WO2019194628A1 - 이동 로봇 및 그 제어방법 - Google Patents

이동 로봇 및 그 제어방법 Download PDF

Info

Publication number
WO2019194628A1
WO2019194628A1 PCT/KR2019/004051 KR2019004051W WO2019194628A1 WO 2019194628 A1 WO2019194628 A1 WO 2019194628A1 KR 2019004051 W KR2019004051 W KR 2019004051W WO 2019194628 A1 WO2019194628 A1 WO 2019194628A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
boundary line
waypoint
target point
area
Prior art date
Application number
PCT/KR2019/004051
Other languages
English (en)
French (fr)
Inventor
이재훈
최규천
우종진
김동성
김형섭
신승인
유경만
정재훈
남동균
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP19781053.4A priority Critical patent/EP3782774B1/en
Priority to AU2019248256A priority patent/AU2019248256B2/en
Publication of WO2019194628A1 publication Critical patent/WO2019194628A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/835Mowers; Mowing apparatus of harvesters specially adapted for particular purposes
    • A01D34/86Mowers; Mowing apparatus of harvesters specially adapted for particular purposes for use on sloping ground, e.g. on embankments or in ditches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/005Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a mobile robot and a control method thereof, and more particularly to a mobile robot and a control method for autonomous driving in a designated area.
  • a robot In general, a robot is a device that automatically performs a predetermined operation while driving itself in a predetermined region without a user's manipulation.
  • the robot senses obstacles installed in the area and approaches or avoids the obstacles to perform a designated action.
  • the lawn mower is a riding type device that mows the grass on the floor or cuts the grass while the user moves in accordance with the driving of the user, and a workbehind type or hand type device for mowing the lawn while the user manually drags or slides it. There is.
  • Such lawn mowers are moved by direct manipulation of the user, and there is a hassle of operating the user's own device by mowing the lawn.
  • Republic of Korea Patent Registration 10-1513050 in order to set the area to move the lawn mower robot to embed the wire where the grass is planted, to control the mobile robot to move in the inner region of the wire.
  • the robot moves by controlling coordinate wires.
  • US Patent Application No. 20170344012 relates to a robot working tool system for working within a work area divided into at least one section by setting a physical or virtual boundary.
  • the robot travels in a straight line in the section, and changes the trajectory when the section boundary is reached, and travels along the boundary when moving from one section to the next section.
  • US Patent Publication No. 20180064024 is configured to move the robot according to the movement pattern in the divided region by dividing the region.
  • the robot moves along the reference line of the boundary line.
  • the robot moves to the point of the wire close to the current position and moves along the boundary line by the wire.
  • wheel grooves are formed on the floor in the process of repeatedly moving a specific area.
  • the groove may occur when the groove does not escape from the groove, and water may accumulate in the groove, and thus, the robot may act as an obstacle in normal driving during the next driving.
  • An object of the present invention is to provide a mobile robot and a control method for moving to a target point by setting at least one passing point in a moving path starting from a current position of the mobile robot to a target point based on a map. Is in.
  • Mobile robot for achieving the above object, within the area separated for the boundary line, to set the movement path to move from the starting point to the target point based on the map, at least between the starting point and the target point
  • the movement path to move from the starting point to the target point based on the map, at least between the starting point and the target point
  • it is characterized by moving to the target point according to the movement route passing through the waypoint.
  • the present invention is characterized in that when the mobile robot can not travel in a straight line to the target point at least one waypoint is set, the movement path connecting the waypoint.
  • the present invention is characterized in that the mobile robot sets at least one feature point on the basis of the boundary line and sets a waypoint at an adjacent position based on the feature point in an area divided by the boundary line.
  • the present invention is characterized in that the mobile robot sets a plurality of waypoint candidates at adjacent positions based on the feature points, and sets any one of the plurality of waypoint candidates as waypoints.
  • the mobile robot of the present invention is characterized by modifying the movement route by setting a new waypoint when a situation occurs in which the vehicle cannot travel while moving to the target point according to the movement route.
  • the mobile robot of the present invention includes: a main body that travels an area formed by a boundary line; A driving unit which moves the main body; An obstacle detecting unit detecting an obstacle; Avoiding the obstacle to be detected, and controls the driving unit so that the main body does not deviate out of the area by invading the boundary line, and when the main body moves, between the target point and the starting point to move, for avoiding the boundary line or the obstacle And a controller configured to set at least one waypoint and set a movement route connecting the starting point, the waypoint and the target point in a straight line.
  • the control method of the mobile robot of the present invention comprises the steps of: identifying a position of a target point to be moved in an area formed by a boundary line; Setting at least one waypoint between the starting point and the target point to avoid the boundary and obstacle; Setting a movement route connecting the starting point, the waypoint, and the target point in a straight line; And moving to the target point according to the movement route.
  • the mobile robot and its control method according to the present invention can be easily moved within the boundary line by setting a waypoint to move based on a feature point extracted based on a map, and a moving path connecting the waypoints.
  • the present invention can shorten the moving distance by setting the moving route by designating a waypoint.
  • the present invention can accurately move to the target point in a short time through the movement route including the waypoint.
  • the present invention can easily set the movement route by designating a waypoint according to the shape of the boundary line or the position of the obstacle.
  • the present invention can easily change the movement path even if a sudden situation occurs.
  • a plurality of waypoint candidates are set based on a feature point set as a reference as a boundary line, and one of the waypoint candidates is designated as a waypoint, so that the movement route can be easily modified.
  • the position may be corrected using a boundary line or a feature point.
  • the waypoint may be moved to a position adjacent to the target point.
  • the present invention can move to the target point regardless of the boundary line.
  • the present invention can be easily moved even at a point away from the boundary line.
  • At least one waypoint may be set between the new target point and the new moving route may be set to travel.
  • the present invention moves within the area formed by the boundary line, but by setting a new movement path according to the target point, it is possible to prevent the groove is formed on the floor because it does not repeatedly move to a specific position.
  • FIG. 1 is a perspective view showing a mobile robot according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating main parts of a mobile robot according to an exemplary embodiment of the present invention.
  • 3 is an exemplary view referred to to explain the traveling area and the boundary line of a mobile robot according to an embodiment of the present invention.
  • FIG. 4 is a diagram referred to describe a movement route using a waypoint of a mobile robot according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a waypoint candidate for designating a waypoint of FIG. 4.
  • FIG. 6 is a view referred to for explaining the change in the movement path of the mobile robot according to an embodiment of the present invention.
  • FIG 7 and 8 are views for explaining the movement path setting according to the target point of the mobile robot according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a control method of a mobile robot moving using a waypoint according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method for setting a movement path of a mobile robot according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method of changing a movement path of a mobile robot according to an embodiment of the present invention.
  • control configuration of the present invention may be composed of at least one processor.
  • FIG. 1 is a diagram showing a mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 as shown in Figure 1, the casing forming the appearance of the main body and forming a space in which the parts are received, and the obstacle detection disposed on the front of the main body to detect the obstacle A unit (not shown) and moving wheels (left and right wheels) configured to move and rotate the mobile robot are included.
  • the lower end of the main body may further include an auxiliary wheel (not shown), and includes a battery (not shown) for providing power according to the driving.
  • the mobile robot 100 is provided with a suction unit that sucks dust from the bottom surface of the cleaning robot, and in the case of a lawn mower robot, a cutting unit (not shown) cuts the grass or weeds to a predetermined size from the bottom surface. Or it is formed on the bottom surface of the body.
  • the mobile robot of the present invention will be described as an example of a lawnmower robot, but may be applied to a cleaning robot in relation to movement in an area using a map described below, setting a waypoint, setting and modifying a movement path, and It specifies that any mobile robot that is autonomous can be applied.
  • the mobile robot 100 travels through an area formed by a boundary line.
  • the mobile robot 100 detects a boundary line and may travel along the boundary line.
  • the mobile robot 100 sets any one side of the area formed by the boundary line as the area.
  • the mobile robot sets the inner region of the boundary line as the driving region.
  • the mobile robot travels within the set area while keeping the boundary within the boundary.
  • the mobile robot 100 does not travel beyond the boundary line or pass through the boundary line even when a physical barrier such as a wall or a fence is not located.
  • the mobile robot 100 detects a boundary line while driving, senses an obstacle located in a driving direction, and avoids and runs.
  • the mobile robot 100 may move by mowing the grass on the floor in the area.
  • the mobile robot 100 may generate a map of the area based on the detected boundary line and the obstacle information. While moving the set area, the mobile robot 100 may classify the runable area and the impossible area and store it in a map.
  • the mobile robot 100 may determine the location by calculating coordinates for obstacles and boundary lines on the map.
  • the mobile robot 100 may calculate the location of the charging station and store the location on the map, and determine the location.
  • the mobile robot 100 may extract a feature point based on the position of the boundary line or the obstacle, set at least one waypoint based on the feature point, and set a movement route connecting the waypoint.
  • the mobile robot designates a position so as not to invade the boundary line with respect to a partial area that moves a point that cannot be linearly traveled, and any point where the linear movement is hindered can be set as a feature point.
  • the mobile robot 100 may set a movement route including at least one waypoint from the starting point to the target point.
  • the feature point may be set at any one point of the protruding region and is a bending point of the boundary line, for example, a corner, a position of an obstacle, and an edge of a boundary formed by the obstacle.
  • Feature points may be formed at concave edges as well as convex edges.
  • the waypoint may be set to any one of a plurality of waypoint candidates set at a predetermined distance from the feature point, including the feature point.
  • the feature point may also be set as a waypoint.
  • the mobile robot 100 stops performing the operation in response to the state of the battery and returns to the charging station (not shown) to charge it.
  • the charging station transmits a guide signal for the return of the mobile robot, and the mobile robot receives the guide signal and returns to the charging station.
  • the mobile robot 100 may communicate with a terminal (not shown) to share a map and operate according to a control command of the terminal.
  • the mobile robot 100 may transmit data on the current state to the terminal to output a message indicating that the battery is being charged through the terminal.
  • FIG. 2 is a block diagram illustrating main parts of a mobile robot according to an exemplary embodiment of the present invention.
  • the mobile robot 100 includes an obstacle detecting unit 120, an input / output unit 130, a driving unit 170, a cutting unit 160, a communication unit 150, a data unit 140, and the like. It includes a control unit 110 for controlling the overall operation.
  • the input / output unit 130 includes input means such as at least one button, a switch, a touch pad, and output means such as a display unit or a speaker, and receives a user command and outputs an operation state of the mobile robot.
  • the input / output unit 130 may output a warning when an abnormality occurs in the mobile robot or when an inoperable or isolated situation occurs.
  • the data unit 140 stores an input sensing signal, stores reference data for determining an obstacle, and stores obstacle information on the detected obstacle. In addition, the data unit 140 stores control data for controlling the operation of the mobile robot and data according to the operation mode of the mobile robot.
  • the data unit 140 stores the collected location information, and stores the map and the information about the boundary line and the driving area.
  • the data unit 140 stores data that can be read by a microprocessor, and includes a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, and a RAM. , CD-ROM, magnetic tape, floppy disk, optical data storage device.
  • HDD hard disk drive
  • SSD solid state disk
  • SDD silicon disk drive
  • ROM read only memory
  • RAM random access memory
  • the communication unit 150 may communicate with a terminal located within a predetermined distance by wire or wireless communication.
  • the communication unit 150 may be connected to a predetermined network to communicate with a terminal for controlling an external server or a mobile robot.
  • the communication unit 270 transmits the generated map to the terminal, receives a command from the terminal, and transmits data on the operation state of the mobile robot to the terminal.
  • the communication unit 270 transmits and receives data including communication modules such as Wi-Fi and WiBro, as well as short-range wireless communication such as Zigbee and Bluetooth.
  • the driving unit 170 includes at least one driving motor to allow the mobile robot to travel according to a control command of the controller 110.
  • the driving unit 170 may include a left wheel driving motor for rotating the left wheel and a right wheel driving motor for rotating the right wheel, and may also include an auxiliary wheel.
  • the left wheel drive motor and the right wheel drive motor rotate in the same direction, but when the left wheel drive motor and the right wheel drive motor rotate at different speeds or in opposite directions, the driving direction of the main body 10 is rotated. This can be switched.
  • At least one auxiliary wheel (not shown) may be further provided to stably support the main body 10.
  • the cutting unit 160 cuts the grass on the bottom while driving.
  • Cutting unit 160 is provided with a brush or a blade for mowing the lawn to mow the grass through the rotation.
  • the obstacle detecting unit 120 includes a plurality of sensors to detect an obstacle located in a driving direction.
  • the obstacle detecting unit 120 may detect an obstacle in front of the main body, that is, a driving direction, by using at least one of a laser, an ultrasonic wave, an infrared ray, and a 3D sensor.
  • the obstacle detecting unit may further include a cliff detecting sensor installed on a rear surface of the main body to detect a cliff.
  • the obstacle detecting unit 120 may include a camera that detects an obstacle by photographing the front.
  • the camera is a digital camera and may include an image sensor (not shown) and an image processor (not shown).
  • An image sensor is an apparatus that converts an optical image into an electrical signal, and is composed of a chip in which a plurality of photo diodes are integrated. For example, a pixel is a photo diode. Charges are accumulated in each pixel by an image formed on the chip by light passing through the lens, and the charges accumulated in the pixels are converted into electrical signals (eg, voltages).
  • the image sensor a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), and the like are well known.
  • the camera may include an image processor (DSP) for processing the captured image.
  • DSP image processor
  • the position sensing unit 180 includes a plurality of sensor modules for transmitting and receiving position information.
  • the position sensing unit includes a GPS module for transmitting and receiving a GPS signal, or a position sensor module for transmitting and receiving position information from a position information transmitter.
  • a GPS module for transmitting and receiving a GPS signal
  • a position sensor module for transmitting and receiving position information from a position information transmitter.
  • the location information transmitter transmits a signal by any one of ultrasonic waves, ultra wide band (UWB), and infrared rays
  • UWB ultra wide band
  • infrared rays a sensor module for transmitting and receiving ultrasonic waves, UWB, and infrared signals is provided.
  • UWB radio technology uses a very wide frequency band of several GHz or more in the baseband, without using a radio carrier (RF carrier).
  • UWB wireless technology uses very narrow pulses of several nanoseconds or several picoseconds. Since the pulses emitted from the UWB sensor are several nanos or several pico, the penetrability is good, so that even if there are obstacles in the vicinity, very short pulses emitted from other UWB sensors can be received.
  • the UWB sensor may be formed of a transmitter and a receiver as one module.
  • the signal of the UWB sensor can be transmitted through an obstacle, the user does not affect the signal transmission even when the user moves the terminal.
  • a signal may not be transmitted or penetrates, but a transmission distance may be reduced.
  • the mobile robot may be provided with a plurality of UWB sensors.
  • UWB sensors When two UWB sensors are provided, for example, provided on the left and right sides of the main body, respectively, by receiving the signals, it is possible to accurately calculate the position by comparing the plurality of received signals. For example, if the distance measured by the sensor on the left and the sensor on the right is different according to the position of the position information transmitter or the terminal as a reference, the mobile robot uses the difference between the received signals and the relative position and the movement. The direction of the robot can be determined.
  • the location information transmitter transmits a signal with a UWB sensor
  • the terminal may receive a signal of the location information transmitter through the UWB signal provided.
  • the mobile robot may include at least one tilt sensor (not shown) to detect the movement of the main body.
  • the tilt sensor calculates the tilted direction and angle when the tilt sensor is tilted in the front, rear, left and right directions.
  • the tilt sensor may be a tilt sensor, an acceleration sensor, or the like, and in the case of the acceleration sensor, any one of a gyro type, an inertial type, and a silicon semiconductor type may be applied.
  • various sensors or devices capable of detecting the movement of the main body may be used.
  • the mobile robot may further include a ground state detection sensor for detecting the ground state of the cleaning area, it may also detect the ground state using a sensor, or a camera of the obstacle detection unit.
  • a ground state detection sensor for detecting the ground state of the cleaning area, it may also detect the ground state using a sensor, or a camera of the obstacle detection unit.
  • the controller 110 controls input / output of data and controls the driving unit to move the mobile robot according to the setting.
  • the controller 110 controls the driving unit 170 to independently control the operation of the left wheel driving motor and the right wheel driving motor so that the main body 10 travels straight or rotated.
  • the controller 110 recognizes the detected boundary line and the obstacle and controls the driving.
  • the controller 110 may set any one region of the region formed by the boundary line as an area capable of traveling.
  • the controller 110 sets the boundary line in the form of a closed loop by connecting discontinuous position information in a line or a curve, and sets the inner region as an area capable of driving.
  • the control unit 110 may set any one of the regions formed by the boundary lines as an area capable of traveling.
  • the controller 110 generates a map based on the information acquired along the boundary line, the location information, and the information about the obstacle in the area detected while driving.
  • the controller calculates coordinates from the map and determines a location by matching the area formed by the boundary line.
  • the controller 110 controls the driving unit so as to travel within the area and not to leave the boundary line when the driving area and the boundary thereof are set.
  • the controller 110 controls the driving based on the information of the boundary line and the obstacle detected while driving.
  • control unit 110 may determine the obstacle information input by the obstacle detecting unit 120 to avoid obstacles and travel, and may modify a predetermined area in some cases.
  • the controller 110 may determine the position of the obstacle in response to the obstacle information, set the avoidance direction by determining the type of the obstacle, and may not set to approach a predetermined distance when a cliff is detected.
  • the controller 110 controls the cutting unit and the driving unit to drive the area and mow the lawn according to the input control command.
  • the controller 110 may move to a specific position and start an operation in response to the control command.
  • the controller calculates a current location, a starting point, and a target point based on a map to set a movement route.
  • the controller 110 may calculate a plurality of feature points based on the boundary line and the obstacle and set a movement path based on the feature points based on the map.
  • the controller 110 may set any point of the bending point, the corner, or the protruding area of the area formed by the boundary line or the obstacle as the feature point.
  • the controller 110 may set a plurality of waypoint candidates at a predetermined distance and a predetermined angle based on the feature points, and may set at least one of the waypoint candidates as waypoints, and set a movement route connecting the starting point, waypoints and target points. .
  • the controller 110 may set a waypoint based on the feature point, but may also set the feature point as a waypoint.
  • the controller 110 sets a moving route by designating a waypoint when it is impossible to drive to a target point based on a map.
  • the controller 110 may travel by setting a point adjacent to the target point within the area as a passing point.
  • the waypoint set at this time may be a new target point.
  • the controller 110 may determine the location and size of the obstacle and the shape (outline) of the obstacle to store the obstacle information and display the location on the map.
  • the controller 110 may set the area where the obstacle is located as a non-movable area when the size of the obstacle is greater than or equal to a predetermined size.
  • the controller 110 may change the movement route by setting a new route point when a new obstacle is detected or invades the boundary line while the vehicle is traveling according to the movement route.
  • the controller may drive a predetermined time after driving for a predetermined time along the boundary line and drive to the target point.
  • the controller avoids the obstacle detected through the obstacle detecting unit, but may invade the boundary line due to a position error in some cases, and move to the position of the obstacle.
  • the controller 110 may generate a position error due to a slip, a movement by a ground state, a movement by a collision, or the like while driving.
  • the controller 110 may travel along the boundary line and correct the position error. Also, the controller may correct the position error using the coordinate values of the feature points.
  • 3 is an exemplary view referred to to explain the traveling area and the boundary line of a mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 travels an area inside the boundary line based on the boundary line L.
  • the mobile robot 100 may travel a plurality of regions formed by a plurality of boundary lines.
  • the boundary line L may be embedded with a wire at the bottom of the area where the mobile robot 100 travels, and may be formed by a marker installed or attached to the floor or wall.
  • the boundary line L may be formed by a signal transmitted from a location information transmitter (not shown) provided in a plurality on one side of the region.
  • the mobile robot may directly detect the wire and may detect the boundary line L by a magnetic field or induced electromotive force generated from the wire.
  • the mobile robot may detect a boundary line by receiving a signal transmitted from a location information transmitter, and detect a boundary line by detecting a marker through an image. In addition, the mobile robot may determine the virtual boundary set on the map by the terminal connected to each other as the boundary line and control the driving.
  • the method of setting the boundary line can be used in various ways in addition to the described wire, marker or signal transmission.
  • the mobile robot 100 mows the grass while moving the internal area A formed by the boundary line L.
  • the internal area A formed by the boundary line is a travelable area.
  • the boundary line may be installed to avoid a plurality of obstacles, a house O1, a garden O5, a rock O2, a staircase O3, a swimming pool O4, or a pond.
  • the boundary line may be installed except for the rock O2.
  • obstacles larger than or equal to a certain size may be classified as non-driving area so that the boundary line may be separated. Can be modified.
  • the mobile robot may restrict access to an area other than a grass or an obstacle area.
  • the mobile robot 100 moves within the designated area when the area A to travel is set, and keeps the boundary line L from leaving the boundary.
  • the mobile robot 100 moves the inner region of the region A with the boundary line L outside.
  • the mobile robot 100 may move while maintaining the boundary line at the center of the mobile robot due to the difference in the way of detecting the boundary line.
  • the mobile robot may determine that it has not left the boundary line.
  • the mobile robot 100 may drive along the boundary line L to generate a map based on the acquired position information and obstacle information, calculate the coordinates of the map, and calculate the position by matching the coordinates with the area A.
  • FIG. have.
  • the mobile robot 100 may distinguish between the runnable area and the impossible area, and may modify the preset area based on information about an obstacle detected while driving.
  • the mobile robot 100 stores the position of the charging stand. Since the mobile robot 100 acquires power for movement through charging, it is necessary to stop the operation set according to the battery state while driving and return to the charging station to charge the battery. Return to the charging station.
  • the mobile robot 100 may set an initial start position as a charging station, and detect a charging station while traveling along a boundary line. When the location of the charging stand is detected, the mobile robot 100 stores the location of the charging stand on the map.
  • the controller 110 may control the driving unit to ignore the boundary line and return to the charging station beyond the boundary when charging is required.
  • the mobile robot may set the charging station return mode, temporarily cancel the setting of the area along the boundary line L among the charging station return mode, and search and return to the charging station based on the detected obstacle information.
  • the mobile robot 100 may include a predetermined area connecting the charging stand from a point adjacent to the charging stand as a travelable area.
  • the mobile robot 100 may set a reference position in the area A, calculate coordinates for each point in the area based on the reference position, and store the location information of each point.
  • the mobile robot 100 may calculate a moving distance based on the rotation speed of the wheel, the moving speed, the rotation direction (the sensor value of the gyro sensor), and the like, and calculate the current position in the area accordingly.
  • the mobile robot 100 may determine the position by using any one point as a reference position even when determining the position using the GPS.
  • the mobile robot 100 may obtain location information using a GPS signal, an ultrasonic signal, an infrared signal, an electromagnetic signal, or an ultra wide band (UWB) signal.
  • a GPS signal an ultrasonic signal, an infrared signal, an electromagnetic signal, or an ultra wide band (UWB) signal.
  • UWB ultra wide band
  • FIG. 4 is a diagram referred to describe a movement route using a waypoint of a mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 may move within an area formed by the boundary line L1.
  • the mobile robot 100 may move from the starting point P1 to the target point P4.
  • the mobile robot 100 may extract the respective points E1 to E7 of the plurality of bending points formed by the boundary line from the shape of the boundary line L1 and set the feature point.
  • the mobile robot may optionally set a point E8 of a curve formed at a boundary where the line meets a line or a face and a face as a feature point, and any one point of the protruding region. Can be set.
  • the mobile robot can set a position as a feature point for the shape of the region where linear movement is impossible by designating a position so as not to invade the boundary line with respect to a partial region moving the point where the linear movement cannot be performed.
  • the first, second, fifth, sixth, seventh, eighth points (E1, E2, E5 to E8) among the plurality of feature points. If not, it can be excluded because it is less likely to be a point via a straight run in the area.
  • the moving robot 100 when the mobile robot 100 cannot move in a straight path from the starting point P1 to the target point P4, the moving robot 100 includes at least one of the feature points as a waypoint to set the moving path. Can be.
  • the mobile robot can set the third feature point E3 and the fourth feature point E1 as the first waypoint P2 and the second waypoint P3, respectively, in order to move from the starting point P1 to the target point P4. have.
  • the mobile robot connects the third feature point E3 and the fourth feature point E4, that is, the first waypoint P2, the second waypoint P3, and the target point P4, respectively, from the starting point P1 in a straight line.
  • the movement path L2 can be set. When traveling along the movement path L2, the mobile robot may travel along a boundary line between the third feature point E3 and the fourth feature point E4.
  • the mobile robot can set the movement path in this way with respect to the case where the moving robot moves from the charging station to the starting point of mowing, when the mobile robot moves within the area when returning to the charging station from a specific point of the area.
  • the mobile robot may set the movement path in the shortest distance with respect to the case of moving between points.
  • the mobile robot passes through all of the designated area and runs while mowing the lawn on the floor.
  • the driving robot changes the direction and then linearly runs again after changing the direction.
  • the mobile robot can run zigzag or helically in the region.
  • FIG. 5 is a diagram illustrating a waypoint candidate for designating a waypoint of FIG. 4.
  • the mobile robot 100 moves from the starting point P1 to the target point P4.
  • the controller 110 first determines whether the vehicle can travel in a straight path from the starting point P1 to the target point P4, and if it is determined that the vehicle cannot travel in the straight path, the controller 110 sets the movement path including the route point.
  • the controller 110 passes through the first and second waypoints P2 and P3 of the feature points, that is, the third and fourth feature points E3 and E4, which are located in an area to pass to move to the target point P4 among the plurality of extracted feature points. ), You can set the movement path.
  • the mobile robot sets a plurality of waypoint candidates based on the third and fourth feature points E3 and E4 to set any one of the plurality of waypoint candidates as waypoints. have.
  • the mobile robot travels along the boundary line when passing through the third and fourth feature points E3 and E4.
  • the mobile robot may deviate to the outside by invading the boundary line while cornering at the third and fourth feature points E3 and E4 while driving.
  • the mobile robot may set a movement route that does not move along the boundary line by setting any one of the plurality of route candidates as a waypoint.
  • the controller 110 may set a plurality of waypoint candidates at a plurality of points according to a distance in units of an angle with respect to the boundary line at which the feature point is located.
  • the controller 110 may set the stopover candidate at a predetermined angle within a range of 15 degrees to 75 degrees.
  • the controller may set a plurality of waypoint candidates at a plurality of points according to the distance from the feature point in consideration of the size of the mobile robot.
  • the controller may change the distance within the range of 0.5m to 3.5m and set the waypoint candidate.
  • the controller 110 may set the first, second, and third via candidates P11, P12, and P13 at positions away from the eleventh distance D11 based on the fourth feature points P3 and E4. .
  • the controller 110 may set the fourth, fifth, and sixth way candidates P14, P15, and P16 at positions away from the fourth feature point P3 and E4 from the twelfth distance D12.
  • control unit 110 passes through the first, fourth, and seventh candidates according to the distance on the line F12 forming the first angle with the extension line based on the extension line F11 extending the boundary line where the fourth feature point is located. (P11, P14, P17) can be set.
  • second, fifth and eighth candidates P12, P15, and P18 can be set to the line F13 which forms the extension line F11 and the second angle, for example, 45 degrees.
  • the controller 110 may arbitrarily set a route point to be included in the movement route among the plurality of route candidates.
  • the controller may set a waypoint in consideration of the size of the mobile robot.
  • the controller 110 may set any one of the plurality of waypoint candidates as waypoints according to the position of the next waypoint or the target point.
  • the stopover candidate may be set as a waypoint based on the direction in which the target point is located according to the position of the target point P4 based on the driving direction at the fourth feature point.
  • controller 110 may set one of the waypoint candidates as waypoints based on the number of accident occurrences or the number of driving successes according to each waypoint candidate according to the pre-stored driving records for the plurality of waypoint candidates.
  • the controller 110 may determine the feature point as a stopover candidate and set the stoppoint.
  • the controller 110 sets one of the plurality of waypoint candidates as waypoints, and when a waypoint is set for each feature point, sets the movement route connecting the waypoints to control the driving unit.
  • the controller may set a movement route with respect to a starting point, a waypoint, and a target point using location information such as coordinates and a waypoint.
  • FIG. 6 is a view referred to for explaining the change in the movement path of the mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 sets a feature point with coordinates as a waypoint, or moves along a boundary to correct the position error and change the movement path. Can be.
  • the controller 110 changes the driving direction toward the adjacent feature point or the boundary line, and when the boundary line is detected, the controller 110 may correct the position error based on the actual distance.
  • the controller 110 may correct the position error by traveling a predetermined distance along the boundary line.
  • controller 110 may reconfigure the feature point when the obstacle is repeatedly detected.
  • the mobile robot 100 includes a fifth waypoint P5 and a sixth waypoint P6 to move to a third movement path L3 that moves to the target point P7. Can be set to drive.
  • the mobile robot may collide with the wall at the first accident point PP1 or invade the boundary line while driving in the movement route connecting the fifth waypoint P5 and the sixth waypoint P6. . In narrow areas where there is a reduced number of movable areas, collisions or intrusions may occur.
  • the controller 110 may set an escape mode for accidental accidents.
  • the controller 110 changes the moving path according to any one of the escape mode for driving along the boundary line and the escape mode for driving by setting a new route point to escape from the accident situation. Do it.
  • controller 110 may apply both escape modes to allow the mobile robot to escape from the accident situation.
  • the controller may correct the position error by setting the escape mode.
  • the mobile robot 100 may move the path to the fourth moving path L4 traveling along a predetermined distance boundary line by an escape mode that travels along the boundary line. You can change it and drive.
  • the mobile robot 100 moves from the first accident point PP1 to the adjacent boundary line and travels a predetermined distance along the boundary line. When the position is confirmed, the mobile robot 100 changes the driving direction in the direction in which the target point is located and runs along the boundary line. You can move to the target point.
  • the controller 110 ignores the preset third movement path and controls the driving unit to move along the boundary line in the first direction.
  • the controller 110 corrects the position on the basis of the boundary line, and determines the current position to change the driving direction when it is determined to move away from the target point P7 and approach the starting point.
  • the driving unit may be controlled to move along the boundary line.
  • the controller may move along the boundary line while maintaining the first direction when the first direction is a direction approaching the target point.
  • the controller 110 When the controller 110 reaches a position where the linear driving to the target point P7 is possible while traveling along the boundary line, the controller 110 performs a linear driving to the target point P7.
  • the mobile robot travels along the boundary line after the accident point, and travels straight from the boundary line to the target point P7 at the point where the linear movement is possible to the target point P7.
  • the mobile robot 100 travels in the fifth movement path L5 including the new waypoint by an escape mode in which a new waypoint is set and travels. can do.
  • the controller 110 may change the movement path by setting a new waypoint P8, which is a new waypoint, for the first accident point PP1 where the accident occurs.
  • the controller 110 sets the eighth waypoint P8 as the mirror waypoint of the fifth waypoint P5 to allow the mobile robot to escape from the accident.
  • the eighth waypoint P8 may be one of a plurality of other waypoint candidates set when the fifth waypoint P5 is designated.
  • the controller 110 may set a new waypoint, an eighth waypoint, based on the fifth waypoint P5 or the first accident point P11.
  • the controller 110 may change a path to a new fifth movement route L5 connecting the eighth waypoint and the sixth waypoint.
  • an accident such as a collision or borderline violation may occur at the second accident point PP2 due to a position error.
  • the controller 110 may change the movement route by setting a new waypoint and a ninth waypoint P9 from the second accident point PP2.
  • the mobile robot 100 may reach the target point by traveling from the ninth waypoint to the target point P7.
  • the controller searches for and sets a new moving route by traveling along a boundary line or setting a new waypoint for an accident, a position error, etc. that occur while driving, so as to escape from an accident situation and reach a target point in a short time.
  • FIG 7 and 8 are views for explaining the movement path setting according to the target point of the mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 may move a point adjacent to the target point as a new target point P24.
  • the controller 110 may calculate the position of the target point P25 to determine that the point is outside the area.
  • the controller 110 may set the 24th waypoint P24 on a boundary line adjacent to the target point P25 or in an inner region of the boundary line.
  • the 24th waypoint P24 may be set as a new target point.
  • the mobile robot 100 may reach the new target point 24, the 24th waypoint P24, from the starting point P21 through the eleventh movement path L11 passing through the 22nd and 23rd waypoints P22 and P23. have. In some cases, the mobile robot 100 may travel through the twelfth moving path L12 moving in a straight line from the 22nd waypoint P22 to the 24th waypoint P24, that is, a new target point.
  • the controller 110 may set a plurality of waypoint candidates and set a new target point from the plurality of candidates.
  • the controller 110 may set a point adjacent to the target point P25 within a predetermined distance range as a via candidate.
  • a point adjacent to the target point P25 within a predetermined distance range For example, the 27th point P27 of the first distance D1, the 24th point P24 of the second distance D2, and the 26th point P26 of the third distance D3 are set as transit candidates.
  • the controller 110 may set any one of a plurality of stopover candidates corresponding to the distance from the target point, the position of the surrounding obstacle, and the distance from the previous waypoint. In addition, the controller 110 may set a waypoint in consideration of the number of accidents occurring at each point.
  • control point 110 connects the target point P25 and the twenty-third waypoint P23 with a straight line L13, a plurality of points positioned on the straight line are provided.
  • the twenty eighth point adjacent to the boundary line may be set as a new target point.
  • the controller selects a new target point of the 29th point P29 adjacent to the boundary line and the target point among a plurality of points positioned on the straight line. Can be set.
  • the controller 110 sets a new target point in the area, sets the movement path, controls the driving unit, and moves to the new target point.
  • FIG. 9 is a flowchart illustrating a control method of a mobile robot moving using a waypoint according to an embodiment of the present invention.
  • the mobile robot 100 moves when it is necessary to move, for example, when moving from the current position to the charging station, when moving to a specific position, or when mowing starts from a specific position.
  • the movement path can be set based on the desired point.
  • the controller 110 sets the current position as the starting point, sets the point to be moved as the target point, and checks the position (S310).
  • the controller 110 may check the movement position of the actual area through the coordinates of the starting point and the target point by using the previously stored map.
  • the controller 110 determines whether linear movement is possible from the starting point to the target point based on the obstacle information and the shape of the area from the map (S320).
  • the controller 110 When the controller 110 can move in a straight path, the controller 110 sets the driving direction to the target point and starts the movement by controlling the driving unit.
  • the controller 110 may set the movement path for the movement to the target point.
  • the controller 110 may set the movement path to move from the boundary line to the target point adjacent to the target point while moving along the boundary line from the starting point to the target point.
  • controller 110 may set at least one waypoint between the starting point and the target point (S330), and set a movement route connecting the starting point, the waypoint and the target point (S340).
  • the controller 110 may set a waypoint, and set a movement route so as to linearly travel between the points, thereby shortening the driving distance to the target point.
  • a movement route so as to linearly travel between the points, thereby shortening the driving distance to the target point.
  • the driving distance becomes longer, it may take a long time to move to the target point.
  • the mobile robot 100 starts driving in accordance with the movement route connecting the starting point, the waypoint, and the target point.
  • the controller 110 determines whether the movement is impossible (S360).
  • the controller 110 changes the movement route (S370).
  • the controller 110 may determine that movement is not possible even when the current position cannot be confirmed due to a position error, as well as movement by an obstacle or a boundary line. The controller 110 may determine that there is an error in the current position due to slipping while driving or a position change due to a collision.
  • the controller 110 corrects the position error based on the boundary line, and sets a new movement path from the current position to the target point.
  • the controller 110 may change the movement path by traveling along the boundary line or setting a new waypoint.
  • the controller 110 controls the driving unit to control the vehicle to travel according to a new movement route. Accordingly, the mobile robot 100 moves to the target point based on the changed new movement path (S380).
  • the mobile robot 100 ends the movement by the movement path (S400).
  • the mobile robot 100 waits for the next command to be input or starts a preset designated operation.
  • the mobile robot 100 may start the lawn mower while moving the setting area according to a predetermined driving pattern from the target point.
  • the mobile robot 100 may start charging by docking the charging stand.
  • FIG. 10 is a flowchart illustrating a method for setting a movement path of a mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 checks the positions of the starting point and the target point (S410) and moves to the target point according to the set movement path.
  • the controller 110 determines whether the target point is located at a point outside the area, out of the boundary line (S420).
  • the controller 110 determines whether straight driving is possible from the starting point to the target point (S430).
  • a moving path connecting the starting point and the target point in a straight line is set (S480), and the driving unit is controlled.
  • the controller 110 sets a plurality of way through candidates in the area of the boundary line based on the boundary line adjacent to the target point (S460).
  • the waypoint candidate can set a plurality of waypoint candidates located within a predetermined distance from the target point in an area of the boundary line adjacent to the target point.
  • a point adjacent to the boundary line can be set as the waypoint candidate.
  • the twenty-eighth point on the line connecting the twenty-third waypoint and the target point and the twenty-ninth point on the line connecting the twenty-fourth waypoint and the target point may be set as waypoint candidates.
  • the controller 110 may set any one point as a waypoint based on information about a distance to a target point, a distance to another waypoint, an accident occurrence frequency of each point, and obstacles around the plurality of waypoint candidates. (S470). In some cases, the controller 110 may set a waypoint according to a set condition without setting a separate waypoint candidate.
  • controller 110 sets the set route point as a new target point to set the movement route.
  • the controller 110 determines whether the linear movement between the starting point and the new target point is possible (S430), and when the linear movement is not possible, sets the at least one waypoint between the starting point and the new target point (S450).
  • the controller 110 sets at least one waypoint to avoid obstacles without invading the boundary line according to the shape of the region and the position of the target point.
  • the controller 110 sets a plurality of waypoint candidates based on feature points set at break points, corners, etc. according to the shape of the area, and then selects the position of the target point, obstacles around them, the number of accidents occurring at each waypoint, and the number of successful driving.
  • One waypoint candidate can be set as a waypoint based on at least one.
  • the controller 110 sets a movement route connecting the starting point, the waypoint and the target point (S480).
  • the mobile robot moves to the target point (S490).
  • FIG. 11 is a flowchart illustrating a method of changing a movement path of a mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 moves to a target point according to the set movement path.
  • the controller 110 sets the movement route for moving to the target point
  • the controller 110 sets the movement route so as not to invade the boundary line or collide with the obstacle.
  • slip may occur according to the state of the floor, or an error may occur in the position of the mobile robot depending on the material of the floor.
  • the mobile robot 100 avoids driving while sensing an obstacle in a driving direction while driving, and there may be a case in which there is a moving obstacle or a collision with an undetected blind spot.
  • the controller approaches the boundary line, invades the boundary line, leaves the area, or collides with an obstacle (S520). It can be judged that it occurred.
  • the controller may determine whether the boundary line is reached by a signal such as a current or a magnetic field induced from the boundary line.
  • the controller controls the driving unit such that the mobile robot does not leave the boundary and does not leave the area.
  • the controller may set the escape mode so as to escape the accident while correcting the position error (S530).
  • the controller 110 compares the determined position value with the position of the boundary line and corrects the position error of the mobile robot.
  • the controller may correct the position based on the position of the obstacle stored in the map when an accident occurs at a position far away from the boundary line.
  • the controller 110 determines whether driving to the target point is possible (S540), and when the driving to the target point is possible (S590).
  • the controller 110 determines whether to travel along the boundary line.
  • the controller 110 controls the driving unit to move in one direction or the first direction based on the boundary line.
  • the controller 110 may re-determine the current position while driving, determine whether the controller is close to the target point, and then change the driving direction to the second direction.
  • the second direction may be opposite to the first direction.
  • the controller 110 moves out of the boundary line to the target point (S590).
  • the controller 110 sets a new waypoint based on the corrected current position (S570), and changes the movement path to a path connecting the new waypoint (S580).
  • the new waypoint can be set in consideration of the distance between the current position and the target point and the shape of the obstacle therebetween.
  • the control unit may set a new waypoint as one of the other waypoint candidates for the initial waypoint based on the location where the accident occurred.
  • the controller 110 may set another waypoint candidate among the plurality of waypoint candidates set from the feature points as a new waypoint.
  • controller 110 may change the movement route by setting a new route point when an accident occurs again while driving in the new movement route.
  • the mobile robot moves to the target point along the changed movement path (S590).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Robotics (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명은 이동 로봇 및 그 제어방법에 관한 것으로, 이동 로봇은, 지도를 바탕으로 이동 로봇의 현재 위치로부터 출발하여 목표하는 지점까지 이동하는 이동 경로에, 경유하는 지점을 적어도 하나 설정하여 목표 지점까지의 이동하도록 구성되어, 경계선 또는 장애물의 위치에 따라 용이하게 이동경로를 설정할 수 있고, 최단거리로 이동경로를 설정하여 빠르게 목표점까지 이동할 수 있고, 이동 중에 위치오차가 발생하더라도 용이하게 보정할 수 있으며, 장애물에 의해 주행할 수 없는 경우에도 경유점을 변경하여 용이하게 이동할 수 있다.

Description

이동 로봇 및 그 제어방법
본 발명은 이동 로봇 및 그 제어방법에 관한 것으로, 지정된 영역을 자율주행하는 이동 로봇 및 그 제어방법에 관한 것이다.
일반적으로 로봇은 사용자의 조작 없이도 소정 구역을 스스로 주행하면서 자동으로 소정의 동작을 수행하는 기기이다. 로봇은 구역 내에 설치된 장애물을 감지하여 장애물에 접근하거나 회피하여 지정된 동작을 수행한다.
잔디 깎이 장치는 사용자가 탑승하여 사용자의 운전에 따라 이동하면서 바닥의 잔디를 깎거나 풀을 절삭하는 승용형 장치와, 사용자가 수동으로 끌거나 밀어서 이동하면서 잔디를 깎는 워크비하인드타입 또는 핸드타입의 장치가 있다.
이러한 잔디 깎이 장치는 사용자의 직접적인 조작에 의해 이동하며 잔디를 깎는 것으로 사용자의 직접 장치를 작동해야하는 번거로움이 있다.
그에 따라 로봇을 이용하여 잔디를 깎을 수 있는 수단을 구비한 로봇형의 잔디 깎이 장치가 개발되고 있다.
로봇형 잔디 깎이 장치는 실외에서 동작하므로 이동할 영역을 사전에 설정해야 할 필요성이 있다. 실외의 경우 열린 공간이므로 영역을 지정해 줘야 하고, 또한 잔디가 심어진 곳을 주행하도록 영역을 한정해줘야 한다.
이를 위해 대한민국등록특허 10-1513050에서는, 잔디 깎이 로봇이 이동할 영역을 설정하기 위해 잔디가 심어진 곳에 와이어를 매설하여, 이동 로봇이 와이어의 내측 영역에서 이동하도록 제어한다. 경계 와이어의 좌표정보를 획득하여 로봇의 주행을 제어한다.
그러나 로봇은 좌표정보를 이용하여 주행하더라도, 실외환경에서 주행함에 따라 미끄러짐 등의 문제가 발생할 수 있고, 회피하지 못한 작은 돌과 같은 장애물에 의해 실제 위치를 판단하는데 있어서 한계가 있다.
그에 따라, 로봇은 확실하게 목표지점에 도달할 수 있도록, 특정 지점을 이동하려 할 때, 로봇들과 같이 외곽의 경계선을 따라 이동한다.
미국공개특허 20170344012는, 물리적 또는 가상의 경계를 설정하여, 적어도 하나의 섹션으로 구분된 작업영역 내에서 작업하는 로봇 작업 공구 시스템에 관한 것이다. 로봇은 섹션 내에서는 직선으로 주행하다가 섹션의 경계에 도달하면 궤적을 변경하여 주행하고, 하나의 섹션에서 다음 섹션으로 이동하는 경우에는 경계를 따라 주행한다.
또한, 미국공개특허 20180064024는 영역을 분할하여 분할된 영역에서 로봇이 이동패턴에 따라 이동하도록 구성된다. 로봇은 경계선의 기준라인을 따라 이동하는 것으로, 영역 내의 어느 한 지점에서 다른 지점으로 이동하는 경우, 현재위치로부터 가까운 와이어의 포인트로 이동하여 와이어에 의한 경계선을 따라 이동한다.
그러나 로봇이 경계선을 따라 주행하는 경우, 외곽의 경계선의 형상에 따라 이동 시간이 길어 지는 문제가 있다.
또한, 특정 지역을 반복적으로 이동하는 과정에서 바닥에 바퀴 홈이 형성될 가능성이 있다. 바닥에 홈이 형성되는 경우, 주행 중에 홈에서 빠져나오지 못하는 경우가 발생할 수 있고, 또한, 홈에 물이 고일 수 있으므로, 다음 주행 시 로봇이 정상 주행하는데 있어서 장애물로 작용할 수 있다.
그에 따라 경계선 내에서 보다 효율적으로 이동하면서 빠르게 목표한 지점에 도착할 수 있도록 하는 방안이 필요하다.
[선행기술문헌]
[특허문헌]
대한민국등록특허 10-1513050
US 20180064024A1
US 20170344012A1
본 발명의 목적은, 지도를 바탕으로 이동 로봇의 현재 위치로부터 출발하여 목표하는 지점까지 이동하는 이동 경로에, 경유하는 지점을 적어도 하나 설정하여 목표 지점까지의 이동하는 이동 로봇 및 그 제어방법을 제공함에 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위한 본 발명의 일 실시예에 따른 이동 로봇은, 경계선에 위해 구분되는 영역 내에서, 지도를 바탕으로 출발점으로부터 목표점까지 이동하는 이동경로를 설정하되, 출발점과 목표점 사이에 적어도 하나의 경유점을 설정하여, 경유점을 통과하는 이동경로에 따라 목표점까지 이동하는 것을 특징으로 한다.
본 발명은 이동 로봇이 목표하는 지점까지 직선으로 주행한 수 없는 경우 적어도 하나의 경유점을 설정하여, 경유점을 연결하는 이동경로를 설정하는 것을 특징으로 한다.
본 발명은 이동 로봇이, 경계선에 위해 구분되는 영역 내에, 경계선을 기준으로 적어도 하나의 특징점을 설정하고, 특징점을 기준으로 인접한 위치에 경유점을 설정하는 것을 특징으로 한다.
본 발명은 이동 로봇이 특징점을 기준으로 인접한 위치에 복수의 경유후보를 설정하고, 복수의 경유후보 중 어느 하나를 경유점으로 설정하는 것을 특징으로 한다.
본 발명의 이동 로봇은, 이동경로에 따라 목표점까지 이동하는 중에 주행할 수 없는 상황이 발생하는 경우, 새로운 경유점을 설정하여 이동경로를 수정하는 것을 특징으로 한다.
본 발명의 이동 로봇은, 경계선에 의해 형성되는 영역을 주행하는 본체; 상기 본체를 이동시키는 주행부; 장애물을 감지하는 장애물 감지부; 감지되는 장애물을 회피하며, 상기 본체가 상기 경계선을 침범하여 상기 영역 외로 이탈하지 않도록 상기 주행부를 제어하며, 상기 본체가 이동하는 경우, 이동할 목표점과 출발점 사이에, 상기 경계선 또는 상기 장애물을 회피하기 위한, 적어도 하나의 경유점을 설정하고, 상기 출발점, 상기 경유점, 상기 목표점을 직선으로 연결하는 이동경로를 설정하는 제어부;를 포함한다.
본 발명의 이동 로봇의 제어방법은, 경계선에 의해 형성되는 영역 내에서, 이동할 목표점의 위치를 확인하는 단계; 출발점과 상기 목표점 사이에, 상기 경계선 및 장애물을 회피하기 위한 적어도 하나의 경유점을 설정하는 단계; 상기 출발점, 상기 경유점, 상기 목표점을 직선으로 연결하는 이동경로를 설정하는 단계; 및 상기 이동경로에 따라 상기 목표점으로 이동하는 단계;를 포함한다.
본 발명에 따른 이동 로봇 및 그 제어방법은, 지도를 바탕으로 추출되는 특징점에 기초하여 이동할 경유점을 설정하고 경유점을 연결하는 이동경로를 설정함으로써 경계선 내에서 용이하게 이동할 수 있다.
본 발명은 경유점의 지정하여 이동경로를 설정함으로써 이동거리를 단축할 수 있다.
본 발명은 경유점을 포함한 이동경로를 통해 단시간에 정확하게 목표점으로 이동할 수 있다.
본 발명은 경계선의 형태 또는 장애물의 위치에 따라 경유점을 지정하여, 이동경로를 용이하게 설정할 수 있다.
본 발명은 돌발상황이 발생하더라도 용이하게 이동경로를 변경할 수 있다.
본 발명은 경계선으로 기준으로 설정되는 특징점에 기초하여 복수의 경유후보를 설정하고, 경유후보 중 하나를 경유점으로 지정하여, 이동경로를 용이하게 수정할 수 있다.
본 발명은 이동 중에 위치오차가 발생하더라도, 경계선 또는 특징점을 이용하여 위치를 보정할 수 있다.
본 발명은 목표점이 경계선의 외부에 위치하더라도 목표점에 인접한 위치에 경유점을 설정하여 이동할 수 있다.
본 발명은 경계선에 관계없이 목표점으로 이동할 수 있다.
본 발명은 경계선으로부터 일정 거리 떨어진 지점이라도 용이하게 이동할 수 있다.
본 발명은 목표점에 도착한 이후에도, 새로운 목표점과의 사이에 적어도 하나의 경유점을 설정하여 새로운 이동경로를 설정하여 주행할 수 있다.
본 발명은 이동 로봇이 경계선에 의해 형성되는 영역 내에서 이동하되, 목표점에 따라 새로운 이동경로를 설정하여, 특정 위치를 반복적으로 이동하지 않으므로 바닥에 홈이 형성되는 것을 방지할 수 있다.
도 1 은 본 발명의 일 실시예에 따른 이동 로봇이 도시된 사시도이다.
도 2 는 본 발명의 일 실시예에 따른 이동 로봇의 주요부들을 도시한 블록도이다.
도 3 은 본 발명의 일 실시예에 따른 이동 로봇의 주행영역 및 경계선을 설명하는데 참조되는 예시도이다.
도 4 는 본 발명의 일 실시예에 따른 이동 로봇의 경유점을 이용한 이동경로를 설명하는데 참조되는 도이다.
도 5 는 도 4의 경유점을 지정하기 위한 경유후보가 도시된 도이다.
도 6 은 본 발명의 일 실시예에 따른 이동 로봇의 이동경로의 변경을 설명하는데 참조되는 도이다.
도 7 및 도 8 은 본 발명의 일실시예에 따른 이동 로봇의 목표점에 따른 이동경로 설정을 설명하는데 참조되는 도이다.
도 9 는 본 발명의 일실시예에 따른, 경유점을 이용하여 이동하는 이동 로봇의 제어방법이 도시된 순서도이다.
도 10 은 본 발명의 일실시예에 따른 이동 로봇의 이동경로 설정방법이 도시된 순서도이다.
도 11 은 본 발명의 일실시예에 따른 이동 로봇의 이동경로 변경방법이 도시된 순서도이다.
이하, 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 본 발명의 제어구성은 적어도 하나의 프로세서로 구성될 수 있다.
도 1 은 본 발명의 일 실시예에 따른 이동 로봇이 도시된 도이다.
본 발명에 따른 이동 로봇(100)은 도 1 에 도시된 바와 같이, 본체의 외관을 형성하며 내측으로 부품들이 수납되는 공간을 형성하는 케이싱과, 본체의 전면부 에 배치되어 장애물을 감지하는 장애물감지유닛(미도시)과, 이동 로봇이 이동하고 회전가능하도록 구성된 이동바퀴(좌륜과 우륜)를 포함한다. 또한, 본체의 하단부에는 보조바퀴(미도시)가 더 구비될 수 있고, 주행에 따른 동력을 제공하는 배터리(미도시)를 포함한다.
이동 로봇(100)은 청소 로봇인 경우 바닥면의 먼지를 흡입하는 흡입유닛이 구비되고, 잔디 깎이 로봇의 경우 바닥면으로부터 일정 크기로 잔디 또는 잡초를 깎도록 절삭유닛(미도시)이 전면부 하단 또는 본체의 바닥면에 형성된다.
이하, 본 발명의 이동 로봇은 잔디깎이로봇인 것을 예로 하여 설명하나, 하기에서 설명하는 지도를 이용한 영역 내 이동, 경유점의 설정, 이동경로 설정 및 수정에 관련하여 청소로봇에도 적용될 수 있고, 그 외 자율 주행하는 이동 로봇이라면 어느 것 이라도 적용할 수 있음을 명시한다.
이동 로봇(100)은 경계선에 의해 형성되는 영역을 주행한다. 이동 로봇(100)은 경계선을 감지하며, 경계선을 따라 주행할 수 있다.
이동 로봇(100)은 경계선에 의해 형성되는 영역 중 어느 일측을 영역으로 설정한다. 이동 로봇은 경계선의 내부 영역을 주행영역으로 설정한다.
이동 로봇은 경계를 벗어나지 않도록 유지하면서 설정된 영역 내에서 주행한다. 이동 로봇(100)은 경계선이 벽, 담장과 같은 물리적인 장애물이 위치하지 않는 경우에도 경계선을 넘거나 경계선을 통과하여 주행하지 않는다.
이동 로봇(100)은 주행중에 경계선을 감지하며, 주행방향에 위치한 장애물을 감지하고, 회피하여 주행한다. 이동 로봇(100)은 영역 내에서 바닥의 잔디를 깎으며 이동할 수 있다.
이동 로봇(100)은 감지되는 경계선과 장애물의 정보를 바탕으로 영역에 대해 지도를 생성할 수 있다. 이동 로봇(100)은 설정된 영역을 주행하면서, 주행 가능한 영역과 불가능한 영역을 구분하고, 지도에 저장할 수 있다.
이동 로봇(100)은 지도에 장애물 및 경계선에 대한 좌표를 산출하여 위치를 판단할 수 있다. 이동 로봇(100)은 충전대의 위치를 산출하여 지도에 저장하고, 위치를 판단할 수 있다.
이동 로봇(100)은 경계선 또는 장애물의 위치를 기준으로 특징점을 추출하여, 특징점을 기준으로 적어도 하나의 경유점을 설정하고, 경유점을 연결하는 이동경로를 설정할 수 있다.
이동 로봇은, 직선 주행할 수 없는 지점을 이동하는 일부 영역에 대하여 경계선을 침범하지 않도록 위치를 지정하는 것으로, 직선 이동이 방해가 되는 지점은 모두 특징점으로 설정할 수 있다.
이동 로봇(100)은 출발점으로부터 목표점까지 적어도 하나의 경유점을 포함하는 이동경로를 설정할 수 있다.
특징점은, 돌출된 영역의 어느 일지점으로, 경계선의 꺽인지점, 예를 들어 모서리, 장애물의 위치, 장애물에 의해 형성되는 경계의 모서리에 설정될 수 있다. 특징점은 볼록 모서리 뿐 아니라 오목 모서리에도 형성될 수 있다.
경유점은, 특징점을 포함하여, 특징점으로부터 소정 거리에 설정되는 복수의 경유후보 중 어느 하나로 설정될 수 있다. 특징점 또한 경유점으로 설정될 수 있다.
이동 로봇(100)은 배터리의 상태에 대응하여, 수행중인 동작을 정지하고 충전대(미도시)로 복귀하여 충전한다. 충전대는 이동 로봇의 복귀를 위한 안내신호를 송출하고, 이동 로봇은 안내신호를 수신하여 충전대로 복귀한다.
이동 로봇(100)은 단말(미도시)과 통신하여 지도를 공유하고, 단말의 제어명령에 따라 동작할 수 있다. 이동 로봇(100)은 단말로 현재 상태에 대한 데이터를 전송하여 충전중임을 알리는 메시지가 단말을 통해 출력되도록 할 수 있다.
도 2 는 본 발명의 일 실시예에 따른 이동 로봇의 주요부들을 도시한 블록도이다.
도 2에 도시된 바와 같이, 이동 로봇(100)은 장애물감지부(120), 입출력부(130), 주행부(170), 절삭부(160), 통신부(150), 데이터부(140) 그리고 동작전반을 제어하는 제어부(110)를 포함한다.
입출력부(130)는 적어도 하나의 버튼, 스위치, 터치패드 등의 입력수단과, 디스플레이부, 스피커 등의 출력수단을 포함하여 사용자명령을 입력받고, 이동 로봇의 동작상태를 출력한다. 입출력부(130)는 이동 로봇에 이상이 발생하는 경우, 주행불가상황 또는 고립상황이 발생하는 경우 경고를 출력할 수 있다.
데이터부(140)에는 입력되는 감지신호가 저장되고, 장애물을 판단하기 위한 기준데이터가 저장되며, 감지된 장애물에 대한 장애물정보가 저장된다. 또한, 데이터부(140)에는 이동 로봇의 동작을 제어하기 위한 제어데이터 및 이동 로봇의 동작모드에 따른 데이터가 저장된다.
데이터부(140)에는 수집되는 위치정보가 저장되고, 경계선 및 주행하는 영역에 대한 정보와 지도가 저장된다.
또한, 데이터부(140)는, 마이크로 프로세서(micro processor)에 의해 읽힐 수 있는 데이터를 저장하는 것으로, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치를 포함할 수 있다.
통신부(150)는 소정 거리 내에 위치하는 단말과 유선 또는 무선통신 방식으로 통신할 수 있다. 또한, 통신부(150)는 소정의 네트워크에 연결되어 외부의 서버 또는 이동 로봇을 제어하는 단말과 통신할 수 있다.
통신부(270)는 생성되는 지도를 단말로 전송하고, 단말로부터 명령을 수신하며, 이동 로봇의 동작상태에 대한 데이터를 단말로 전송한다. 통신부(270)는 지그비, 블루투스 등의 근거리 무선통신뿐 아니라, 와이파이, 와이브로 등의 통신모듈을 포함하여 데이터를 송수신한다.
주행부(170)는 적어도 하나의 구동모터를 포함하여 제어부(110)의 제어명령에 따라 이동 로봇이 주행하도록 한다. 주행부(170)는 좌륜을 회전시키는 좌륜 구동모터와 우륜을 회전시키는 우륜 구동모터를 포함할 수 있고, 또한 보조바퀴를 포함할 수 있다. 본체가 직진 주행하는 경우에는 좌륜 구동모터와 우륜 구동모터가 같은 방향으로 회전되나, 좌륜 구동모터와 우륜 구동모터가 다른 속도로 회전되거나, 서로 반대 방향으로 회전되는 경우에는 본체(10)의 주행 방향이 전환될 수 있다. 본체(10)의 안정적인 지지를 위한 적어도 하나의 보조륜(미도시)이 더 구비될 수 있다.
절삭부(160)는 주행 중, 바닥면의 잔디를 깎는다. 절삭부(160)는 잔디를 깎기위한 브러쉬 또는 칼날이 구비되어 회전을 통해 바닥의 잔디를 깎는다.
장애물감지부(120)는 복수의 센서를 포함하여 주행방향에 위치한 장애물을 감지한다. 또한, 장애물감지부(120)는 레이저, 초음파, 적외선, 3D센서 중 적어도 하나를 이용하여 본체의 전방, 즉 주행방향의 장애물을 감지할 수 있다. 또한, 장애물감지부는 본체의 배면에 설치되어 낭떠러지를 감지하는, 낭떠러지 감지센서를 더 포함할 수 있다.
장애물감지부(120)는 전방을 촬영하여 장애물을 감지하는 카메라를 포함할 수 있다. 카메라는 디지털 카메라로, 이미지센서(미도시)와 영상처리부(미도시)를 포함할 수 있다. 이미지센서는 광학 영상(image)을 전기적 신호로 변환하는 장치로, 다수개의 광 다이오드(photo diode)가 집적된 칩으로 구성되며, 광 다이오드로는 픽셀(pixel)을 예로 들 수 있다. 렌즈를 통과한 광에 의해 칩에 맺힌 영상에 의해 각각의 픽셀들에 전하가 축적되며, 픽셀에 축적된 전하들은 전기적 신호(예를들어, 전압)로 변환된다. 이미지센서로는 CCD(Charge Coupled Device), CMOS(Complementary Metal Oxide Semiconductor) 등이 잘 알려져 있다. 또한, 카메라는 촬영된 영상을 처리하는 영상처리부(DSP)를 포함할 수 있다.
위치감지부(180)는 위치정보를 송수신하기 위한 복수의 센서모듈을 포함한다.
위치감지부는 GPS신호를 송수신하는 GPS모듈, 또는 위치정보송출기로부터 위치정보를 송수신하는 위치센서모듈을 포함한다. 위치정보송출기가 초음파, UWB(Ultra Wide Band), 적외선 중 어느 하나의 방식으로 신호를 송신하는 경우, 그에 대응하여 초음파, UWB, 적외선신호를 송수신하는 센서모듈이 구비된다.
UWB 무선기술은 무선 반송파(RF carrier)를 사용하지 않고, 기저대역(Baseband)에서, 수 GHz 이상의 매우 넓은 주파수 대역을 사용하는 것이다. UWB 무선기술은 수 나노 혹은 수 피코 초의 매우 좁은 펄스를 사용한다. 이와 같은 UWB 센서에서 방출되는 펄스는 수 나노 혹은 수 피코이므로, 관통성이 좋고, 그에 따라 주변에 장애물이 존재하더라도 다른 UWB 센서에서 방출하는 매우 짧은 펄스를 수신할 수 있다. UWB 센서는 송신부와 수신부가 하나의 모듈로 형성될 수 있다.
앞서 설명한 바와 같이 UWB센서의 신호를 장애물을 관통하여 신호를 전송할 수 있으므로 사용자가 단말을 들고 이동하더라도 신호 전송에 영향을 주지 않는다. 다만, 일정크기 이상의 장애물인 경우, 신호가 전송되지 않거나 또는 관통은 하지만 전송거리가 감소될 수도 있다.
이동 로봇은 복수의 UWB센서가 구비될 수 있다. 두 개의 UWB센서가 구비되는 경우, 예를 들어 본체의 좌측과 우측에 각각 구비되어, 각각 신호를 수신함으로써, 수신되는 복수의 신호를 비교하여 정확한 위치 산출이 가능하다. 예를 들어 기준이 되는 위치정보송출기 또는 단말의 위치에 따라, 좌측의 센서와 우측의 센서에서 측정되는 거리가 상이한 경우, 이를 바탕으로 이동 로봇은 수신되는 신호의 차이를 이용하여 상대적 위치와, 이동 로봇의 방향을 판단할 수 있다. 위치정보송출기가 UWB센서를 구비하여 신호를 송출하는 경우, 단말은 구비되는 UWB신호를 통해 위치정보송출기의 신호를 수신할 수 있다.
또한, 이동 로봇은 본체의 움직임을 감지하기 위해 적어도 하나의 기울기센서(미도시)를 포함할 수 있다. 기울기센서는 본체의 전, 후, 좌, 우 방향으로 기울어지는 경우, 기울어진 방향과 각도를 산출한다. 기울기센서는 틸트센서, 가속도센서 등이 사용될 수 있고, 가속도센서의 경우 자이로식, 관성식, 실리콘반도체식 중 어느 것이나 적용 가능하다. 또한, 그 외에 본체의 움직임을 감지할 수 있는 다양한 센서 또는 장치가 사용될 수 있을 것이다.
또한, 이동 로봇은 청소 영역의 바닥상태를 감지하는 바닥상태 감지센서를 더 포함할 수 있고, 장애물감지부의 센서, 또는 카메라를 이용하여 바닥상태를 감지할 수도 있다.
제어부(110)는 데이터의 입출력을 제어하고, 설정에 따라 이동 로봇이 주행하도록 주행부를 제어한다. 제어부(110)는 주행부(170)를 제어하여 좌륜 구동모터와 우륜 구동모터의 작동을 독립적으로 제어함으로써 본체(10)가 직진 또는 회전하여 주행하도록 한다.
제어부(110)는 감지되는 경계선과 장애물을 인식하여 주행을 제어한다.
제어부(110)는 경계선에 의해 형성되는 영역 중 어느 일 영역을 주행 가능한 영역으로 설정할 수 있다. 또한, 제어부(110)는 불연속적인 위치정보를 선 또는 곡선으로 연결하여 폐루프(closed loop) 형태로 경계선을 설정하고, 내부 영역을 주행 가능한 영역으로 설정한다. 또한, 제어부(110)는 경계선이 복수로 설정되는 경우에는 경계선에 의해 형성되는 영역 중 어느 하나를 주행 가능한 영역으로 설정할 수 있다.
제어부(110)는 경계선으로 따라 획득되는 정보와 위치정보, 주행중에 감지되는 영역내의 장애물에 대한 정보를 바탕으로 지도를 생성한다. 제어부는 지도로부터 좌표를 산출하여 경계선에 의해 형성되는 영역과 매칭하여 위치를 판단한다.
제어부(110)는 주행영역 및 그에 따른 경계가 설정되면, 영역 내에서 주행하며 경계선을 벗어나지 않도록 주행부를 제어한다.
제어부(110)는 주행중에 감지되는 경계선과 장애물의 정보를 바탕으로 주행을 제어한다.
또한, 제어부(110)는 장애물감지부(120)에 의해 입력되는 장애물정보를 판단하여 장애물을 회피하여 주행하고, 경우에 따라 기 설정된 영역을 수정할 수 있다. 제어부(110)는 장애물 정보에 대응하여 장애물의 위치를 판단하고 또한 장애물의 종류를 판단하여 회피방향을 설정하고, 또한, 낭떠러지가 감지되는 경우 일정거리 이상 접근하지 않도록 설정할 수 있다.
제어부(110)는 입력되는 제어명령에 따라 영역을 주행하며 잔디를 깎도록 절삭부와 주행부를 제어한다.
제어부(110)는 제어명령에 대응하여, 특정 위치로 이동하여 동작을 시작할 수 있다. 제어부는 현재위치와 출발점, 목표점을 지도를 바탕으로 산출하여 이동경로를 설정한다.
제어부(110)는 지도에 기초하여, 경계선 및 장애물을 기준으로 복수의 특징점을 산출하고 특징점을 기준으로 이동경로를 설정할 수 있다. 제어부(110)는 경계선 또는 장애물에 의해 형성되는 영역의 꺽인지점, 모서리, 돌출된 영역의 어느 지점을 특징점으로 설정할 수 있다.
제어부(110)는 특징점을 기준으로 소정거리, 소정 각도에 복수의 경유후보를 설정하고, 경유후보 중 적어도 하나를 경유점으로 지정하여, 출발점, 경유점, 목표점을 연결하는 이동경로를 설정할 수 있다. 제어부(110)는 특징점을 기준으로 경유점을 설정하되, 특징점 또한 경유점으로 설정할 수 있다.
제어부(110)는 지도를 기준으로 목표점까지의 직선주행이 불가능한 경우 경유점을 지정하여 이동경로를 설정한다.
제어부(110)는 목표점이 영역의 외부에 위치하는 경우에는, 영역 내에서 목표점에 인접한 지점을 경유점으로 설정하여 주행할 수 있다. 이때 설정되는 경유점은 새로운 목표점이 될 수 있다.
제어부(110)는 주행 중에, 장애물감지부로부터 새로운 장애물이 감지되는 경우 장애물의 위치와 크기, 장애물의 형상(외곽선)을 판단하여 장애물 정보를 저장하고 지도에 위치를 표시할 수 있다. 제어부(110)는 장애물의 크기가 일정 크기 이상인 경우 장애물이 위치한 영역을 이동불가 영역으로 설정할 수 있다.
제어부(110)는 이동경로에 따라 주행하는 중에, 새로운 장애물이 감지되거나 경계선을 침범하는 경우, 장애물에 접금 또는 충돌하는 경우, 새로운 경유점을 설정하여 이동경로를 변경할 수 있다.
또한, 제어부는 새로운 장애물이 발생하거나 경계선을 침범하는 경우에도 경계선을 따라 일정시간 주행한 후 새로운 이동경로를 설정하여 목표점으로 주행할 수 있다.
제어부는 장애물 감지부를 통해 감지되는 장애물에 대하여, 회피하여 주행하지만, 경우에 따라 위치오차로 인하여 경계선을 침범할 수 있고, 장애물의 위치로 이동할 수 있다. 제어부(110)는 주행 중에 미끄러짐, 바닥상태에 의한 이동, 충돌에 의한 이동 등의 이유로 위치오차가 발생할 수 있다.
제어부(110)는 위치오차가 발생하는 경우 경계선을 따라 주행하며 위치오차를 보정할 수 있다. 또한, 제어부는 특징점의 좌표값을 이용하여 위치오파를 보정할 수 있다.
도 3 은 본 발명의 일 실시예에 따른 이동 로봇의 주행영역 및 경계선을 설명하는데 참조되는 예시도이다.
도 3에 도시된 바와 같이, 이동 로봇(100)은 경계선(L)을 기준으로 경계선의 내부의 영역을 주행한다. 또한, 이동 로봇(100)은 복수의 경계선에 의해 형성되는 복수의 영역을 주행할 수 있다.
경계선(L)은 이동 로봇(100)이 주행하는 영역의 바닥에 와이어로 매설될 수 있고, 바닥 또는 벽면에 설치되거나 부착되는 마커에 의해 형성될 수 있다. 또한, 경계선(L)은 영역의 어느 일측에 복수로 설치되는 위치정보송출기(미도시)로부터 송출되는 신호에 의해 형성될 수 있다.
이동 로봇은, 와이어를 직접 감지할 수 있고, 와이어로부터 발생하는 자기장 또는 유도기전력에 의해 경계선(L)을 감지할 수 있다.
이동 로봇은, 위치정보송출기로부터 발신된 신호를 수신하여 경계선을 감지할 수 있으며, 영상을 통해 마커를 감지하여 경계선을 감지할 수 있다. 또한, 이동 로봇은, 상호 연결되는 단말 등에 의해 지도에 설정되는 가상의 경계를 경계선으로 판단하여 주행을 제어할 수 있다.
경계선을 설정하는 방법은, 설명된 와이어, 마커 또는 신호송출 이외에도 다양하게 사용될 수 있음을 명시한다.
이동 로봇(100)은 경계선(L)에 의해 형성되는 내부의 영역(A)을 이동하면서 잔디를 깎는다. 경계선에 의해 형성되는 내부의 영역(A)은 주행가능한 영역이다.
한편, 경계선은 주변의 복수의 장애물, 집(O1), 정원(O5), 바위(O2), 계단(O3), 수영장(O4) 또는 연못 등을 회피하도록 설치될 수 있다.
또한, 경계선 내에 일정크기 이상의 장애물이 존재하는 경우, 해당 장애물의 위치는 주행 불가 영역으로 분류된다. 예를 들어 바위(O2)를 제외하고 경계선이 설치될 수 있고, 경우에 따라 바위(O2)가 경계선의 내부 즉 주행 가능한 영역 내에 위치하는 경우에도 일정 크기 이상의 장애물은 주행 불가 영역으로 분류되어 경계선이 수정될 수 있다.
이동 로봇은 경계선을 기준으로 주행 가능한 영역을 벗어나지 않고 주행함에 따라, 잔디가 아닌 영역이나 장애물이 있는 영역으로의 접근을 제한할 수 있다.
이동 로봇(100)은 주행할 영역(A)이 설정되면 지정된 영역 내에서 이동하고, 경계선(L)을 경계를 벗어나지 않도록 한다. 이동 로봇(100)은 경계선(L)을 외곽에 두고 영역(A)의 내측 영역을 이동한다. 경우에 따라, 경계선을 감지하는 방식의 차이에 의해 이동 로봇(100)은, 경계선이 이동 로봇의 중앙에 위치하도록 유지하면서 이동할 수도 있다. 이동 로봇은 경계선을 벗어나지 않은 것으로 판단할 수 있다.
이동 로봇(100)은 경계선(L)을 따라 주행하며 획득된 위치정보 및 장애물 정보를 바탕으로 지도를 생성하고, 지도의 좌표를 산출하여, 좌표와 영역(A)을 매치하여 위치를 산출할 수 있다.
이동 로봇(100)은 설정된 영역을 주행하면서, 주행 가능한 영역과 불가능한 영역을 구분하고, 주행중에 감지되는 장애물에 대한 정보를 바탕으로, 기 설정된 영역을 수정할 수 있다.
이동 로봇(100)은 충전대의 위치를 저장한다. 이동 로봇(100)은 충전을 통해 이동을 위한 동력을 취득하므로, 주행 중 배터리 상태에 따라 설정된 동작을 중지하고 충전대로 복귀하여 충전할 필요가 있으므로 충전대의 위치를 설정하여, 충전이 필요하면 본체가 충전대로 복귀하도록 한다.
이동 로봇(100)은 초기 시작위치를 충전대로 설정할 수 있고, 경계선을 따라 주행하면서 충전대를 감지할 수 있다. 이동 로봇(100)은 충전대의 위치가 감지되면 지도에 충전대의 위치를 저장한다.
경우에 따라 충전대(12)가 경계를 벗어난 영역(A) 이외의 영역에 위치하는 경우, 제어부(110)는 충전이 필요하면 경계선을 무시하고 경계를 벗어나 충전대로 복귀하도록 주행부를 제어할 수 있다.
예를 들어, 이동 로봇은 충전대 복귀모드를 설정하여, 충전대 복귀모드 중에서 경계선(L)에 따른 영역에 대한 설정은 일시 해제하고, 감지되는 장애물 정보를 바탕으로 충전대를 탐색하여 복귀할 수 있다.
또한, 충전대가 영역(A)의 외부에 위치하는 경우, 이동 로봇(100)은 충전대에 인접한 지점으로부터 충전대를 연결하는 소정 영역을 주행 가능한 영역으로 포함할 수 있다.
이동 로봇(100)은 영역(A) 내에 기준위치를 설정하고, 기준위치를 바탕으로 영역 내의 각 지점에 대한 좌표를 산출하여 각 지점의 위치정보를 저장할 수 있다.
이동 로봇(100)은 휠의 회전수, 이동속도, 회전방향(자이로센서의 센서값) 등을 바탕으로 이동거리를 연산하고, 그에 따라 영역 내에서의 현재위치를 산출할 수 있다.
이동 로봇(100)은 GPS를 이용하여 위치를 판단하는 경우라도, 어느 하나의 지점을 기준위치로 하여, 위치를 판단할 수 있다. 이동 로봇(100)은 GPS신호, 초음파신호, 적외선신호, 전자기신호 또는 UWB(Ultra Wide Band)신호를 사용하여 위치정보를 획득할 수 있다.
도 4 는 본 발명의 일 실시예에 따른 이동 로봇의 경유점을 이용한 이동경로를 설명하는데 참조되는 도이다.
도 4의 (a)에 도시된 바와 같이, 이동 로봇(100)은 경계선(L1)에 의해 형성되는 영역 내에서 이동할 수 있다.
이동 로봇(100)은 출발점(P1)으로부터 목표점(P4)으로 이동할 수 있다.
이동 로봇(100)은 경계선(L1)의 형태로부터 경계선에 의해 형성되는 복수의 꺽인지점의 각 지점(E1 내지 E7)을 추출하여 특징점으로 설정할 수 있다. 또한, 이동 로봇은, 경우에 따라 완만하게 꺽인지점으로, 선과 선 또는 면과 면이 만나는 경계에 형성되는 곡선의 어느 지점(E8)을 특징점으로 설정할 수 있고, 돌출되는 영역의 어느 일지점을 특징점으로 설정할 수 있다.
이동 로봇은, 직선 주행할 수 없는 지점을 이동하는 일부 영역에 대하여 경계선을 침범하지 않도록 위치를 지정하는 것으로, 직선 이동이 불가능한 영역의 형상에 대하여 특징점으로 설정할 수 있다.
단, 이동 로봇은 복수의 특징점 중, 영역의 어느 일측 끝, 예를 들어 제 1, 2,5,6,7,8 지점(E1, E2, E5 내지 E8)의 경우, 경계선을 따라 이동하는 경우가 아니라면 영역 내에서 직선 주행하는데 경유하는 지점이 될 가능성이 적으므로 제외할 수 있다.
도 4의 (b)에 도시된 바와 같이, 이동 로봇(100)은 출발점(P1)으로부터 목표점(P4)으로 직선경로로 이동할 수 없는 경우, 특징점 중 적어도 하나를 경유점으로 포함하여 이동경로를 설정할 수 있다.
이동 로봇은, 출발점(P1)으로부터 목표점(P4)으로 이동하기 위해서는 제 3 특징점(E3) 및 제 4 특징점(E4)을 각각 제 1 경유점(P2), 제 2 경유점(P3)으로 설정할 수 있다. 이동 로봇은, 출발점(P1)으로부터 제 3 특징점(E3) 및 제 4 특징점(E4), 즉 제 1 경유점(P2) 및 제 2 경유점(P3), 그리고 목표점(P4)을 각각 직선으로 연결하는 이동경로(L2)를 설정할 수 있다. 이동경로(L2)에 따라 주행하는 경우, 이동 로봇은 제 3 특징점(E3)과 제 4 특징점(E4)사이에 경계선을 따라 주행할 수 있다.
이동 로봇은, 충전대로부터 잔디깍기를 시작할 지점으로 이동하는 경우, 영역의 특정 지점에서 충전대로 복귀하는 경우, 영역 내에서 이동하는 경우에 대하여, 이와 같이 이동경로를 설정할 수 있다.
이동 로봇은 지점 간에 이동하는 경우에 대하여, 최단거리로 이동경로를 설정할 수 있다.
한편, 잔디 깍기를 수행하는 경우, 이동 로봇은 지정된 영역을 모두 통과하며 바닥의 잔디를 깎으면서 주행하므로, 출발점으로부터 영역을 직선 주행한 후 방향을 변경하여 다시 직선 주행하는 것을 반복한다. 예를 들어 이동 로봇은, 영역 내에서 지그재그 또는 나선형으로 주행할 수 있다.
도 5 는 도 4의 경유점을 지정하기 위한 경유후보가 도시된 도이다.
도 5의 (a)에 도시된 바와 같이, 이동 로봇(100)은, 출발점(P1)으로부터 목표점(P4)으로 이동한다.
제어부(110)는 출발점(P1)으로부터 목표점(P4)으로 직선경로로 주행할 수 있는지 여부를 우선 판단하고, 직선경로로 주행할 수 없다고 판단되면, 경유점을 포함하여 이동경로를 설정한다.
제어부(110)는 추출된 복수의 특징점 중 목표점(P4)으로 이동하기 위해 통과해야 하는 영역에 위치하는 특징점, 즉 제 3, 4 특징점(E3, E4)을 제 1, 2 경유점(P2, P3)으로 포함하여 이동경로를 설정할 수 있다.
이동 로봇은, 도 5의 (b)에 도시된 바와 같이, 제 3, 4 특징점(E3, E4)을 기준으로 복수의 경유후보를 설정하여, 복수의 경유후보 중 어느 하나를 경유점으로 설정할 수 있다.
제 3, 4 특징점(E3, E4)은 경계선 상, 또는 경계선에 접하여 설정되므로, 제 3, 4 특징점(E3, E4)을 통과하는 경우 이동 로봇은 경계선을 따라 주행하게 된다. 또한, 이동 로봇은 주행하는 중에 제 3, 4 특징점(E3, E4)에서 코너링하는 도중 경계선을 침범하여 외부로 이탈할 수 있다.
그에 따라 이동 로봇은 복수의 경유후보 중 어느 하나를 경유점으로 설정하여 경계선을 따라 이동하지 않는 이동경로를 설정할 수 있다.
제어부(110)는 특징점이 위치하는 경계선을 기준으로 일정 각도 단위로 거리에 따라 복수의 지점에 복수의 경유후보를 설정할 수 있다. 제어부(110)는 15도 내지 75도의 범위 내에서 일정 각도의 위치에 경유후보를 설정할 수 있다.
또한, 제어부는 이동 로봇의 크기를 고려하여, 특징점으로부터 거리에 따라 복수의 지점에 복수의 경유후보를 설정할 수 있다. 제어부는 0.5m 내지 3.5m의 범위 내에서 거리를 변경하며 경유후보를 설정할 수 있다.
예를 들어, 제어부(110)는 제 4 특징점(P3)(E4)을 기준으로, 제 11 거리(D11) 떨어진 위치에 제 1, 2, 3 경유후보(P11, P12, P13)를 설정할 수 있다. 또한, 제어부(110)는 제 4 특징점(P3)(E4)으로부터 제 12 거리(D12) 떨어진 위치에 제 4, 5, 6 경유후보(P14, P15, P16)를 설정할 수 있다.
또한, 제어부(110)는 제 4 특징점이 위치하는 경계선을 연장한 연장선(F11)을 기준으로 연장선과 제 1 각도를 형성하는 선(F12)상에 거리에 따라 제 1, 4, 7의 경유후보(P11, P14, P17)를 설정할 수 있다. 또한, 연장선(F11)과 제 2 각도, 예를 들어 45도를 형성하는 선(F13)에 제 2, 5, 8 경유후보(P12, P15, P18)를 설정할 수 있다.
제어부(110)는 복수의 경유후보 중, 이동경로에 포함할 경유점을 임의로 설정할 수 있다. 제어부는 이동 로봇의 크기를 고려하여 경유점을 설정할 수 있다.
제어부(110)는 다음 경유점 또는 목표점의 위치에 따라 복수의 경유후보 중 어느 하나를 경유점으로 설정할 수 있다. 예를 들어, 제 4 특징점에서의 주행방향을 기준으로 목표점(P4)의 위치에 따라 목표점이 위치한 방향을 기준으로 경유후보를 경유점으로 설정할 수 있다.
또한, 제어부(110)는 복수의 경유후보에 대하여, 기 저장된 주행기록에 따라 각 경유후보에 따른 사고발생 횟수 또는 주행성공 횟수를 바탕으로, 어느 하나의 경유후보를 경유점으로 설정할 수 있다.
예를 들어, 제 4 특징점에 대하여 제 1 경유후보를 경유점으로 하여 이동하는 중에 충돌, 경계선 침범, 미끄러짐 또는 주행 불가상황이 발생한 경우, 제 1 경유후보를 제외하고, 나머지 경유후보 중에 경유점을 설정할 수 있다. 또한, 제어부(110)는 제 11 거리(D11), 제 12 거리(D12)에서의 사고발생 횟수, 제 1 각도, 제 2 각도 거리에서의 사고발생횟수 등을 누적하여, 사고발생 횟수가 높은 경유후보는 제외하고, 주행성공 횟수가 높은 경유후보를 경유점으로 설정할 수 있다. 제어부(110)는 특징점 또한 경유후보로써 판단하여 경유점으로 설정할 수 있다.
제어부(110)는 복수의 경유후보 중 어느 하나를 경유점으로 설정하고, 각 특징점에 대하여 경유점이 설정되면, 경유점을 연결하는 이동경로를 설정하여 주행부를 제어한다. 제어부는 출발점, 경유점, 목표점에 대하여, 좌표 등의 위치정보와 경유점을 이용하여 이동경로를 설정할 수 있다.
도 6 은 본 발명의 일 실시예에 따른 이동 로봇의 이동경로의 변경을 설명하는데 참조되는 도이다.
이동 로봇(100)은 주행 중에 미끄러짐, 충돌 등으로 인하여 위치오차가 발생하는 경우, 좌표가 있는 특징점을 경유점으로 설정하여 주행하거나, 또는 경계선을 따라 주행하도록 하여 위치오차를 보정하고 이동경로를 변경할 수 있다.
제어부(110)는 위치오차로 현재위치가 불명확한 경우, 인접한 특징점 또는 경계선을 향해 주행방향을 변경하여 주행하고, 경계선이 감지되면, 실제 이동한 거리를 바탕으로 위치오차를 보정할 수 있다.
제어부(110)는 주행 중에 위치오차로 인하여 경계선에 도달한 경우, 경계선을 따라 일정거리 주행하여 위치오차를 보정할 수 있다.
또한, 제어부(110)는 반복적으로 장애물이 감지되는 경우, 특징점을 재구성할 수 있다.
도 6의 (a)에 도시된 바와 같이, 이동 로봇(100)은, 제 5 경유점(P5)과 제 6 경유점(P6)을 포함하여 목표점(P7)으로 이동하는 제 3 이동경로(L3)를 설정하여 주행할 수 있다.
이동 로봇은, 제 5 경유점(P5)과 제 6 경유점(P6)을 연결하는 이동경로에서 주행중에 제 1 사고지점(PP1)에서 벽면에 충돌하거나, 또는 경계선을 침범하는 사고가 발생할 수 있다. 이동 가능한 영역이 감소하는 좁은 영역에서는 충돌이나 경계선을 침범하는 사고가 발생할 수 있다.
제어부(110)는 돌발사고발생에 대하여, 탈출모드를 설정할 수 있다.
제어부(110)는 경계선을 따라 주행하는 탈출모드(Wire following mode)와 새로운 경유점을 설정하여 주행하는 탈출모드(Mirror mode) 중 어느 하나에 따라 이동경로를 변경하여 사고발생 상황으로부터 이동 로봇이 탈출할 수 있도록 한다.
또한, 제어부(110)는 두가지 탈출모드를 모두 적용하여 사고발생 상황으로부터 이동 로봇이 탈출하도록 할 수 있다.
한편, 충돌이 있는 경우 위치오차가 발생할 수 있으므로, 제어부는 탈출모드의 설정을 통해 위치오차를 보정할 수 있다.
도 6의 (b)에 도시된 바와 같이, 이동 로봇(100)은 경계선을 따라 주행하는 탈출모드(Wire following mode)에 의해, 일정거리 경계선을 따라 주행하는 제 4 이동경로(L4)로 경로를 변경하여 주행할 수 있다.
이동 로봇(100)은, 제 1 사고지점(PP1)에서 인접한 경계선으로 이동하여 경계선을 따라 일정거리 주행하고, 위치가 확인되면, 목표점이 있는 방향으로 주행방향을 변경하여 경계선을 따라 주행한 후, 목표점으로 이동할 수 있다.
제어부(110)는 제 1 사고지점(PP1)에서 사고가 발생하면, 기 설정된 제 3 이동경로는 무시하고, 제 1 방향으로 경계선을 따라 이동하도록 주행부를 제어한다. 제어부(110)는 경계선을 기준으로 위치를 보정하고, 현재위치를 판단하여 목표점(P7)과 멀어지고 출발점으로 접근하는 방향으로 판단되면 주행방향을 변경하여 제 1 방향의 반대방향인 제 2 방향으로 경계선을 따라 이동하도록 주행부를 제어할 수 있다. 제어부는 제 1 방향이 목표점으로 접근하는 방향인 경우 제 1 방향을 유지하면서 경계선으로 따라 이동하도록 할 수 있다.
제어부(110)는 경계선을 따라 주행하면서 목표점(P7)으로 직선 주행이 가능한 위치에 도달하면, 목표점(P7)으로 직선 주행하도록 한다.
그에 따라 이동 로봇은 사고지점을 지나 경계선을 따라 주행하고, 목표점(P7)에 직선이동이 가능한 지점에서, 경계선으로부터 벗어나 목표점(P7)으로 직선주행 한다.
도 6의 (c)에 도시된 바와 같이, 이동 로봇(100)은 새로운 경유점을 설정하여 주행하는 탈출모드(Mirror mode)에 의해, 새로운 경유점을 포함하는 제 5 이동경로(L5)로 주행할 수 있다.
제어부(110)는 사고가 발생한 제 1 사고지점(PP1)에 대하여, 제어부(110)는 새로운 경유점인 제 8 경유점(P8)을 설정하여 이동경로를 변경할 수 있다.
제어부(110)는 제 8 경유점(P8)을 제 5 경유점(P5)의 거울 경유점으로 설정하여 이동 로봇이 사고발생 상황에서 탈출하도록 한다. 제 8 경유점(P8)은 제 5 경유점(P5) 지정 시, 설정된 다른 복수의 경유후보 중 하나일 수 있다. 또한 제어부(110)는 제 5 경유점(P5) 또는 제 1 사고지점(P11)을 기준으로 새로운 경유점인 제 8 경유점을 설정할 수 있다.
제어부(110)는 제 8 경유점과 제 6 경유점을 연결하는 새로운 제 5 이동경로(L5)로 경로를 변경할 수 있다.
한편, 이동 로봇(100)이 제 5 이동경로(L5)로 주행하는 중에 위치오차로 인하여 제 2 사고지점(PP2)에서 충돌 또는 경계선침범 등의 사고가 발생할 수 있다.
제어부(110)는 제 2 사고지점(PP2)으로부터 새로운 경유점, 제 9 경유점(P9)을 설정하여 이동경로를 변경할 수 있다.
그에 따라 이동 로봇(100)은 제 9 경유점으로부터 목표점(P7)으로 주행하여 목표점에 도달할 수 있다.
제어부는 주행중에 발생하는 사고, 위치오차 등에 대하여 경계선을 따라 주행하거나 새로운 경유점을 설정함으로써 새로운 이동경로를 탐색 및 설정하여, 사고발생 상황으로부터 탈출함과 동시에 단시간에 목표점에 도달하도록 한다.
도 7 및 도 8 은 본 발명의 일실시예에 따른 이동 로봇의 목표점에 따른 이동경로 설정을 설명하는데 참조되는 도이다.
도 7에 도시된 바와 같이, 이동 로봇(100)은 경계선(L1)을 벗어난 영역 이외의 지점(P15)이 목표점으로 설정되면, 목표점에 인접한 지점을 새로운 목표점(P24)으로 설정하여 이동할 수 있다.
출발점(P21)으로부터 목표점(P25)으로 이동하도록 설정된 경우, 제어부(110)는 목표점(P25)의 위치를 산출하여, 영역 외의 지점임을 판단할 수 있다.
제어부(110)는 목표점(P25)으로부터 인접한 경계선 상에, 또는 경계선의 내부 영역에 제 24 경유점(P24)을 설정할 수 있다. 제 24 경유점(P24)은 새로운 목표점으로 설정될 수 있다.
그에 따라 이동 로봇(100)은 출발점(P21)으로부터 제 22, 23 경유점(P22,P23)을 지나는 제 11 이동경로(L11)를 통해 새로운 목표점인, 제 24 경유점(P24)에 도달할 수 있다. 경우에 따라 이동 로봇(100)은 제 22 경유점(P22)으로부터 제 24 경유점(P24), 즉 새로운 목표점까지 직선으로 이동하는 제 12 이동경로(L12)를 통해 주행할 수도 있다.
목표점이 영역 외에 위치하는 경우, 도 8의 (a) 및 (b)와 같이, 제어부(110)는 복수의 경유후보를 설정하고 복수의 후보로부터 새로운 목표점을 설정할 수 있다.
도 8의 (a)와 같이, 제어부(110)는 목표점(P25)으로부터 소정 거리 범위 내에서 인접한 지점을 경유후보로 설정할 수 있다. 예를 들어 제 1 거리(D1)의 제 27지점(P27), 제2 거리(D2)의 제 24 지점(P24), 제 3 거리(D3)의 제 26지점(P26)을 경유후보로 설정하고, 어느 하나를 경유점이자, 새로운 목표점으로 설정할 수 있다.
제어부(110)는 목표점과의 거리, 주변 장애물의 위치, 이전 경유점과의 거리에 대응하여 복수의 경유후보 중 어느 하나를 설정할 수 있다. 또한, 제어부(110)는 각 지점에서의 사고발생횟수를 고려하여 경유점을 설정할 수 있다.
또한, 도 8의 (b)에 도시된 바와 같이, 제어부(110)는 목표점(P25)과, 제 23 경유점(P23)을 직선(L13)으로 연결하였을 때, 직선상에 위치하는 복수의 지점 중, 경계선에 인접한 제28 지점을 새로운 목표점으로 설정할 수 있다.
경우에 따라 제어부는 목표점(P25)과 제 22 경유점(P22)을 직선(L14)으로 연결하였을 때, 직선상에 위치하는 복수의 지점 중 경계선 및 목표점에 인접한 제 29 지점(P29)을 새로운 목표점으로 설정할 수 있다.
제어부(110)는 영역 외 지점이 목표점인 경우, 영역 내에서 새로운 목표점을 설정하여 이동경로를 설정하고, 주행부를 제어하여, 새로운 목표점으로 이동하도록 한다.
도 9 는 본 발명의 일실시예에 따른, 경유점을 이용하여 이동하는 이동 로봇의 제어방법이 도시된 순서도이다.
도 9에 도시된 바와 같이, 이동 로봇(100)은 이동이 필요한 경우, 예를 들어, 현재 위치로부터 충전대로 이동하는 경우, 특정 위치로 이동하는 경우, 특정 위치에서부터 잔디깎이를 시작하는 경우에 이동하고자 하는 지점을 목표점으로 하여 이동경로를 설정할 수 있다.
제어부(110)는 현재위치를 출발점으로 하고, 이동하고자 하는 지점을 목표점으로 설정하고, 위치를 확인한다(S310). 제어부(110)는 기 저장된 지도를 이용하여 출발점과 목표점의 좌표를 통해 실제 영역의 이동위치를 확인할 수 있다.
제어부(110)는 지도로부터 장애물 정보와 영역의 형태를 바탕으로, 출발점으로부터 목표점으로 직선이동이 가능한지 여부를 판단한다(S320).
제어부(110)는 직선경로로 이동할 수 있는 경우, 목표점으로 주행방향을 설정하고, 주행부를 제어하여 이동을 시작한다.
한편, 직선경로로 이동할 수 없는 경우, 즉 영역의 형태에 따라 직선경로로 주행할 수 없거나, 장애물이 위치하는 경우, 제어부(110)는 목표점까지의 이동을 위한 이동경로를 설정할 수 있다.
제어부(110)는 출발점으로부터 목표점까지 경계선을 따라 이동하면서 목표점에 인접하여 경계선으로부터 목표점으로 주행하도록 이동경로를 설정할 수 있다.
또한, 제어부(110)는 출발점과 목표점 사이에 적어도 하나의 경유점을 설정하고(S330), 출발점, 경유점, 목표점을 연결하는 이동경로를 설정할 수 있다(S340).
제어부(110)는 경유점을 설정하여, 각 지점 사이를 직선 주행할 수 있도록 이동경로를 설정하여 목표점까지의 주행거리를 단축할 수 있다. 반면 경계선을 따라 이동하는 경우 주행거리가 길어지므로 목표점까지 이동하는데 많은 시간이 소요될 수 있다.
그에 따라 이동 로봇(100)은 출발점, 경유점, 목표점을 연결하는 이동경로에 따라 주행을 시작한다.
이동 로봇(100)이 목표점으로 주행하는 중에, 경계선에 접근하는 경우(S350), 장애물에 접근하거나 또는 장애물과 충돌하는 경우, 제어부(110)는 이동 불가 여부를 판단한다(S360).
이동 로봇(100)이 현재 설정된 이동경로에 따라 이동할 수 없다고 판단되면, 제어부(110)는 이동경로를 변경한다(S370).
제어부(110)는 장애물 또는 경계선에 의한 이동 불가뿐 아니라, 위치오차로 인하여 현재위치를 확인할 수 없는 경우에도 이동이 불가능하다고 판단할 수 있다. 제어부(110)는 주행 중 미끄러짐, 충돌에 의한 위치변경 등으로 인하여 현재 위치에 오차가 있다고 판단할 수 있다.
제어부(110)는 경계선을 기준으로 위치오차를 보정하고, 현재 위치로부터 목표점까지의 새로운 이동경로를 설정한다. 제어부(110)는 경계선을 따라 주행하거나 새로운 경유점을 설정하여 이동경로를 변경할 수 있다.
제어부(110)는 주행부를 제어하여, 새로운 이동경로에 따라 주행하도록 제어한다. 그에 따라 이동 로봇(100)은 변경된, 새로운 이동경로에 기초하여 목표점으로 이동한다(S380).
목표점에 도달하면, 이동 로봇(100)은 이동경로에 의한 이동을 종료한다(S400). 이동 로봇(100)은 다음 명령이 입력되도록 대기하거나 또는 기 설정된 지정된 동작을 시작한다. 예를 들어 이동 로봇(100)은 목표점으로부터, 소정의 주행패턴에 따라 설정영역을 이동하면서 잔디깎이를 시작할 수 있다. 이동 로봇(100)은 목표점이 충전대인 경우 충전대에 도킹하여 충전을 시작할 수 있다.
도 10 은 본 발명의 일실시예에 따른 이동 로봇의 이동경로 설정방법이 도시된 순서도이다.
도 10에 도시된 바와 같이, 이동 로봇(100)은 출발점 및 목표점의 위치를 확인하고(S410), 설정된 이동경로에 따라 목표점으로 이동한다.
제어부(110)는 이동경로를 설정하는 경우, 목표점이 경계선을 벗어난, 영역 외의 지점에 위치하는지 여부를 판단한다(S420).
제어부(110)는 영역 내에 목표점이 위치하는 경우, 제어부(110)는 출발점으로부터 목표점까지 직선주행이 가능한지 여부를 판단한다(S430).
직선주행이 가능한 경우에는, 출발점과 목표점을 직선으로 연결하는 이동경로를 설정하고(S480), 주행부를 제어한다. 한편, 제어부(110)는 목표점이 영역 외 지점에 위치하는 경우, 목표점에 인접한 경계선을 기준으로 경계선의 영역에 복수의 경유후보를 설정한다(S460).
경유후보는 목표점에 인접한 경계선의 영역 중, 목표점과의 소정 거리 내에 위치하는 복수의 경유후보를 설정할 수 있다. 또한, 목표점과, 이전 경유점을 직선으로 연결하는 선 상의 복수의 지점 중, 경계선에 인접한 지점을 경유후보로 설정할 수 있다. 앞서 설명한 도 8과 같이 제 23 경유점과 목표점을 연결한 선상의 제 28 지점, 제 24 경유점과 목표점을 연결한 선상의 제 29 지점이 경유후보로 설정될 수 있다.
제어부(110)는 복수의 경유 후보 중, 목표점과의 거리, 다른 경유점과의 거리, 각 지점의 사고발생 빈도, 주변의 장애물에 대한 정보를 바탕으로 어느 하나의 지점을 경유점으로 설정할 수 있다(S470). 경우에 따라 제어부(110)는 별도의 경유후보 설정 없이, 설정된 조건에 따라 경유점을 설정할 수도 있다.
또한, 제어부(110)는 설정된 경유점을 새로운 목표점으로 설정하여 이동경로를 설정한다.
제어부(110)는 출발점과 새로운 목표점 간의 직선 이동이 가능한지 여부를 판단하고(S430), 직선이동이 불가능한 경우, 출발점과 새로운 목표점 사이에 적어도 하나의 경유점을 설정한다(S450).
제어부(110)는 앞서 설명한 도 5 및 도 6과 같이, 영역의 형태, 목표점의 위치에 따라 경계선을 침범하여 영역을 이탈하지 않으면서 장애물을 회피하도록 적어도 하나의 경유점을 설정한다.
제어부(110)는 영역의 형태에 따라 꺽인지점, 모서리 등에 설정되는 특징점을 기준으로 복수의 경유후보를 설정한 후, 목표점의 위치, 주변의 장애물, 각 경유후보의 사고발생횟수, 주행성공횟수 중 적어도 하나를 기준으로 하나의 경유후보를 경유점으로 설정할 수 있다.
제어부(110)는 적어도 하나의 경유점이 선택되면, 출발점, 경유점, 목표점을 연결하는 이동경로를 설정한다(S480).
그에 따라 이동 로봇은 목표점으로 이동한다(S490).
도 11 은 본 발명의 일실시예에 따른 이동 로봇의 이동경로 변경방법이 도시된 순서도이다.
도 11에 도시된 바와 같이, 이동 로봇(100)은 설정된 이동경로에 따라 목표점으로 이동한다.
제어부(110)는 목표점으로 이동하기 위한 이동경로를 설정하는 때에, 경계선을 침범하거나 장애물과 충돌하지 않도록 이동경로를 설정한다. 그러나 실외 영역을 주행하므로, 바닥의 상태에 따라 미끄러짐이 발생하거나 바닥의 재질에 따라 이동 로봇의 위치에 오차가 발생할 수 있다.
또한, 이동 로봇(100)은 주행 중에 주행방향의 장애물을 감지하면서 회피하여 주행하는데, 이동하는 장애물이 있는 경우 또는 감지되지 않은 사각지대의 장애물과 충돌하는 경우가 발생할 수 있다.
그에 따라 이동 로봇(100)이 주행하는 중에, 미끄러짐 등으로 인해 발생하는 위치오차로 인하여, 경계선에 접근하여 경계선을 침범하여 영역을 이탈하거나, 또는 장애물에 충돌하는 경우(S520), 제어부는 사고가 발생한 것으로 판단할 수 있다.
제어부는 경계선으로부터 유도되는 전류, 자기장 등의 신호에 의해 경계선에 도달하였는지 여부를 판단할 수 있다. 제어부는 이동 로봇이 경계선을 이탈하여 영역 밖으로 이탈하지 않도록 주행부를 제어한다.
제어부는 사고발생 시, 위치오차를 보정하면서 사고상황을 벗어나도록 탈출모드를 설정하여 실시할 수 있다(S530). 제어부(110)는 경계선이 감지되면, 기 판단된 위치값과 경계선의 위치를 비교하여 이동 로봇의 위치 오차를 보정한다. 제어부는 경계선과 일정거리 이상 떨어진 위치에서 사고가 발생한 경우 지도에 저장된 장애물의 위치를 바탕으로 위치를 보정할 수 있다.
제어부(110)는 목표점까지 주행이 가능한지 여부를 판단하고(S540), 목표점까지 주행이 가능한 경우 목표점으로 이동한다(S590).
한편, 목표점으로의 주행이 불가능한 경우 제어부(110)는 경계선을 따라 주행할지 여부를 판단한다.
경계선을 따라 주행하는 경우, 제어부(110)는 경계선을 기준으로 어느 일방향, 제 1방향으로 이동하도록 주행부를 제어한다.
제어부(110)는 경계선을 따라 주행하는 이동경로를 선택하면, 주행 중 현재위치를 재판단하고, 목표점에 근접하는지 여부를 판단한 후, 주행방향을 제 2 방향으로 변경할 수 있다. 제 2 방향을 제 1 방향의 반대방향일 수 있다.
제어부(110)는 제 1 방향 또는 제 2 방향으로 경계선을 따라 이동하는 중에 목표점에 인접한 위치 또는 목표점으로 직선경로로 이동할 수 있는 위치에 도달하면, 경계선을 벗어나 목표점으로 이동한다(S590).
한편, 경계선을 따라 이동하지 않는 경우, 제어부(110)는 보정된 현재 위치를 기준으로 새로운 경유점을 설정하고(S570), 새로운 경유점을 연결하는 경로로 이동경로를 변경한다(S580).
새로운 경유점은, 현재 위치와 목표점과의 거리와 그 사이의 장애물의 형태 등을 고려하여 설정할 수 있다. 또한, 제어부는 사고가 발생한 위치를 기준으로, 초기 경유점에 대한 다른 경유후보 중 어느 하나로 새로운 경유점을 설정할 수 있다. 제어부(110)는 특징점으로부터 설정되는 복수의 경유후보 중 다른 경유후보를 새로운 경유점으로 설정할 수 있다.
또한, 제어부(110)는 새로운 이동경로로 주행하는 중에, 다시 사고가 발생하는 경우, 새로운 경유점을 설정하여 이동경로를 변경할 수 있다.
그에 따라 이동 로봇은 변경된 이동경로를 따라 목표점으로 이동한다(S590).
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
100: 이동 로봇 110: 제어부
120: 장애물 감지부 160: 절삭부
170: 주행부
A: 영역 L:경계선

Claims (32)

  1. 경계선에 의해 형성되는 영역을 주행하는 본체;
    상기 본체를 이동시키는 주행부;
    장애물을 감지하는 장애물 감지부; 및
    감지되는 장애물을 회피하며, 상기 본체가 상기 경계선을 침범하여 상기 영역 외로 이탈하지 않도록 상기 주행부를 제어하며,
    상기 본체가 이동하는 경우, 이동할 목표점과 출발점 사이에, 상기 경계선 또는 상기 장애물을 회피하기 위한, 적어도 하나의 경유점을 설정하고, 상기 출발점, 상기 경유점, 상기 목표점을 직선으로 연결하는 이동경로를 설정하는 제어부;를 포함하는 이동 로봇.
  2. 제 1 항에 있어서,
    상기 제어부는 상기 경계선으로 따라 이동하며 생성되며, 상기 경계선 및 상기 장애물의 정보가 포함된 지도에 기초하여, 상기 영역 내에서의 위치를 판단하는 이동 로봇.
  3. 제 1 항에 있어서,
    상기 제어부는 상기 출발점으로부터 상기 목표점까지 직선경로로 이동할 수 없는 경우, 상기 영역의 형태 및 상기 출발점과 상기 목표점 사이에 위치하는 장애물에 대응하여 적어도 하나의 상기 경유점을 설정하는 이동 로봇.
  4. 제 1 항에 있어서,
    상기 제어부는 상기 영역의 형태, 상기 장애물의 위치 및 형태에 기초하여, 특징점을 추출하고, 상기 특징점을 기준으로 적어도 하나의 상기 경유점을 설정하는 이동 로봇.
  5. 제 4 항에 있어서,
    상기 제어부는 상기 영역의 형태 및 상기 장애물에 의해 형성되는 돌출영역, 상기 장애물 또는 상기 경계선에 의해 형성되는 상기 영역의 꺽인지점으로부터 상기 특징점을 추출하는 이동 로봇.
  6. 제 4 항에 있어서,
    상기 제어부는 상기 특징점을 기준으로 복수의 경유후보를 설정하고, 상기 특징점을 포함한, 상기 복수의 경유후보 중 어느 하나를 상기 경유점으로 설정하는 이동 로봇.
  7. 제 6 항에 있어서,
    상기 제어부는 상기 특징점으로부터의 일정거리에 떨어진 복수의 지점을 상기 복수의 경유후보로 설정하는 이동 로봇.
  8. 제 6 항에 있어서,
    상기 제어부는 상기 특징점이 위치하는 상기 경계선을 기준으로 일정 각도를 형성하는 선 상에 위치하는 복수의 지점을 상기 복수의 경유후보로 설정하는 이동 로봇.
  9. 제 6 항에 있어서,
    상기 제어부는 상기 특징점이 위치하는 상기 경계선을 기준으로 일정 각도 단위로 형성되는 복수의 선상에 위치하는 복수의 지점을 상기 복수의 경유후보로 설정하는 이동 로봇.
  10. 제 6 항에 있어서,
    상기 제어부는 상기 복수의 경유후보 중, 상기 목표점과의 거리, 다른 경유점과의 거리, 사고발생횟수 및 주변의 장애물에 대한 정보를 바탕으로 어느 하나를 상기 경유점으로 설정하는 이동 로봇.
  11. 제 1 항에 있어서,
    상기 제어부는 상기 목표점이 상기 영역 외의 지점인 경우, 상기 목표점으로부터 인접한 상기 경계선의 어느 한 지점을 새로운 목표점으로 설정하는 이동 로봇.
  12. 제 11 항에 있어서,
    상기 제어부는 상기 목표점과의 거리에 따라 상기 경계선 상에 복수의 지점을 설정하고, 상기 복수의 지점 중 어느 하나를 상기 새로운 목표점으로 설정하는 이동 로봇.
  13. 제 11 항에 있어서,
    상기 제어부는 상기 목표점과 다른 경유점을 연결하는 직선경로 상에 위치하는 복수의 지점 중 상기 경계선에 접하는 지점을 상기 새로운 목표점으로 설정하는 이동 로봇.
  14. 제 11 항에 있어서,
    상기 제어부는 상기 목표점과의 거리, 상기 경계선의 위치, 주변의 장애물에 대한 정보, 다른 경유점과의 거리에 대응하여 어느 하나의 지점을 상기 새로운 목표점으로 설정하는 이동 로봇.
  15. 제 1 항에 있어서,
    상기 제어부는 주행 중 미끄러짐, 휠의 공회전, 충돌에 위한 이동 중 적어도 하나에 의해 위치오차가 발생하는 경우, 상기 경계선 또는 상기 영역 내에 설정되는 특징점으로 이동하여 위치를 보정하는 이동 로봇.
  16. 제 1 항에 있어서,
    상기 제어부는 현재위치로부터 상기 영역 내의 어느 한 지점으로 이동하는 경우, 상기 영역 내의 어느 한 지점으로부터 충전대로 이동하는 경우, 이동하고자 하는 지점을 상기 목표점으로 설정하여 상기 이동경로를 설정하는 이동 로봇.
  17. 제 1 항에 있어서,
    상기 제어부는 주행 중, 위치 오차로 인하여 상기 경계선을 침범하거나 또는 상기 장애물과 충돌하는 경우, 위치오차를 보정하면서 사고상황을 벗어나도록 상기 이동경로를 변경하는 이동 로봇.
  18. 제 17 항에 있어서,
    상기 제어부는 사고발생 시, 인접한 경계선으로 이동하여, 상기 경계선으로 따라 주행하면서 상기 목표점으로 이동하도록 상기 이동경로를 변경하여 탈출모드를 실시하는 이동 로봇.
  19. 제 17 항에 있어서,
    상기 제어부는 사고발생 지점을 기준으로 새로운 경유점을 설정하고 상기 새로운 경유점을 포함하도록 상기 이동경로를 변경하여 탈출모드를 실시하는 이동 로봇.
  20. 제 17 항에 있어서,
    상기 제어부는 사고발생 지점에 대한 사고발생횟수를 누적하여 저장하는 이동 로봇.
  21. 제 1 항에 있어서,
    상기 경계선은 상기 영역을 형성하는 가상의 선, 바닥에 매설되어, 전류를 유도하거나 또는 자기장을 발생하도록 설치되는 와이어, 및 신호송출장치로부터 송출되는 신호에 의해 형성되는 경계 중 적어도 하나인 것을 특징으로 하는 이동 로봇.
  22. 경계선에 의해 형성되는 영역 내에서, 이동할 목표점의 위치를 확인하는 단계;
    출발점과 상기 목표점 사이에, 상기 경계선 및 장애물을 회피하기 위한 적어도 하나의 경유점을 설정하는 단계;
    상기 출발점, 상기 경유점, 상기 목표점을 직선으로 연결하는 이동경로를 설정하는 단계; 및
    상기 이동경로에 따라 상기 목표점으로 이동하는 단계;를 포함하는 이동 로봇의 제어방법.
  23. 제 22 항에 있어서,
    상기 경유점을 설정하는 단계는, 상기 출발점으로부터 상기 목표점 사이에 상기 경계선 및 상기 장애물의 위치와 형태에 대응하여 지정되는 복수의 경유후보 중 어느 하나로 상기 경유점을 설정하는 이동 로봇의 제어방법.
  24. 제 22 항에 있어서,
    상기 경유점을 설정하는 단계는,
    상기 영역의 형태, 상기 장애물의 위치 및 형태에 기초하여, 특징점을 추출하는 단계;
    상기 특징점을 기준으로 일정 거리 또는 일정 각도를 형성하는 지점에 복수의 경유후보를 설정하는 단계; 및
    상기 특징점을 포함하는 상기 복수의 경유후보 중 어느 하나를 상기 경유점으로 설정하는 단계를 더 포함하는 이동 로봇의 제어방법.
  25. 제 24 항에 있어서,
    상기 특징점을 추출하는 단계는, 상기 영역의 형태 및 상기 장애물에 의해 형성되는 돌출영역, 상기 장애물에 의해 형성되는 상기 영역의 또는 상기 경계선의 꺽인지점으로부터 상기 특징점을 추출하는 더 포함하는 이동 로봇의 제어방법.
  26. 제 24 항에 있어서,
    상기 경유점을 설정하는 단계는, 상기 복수의 경유후보 중, 상기 목표점과의 거리, 다른 경유점과의 거리, 사고발생횟수 및 주변의 장애물에 대한 정보를 바탕으로 어느 하나를 설정하는 이동 로봇의 제어방법.
  27. 제 22 항에 있어서,
    상기 목표점을 위치를 확인한 후, 상기 목표점이 상기 영역 외의 지점인 경우, 상기 목표점으로부터 인접한 상기 경계선의 어느 한 지점을 새로운 목표점으로 설정하는 단계를 더 포함하는 이동 로봇의 제어방법.
  28. 제 27 항에 있어서,
    상기 새로운 목표점을 설정하는 단계는, 상기 목표점과의 거리에 따라 상기 경계선 상의 복수의 지점 중 어느 하나, 또는 상기 목표점과 다른 경유점을 연결하는 직선경로 상에 위치하는 복수의 지점 중 상기 경계선에 접하는 지점을 상기 새로운 목표점으로 설정하는 이동 로봇의 제어방법.
  29. 제 22 항에 있어서,
    이동 중, 미끄러짐, 휠의 공회전, 충돌에 위한 이동 중 적어도 하나에 의해 위치오차가 발생하는 단계; 및
    위치오차 발생 시, 상기 경계선 또는 상기 영역에 설정되는 특징점으로 이동하여 상기 위치오차를 보정하는 단계를 더 포함하는 이동 로봇의 제어방법.
  30. 제 22 항에 있어서,
    상기 이동경로에 따라 주행 중, 상기 경계선에 도달하거나 또는 상기 장애물에 도달한 경우 사고상황으로 판단하여 이동경로를 변경하는 단계;를 더 포함하는 이동 로봇의 제어방법.
  31. 제 30 항에 있어서,
    상기 사고상황에 대응하여, 인접한 경계선으로 이동하여, 상기 경계선으로 따라 주행하면서 상기 목표점으로 이동하도록 상기 이동경로를 변경하여 탈출모드를 실시하는 단계를 더 포함하는 이동 로봇의 제어방법.
  32. 제 30 항에 있어서,
    상기 사고상황에 대응하여, 사고발생 지점을 기준으로 새로운 경유점을 설정하고 상기 새로운 경유점을 포함하도록 상기 이동경로를 변경하여 탈출모드를 실시하는 단계를 더 포함하는 이동 로봇의 제어방법.
PCT/KR2019/004051 2018-04-06 2019-04-05 이동 로봇 및 그 제어방법 WO2019194628A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19781053.4A EP3782774B1 (en) 2018-04-06 2019-04-05 Mobile robot
AU2019248256A AU2019248256B2 (en) 2018-04-06 2019-04-05 Mobile robot and control method for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862653567P 2018-04-06 2018-04-06
US62/653,567 2018-04-06
KR1020190040034A KR20190123673A (ko) 2018-04-06 2019-04-05 이동 로봇 및 그 제어방법
KR10-2019-0040034 2019-04-05

Publications (1)

Publication Number Publication Date
WO2019194628A1 true WO2019194628A1 (ko) 2019-10-10

Family

ID=68101044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004051 WO2019194628A1 (ko) 2018-04-06 2019-04-05 이동 로봇 및 그 제어방법

Country Status (4)

Country Link
EP (1) EP3782774B1 (ko)
KR (2) KR20190123673A (ko)
AU (1) AU2019248256B2 (ko)
WO (1) WO2019194628A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111136636A (zh) * 2020-01-09 2020-05-12 上海丛远机械有限公司 行走机器人、控制行走机器人的方法和行走机器人系统
CN111208817A (zh) * 2020-01-02 2020-05-29 惠州拓邦电气技术有限公司 窄道通行方法、装置、移动装置以及计算机可读存介质
SE2050386A1 (en) * 2020-04-06 2021-10-05 Husqvarna Ab Navigation for a robotic work tool based on a classifier associated with an area
CN114115286A (zh) * 2021-12-06 2022-03-01 国网山东省电力公司汶上县供电公司 变电站机器人巡检系统与方法
CN114518754A (zh) * 2022-01-28 2022-05-20 西北工业大学 一种多智能体追逃问题建模与围捕策略生成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102169283B1 (ko) * 2019-12-30 2020-10-23 (주)원익로보틱스 자율주행 로봇을 이용한 지도 업데이트 방법 및 시스템
US11357586B2 (en) * 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
KR102363443B1 (ko) * 2021-07-23 2022-02-14 국방과학연구소 강화학습 기반 자율 주행 장치 및 그 방법
KR102469072B1 (ko) * 2021-11-26 2022-11-22 (주)텔레컨스 이동체의 컨트롤 장치와 이를 이용한 자율이동체의 구역 설정 방법 및 그 방법이 적용된 자율이동체
WO2023155159A1 (en) * 2022-02-18 2023-08-24 Beijing Smorobot Technology Co., Ltd Wall collision u-turning method and apparatus for swimming pool cleaning robot, and swimming pool edge cleaning method and apparatus
WO2023219229A1 (ko) * 2022-05-09 2023-11-16 삼성전자주식회사 이동형 로봇 및 그 제어 방법
KR102695353B1 (ko) * 2022-05-13 2024-08-13 울산과학기술원 로봇 경로 탐색 방법
KR20240029402A (ko) * 2022-08-26 2024-03-05 삼성전자주식회사 로봇 및 그 구동 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963783B1 (ko) * 2008-03-31 2010-06-14 엘지전자 주식회사 로봇 청소기의 제어방법
KR20100118454A (ko) * 2009-04-28 2010-11-05 목포대학교산학협력단 농업용 잔디 예초 모우어 로봇 및 그의 주행 안내방법
KR20110090702A (ko) * 2010-02-04 2011-08-10 한국과학기술연구원 이동로봇의 경로생성 장치, 이를 구비하는 이동로봇 및 이동로봇의 경로생성 방법
KR101513050B1 (ko) 2014-01-29 2015-04-17 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
KR20160128123A (ko) * 2015-04-28 2016-11-07 엘지전자 주식회사 이동 로봇 및 그 제어방법
US20170344012A1 (en) 2014-12-11 2017-11-30 Husqvarna Ab Navigation for a robotic working tool
US20180064024A1 (en) 2016-09-05 2018-03-08 Lg Electronics Inc. Moving robot and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962453A (en) * 1989-02-07 1990-10-09 Transitions Research Corporation Autonomous vehicle for working on a surface and method of controlling same
GB9827779D0 (en) * 1998-12-18 1999-02-10 Notetry Ltd Improvements in or relating to appliances
KR100745975B1 (ko) * 2004-12-30 2007-08-06 삼성전자주식회사 그리드 맵을 사용하여 최소 이동 경로로 이동하는 방법 및장치
KR101441187B1 (ko) * 2012-07-19 2014-09-18 고려대학교 산학협력단 자율 보행 로봇 경로 계획 방법
JP6038990B2 (ja) * 2015-03-27 2016-12-07 本田技研工業株式会社 無人作業車の制御装置
JP6014192B1 (ja) * 2015-03-27 2016-10-25 本田技研工業株式会社 無人作業車の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963783B1 (ko) * 2008-03-31 2010-06-14 엘지전자 주식회사 로봇 청소기의 제어방법
KR20100118454A (ko) * 2009-04-28 2010-11-05 목포대학교산학협력단 농업용 잔디 예초 모우어 로봇 및 그의 주행 안내방법
KR20110090702A (ko) * 2010-02-04 2011-08-10 한국과학기술연구원 이동로봇의 경로생성 장치, 이를 구비하는 이동로봇 및 이동로봇의 경로생성 방법
KR101513050B1 (ko) 2014-01-29 2015-04-17 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20170344012A1 (en) 2014-12-11 2017-11-30 Husqvarna Ab Navigation for a robotic working tool
KR20160128123A (ko) * 2015-04-28 2016-11-07 엘지전자 주식회사 이동 로봇 및 그 제어방법
US20180064024A1 (en) 2016-09-05 2018-03-08 Lg Electronics Inc. Moving robot and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3782774A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208817A (zh) * 2020-01-02 2020-05-29 惠州拓邦电气技术有限公司 窄道通行方法、装置、移动装置以及计算机可读存介质
CN111208817B (zh) * 2020-01-02 2024-03-15 惠州拓邦电气技术有限公司 窄道通行方法、装置、移动装置以及计算机可读存介质
CN111136636A (zh) * 2020-01-09 2020-05-12 上海丛远机械有限公司 行走机器人、控制行走机器人的方法和行走机器人系统
CN111136636B (zh) * 2020-01-09 2023-07-28 上海山科机器人有限公司 行走机器人、控制行走机器人的方法和行走机器人系统
SE2050386A1 (en) * 2020-04-06 2021-10-05 Husqvarna Ab Navigation for a robotic work tool based on a classifier associated with an area
SE543958C2 (en) * 2020-04-06 2021-10-05 Husqvarna Ab Navigation for a robotic work tool based on a classifier associated with an area
WO2021206606A1 (en) * 2020-04-06 2021-10-14 Husqvarna Ab Improved navigation for a robotic work tool
CN114115286A (zh) * 2021-12-06 2022-03-01 国网山东省电力公司汶上县供电公司 变电站机器人巡检系统与方法
CN114115286B (zh) * 2021-12-06 2024-03-19 国网山东省电力公司汶上县供电公司 变电站机器人巡检系统与方法
CN114518754A (zh) * 2022-01-28 2022-05-20 西北工业大学 一种多智能体追逃问题建模与围捕策略生成方法
CN114518754B (zh) * 2022-01-28 2024-04-23 西北工业大学 一种多智能体追逃问题建模与围捕策略生成方法

Also Published As

Publication number Publication date
EP3782774A4 (en) 2022-08-10
EP3782774A1 (en) 2021-02-24
KR20210060402A (ko) 2021-05-26
KR20190123673A (ko) 2019-11-01
AU2019248256A1 (en) 2020-11-26
KR102499553B1 (ko) 2023-02-13
EP3782774B1 (en) 2023-11-08
AU2019248256B2 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2019194628A1 (ko) 이동 로봇 및 그 제어방법
EP3829830A1 (en) Moving robot, system of moving robot and method for moving to charging station of moving robot
WO2022045808A1 (ko) 청소 로봇 및 그 제어 방법
WO2020159278A2 (ko) 이동 로봇 및 그 제어방법
WO2020032413A1 (en) Moving robot and controlling method thereof
WO2021006556A1 (en) Moving robot and control method thereof
WO2020171317A1 (en) Moving robot system comprising moving robot and charging station
WO2015183005A1 (en) Mobile device, robot cleaner, and method for controlling the same
WO2020032501A1 (en) Station apparatus and moving robot system
WO2018038488A1 (ko) 이동 로봇 및 그 제어방법
WO2015060672A1 (ko) 청소 로봇
WO2019194634A1 (ko) 이동 로봇과 이동 로봇 시스템
WO2020027496A1 (en) Moving robot and controlling method thereof
WO2021172936A1 (en) Moving robot and control method thereof
WO2021182855A1 (ko) 이동 로봇
WO2019194632A1 (ko) 이동 로봇과 이동 로봇 시스템
WO2019194636A1 (ko) 이동로봇과 이동로봇의 제어방법
WO2018117616A1 (ko) 이동 로봇
WO2019135437A1 (ko) 안내 로봇 및 그의 동작 방법
WO2020027611A1 (en) Moving robot, moving robot system, and method for moving to charging station of moving robot
WO2018043780A1 (ko) 이동 로봇 및 그 제어방법
WO2021230441A1 (ko) 이동 로봇 시스템의 송출기 및 이의 이탈 감지 방법
WO2019199112A1 (ko) 자율 작업 시스템, 방법 및 컴퓨터 판독 가능한 기록매체
WO2020106088A1 (en) Moving device and object detection method thereof
WO2021006674A2 (ko) 이동 로봇 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781053

Country of ref document: EP

Effective date: 20201106

ENP Entry into the national phase

Ref document number: 2019248256

Country of ref document: AU

Date of ref document: 20190405

Kind code of ref document: A