Random Access Memory (RAM), Flash memory, Read-Only Memory (ROM), Programmable ROM (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the receiver.
  • the processor and the storage medium may also exist as discrete components in the receiver.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) , Computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical discs and other media that can store program codes.

Abstract

一种无线充电方法、接收器、终端设备及充电器,该接收器(20)包括:振荡电路(210)、电源处理器(220)、采样控制模块(230)和辅助供电模块(240)。在ping阶段,振荡电路接收发射器(10)发送的第一能量,采样控制模块采集振荡电路根据第一能量输出的第一电压值,并在第一电压值小于电源处理器的启动电压值时,控制辅助供电模块为电源处理器供电,以使电源处理器启动。功率传输阶段,电源处理器向发射器发送功率传输指令,以使得发射器根据该功率传输指令发出第二能量,以向接收器中的负载提供电能。这样在接收器位于发射器原有的自由度范围外时,采样控制模块可以控制辅助供电模块为电源处理器供电,使接收器与发射器ping上,增大无线充电系统的自由度。

Description

无线充电方法、接收器、终端设备及充电器
本申请要求于2019年04月26日提交中国专利局、申请号为201910345234.2、申请名称为“无线充电方法、接收器、终端设备及充电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线充电技术领域,尤其涉及一种无线充电方法、接收器、终端设备及充电器。
背景技术
无线电能传输(wireless power transfer,WPT)又称为无线充电技术,正在取代旧的有线电能传输。无线充电发射器不依赖于充电线就可以向无线充电接收器提供电能,例如给手机充电时不用连接充电线,直接无线充电。无线充电技术的实现方式有很多,在消费类电子产品领域,目前普遍采用的是电磁感应式无线充电技术。而基于电磁感应式无线充电技术,无线充电联盟(wireless power consortium,WPC)制定了与所有可再充电电子设备兼容的国际无线充电标准Qi,简称为Qi标准。
在Qi标准中,发射器和接收器之间的交互包括三个阶段,即选择阶段、ping阶段以及功率传递阶段。在ping阶段,发射器通过发出ping脉冲能量以试图发现对象是否包含一个接收器,当接收器接收的ping脉冲能量达到接收器的一定阈值后,接收器与发射器建立功率连接,即当发射器发现对象包含接收器时,称为ping上,ping上后进入功率传递阶段。其中,接收器与发射器可ping上的空间称为自由度。
由于Qi标准规定了发射器在ping阶段所发出的ping脉冲能量的功率上限,要使接收器和发射器ping上,则接收器位于发射器可ping上的范围内,其自由度低。
发明内容
本申请实施例提供一种无线充电方法、接收器、终端设备及充电器,以增大接收器的充电自由度。
第一方面,本申请实施例提供了一种接收器,该接收器包括:振荡电路、电源处理器、采样控制模块和辅助供电模块;其中,振荡电路,用于接收发射器发出的第一能量,其中所述第一能量为脉冲能量;采样控制模块,用于采集所述振荡电路根据所述第一能量输出的第一电压值,并在所述第一电压值小于所述电源处理器的启动电压值时,控制所述辅助供电模块为所述电源处理器供电,以使所述电源处理器启动;电源处理器,用于向所述发射器发送功率传输指令,以使得所述发射器根据所述功率传输指令发出第二能量,所述第二能量不为脉冲能量,所述第二能量用于向所述接收器 中的负载提供电能。
本申请的接收器,通过设置采样控制模块和辅助供电模块,在接收器位于发射器原有的自由度范围外时,采样控制模块可以控制辅助供电模块为电源处理器供电,使得接收器与发射器ping上,进入后续的功率传输阶段,进而增大了无法充电系统的自由度。
可选的,本申请实施例还包括控制辅助供电模块停止为电源处理器供电的步骤,控制辅助供电模块停止为电源处理器供电的方式包括如下两种:
在一种实现方式中,上述振荡电路,还用于接收所述发射器发出的所述第二能量;上述采样控制模块,还用于采集所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
在另一种实现方式中,上述振荡电路,还用于接收所述发射器发出的所述第二能量;上述电源处理器,还用于获取所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。即该实现方式中,由电源处理器来控制辅助供电模块的关闭,其整个控制过程简单,易于实现。
可选的,上述采样控制模块包括:应用处理器,该应用处理器分别与所述振荡电路和所述辅助供电模块连接。
可选的,上述采样控制模块包括:应用处理器和采样单元;其中,采样单元分别与所述振荡电路和所述应用处理器连接,用于采集所述振荡电路输出的所述第一电压值,并将所述第一电压值与所述电源处理器的启动电压值进行比较,获得第一比较结果,并将所述第一比较结果发送给所述应用处理器;应用处理器与所述辅助供电模块连接,用于在所述第一比较结果为所述第一电压值小于所述电源处理器的启动电压值时,控制所述辅助供电模块为所述电源处理器供电。
在一种可能的实现方式中,上述采样单元,还用于采集所述振荡电路输出的所述第二电压值,并将所述第二电压值与所述辅助供电模块的输出电压值进行比较,获得第二比较结果,并将所述第二比较结果发送给所述应用处理器;上述应用处理器,还用于在所述第二比较结果为所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
本申请的采样控制模块可以包括AP,该AP用于采集振荡电路输出的电压值,并根据该电压值控制辅助供电模块为电源处理器供电或停止为电源处理器供电,其整个实现过程简单,且丰富了AP的功能,提高了AP的利用率,且不会增加接收器的体积。
可选的,上述采样单元包括:比较器和基准电压提供电路,其中,该基准电压提供电路用于提供所述辅助供电模块的输出电压值和所述电源处理器的启动电压值;比较器的第一输入端与所述振荡电路的输出端连接,用于采集所述振荡电路的输出电压;比较器的第二输入端与所述基准电压提供电路连接,用于获取所述基准电压提供电路输出的所述辅助供电模块的输出电压值或所述电源处理器的启动电压值;比较器的输出端与所述应用处理器连接,用于向所述应用处理器输出所述第一比较结果或所述第二比较结果。这样,通过将采样单元设置成包括比较器和基准电压提供电路,并让各 自执行上述功能,其电路上容易实现,且成本低,控制策略简单。
在一种可能的实现方式中,上述辅助供电模块包括:电池和供电控制单元;其中,供电控制单元的第一端与所述电池的输出端连接,所述供电控制单元的第二端与所述采样控制模块连接,所述供电控制单元的第三端与所述电源处理器连接;供电控制单元,用于在所述采样控制模块的控制下,将所述电池的电能输出给所述电源处理器。
可选的,上述辅助供电模块还包括:防反灌单元;该防反灌单元连接在所述供电控制单元的第三端与所述电源处理器之间;该防反灌单元,用于在所述振荡电路输出的电压值大于所述供电控制单元的输出电压值时,禁止所述振荡电路输出的电能反灌至所述供电控制单元中。可选的,防反灌单元包括:二极管或金属氧化物半导体场效益MOS管。
在一种可能的实现方式中,上述供电控制单元包括:电源管理集成电路和直流变换器;其中,电源管理集成电路的输入端与所述电池的输出端连接,所述电源管理集成电路的输出端与所述直流变换器的第一端连接,所述直流变换器的第二端与所述采样控制模块的输出端连接,所述直流变换器的第三端与所述电源处理器连接;采样控制模块,用于使能所述直流变换器;电源管理集成电路,用于通过使能后的所述直流变换器,将所述电池的电能输出给所述电源处理器。
在另一种可能的实现方式中,上述供电控制单元包括:电源管理集成电路、直流变换器和开关单元;其中,电源管理集成电路的输入端与所述电池的输出端连接,所述电源管理集成电路的输出端与所述直流变换器的输入端连接,所述直流变换器的输出端与所述开关单元的第一端连接,所述开关单元的第二端与所述采样控制模块的输出端连接,所述开关单元的第三端与所述电源处理器连接;采样控制模块,用于控制所述开关单元的闭合与断开;电源管理集成电路,用于在所述开关单元闭合时,通过所述直流变换器将所述电池的电能输出给所述电源处理器。
可选的,上述开关单元为MOS管。
可选的,上述直流变换器为所述电源管理集成电路中的直流变换器。
在一种可能的实现方式中,本申请的接收器还包括:通信模块;电源处理器,用于通过所述通信模块向所述发射器发送功率传输指令。这样,可以实现接收器与发射器之间的可靠通信。
可选的,通信模块包括:通信调制模块;上述电源处理器,具体用于通过调节所述通信调制模块生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
在一种示例中,通信调制模块包括:至少一个电容或至少一个电阻;电源处理器,具体用于通过调节所述至少一个电容或所述至少一个电阻的电压值,生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
本申请的通信调制模块可以包括如下两种结构,用于解决在ping阶段当接收器在发射器的原有自由度范围外时,接收器中的振荡电路上感应的AC能量信号会很弱,这样会存在接收器通过通信调制模块所调制出的带内通信信号的调制深度不够,进而导致其与发射器的通信失败的问题。
一种实现方式为,通信调制模块包括:第一通信调制模块和第二通信调制模块; 其中,电源处理器,用于在所述辅助供电模块处于开启状态时,通过所述第一通信调制模块生成第一功率传输指令,并通过所述通信模块向所述发射器发送所述第一功率传输指令;在所述辅助供电模块处于关闭状态时,通过所述第二通信调制模块生成第二功率传输指令,并通过所述通信模块向所述发射器发送所述第二功率传输指令。
另一种实现方式为,通信调制模块包括:参数可调的第三通信调制模块;其中,电源处理器,用于在所述辅助供电模块处于开启状态时,通过调节所述第三通信调制模块的参数,生成第一功率传输指令;在所述辅助供电模块处于关闭状态时,通过调节所述第三通信调制模块的参数,生成第二功率传输指令。
本申请通过设置不同的第一通信调制模块和第二通信调制模块,分别工作在辅助供电模块处于启动状态和辅助供电模块处于关闭状态的情况下,或者通过设置参数可调的第三通信调制模块,分别在辅助供电模块处于启动状态和辅助供电模块处于关闭状态的情况下时切换参数,以提高电源处理器在辅助供电模块供电工作时,可以调制出可靠的通信信号。
第二方面,本申请实施例提供一种无线充电方法,该方法应用于接收器,所述接收器包括:振荡电路、电源处理器、采样控制模块和辅助供电模块;该方法包括:振荡电路接收发射器发出的第一能量,其中所述第一能量为脉冲能量;采样控制模块采集所述振荡电路根据所述第一能量输出的第一电压值,并在所述第一电压值小于所述电源处理器的启动电压值时,控制辅助供电模块为所述电源处理器供电,以使所述电源处理器启动;电源处理器向所述发射器发送功率传输指令,以使得所述发射器根据所述功率传输指令发出第二能量,所述第二能量不为脉冲能量,所述第二能量用于向所述接收器中的负载提供电能。
在一种可能的实现方式中,上述方法还包括:振荡电路接收所述发射器发出的所述第二能量;采样控制模块采集所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
在另一种实现方式中,上述方法还包括:振荡电路接收所述发射器发出的所述第二能量;电源处理器获取所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
可选的,上述采样控制模块包括:应用处理器。
可选的,上述采样控制模块包括:应用处理器和采样单元;所述采样控制模块采集所述振荡电路根据所述第一能量输出的第一电压值,并在所述第一电压值小于所述电源处理器的启动电压值时,控制辅助供电模块为所述电源处理器供电,包括:采样单元采集所述振荡电路输出的所述第一电压值,并将所述第一电压值与所述电源处理器的启动电压值进行比较,获得第一比较结果,并将所述第一比较结果发送给所述应用处理器;在所述第一比较结果为所述第一电压值小于所述电源处理器的启动电压值时,所述应用处理器控制所述辅助供电模块为所述电源处理器供电。
在一种可能的实现方式中,上述采样控制模块采集所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控 制所述辅助供电模块关闭,包括:采样单元采集所述振荡电路输出的所述第二电压值,并将所述第二电压值与所述辅助供电模块的输出电压值进行比较,获得第二比较结果,并将所述第二比较结果发送给所述应用处理器;在所述第二比较结果为所述第二电压值大于所述辅助供电模块的输出电压时,所述应用处理器控制所述辅助供电模块关闭。
在另一可能的实现方式中,上述采样单元包括:比较器和第一基准电压提供电路,其中,所述第一基准电压提供电路用于提供所述辅助供电模块的输出电压值和所述电源处理器的启动电压值,所述比较器用于采集所述振荡电路的输出电压,以及获取所述基准电压提供电路输出的所述辅助供电模块的输出电压值或所述电源处理器的启动电压值,并向所述应用处理器输出所述第一比较结果或所述第二比较结果。
可选的,上述辅助供电模块包括:电池和供电控制单元;所述供电控制单元用于在所述采样控制模块的控制下,将所述电池的电能输出给所述电源处理器。
可选的,上述辅助供电模块还包括:防反灌单元;其中,所述防反灌单元,用于在所述振荡电路输出的电压值大于所述供电控制单元的输出电压值时,禁止所述振荡电路输出的电能反灌至所述供电控制单元中。
可选的,防反灌单元包括:二极管或MOS管。
在一种实现方式中,上述供电控制单元包括:电源管理集成电路和直流变换器;其中,所述采样控制模块,用于使能所述直流变换器;所述电源管理集成电路,用于通过使能后的所述直流变换器,将所述电池的电能输出给所述电源处理器。
在另一种实现方式中,上述供电控制单元包括:电源管理集成电路、直流变换器和开关单元;其中,开关单元,用于在所述采样控制模块的控制下闭合与断开;电源管理集成电路,用于在所述开关单元闭合时,通过所述直流变换器将所述电池的电能输出给所述电源处理器。
可选的,上述开关单元为MOS管。
可选的,上述直流变换器为所述电源管理集成电路中的直流变换器。
在一种可能的实现方式中,上述接收器还包括:通信模块;所述电源处理器向所述发射器发送功率传输指令,包括:电源处理器通过所述通信模块向所述发射器发送功率传输指令。
在另一种可能的实现方式中,上述通信模块包括:通信调制模块;所述电源处理器通过所述通信模块向所述发射器发送功率传输指令,包括:电源处理器通过调节所述通信调制模块生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
在一种示例中,上述通信调制模块包括:至少一个电容或至少一个电阻;所述电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:电源处理器通过调节所述至少一个电容或所述至少一个电阻的电压值,生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
在一种可能的实现方式中,上述通信调制模块包括:第一通信调制模块和第二通信调制模块;所述电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:在所述辅助供电模块处于开启状态时,所述电源处理器通过所述第一通信调制模块生成第一功率传输指令;在所述辅助供电模块处于关闭状态时,所述电源处理器通 过所述第二通信调制模块生成第二功率传输指令。
在另一种可能的实现方式中,上述通信调制模块包括:参数可调的第三通信调制模块;所述电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:在所述辅助供电模块处于开启状态时,所述电源处理器通过调节所述第三通信调制模块的参数,生成第一功率传输指令;在所述辅助供电模块处于关闭状态时,所述电源处理器通过调节所述第三通信调制模块的参数,生成第二功率传输指令。
第三方面,本申请实施例提供一种终端设备,该终端设备包括第一方面所述的接收器,该终端设备可以实现上述第二方面所涉及的方法中各个步骤所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该终端设备包括处理器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法中相应的功能。该终端设备还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。可选的,该终端设备中的接收器用于支持该装置与其它网元之间的通信。其中,所述接收器可以为独立的接收器或者集成收发功能的接收器。
第四方面,本申请实施例提供了一种终端设备,该终端设备包括:第一方面所述的接收器。
第五方面,本申请实施例提供了一种充电器,包括第一方面所述的接收器。
第六方面,本申请实施例提供了一种计算机存储介质,所述存储介质包括计算机指令,当所述指令被计算机执行时,使得所述计算机实现如第二方面任一项所述的无线充电方法。
第七方面,本申请实施例提供一种计算机程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,终端设备或充电器可以从所述可读存储介质读取所述计算机程序,并执行所述计算机程序使得终端设备或充电器实施第二方面任一所述的无线充电方法。
本申请实施例提供的无线充电方法、接收器、终端设备及充电器,通过设置振荡电路、电源处理器、采样控制模块和辅助供电模块;在ping阶段,振荡电路用于接收发射器发送的第一能量,采样控制模块采集振荡电路根据第一能量输出的第一电压值,并在第一电压值小于电源处理器的启动电压值时,控制辅助供电模块为电源处理器供电,以使电源处理器启动。接着进入功率传输阶段,电源处理器向发射器发送功率传输指令,以使得发射器根据该功率传输指令发出第二能量,以向接收器中的负载提供电能。该接收器,通过设置采样控制模块和辅助供电模块,在接收器位于发射器原有的自由度范围外时,采样控制模块可以控制辅助供电模块为电源处理器供电,使得接收器与发射器ping上,进入后续的功率传输阶段,进而增大了无法充电系统的自由度。
附图说明
图1是本申请实施例涉及的一种无线充电系统架构示意图;
图2是本申请实施例涉及的一种无线充电系统的等效电路示意图;
图3a为本申请实施例中自由度的一种示意图;
图3b为本申请实施例中自由度的另一种示意图;
图4为本申请实施例提供的一种接收器的示意图;
图5为本申请实施例提供的一种控制器的结构示意图;
图6为图5所示的采样单元的一种结构示意图;
图7为本申请实施例中接收器的一种结构示意图;
图8为本申请实施例提供的接收器的一种电路示意图;
图9为本申请实施例提供的接收器的另一种电路示意图;
图10为本申请实施例中接收器的一种结构示意图;
图11为本申请实施例中接收器的另一种结构示意图;
图12为本申请实施例中接收器的又一种结构示意图;
图13为本申请实施例提供的接收器的一种电路图;
图14为本申请实施例提供的接收器的一种电路图;
图15为本申请实施例提供的一种无线充电方法的流程图;
图16为本申请实施例提供的另一种无线充电方法的流程图;
图17为本申请实施例提供的又一种无线充电方法的流程图;
图18为本申请实施例提供的一种终端设备的结构示意图;
图19为本申请实施例提供的一种终端设备的结构示意图;
图20为本申请实施例提供的充电器的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例进行介绍。
图1是本申请实施例涉及的一种无线充电系统架构示意图,如图1所示,该无线充电系统包含:接收器20和发射器10,其中,发射器10为能产生近场感应电能的设备,接收器20为能利用近场感应电能的设备。发射器10可以向接收器20传输电能,以实现对接收器20进行无线充电。
接收器20可以是可移动的用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、用户终端、或用户代理。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或车载设备、可穿戴设备、5G系统中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端等。具体的,接收器20可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
接收器20还可以是无线充电电动汽车、智能电话、电子书阅读器、台式个人电脑(PC)、膝上型PC、上网本计算机、工作站、服务器、个人数字助理(PDA)、便携式多媒体播放器(PMP)、MP3播放器、移动医疗设备、照相机或可穿戴设备(例如智能眼 镜、头戴式设备(HMD)、电子服装、电子手镯、电子项链、电子应用配件(或附件)、电子纹身、智能镜子或智能手表)。还可以是智能家用电器。智能家电可以是例如电视(TV)、数字视频盘(DVD)播放器、音频播放器、冰箱、空调、清洁器、烤箱、微波炉、洗衣机、空气净化器、机顶盒、家庭自动化控制面板、安全控制面板、电视机顶盒(例如,Samsung HomeSyncTM、Apple TVTM或Google TVTM)、游戏控制台(例如XboxTM或PlayStationTM)、电子词典、电子钥匙、摄像机或数码相框、各种医疗设备(例如,诸如血糖仪、心率计、血压计、温度计等的各种便携式医疗仪表)、磁性共振血管造影(MRA)机器、磁共振成像(MRI)机器、计算机断层摄影(CT)机器、医疗摄像机、超声波装置等)、导航装置、全球定位系统(GPS)接收器、事件数据记录器(EDR)、飞行数据记录器(FDR)、汽车信息娱乐设备、船用电子设备(例如,海上导航设备、陀螺罗盘等)、航空电子设备、安全设备、车头单元、工业或家庭机器人、用于银行的自动取款机(ATM)、用于商店的销售点(POS)或物联网(IoT)设备(例如电子灯泡、各种传感器、电或气表、喷水装置、火灾报警器、恒温器、路灯、烤面包机、健身设备、热水箱、加热器、锅炉等)。还可以是家具或建筑物/结构、电子板、电子签名接收设备、投影仪或各种仪表(例如,用于水、电或气的仪表)的一部分。在各种实施例中,接收器20可以是上述设备中的一个或其组合。根据一些实施例的接收器可以是柔性电子设备。此外,根据本申请实施例的接收器不限于上述设备,可以是随着技术进步引入的新的接收器。
如图2所示,图2是本申请实施例涉及的一种无线充电系统的等效电路示意图,无线充电系统中具体包含接收器20以及发射器10。
需要说明的是,图2为以发射器10与接收器20组成的松耦合变压器的串联-串联补偿(SS)等效电路示意图,发射器10与接收器20的实现方式还可以为并列-并联补偿(PP)、串联-并联补偿(SP)以及并联-串联补偿(PS)等效电路图,此处不对具体实现方式进行限定,本申请中以SS补偿进行说明示意。
本申请实施例所提出的接收器20,除了可应用于电磁感应式无线充电技术中,还可以应用于磁共振式无线充电技术中,还可以应用于近场通信(near field communication,NFC)无线充电技术或微波无线充电技术中,此处不对具体应用的技术进行限定,本申请中仅以应用于电磁感应式无线充电技术进行说明示意。
发射器10可以包括:直流电源101、整流模块102、串联匹配电容(电容值为Cp)103、发射线圈104和控制模块105。
具体地,如图2所示,直流电源101用于提供充电电能,整流模块102与直流电源101连接,用于接收直流电源101输出的直流电,并将接收到的直流电转换为交流电输出。串联匹配电容(电容值为Cp)103和发射线圈104连接组成振荡电路,该振荡电路与整流模块102连接,用于接收整流模块102输出的交流电,并将交流供给发射线圈104。通过发射线圈104与接收线圈201的耦合作用,将发射线圈104的功率传输给接收线圈201。控制模块105可以分别与直流电源101、整流模块102、串联匹配电容(电容值为Cp)103和发射线圈104连接,用于与各个模块交互控制参数,以实现对各个模块的控制。
其中,整流模块102可以是全桥逆变电路,还可以是半桥逆变电路,还可以是其他实现直流转换为交流的逆变电路,本申请实施例对此不作限定。
接收器20可以包括:接收线圈201、串联匹配电容(电容值为Cs)202、整流模块203、稳压模块204、负载输出205、通信模块206和控制模块207。
具体的,如图2所示,接收线圈201与串联匹配电容(电容值为Cs)202连接,组成接收器20侧的振荡电路。接收线圈201通过线圈耦合接收发射线圈104传输的功率,并经过振荡电路转换为交流电。整流模块203与振荡电路连接,用于接收振荡电路输出的交流电,并对交流电进行整流得到输出直流电压Vrect。稳压模块204,与整流模块203连接,用于消除整流模块203输出电压Vrect的波动,输出稳定的电压Vout。负载输出205与稳压模块204连接,用于接收稳压模块204输出的供电电压Vout。通信模块206用于实现接收器20与发射器10之间的通信,通信的方式有多种,例如是带内通信(intraband transmission,In-Band)、蓝牙通信、紫蜂通信(Zigbee)、WiFi通信等等,本申请实施例中以带内通信为例进行说明,不对实际的通信方式进行限定。
在实际使用中,无线充电技术中自由度是影响使用者实际体验的关键指标之一,下面对自由度的概念进行描述。请参阅图3a以及图3b,图3a为本申请实施例中自由度的一种示意图,图3b为本申请实施例中自由度的另一种示意图。
图3a以及图3b示意了接收器20放在发射器10表面上时能够进行充电的空间范围,其中图3a示意接收器20已与发射器10建立充电连接后,接收器20由发射器10的中心点向外移动至不可充电范围边界,该不可充电边界内的空间范围记为A,需要说明的是,A为表征空间范围的三维变量,图3a中的A示意该三维空间横截面的半径值。该不可充电范围边界条件为:发射器10向接收器20所发出的功率达到发射器10所能输出功率的上限,此时接收器20接收该输出功率所输出的电压Vrect满足接收器20中控制模块207的工作电压阈值。由于此时发射器10所发出的功率已达到发射器10所能传输功率的上限,因此,当接收器20继续远离发射器10,则接收器20中接收发射器10的传输功率所输出的电压Vrect低于控制模块207的工作电压阈值,控制模块207不能正常工作,接收器20与发射器10之间建立的充电连接断开,接收器20无法充电。处于该不可充电范围边界上的接收器20所处的工作状态称为临界掉电状态。
图3b示意接收器20未与发射器10建立充电连接后,接收器20由发射器10的外部空间由外向发射器10的中心点移动至可充电范围边界,该可充电范围边界内的空间范围记为B,需要说明的是,B为表征空间范围的三维变量,图3b中的B示意该三维空间横截面的半径值。该可充电范围边界条件为:接收器20还未与发射器10建立充电连接时,发射器10通过发射线圈发出的能量为脉冲能量,该脉冲能量称为ping脉冲能量,因此接收器20还未与发射器10建立充电连接到接收器20与发射器10建立充电连接的阶段称为ping阶段。随着接收器20接近发射器10中心点,接收器20接收ping脉冲能量所输出的电压Vrect逐渐升高,当接收器20移动至可充电范围边界上时,Vrect达到控制模块207的工作电压阈值,控制模块207正常工作,并通过通信模块206向发射器10发送功率传输指令,发射器10根据该功率传输指令停止发送ping脉冲能量,改为发送非脉冲的电能。达到控制模块207工作电压阈值的状态称为接收器20能够被ping上,该位置上,接收器20与发射器10建立正常的充电连接,接收器20可以正常充电。
在A与B以内接收器20均可以进行充电,根据WPC规定的Qi标准,当前无线 充电系统中,A的范围大于B的范围,因此定义B的范围为自由度。
为了便于理解本申请实施例,下面对本申请实施例中涉及的一些概念或术语进行解释。
(1)耦合系数
耦合系数是用来表征发射器10中的发射线圈和接收器20中的接收线圈101之间耦合的紧密程度。耦合系数越高,发射器10中的发射线圈104向接收器20中的接收线圈101传输功率的效率越高。耦合系数与两者(发射器10与接收器20)的偏位有关,发射器10与接收器20之间偏位越大,发射器10中的发射线圈104和接收器20中的接收线圈101之间耦合的紧密程度越小,耦合系数越小。因此在进行无线充电时,发射器10与接收器20之间偏位越小,无线充电系统的充电效率越高。即耦合系数由发射器10与接收器20之间偏位确定。这里的偏位是指发射器10中的发射线圈104和接收器20中的接收线圈101位置偏移。对偏移的理解,可参见图3a以及图3b,A与B也是位置偏移的一种,此处不再赘述。
(2)电感
电感的物理量符号L,其大小称为感量。线圈的交流电阻(alternating current resistance,ACR)和无功功率会限制感量无限制地增大,原因如下:1.感量与线圈匝数的平方成正比,相同堆叠空间内要想提高感量就要增加匝数,匝数增加后绕组的线径必然变小,ACR就会变大,线圈损耗变大,效率就会降低;2.线圈产生磁场以及电容充电放电等情况消耗的功率称为无功功率,无功功率取决于线圈电感和谐振电路中电容的匹配情况,这就导致要想使无功功率最低,感量必须控制在一定范围内,不能无限制增大。
由于Qi标准中规定了发射器10所发出的ping脉冲能量的功率上限;接收器20受到应用环境的限制,例如,当接收器20为智能手表时,受到智能手表尺寸的限制,接收器20的接收线圈101尺寸无法做到很大,使得接收器20与发射器10之间的耦合系数较低;接收器20进行无线充电时,接收线圈101受到无功功率的限制,匝数以及线圈尺寸无法做的太大。出于上述多种因素的影响,只有当接收器20距离发射器10较近时,接收器20才能ping上,与发射器10建立充电连接,造成了自由度较低,影响了使用者使用接收器的体验。
为了解决上述技术问题,基于上述图2的无线充电系统中接收器10的示意图,本申请提供了一种无线充电方法与接收器,下面对本申请实施例提供的接收器10进行描述。
图4为本申请实施例提供的一种接收器的示意图,如图4所示,本申请实施例的接收器20包括:振荡电路210、电源处理器220、采样控制模块230和辅助供电模块240,其中,振荡电路210分别与电源处理器220和采样控制模块230连接,辅助供电模块240分别与采样控制模块230和电源处理器220连接。本申请实施例的接收器20相比于图2所示的接收器20,主要增加了采样控制模块230和辅助供电模块240,该采样控制模块230用于采集振荡电路210输出的电压,同时,该采样控制模块230还用于在判断振荡电路210的输出电压小于电源处理器220的启动电压时,控制辅助供电模块240为电源处理器220供电。
具体的工作过程为:在ping阶段,如图3b所示,若接收器20位于发射器原有的自由度范围外,即接收器20距离发射器中心点的距离大于B,振荡电路210可以感应到发射器发出的第一能量,该第一能量为ping脉冲能量,并根据该第一能量输出第一电压值,但是由于该第一电压值小于电源处理器220的工作电压值,电源处理器220无法启动。在该情况下,本申请实施例的采样控制模块230采集振荡电路210输出的第一电压值,并将该第一电压值与电源处理器220的启动电压值进行比较,当采样控制模块230判断该第一电压值小于电源处理器220的启动电压值时,采样控制模块230向辅助供电模块240发送控制信号,以控制辅助供电模块240向电源处理器220供电,电源处理器220启动,即接收器20与发射器ping上,可进入后续的功率传输阶段。即本申请实施例,当接收器20位于发射器的原有的自由度范围外时,通过辅助供电的方式为电源处理器220供电,使得接收器20与发射器ping上,进入后续的功率传输阶段,进而增大了无法充电系统的自由度。
在功率传输阶段,电源处理器220启动后,向发射器发送功率传输指令,该功率传输指令用于指示发射器发送第二能量,该第二能量用于向接收器20中的负载提供电能,该第二能量为连续的电能。发射器根据该功率传输指令停止发送ping脉冲能量,改为发送持续的电能,即发送第二能量。接收器20接收发射器发送的第二能量,并使用该第二能量为负载供电。其中,本申请实施例的功率传输阶段与图2所示的已有的无线充电系统中的功率传输阶段的具体过程相同,在此不再赘述。
由上述可知,本申请实施例中接收器20与发射器之间的位置关系只要满足振荡电路210可以接收到发射器发送的第一能量时,接收器20与发射器即可ping上,进行后续功率传输。这与图3b所示的接收器20必须位于发射器的自由度范围B内相比,增大了接收器20与发射器的充电距离,提高了无线充电的自由度,进而提升了用户的无线充电体验。
可选的,图4中的振荡电路210可以包括图2所示的接收线圈、电感Ls和串联匹配电容Cs,图4中的电源处理器220相当于上述图2中的控制模块。
本申请实施例的接收器20,通过设置振荡电路210、电源处理器220、采样控制模块230和辅助供电模块240;在ping阶段,振荡电路210用于接收发射器发送的第一能量,采样控制模块230采集振荡电路210根据第一能量输出的第一电压值,并在第一电压值小于电源处理器220的启动电压值时,控制辅助供电模块240为电源处理器220供电,以使电源处理器220启动。接着进入功率传输阶段,电源处理器220向发射器发送功率传输指令,以使得发射器根据该功率传输指令发出第二能量,以向接收器20中的负载提供电能。该接收器20,通过设置采样控制模块230和辅助供电模块240,在接收器20位于发射器原有的自由度范围外时,采样控制模块230可以控制辅助供电模块240为电源处理器220供电,使得接收器20与发射器ping上,进入后续的功率传输阶段,进而增大了无法充电系统的自由度。
由上述实施例可知,电源处理器220在辅助供电模块240的供电下启动,并向发射器发送功率传输指令,以使发射器根据功率传输指令发出第二能量。在功率传输阶段,接收器20调节发射器发送的第二能量的过程为一个闭环反馈调节过程。具体过程如下:接收器20将期望电压值和接收器20当前接收到的第二电压值进行比较,将期 望电压值和实际接收到的第二电压值的电压差值发送给发射器,发射器根据该电压差值进行发射功率调节。经过上述闭环反馈调节过程,在调节完成后,接收器20实际接收的第二电压值等于期望电压值时,无线充电系统进行平稳的充电阶段。
由上述可知,在功率传输阶段,发射器逐渐调大输出功率,接收器20从发射器接收到的电压也逐渐增大。为了防止在后续无线充电过程中,辅助供电模块240一直为电源处理器220供电,造成辅助供电模块240电能的浪费,则当接收器20从发射器接收的电能大于辅助供电模块240输出的电压值时,或者,当接收器20从发射器接收的电能达到接收器20的期望电压值时,则控制辅助供电模块240停止为电源处理器220供电,使用接收器20从发射器接收的电能为电源处理器220供电。
需要说明的是,辅助供电模块240输出的电压值大于等于电源处理器220的启动电压,同时,辅助供电模块240输出的电压值小于接收器20的期望电压值。
下面提供如下不同的实现方式来控制辅助供电模块240停止为电源处理器220供电。
在一种实现方式下,电源处理器220控制辅助供电模块240停止为电源处理器220供电。具体的,由于电源处理器220与振荡电路210的输出端连接,因此,电源处理器220可以采集到振荡电路210输出的第二电压值,同时,由于辅助供电模块240向电源处理器220供电,因此,电源处理器220可以获得辅助供电模块240输出的电压值。接着,电源处理器220将该第二电压值与辅助供电模块240的输出电压进行比较,当该第二电压值大于辅助供电模块240的输出电压时,电源处理器220控制辅助供电模块240与电源处理器220断开,并使用振荡电路210输出的第二电压来供电。即该实现方式中,由电源处理器220来控制辅助供电模块240的关闭,其整个控制过程简单,易于实现。
在另一种实现方式下,采样控制模块230控制辅助供电模块240停止为电源处理器220供电。具体的,由于采样控制模块230与辅助供电模块240连接,因此获得辅助供电模块240输出的电压值,采样控制模块230实时采集振荡电路210输出的第二电压值。接着,采样控制模块230将该第二电压值与辅助供电模块240的输出电压进行比较,当该第二电压值大于辅助供电模块240的输出电压时,采样控制模块230控制辅助供电模块240与电源处理器220断开,此时电源处理器220使用振荡电路210输出的第二电压来供电。
在上述图4实施例的基础上,本申请实施例的采样控制模块230可以具有不同的结构,下面结合不同结构的采样控制模块230对接收器20的工作原理进行详细说明。
在一种实现方式下,采样控制模块230可以为应用处理器(Application Processor,AP),该AP可以为接收器20已有的AP,该AP可以采集振荡电路210输出的电压值,并根据该电压值控制辅助供电模块240与电源处理器220的接通和断开。具体的,在ping阶段,该AP用于采集振荡电路210输出的第一电压值,并在第一电压值小于电源处理器220的启动电压时,AP控制辅助供电模块240为电源处理器220供电。在功率传输阶段,该AP用于采集振荡电路210输出的第二电压值,并在第二电压值大于辅助供电模块240的输出电压时,AP控制辅助供电模块240停止为电源处理器220供电。本实施例,通过对接收器20已有的AP赋予新的功能,使得AP实现上述采样 控制模块230的功能,进而丰富了AP的功能,提高了AP的利用率。
可选的,上述AP包括输入/输出(Input/Output Interface,I/O)接口和模数转换器(Analog To Digital converter,ADC)接口,振荡电路210的输出端与AP的I/O接口或ADC接口连接,AP的I/O接口或ADC接口采集振荡电路210输出的电压值,AP内部处理芯片完成电压的比较,并根据比较结果来控制辅助供电模块240。例如,在ping阶段,AP的I/O接口或ADC接口采集振荡电路210输出的第一电压值,并将该第一电压值发送给AP内部的处理芯片,该处理芯片中保存有电源处理器220的启动电压值,该处理芯片在第一电压值小于电源处理器220的启动电压值时,向辅助供电模块240发送供电控制信息,例如向辅助供电模块240发送高电平信息,这样,辅助供电模块240在接收到AP发送的高电平信号时,为电源处理器220供电。在功率发送阶段,AP的I/O接口或ADC接口采集振荡电路210输出的第二电压值,并将该第二电压值发送给AP内部的处理芯片,该处理芯片中保存有辅助供电模块240的输出电压值,该处理芯片在第二电压值大于辅助供电模块240的输出电压值时,向辅助供电模块240发送关闭控制信息,例如向发送辅助供电模块240发送低电平信号,这样,辅助供电模块240在接收到AP发送的低电平信号时,停止为电源处理器220供电。可选的,上述AP可以向辅助供电模块240发送低电平信号,辅助供电模块240在接收到AP发送的低电平信号时,为电源处理器220供电;AP向辅助供电模块240发送高电平信号,辅助供电模块240在接收到AP发送的高电平信号时,停止为电源处理器220供电。
在另一种实现方式下,参照图5所示,图5为本申请实施例提供的一种控制器的结构示意图,采样控制模块230可以包括:应用处理器231和采样单元232,采样单元232分别与振荡电路210和应用处理器231连接,应用处理器231与所述辅助供电模块240连接。
具体的实现过程中,在ping阶段,该采样单元232用于采集振荡电路210输出的第一电压值,并将该第一电压值与电源处理器220的启动电压值进行比较,获得第一比较结果。接着,采样单元232将该第一比较结果发送给应用处理器231。当第一比较结果为第一电压值小于电源处理器220的启动电压值时,应用处理器231用于控制辅助供电模块240为电源处理器220供电。
在功率传输阶段,采样单元232用于采集振荡电路210输出的第二电压值,并将该第二电压值与辅助供电模块240的输出电压值进行比较,获得第二比较结果。接着,采样单元232将该第二比较结果发送给应用处理器231。当该第二比较结果为第二电压值大于辅助供电模块240的输出电压时,应用处理器231用于控制辅助供电模块240停止为所述电源处理器220供电,以使接收器20使用从发射器接收的电能为电源处理器220。
可选的,上述采样单元232中可以保存有电源处理器220的启动电压值和辅助供电模块240的输出电压值,当采样单元232采集到第一电压值时,将该第一电压值与自身保存的电源处理器220的启动电压值进行比较,生成第一比较结果。当采集到第二电压值时,将该第二电压值与辅助供电模块240的输出电压值进行比较,生成第二比较结果。
由上述可知,本申请实施例的采样控制模块可以包括AP,该AP用于采集振荡电路输出的电压值,并根据该电压值控制辅助供电模块为电源处理器供电或停止为电源处理器供电,其整个实现过程简单,且丰富了AP的功能,提高了AP的利用率,且不会增加接收器的体积。
在一种示例中,在图5的基础上,参照图6所示,图6为图5所示的采样单元的一种结构示意图,该采样单元232包括:比较器2321和基准电压提供电路2322。该基准电压提供电路2322可以根据实际需要提供多种电压值。如图6所示,该比较器2321具有2个输入端和1个输出端,比较器2321的第一输入端为比较器2321的正向(+)输入端,其与振荡电路210的输出端连接,比较器2321的第二输入端为比较器2321的负向(-)输入端,其与基准电压提供电路2322连接,比较器2321的输出端与应用处理器231连接。
为了保证无线充电系统可以进行有效的无线充电,则接收器20与发射器之间的位置关系需要满足预设条件,该预设条件为在ping阶段,接收器20可以接收到发射器发送的第一能量,即接收器20中的振荡电路210根据第一电能输出的第一电压值大于0 V。而比较器2321只能通过电压比较才可以判断出所采集的第一电压值的大小,因此,本申请实施例的基准电压提供电路2322可以提供预设的基准电压值Vref,该基准电压值Vref大于0V且小于电源处理器220的启动电压值,比较器2321可以将采集的第一电压值与该基准电压值Vref进行比较,以判断接收器20与发射器之间的位置关系是否满足预设条件,在接收器20与发射器之间的位置关系满足预设条件后,接收器20执行本申请实施例提供的无线充电过程。
在一种示例中,上述基准电压提供电路2322除了可以提供基准电压值Vref外,还可以提供辅助供电模块240的输出电压值和电源处理器220的启动电压值。示例性的,该基准电压提供电路2322包括3个不同的电压提供电路和一个控制器,这3个不同的电压提供电路分别用于提供基准电压值Vref、辅助供电模块240的输出电压值和电源处理器220的启动电压值。该控制器可以控制3个电压提供电路中的哪个电压提供电路接入比较器2321的第二输入端。示例性,该基准电压提供电路2322包括一个电压供电电路,该电压供电电路可以提供上述3种电压。
具体的实现过程:在ping阶段,基准电压提供电路2322首先向比较器2321的第二输入端输出基准电压Vref。比较器2321的第一输入端采集振荡电路210输出的第一电压值,比较器2321中的比较电路将第一电压值与基准电压Vref进行比较,当第一电压值大于基准电压Vref时,说明接收器20与发射器之间可以进行无线充电。此时,基准电压提供电路2322向比较器2321的第二输入端输出电源处理器220的启动电压值,比较器2321中的比较电路将第一电压值与电源处理器220的启动电压值进行比较,生成第一比较结果,并将该第一比较结果发送给AP。该第一比较结果为高低电平信号,例如当第一电压值小于电源处理器220的启动电压值时,第一比较结果为高电平信号,当第一电压值大于等于电源处理器220的启动电压值时,第一比较结果为低电平信号;可选的,也可以是当第一电压值小于电源处理器220的启动电压值时,第一比较结果为低电平信号,当第一电压值大于等于电源处理器220的启动电压值时,第一比较结果为高电平信号。AP在第一比较结果为第一电压值小于电源处理器220的启动电压值 时,控制辅助供电模块240为电源处理器220供电,例如,AP在确定辅助供电模块240没有向电源处理器220供电,且接收到比较器2321发送的高电平信号时,控制辅助供电模块240为电源处理器220供电。
在功率传输阶段,基准电压提供电路2322向比较器2321的第二输入端输出辅助供电模块240的输出电压值,比较器2321中的比较电路将第二电压值与辅助供电模块240的输出电压值进行比较,生成第二比较结果,并将该第二比较结果发送给AP。该第二比较结果也为高低电平信号,例如当第二电压值大于等于辅助供电模块240的输出电压值时,第二比较结果为高电平信号,当第二电压值小于辅助供电模块240的输出电压值时,第二比较结果为低电平信号;可选的,也可以是当第二电压值大于等于辅助供电模块240的输出电压值时,第二比较结果为低电平信号,当第二电压值小于辅助供电模块240的输出电压值时,第二比较结果为高电平信号。AP在第二比较结果为第二电压值大于等于辅助供电模块240的输出电压值时,控制辅助供电模块240停止为电源处理器220供电,例如,AP在确定辅助供电模块240在为电源处理器220供电,且接收到比较器2321发送的高电平信号时,控制辅助供电模块240停止为电源处理器220供电。
可选的,上述基准电压提供电路2322与辅助供电模块240连接,该辅助供电模块240为基准电压提供电路2322提供电能。
由上述可知,本申请实施例的采样控制模块包括应用处理器和采样单元,该采样单元用于采集振荡电路输出的电压值,应用处理器用于根据采样单元采集的电压值来控制辅助供电模块为电源处理器供电或停止为电源处理器供电,其电路上容易实现,且成本低,控制策略简单。
在上述图4至图6的基础上,请参阅图7,图7为本申请实施例中接收器的一种结构示意图。下面结合图7对接收器20中的辅助供电模块240进行详细描述。
如图7所示,本申请实施例的辅助供电模块240包括:电池241和供电控制单元242;该供电控制单元242包括3个端口,供电控制单元242的第一端与电池241的输出端连接,供电控制单元242的第二端与采样控制模块230连接,供电控制单元242的第三端与处理器连接。该供电控制单元242用于在采样控制模块230的控制下,将电池241的电能输出给电源处理器220。
具体的实现过程:在ping阶段,采样控制模块230采集振荡电路210输出的第一电压值,并在判断第一电压值小于电源处理器220的启动电压值时,采样控制模块230向供电控制单元242的第二端发送指示电源处理器220供电的控制信号,供电控制单元242接收到该控制信号后,将电池241的电能输出给电源处理器220,以实现对电源处理器220的供电。
在功率传输阶段,电源处理器220或采样控制模块230向供电控制单元242发送指示停止向电源处理器220供电的控制信号,供电控制单元242接收到该控制信号后,供电控制单元242控制电池241停止向电源处理器220供电。例如,供电控制单元242断开与电源处理器220的连接,进而使得电池241与电源处理器220断开连接,或者,供电控制单元242断开与电池241的连接,进而使得电池241与电源处理器220也断开连接。
继续参照图7所示,为了防止振荡电路210输出的高电压反灌至供电控制单元242,损坏供电控制单元242,则在供电控制单元242的第三端与电源处理器220之间设置防反灌单元243。该防反灌单元243可以使供电控制单元242的第三端输出的电能通过,使得振荡电路210输出的电能无法通过,即该防反灌单元243具有单向导通的作用。这样,在振荡电路210输出的电压值大于供电控制单元242的输出电压值时,可以禁止振荡电路210输出的电能反灌至供电控制单元242中,烧坏供电控制单元242的器件,实现对供电控制单元242的保护。
可选的,上述供电控制单元242可以是二极管或金属氧化物半导体场效益(metal oxide semiconductor,MOS)管。
可选的,上述电池241可以为接收器20中为各负载供电的电池,例如接收器20为手机,则上述电池241为手机中的电池。
可选的,上述电池241为接收器20中除为各负载供电的电池之外的电池,当接收器20中为各负载供电的电池没电时,该电池241有电,可以为电源处理器220提供电能,进而实现在接收器20没电关机时,依然可以进行本申请实施例的无线充电。
在上述图7的基础上,参照图8和图9所示,图8为本申请实施例提供的接收器的一种电路示意图,图9为本申请实施例提供的接收器的另一种电路示意图。上述实施例所述的供电控制单元242包括但不限于图8和图9所示的结构。
在供电控制单元242的一种示例中,如图8所示,供电控制单元242可以包括:电源管理集成电路(Power Management IC,PMIC)2421和直流变换器2422;电源管理集成电路2421的输入端与所述电池241的输出端连接,所述电源管理集成电路2421的输出端与直流变换器2422的第一端连接,直流变换器2422的第二端与所述采样控制模块230的输出端连接,直流变换器2422的第三端与所述处理器连接;采样控制模块230,用于使能直流变换器2422;电源管理集成电路2421,用于通过使能后的直流变换器2422,将电池241的电能输出给电源处理器220。
具体的实现过程:在ping阶段,采样控制模块230采集振荡电路210输出的第一电压值,并在判断第一电压值小于电源处理器220的启动电压值时,采样控制模块230使能直流变换器2422,直流变换器2422工作后,电源管理集成电路2421将电池241的电能通过该直流变换器2422输出给电源处理器220,以实现对电源处理器220的供电。
在功率传输阶段,当振荡电路210输出的第二电压值大于直流变换器2422的输出电压时,电源处理器220或采样控制模块230控制直流变换器2422停止工作,即禁止直流变换器2422。此时,电源管理集成电路2421无法通过禁止的直流变换器2422将电池241的能量提供给电源处理器220,进而使得电池241停止向电源处理器220供电。
在供电控制单元242的另一种示例中,如图9所示,供电控制单元242包括:电源管理集成电路2421、直流变换器2422和开关单元2423;电源管理集成电路2421的输入端与电池241的输出端连接,电源管理集成电路2421的输出端与直流变换器2422的输入端连接,直流变换器2422的输出端与开关单元2423的第一端连接,开关单元2423的第二端与采样控制模块230的输出端连接,开关单元2423的第三端与所 述处理器连接。采样控制模块230,用于控制开关单元2423的闭合与断开;电源管理集成电路2421,用于在开关单元2423闭合时,通过直流变换器2422将电池241的电能输出给电源处理器220。
具体的实现过程:在ping阶段,采样控制模块230采集振荡电路210输出的第一电压值,并在判断第一电压值小于电源处理器220的启动电压值时,采样控制模块230控制开关单元2423闭合,此时电池241、电源管理集成电路2421、直流变换器2422和电源处理器220构成通路,电源管理集成电路2421可以通过直流变换器2422将电池241的电能输出给电源处理器220,实现对电源处理器220的供电。
在功率传输阶段,当振荡电路210输出的第二电压值大于直流变换器2422的输出电压时,电源处理器220或采样控制模块230控制开关单元2423断开。此时,电池241与电源处理器220断开连接,使得电池241停止为电源处理器220供电。
可选的,如图9所示,上述开关单元2423为金属氧化物半导体场效益MOS管,该MOS管的栅极与采样控制模块230连接,该MOS管的漏极与直流变换器2422的输出端连接,该MOS管的源级通过防反灌单元243与电源处理器220连接。
可选的,图8和图9所示的上述直流变换器2422可以为Boost变换器,该Boost变换器为一种非隔离型电力电子变换器,即直流转直流(DC-DC)型,并且具有升压得作用,例如,可以将电池241输出的直接电压进行升压后输出给电源处理器220。
可选的,上述电源管理集成电路2421包括多个直流变换器,图8和图9所示的直流变换器2422可以为电源管理集成电路2421中的某一个直流变换器。
在上述图4至图9的基础上,请参阅图10,图10为本申请实施例中接收器的一种结构示意图,本申请实施例的接收器20还可以包括:通信模块250,电源处理器220通过该通信模块250向发射器发送功率传输指令。
上述通信模块250可以为无线通信模块250,例如为:带内通信模块、蓝牙通信模块、Zigbee通信模块、WiFi通信模块等等。
在一些实施例中,参照图11所示,上述通信模块250还包括:通信调制模块251,该通信调制模块251与电源处理器220连接,在实际应用中,电源处理器220调节通信调制模块251,使通信调制模块251生成功率传输指令,并通过通信模块250将该功率传输指令发送给发射器。
在一些实施例中,参照图12所示,上述通信模块250还包括:ASK模块252,该ASK模块252分别与电源处理器220和通信调制模块251连接,ASK模块252在电源处理器220的控制下来调节通信调制模块251,以使通信调制模块251生成功率传输指令,并通过通信模块250将该功率传输指令发送给发射器。
可选的,图11和图12所示的通信调制模块251可以包括:至少一个电容或至少一个电阻;通信调制模块251生成上述功率传输指令的过程可以是,电源处理器220通过调节至少一个电容或至少一个电阻的电压值,生成功率传输指令,并通过通信模块250向发射器发送功率传输指令。
具体的,以图12为例进行说明,电源处理器220通过向通信模块250中ASK模块252下达功率传输指令,通信模块250中的ASK模块252可以通过调节通信调制模块251以实现接收器20与发射器之间的带内通讯。调节通信调制模块251的具体方式 如下:包含采用开关电容调制和/或开关电阻调制。通信模块250通过ASK模块252调制来自处理器的功率传输指令,并根据该功率传输指令调节通信调制模块251中相关电容和/或电阻的接通和断开,使得通信调制模块251中的电容和/或电阻接入接收器20电路,或者不接入接收器20电路,从而改变接收器20中接收线圈中电流或电压,使发射器的电压或电流发生变化。发射器采集电压或电流,并进行解调处理后分析,即可获取接收器20发送的功率传输指令。
在实际应用中,在ping阶段当接收器20在发射器的原有自由度范围外时,接收器20中的振荡电路210上感应的AC能量信号会很弱,这样会存在接收器20通过通信调制模块251所调制出的带内通信信号的调制深度不够,进而导致其与发射器的通信失败的问题。为了解决该技术问题,本申请实施例提出如下通信调制模块251。
在一种实现方式下,通信调制模块251包括:第一通信调制模块和第二通信调制模块,其中第一通信调制模块在辅助供电模块240处于启动状态时工作,第二通信调制模块在辅助供电模块240处于关闭状态时工作。具体工作过程为:电源处理器220在辅助供电模块240处于开启状态时,通过第一通信调制模块生成第一功率传输指令,并通过通信模块250向所述发射器发送第一功率传输指令;在辅助供电模块240处于关闭状态时,通过第二通信调制模块1生成第二功率传输指令,并通过通信模块250向所述发射器发送第二功率传输指令。
在另一种实现方式下,通信调制模块251包括:参数可调的第三通信调制模块;其具体工作过程为:电源处理器220在辅助供电模块240处于开启状态时,通过调节第三通信调制模块的参数,例如第三通信调制模块包括电容和/或电阻,通过调节电容值和/或电阻值来实现对第三通信调制模块的调制,进而生成第一功率传输指令;在辅助供电模块240处于关闭状态时,电源处理器220通过调节第三通信调制模块的参数,生成第二功率传输指令。
由上述可知,本申请实施例通过设置不同的第一通信调制模块和第二通信调制模块,分别工作在辅助供电模块240处于启动状态和辅助供电模块240处于关闭状态的情况下,或者通过设置参数可调的第三通信调制模块,分别在辅助供电模块240处于启动状态和辅助供电模块240处于关闭状态的情况下时切换参数,以提高电源处理器220在辅助供电模块240供电工作时,可以调制出可靠的通信信号。
在上述图4至图12的基础上,参照图13所示,图13为本申请实施例提供的接收器的一种电路图。本申请实施例的接收器20还包括整流模块260和降压模块270,整流模块260分别与振荡电路210和降压模块270连接,降压模块270与接收器20中的负载连接。
整流模块260,用于接收振荡电路210输出的交流电,并对交流电进行变压得到直流的输出电压Vrect,并对输出电压Vrect进行整流以消除输出电压的波动,输出稳定的输出电压Vrect。降压模块270,用于对整流模块260输出的稳定输出电压Vrect进行降压处理,输出满足与降压模块270相连的用电负载所需的电压Vout。
其中,整流模块260具体包含不控整流模块260或同步整流模块260,不控整流模块260中包含有至少一个二极管,同步整流模块260中包含有至少一个金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field effect transistor,MOSFET), 当整流模块260包含的模块为不控整流模块时,接收器20中的振荡电路210称为二极管全桥整流电路,当整流模块260包含的模块为同步整流模块时,接收器20中的振荡电路210称为开关管同步整流电路,当整流模块260为其它模块时,接收器20中的振荡电路210还可以是半桥整流电路,还可以是其他实现交流转换为直流的整流电路,本申请实施例对此不作限定。
可选的,如图13所示,整流模块260为由4个二极管并联组成的不控整流模块。降压模块270由两个低压差线性稳压器(low dropout regulator,LDO)并联组成,其中LDO1负责向用电负载供电,LDO2负责向电源处理器220供电。
可选的,电源处理器220为微控制单元(microcontroller unit,MCU)。
在一些实施例中,如图13所示,采样控制模块230通过整流模块260与振荡电路210连接,即振荡电路210的输出端与整流模块260的输入端连接,采样控制模块230与整流模块260的输出端连接,用于采集整流模块260输出的电压值,即上述各实施例所述的振荡电路210输出的第一电压值和第二电压值均为经过整流模块260整流和稳压后的电压值。具体的实现过程为:在ping阶段,采样控制模块230采集整流模块260输出的第一电压值,并在第一电压值小于电源处理器220的启动电压值时,控制辅助供电模块240为电源处理器220供电,以使电源处理器220启动。电源电源处理器220启动后,向发射器发送功率传输指令,以使得发射器根据功率传输指令发出第二能量。在功率传输阶段,采样控制模块230采集整流模块260输出的第二电压值,并在第二电压值大于辅助供电模块240的输出电压时,控制辅助供电模块240关闭。其具体过程可以上述图4实施例的描述,在此不再赘述。
参照图14,图14为本申请实施例提供的接收器的一种电路图,该接收器20包括显示装置280,该显示装置180与采样控制模块230连接,具体实现过程为:在ping阶段,采样控制模块230采集整流模块260输出的第一电压值,并比较该第一电压值与电源处理器220的启动电压值,若第一电压值小于电源处理器220的启动电压值时,采样控制模块230向显示装置280发送提示信息,例如,该提示信息为“接收终端设备位置放偏,需向发射端中心移动”。用户通过显示装置280获得提示信息后,调整接收器20与发射器之间的位置,以使接收器20与发射器ping上,进行后续的功率传输。这样,可以间接地提高无线充电系统的自由度。
图15为本申请实施例提供的一种无线充电方法的流程图,该无线充电方法应用于上述图4所示的接收器,如图4所示,该接收器包括:振荡电路、电源处理器、采样控制模块和辅助供电模块。该充电方法包括:
S101、振荡电路接收发射器发出的第一能量,其中所述第一能量为脉冲能量。
S102、采样控制模块采集振荡电路根据第一能量输出的第一电压值,并在第一电压值小于电源处理器的启动电压值时,控制辅助供电模块为电源处理器供电,以使电源处理器启动。
S103、电源处理器向发射器发送功率传输指令,以使得发射器根据功率传输指令发出第二能量,第二能量不为脉冲能量,第二能量用于向接收器中的负载提供电能。
本申请实施例的无线充电方法,参照图4所示,在ping阶段,振荡电路210用于接收发射器发送的第一能量,采样控制模块230采集振荡电路210根据第一能量输出 的第一电压值,并在第一电压值小于电源处理器220的启动电压值时,控制辅助供电模块240为电源处理器220供电,以使电源处理器220启动。接着进入功率传输阶段,电源处理器220向发射器发送功率传输指令,以使得发射器根据该功率传输指令发出第二能量,以向接收器20中的负载提供电能。该接收器20,通过设置采样控制模块230和辅助供电模块240,在接收器20位于发射器原有的自由度范围外时,采样控制模块230可以控制辅助供电模块240为电源处理器220供电,使得接收器20与发射器ping上,进入后续的功率传输阶段,进而增大了无法充电系统的自由度。
本申请实施例的具体实现过程可以参照上述图4所示的接收器的工作过程,在此不再赘述。
在上述图15的基础上,本申请实施例的无线充电方法还包括停止为电源处理器供电的步骤,其中停止为电源处理器供电包括两种方式。
方式一,参照图16所示,电源处理器控制辅助供电模块停止为电源处理器供电,具体包括:
S1041、振荡电路接收发射器发出的第二能量。
S1042、电源处理器获取振荡电路根据第二能量输出的第二电压值,并在第二电压值大于辅助供电模块的输出电压时,控制辅助供电模块停止为电源处理器供电。
方式二,参照图17所示,采样控制模块控制辅助供电模块停止为电源处理器供电,具体包括:
S1051、振荡电路接收所述发射器发出的所述第二能量。
S1052、采样控制模块采集所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
本申请实施例的具体实现过程可以参照上述接收器控制辅助供电模块停止为电源处理器供电的工作过程,在此不再赘述。
上述实施例涉及的采样控制模块可以包括不同的结构。
在一种示例中,采样控制模块包括:应用处理器。
在另一种示例中,如图5所示,采样控制模块包括:应用处理器和采样单元。
在该示例中,上述S102可以包括如下:
步骤A1、采样单元采集所述振荡电路输出的所述第一电压值,并将所述第一电压值与所述电源处理器的启动电压值进行比较,获得第一比较结果,并将所述第一比较结果发送给所述应用处理器。
步骤A2、在所述第一比较结果为所述第一电压值小于所述电源处理器的启动电压值时,所述应用处理器控制所述辅助供电模块为所述电源处理器供电。
在该示例中,S1052可以包括:
步骤B1、采样单元采集所述振荡电路输出的所述第二电压值,并将所述第二电压值与所述辅助供电模块的输出电压值进行比较,获得第二比较结果,并将所述第二比较结果发送给所述应用处理器。
步骤B2、在所述第二比较结果为所述第二电压值大于所述辅助供电模块的输出电压时,所述应用处理器控制所述辅助供电模块关闭。
示例性的,上述采样单元包括:比较器和第一基准电压提供电路。
其中,第一基准电压提供电路,用于提供所述辅助供电模块的输出电压值和所述电源处理器的启动电压值。
比较器,用于采集所述振荡电路的输出电压,以及获取所述基准电压提供电路输出的所述辅助供电模块的输出电压值或所述电源处理器的启动电压值,并向所述应用处理器输出所述第一比较结果或所述第二比较结果。
本申请实施例提供的无线充电方法,其具体实现过程可以参照上述图5和6所示的描述,在此不再赘述。
在上述实施例的基础上,在一种可能的实现方式中,参照图7所示,本申请实施例的辅助供电模块包括:电池和供电控制单元。
其中,供电控制单元,用于在采样控制模块的控制下,将电池的电能输出给电源处理器。
在一种实现方式中,辅助供电模块还包括:防反灌单元。该防反灌单元,用于在所述振荡电路输出的电压值大于所述供电控制单元的输出电压值时,禁止所述振荡电路输出的电能反灌至所述供电控制单元中。
可选的,上述防反灌单元包括:二极管或MOS管。
在一种实现方式中,参照图8所示,上述供电控制单元包括:电源管理集成电路和直流变换器。
其中,采样控制模块,用于使能所述直流变换器。
电源管理集成电路,用于通过使能后的所述直流变换器,将所述电池的电能输出给所述电源处理器。
在另一种实现方式中,参照图9所示,上述供电控制单元包括:电源管理集成电路、直流变换器和开关单元。
其中,开关单元,用于在所述采样控制模块的控制下闭合与断开。
电源管理集成电路,用于在所述开关单元闭合时,通过所述直流变换器将所述电池的电能输出给所述电源处理器。
可选的,上述开关单元为金属氧化物半导体场效益MOS管。
可选的,上述直流变换器为所述电源管理集成电路中的直流变换器。
本申请实施例提供的无线充电方法,其具体实现过程可以参照上述图7至图9所示的描述,在此不再赘述。
在上述实施例的基础上,参照图10所示,本申请实施例的接收器还包括:通信模块。此时,上述S103中电源处理器向所述发射器发送功率传输指令,包括:
S1031、电源处理器通过所述通信模块向所述发射器发送功率传输指令。
在一种实现方式中,参照图11所示,上述通信模块包括:通信调制模块,此时,上述S1031可以包括:
S10311、电源处理器通过调节所述通信调制模块生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
在一种示例中,上述通信调制模块包括:至少一个电容或至少一个电阻;此时,上述S10311中电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:
S10311a、电源处理器通过调节所述至少一个电容或所述至少一个电阻的电压值,生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
在一种可能的实现方式中,通信调制模块包括:第一通信调制模块和第二通信调制模块;此时,上述S10311中电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:
步骤C1、在所述辅助供电模块处于开启状态时,所述电源处理器通过所述第一通信调制模块生成第一功率传输指令;
步骤C2、在所述辅助供电模块处于关闭状态时,所述电源处理器通过所述第二通信调制模块生成第二功率传输指令。
在另一种可能的实现方式中,通信调制模块包括:参数可调的第三通信调制模块;S10311中电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:
步骤D1、在所述辅助供电模块处于开启状态时,所述电源处理器通过调节所述第三通信调制模块的参数,生成第一功率传输指令;
步骤D2、在所述辅助供电模块处于关闭状态时,所述电源处理器通过调节所述第三通信调制模块的参数,生成第二功率传输指令。
本申请实施例提供的无线充电方法,其具体实现过程可以参照上述图10至图12所示实施例的描述,在此不再赘述。
图18为本申请实施例提供的一种终端设备的结构示意图。如图18所示,本实施例所述的终端设备500包括上述实施例所示的接收器505,该接收器505可以为如图4至图14任一项所述的接收器。该接收器505可用于实现上述无线充电方法实施例,具体参见上述方法实施例中的说明。
所述终端设备500可以包括一个或多个处理器501,所述处理器501也可以称为处理单元,可以实现一定的控制或者处理功能。所述处理器501可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信设备进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器501也可以存有指令503或者数据(例如中间数据)。其中,所述指令503可以被所述处理器运行,使得所述终端设备500执行上述无线充电方法实施例。
在又一种可能的设计中,终端设备500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述终端设备500中可以包括一个或多个存储器502,其上可以存有指令504,所述指令可在所述处理器上被运行,使得所述终端设备500执行上述方法实施例中描述的方法。
可选的,处理器501和存储器502可以单独设置,也可以集成在一起。
可选的,所述终端设备500还可以包括发射器和/或天线506。所述处理器501可以称为处理单元,对终端设备500进行控制。所述接收器505可以称为收发单元、收发机、收发电路、或者收发器等,用于实现终端设备的收发功能。
其中,上述接收器505与处理器501的具体实现过程可以参见上述各实施例的相 关描述,此处不再赘述。
本申请中描述的处理器501和接收器505可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器501和接收器505也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
在以上的实施例描述中,终端设备500的结构可以不受图18的限制。
本申请实施例的终端设备,可以用于执行上述无线充电的技术方案,其实现原理和技术效果类似,此处不再赘述。
图19为本申请实施例提供的一种终端设备的结构示意图。该终端设备600包括接收器602,该接收器602可以执行上述无线充电方法,该接收器602可以为如图4至图14任一项所述的接收器。
在一种可能的设计中,该终端设备600的结构中包括处理器601和存储器603,该处理器601被配置为支持该终端设备600执行上述方法中相应的功能。该接收器602用于支持该终端设备600与其他终端设备或网络设备之间的通信。该终端设备600还可以包括存储器603,该存储器603用于与处理器601耦合,其保存该终端设备600必要的程序指令和数据。
当终端设备600开机后,处理器601可以读取存储器603中的程序指令和数据,解释并执行程序指令,处理程序指令的数据。当发送数据时,处理器601对待发送的数据进行基带处理后,输出基带信号至接收器602,接收器602将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,接收器602通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器601,处理器601将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图19仅示出了一个存储器603和一个处理器601。在实际的终端设备600中,可以存在多个处理器601和多个存储器603。存储器603也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
本申请实施例的终端设备,可以用于执行上述无线充电的技术方案,其实现原理和技术效果类似,此处不再赘述。
图20为本申请实施例提供的充电器的结构示意图,如图20所示,本申请实施例的充电器700包括如图4至图14任一项所述的接收器701,该接收器701可以执行上述无线充电方法。
本申请实施例的充电器,可以用于执行上述无线充电的技术方案,其实现原理和技术效果类似,此处不再赘述。
可以理解的是,当本申请的实施例应用于接收器芯片时,该接收器芯片实现上述无线充电方法实施例中接收器的功能。该接收器芯片向接收器中的其它模块(如射频模 块或天线)发送信息,这些信息经由接收器的其它模块发送给接收器;或者,该接收器芯片也可以从该接收器中的其它模块(例如射频模块或天线)接收信息,这些信息是接收器发送给该发射器的。
可以理解的是,在本申请中,不同实施例之间的技术术语、技术方案可以依据其内在的逻辑相互参考、相互引用,本申请并不对技术术语和技术方案所适用的实施例进行限定。对不同实施例中的技术方案相互组合,还可以形成新的实施例。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接收器中。当然,处理器和存储介质也可以作为分立组件存在于接收器中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。另外,各个方法实施例之间、各个装置实施例之间也可以互相参考,在不同实施例中的相同或对应内容可以互相引用,不做赘述。

Claims (40)

  1. 一种接收器,其特征在于,包括:振荡电路、电源处理器、采样控制模块和辅助供电模块;
    所述振荡电路,用于接收发射器发出的第一能量,其中所述第一能量为脉冲能量;
    所述采样控制模块,用于采集所述振荡电路根据所述第一能量输出的第一电压值,并在所述第一电压值小于所述电源处理器的启动电压值时,控制所述辅助供电模块为所述电源处理器供电,以使所述电源处理器启动;
    所述电源处理器,用于向所述发射器发送功率传输指令,以使得所述发射器根据所述功率传输指令发出第二能量,所述第二能量不为脉冲能量,所述第二能量用于向所述接收器中的负载提供电能。
  2. 根据权利要求1所述的接收器,其特征在于,
    所述振荡电路,还用于接收所述发射器发出的所述第二能量;
    所述采样控制模块,还用于采集所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
  3. 根据权利要求1所述的接收器,其特征在于,
    所述振荡电路,还用于接收所述发射器发出的所述第二能量;
    所述电源处理器,还用于获取所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
  4. 根据权利要求1-3任一项所述的接收器,其特征在于,所述采样控制模块包括:应用处理器,所述应用处理器分别与所述振荡电路和所述辅助供电模块连接。
  5. 根据权利要求1-3任一项所述的接收器,其特征在于,所述采样控制模块包括:应用处理器和采样单元;
    所述采样单元分别与所述振荡电路和所述应用处理器连接,用于采集所述振荡电路输出的所述第一电压值,并将所述第一电压值与所述电源处理器的启动电压值进行比较,获得第一比较结果,并将所述第一比较结果发送给所述应用处理器;
    所述应用处理器与所述辅助供电模块连接,用于在所述第一比较结果为所述第一电压值小于所述电源处理器的启动电压值时,控制所述辅助供电模块为所述电源处理器供电。
  6. 根据权利要求5所述的接收器,其特征在于,
    所述采样单元,还用于采集所述振荡电路输出的所述第二电压值,并将所述第二电压值与所述辅助供电模块的输出电压值进行比较,获得第二比较结果,并将所述第二比较结果发送给所述应用处理器;
    所述应用处理器,还用于在所述第二比较结果为所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
  7. 根据权利要求5或6所述的接收器,其特征在于,所述采样单元包括:比较器和基准电压提供电路,所述基准电压提供电路用于提供所述辅助供电模块的输出电压 值和所述电源处理器的启动电压值;
    所述比较器的第一输入端与所述振荡电路的输出端连接,用于采集所述振荡电路的输出电压;
    所述比较器的第二输入端与所述基准电压提供电路连接,用于获取所述基准电压提供电路输出的所述辅助供电模块的输出电压值或所述电源处理器的启动电压值;
    所述比较器的输出端与所述应用处理器连接,用于向所述应用处理器输出所述第一比较结果或所述第二比较结果。
  8. 根据权利要求1-7任一项所述的接收器,其特征在于,所述辅助供电模块包括:电池和供电控制单元;
    所述供电控制单元的第一端与所述电池的输出端连接,所述供电控制单元的第二端与所述采样控制模块连接,所述供电控制单元的第三端与所述电源处理器连接;
    所述供电控制单元,用于在所述采样控制模块的控制下,将所述电池的电能输出给所述电源处理器。
  9. 根据权利要求8所述的接收器,其特征在于,所述辅助供电模块还包括:防反灌单元;所述防反灌单元连接在所述供电控制单元的第三端与所述电源处理器之间;
    所述防反灌单元,用于在所述振荡电路输出的电压值大于所述供电控制单元的输出电压值时,禁止所述振荡电路输出的电能反灌至所述供电控制单元中。
  10. 根据权利要求9所述的接收器,其特征在于,所述防反灌单元包括:二极管或金属氧化物半导体场效益MOS管。
  11. 根据权利要求8-10任一项所述的接收器,其特征在于,所述供电控制单元包括:电源管理集成电路和直流变换器;
    所述电源管理集成电路的输入端与所述电池的输出端连接,所述电源管理集成电路的输出端与所述直流变换器的第一端连接,所述直流变换器的第二端与所述采样控制模块的输出端连接,所述直流变换器的第三端与所述电源处理器连接;
    所述采样控制模块,用于使能所述直流变换器;
    所述电源管理集成电路,用于通过使能后的所述直流变换器,将所述电池的电能输出给所述电源处理器。
  12. 根据权利要求8-10任一项所述的接收器,其特征在于,所述供电控制单元包括:电源管理集成电路、直流变换器和开关单元;
    所述电源管理集成电路的输入端与所述电池的输出端连接,所述电源管理集成电路的输出端与所述直流变换器的输入端连接,所述直流变换器的输出端与所述开关单元的第一端连接,所述开关单元的第二端与所述采样控制模块的输出端连接,所述开关单元的第三端与所述电源处理器连接;
    所述采样控制模块,用于控制所述开关单元的闭合与断开;
    所述电源管理集成电路,用于在所述开关单元闭合时,通过所述直流变换器将所述电池的电能输出给所述电源处理器。
  13. 根据权利要求12所述的接收器,其特征在于,所述开关单元为MOS管。
  14. 根据权利要求11-13任一项所述的接收器,其特征在于,所述直流变换器为所述电源管理集成电路中的直流变换器。
  15. 根据权利要求1-14任一项所述的接收器,其特征在于,所述接收器还包括:通信模块;
    所述电源处理器,用于通过所述通信模块向所述发射器发送功率传输指令。
  16. 根据权利要求15所述的接收器,其特征在于,所述通信模块包括:通信调制模块;
    所述电源处理器,具体用于通过调节所述通信调制模块生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
  17. 根据权利要求16所述的接收器,其特征在于,所述通信调制模块包括:至少一个电容或至少一个电阻;
    所述电源处理器,具体用于通过调节所述至少一个电容或所述至少一个电阻的电压值,生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
  18. 根据权利要求16或17所述的接收器,其特征在于,所述通信调制模块包括:第一通信调制模块和第二通信调制模块;
    所述电源处理器,用于在所述辅助供电模块处于开启状态时,通过所述第一通信调制模块生成第一功率传输指令,并通过所述通信模块向所述发射器发送所述第一功率传输指令;在所述辅助供电模块处于关闭状态时,通过所述第二通信调制模块生成第二功率传输指令,并通过所述通信模块向所述发射器发送所述第二功率传输指令。
  19. 根据权利要求16或17所述的接收器,其特征在于,所述通信调制模块包括:参数可调的第三通信调制模块;
    所述电源处理器,用于在所述辅助供电模块处于开启状态时,通过调节所述第三通信调制模块的参数,生成第一功率传输指令;在所述辅助供电模块处于关闭状态时,通过调节所述第三通信调制模块的参数,生成第二功率传输指令。
  20. 一种无线充电方法,其特征在于,应用于接收器,所述接收器包括:振荡电路、电源处理器、采样控制模块和辅助供电模块;所述方法包括:
    所述振荡电路接收发射器发出的第一能量,其中所述第一能量为脉冲能量;
    所述采样控制模块采集所述振荡电路根据所述第一能量输出的第一电压值,并在所述第一电压值小于所述电源处理器的启动电压值时,控制辅助供电模块为所述电源处理器供电,以使所述电源处理器启动;
    所述电源处理器向所述发射器发送功率传输指令,以使得所述发射器根据所述功率传输指令发出第二能量,所述第二能量不为脉冲能量,所述第二能量用于向所述接收器中的负载提供电能。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述振荡电路接收所述发射器发出的所述第二能量;
    所述采样控制模块采集所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
  22. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述振荡电路接收所述发射器发出的所述第二能量;
    所述电源处理器获取所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块停止为所述电源处理器供电。
  23. 根据权利要求20-22任一项所述的方法,其特征在于,所述采样控制模块包括:应用处理器。
  24. 根据权利要求20-22任一项所述的方法,其特征在于,所述采样控制模块包括:应用处理器和采样单元;
    所述采样控制模块采集所述振荡电路根据所述第一能量输出的第一电压值,并在所述第一电压值小于所述电源处理器的启动电压值时,控制辅助供电模块为所述电源处理器供电,包括:
    所述采样单元采集所述振荡电路输出的所述第一电压值,并将所述第一电压值与所述电源处理器的启动电压值进行比较,获得第一比较结果,并将所述第一比较结果发送给所述应用处理器;
    所述应用处理器在所述第一比较结果为所述第一电压值小于所述电源处理器的启动电压值时,控制所述辅助供电模块为所述电源处理器供电。
  25. 根据权利要求24所述的方法,其特征在于,所述采样控制模块采集所述振荡电路根据所述第二能量输出的第二电压值,并在所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块关闭,包括:
    采样单元采集所述振荡电路输出的所述第二电压值,并将所述第二电压值与所述辅助供电模块的输出电压值进行比较,获得第二比较结果,并将所述第二比较结果发送给所述应用处理器;
    所述应用处理器在所述第二比较结果为所述第二电压值大于所述辅助供电模块的输出电压时,控制所述辅助供电模块关闭。
  26. 根据权利要求24或25所述的方法,其特征在于,所述采样单元包括:比较器和基准电压提供电路;
    所述基准电压提供电路用于提供所述辅助供电模块的输出电压值和所述电源处理器的启动电压值;
    所述比较器用于采集所述振荡电路的输出电压,以及获取所述基准电压提供电路输出的所述辅助供电模块的输出电压值或所述电源处理器的启动电压值,并向所述应用处理器输出所述第一比较结果或所述第二比较结果。
  27. 根据权利要求20-26任一项所述的方法,其特征在于,所述辅助供电模块包括:电池和供电控制单元;
    所述供电控制单元用于在所述采样控制模块的控制下,将所述电池的电能输出给所述电源处理器。
  28. 根据权利要求27所述的方法,其特征在于,所述辅助供电模块还包括:防反灌单元;
    所述防反灌单元,用于在所述振荡电路输出的电压值大于所述供电控制单元的输出电压值时,禁止所述振荡电路输出的电能反灌至所述供电控制单元中。
  29. 根据权利要求28所述的方法,其特征在于,所述防反灌单元包括:二极管或 MOS管。
  30. 根据权利要求27-29任一项所述的方法,其特征在于,所述供电控制单元包括:电源管理集成电路和直流变换器;
    所述采样控制模块,用于使能所述直流变换器;
    所述电源管理集成电路,用于通过使能后的所述直流变换器,将所述电池的电能输出给所述电源处理器。
  31. 根据权利要求27-29任一项所述的方法,其特征在于,所述供电控制单元包括:电源管理集成电路、直流变换器和开关单元;
    所述开关单元,用于在所述采样控制模块的控制下闭合与断开;
    所述电源管理集成电路,用于在所述开关单元闭合时,通过所述直流变换器将所述电池的电能输出给所述电源处理器。
  32. 根据权利要求31所述的方法,其特征在于,所述开关单元为MOS管。
  33. 根据权利要求30-32任一项所述的方法,其特征在于,所述直流变换器为所述电源管理集成电路中的直流变换器。
  34. 根据权利要求20-33任一项所述的方法,其特征在于,所述接收器还包括:通信模块;
    所述电源处理器向所述发射器发送功率传输指令,包括:所述电源处理器通过所述通信模块向所述发射器发送功率传输指令。
  35. 根据权利要求34所述的方法,其特征在于,所述通信模块包括:通信调制模块;
    所述电源处理器通过所述通信模块向所述发射器发送功率传输指令,包括:所述电源处理器通过调节所述通信调制模块生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
  36. 根据权利要求35所述的方法,其特征在于,所述通信调制模块包括:至少一个电容或至少一个电阻;
    所述电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:所述电源处理器通过调节所述至少一个电容或所述至少一个电阻的电压值,生成所述功率传输指令,并通过所述通信模块向所述发射器发送所述功率传输指令。
  37. 根据权利要求35或36所述的方法,其特征在于,所述通信调制模块包括:第一通信调制模块和第二通信调制模块;
    所述电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:在所述辅助供电模块处于开启状态时,所述电源处理器通过所述第一通信调制模块生成第一功率传输指令;在所述辅助供电模块处于关闭状态时,所述电源处理器通过所述第二通信调制模块生成第二功率传输指令。
  38. 根据权利要求35或36所述的方法,其特征在于,所述通信调制模块包括:参数可调的第三通信调制模块;
    所述电源处理器通过调节所述通信调制模块生成所述功率传输指令,包括:在所述辅助供电模块处于开启状态时,所述电源处理器通过调节所述第三通信调制模块的参数,生成第一功率传输指令;在所述辅助供电模块处于关闭状态时,所述电源处理 器通过调节所述第三通信调制模块的参数,生成第二功率传输指令。
  39. 一种终端设备,其特征在于,包括权利要求1-19任一项所述的接收器。
  40. 一种充电器,其特征在于,包括权利要求1-19任一项所述的接收器。
PCT/CN2020/073867 2019-04-26 2020-01-22 无线充电方法、接收器、终端设备及充电器 WO2020215849A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20795003.1A EP3952050A4 (en) 2019-04-26 2020-01-22 WIRELESS CHARGING METHOD, RECEIVER, TERMINAL AND CHARGER
US17/509,357 US11699922B2 (en) 2019-04-26 2021-10-25 Wireless charging method, receiver, terminal device, and charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910345234.2 2019-04-26
CN201910345234.2A CN110165725B (zh) 2019-04-26 2019-04-26 无线充电方法、接收器、终端设备及充电器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/509,357 Continuation US11699922B2 (en) 2019-04-26 2021-10-25 Wireless charging method, receiver, terminal device, and charger

Publications (1)

Publication Number Publication Date
WO2020215849A1 true WO2020215849A1 (zh) 2020-10-29

Family

ID=67638768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073867 WO2020215849A1 (zh) 2019-04-26 2020-01-22 无线充电方法、接收器、终端设备及充电器

Country Status (4)

Country Link
US (1) US11699922B2 (zh)
EP (1) EP3952050A4 (zh)
CN (1) CN110165725B (zh)
WO (1) WO2020215849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915317A (zh) * 2022-04-16 2022-08-16 广东泰坦智能动力有限公司 一种用于lcc无线电能传输系统的分数阶调相通信系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165725B (zh) 2019-04-26 2021-05-11 华为技术有限公司 无线充电方法、接收器、终端设备及充电器
CN113315534B (zh) * 2020-02-11 2022-12-16 创意电子股份有限公司 电压模式信号收发装置以及其电压模式信号发射器
CN112798845A (zh) * 2020-12-29 2021-05-14 联合汽车电子有限公司 自动化采样方法和系统
TWI780957B (zh) * 2021-09-06 2022-10-11 立錡科技股份有限公司 無線充電系統及操作方法
US11862986B1 (en) 2022-07-25 2024-01-02 Avago Technologies International Sales Pte. Limited Rectifier buck with external fet
CN116198348A (zh) * 2023-05-06 2023-06-02 宁德时代新能源科技股份有限公司 无线供电系统和车辆
CN117559668B (zh) * 2024-01-10 2024-03-22 成都市易冲半导体有限公司 一种功率接收端、无线供电系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184218A (zh) * 2013-05-27 2014-12-03 Lg电子株式会社 无线电力发射器及其无线电力传送方法
CN105109358A (zh) * 2015-09-22 2015-12-02 奇瑞汽车股份有限公司 一种电动汽车无线充电系统
CN107658999A (zh) * 2016-07-26 2018-02-02 宁波微鹅电子科技有限公司 一种非接触电能传输装置及其控制方法
CN107945490A (zh) * 2017-12-05 2018-04-20 无锡市瀚为科技有限公司 一种适用于无线充电系统的通讯方法
CN110165725A (zh) * 2019-04-26 2019-08-23 华为技术有限公司 无线充电方法、接收器、终端设备及充电器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581119B2 (en) * 2004-07-18 2009-08-25 Apple Inc. Method and system for discovering a power source on a peripheral bus
JP4257377B2 (ja) * 2006-10-27 2009-04-22 株式会社東芝 トリガ信号発生装置
AU2009298384A1 (en) * 2008-10-03 2010-04-08 Access Business Group International Llc Power system
CN101789638B (zh) * 2010-02-26 2012-08-15 深圳和而泰智能控制股份有限公司 一种可扩展充电距离的无线充电接收装置及方法
US9444247B2 (en) * 2011-05-17 2016-09-13 Samsung Electronics Co., Ltd. Apparatus and method of protecting power receiver of wireless power transmission system
JP5849842B2 (ja) * 2011-12-21 2016-02-03 ソニー株式会社 給電装置、給電システムおよび電子機器
CN105895330A (zh) 2014-09-23 2016-08-24 苏州宝润电子科技有限公司 多线圈实现无线充电位置自由性
CN105990909A (zh) * 2015-01-28 2016-10-05 青岛众海汇智能源科技有限责任公司 一种电能的无线传输方法及无线发射端及无线接收端
KR20160133140A (ko) * 2015-05-12 2016-11-22 엘지이노텍 주식회사 무선 전력 송신 방법, 무선 전력 수신 방법 및 이를 위한 장치
US9705569B2 (en) * 2015-05-26 2017-07-11 Samsung Electro-Mechanics Co., Ltd. Wireless power transmitter and method for controlling the same
CN106300471A (zh) * 2015-05-29 2017-01-04 青岛众海汇智能源科技有限责任公司 一种无线充电方法及无线发射端
KR102524092B1 (ko) * 2015-11-11 2023-04-20 엘지전자 주식회사 무선 전력 전송 시스템 통신 프로토콜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184218A (zh) * 2013-05-27 2014-12-03 Lg电子株式会社 无线电力发射器及其无线电力传送方法
CN105109358A (zh) * 2015-09-22 2015-12-02 奇瑞汽车股份有限公司 一种电动汽车无线充电系统
CN107658999A (zh) * 2016-07-26 2018-02-02 宁波微鹅电子科技有限公司 一种非接触电能传输装置及其控制方法
CN107945490A (zh) * 2017-12-05 2018-04-20 无锡市瀚为科技有限公司 一种适用于无线充电系统的通讯方法
CN110165725A (zh) * 2019-04-26 2019-08-23 华为技术有限公司 无线充电方法、接收器、终端设备及充电器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952050A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915317A (zh) * 2022-04-16 2022-08-16 广东泰坦智能动力有限公司 一种用于lcc无线电能传输系统的分数阶调相通信系统

Also Published As

Publication number Publication date
US20220045552A1 (en) 2022-02-10
CN110165725A (zh) 2019-08-23
EP3952050A4 (en) 2022-05-18
EP3952050A1 (en) 2022-02-09
CN110165725B (zh) 2021-05-11
US11699922B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2020215849A1 (zh) 无线充电方法、接收器、终端设备及充电器
US20220014048A1 (en) Wireless charging receiver and wireless charging method
US11824396B2 (en) Wireless charging method, electronic device and wireless charging apparatus
CN112585838B (zh) 无线电池充电期间的带外通信
US10819134B2 (en) Adapter and method for charging control
US9825485B2 (en) Wireless power transmitter and wireless power receiver
WO2019105361A1 (zh) 一种无线充电电路、系统、方法及终端设备
TWI661639B (zh) 適配器和充電控制方法
US10097029B2 (en) Wireless charging transmitter
WO2018188006A1 (zh) 待充电设备和充电方法
CN113287243A (zh) 无线电力传输系统和方法
WO2022166420A1 (zh) 一种充电控制方法、电子设备、无线充电系统
TW201249063A (en) Power supply system with variable supply voltage
Choi Overview of charging technology evolution in smartphones
WO2024037031A1 (zh) 一种无线充电控制方法及电子设备
EP4283823A1 (en) Electronic device, wireless charging method, and nontransitory computer-readable medium
CN117154866A (zh) 充电系统及充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020795003

Country of ref document: EP

Effective date: 20211103