WO2019196021A1 - 光电记忆器件、光电记忆读出器件及相机模组 - Google Patents

光电记忆器件、光电记忆读出器件及相机模组 Download PDF

Info

Publication number
WO2019196021A1
WO2019196021A1 PCT/CN2018/082582 CN2018082582W WO2019196021A1 WO 2019196021 A1 WO2019196021 A1 WO 2019196021A1 CN 2018082582 W CN2018082582 W CN 2018082582W WO 2019196021 A1 WO2019196021 A1 WO 2019196021A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
layer
channel layer
band gap
Prior art date
Application number
PCT/CN2018/082582
Other languages
English (en)
French (fr)
Inventor
李百奎
唐曦
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/082582 priority Critical patent/WO2019196021A1/zh
Priority to CN201880041801.9A priority patent/CN110770900B/zh
Publication of WO2019196021A1 publication Critical patent/WO2019196021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of semiconductor technologies, and in particular, to an optical memory device, a photoelectric memory readout device, and a camera module based on a semiconductor heterostructure.
  • Photoelectric detection plays a very important role in many applications, and has a very broad application prospects, such as environmental ultraviolet index monitoring, ultraviolet astronomy, short-wave optical communication and flame detection.
  • AlGaN aluminum gallium nitride
  • Various types of ultraviolet detectors such as photoconductors/photoresistors, PIN photodiodes, Schottky photodiodes, and metal-semiconductor-metal photodetectors have been realized.
  • GaN gallium nitride
  • aluminum gallium nitride as the core structure of the Group III nitride RF and power electronics has been commercialized in recent years.
  • Photodetectors based on GaN/aluminum gallium nitride heterostructures are becoming more and more widely used due to their high optical gain and high-speed photodetection.
  • embodiments of the present invention provide a photoelectric memory device, a photoelectric memory readout device, and a camera module based on a semiconductor heterojunction, which can memorize the illumination behavior.
  • an embodiment of the present invention provides a semiconductor memory heterojunction-based optoelectronic memory device, the optoelectronic memory device including a photodiode and a lateral rectifier;
  • the photodiode includes a semiconductor heterojunction, a first anode, and a first a cathode, the semiconductor heterojunction comprising a channel layer having a first band gap, a blocking layer having a second band gap, and two-dimensional electrons formed at a contact interface between the channel layer and the blocking layer Gas
  • the barrier layer is formed on the channel layer
  • the first anode is formed on the barrier layer
  • the first cathode is formed on the channel layer and is located at one of the channel layers a side, the inner side of the first cathode is connected to the two-dimensional electron gas and the blocking layer
  • the lateral rectifier comprises a second anode and a second cathode, and the second cathode is formed on the channel layer and Located on a side opposite to the
  • the material of the channel layer and the material of the barrier layer are all Group III nitrides.
  • the material of the channel layer is any one of gallium nitride, aluminum gallium nitride and indium gallium nitride, and the material of the barrier layer is aluminum gallium nitride.
  • the semiconductor heterojunction further includes an intervening layer having a third band gap, wherein the interposer layer is formed between the channel layer and the blocking layer, and the third band gap is greater than the first A band gap and a second band gap.
  • the semiconductor heterojunction further comprises a capping layer having a fourth band gap, wherein the capping layer is formed on the blocking layer, and the fourth band gap is less than or equal to the first band gap .
  • the channel layer is excited between the layers, and generates electron-hole pairs including photogenerated electrons and photogenerated holes; the photogenerated electrons are toward the second Dividing electron gas drift, the photogenerated holes drift into the channel layer body to generate a photovoltage, the photogenerated electrons in the two-dimensional electron gas are continuously accumulated, the first anode and the first cathode A Fermi level difference is generated therebetween; wherein the photon energy of the predetermined incident light is greater than the first band gap and smaller than the second band gap.
  • the lateral rectifier when the generated photovoltage is greater than the turn-on voltage of the lateral rectifier, the lateral rectifier is turned on, and the photogenerated electrons flow to the first anode through the lateral rectifier to generate a transient photocurrent.
  • the magnitude of the transient photocurrent increases as the chopping frequency of the predetermined incident light increases.
  • the transient photocurrent charges the first anode such that the Fermi level of the first anode is increased; when the Fermi level of the first anode is increased to the two-dimensional electron gas The transient photocurrent decays to zero when the Fermi level is the same.
  • the lateral rectifier when the predetermined incident light is removed, the lateral rectifier is in an off state, the photogenerated electrons cannot flow back to the two-dimensional electron gas, and the photogenerated electrons remain in the first anode.
  • an embodiment of the present invention further provides an optoelectronic memory readout device, the optoelectronic memory readout device comprising an optoelectronic memory device and a field effect transistor, the optoelectronic memory device comprising a photodiode and a lateral rectifier;
  • the diode includes a semiconductor heterojunction, a first anode and a first cathode, the semiconductor heterojunction comprising a channel layer having a first band gap, a blocking layer having a second band gap, and a channel layer formed thereon a two-dimensional electron gas at a contact interface between the barrier layers, the barrier layer being formed on the channel layer, the first anode being formed on the barrier layer, and the first cathode being in the trench Formed on the track layer and located on one side of the channel layer, the inner side of the first cathode is connected to the two-dimensional electron gas and the barrier layer;
  • the lateral rectifier comprises a second anode and a second cathode
  • the channel layer is excited between the layers, and generates electron-hole pairs including photogenerated electrons and photogenerated holes; the photogenerated electrons are toward the second Dividing electron gas drift, the photogenerated holes drift into the channel layer body to generate a photovoltage, the photogenerated electrons in the two-dimensional electron gas are continuously accumulated, the first anode and the first cathode A Fermi level difference is generated therebetween; wherein the photon energy of the predetermined incident light is greater than the first band gap and smaller than the second band gap.
  • the lateral rectifier when the generated photovoltage is greater than the turn-on voltage of the lateral rectifier, the lateral rectifier is turned on, and the photogenerated electrons flow to the first anode through the lateral rectifier to generate a transient photocurrent.
  • the transient photocurrent charges the first anode, the Fermi level of the first anode is increased; when the Fermi level of the first anode is increased to the two-dimensional electron gas When the Fermi level is the same, the transient photocurrent decays to zero.
  • the lateral rectifier when the predetermined incident light is removed, the lateral rectifier is in an off state, and if the control circuit controls the FET to be in an off state, the photogenerated electron cannot flow back to the two-dimensional electron gas The photogenerated electrons remain in the first anode.
  • the lateral rectifier when the predetermined incident light is removed, the lateral rectifier is in an off state, and if the control circuit controls the FET to be in an on state, the first cathode and the second cathode are electrically a sexual connection, the photogenerated electrons sequentially flowing back to the two-dimensional electron gas through the second anode, the second cathode, and the first cathode, and recombined with the second photo-generated hole to generate a reverse Transient photocurrent; wherein the direction of the reverse transient photocurrent is opposite to the direction of the transient photocurrent.
  • the transient photocurrent charges the first anode such that the Fermi level of the first anode is increased; when the Fermi level of the first anode is increased to the two-dimensional electron gas The transient photocurrent decays to zero when the Fermi level is the same.
  • the lateral rectifier when the predetermined incident light is removed, the lateral rectifier is in an off state, the photogenerated electrons cannot flow back to the two-dimensional electron gas, and the photogenerated electrons remain in the first anode.
  • an embodiment of the present invention further provides a camera module, where the camera module includes an opto-memory readout device, the optoelectronic memory readout device includes an optoelectronic memory device and a field effect transistor, and the optoelectronic memory device A photodiode including a semiconductor heterojunction, a first anode, and a first cathode, the semiconductor heterojunction including a channel layer having a first band gap and a blocking layer having a second band gap And a two-dimensional electron gas formed at a contact interface between the channel layer and the barrier layer, the barrier layer is formed on the channel layer, and the first anode is formed on the barrier layer
  • the first cathode is formed on the channel layer and is located at one side of the channel layer, and an inner side of the first cathode is connected to the two-dimensional electron gas and the blocking layer; the lateral rectifier
  • the second anode and the second cathode are formed on the channel layer and located on a side opposite to the
  • Second anode shape Forming on one end of the first anode, the second cathode, and a barrier layer between the end of the first anode and the second cathode; wherein the first band gap is smaller than the second a band gap, wherein the channel layer and the blocking layer are made of a semiconductor, and a predetermined area of the contact interface between the channel layer and the blocking layer adjacent to the second cathode does not include the second a region of the contact interface other than the predetermined region, including the two-dimensional electron gas; the field effect transistor includes a drain, a source, and a gate, and the drain is respectively associated with the The first anode, the second anode and the second cathode are electrically connected, the source is electrically connected to the first cathode, the gate is connected to a control circuit, and the control circuit is used for output A control signal is applied to the gate to control the FET to be in an on or off state.
  • the semiconductor heterojunction-based optoelectronic memory device provided by the embodiment of the present invention generates a transient in the optoelectronic memory device when the photon energy is greater than the first band gap and less than the second band gap.
  • Photocurrent when the incident light is removed, a reverse transient photocurrent is generated in the optoelectronic memory device, that is, the semiconductor heterojunction-based optoelectronic memory device provided by the embodiment of the present invention can memorize the illumination behavior.
  • FIG. 1(a) is a schematic diagram showing the planar structure of a semiconductor heterojunction-based optoelectronic memory device according to an embodiment of the present invention.
  • FIG. 1(b) is a schematic diagram showing the layer structure of a semiconductor heterojunction-based optoelectronic memory device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of photoelectric response spectra of the optoelectronic memory device according to an embodiment of the present invention at different chopping frequencies.
  • FIG. 3(a) is a schematic diagram showing the planar structure of an optoelectronic memory readout device based on the optoelectronic memory device according to an embodiment of the present invention.
  • FIG. 3(b) is a schematic diagram showing the layer structure of an optoelectronic memory readout device based on the optoelectronic memory device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a transient photocurrent spectrum of the optoelectronic memory device according to an embodiment of the invention.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined.
  • the ground connection, or the integral connection may be a mechanical connection; it may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • FIG. 1(a) is a schematic diagram showing the planar structure of a semiconductor heterojunction-based photoelectric memory device according to an embodiment of the present invention
  • FIG. 1(b) is the present invention.
  • the optoelectronic memory device 100 includes a photodiode 10 based on a semiconductor heterojunction and a lateral rectifier 20. Wherein, the lateral rectifier 20 has a lower on-voltage.
  • the lateral rectifier 20 is exemplified by a Lateral Field-Effect Rectifier (L-FER). It can be understood that in other embodiments, the lateral rectifier 20 may also be Other types of lateral rectifying devices with low turn-on voltage.
  • L-FER Lateral Field-Effect Rectifier
  • the photodiode 10 includes a semiconductor heterostructure 11, a first anode 12, and a first cathode 13.
  • the semiconductor heterojunction 11 includes a channel buffer 111 having a first bandgap, a barrier 112 having a second band gap, and a channel layer 111 formed thereon.
  • 2-Dimensional Electron Gas (2-DEG) 113 between the barrier layers 112. Specifically, the two-dimensional electron gas 113 is formed at a contact interface between the channel layer 111 and the blocking layer 112. The two-dimensional electron gas 113 is electrically connected to the first cathode 13 .
  • the first anode 12 is the anode of the photodiode 10 and the first cathode 13 is the cathode of the photodiode 10.
  • the first anode 12 is a Schottky anode and the first cathode 13 is an ohmic cathode.
  • the channel layer 111 and the blocking layer 112 are made of a semiconductor, and the first band gap is smaller than the second band gap.
  • the material of the channel layer 111 and the material of the barrier layer 112 are all Group III nitrides.
  • the material of the channel layer 111 includes, but is not limited to, gallium nitride (GaN), aluminum gallium nitride (AlGaN), and indium gallium nitride (InGaN), and the material of the barrier layer 112 is aluminum gallium nitride.
  • the band gap of the channel layer 111 and the blocking layer 112 is determined by the components in the material.
  • the channel layer 111 may be formed on a substrate (not shown), the blocking layer 112 is formed on the channel layer 111, and the two-dimensional electron gas 113 is located at Between the channel layer 111 and the blocking layer 112, the channel layer 111, the two-dimensional electron gas 113, and the blocking layer 112 are sequentially stacked and formed on the substrate.
  • the size of the blocking layer 112 is smaller than the size of the channel layer 111.
  • the substrate is a P-type silicon (Si) substrate.
  • the semiconductor heterojunction 11 can be manufactured by a production process such as interface alloy, epitaxial growth, vacuum deposition, or the like, which is not specifically limited in the present invention.
  • the semiconductor heterojunction 11 is fabricated by a Metal-Organic Chemical Vapor Deposition (MOCVD) technique.
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • the semiconductor heterojunction 11 further includes an interposer layer (not shown) having a third band gap.
  • the insertion layer is formed between the channel layer 111 and the blocking layer 112, and the third band gap is larger than the first band gap and the second band gap.
  • the semiconductor heterojunction 11 further includes a capping layer (not shown) having a fourth band gap.
  • the capping layer is formed on the blocking layer 112, and the fourth band gap is less than or equal to the first band gap.
  • the first anode 12 is formed on the barrier layer 112, and the first cathode 13 is formed on the channel layer 111 and located on one side of the channel layer 111.
  • the inner side of the first cathode 13 is connected to the two-dimensional electron gas 113 and the blocking layer 112, that is, the two-dimensional electron gas 113 and the blocking layer 112 are located inside the first cathode 13, wherein The first cathode 13 is electrically connected to the two-dimensional electron gas 113.
  • the lateral rectifier 20 and the photodiode 10 are formed on the same semiconductor heterojunction.
  • the lateral rectifier 20 includes a second anode 14 and a second cathode 15.
  • the second cathode 15 is formed on the channel layer 111 and located on a side opposite to the first cathode 13.
  • the inner side of the second cathode 15 is connected to the blocking layer 112, that is, the The blocking layer 112 is located inside the second cathode 15, that is, the blocking layer 112 is located between the first cathode 13 and the second cathode 15, and simultaneously with the first cathode 13 and the first The two cathodes 15 are connected.
  • the second anodes 14 are respectively formed on one end of the first anode 12, the second cathode 15 and the blocking layer 112 between the end of the first anode 12 and the second cathode 15, and The second anode 14 is electrically connected to the first anode 12 and the second cathode 15, respectively.
  • the second cathode 15 is an ohmic cathode.
  • the contact interface between the channel layer 111 and the blocking layer 112 has a preset area 16 near the second cathode 15 , and the preset area 16 does not include the
  • the two-dimensional electronic gas 113 includes an area other than the predetermined area 16 in the contact interface including the two-dimensional electron gas. That is, in the embodiment of the present invention, the two-dimensional electron gas 113 formed by the predetermined region 16 needs to be removed, so that the second cathode 15 is not electrically connected to the two-dimensional electron gas 113. In this case, when a photovoltage greater than or equal to the turn-on voltage of the lateral rectifier 20 is generated in the optoelectronic memory device 100, the lateral rectifier 20 is turned on. It should be noted that the specific manner of removing the two-dimensional electronic gas 113 is not limited in the embodiment of the present invention.
  • incident light is irradiated from the first anode 12 to the optoelectronic memory device 100, in conjunction with the layer structure diagram of the optoelectronic memory device 100 shown in FIG. 1(b), that is, incident light from the The top of the photodiode 10 illuminates the optoelectronic memory device 100.
  • the material of the first anode 12 is a translucent Schottky metal.
  • the material of the first anode 12 may include nickel (Ni) and gold (Au), that is, nickel and gold may be used as the translucent Schottky metal.
  • the wavelength of nickel may be 5 nanometers (nm), and the wavelength of gold may be 6 nm.
  • a first photocurrent is generated in the optoelectronic memory device 100 when the optoelectronic memory device 100 is illuminated by first incident light.
  • the photon energy of the first incident light is greater than the second band gap.
  • the blocking layer 112 is excited between the layers to generate a first electron-hole pair (including the first photo-generation) in the blocking layer 112. Electrons and first photogenerated holes). Wherein the first photogenerated electrons drift toward the two-dimensional electron gas 113, and the first photogenerated holes drift toward the first anode 12, that is, the first photogenerated electrons and the first photogenerated air The holes all drift along the direction of the built-in electric field in the blocking layer 112, thereby forming a current closed loop. In this case, the first photocurrent persists during illumination, ie the first photocurrent is a continuous photocurrent. When the first incident light is removed (or turned off), the inter-band excitation of the blocking layer 112 ends, and the first photocurrent decays to zero.
  • a second photocurrent is generated in the optoelectronic memory device 100 when the optoelectronic memory device 100 is illuminated by second incident light.
  • the photon energy of the second incident light is greater than the first band gap and smaller than the second band gap.
  • the channel layer 111 is excited between the layers to generate a second electron-hole pair in the channel layer 111 (including the first Two photogenerated electrons and a second photogenerated hole). And, the second photogenerated electrons drift (or diffuse) toward the two-dimensional electron gas 113, and the second photo-generated holes drift (or diffuse) into the bulk of the channel layer 111, that is, the Both the second photogenerated electrons and the second photogenerated holes drift in a direction in which the electric field is built in the channel layer 111, thereby generating a photovoltage.
  • the second photogenerated hole is first along the channel layer 111 at a position close to the hetero interface (ie, the contact interface of the channel layer 111 and the blocking layer 112).
  • the direction of the built-in electric field drifts and then diffuses deeper into the body of the channel layer 111. It can be seen that the direction in which the second photogenerated electrons drift is opposite to the direction in which the first photogenerated electrons drift, and the direction in which the second photogenerated holes drift is opposite to the direction in which the first photogenerated holes drift.
  • the direction in which the band is offset in the channel layer 111 is opposite to the direction in which the band in the blocking layer 112 is offset.
  • the second photogenerated electrons drift toward the two-dimensional electron gas 113, the second photogenerated electrons in the two-dimensional electron gas 113 are continuously accumulated, resulting in an increase in their Fermi level, such that the first A Fermi-level difference (or potential difference) is generated between the anode 12 and the first cathode 13.
  • the generated photovoltage is greater than the turn-on voltage of the lateral rectifier 20, the lateral rectifier 20 is in an off state, and the second photogenerated electrons flow through the lateral rectifier 20 to the first anode 12, thereby generating Second photocurrent.
  • the second photocurrent may charge the first anode 12 such that the Fermi level (or potential) of the first anode 12 is increased.
  • the Fermi level (or potential) of the first anode 12 is increased to be aligned (or the same) with the Fermi level (or potential) of the two-dimensional electron gas 113, even if the illumination continues, the second The photocurrent is also attenuated to zero. It can be seen that the second photocurrent is a transient photocurrent.
  • the lateral rectifier 20 When the second incident light is removed, the lateral rectifier 20 is turned off, and the second photogenerated electron cannot flow back to the first cathode 13 or the two-dimensional electron gas 113 due to the blocking of the lateral rectifier 20 That is, the second photogenerated electron remains in the first anode 12.
  • FIG. 2 is a schematic diagram of the photoelectric response spectrum of the photoelectric memory device according to an embodiment of the present invention at different chopping frequencies.
  • the chopping frequencies of the first incident light are f 1 , f 2 and f 3 , respectively.
  • the first The magnitude of the photocurrent is the same, indicating that the magnitude of the first photocurrent is independent of the chopping frequency of the first incident light.
  • FIG region in the case where the channel layer 111 occurs between the excitation band, when the second incident light chopping frequency f 3 of said second photocurrent minimum, when the 2 2 second incident light chopping frequency f 2 is said second photocurrent followed, when the second incident the chopper frequency f 1 is the second largest of the photocurrent, indicating that the second light
  • the magnitude of the current increases as the chopping frequency of the second incident light increases.
  • the chopping frequencies f 1 , f 2 and f 3 are 536 Hz, 126 Hz and 9 Hz, respectively.
  • the photoelectric response spectrum is measured by a phase locking technique.
  • the photoelectric response spectrum can also be measured using other techniques.
  • FIG. 3(a) is a plan view showing a planar structure of an optoelectronic memory device based on the optoelectronic memory device according to an embodiment of the present invention
  • FIG. 3(b) is a photomemory based on the optoelectronic memory device according to an embodiment of the present invention.
  • the photoelectric memory readout device 200 includes the optoelectronic memory device 100 and a field effect transistor 30.
  • the field effect transistor 30 is formed on the same semiconductor heterojunction as the optoelectronic memory device 100.
  • the field effect transistor 30 includes a drain 31, a source 32, and a gate 33.
  • the drain 31 is electrically connected to the second anode 14, that is, the drain 31 is also electrically connected to the first anode 12 and the second cathode 15;
  • the source 32 is integrated on the first cathode 13, that is, the source 32 is electrically connected to the first cathode 13;
  • the gate 33 is connected to the control circuit 40, and the control circuit 40 is used for A control signal is output to the gate 33 to control the FET 30 to be in an on or off state.
  • the area where the first anode 12 is located is the photosensitive area 60.
  • the control circuit 40 controls the FET 30 to be in an off state, the second is blocked due to the lateral rectifier 20 The photogenerated electrons cannot flow back to the first cathode 13 or the two-dimensional electron gas 113.
  • the control circuit 40 controls the FET 30 to be in an on state, the first cathode 13 and the second cathode 15 are electrically connected, the first The second photogenerated electrons may sequentially flow back to the two-dimensional electron gas 113 through the second anode 14, the second cathode 15, and the first cathode 13, and recombine with the second photogenerated holes.
  • the manner in which the second photogenerated electrons are combined with the second photogenerated holes may be a radiation composite or a non-radiative composite, which is not specifically limited in the present invention.
  • a third photocurrent is generated in the optoelectronic memory device 100 when the second photogenerated electron is recombined with the second photogenerated hole. Wherein the third photocurrent is opposite to the direction of the second photocurrent. And, when the second photogenerated electron is combined with the second photogenerated hole, the third photocurrent is attenuated to zero. It can be seen that the third photocurrent is also a transient current.
  • the transient velocity of the second photocurrent (or the duration of the second photocurrent) is dependent on the diffusion velocity of the second photogenerated cavity. Specifically, the slower the diffusion speed of the second photo-generated hole, the slower the transient speed of the second photocurrent (ie, the shorter the duration of the second photocurrent).
  • the transient velocity of the third photocurrent (or the duration of the third photocurrent) is dependent on the recombination rate of the second photogenerated electron and the second photogenerated hole. Specifically, the lower the recombination rate of the second photogenerated electrons and the second photogenerated holes, the slower the transient speed of the third photocurrent (ie, the longer the duration of the second photocurrent).
  • the recombination ratio of the photogenerated electrons and the photogenerated holes are spatially separated, the recombination ratio of the second photogenerated electrons and the second photogenerated holes is lower in the embodiment of the invention, so that the The transient speed of the third photocurrent is slower (ie, the duration of the second photocurrent is longer).
  • a measuring circuit is connected in series between the anode and the cathode of the photodiode 10, in order to observe current characteristics such as the magnitude, direction, duration, and the like of the second photocurrent and the third photocurrent. It is used to detect a current flow between the first anode 12 and the first cathode 13.
  • FIG. 4 is a schematic diagram of a transient photocurrent spectrum generated when the optoelectronic memory device is illuminated by a second incident light according to an embodiment of the present invention.
  • the transient photocurrent includes the second photocurrent (I 1 ) and the third photocurrent (I 2 ). Since the recombination rate of the second photogenerated electrons and the second photogenerated holes is low, in the embodiment of the present invention, as shown in FIG. 4, the transient speed of the third photocurrent is less than the first The transient speed of the two photocurrents, that is, the duration of the third photocurrent is greater than the duration of the second photocurrent. According to the law of conservation of energy, the peak of the second photocurrent is greater than the peak of the third photocurrent, but this can also be seen from FIG.
  • FIG. 4 is a transient photocurrent spectrum obtained when a pulsed laser light is used as the second incident light.
  • other light sources may also be used as the second incident light to observe current characteristics of the second photocurrent and the third photocurrent.
  • the illumination memory device 100 provided by the embodiment of the present invention is used for memorizing the illumination history, and the illumination memory readout device 200 is configured to read out the illumination history stored by the illumination memory device 200. That is, as long as the optoelectronic memory device 100 is illuminated by the second incident light, the optoelectronic memory device 100 can memorize the illumination behavior, and the illumination memory readout device 200 can read the illumination. The illumination behavior of the memory device 200.
  • the illumination memory readout device 100 can also read the electrical energy converted by the light energy after illumination (ie, the energy corresponding to the second photocurrent) ).
  • an embodiment of the present invention further provides a camera module including the above-described photoelectric memory readout device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种光电记忆器件(100),包括光电二极管(10)及横向整流器(20);该光电二极管(10)包括半导体异质结(11)、第一阳极(12)及第一阴极(13),该半导体异质结(11)包括具有第一带隙的沟道层(111)、具有第二带隙的阻拦层(112)及形成于该沟道层(111)与该阻拦层(112)之间的二维电子气(113),阻拦层(112)在沟道层(111)上形成,第一阳极(12)在阻拦层(112)上形成,第一阴极(13)在沟道层(111)上形成且位于沟道层(111)的一侧,第一阴极(13)的内侧与二维电子气(113)及阻拦层(112)连接;横向整流器(20)包括第二阳极(14)及第二阴极(15),第二阴极(15)在沟道层(111)上形成且位于与第一阴极(13)相对的一侧,第二阴极(15)的内侧与阻拦层(112)连接,该第二阳极(14)分别形成于该第一阳极(12)的一端、该第二阴极(15)以及该第一阳极(12)的该端与该第二阴极(15)之间的阻拦层(112)上;第一带隙小于第二带隙。该方案可记忆光照行为。

Description

光电记忆器件、光电记忆读出器件及相机模组 技术领域
本发明涉及半导体技术领域,尤其涉及一种基于半导体异质结(semiconductor heterostructure)的光电记忆器件、光电记忆读出器件及相机模组。
背景技术
光电探测(如紫外光电探测)在诸多应用领域都占据着非常重要的地位,也具有非常广阔的应用前景,例如,环境紫外指标监控、紫外天文学、短波光通信和火焰检测等领域。其中,由于带隙(或称为能带、能量带隙、禁带宽度)很宽,铝镓氮(AlGaN)是非常有前景的紫外探测材料,其固有截止波长范围为210至365nm,而基于铝镓氮的各种类型的紫外探测器(如光电导体/光敏电阻、PIN光电二极管、肖特基光电二极管和金属-半导体-金属光电探测器等)已经得到了实现。同时,氮化镓(GaN)/铝镓氮作为核心结构的三族氮化物射频和电力电子学已经在近年来实现了商业化。基于氮化镓/铝镓氮异质结构的光电探测器因其具有高光学增益和高速光电探测等优点,因而正得到越来越广泛的应用。
但是,对于现有的各种光电探测器,在光照期间,光电探测器中产生的光电流持续存在,光照一旦结束,光电探测器中产生的光电流就会消失。因此,现有的各种光电探测器都只能将光能实时转化为电能。
发明内容
为了解决上述问题,本发明实施例提供一种基于半导体异质结的光电记忆器件、光电记忆读出器件及相机模组,可以对光照行为进行记忆。
第一方面,本发明实施例提供了一种基于半导体异质结的光电记忆器件,所述光电记忆器件包括光电二极管及横向整流器;所述光电二极管包括半导体异质结、第一阳极及第一阴极,所述半导体异质结包括具有第一带隙的沟道层、 具有第二带隙的阻拦层及形成于所述沟道层与所述阻拦层之间的接触界面处的二维电子气,所述阻拦层在所述沟道层上形成,所述第一阳极在所述阻拦层上形成,所述第一阴极在所述沟道层上形成且位于所述沟道层的一侧,所述第一阴极的内侧与所述二维电子气及所述阻拦层连接;所述横向整流器包括第二阳极及第二阴极,所述第二阴极在所述沟道层上形成且位于与所述第一阴极相对的一侧,所述第二阴极的内侧与所述阻拦层连接,所述第二阳极分别形成于所述第一阳极的一端、所述第二阴极以及所述第一阳极的该端与所述第二阴极之间的阻拦层上;其中,所述第一带隙小于所述第二带隙,所述沟道层和所述阻拦层的材质均为半导体,所述沟道层与所述阻拦层之间的接触界面中靠近所述第二阴极的预设区域不包括所述二维电子气,所述接触界面中除所述预设区域以外的区域包括所述二维电子气。
其中,所述沟道层的材质和所述阻拦层的材质均为三族氮化物。
其中,所述沟道层的材质为氮化镓、铝镓氮及铟镓氮中的任意一种,所述阻拦层的材质为铝镓氮。
其中,所述半导体异质结还包括具有第三带隙的插入层,其中,所述插入层在所述沟道层与所述阻拦层之间形成,所述第三带隙大于所述第一带隙和第二带隙。
其中,所述半导体异质结还包括具有第四带隙的封盖层,其中,所述封盖层在所述阻拦层上形成,所述第四带隙小于或等于所述第一带隙。
其中,当所述光电记忆器件被预设入射光照射时,所述沟道层发生带间激励,并产生包括光生电子和光生空穴的电子空穴对;所述光生电子朝着所述二维电子气漂移,所述光生空穴漂移进所述沟道层本体,以生成光电压,所述二维电子气中的所述光生电子不断累积,所述第一阳极与所述第一阴极之间产生费米能级差;其中,所述预设入射光的光子能量大于所述第一带隙并且小于所述第二带隙。
其中,当生成的所述光电压大于所述横向整流器的导通电压时,所述横向整流器导通,所述光生电子通过所述横向整流器流向所述第一阳极,以产生瞬态光电流。
其中,所述瞬态光电流的大小随着所述预设入射光的斩波频率的增加而增 大。
其中,所述瞬态光电流对所述第一阳极进行充电,使得所述第一阳极的费米能级提高;当所述第一阳极的费米能级提高到与所述二维电子气的费米能级相同时,所述瞬态光电流衰减为0。
其中,当所述预设入射光移除时,所述横向整流器处于截止状态,所述光生电子无法流回所述二维电子气,所述光生电子保留在所述第一阳极中。
第二方面,本发明实施例还提供了一种光电记忆读出器件,所述光电记忆读出器件包括光电记忆器件及场效应管,所述光电记忆器件包括光电二极管及横向整流器;所述光电二极管包括半导体异质结、第一阳极及第一阴极,所述半导体异质结包括具有第一带隙的沟道层、具有第二带隙的阻拦层及形成于所述沟道层与所述阻拦层之间的接触界面处的二维电子气,所述阻拦层在所述沟道层上形成,所述第一阳极在所述阻拦层上形成,所述第一阴极在所述沟道层上形成且位于所述沟道层的一侧,所述第一阴极的内侧与所述二维电子气及所述阻拦层连接;所述横向整流器包括第二阳极及第二阴极,所述第二阴极在所述沟道层上形成且位于与所述第一阴极相对的一侧,所述第二阴极的内侧与所述阻拦层连接,所述第二阳极分别形成于所述第一阳极的一端、所述第二阴极以及所述第一阳极的该端与所述第二阴极之间的阻拦层上;其中,所述第一带隙小于所述第二带隙,所述沟道层和所述阻拦层的材质均为半导体,所述沟道层与所述阻拦层之间的接触界面中靠近所述第二阴极的预设区域不包括所述二维电子气,所述接触界面中除所述预设区域以外的区域包括所述二维电子气;所述场效应管包括漏极、源极及栅极,所述漏极分别与所述所述第一阳极、所述第二阳极及所述第二阴极电性连接,所述源极与所述第一阴极电性连接,所述栅极与控制电路连接,所述控制电路用于输出控制信号至所述栅极以控制所述场效应管处于导通或截止状态。
其中,当所述光电记忆器件被预设入射光照射时,所述沟道层发生带间激励,并产生包括光生电子和光生空穴的电子空穴对;所述光生电子朝着所述二维电子气漂移,所述光生空穴漂移进所述沟道层本体,以生成光电压,所述二维电子气中的所述光生电子不断累积,所述第一阳极与所述第一阴极之间产生费米能级差;其中,所述预设入射光的光子能量大于所述第一带隙并且小于所 述第二带隙。
其中,当生成的所述光电压大于所述横向整流器的导通电压时,所述横向整流器导通,所述光生电子通过所述横向整流器流向所述第一阳极,以产生瞬态光电流。
其中,所述瞬态光电流对所述第一阳极进行充电,所述第一阳极的费米能级提高;当所述第一阳极的费米能级提高到与所述二维电子气的费米能级相同时,所述瞬态光电流衰减为0。
其中,当所述预设入射光移除时,所述横向整流器处于截止状态,若所述控制电路控制所述场效应管处于截止状态,则所述光生电子无法流回所述二维电子气,所述光生电子保留在所述第一阳极中。
其中,当所述预设入射光移除时,所述横向整流器处于截止状态,若所述控制电路控制所述场效应管处于导通状态,则所述第一阴极与所述第二阴极电性连接,所述光生电子依次通过所述第二阳极、所述第二阴极和所述第一阴极流回所述二维电子气,并且与所述第二光生空穴复合,以产生反向瞬态光电流;其中,所述反向瞬态光电流的方向与所述瞬态光电流的方向相反。
其中,所述光生电子通过辐射复合的方式与所述光生空穴复合。
其中,所述光生电子通过非辐射复合的方式与所述光生空穴复合。
其中,当所述光生电子与所述光生空穴复合完成时,所述反向瞬态光电流衰减为0。
其中,所述瞬态光电流对所述第一阳极进行充电,使得所述第一阳极的费米能级提高;当所述第一阳极的费米能级提高到与所述二维电子气的费米能级相同时,所述瞬态光电流衰减为0。
其中,当所述预设入射光移除时,所述横向整流器处于截止状态,所述光生电子无法流回所述二维电子气,所述光生电子保留在所述第一阳极中。
第三方面,本发明实施例还提供了一种相机模组,所述相机模组包括光电记忆读出器件,所述光电记忆读出器件包括光电记忆器件及场效应管,所述光电记忆器件包括光电二极管及横向整流器;所述光电二极管包括半导体异质结、第一阳极及第一阴极,所述半导体异质结包括具有第一带隙的沟道层、具有第二带隙的阻拦层及形成于所述沟道层与所述阻拦层之间的接触界面处的 二维电子气,所述阻拦层在所述沟道层上形成,所述第一阳极在所述阻拦层上形成,所述第一阴极在所述沟道层上形成且位于所述沟道层的一侧,所述第一阴极的内侧与所述二维电子气及所述阻拦层连接;所述横向整流器包括第二阳极及第二阴极,所述第二阴极在所述沟道层上形成且位于与所述第一阴极相对的一侧,所述第二阴极的内侧与所述阻拦层连接,所述第二阳极分别形成于所述第一阳极的一端、所述第二阴极以及所述第一阳极的该端与所述第二阴极之间的阻拦层上;其中,所述第一带隙小于所述第二带隙,所述沟道层和所述阻拦层的材质均为半导体,所述沟道层与所述阻拦层之间的接触界面中靠近所述第二阴极的预设区域不包括所述二维电子气,所述接触界面中除所述预设区域以外的区域包括所述二维电子气;所述场效应管包括漏极、源极及栅极,所述漏极分别与所述所述第一阳极、所述第二阳极及所述第二阴极电性连接,所述源极与所述第一阴极电性连接,所述栅极与控制电路连接,所述控制电路用于输出控制信号至所述栅极以控制所述场效应管处于导通或截止状态。
本发明实施例提供的基于半导体异质结的光电记忆器件,当被光子能量大于所述第一带隙并且小于所述第二带隙的入射光照射时,所述光电记忆器件中产生瞬态光电流;当入射光移除时,所述光电记忆器件中产生反向的瞬态光电流,即本发明实施例提供的基于半导体异质结的光电记忆器件可对光照行为进行记忆。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)是本发明实施例提供的一种基于半导体异质结的光电记忆器件的平面结构示意图。
图1(b)是本发明实施例提供的一种基于半导体异质结的光电记忆器件的层结构示意图。
图2是本发明实施例提供的所述光电记忆器件在不同斩波频率下的光电 响应谱示意图。
图3(a)是本发明实施例提供的基于所述光电记忆器件的光电记忆读出器件的平面结构示意图。
图3(b)是本发明实施例提供的基于所述光电记忆器件的光电记忆读出器件的层结构示意图。
图4是本发明实施例提供的所述光电记忆器件的瞬态光电流谱示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明的一部分实施方式,而不是全部实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都应属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。若本说明书中出现“工序”的用语,其不仅是指独立的工序,在与其它工序无法明确区别时,只要能实现所述工序所预期的作用则也包括在本用语中。另外,本说明书中用“~”表示的数值范围是指将“~”前后记载的数值分别作为最小值及最大值包括在内的范围。在附图中,结构相似或相同的单元用相同的标号表示。
请参看图1(a)和图1(b),图1(a)是本发明实施例提供的一种基于半导体异质结的光电记忆器件的平面结构示意图,图1(b)是本发明实施例提供的一种基于半导体异质结的光电记忆器件的层结构示意图。如图1(a)所示,在本发明的实施例中,所述光电记忆器件100包括基于半导体异质结的光电二极管10及 横向整流器20。其中,所述横向整流器20具有较低的导通电压。本发明实施例以横向场效应整流器(Lateral Field-Effect Rectifier,L-FER)为例对所述横向整流器20加以说明,可以理解的是,在其他实施例中,所述横向整流器20也可以为其他类型的具有低导通电压的横向整流器件。
如图1(b)所示,在本发明的实施例中,所述光电二极管10包括半导体异质结11(semiconductor heterostructure)、第一阳极12及第一阴极13。其中,所述半导体异质结11包括具有第一带隙(bandgap)的沟道层(buffer)111、具有第二带隙的阻拦层(barrier)112及形成于所述沟道层111与所述阻拦层112之间的二维电子气(2-Dimensional Electron Gas,2-DEG)113。具体为,所述沟道层111与所述阻拦层112之间的接触界面处形成有所述二维电子气113。其中,所述二维电子气113与所述第一阴极13电性连接。
在本发明的实施例中,所述第一阳极12为所述光电二极管10的阳极,所述第一阴极13为所述光电二极管10的阴极。在本发明一实施方式中,所述第一阳极12为肖特基(Schottky)阳极,所述第一阴极13为欧姆阴极。
在本发明的实施例中,所述沟道层111和所述阻拦层112的材质均为半导体,且所述第一带隙小于所述第二带隙。在本发明一实施方式中,所述沟道层111的材质和所述阻拦层112的材质均为三族氮化物。其中,所述沟道层111的材质包括但不限于氮化镓(GaN)、铝镓氮(AlGaN)及铟镓氮(InGaN),所述阻拦层112的材质为铝镓氮。
需要说明的是,所述沟道层111和所述阻拦层112的带隙由其材质中的组分决定。
在本发明的实施例中,所述沟道层111可在衬底(图未示)上形成,所述阻拦层112在所述沟道层111上形成,所述二维电子气113位于所述沟道层111和所述阻拦层112之间,即所述沟道层111、所述二维电子气113及所述阻拦层112依次层叠设置、且形成于所述衬底上。其中,所述阻拦层112的尺寸小于所述沟道层111的尺寸。在本发明一实施方式中,所述衬底为P型硅(Si)基质。
在本发明的实施例中,所述半导体异质结11可以通过界面合金、外延生长和真空淀积等等生产工艺进行制造,本发明对此不作具体限制。在本发明一 实施方式中,所述半导体异质结11通过有机金属化学气相淀积(Metal-Organic Chemical Vapor Deposition,MOCVD)技术制造。
在本发明一实施方式中,所述半导体异质结11中还包括具有第三带隙的插入层(图未示)。其中,所述插入层在所述沟道层111与所述阻拦层112之间形成,所述第三带隙大于所述第一带隙和第二带隙。
在本发明一实施方式,所述半导体异质结11中还包括具有第四带隙的封盖层(图未示)。其中,所述封盖层在所述阻拦层112上形成,所述第四带隙小于或等于所述第一带隙。
在本发明的实施例中,所述第一阳极12在所述阻拦层112上形成,所述第一阴极13在所述沟道层111上形成且位于所述沟道层111的一侧,所述第一阴极13的内侧与所述二维电子气113及所述阻拦层112连接,即所述二维电子气113和所述阻拦层112位于所述第一阴极13的内侧,其中,所述第一阴极13与所述二维电子气113电性连接。
在本发明的实施例中,所述横向整流器20与所述光电二极管10在同一半导体异质结上形成。具体地,所述横向整流器20包括第二阳极14及第二阴极15。其中,所述第二阴极15在所述沟道层111上形成且位于与所述第一阴极13相对的一侧,所述第二阴极15的内侧与所述阻拦层112连接,即所述阻拦层112位于所述第二阴极15的内侧,也即所述阻拦层112位于所述第一阴极13与所述第二阴极15之间,且同时与所述第一阴极13与所述第二阴极15连接。所述第二阳极14分别形成于所述第一阳极12的一端、所述第二阴极15以及所述第一阳极12的该端与所述第二阴极15之间的阻拦层112上,且所述第二阳极14分别与所述第一阳极12和所述第二阴极15电性连接。
在本发明一实施方式中,所述第二阴极15为欧姆阴极。
在本发明的实施例中,所述沟道层111与所述阻拦层112之间的接触界面中靠近所述第二阴极15处具有预设区域16,所述预设区域16不包括所述二维电子气113,所述接触界面中除所述预设区域16以外的区域包括所述二维电子气,。也就是说,在本发明的实施例中,需要将所述预设区域16形成的二维电子气113去除,以使所述第二阴极15不与所述二维电子气113电性连接。在这种情形下,当所述光电记忆器件100中生成大于或等于所述横向整流器 20的导通电压的光电压时,所述横向整流器20导通。需要说明的是,本发明实施例对去除所述二维电子气113的具体方式不作限制。
在发明的实施例中,入射光从所述第一阳极12照射所述光电记忆器件100,结合图1(b)所示的所述光电记忆器件100的层结构示意图,即入射光从所述光电二极管10的顶部照射所述光电记忆器件100。在本发明一实施方式中,所述第一阳极12的材质为半透明肖特基金属。其中,所述第一阳极12的材质可以包括镍(Ni)和金(Au),即镍和金可以被用作所述半透明肖特基金属。其中,镍的波长可为5纳米(nm),金的波长可为6nm。
在本发明的实施例中,当所述光电记忆器件100被第一入射光照射时,所述光电记忆器件100中产生第一光电流。其中,所述第一入射光的光子能量大于所述第二带隙。
具体地,当所述光电记忆器件100被所述第一入射光照射时,所述阻拦层112发生带间激励,从而在所述阻拦层112中产生第一电子空穴对(包括第一光生电子和第一光生空穴)。其中,所述第一光生电子朝着所述二维电子气113漂移,所述第一光生空穴朝着所述第一阳极12漂移,即所述第一光生电子和所述第一光生空穴均沿着所述阻拦层112中内置电场的方向漂移,从而形成电流闭环。在这种情形下,在光照期间所述第一光电流持续存在,即所述第一光电流为连续光电流。当所述第一入射光移除(或关闭)时,所述阻拦层112的带间激励结束,所述第一光电流衰减为0。
当所述光电记忆器件100被第二入射光照射时,所述光电记忆器件100中产生第二光电流。其中,所述第二入射光的光子能量大于所述第一带隙并且小于所述第二带隙。
具体地,当所述光电记忆器件100被所述第二入射光照射时,所述沟道层111发生带间激励,从而在所述沟道层111中产生第二电子空穴对(包括第二光生电子和第二光生空穴)。并且,所述第二光生电子朝着所述二维电子气113漂移(或扩散),所述第二光生空穴漂移(或扩散)进所述沟道层111本体(bulk),即所述第二光生电子和所述第二光生空穴均沿着所述沟道层111中内置电场的方向漂移,从而生成光电压。其中,所述第二光生空穴首先在所述沟道层111中靠近异质界面(即所示沟道层111与所述阻拦层112的接触界面)的位 置沿着所述沟道层111中内置电场的方向漂移,然后扩散进所述沟道层111本体的更深处。可见,所述第二光生电子漂移的方向与所述第一光生电子漂移的方向相反,所述第二光生空穴的漂移的方向与所述第一光生空穴的漂移的方向相反,即所述沟道层111中能带偏移的方向与所述阻拦层112中能带偏移的方向相反。
由于所述第二光生电子朝着所述二维电子气113漂移,因此所述二维电子气113中的所述第二光生电子不断累积,导致其费米能级提高,使得所述第一阳极12与所述第一阴极13之间产生费米能级(Fermi-level)差(或电势差)。当生成的所述光电压大于所述横向整流器20的导通电压时,所述横向整流器20处于截止状态,所述第二光生电子通过所述横向整流器20流向所述第一阳极12,从而产生第二光电流。在本发明的实施例中,所述第二光电流可以对所述第一阳极12进行充电,使得所述第一阳极12的费米能级(或电势)提高。当所述第一阳极12的费米能级(或电势)提高到与所述二维电子气113的费米能级(或电势)对齐(或相同)时,即使光照继续,所述第二光电流也会衰减为0。可见,所述第二光电流为瞬态光电流。
当所述第二入射光移除时,所述横向整流器20截止,由于所述横向整流器20的阻拦,所述第二光生电子无法流回所述第一阴极13或所述二维电子气113,即所述第二光生电子保留在所述第一阳极12中。
请参看图2,图2是本发明实施例提供的所述光电记忆器件在不同斩波频率下的光电响应谱示意图。如图2的区域1所示,在所述阻拦层112发生带间激励的情形下,当所述第一入射光的斩波频率分别为f 1、f 2和f 3时,所述第一光电流的大小相同,表明所述第一光电流的大小与所述第一入射光的斩波频率无关。其中,f 1>f 2>f 3。如图2的区域2所示,在所述沟道层111发生带间激励的情形下,当所述第二入射光的斩波频率为f 3时所述第二光电流最小,当所述第二入射光的斩波频率为f 2时所述第二光电流次之,当所述第二入射光的斩波频率为f 1时所述第二光电流最大,表明所述第二光电流的大小随着所述第二入射光的斩波频率的增加而增大。在本发明一实施方式中,斩波频率f 1、f 2和f 3分别为536Hz、126Hz和9Hz。
其中,所述光电响应谱是利用锁相技术测量得到的。当然,在其他实施例 中,所述光电响应谱也可以利用其他技术测量得到。
图3(a)是本发明实施例提供的基于所述光电记忆器件的光电记忆读出器件的平面结构示意图,图3(b)是本发明实施例提供的基于所述光电记忆器件的光电记忆读出器件的层结构示意图。如图3(a)所示,所述光电记忆读出器件200包括所述光电记忆器件100及场效应管30。其中,所述场效应管30与所述光电记忆器件100在同一半导体异质结上形成,所述场效应管30包括漏极31、源极32及栅极33。
如图3(b)所示,所述漏极31与所述第二阳极14电性连接,即所述漏极31还与所述第一阳极12和所述第二阴极15电性连接;所述源极32集成在所述第一阴极13上,即所述源极32与所述第一阴极13电性连接;所述栅极33与控制电路40连接,所述控制电路40用于输出控制信号至所述栅极33以控制所述场效应管30处于导通或截止状态。其中,所述第一阳极12所在的区域为感光区60。
在本发明的实施例中,当所述第二入射光移除时,若所述控制电路40控制所述场效应管30处于截止状态,则由于所述横向整流器20的阻拦,所述第二光生电子无法流回所述第一阴极13或所述二维电子气113。
当所述第二入射光移除时,若所述控制电路40控制所述场效应管30处于导通状态,则所述第一阴极13与所述第二阴极15电性连接,所述第二光生电子可以依次通过所述第二阳极14、所述第二阴极15和所述第一阴极13流回所述二维电子气113,并且与所述第二光生空穴复合。其中,所述第二光生电子与所述第二光生空穴复合的方式可以为辐射复合或非辐射复合,本发明对此不作具体限制。当所述第二光生电子与所述第二光生空穴复合时,所述光电记忆器件100中产生第三光电流。其中,所述第三光电流与所述第二光电流的方向相反。并且,当所述第二光生电子与所述第二光生空穴复合完成时,所述第三光电流衰减为0。可见,所述第三光电流也为瞬态电流。
在本发明的实施例中,所述第二光电流的瞬变速度(或所述第二光电流的持续时间)取决于所述第二光生空穴的扩散速度。具体为,所述第二光生空穴的扩散速度越慢,所述第二光电流的瞬变速度越慢(即所述第二光电流的持续时间越短)。所述第三光电流的瞬变速度(或所述第三光电流的持续时间)取 决于所述第二光生电子和所述第二光生空穴的复合率。具体为,所述第二光生电子和所述第二光生空穴的复合率越低,所述第三光电流的瞬变速度越慢(即所述第二光电流的持续时间越长)。由于光生电子和光生空穴在空间上分开时两者的复合率会降低,因此在本发明实施例中所述第二光生电子和所述第二光生空穴的复合率较低,使得所述第三光电流的瞬变速度较慢(即所述第二光电流的持续时间较长)。
为了观察所述第二光电流与所述第三光电流的大小、方向、持续时间等电流特性,在本发明一实施方式中,所述光电二极管10的阳极与阴极之间串联有测量电路,用于检测所述第一阳极12与所述第一阴极13之间的电流流动。
请参看图4,图4是本发明实施例提供的所述光电记忆器件被第二入射光照射时产生的瞬态光电流谱示意图。其中,所述瞬态光电流包括所述第二光电流(I 1)和所述第三光电流(I 2)。由于所述第二光生电子和所述第二光生空穴的复合率较低,因此在本发明的实施例中,如图4所示,所述第三光电流的瞬变速度小于所述第二光电流的瞬变速度,即所述第三光电流的持续时间大于所述第二光电流的持续时间。根据能量守恒定律,所述第二光电流的峰值大于所述第三光电流的峰值,但这从图4中也可以看出。
需要说明的是,图4是当使用脉冲激光作为所述第二入射光时得到的瞬态光电流谱。在其他实施例中,也可以使用其他光源作为所述第二入射光来观察所述第二光电流和所述第三光电流的电流特性。
根据上述描述可知,本发明实施例提供的所述光照记忆器件100用于对光照历史进行记忆,所述光照记忆读出器件200用于读出所述光照记忆器件200记忆的光照历史。也就是说,只要所述光电记忆器件100被所述第二入射光照射过,所述光电记忆器件100就可以对光照行为进行记忆,并且所述光照记忆读出器件200可以读出所述光照记忆器件200记忆的光照行为。具体地,在没有光照的情形下,当所述控制电路40控制所述场效应管30处于导通状态时,若所述测量电路检测到所述第一阳极12与所述第一阴极13存在电流流动(即检测到所述第三光电流),则表明所述光照记忆器件100被所述第二入射光照射过;若所述测量电路检测到所述第一阳极12与所述第一阴极13不存在电流流动(即没有检测到所述第三光电流),则表明所述光照记忆器件100没有被 所述第二入射光照射过。此外,根据能量守恒定律,通过检测所述第三光电流对应的能量,所述光照记忆读出器件100还可以读出光照后由光能转化的电能(即所述第二光电流对应的能量)。
相应地,本发明实施例还提供了一种相机模组,其包括上述的光电记忆读出器件。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含在本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上对本发明实施例所提供的基于半导体异质结的光电记忆器件、光电记忆读出器件及相机模组进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种基于半导体异质结的光电记忆器件,其特征在于,所述光电记忆器件包括光电二极管及横向整流器;所述光电二极管包括半导体异质结、第一阳极及第一阴极,所述半导体异质结包括具有第一带隙的沟道层、具有第二带隙的阻拦层及形成于所述沟道层与所述阻拦层之间的接触界面处的二维电子气,所述阻拦层在所述沟道层上形成,所述第一阳极在所述阻拦层上形成,所述第一阴极在所述沟道层上形成且位于所述沟道层的一侧,所述第一阴极的内侧与所述二维电子气及所述阻拦层连接;所述横向整流器包括第二阳极及第二阴极,所述第二阴极在所述沟道层上形成且位于与所述第一阴极相对的一侧,所述第二阴极的内侧与所述阻拦层连接,所述第二阳极分别形成于所述第一阳极的一端、所述第二阴极以及所述第一阳极的该端与所述第二阴极之间的阻拦层上;其中,所述第一带隙小于所述第二带隙,所述沟道层和所述阻拦层的材质均为半导体,所述沟道层与所述阻拦层之间的接触界面中靠近所述第二阴极的预设区域不包括所述二维电子气,所述接触界面中除所述预设区域以外的区域包括所述二维电子气。
  2. 如权利要求1所述的光电记忆器件,其特征在于,所述沟道层的材质和所述阻拦层的材质均为三族氮化物。
  3. 如权利要求2所述的光电记忆器件,其特征在于,所述沟道层的材质为氮化镓、铝镓氮及铟镓氮中的任意一种,所述阻拦层的材质为铝镓氮。
  4. 如权利要求1所述的光电记忆器件,其特征在于,所述半导体异质结还包括具有第三带隙的插入层,其中,所述插入层在所述沟道层与所述阻拦层之间形成,所述第三带隙大于所述第一带隙和第二带隙。
  5. 如权利要求1所述的光电记忆器件,其特征在于,所述半导体异质结还包括具有第四带隙的封盖层,其中,所述封盖层在所述阻拦层上形成,所述第四带隙小于或等于所述第一带隙。
  6. 如权利要求1所述的光电记忆器件,其特征在于,当所述光电记忆器件被预设入射光照射时,所述沟道层发生带间激励,并产生包括光生电子和光生空穴的电子空穴对;所述光生电子朝着所述二维电子气漂移,所述光生空穴漂 移进所述沟道层本体,以生成光电压,所述二维电子气中的所述光生电子不断累积,所述第一阳极与所述第一阴极之间产生费米能级差;其中,所述预设入射光的光子能量大于所述第一带隙并且小于所述第二带隙。
  7. 如权利要求6所述的光电记忆器件,其特征在于,当生成的所述光电压大于所述横向整流器的导通电压时,所述横向整流器导通,所述光生电子通过所述横向整流器流向所述第一阳极,以产生瞬态光电流。
  8. 如权利要求7所述的光电记忆器件,其特征在于,所述瞬态光电流的大小随着所述预设入射光的斩波频率的增加而增大。
  9. 如权利要求7所述的光电记忆器件,其特征在于,所述瞬态光电流对所述第一阳极进行充电,所述第一阳极的费米能级提高;当所述第一阳极的费米能级提高到与所述二维电子气的费米能级相同时,所述瞬态光电流衰减为0。
  10. 如权利要求6所述的光电记忆器件,其特征在于,当所述预设入射光移除时,所述横向整流器处于截止状态,所述光生电子无法流回所述二维电子气,所述光生电子保留在所述第一阳极中。
  11. 一种光电记忆读出器件,其特征在于,所述光电记忆读出器件包括光电记忆器件及场效应管,所述光电记忆器件包括光电二极管及横向整流器;所述光电二极管包括半导体异质结、第一阳极及第一阴极,所述半导体异质结包括具有第一带隙的沟道层、具有第二带隙的阻拦层及形成于所述沟道层与所述阻拦层之间的接触界面处的二维电子气,所述阻拦层在所述沟道层上形成,所述第一阳极在所述阻拦层上形成,所述第一阴极在所述沟道层上形成且位于所述沟道层的一侧,所述第一阴极的内侧与所述二维电子气及所述阻拦层连接;所述横向整流器包括第二阳极及第二阴极,所述第二阴极在所述沟道层上形成且位于与所述第一阴极相对的一侧,所述第二阴极的内侧与所述阻拦层连接,所述第二阳极分别形成于所述第一阳极的一端、所述第二阴极以及所述第一阳极的该端与所述第二阴极之间的阻拦层上;其中,所述第一带隙小于所述第二带隙,所述沟道层和所述阻拦层的材质均为半导体,所述沟道层与所述阻拦层之间的接触界面中靠近所述第二阴极的预设区域不包括所述二维电子气,所述接触界面中除所述预设区域以外的区域包括所述二维电子气;所述场效应管包括漏极、源极及栅极,所述漏极分别与所述所述第一阳极、所述第二阳极及所 述第二阴极电性连接,所述源极与所述第一阴极电性连接,所述栅极与控制电路连接,所述控制电路用于输出控制信号至所述栅极以控制所述场效应管处于导通或截止状态。
  12. 如权利要求11所述的光电记忆读出器件,其特征在于,当所述光电记忆器件被预设入射光照射时,所述沟道层发生带间激励,并产生包括光生电子和光生空穴的电子空穴对;所述光生电子朝着所述二维电子气漂移,所述光生空穴漂移进所述沟道层本体,以生成光电压,所述二维电子气中的所述光生电子不断累积,所述第一阳极与所述第一阴极之间产生费米能级差;其中,所述预设入射光的光子能量大于所述第一带隙并且小于所述第二带隙。
  13. 如权利要求12所述的光电记忆读出器件,其特征在于,当生成的所述光电压大于所述横向整流器的导通电压时,所述横向整流器导通,所述光生电子通过所述横向整流器流向所述第一阳极,以产生瞬态光电流。
  14. 如权利要求13所述的光电记忆读出器件,其特征在于,所述瞬态光电流对所述第一阳极进行充电,所述第一阳极的费米能级提高;当所述第一阳极的费米能级提高到与所述二维电子气的费米能级相同时,所述瞬态光电流衰减为0。
  15. 如权利要求12所述的光电记忆读出器件,其特征在于,当所述预设入射光移除时,所述横向整流器处于截止状态,若所述控制电路控制所述场效应管处于截止状态,则所述光生电子无法流回所述二维电子气,所述光生电子保留在所述第一阳极中。
  16. 如权利要求12所述的光电记忆读出器件,其特征在于,当所述预设入射光移除时,所述横向整流器处于截止状态,若所述控制电路控制所述场效应管处于导通状态,则所述第一阴极与所述第二阴极电性连接,所述光生电子依次通过所述第二阳极、所述第二阴极和所述第一阴极流回所述二维电子气,并且与所述第二光生空穴复合,以产生反向瞬态光电流;其中,所述反向瞬态光电流的方向与所述瞬态光电流的方向相反。
  17. 如权利要求16所述的光电记忆读出器件,其特征在于,所述光生电子通过辐射复合的方式与所述光生空穴复合。
  18. 如权利要求16所述的光电记忆读出器件,其特征在于,所述光生电子 通过非辐射复合的方式与所述光生空穴复合。
  19. 如权利要求16所述的光电记忆读出器件,其特征在于,当所述光生电子与所述光生空穴复合完成时,所述反向瞬态光电流衰减为0。
  20. 一种相机模组,其特征在于,所述相机模组包括光电记忆读出器件,所述光电记忆读出器件包括光电记忆器件及场效应管,所述光电记忆器件包括光电二极管及横向整流器;所述光电二极管包括半导体异质结、第一阳极及第一阴极,所述半导体异质结包括具有第一带隙的沟道层、具有第二带隙的阻拦层及形成于所述沟道层与所述阻拦层之间的接触界面处的二维电子气,所述阻拦层在所述沟道层上形成,所述第一阳极在所述阻拦层上形成,所述第一阴极在所述沟道层上形成且位于所述沟道层的一侧,所述第一阴极的内侧与所述二维电子气及所述阻拦层连接;所述横向整流器包括第二阳极及第二阴极,所述第二阴极在所述沟道层上形成且位于与所述第一阴极相对的一侧,所述第二阴极的内侧与所述阻拦层连接,所述第二阳极分别形成于所述第一阳极的一端、所述第二阴极以及所述第一阳极的该端与所述第二阴极之间的阻拦层上;其中,所述第一带隙小于所述第二带隙,所述沟道层和所述阻拦层的材质均为半导体,所述沟道层与所述阻拦层之间的接触界面中靠近所述第二阴极的预设区域不包括所述二维电子气,所述接触界面中除所述预设区域以外的区域包括所述二维电子气;所述场效应管包括漏极、源极及栅极,所述漏极分别与所述所述第一阳极、所述第二阳极及所述第二阴极电性连接,所述源极与所述第一阴极电性连接,所述栅极与控制电路连接,所述控制电路用于输出控制信号至所述栅极以控制所述场效应管处于导通或截止状态。
PCT/CN2018/082582 2018-04-10 2018-04-10 光电记忆器件、光电记忆读出器件及相机模组 WO2019196021A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/082582 WO2019196021A1 (zh) 2018-04-10 2018-04-10 光电记忆器件、光电记忆读出器件及相机模组
CN201880041801.9A CN110770900B (zh) 2018-04-10 2018-04-10 光电记忆器件、光电记忆读出器件及相机模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082582 WO2019196021A1 (zh) 2018-04-10 2018-04-10 光电记忆器件、光电记忆读出器件及相机模组

Publications (1)

Publication Number Publication Date
WO2019196021A1 true WO2019196021A1 (zh) 2019-10-17

Family

ID=68162771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082582 WO2019196021A1 (zh) 2018-04-10 2018-04-10 光电记忆器件、光电记忆读出器件及相机模组

Country Status (2)

Country Link
CN (1) CN110770900B (zh)
WO (1) WO2019196021A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070158785A1 (en) * 2002-12-27 2007-07-12 General Electric Company Gallium nitride crystals and wafers and method of making
CN101562182A (zh) * 2008-04-02 2009-10-21 香港科技大学 集成的hemt和横向场效应整流器组合、方法及系统
CN101969071A (zh) * 2009-07-27 2011-02-09 香港科技大学 具有混合电极的晶体管与整流器及其制造方法
CN106653753A (zh) * 2015-10-30 2017-05-10 台湾积体电路制造股份有限公司 半导体结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004107B2 (ja) * 2008-02-25 2012-08-22 独立行政法人産業技術総合研究所 光電界効果トランジスタ,及びその製造方法
US8334550B1 (en) * 2011-06-09 2012-12-18 Northrop Grumman Systems Corporation Unipolar diode with low turn-on voltage
KR20160029005A (ko) * 2013-06-28 2016-03-14 인텔 코포레이션 III-N 에피택시를 위한 Si (100) 웨이퍼들 상의 Si (111) 평면들을 가진 나노구조들 및 나노피처들
WO2015131846A1 (en) * 2014-03-06 2015-09-11 The Hong Kong University Of Science And Technology P-doping-free schottky-on-heterojunction light-emitting diode and high-electron-mobility light-emitting transistor
US10090438B2 (en) * 2016-08-31 2018-10-02 Sensor Electronic Technology, Inc. Opto-electronic device with two-dimensional injection layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070158785A1 (en) * 2002-12-27 2007-07-12 General Electric Company Gallium nitride crystals and wafers and method of making
CN101562182A (zh) * 2008-04-02 2009-10-21 香港科技大学 集成的hemt和横向场效应整流器组合、方法及系统
CN101969071A (zh) * 2009-07-27 2011-02-09 香港科技大学 具有混合电极的晶体管与整流器及其制造方法
CN106653753A (zh) * 2015-10-30 2017-05-10 台湾积体电路制造股份有限公司 半导体结构

Also Published As

Publication number Publication date
CN110770900A (zh) 2020-02-07
CN110770900B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
Xie et al. Ultra-low dark current AlGaN-based solar-blind metal–semiconductor–metal photodetectors for high-temperature applications
Ozbay et al. High-performance solar-blind photodetectors based on Al/sub x/Ga/sub 1-x/N heterostructures
KR20100075711A (ko) 자외선 수광 소자
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN108305911A (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
JP4635187B2 (ja) 半導体光検出器
Hong et al. High-performance Al/sub 0.15/Ga/sub 0.85/As/In/sub 0.53/Ga/sub 0.47/As MSM photodetectors grown by OMCVD
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
US20030089958A1 (en) Low dark current photodiode
US8143648B1 (en) Unipolar tunneling photodetector
JP5688646B2 (ja) 有機−無機ハイブリッド接合型光電変換素子
Li et al. Polarization-assisted AlGaN heterostructure-based solar-blind ultraviolet MSM photodetectors with enhanced performance
Hsu et al. A PMOS tunneling photodetector
Jiang et al. Visible-blind metal-semiconductor-metal photodetectors based on undoped AlGaN/GaN high electron mobility transistor structure
Vigué et al. High detectivity ZnSe-based Schottky barrier photodetectors for blue and near-ultraviolet spectral range
WO2019196021A1 (zh) 光电记忆器件、光电记忆读出器件及相机模组
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
Berger Metal-semiconductor-metal photodetectors
JP2011171367A (ja) 半導体受光素子および半導体受光装置
Chang et al. Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer
Di Benedetto et al. A novel 4H-SiC UV photo-transistor based on a shallow mesa structure
CN110797421B (zh) 一种日盲紫外单光子雪崩探测器
Brendel et al. Solar-and visible-blind AlGaN photodetectors
CN111341841B (zh) 基于Ga2O3/TiO2复合悬浮栅的异质结场效应管及其制备方法和紫外探测器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914788

Country of ref document: EP

Kind code of ref document: A1