WO2020159278A2 - 이동 로봇 및 그 제어방법 - Google Patents

이동 로봇 및 그 제어방법 Download PDF

Info

Publication number
WO2020159278A2
WO2020159278A2 PCT/KR2020/001479 KR2020001479W WO2020159278A2 WO 2020159278 A2 WO2020159278 A2 WO 2020159278A2 KR 2020001479 W KR2020001479 W KR 2020001479W WO 2020159278 A2 WO2020159278 A2 WO 2020159278A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mobile robot
location information
moving object
control unit
Prior art date
Application number
PCT/KR2020/001479
Other languages
English (en)
French (fr)
Other versions
WO2020159278A3 (ko
Inventor
고경석
최고
이형섭
이성욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/310,361 priority Critical patent/US20220111522A1/en
Priority to EP20748373.6A priority patent/EP3919238B1/en
Publication of WO2020159278A2 publication Critical patent/WO2020159278A2/ko
Publication of WO2020159278A3 publication Critical patent/WO2020159278A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0044Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19639Details of the system layout
    • G08B13/19647Systems specially adapted for intrusion detection in or around a vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2491Intrusion detection systems, i.e. where the body of an intruder causes the interference with the electromagnetic field
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31003Supervise route, reserve route and allocate route to vehicle, avoid collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31007Floor plan, map stored in on-board computer of vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45098Vacuum cleaning robot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a mobile robot that autonomously drives a designated area and a control method thereof.
  • a mobile robot is a device that automatically performs a predetermined operation while driving in a predetermined area without user intervention.
  • the mobile robot detects an obstacle installed in the zone and approaches or avoids the obstacle to perform an operation.
  • the mobile robot may include a cleaning robot that performs cleaning while driving in the area, as well as a lawnmower that mows the lawn of the bottom surface of the area.
  • lawn mowers are passenger-type devices that mow the lawn or mow the grass while the user boards and moves according to the user's driving, and the work-behind type or hand type that mows the lawn while the user manually drags or slides and moves. There is a device. Such a lawn mower moves by direct manipulation of the user, and there is a hassle of operating the user's direct device by mowing the lawn.
  • a mobile robot-type lawn mower device that is, a lawn mower robot equipped with a means for mowing the lawn has been studied.
  • the lawn mower robot since it operates not only indoors, but also outdoors, there is a need to set an area to move in advance. Specifically, since the outdoor is an open space unlike the indoor, the designation of the area must be made in advance, and the area must be limited to drive where the grass is planted.
  • the average error is known to be about 2 to 5m, which does not satisfy the minimum positioning error range required for autonomous driving within about 30cm.
  • sensors such as DGPS, Camera, LiDAR, and Rader to reduce the average error of GPS, blind spots and high costs are incurred, which makes it difficult to commercialize them.
  • a beacon-based positioning method may be used to solve the disadvantages of the GPS-based positioning method.
  • the mobile lawnmower robot is paired with a beacon, and then the distance between the beacon and the mobile lawnmower robot is determined, and the determined distance is compared with the pairing distance to confirm whether the beacon is within the pairing distance. Later, it is started to utilize this for navigation.
  • the beacon in order to use the beacon, there are disadvantages and security issues in that it must be paired by performing related app installation.
  • UWB Ultra Wideband
  • one object of the present invention such as a camera
  • the present invention provides a mobile robot capable of performing security and safety detection functions in an open space using UWB (Ultra Wideband) communication for calculating the position of the mobile robot without adding a separate sensor and a control method thereof.
  • UWB Ultra Wideband
  • a mobile robot when the entry of a mobile object such as an intruder is detected within the boundary, a mobile robot capable of determining the location and the moving path of the mobile body within the boundary using UWB (Ultra Wideband) communication, and It is to provide the control method.
  • UWB Ultra Wideband
  • Another object of the present invention for the sake of safety, it is possible to variably control the movement of the mobile robot based on the location and the movement path of the mobile body, and for security, it is possible to inform the outside of the movement and the movement path within the boundary of the mobile body. It is to provide a robot and its control method.
  • a mobile robot includes a traveling unit that moves a main body; A communication unit installed in a plurality of regions to communicate with a location information transmitter for transmitting signals; And a control unit calculating location-related information based on at least one of a first signal transmitted between the location information transmitters within the region and a second signal transmitted between the main body and the location information transmitter, and the control unit comprises: In response to the amount of change in the calculated positioning-related information that is outside the reference range, it is characterized in that it detects the entry of the moving object into the area and performs an operation corresponding to the detection.
  • the positioning-related information includes distance information, signal strength information calculated based on the response signal for the first signal and the first signal or the response signal for the second signal and the second signal, Characterized in that it comprises at least one of the signal direction and angle information.
  • control unit the change of the position-related information calculated from the first signal is out of the reference range
  • the property of the first signal is a non-line of sight (NLOS) signal and visible distance (line of sight, LOS) in response to being changed from one of the signals to the other, characterized in that it is determined that the moving object has entered the area.
  • NLOS non-line of sight
  • LOS visible distance
  • the controller in response to the property of the first signal is changed from one of the non-line of sight (non-line of sight, NLOS) signal and the line of sight (LOS) signal to another , Detecting that a moving object has entered the area, and whether the property of the first signal is a non-line of sight (NLOS) signal or the line of sight (LOS) signal is the first signal Characterized in that it is determined by obtaining the channel impulse response to.
  • NLOS non-line of sight
  • LOS line of sight
  • control unit detects the entry of a moving object in the region based on a change in the position-related information calculated from the first signal outside the reference range, and after the detection, the position calculated from the second signal It is characterized in that the movement of the moving object is sensed in response to a change in the related information outside the reference range.
  • control unit is characterized in that it recognizes the entry position of the moving object based on the location information of the location information transmitter that has transmitted a signal out of the reference range of the change in the position-related information.
  • control unit recognizes the current position of the main body based on the signal of the location information transmitter, and when the entry of the moving object is detected, the current position of the main body and the calculated position-related information change are referenced. It is characterized in that the position of the moving object is detected based on the distance information between the location information transmitters that have sent out-of-range signals.
  • the controller is characterized in that, in an operation corresponding to the detection, the driving unit is controlled to rotate or move the main body toward a position of the detected moving object.
  • control unit is characterized in that, in an operation corresponding to the detection, the location information of the detected moving object and path information corresponding to a change in the location information are transmitted to an external terminal.
  • control unit is characterized by outputting a preset warning alarm through an output unit in an operation corresponding to the detection.
  • the control unit when the UWB antenna is mounted on the mobile body, the control unit communicates with the UWB antenna and the location information transmitter to recognize the location of the mobile body and to move the main body based on the location of the mobile body. It characterized in that it controls the driving unit.
  • the control unit may adjust the traveling speed of the main body or adjust the traveling speed of the main body when it is detected that the mobile body approaches the main body based on a signal transmitted from the UWB antenna. It is characterized by changing the set driving route.
  • control unit sets a virtual boundary for the area based on the location information calculated based on the signal of the location information transmitter, and controls the driving unit so that the main body does not deviate from the set boundary It is characterized by.
  • control method of the mobile robot is installed in a plurality of areas to communicate with a location information transmitter for transmitting a signal; Calculating positioning related information based on at least one of a first signal transmitted between the location information transmitters in the area and a second signal transmitted between the main body and the location information transmitter; Sensing an entry of a moving object into the area in response to a change in the calculated positioning related information out of a reference range; And performing an operation corresponding to the detection.
  • the step of detecting the entry of the moving object in the area comprises: detecting the entry of the moving object in the area based on the change in the position-related information calculated from the first signal being out of the reference range; And detecting a movement of the moving object in response to a change in location-related information calculated from the second signal after the detection is out of a reference range.
  • the step of performing an operation corresponding to the detection is based on the location information between the location information transmitters that have transmitted a signal in which the change of the calculated position-related information is out of the reference range. Determining; Detecting a current position of the moving object by monitoring a change in positioning-related information calculated from the first signal and the second signal; Driving the main body to avoid the current position of the detected moving object; And transmitting the location information of the detected moving object and route information corresponding to the change of the location information to an external terminal.
  • the mobile robot and its control method according to an embodiment of the present invention, the mobile object invading within the boundary set only with the UWB anchor and UWB tags required to calculate the position of the mobile robot without additional equipment even in the open outdoor area It can provide a home guard function to detect.
  • UWB communication can be used to identify the location of the moving object and the moving path existing within the boundary, and avoiding the location of the moving object according to the properties of the moving object, or by informing the outsider of the location and the moving path of the intruder. Even in the outdoor area, safety and security can be satisfied simultaneously without additional equipment.
  • FIG. 1 is a perspective view showing an example of a mobile robot according to the present invention.
  • FIG. 2A is a conceptual diagram illustrating a state in which a mobile robot according to the present invention communicates with a terminal and a server.
  • FIG. 2B is a block diagram showing an exemplary configuration of a mobile robot according to the present invention
  • FIG. 2C is a block diagram showing an exemplary configuration of a terminal communicating with a mobile robot according to the present invention.
  • FIG. 3 is a conceptual diagram illustrating signal flow between devices for setting a boundary for a mobile robot according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram related to a method of setting a virtual boundary for a mobile robot according to an embodiment of the present invention.
  • 5A, 5B, and 5C are conceptual views for explaining a specific example of a method of detecting the entry of a moving object within a virtual boundary according to an embodiment of the present invention.
  • FIG. 6 is a representative flowchart of a method for controlling a mobile robot according to an embodiment of the present invention.
  • FIG. 7 and 8 are conceptual diagrams for explaining different embodiments of a method for detecting a position of a moving object within a boundary by a mobile robot according to an embodiment of the present invention.
  • FIG. 9 is a conceptual diagram illustrating an example of a method for a mobile robot to perform a monitoring operation on a moving object according to an embodiment of the present invention.
  • FIGS. 10 and 11 are exemplary diagrams illustrating a method of performing a movement of a main body based on the position of a moving object and a position notification of the moving object according to an embodiment of the present invention, and notifying the entry of the moving object through a terminal.
  • the "mobile robot” disclosed in the present invention has the same meaning as'robot','grass-moving mobile robot','grass-cutting robot','grass-cutting device', and'mobile-robot for lawn-grass' capable of autonomous driving It should be noted in advance that it can be used and can be used interchangeably.
  • FIG. 1 is an example of a mobile robot for mowing according to the present invention.
  • the mobile robot according to the present invention may be configured to include an outer cover 101, an inner body (not shown) and a wheel 1092.
  • the outer cover 101 may form the appearance of the mobile robot.
  • the appearance of the mobile robot may be formed in a shape similar to, for example, an automobile.
  • the outer cover 101 may be formed to surround the outer side of the inner body (not shown).
  • the outer cover 100 may be mounted on the inner body to cover the upper portion of the inner body.
  • a receiving portion is formed inside the outer cover 101, and an inner body may be accommodated in the receiving portion.
  • a bumper portion 102 may be formed in preparation for a collision with an obstacle in the front portion of the outer cover 101.
  • the bumper part 102 may be formed of a rubber material capable of alleviating the impact.
  • a plurality of ultrasonic sensor modules 103 may be mounted on the front upper portion of the outer cover 101.
  • the plurality of ultrasonic sensor modules 103 are configured to radiate ultrasonic waves toward the front when the robot is traveling and detect the obstacles in front by receiving reflected waves reflected by the obstacles.
  • the plurality of ultrasonic sensor modules 103 may be arranged to be spaced apart in the vehicle width direction.
  • the plurality of ultrasonic sensor modules 103 may be disposed at a predetermined distance rearward from the bumper unit 102.
  • the plurality of ultrasonic sensor modules 103 may be replaced with other signal-based sensors other than the super-acoustic sensor, for example, UWB sensors.
  • the mobile robot includes a control unit, and when detecting an obstacle by receiving a detection signal from the ultrasonic sensor module 103, the mobile robot may stop operation.
  • a first upper cover 105 and a second upper cover 106 may be provided on the upper portion of the outer cover 101.
  • a stop switch 107 may be installed between the first upper cover 105 and the second upper cover 106.
  • the stop switch 107 is movably mounted on the outer cover 101, and in an emergency, when the user presses the stop switch 107 once, the stop switch 107 is turned on to stop the operation of the mobile robot. Can be resumed.
  • Each of the plurality of wheels 1092 is connected to a driving motor located in the inner body, and can be rotatably mounted on both sides in the width direction of the inner body 160.
  • Each of the plurality of wheels 1092 is connected to a drive motor by a drive shaft, and can be rotated by receiving power from the drive motor.
  • the plurality of wheels 1092 provide power for driving of the robot, but each of the plurality of wheels 1092 may independently control the number of revolutions by a control unit.
  • a handle 120 (which may also be referred to as a “carrying handle”) may be installed on the outer cover 101 so that the user can grip it by hand.
  • FIG. 2 shows a mobile robot according to the present invention in communication with a terminal and a server.
  • the mobile robot 100 according to the present invention can exchange data with the terminal 200 through network communication.
  • the mobile robot 100 may perform a weeding-related operation or a corresponding operation according to a control command received from the terminal 200 through network communication or other communication.
  • the network communication is WLAN (Wireless LAN), WPAN (Wireless Personal Area Network), Wi-Fi (Wireless-Fidelity), Wi-Fi (Wireless Fidelity) Direct, DLNA (Digital Living Network Alliance), WiBro (Wireless Broadband), WiMAX (World Interoperability for Microwave Access), Zigbee, Z-wave, Blue-Tooth, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra-wide Band, It may mean at least one of wireless communication technologies such as Wireless USB (Wireless Universal Serial Bus).
  • the illustrated network communication may vary depending on what the communication method of the mobile robot is.
  • the mobile robot 100 may provide information sensed through each sensing unit to the terminal 200 through network communication.
  • the terminal 200 may transmit a control command generated based on the received information to the mobile robot 100 through network communication.
  • the terminal 200 is operated by a user, and may be referred to as a controller, a remote controller, a remote controller, or a terminal for controlling an operation related to driving of the mobile robot 100.
  • a controller a remote controller, a remote controller, or a terminal for controlling an operation related to driving of the mobile robot 100.
  • an application for controlling an operation related to driving of the mobile robot 100 may be installed in the terminal 200, and the corresponding application may be executed through user manipulation.
  • the communication unit of the mobile robot 100 and the communication unit of the terminal 200 communicate directly with each other or through indirect wireless communication through another router (not shown), so that information related to the driving operation of the mobile robot and each other You can grasp the location information and the like.
  • the mobile robot 100, the server 300, and the terminal 200 may be connected to each other through a network to exchange data with each other.
  • the server 300 exchanges data with the mobile robot 100 and/or the terminal 200 so that information related to a set boundary for the mobile robot 100, map information based on the set boundary, And obstacle information on a map.
  • the server 300 may provide the registered information to the mobile robot 100 and/or the terminal 200 according to the request.
  • the server 300 may be wirelessly connected directly through the terminal 200. Alternatively, the server 300 may be connected to the mobile robot 100 without going through the terminal 300b.
  • the server 300 may include a programmable processor and may include various algorithms. As an example, the server 300 may include algorithms related to performing machine learning and/or data mining. As another example, the server 300 may include a speech recognition algorithm. In this case, upon receiving the voice data, the received voice data can be converted into text data and output.
  • the server 300 may store firmware information and driving information (course information, etc.) for the mobile robot 100 and register product information for the mobile robot 100.
  • the server 300 may be a server operated by a cleaner manufacturer or a server operated by a published application store operator.
  • FIG. 2B is a block diagram showing an exemplary configuration of the mobile robot 100 according to the present invention
  • FIG. 2C is a block diagram showing an exemplary configuration of the terminal 200 communicating with the mobile robot 100.
  • the mobile robot 100 includes a communication unit 1100, an input unit 1200, a driving unit 1300, a sensing unit 1401 including a position sensing unit 1401, and an obstacle sensing unit 1402. , An output unit 1500, a memory 1600, a weeding unit 1700, a control unit 1800, and a power unit 1900.
  • the communication unit 1100 may communicate with the terminal 200 in a wireless communication method.
  • the communication unit 1100 may be connected to a predetermined network and communicate with a terminal controlling an external server or mobile robot.
  • the communication unit 1100 may transmit the generated map-related information to the terminal 200.
  • the communication unit 1100 may receive a command from the terminal 200 and may transmit data regarding the operating state of the mobile robot 100 to the terminal 200.
  • the communication unit 1100 transmits and receives data including communication modules such as Wi-Fi and WiBro, as well as short-range wireless communication such as Zigbee and Bluetooth. Also, the communication unit 1100 may include a UWB module that transmits an ultra-wideband signal.
  • the input unit 1200 may include input means such as at least one button, switch, or touch pad.
  • the output unit 1500 may include output means such as a display unit and a speaker. When the output unit 1500 is simultaneously used as an input means and an output means, a user command may be input through a display unit or a speaker, and an operation state of the mobile robot may be output.
  • the input unit 1200 is for input of image information (or signals), audio information (or signals), data, or information input from a user.
  • image information or signals
  • audio information or signals
  • data or information input from a user.
  • image information one or more cameras 1210 ).
  • the camera 1210 processes an image frame such as a still image or a moving picture obtained by the image sensor in the shooting mode.
  • the camera 221 includes at least one of a camera sensor (eg, CCD, CMOS, etc.), a photo sensor (or image sensor), and a laser sensor.
  • a camera sensor eg, CCD, CMOS, etc.
  • a photo sensor or image sensor
  • a laser sensor e.g., a laser sensor.
  • the camera 1210 may be provided on one side of the mobile robot 100, for example, upward or forward. In addition, the camera 1210 may be switched to an activated/deactivated state according to a driving signal transmitted from the controller 1800. In addition, the image acquired through the camera 1210 may be transmitted to the external terminal/server in communication with the mobile robot 100 by the control unit 1800.
  • an input detection signal is stored, reference data for determining an obstacle is stored, and obstacle information about the detected obstacle can be stored.
  • control data for controlling the operation of the mobile robot and data according to the cleaning mode of the mobile robot are stored in the memory 1600.
  • the collected location information is stored in the memory 1600, and information about the driving area and its boundary is stored.
  • the memory 1600 stores data that can be read by a microprocessor, and includes a hard disk drive (HDD), solid state disk (SSD), silicon disk drive (SDD), ROM, RAM , CD-ROM, magnetic tape, floppy disk, optical data storage device.
  • HDD hard disk drive
  • SSD solid state disk
  • SDD silicon disk drive
  • ROM read only memory
  • RAM random access memory
  • CD-ROM compact disc-read only memory
  • magnetic tape magnetic tape
  • floppy disk magnetic tape
  • optical data storage device optical data storage device
  • the driving unit 1300 may include at least one driving motor, and allow the mobile robot to move according to a control command of the control unit 1800.
  • the driving unit 1300 may include a left wheel driving motor rotating the left wheel and a right wheel driving motor rotating the right wheel.
  • the driving unit 1300 may further include one or more auxiliary wheels for stable support.
  • the main body ( The driving direction of 10) can be switched.
  • the mower 1700 mowers the grass on the floor while the mobile robot is running.
  • the mower 1700 is provided with a brush or blade for mowing the lawn to mow the lawn through rotation.
  • the obstacle detection unit 1402 may include a plurality of sensors, and detect an obstacle existing in front of the mobile robot.
  • the obstacle detecting unit 1402 may detect an obstacle in front of the main body, that is, in a driving direction, using at least one of a laser, ultrasonic wave, infrared ray, and 3D sensor.
  • the obstacle detection unit 1402 may include a camera that detects an obstacle by photographing the front.
  • the camera is a digital camera, and may include an image sensor (not shown) and an image processing unit (not shown).
  • An image sensor is a device that converts an optical image into an electrical signal, and consists of a chip in which a plurality of photo diodes are integrated, and a pixel is an example of the photodiode. Charges are accumulated in each pixel by the image formed on the chip by light passing through the lens, and the charges accumulated in the pixels are converted into electrical signals (eg, voltage).
  • image sensors CCD (Charge Coupled Device), CMOS (Complementary Metal Oxide Semiconductor), and the like are well known.
  • a DSP or the like may be provided as the image processing unit.
  • the position detection unit 1401 includes a plurality of sensor modules for transmitting and receiving position information.
  • the position detecting unit 1401 includes a GPS module that transmits and receives GPS signals, or a position sensor module that transmits and receives location information from a location information transmitter 50 (FIG. 3).
  • a location information transmitter 50 For example, when the location information transmitter transmits a signal in one of ultrasound, UWB (Ultra Wide Band), and infrared, sensor modules for transmitting and receiving ultrasound, UWB, and infrared signals are provided correspondingly.
  • UWB Ultra Wide Band
  • the location information transmitter 50 and the mobile robot 100, the location information transmitter 50 and the terminal 200, and the mobile robot 100 and the terminal 200, at least one UWB It is possible to presuppose that a sensor module is provided to exchange and transmit ultra-wideband signals (or UWB signals) to each other.
  • the position may be determined using the above-described sensor module.
  • the terminal and the mobile robot each have a UWB sensor and perform mutual wireless communication.
  • the terminal transmits a signal from the provided UWB sensor, and the mobile robot can move by following the terminal by determining the position of the terminal based on the signal of the terminal received through the UWB sensor.
  • the UWB sensor's ultra-wideband signal can transmit a signal through an obstacle, it does not affect signal transmission even if the user moves the terminal. However, in the case of an obstacle of a certain size or more, the transmission distance may be reduced even if the signal is not transmitted or penetrated.
  • the UWB sensor provided in each of the terminal and the mobile robot can estimate or measure the distance between the sensors.
  • the mobile robot controls driving so as not to deviate from a predetermined distance according to the distance from the terminal. That is, the mobile robot can follow-up while maintaining an appropriate distance so that the separation distance from the terminal is not too close or far.
  • the position detection unit 1401 may include one or a plurality of UWB sensors. For example, when the position detecting unit 1401 is provided with two UWB sensors, for example, it is provided on the left and right sides of the mobile robot body, respectively, receives signals, and compares the received plurality of signals to position Can detect.
  • the relative positions of the mobile robot and the terminal and the direction of the mobile robot can be determined based on the distances.
  • the sensing unit 1400 is installed on the rear surface of the main body in addition to the above-described obstacle detecting unit 1402 and the position detecting unit 1401 to detect a cliff, a cliff sensing sensor, which can detect humidity or rainy weather conditions
  • Rain sensor, proximity sensor, touch sensor, RGB sensor, battery gauge sensor, acceleration sensor, geomagnetic sensor, gravity sensor, gyroscope sensor, illuminance sensor, environmental sensor (thermometer, radioactivity sensor, heat sensor, gas Detection sensors, etc.) may include a variety of sensors, such as a plurality of 360-degree sensors, floor state detection sensors.
  • the sensing unit 1400 may include at least one tilt sensor (not shown) to sense the movement of the main body.
  • the tilt sensor calculates the tilted direction and angle when tilted in the front, rear, left and right directions of the main body.
  • the tilt sensor may be a tilt sensor, an acceleration sensor, etc., and in the case of an acceleration sensor, any of a gyro type, an inertial type, and a silicon semiconductor type can be applied.
  • various sensors or devices capable of sensing the movement of the main body may be used.
  • the control unit 1800 controls input/output of data, and controls the driving unit 1300 to move the mobile robot according to the setting.
  • the control unit 1800 controls the driving unit 1300 to independently control the operation of the left wheel driving motor and the right wheel driving motor, so that the main body 10 runs straight or rotating.
  • the control unit 1800 controls the driving unit by determining the driving direction in response to the signal received through the sensing unit 1400. In addition, the control unit 1800 controls the traveling unit 1300 to cause the mobile robot to run or stop according to the distance from the terminal, and to vary the traveling speed. Accordingly, the mobile robot can move following the position corresponding to the position change of the terminal.
  • control unit 1800 may control the mobile robot to follow the terminal 200 and move according to the setting mode.
  • control unit 1800 may set a virtual boundary for the area based on the location information received from the terminal 200 or the location information calculated through the location detection unit 1401. In addition, the control unit 1800 may set any one of the areas formed by the set boundary as the driving area. The control unit 1800 sets the boundary in the form of a closed loop by connecting the discontinuous location information with a line or a curve, and sets the driving region with the inner region. In addition, when a plurality of boundaries are set, the control unit 1800 may set any one of the regions formed by the boundaries as the driving region.
  • the control unit 1800 controls the driving unit 1300 so as to travel within the driving area and not deviate from the set boundary when the driving area and the corresponding boundary are set.
  • the control unit 1800 calculates the current location based on the received location information, and controls the driving unit 1300 such that the calculated current location is located in the driving region set by the boundary.
  • control unit 1800 may determine obstacle information input by the obstacle detection unit 1402 to avoid obstacles and travel. In addition, the control unit 1800 may modify a preset driving area, if necessary, based on obstacle information.
  • control unit 1800 may control the driving unit 1300 to pass through an obstacle or avoid an obstacle by traveling by changing a moving direction or a driving path in response to obstacle information input from the obstacle detecting unit.
  • control unit 1800 may be set not to approach more than a certain distance when the cliff is detected.
  • control unit 1800 may change the driving direction according to a user's selection input through the terminal 200 by transmitting driving information to the terminal 200 and displaying the terminal information on the detected obstacle.
  • the power supply 1900 includes a rechargeable battery (or battery module) (not shown).
  • the battery may be detachably mounted from the mobile robot 100.
  • the control unit 1800 may control the driving unit 1300 to move to the position of the charging station for charging the battery.
  • charging of the battery is performed.
  • the terminal 200 includes a mobile terminal that can be moved by the user, the communication unit 210, the input unit 220, the UWB module 230, the sensing unit 240, the display unit 251, The memory 260 and the control unit 280 may be included.
  • the communication unit 210 may communicate with an external server or mobile robot 100 through wireless communication.
  • the communication unit 210 transmits and receives data including communication modules such as Wi-Fi and WiBro as well as short-range wireless communication such as Zigbee and Bluetooth.
  • the communication unit 210 may include a UWB module that transmits an ultra-wideband signal.
  • the input unit 220 may include input means such as at least one button, switch, or touch pad.
  • the display unit 251 may include a touch sensor, and may be configured to receive a control command through a touch input. In addition, the display unit 251 may be configured to output a control screen for controlling the mobile robot 100, a map screen displaying a set boundary and the location of the mobile robot 100.
  • Data related to driving of the mobile robot 100 may be stored in the memory 260.
  • location information of the mobile robot 100 and the terminal 200 may be stored in the memory 260, and information about a driving region and a boundary of the mobile robot may be stored.
  • the memory 1600 stores data that can be read by a microprocessor, and includes a hard disk drive (HDD), solid state disk (SSD), silicon disk drive (SDD), ROM, RAM , CD-ROM, magnetic tape, floppy disk, optical data storage device.
  • the sensing unit 240 includes a location sensing unit (not shown) for transmitting and receiving location information, a gyro sensor and an acceleration sensor, a geomagnetic sensor, and an IMU (Inertia Measurement Unit) sensor for sensing changes in spatial movement of the terminal 200 It may include at least some of.
  • the position detection unit includes a plurality of sensor modules for transmitting and receiving position information. For example, coordinates of a point indicated through a posture change such as a tilt, as well as the current position of the terminal 200, including a GPS module, a UWB (Ultra Wide Band) module, a geomagnetic sensor, an acceleration sensor, and a gyro sensor.
  • a GPS module for determining the location of a point indicated through a posture change such as a tilt, as well as the current position of the terminal 200, including a GPS module, a UWB (Ultra Wide Band) module, a geomagnetic sensor, an acceleration sensor, and a gyro sensor.
  • UWB Ultra Wide Band
  • the UWB module 230 included in the position detection unit or a separate UWB module 230 may exchange and transmit an ultra-wideband signal with the mobile robot 100 and/or the location information transmitter 50.
  • the transmitter 50 and the like can be grasped.
  • the UWB module 230 may transmit or receive an ultra-wideband signal through the UWB module provided in the mobile robot 100.
  • the terminal 200 may serve as a'remote control device' in that it communicates with the mobile robot 100 to control driving or weeding operation of the mobile robot 100.
  • the terminal 200 in addition to the UWB module 210, may further include a gyro sensor and a distance measuring sensor.
  • the gyro sensor may detect a change in the 3-axis value according to the movement of the terminal 200.
  • the terminal 200 may detect an angular velocity according to a movement in which at least one of the x, y, and z axis values changes.
  • the gyro sensor may use x, y, and z axis values sensed at a specific time point as a reference point, and detect x', y', and z'axis values changed based on the reference point after a predetermined input/predetermined time has elapsed.
  • a magnetic sensor (not shown) and an acceleration sensor (not shown) may be additionally provided in the terminal 200.
  • the distance measuring sensor includes a laser light signal, an IR signal, an ultrasonic signal, and a carrier frequency, Emission of at least one of the impulse signals and the distance from the terminal 200 to the corresponding signal may be calculated based on the signal reflected therefrom.
  • the distance measurement sensor may include, for example, a Time of Flight (ToF) sensor.
  • ToF Time of Flight
  • the transmitter and the transmitter are not affected by the signal.
  • the receivers can be arranged spaced apart from each other.
  • the aforementioned laser light signal, IR signal, ultrasonic signal, carrier frequency, impulse signal, and ultra-wideband signal may be collectively referred to as a'signal'.
  • the'ultra-band signal' with little influence by an obstacle has been described as an example. Therefore, it can be said that the distance measurement sensor serves to calculate the distance from the terminal 200 to the point where the signal is emitted.
  • the distance measurement sensor may include a transmitter that emits a signal and a receiver that receives a reflected signal.
  • FIG. 3 is a conceptual diagram for explaining the signal flow of devices for setting a boundary for a mobile robot, for example, the mobile robot 100, the terminal 200, the GPS 60, and the location information transmitter 50. .
  • the location information transmitter 50 When the location information transmitter 50 is equipped with a UWB sensor to transmit a signal, a signal related to location information may be received from the location information transmitter 50 through the UWB module provided in the terminal 200. At this time, the signal method of the location information transmitter 50 and the signal method between the mobile robot 100 and the terminal 200 may be the same or different.
  • the terminal 200 may transmit ultrasonic waves and the mobile robot 100 may receive the ultrasonic waves of the terminal 200 and travel to follow the terminal 200.
  • the mobile robot 100 recognizes the marker attached to the terminal 200 by attaching a marker to the terminal 200 and the mobile robot 100 photographs the driving direction of the terminal, thereby allowing the mobile robot 100 to access the terminal 200. You can follow and drive.
  • location information may be received from the location information transmitter 50 or the GPS 60.
  • a GPS signal As the signal corresponding to the location information, a GPS signal, an ultrasonic signal, an infrared signal, an electromagnetic signal, or an UWB (Ultra Wide Band) signal may be used.
  • UWB Ultra Wide Band
  • the UWB (Ultra Wide Band) signal has an advantage in that it can transmit an obstacle differently from an infrared signal and the like and has a much smaller position error than a GPS signal.
  • the UWB signal will be mainly described, but it does not mean that other signals or GPS signals are clearly excluded.
  • the mobile robot needs to collect location information in order to set a boundary with the driving area.
  • the mobile robot 100 may collect location information by setting a point in the region as a reference location. At this time, any one of the initial starting point, the location of the charging station, and the location information transmitter 50 may be set as a reference location.
  • the mobile robot 100 may generate and store coordinates and maps for the area based on the set reference position. When the map is generated, the mobile robot 100 may move based on the stored map.
  • the mobile robot 100 may set a new reference position at every operation, and determine a position in the area based on the newly set reference position.
  • the mobile robot 100 may receive location information collected from the terminal 200 moving in a predetermined path.
  • the terminal 200 may be moved arbitrarily, and a path may be changed according to a subject to be moved, but in order to set a driving area of the mobile robot, it is desirable to move along the outer periphery of the driving area.
  • the terminal 200 calculates a position in the area as coordinates based on the reference position.
  • the mobile robot 100 may collect location information while following and moving the terminal 200.
  • the terminal 200 or the mobile robot 100 When the terminal 200 or the mobile robot 100 alone moves along a predetermined path, the terminal 200 or the mobile robot 100 is based on a signal transmitted from the GPS 60 or the location information transmitter 50. You can calculate your current location.
  • the mobile robot 100 and the terminal 200 may move by setting the same reference position for a predetermined area.
  • the reference position set based on the terminal 200 and the location information collected therefrom may be transmitted to the mobile robot 100. Then, the mobile robot 100 may set a boundary based on the received location information.
  • the mobile robot 100 and the terminal 200 may grasp the relative positions of each other using an ultra-wide band (UWB).
  • UWB ultra-wide band
  • one of the UWB modules may be a UWB anchor and the other a UWB tag.
  • the UWB module 230 of the terminal 200 operates as a'UWB tag' that emits an ultra-wideband signal
  • the UWB module of the mobile robot 100 receives an'UWB anchor' that receives an ultra-wideband signal. (anchor)'.
  • the UWB module 230 of the terminal 200 may operate as a UWB anchor, and the UWB module of the mobile robot 100 may operate as a UWB tag. Further, the UWB module may include one UWB anchor and a plurality of UWB tags.
  • the method for the mobile robot 100 and the terminal 200 to grasp the relative positions of each other through UWB communication technology is as follows. First, a separation distance between the mobile robot 100 and the terminal 200 is calculated using a distance measurement technique such as, for example, a Time of Flight (ToF) technique.
  • a distance measurement technique such as, for example, a Time of Flight (ToF) technique.
  • ToF Time of Flight
  • the first impulse signal which is an ultra-wideband signal emitted from the terminal 200, is transmitted to the mobile robot 100.
  • the UWB module of the terminal 200 may operate as a'UWB tag' for sending, and the UWB module of the mobile robot 100 may operate as a'UWB anchor' for receiving.
  • the ultra-wideband signal (or, the impulse signal) can be smoothly transmitted and received even if there is an obstacle in a specific space, where the specific space may have a radius of several tens of meters (m).
  • the first impulse signal may be received through the UWB anchor of the mobile robot 100.
  • the mobile robot 100 receiving the first impulse signal transmits a response signal to the terminal 200.
  • the terminal 200 may transmit the second impulse signal, which is an ultra-wideband signal for the response signal, to the mobile robot 100.
  • the second impulse signal may include delay time information calculated based on the time at which the response signal is received and the time at which the second impulse signal is transmitted.
  • the control unit of the mobile robot 100 is based on the time at which the response signal is transmitted, the time when the second impulse signal arrives at the UWB anchor of the mobile robot 100, and the delay time information included in the second impulse signal. As described above, a distance between the mobile robot 100 and the terminal 200 may be calculated.
  • t2 is the arrival time of the second impulse signal
  • t1 is the transmission time of the response signal
  • treply is the delay time
  • c is a constant value representing the speed of light.
  • the separation distance between the mobile robot 100 and the location information transmitter 50 and the separation distance between the terminal 200 and the location information transmitter 50 may also be identified.
  • the virtual boundary that serves as a reference for the driving area is determined by using the location information transmitter 50, the terminal 200, and the mobile robot 100 without buried wires or by using the location information transmitter 50 and the mobile robot 100. Can be set.
  • the driving area divided based on the boundary may be referred to as a'wireless area'.
  • The'wireless area' may be one or plural.
  • one wireless area may include a plurality of spot areas additionally set in the corresponding area so that the mowing function performed by the mobile robot 100 can be performed more efficiently. have.
  • the mobile robot 100 needs to set a boundary so that it can mow while moving the driving area set in the outdoor area.
  • a driving area in which the mobile robot 100 travels ie, a wireless area, is designated inside the set boundary.
  • the obstacles 10a, 10b, and 10c may include, for example, a fixed obstacle such as a building, a rock, a tree, a swimming pool, a pond, a statue, a garden, and a moving obstacle that are present outdoors.
  • a fixed obstacle such as a building, a rock, a tree, a swimming pool, a pond, a statue, a garden, and a moving obstacle that are present outdoors.
  • the size and shape of the obstacles 10a, 10b, and 10c may also be very diverse.
  • a plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may be pre-installed in a predetermined area in order to set boundaries without buried wires.
  • a plurality of location information transmitters (50M, 51, 52, 53, 54, 55) can transmit a signal.
  • the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may transmit signals to each other or signals to the mobile robot 100 and/or the terminal 200.
  • the signal may include, for example, a UWB signal, an ultrasonic signal, an infrared signal, a Bluetooth signal, and a Zigbee signal, but will be described below as a UWB signal.
  • the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may be installed at least three spaced apart from each other.
  • a plurality of location information transmitters (50M, 51, 52, 53, 54, 55), UWB sensor can be installed at a high point above the reference height, to minimize signal interference when not included.
  • the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 are installed at a location adjacent to a boundary to be set.
  • the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may be installed outside or outside the boundary to be set.
  • a plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 are installed inside the boundary R, but are not limited thereto.
  • a plurality of location information transmitters (50M, 51, 52, 53, 54, 55) may be installed outside the boundary (R), some inside the boundary (R) and the rest outside the boundary (R) It is also possible to be installed.
  • the location information transmitter (50M, 51, 52, 53, 54, 55) includes a UWB sensor
  • the mobile robot by exchanging ultra-wideband signals with the mobile robot 100 and/or the terminal 200 located in a predetermined area
  • the location information of the (100) and/or the terminal 200 may be calculated.
  • the mobile robot 100 compares the amount/strength of signals of a plurality of location information transmitters (50M, 51, 52, 53, 54, 55), and the distance and direction spaced apart from each location information transmitter By calculating, the position of the mobile robot 100 can be calculated. A method of calculating the location information of the terminal 200 may be performed similarly.
  • At least one of the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 for example, the location information transmitter 50M, recognizes the angle, which is the direction of a signal received from the UWB tag. It may be an UWB anchor capable of angle of arrival (AoA). As described above, when the angle of the received signal is recognized, more sophisticated position recognition with respect to the UWB tag becomes possible.
  • AoA angle of arrival
  • At least one of the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may be a reference location information transmitter 50M for boundary setting.
  • the reference location information transmitter 50M may be installed where the charging station 70 is located, for example, as illustrated in FIG. 4.
  • Coordinate values of the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may be set based on the reference location information transmitter 50M. Specifically, the location of the other location information transmitters that exchange signals between the reference location information transmitter 50M and the remaining location information transmitters 51, 52, 53, 54, and 55, and the reference location information transmitter 50M as a zero point The x and y coordinate values corresponding to may be calculated. Accordingly, location information for a plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may be set.
  • the mobile robot 100 uses the charging station 70 where the reference location information transmitter 50M is located as a starting point of operation, it may be easier to determine the location of the mobile robot 100 during each operation.
  • the battery gauge is insufficient while the mobile robot 100 is running, the battery may be charged by moving to the reference location information transmitter 50M where the charging station 70 is located.
  • the location information transmitter close to the current position of the mobile robot may be changed to a reference location information transmitter.
  • the charging station 70 is located outside of the boundary R, unlike FIG. 4, that is, when the boundary is set inside the charging station 70, the mobile robot 100 charges beyond the boundary for charging the battery You can return to the station.
  • the mobile station 100 is located outside the boundary by additionally setting a moving area (not shown) between the charging station 70 and the driving area set in the boundary, 70).
  • the terminal 200 moves from the location information transmitter 55 installed in the region to the first path along the periphery of the region where the grass is planted.
  • the terminal 200 may be moved by a person, but may also be moved by another transportation means such as a drone.
  • the terminal 200 may grasp its current location through a location information transmitter or GPS. And, as the terminal 200 moves, it is possible to calculate a distance and a direction to each location information transmitter based on signals transmitted from a plurality of location information transmitters. Accordingly, the coordinates of a plurality of points corresponding to the position change of the terminal 200 can be recognized and stored as location information.
  • Each of the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 may transmit a UWB including unique information for distinguishing signals.
  • the first signal transmitted by the first location information transmitter 51 and the second signal transmitted by the second location information transmitter 52 and the third location information transmitter 53 Can be analyzed and processed by classifying the third signal transmitted from the fourth signal and the fourth signal transmitted from the fourth location information transmitter 54.
  • the terminal 200 moves the first path and moves the stored location information to the moving robot ( 100).
  • the mobile robot 100 may set the line or the outer line that sequentially connects the stored location information while the terminal 200 moves along the first path as the boundary 410 inside the area R. .
  • the inner region may be set as the driving region or the wireless region based on the boundary 410 set as described above.
  • the mobile robot 100 may test-drive the set driving area or the wireless area. At this time, a part of the boundary and/or the driving area may be modified by the mobile robot 100. For example, when a new obstacle is detected, when an existing obstacle is removed, or when the floor is uneven or a recessed point is detected, when it is detected as a driving point due to the driving performance of the mobile robot 100 , Considering the collected situation information, a part of the boundary and/or the driving area for the mobile robot 100 may be corrected.
  • the mobile robot 100 tracks the position of the terminal 200 at a predetermined separation distance, thereby further testing A boundary and/or a driving area for the mobile robot 100 may be set without driving.
  • the location information transmitter operates as a'UWB anchor' that transmits a UWB signal.
  • the UWB module provided in the mobile robot 100 operates as a'UWB tag' that receives a UWB signal.
  • UWB Ultra Wideband communication is periodically and continuously performed between the UWB anchor and the UWB anchor, and between the UWB anchor and the UWB tag.
  • a plurality of location information transmitters with fixed positions 50M, 51, 52, 53, 54, and 55
  • a plurality of location information transmitters 50M, 51, 52, 53, and 54
  • the present invention using a signal exchanged between a plurality of location information transmitters (50M, 51, 52, 53, 54, 55) and the mobile robot 100, it detects that a mobile object has entered the boundary and monitors its location. The method was implemented.
  • 'mobile body' includes all of various objects that can be moved by a person, animal, object, or vehicle that can be moved by itself.
  • the term'mobile body' also applies to cases where there is no legitimate authority to enter the boundary, for example, an intruder, and legitimate authority to enter the boundary or permission from such person.
  • 'entry of the moving object' means a case where the presence of the moving object is sensed for at least a certain time or a predetermined number of times. Therefore, the case where the moving body passes very quickly can be excluded.
  • 'entry of a mobile object in a boundary' means that the mobile body enters the boundary and is located on at least a plurality of location information transmitters or on a communication path between the location information transmitter and the mobile robot, or a communication path thereof. It means passing by.
  • control unit of the mobile robot 100 can set a virtual boundary for the area based on the position information calculated based on the signal of the location information transmitter installed in the area, for example, a UWB signal. have.
  • the control unit of the mobile robot 100 determines location-related information (location) from the UWB signal mutually transmitted between the location information transmitters and the UWB signal transmitted between the communication unit and the location information transmitter of the mobile robot 100. determination-related data).
  • the location (location determination) related information UWB signal transmitted from one to another between the location information transmitter and a response signal thereto, and UWB signal transmitted from the location information transmitter to the mobile robot 100 and a response thereto It contains all data related to the position measurement of UWB anchors and tags, calculated based on the signal.
  • the location determination information includes signal strength information, signal direction and angle information of the transmitted signal, as well as distance information and delay time information (or time difference information) calculated based on the transmitted signal and the response signal. You can include all of your data.
  • the control unit of the mobile robot 100 monitors the change in the position-related information calculated as described above, and detects the entry of the mobile body within the boundary in response to the amount of change out of the reference range.
  • the transmitted signal transmits (or partially reflects) the mobile body to another location information transmitter. As it is transmitted, disturbance of the signal occurs.
  • the data about the signal strength, signal direction and angle of the signal transmitted between the plurality of location information transmitters, and the distance information and time difference information calculated based on the response signal to the transmitted signal are such that some of them exceed the reference range If it has changed, it can be considered that a moving object exists or passes between the plurality of location information transmitters.
  • the reason for requesting a change exceeding the reference range in order to view the presence of the moving object is to exclude the change in positioning-related information due to noise generated due to the nature of the outdoor positioning.
  • the reference range refers to a minimum threshold range of signal disturbance that occurs when a mobile object having a predetermined size or more exists between communication paths of a plurality of location information transmitters.
  • the control unit of the mobile robot 100 performs a monitoring operation for the moving object in a predetermined operation.
  • the monitoring operation may vary depending on the current position of the mobile robot, the operating state of the mobile robot, and the detected position of the mobile body. This will be described in more detail below.
  • the mobile robot 100 while detecting whether the mobile body is entering, the mobile robot 100 is sufficient to be in communication with a plurality of location information transmitters, and need not be in operation.
  • the mobile robot 100 charges the battery at the charging station, it is possible to detect the entry of the moving object within the boundary by monitoring the amount of change in positioning-related information from signals received from nearby location information transmitters. .
  • the plurality of location information transmitters 50M, 51, 52, 53, 54, and 55 installed in the region are adjacent to each other. It is possible to perform UWB communication with other location information transmitters.
  • UWB signals (hereinafter referred to as'first signals') may be transmitted to each other through the paths 501, 502, 503, 504, and 505.
  • information such as signal strength, signal direction, distance data, and angle data measured through the first signal is periodically transmitted to the mobile robot 100. Accordingly, the mobile robot 100 continuously acquires location-related information such as distance information and angle information between a plurality of location information transmitters.
  • the signal strength, signal direction, distance data, angle data, etc. corresponding to the UWB signal and the response signal transmitted between the fourth position information transmitter 54 and the fifth position information transmitter 55 are changed. This can be recognized as an error for location-related information.
  • the mobile robot 100 since the signal transmitted from the location information transmitter includes identification information for the location information transmitter, the mobile robot 100 transmits a signal disturbance between the fourth location information transmitter 54 and the fifth location information transmitter 55. It can be recognized that it is caused by the first signal.
  • a first signal transmitted from the fourth location information transmitter 54 to the fifth location information transmitter 55 meets a body part of the third party 30 and is partially reflected and partially Is transmitted or totally transmitted but diffracted and transmitted to the fifth location information transmitter 55. That is, it is converted to a non-line of sight (NLOS) communication environment.
  • NLOS non-line of sight
  • the first signal and the response signal transmitted between the fourth location information transmitter 54 and the fifth location information transmitter 55 are transmitted to the changed communication path 504'. Accordingly, an error for positioning-related information is generated.
  • the data error is also increased.
  • the communication path between the fourth location information transmitter 54 and the fifth location information transmitter 55 is returned to the previous state. That is, it is converted to a line of sight (LOS) communication environment.
  • LOS line of sight
  • the control unit of the mobile robot 100 receives location-related information (first point) -> (second point) error in positioning-related information -> (third point) goes through the process of receiving location-related information again
  • the location information transmitters 54 and 55 can be recognized.
  • the front of the mobile robot 100 may be rotated and moved so that the front of the fourth position information transmitter 54 and the fifth position information transmitter 55 are located. Furthermore, when the mobile robot 100 is equipped with a camera, the camera may be activated to acquire image information around the fourth location information transmitter 54 and the fifth location information transmitter 55.
  • the present invention without additional equipment, it is possible to detect a moving object invading into the boundary by using the location information transmitter and the mobile robot 100 installed to set the boundary for the mobile robot 100 outdoors.
  • a home guard function that can monitor external intrusions without additional equipment or complicated design can be provided even in a wide outdoors.
  • a plurality of mobile robots 100 are installed in an area to communicate with a location information transmitter that transmits a signal (S10).
  • the mobile robot 100 and the location information transmitter may perform ultra-wide-band (UWB) communication.
  • the location information transmitter may operate as a UWB anchor, and the mobile robot 100 may operate as a UWB tag.
  • the mobile robot 100 may set a virtual boundary for the area based on the location information calculated based on the signal of the location information transmitter, for example, the UWB signal.
  • Communication is periodically performed between the location information transmitter and the location information transmitter and the mobile robot 100.
  • the UWB signal transmitted and received between the location information transmitter may use a first communication path
  • the UWB signal transmitted and received between the location information transmitter and the mobile robot 100 may use a second communication path.
  • positioning related information is calculated so that the mobile robot does not leave the area.
  • positioning-related information for calculating the current position of the mobile robot is calculated based on the UWB signal transmitted through the second communication path.
  • Distance information and angle information between location information transmitters are obtained based on UWB signals transmitted and received through a first communication path.
  • distance information and angle data between the mobile robot 100 and the location information transmitter are obtained in real time. Accordingly, while the mobile robot 100 moves the driving region within the boundary, it is possible to accurately recognize its own position by receiving distance information and angle information based on the UWB signal from the fixed location information transmitter.
  • control unit of the mobile robot 100 is based on at least one of the first signal transmitted between the location information transmitters and the main body of the mobile robot 100, and more precisely, the second signal transmitted between the UWB module and the location information transmitter.
  • Position-related information may be calculated (S20).
  • the mobile robot 100 may receive data of about six or more times per second from a plurality of location information transmitters, and location determination information such as signal strength, signal direction, distance data, and angle data from the received data (location determination) -related data).
  • location determination information such as signal strength, signal direction, distance data, and angle data from the received data (location determination) -related data).
  • control unit of the mobile robot 100 monitors the amount of change in the calculated location determination-related data, and when the amount of change exceeds the reference range, detects that the mobile object has entered the area ( S30).
  • the reference range refers to a minimum threshold range of signal disturbance that occurs when a mobile object having a predetermined size or more exists between communication paths of a plurality of location information transmitters.
  • the control unit of the mobile robot 100 sees this as an effect of noise and determines that it is not the entry of the mobile body.
  • control unit of the mobile robot 100 may additionally use NLOS/LOS information to determine whether or not the mobile object in the area enters.
  • the NLOS/LOS information means information on whether a property of a UWB signal transmitted and received is a non-line of sight (NLOS) signal or a line of sight (LOS) signal.
  • the NLOS/LOS information means information regarding whether a UWB signal to be transmitted and received is a non-line of sight (NLOS) channel environment or a line of sight (LOS) channel environment.
  • the LOS signal means a straight-line radio wave that directly reaches a transmission/reception point at a distance.
  • the NLOS signal means non-linear propagation, which is obscured by an invisible distance, that is, an obstacle, etc. and propagates by diffraction, reflection, or the like.
  • a communication environment or a signal attribute of the first signal may be switched from LOS to NLOS.
  • the control unit of the mobile robot 100 the amount of change in the position-related information calculated based on the UWB signal transmitted and received exceeds the reference range, the signal transmitted between any two location information transmitters, that is, the properties of the UWB signal
  • NLOS non-line of sight
  • LOS line of sight
  • whether the property of the UWB signal is a non-line of sight (NLOS) signal or the line of sight (LOS) signal may be determined by obtaining a channel impulse response to the UWB signal.
  • the channel impulse response means a response signal in a time domain including a time delay (and signal attenuation, signal interference) due to a multipath or path change of a signal, for example, a UWB signal.
  • the measurement of the channel impulse response can be measured using known methods such as vision information or an inverse discrete Fourier transform (IDFT). In the present invention, it is sufficient to know whether or not the communication environment is changed, so a detailed description of measuring the channel impulse response will be omitted.
  • control unit of the mobile robot 100 may perform an operation corresponding to the detection (S40).
  • an operation corresponding to the detection of the entry of the moving object may be an operation of outputting a notification informing the entry of the moving object.
  • the output form of the notification may be a preset signal, tone, voice, screen, LED output, or may include a preset signal, tone, voice, screen, LED output through an interlocked terminal.
  • the operation corresponding to the detection of entry into the movement may include an operation for tracking the location of the moving object.
  • the operation corresponding to the detection of the entry of the moving object may include an operation of the mobile robot 100 traveling based on the position of the moving object. Further, in another example, the operation corresponding to the detection of the entry of the moving object may include an operation of transmitting information related to the entry and current location of the moving object to the outside.
  • control unit of the mobile robot 100 may detect the entry of the mobile body in the region when the change amount of the position-related information calculated based on the first signal transmitted between the location information transmitters exceeds the reference range. .
  • the movement and position of the moving object can be detected using a triangulation method or the like. have.
  • control unit of the mobile robot 100 may additionally monitor the transmission time and duration of the UWB signal in which the amount of change in positioning-related information exceeds the reference range.
  • duration exceeds a threshold value according to monitoring, a predetermined operation for checking the location information transmitter may be performed.
  • the term'mobile body' in the present invention includes not only an intruder having a risk factor such as a third party or an animal, but also an object to be protected, such as a pet or an infant, and a legitimate user.
  • the monitoring operation of the mobile robot 100 also varies according to where the properties of the mobile body correspond.
  • FIGS. 7 and 8 show different embodiments of a method for a mobile robot to detect a position of a moving object that has entered a boundary.
  • FIG. 7 is a case where'infiltrator' occurs as a moving object. In this case, continuous monitoring of the moving object is necessary.
  • the mobile robot 100 changes the amount of positioning-related information outside the reference range. By detecting the location of the location information transmitter 54 or 55 that has transmitted the signal 50', it is possible to recognize the entry location of the intruder 30.
  • the location information transmitters 54 and 55 transmit signals by including their own identification information. Then, the mobile robot 100 may detect the location information of the location information transmitter that matches the received identification information among the location information of the previously stored location information transmitter.
  • distance data from the intruder 30 can be measured.
  • the control unit of the mobile robot 100, the intruder 30 based on the position information of the fourth position information transmitter 54 and the fifth position information transmitter 55 and the distance data (and angle data) measured therefrom The position of the first point P1 that has entered can be recognized.
  • the second signal is transmitted to the mobile robot by the changed communication path 606' ( 100).
  • the control unit of the mobile robot 100 may detect the location of the moving object based on the distance information between its current location and the location information transmitter 50M.
  • control unit of the mobile robot 100 may detect that the error in the positioning-related information calculated from the second signal transmitted from the location information transmitter 50M is increased, and accordingly, the mobile body communicates with the communication path 606' It recognizes the existence of a statue.
  • control unit of the mobile robot 100 before the error occurs, the second signal transmitted from the position information transmitter 50M at the first time point and its response signal and the second signal sent at the second time point where the error occurred and the By comparing the time difference of the response signal, it is possible to obtain distance data and angle data for the moving object from the location information transmitter 50M.
  • the control unit of the mobile robot 100 may grasp its own current position based on the second signal transmitted from another location information transmitter. Specifically, the calculation of the position of the mobile robot using the UWB signal uses Time Difference of Arrival (TDoA) technology using the difference in the arrival time of the signal, and Angle of Arrival (AOA) technology using the direction angle at which the signal is received. It is calculated in real time.
  • TDoA Time Difference of Arrival
  • AOA Angle of Arrival
  • control unit of the mobile robot 100 calculates the distance information from its current location to the location information transmitter 50M and the distance information from the location information transmitter 50M to the moving object, the second point where the moving object has moved The position of (P2) can be recognized.
  • a legitimate user can implement the promised operation so that the mobile robot 100 can recognize the entry.
  • a legitimate user when a legitimate user has a registered terminal, it may be operated to recognize a user having a registered terminal by performing a pointing operation to a location information transmitter close to the current location.
  • the mobile robot 100 may recognize that the mobile robot 100 is not an intruder by a legitimate user entering the boundary using a promised route or point.
  • the UWB antenna 230 may be mounted on the moving object. Then, the mobile robot 100 stores identification information for the mounted UWB antenna 230. The mobile robot 100 may recognize a plurality of location information transmitters as a fixed node and the mounted UWB antenna 230 as a moving node.
  • the control unit of the mobile robot 100 may communicate with the mounted UWB antenna 230 and the location information transmitter to recognize the location of the moving object through, for example, triangulation. Therefore, at this time, it is not necessary to recognize whether the moving object has entered the area.
  • the current position of the mobile robot 100 may be determined based on the second signals transmitted through different second communication paths 601 and 602 between the mobile robot 100 and the location information transmitters.
  • the distance information on the mobile body is determined to detect the current location of the mobile body.
  • control unit of the mobile robot 100 may control the driving unit so that the main body is moved based on the detected current position of the moving object.
  • control unit of the mobile robot 100 may control the traveling unit of the mobile robot 100 so that the mobile robot 100 does not approach the moving object.
  • control unit of the mobile robot 100 may change the driving route or change the driving speed to move away from the current position of the moving object.
  • control unit of the mobile robot 100 may receive the third signal transmitted from the UWB antenna 230 and detect that the mobile body approaches the mobile robot 100. In this case, the control unit of the mobile robot 100 may output a warning alarm and temporarily stop driving.
  • a safety service can be provided by monitoring whether an object to be protected approaches the mobile robot 100 in operation as well as a home guard function for an intruder.
  • FIG 9 shows an example of a method of tracking a moving path of the moving object by detecting the entry of the moving object within the boundary and monitoring the moving object.
  • the control unit of the mobile robot 100 may detect the position of the moving object existing within the boundary, and then control the driving unit so that the body rotates or moves toward the detected position of the moving object.
  • the UWB tag of the mobile robot 100 grasps its current location based on the UWB signal transmitted from the plurality of location information transmitters. Also, an obstacle existing in the UWB detection area formed through the UWB tag of the mobile robot 100 may be sensed. Using this, it is possible to track the moving path of the moving object moving in the driving area inside the boundary.
  • the mobile robot 100 toward the position of the fifth location information transmitter 100 in response to the reception of the disturbed first signal 606 ′ from the fifth location information transmitter 100. Rotate the body. Thereafter, when the moving object moves and enters the signal path between the location information transmitter 50M and the mobile robot 100, the disturbed second signal 606' from the location information transmitter 50M is received by the mobile robot 100. do.
  • the control unit of the mobile robot 100 includes the first position of the moving object corresponding to the first point in time at which the first signal 606' was received, and the first position of the moving object corresponding to the second point in time at which the second signal 606' was received. 2 position can be identified.
  • the mobile robot 100 when the mobile robot 100 receives the disturbed second signal 601' from the first location information transmitter 100, it can grasp the third position of the moving object corresponding to the corresponding time point, that is, the third time point.
  • the trajectory of the moving object that is, the moving path may be generated by connecting the first position, the second position, and the third position in chronological order.
  • the control unit of the mobile robot 100 may transmit route information corresponding to the detected change in the position of the moving object to the external terminal.
  • the movement path for the generated moving object is stored in the mobile robot 100 together with time information.
  • the stored movement path and time information may be transmitted to an external terminal/external server/security company according to a user request or when a predetermined condition is satisfied.
  • the predetermined condition may include a case in which the moving path of the moving object is assumed to be directed to the inside of the house, passing through a specific point, and the like.
  • the mobile robot 100 may output a preset warning alarm in an operation corresponding to detection of entry into the area of the mobile body.
  • the warning alarm may include a predetermined tone, voice, LED blinking, and the like.
  • the mobile robot 100 activates a camera provided in the front, rotates or moves the main body so that the position of the detected moving object is within the field of view of the camera, and then performs a shooting operation to obtain image information about the moving object. It can also be obtained.
  • the acquired image information is transmitted to a preset external terminal/external server/security company according to a user request or when a predetermined condition is satisfied (for example, when a mobile object approaches or approaches a mobile robot and impacts it). Can be sent.
  • FIG. 10 is a flowchart of a method for a mobile robot according to an embodiment of the present invention to perform a movement of a main body based on the location of a mobile body and a location notification of the mobile body.
  • Figure 11 is an example of a terminal screen that notifies the entry of the mobile body.
  • the mobile robot 100 responds to the amount of change in positioning-related information calculated from the signal between the location information transmitters, that is, the first signal, out of the reference range, and Entry can be detected (S1010).
  • the mobile robot 100 may periodically obtain distance information and angle information based on a first signal transmitted between location information transmitters. In addition, the mobile robot 100 may determine whether the communication environment of the first signal is changed from one of the NLOS and the LOS to the other based on the channel impulse response.
  • the control unit of the mobile robot 100 based on the location information of the location information transmitter (also, another location information transmitter in close proximity) that transmits a UWB signal in which the amount of change in positioning-related information exceeds a reference range, and the mobile object enters The location may be determined (S1020).
  • the position-related information calculated from the first signal transmitted between the location information transmitters and the second signal transmitted between the location information transmitter and the mobile robot 100 is monitored, for example, the inside of the boundary is monitored by changing the amount of change of the distance information and the angle information. It detects the current position of the moving object present in (S1030).
  • the moving robot 100 may stop moving.
  • the mobile robot 100 serves as a location information transmitter having a fixed current location.
  • the mobile robot 100 may control the driving unit so that the main body is moved avoiding the current position of the moving object (S1040). That is, even when the moving object is detected, the mobile robot 100 may continue to perform the operation based on the current position of the moving object.
  • the mobile robot 100 may store location information of the moving object and a plurality of location coordinates corresponding to changes in the location information, and then transmit route information generated based on the stored location coordinates to an external terminal (S1050). ).
  • the route information for the mobile object may be transmitted only when a predetermined condition is satisfied.
  • a first screen 1101 indicating that communication is being performed is output to the terminal 200.
  • a second screen 1110 including a warning corresponding to the received information is output to the terminal 200.
  • the property of the moving object, the position of the moving object, and the time when the moving object enters the boundary may be included.
  • the property of the mobile body is determined whether there is a UWB antenna registered in the mobile body, or whether a predetermined operation that can be viewed as the entry of a legitimate user is detected. If the above two cases are not applicable, the property of the moving object may be determined as'intruder'.
  • a user interface capable of selectively performing warning release or detailed view may be provided on the screen.
  • information about a current location and a moving path of a moving object may be provided in the form of text, images, images, and the like.
  • an alarm level eg, beeper enhancement, vibration addition, etc.
  • an alarm level may be enhanced to alert an intrusion occurrence.
  • the first function and the second function are activated for a predetermined time period (eg, night to dawn) through a user input, and when the corresponding time zone is reached, the first function and the second function are switched to deactivation. Can be operated.
  • a predetermined time period eg, night to dawn
  • the mobile robot and its control method according to an embodiment of the present invention, the mobile object invading within the boundary set only with the UWB anchor and UWB tags required to calculate the position of the mobile robot without additional equipment even in the open outdoor area It can provide a home guard function to detect.
  • UWB communication can be used to identify the location of the moving object and the moving path existing within the boundary, and avoiding the location of the moving object according to the properties of the moving object, or by informing the outsider of the location and the moving path of the intruder. Even in the outdoor area, safety and security can be satisfied simultaneously without additional equipment.
  • the above-described present invention can be embodied as computer readable codes on a medium on which a program is recorded.
  • the computer-readable medium includes all kinds of recording devices in which data readable by a computer system is stored. Examples of computer-readable media include a hard disk drive (HDD), solid state disk (SSD), silicon disk drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical data storage device. This includes, and is also implemented in the form of a carrier wave (eg, transmission over the Internet).
  • the computer may include a control unit 1800 of the mobile robot. Accordingly, the above detailed description should not be construed as limiting in all respects, but should be considered illustrative. The scope of the invention should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 이동 로봇, 그 제어방법 및 단말기가 개시한다. 본 발명에 따른 이동 로봇은, 본체를 이동시키는 주행부, 영역 내에 복수로 설치되어 신호를 송출하는 위치정보송출기와 통신하는 통신부, 위치정보송출기 간에 송출되는 제1신호 및 본체와 위치정보송출기 간에 송출되는 제2신호 중 적어도 하나로부터 측위 관련 정보를 산출하고, 산출된 측위 관련 정보의 변화량이 기준범위를 벗어나는 것에 응답하여 영역 내로의 이동체의 진입을 감지하고, 그 감지에 대응되는 동작을 수행하는 제어부를 포함한다.

Description

이동 로봇 및 그 제어방법
본 발명은 지정된 영역을 자율주행하는 이동 로봇 및 그 제어방법에 관한 것이다.
일반적으로 이동 로봇은 사용자의 조작 없이도 소정 구역을 스스로 주행하면서 자동으로 소정의 동작을 수행하는 기기이다. 이동 로봇은 구역 내에 설치된 장애물을 감지하여 장애물에 접근하거나 회피하여 동작을 수행한다.
이러한 이동 로봇은 영역을 주행하면서 청소를 수행하는 청소로봇은 물론 영역의 바닥면의 잔디를 깎는 잔디깎이 로봇이 포함될 수 있다.
일반적으로 잔디깎이 장치는 사용자가 탑승하여 사용자의 운전에 따라 이동하면서 바닥의 잔디를 깎거나 풀을 제초하는 승용형 장치와, 사용자가 수동으로 끌거나 밀어서 이동하면서 잔디를 깎는 워크비하인드타입 또는 핸드타입의 장치가 있다. 이러한 잔디깎이 장치는 사용자의 직접적인 조작에 의해 이동하며 잔디를 깎는 것으로 사용자의 직접 장치를 작동해야하는 번거로움이 있다.
그에 따라 이동 로봇에 잔디를 깎을 수 있는 수단을 구비한 이동 로봇형의 잔디깎이 장치, 즉 잔디깎이 로봇이 연구되고 있다. 그러나, 잔디깎이 로봇의 경우 실내가 아닌 실외에도 동작하므로 이동할 영역을 사전에 설정해야할 필요성이 있다. 구체적으로, 실외는 실내와는 달리 열린 공간이므로 영역의 지정이 미리 이루어져야하며, 또 잔디가 심어진 곳을 주행하도록 영역을 한정되어야 한다,
이를 위해 대한민국공개특허 2015-0125508에는, 잔디깎이 로봇이 이동할 영역을 설정하기 위해, 잔디가 심어진 곳에 와이어를 매설하여, 이동 로봇이 와이어의 내측 영역에서 이동하도록 제어한다. 그러면, 와이어에 의해 유도된 전압값에 근거하여 이동 로봇에 대한 경계가 설정된다.
그러나 이러한 방식은 와이어를 바닥에 매번 매설해야한다는 문제가 있다. 또한, 한번 설정한 경계를 변경하기 위해서는 매설된 와이어를 제거한 다음 새로 이 와이어를 매설해야하므로, 경계 설정에 시간과 수고가 많아지는 어려움이 있었다.
이를 해결하기 위하여, 비콘(Becon) 방식으로 신호를 송출하여 가상의 벽(Virtual wall)을 설정하는 이동 로봇의 주행을 제한하는 방식이 연구되어 왔다. 그러나 이러한 가상벽의 경우, 직선거리로만 가상벽을 설정이 가능하므로, 다양한 형태의 지형을 갖는 실외영역에는 적합하지 않다. 또한, 가상벽 설정을 위한 부수 장치를 다수 설치해야하므로 비용이 증가하게 되며, 모든 영역에 걸쳐서 가상벽을 설정할 수 없다는 한계가 있다.
또한, GPS 기반의 측위 방식에 근거하여 이동 로봇의 주행을 제한하는 방식은, 평균 오차가 약 2~5m로 알려져 있어 자율주행에서 요구되는 최소 측위 오차 범위인 약 30cm 이내를 만족하지 못하는 실정이다. 또, GPS의 평균 오차를 줄이기 위해 DGPS, Camera, LiDAR, Rader 등의 센서를 활용하는 경우에도 사각지대와 고비용이 발생되어, 일반적으로 상용화되기에는 어려움이 존재한다.
한편, GPS기반의 측위 방식의 단점을 해결하기 위해 비콘(beacon) 기반의 측위 방식을 사용할 수 있다.
이와 관련하여, 미국 Pub. No US 2017/0026818에는, 모바일 잔디깍기 로봇을 비콘(beacon)과 페어링시킨 다음, 비콘과 모바일 잔디깍기 로봇 간의 거리를 결정하여, 그 결정된 거리를 페어링 거리와 비교하여 비콘이 페어링 거리 내에 있는지를 확인한 후에, 이를 네이게이션에 활용하는 것을 개시한다. 그러나, 비콘을 사용하기 위해서는 관련된 앱 설치를 수행하여 페어링해야하는 단점과 보안상의 이슈가 있다.
이에, 최근에는 약 30cm 미만의 정밀도를 갖는 것으로 알려진 UWB(Ultra Wideband) 통신 기술을 사용하여 이동 로봇의 주행을 제한하는 방식이 연구되고 있다. UWB(Ultra Wideband)는 정밀한 영역 추정과 물질을 관통하는 성질이 있어서, 다중경로 문제에 영향을 거의 받지 않기 때문에, 실시 간 위치 추적에 적합하다.
한편, 실외는 실내와는 달리 열린 공간이므로, 제3자에 의한 침입이 보다 용이하고 빈번하게 이루어질 수 있다. 보안을 위해, 넓은 열린 공간에 감시 센서를 장착하여 제3자의 침입 여부를 감시하는 것은 비용과 노력이 많이 들고, 현실적으로 상용화되기도 어렵다. 또, 제3자에 의한 침입이 아니라도 집안에서 애완동물이나 아이가 실외로 나와서 자유롭게 이동하는 경우에도, 안전을 위해 이동 로봇이 이를 인지해야할 필요가 있다.
이에, 본 발명의 일 목적은, 카메라 등의 별도의 센서 추가 없이 이동 로봇의 위치를 계산하기 위한 UWB(Ultra Wideband) 통신을 이용하여 열린 공간에서도 보안과 안전을 위한 감지 기능을 수행할 수 있는 이동 로봇 및 그 제어방법을 제공하는데 있다.
또한, 본 발명의 또 다른 목적은, 경계 내에 침입자 등의 이동체의 진입이 감지된 경우, UWB(Ultra Wideband) 통신을 이용하여 경계 내에서의 이동체의 위치와 이동 경로를 파악하는 것이 가능한 이동 로봇 및 그 제어방법을 제공하는데 있다.
또한, 본 발명의 또 다른 목적은, 안전을 위하여 이동체의 위치와 이동 경로에 근거하여 이동 로봇의 주행을 가변 제어하고, 보안을 위하여 이동체의 경계 내 진입과 이동 경로를 외부에 알려주는 것이 가능한 이동 로봇 및 그 제어방법을 제공하는데 있다.
이를 위해, 본 발명의 실시 예에 따른 이동 로봇은, 본체를 이동시키는 주행부; 영역 내에 복수로 설치되어 신호를 송출하는 위치정보송출기와 통신하는 통신부; 상기 영역 내에서 상기 위치정보송출기 간에 송출되는 제1신호 및 상기 본체와 상기 위치정보송출기 간에 송출되는 제2신호 중 적어도 하나에 근거하여 측위 관련 정보를 산출하는 제어부를 포함하고, 상기 제어부는, 상기 산출된 측위 관련 정보의 변화량이 기준범위를 벗어나는 것에 응답하여 상기 영역 내에의 이동체의 진입을 감지하고, 상기 감지에 대응되는 동작을 수행하는 것을 특징으로 한다.
일 실시 예에서, 상기 측위 관련 정보는, 상기 제1신호 및 상기 제1신호에 대한 응답신호 또는 상기 제2신호 및 상기 제2신호에 대한 응답신호에 기반하여 산출된 거리 정보, 신호세기 정보, 신호방향 및 각도정보 중 적어도 하나 이상을 포함하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 제1신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어나고, 상기 제1신호의 속성이 비가시거리(non-line of sight, NLOS) 신호 및 가시거리(line of sight, LOS) 신호 중 어느 하나에서 다른 하나로 변경된 것에 응답하여 상기 영역 내에 이동체가 진입한 것으로 결정하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 제1신호의 속성이 비가시거리(non-line of sight, NLOS) 신호 및 가시거리(line of sight, LOS) 신호 중 어느 하나에서 다른 하나로 변경된 것에 응답하여, 상기 영역 내에 이동체가 진입한 것을 감지하고, 상기 제1신호의 속성이 비가시거리(non-line of sight, NLOS) 신호인지 상기 가시거리(line of sight, LOS) 신호인지는 상기 제1신호에 대한 채널임펄스응답을 획득하여 결정되는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 제1신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 근거하여 상기 영역 내의 이동체의 진입을 감지하고, 상기 감지 후 상기 제2신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 응답하여 상기 이동체의 이동을 감지하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 측위 관련 정보의 변화가 기준범위를 벗어난 신호를 송출한 위치정보송출기의 위치정보에 근거하여 상기 이동체의 진입 위치를 인식하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 위치정보송출기의 신호에 근거하여 상기 본체의 현재 위치를 인식하고, 상기 이동체의 진입이 감지되면 상기 본체의 현재 위치와 상기 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 신호를 송출한 위치정보송출기 간의 거리정보에 근거하여 상기 이동체의 위치를 검출하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 감지에 대응되는 동작으로, 감지된 이동체의 위치를 향해 상기 본체가 회전 또는 이동하도록 상기 주행부를 제어하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 감지에 대응되는 동작으로, 감지된 이동체의 위치 정보와 그 위치정보의 변화에 대응되는 경로 정보를 외부단말로 전송하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 감지에 대응되는 동작으로, 출력부를 통해, 기설정된 경고 알람을 출력하는 것을 특징으로 한다.
일 실시 예에서, 상기 이동체에 UWB 안테나가 장착된 경우, 상기 제어부는, 상기 UWB 안테나 및 상기 위치정보송출기와 통신하여 상기 이동체의 위치를 인식하고, 상기 이동체의 위치에 근거하여 상기 본체가 이동하도록 상기 주행부를 제어하는 것을 특징으로 한다.
일 실시 예에서, 상기 이동체에 UWB 안테나가 장착된 경우, 상기 제어부는, 상기 UWB 안테나로부터 송출된 신호에 근거하여 상기 이동체가 상기 본체에 접근하는 것이 감지되면, 상기 본체의 주행속도를 조절하거나 기 설정된 주행 경로를 변경하는 것을 특징으로 한다.
일 실시 예에서, 상기 제어부는, 상기 위치정보송출기의 신호에 기반하여 산출된 위치정보에 근거하여 상기 영역에 대한 가상의 경계를 설정하고, 상기 본체가 상기 설정된 경계를 벗어나지 않도록 상기 주행부를 제어하는 것을 특징으로 한다.
또, 본 발명의 실시 예에 따른 이동 로봇의 제어방법은, 영역 내에 복수로 설치되어 신호를 송출하는 위치정보송출기와 통신하는 단계; 상기 영역 내의 위치정보송출기 간에 송출되는 제1신호 및 상기 본체와 상기 위치정보송출기 간에 송출되는 제2신호 중 적어도 하나에 근거하여 측위 관련 정보를 산출하는 단계; 상기 산출된 측위 관련 정보의 변화가 기준범위를 벗어나는 것에 응답하여 상기 영역 내에의 이동체의 진입을 감지하는 단계; 및 상기 감지에 대응되는 동작을 수행하는 단계를 포함하여 이루어진다.
또한, 일 실시 예에서, 상기 영역 내에 이동체의 진입을 감지하는 단계는, 상기 제1신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 근거하여 상기 영역 내의 이동체의 진입을 감지하는 단계와, 상기 감지 후 상기 제2신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 응답하여 상기 이동체의 이동을 감지하는 단계를 포함하는 것을 특징으로 한다.
또한, 일 실시 에에서, 상기 감지에 대응되는 동작을 수행하는 단계는, 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 신호를 송출한 위치정보송출기 간의 위치정보에 기초하여 상기 이동체의 진입 위치를 결정하는 단계; 상기 제1신호와 상기 제2신호로부터 산출되는 측위 관련 정보의 변화를 모니터링하여 상기 이동체의 현재 위치를 검출하는 단계; 상기 검출된 이동체의 현재 위치를 피하여 본체를 주행하는 단계; 및 상기 검출된 이동체의 위치정보와 그 위치정보의 변화에 대응되는 경로 정보를 외부단말로 전송하는 단계를 포함하여 이루어지는 것을 특징으로 한다.
이상에서 살펴본 바와 같이, 본 발명의 실시 예 따른 이동 로봇 및 그 제어방법은, 오픈된 실외 영역에서도 추가 장비 없이 이동 로봇의 위치를 계산하기 위해 필요한 UWB 앵커와 UWB 태그만으로 설정된 경계 내에 침입하는 이동체를 감지하는 홈 가드(home guard) 기능을 제공할 수 있다.
또한, UWB 통신을 이용하여 경계 내에 존재하는 이동체의 위치와 이동 경로를 파악할 수 있고, 이동체의 속성에 따라 이동체의 위치를 피하여 주행하거나 또는 침입자의 위치와 이동 경로를 외부에 알림해줌으로써, 오픈된 실외영역에서도 추가 장비 없이 안전과 보안을 동시에 만족시킬 수 있다.
도 1은 본 발명에 따른 이동 로봇의 일 예를 보인 사시도이다.
도 2a는 본 발명에 따른 이동 로봇이 단말기, 서버와 통신하는 모습을 설명하기 위한 개념도이다.
도 2b는 본 발명에 따른 이동 로봇의 예시 구성을 보인 블록도이고, 도 2c는 본 발명에 따른 이동 로봇과 통신하는 단말기의 예시 구성을 보인 블록도이다.
도 3은 본 발명의 실시 예에 따라, 이동 로봇에 대한 경계 설정을 위한 장치들간의 신호흐름을 설명하기 위한 개념도이다.
도 4는 본 발명의 실시 예에 따라, 이동 로봇에 대한 가상의 경계를 설정하는 방법과 관련된 개념도이다.
도 5a, 도 5b, 도 5c는 본 발명의 실시 예에 따라, 가상의 경계 내의 이동체의 진입을 감지하는 방법의 구체적인 예시를 설명하기 위한 개념도들이다.
도 6은 본 발명의 실시 예에 따른 이동 로봇이 제어방법의 대표 흐름도이다.
도 7 및 도 8은 본 발명의 실시 예에 따른 이동 로봇이 경계 내에 진입한 이동체의 위치를 검출하는 방법의 서로 다른 실시 예를 설명하기 위한 개념도들이다.
도 9는 본 발명의 실시 예에 따른 이동 로봇이 이동체에 대한 모니터링 동작을 수행하는 방법의 예시를 보여주는 개념도이다.
도 10 및 도 11은 본 발명의 실시 예에 따른 이동 로봇이 이동체의 위치에 근거한 본체의 주행과 이동체의 위치 알림을 수행하는 방법의 흐름도와 단말기를 통해 이동체 진입을 알림해주는 것을 보여주는 예시 도면이다.
이하에서는, 본 발명에 관련된 이동 로봇에 대하여 도면을 참조하여 보다 상세하게 설명한다.
첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 명세서에 개시된 기술의 사상을 한정하려는 의도가 아님을 유의해야 한다.
먼저, 본 발명에 개시된 "이동 로봇"은, 자율주행이 가능한 '로봇', '잔디깎기 이동 로봇', '잔디깎기 로봇', '잔디깍기 장치', '잔디깍기용 이동 로봇'와 동일한 의미로 사용될 수 있으며, 혼용될 수 있음을 미리 밝혀둔다.
도 1은 본 발명에 따른 잔디깍기용 이동 로봇의 예시이다.
본 발명에 따른 이동 로봇은 아우터 커버(101), 이너 바디(미도시) 및 휠(1092)을 포함하여 구성될 수 있다.
아우터 커버(101)는 이동 로봇의 외관을 형성할 수 있다. 이동 로봇의 외관은 예를 들어 자동차와 유사한 형상으로 형성될 수 있다. 아우터 커버(101)는 이너 바디(미도시)의 외측을 감싸도록 형성될 수 있다.
아우터 커버(100)는 이너 바디의 상부를 덮도록 이너 바디의 상부에 장착될 수 있다. 아우터 커버(101)의 내부에 수용부가 형성되고, 수용부에 이너 바디가 수용될 수 있다.
아우터 커버(101)의 전방부에 장애물과의 충돌에 대비하여 범퍼부(102)가 형성될 수 있다. 범퍼부(102)는 충격을 완화할 수 있는 고무재질로 형성될 수 있다.
아우터 커버(101)의 전방 상부에 복수의 초음파 센서 모듈(103)이 장착될 수 있다. 복수의 초음파 센서 모듈(103)은 로봇의 주행 시 전방을 향해 초음파를 방사하고 장애물에 반사된 반사파를 수신하여 전방의 장애물을 감지하도록 구성된다.
복수의 초음파 센서 모듈(103)은 차폭방향으로 이격되게 배치될 수 있다. 복수의 초음파 센서 모듈(103)은 범퍼부(102)로부터 후방으로 일정한 거리에 이격 배치될 수 있다. 또한, 복수의 초음파 센서 모듈(103)은 초임파 센서가 아닌 다른 신호-기반의 센서, 예를 들어 UWB 센서로 대체될 수도 있다.
이동 로봇은 제어부를 포함하고, 초음파 센서 모듈(103)로부터 감지신호를 받아 장애물 감지 시, 이동 로봇의 작동을 멈출 수 있다.
아우터 커버(101)의 상부에는 제1상부커버(105)와 제2상부커버(106)가 구비될 수 있다. 그리고, 상기 제1상부커버(105)와 제2상부커버(106) 사이에 스톱스위치(107)가 설치될 수 있다. 스톱스위치(107)는 아우터 커버(101)에 누름 가능하게 장착되어, 비상시 사용자가 스톱스위치(107)를 한 번 누르면 온(ON)되어 이동 로봇의 작동이 멈추고 다시 한 번 되면 이동 로봇의 작동이 재개될 수 있다.
복수의 휠(1092) 각각은 이너바디 내에 위치한 구동모터와 연결되어, 이너 바디(160)의 폭방향으로 양측면에 회전 가능하게 장착될 수 있다. 복수의 휠(1092) 각각은 구동축에 의해 구동모터와 연결되어, 구동모터로부터 동력을 전달받아 회전될 수 있다.
복수의 휠(1092)은 로봇의 주행을 위한 동력을 제공하되, 복수의 휠(1092) 각각은 제어부에 의해 회전수가 각각 독립적으로 제어될 수 있다.
또한, 이동 로봇의 운반 시, 사용자가 손으로 파지할 수 있도록 핸들(120)(‘운반손잡이’로도 명명될 수 있음)가 아우터 커버(101)에 설치될 수 있다.
도 2는 본 발명에 따른 이동 로봇이 단말기, 서버와 통신하는 모습을 보인 것이다. 본 발명에 따른 이동 로봇(100)은 네트워크 통신을 통해 단말기(200)와 서로 데이터를 주고 받을 수 있다. 또, 이동 로봇(100)은 네트워크 통신 또는 다른 통신을 통해 단말기(200)로부터 수신되는 제어명령에 따라 제초 관련 동작을 수행하거나 또는 대응되는 동작을 수행할 수 있다.
여기에서, 상기 네트워크 통신은 WLAN(Wireless LAN), WPAN(Wireless Personal Area Network), Wi-Fi(Wireless-Fidelity), Wi-Fi(Wireless Fidelity) Direct, DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access), Zigbee, Z-wave, Blue-Tooth, RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), 초광대역 무선기술(Ultra-wide Band), Wireless USB(Wireless Universal Serial Bus) 등과 같은 무선 통신 기술 중 적어도 하나를 의미할 수 있다.
도시된 네트워크 통신은 이동 로봇의 통신방식이 무엇인지에 따라 달라질 수 있다.
도 2a에서, 이동 로봇(100)은 각각의 센싱 유닛을 통해 센싱된 정보를 네트워크 통신을 통해 단말기(200)에 제공할 수 있다. 또, 단말기(200)는 수신된 정보를 기초로 생성된 제어명령을 네트워크 통신을 통해 이동 로봇(100)에 전달할 수 있다.
한편, 단말기(200)는 사용자에 의해 조작되어, 이동 로봇(100)의 주행과 관련된 동작을 제어하기 위한, 컨트롤러, 리모콘, 원격 제어기, 또는 단말기로 명명될 수 있다. 이를 위해, 상기 단말기(200)에는 이동 로봇(100)의 주행과 관련된 동작을 제어하기 위한 애플리케이션이 설치될 수 있고, 사용자 조작을 통해 해당 애플리케이션이 실행될 수 있다.
또, 도 2a에서, 이동 로봇(100)의 통신부와 단말기(200)의 통신부가 직접 무선 통신하거나 다른 공유기(미도시) 등을 매개로 간접 무선 통신하여, 이동 로봇의 주행 동작과 관련된 정보 및 서로의 위치 정보 등을 파악할 수 있다.
또한, 이동 로봇(100), 서버(300), 및 단말기(200)는 네트워크를 통해 서로 연결되어 서로 데이터를 교환할 수 있다.
예를 들어, 서버(300)는 이동 로봇(100) 및/또는 단말기(200)와 데이터를 교환하여, 이동 로봇(100)에 대하여 설정된 경계와 관련된 정보, 설정된 경계에 근거한 맵(map) 정보, 및 맵(map)상의 장애물 정보를 등록할 수 있다. 또, 서버(300)는, 요청에 따라, 등록된 정보를 이동 로봇(100) 및/또는 단말기(200)에 제공해줄 수 있다.
서버(300)는 단말기(200)를 통해 직접 무선 연결될 수 있다. 또는, 서버(300)는 단말기(300b)를 통하지 않고 이동 로봇(100)과 연결될 수도 있다.
서버(300)는 프로그램 처리가능한 프로세서를 포함할 수 있으며, 각종 알고리즘을 구비할 수 있다. 예로서, 서버(300)는 머신 러닝(machine learning) 및/또는 데이터 마이닝(data mining)의 수행과 관련된 알고리즘을 구비할 수 있다. 또 예로써, 서버(300)는, 음성 인식 알고리즘을 구비할 수 있다. 이러한 경우, 음성 데이터 수신시, 수신되는 음성 데이터를, 텍스트 형식의 데이터로 변환하여, 출력할 수 있다.
서버(300)는, 이동 로봇(100)에 대한 펌웨어 정보, 운전 정보(코스 정보 등)를 저장하고, 이동 로봇(100)에 대한 제품 정보를 등록할 수 있다. 예를 들어, 서버(300)는, 청소기 제조자가 운영하는 서버이거나 또는 공개된 애플리케이션 스토어 운영자가 운영하는 서버일 수 있다.
이하, 도 2b는 본 발명에 따른 이동 로봇(100)의 예시 구성을 보인 블록도이고, 도 2c는 이동 로봇(100)과 통신하는 단말기(200)의 예시 구성을 보인 블록도이다.
먼저, 도 2b를 참조하여 이동 로봇(100)의 구성을 구체적으로 설명하겠다.
도 2b에 도시된 바와 같이, 이동 로봇(100)은 통신부(1100), 입력부(1200), 주행부(1300), 위치감지부(1401) 및 장애물감지부(1402)를 포함한 센싱부(1400), 출력부(1500), 메모리(1600), 제초부(1700), 제어부(1800) 및 전원부(1900)를 포함하여 이루어질 수 있다.
통신부(1100)는, 무선통신 방식으로 단말기(200)과 통신할 수 있다. 또, 통신부(1100)는 소정의 네트워크에 연결되어 외부의 서버 또는 이동 로봇을 제어하는 단말 통신할 수 있다.
통신부(1100)는 생성된 맵(map) 관련 정보를 단말기(200)에 전송할 수 있다. 통신부(1100)는 단말기(200)로부터 명령을 수신할 수 있고, 이동로봇(100)의 동작상태에 관한 데이터를 단말기(200)로 전송할 수도 있다.
통신부(1100)는 지그비, 블루투스 등의 근거리 무선통신뿐 아니라, 와이파이, 와이브로 등의 통신모듈을 포함하여 데이터를 송수신한다. 또한, 통신부(1100)는 초광대역 신호를 송신하는 UWB 모듈을 포함할 수도 있다.
입력부(1200)는 적어도 하나의 버튼, 스위치, 터치패드 등의 입력수단을 포함할 수 있다. 또, 출력부(1500)는 디스플레이부, 스피커 등의 출력수단을 포함할 수 있다. 출력부(1500)가 입력수단 및 출력수단으로 동시에 사용되는 경우, 디스플레이부나 스피커를 통해 사용자명령을 입력받고 이동 로봇의 동작상태를 출력할 수 있다.
또한, 상기 입력부(1200)는 영상 정보(또는 신호), 오디오 정보(또는 신호), 데이터, 또는 사용자로부터 입력되는 정보의 입력을 위한 것으로서, 영상 정보의 입력을 위하여, 하나 또는 복수의 카메라(1210)를 구비할 수 있다.
카메라(1210)는 촬영 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상 등의 화상 프레임을 처리한다. 또한, 카메라(221)는 카메라 센서(예를 들어, CCD, CMOS 등), 포토 센서(또는 이미지 센서) 및 레이저 센서 중 적어도 하나를 포함한다.
카메라(1210)는 이동 로봇(100)의 일 측, 예를 들어 상방 또는 전방에 구비될 수 있다. 또, 카메라(1210)는 제어부(1800)로부터 전달되는 구동신호에 따라 활성화/비활성화 상태로 전환될 수 있다. 또한, 상기 카메라(1210)를 통해 획득된 영상은, 제어부(1800)에 의해, 이동 로봇(100)과 통신중인 외부단말/서버로 전송될 수 있다.
메모리(1600)에는 입력되는 감지신호가 저장되고, 장애물을 판단하기 위한 기준데이터가 저장되며, 감지된 장애물에 대한 장애물정보가 저장될 수 있다. 또한, 메모리(1600)에는 이동 로봇의 동작을 제어하기 위한 제어데이터 및 이동 로봇의 청소모드에 따른 데이터가 저장된다.
메모리(1600)에는 수집되는 위치정보가 저장되고, 주행영역 및 그 경계에 대한 정보가 저장된다. 예를 들어, 메모리(1600)는, 마이크로 프로세서(micro processor)에 의해 읽힐 수 있는 데이터를 저장하는 것으로, HDD(Hard Disk Drive), SSD(SolidState Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장 장치 중 어느 하나일 수 있다.
주행부(1300)는 적어도 하나의 구동모터를 포함할 수 있고, 제어부(1800)의 제어명령에 따라 이동로봇이 이동할 수 있게 한다. 주행부(1300)는 좌륜을 회전시키는 좌륜 구동모터와 우륜을 회전시키는 우륜 구동모터를 포함할 수 있다. 또, 주행부(1300)는 안정적인 지지를 위해 하나 이상의 보조바퀴를 더 포함할 수 있다.
예를 들어, 이동 로봇 본체가 주행하는 경우, 좌륜 구동모터와 우륜 구동모터가 같은 방향으로 회전되나, 좌륜 구동모터와 우륜 구동모터가 다른 속도로 회전되거나, 서로 반대 방향으로 회전되는 경우에는 본체(10)의 주행 방향이 전환될 수 있다.
제초부(1700)는 이동 로봇의 주행 중에, 바닥면의 잔디를 깎는다. 제초부(1700)는 잔디를 깎기위한 브러쉬 또는 칼날이 구비되어 회전을 통해 바닥의 잔디를 깎는다.
장애물감지부(1402)는 복수의 센서를 포함할 수 있고, 이동 로봇의 전방에 존재하는 장애물을 감지한다. 장애물감지부(1402)는 레이저, 초음파, 적외선, 3D센서 중 적어도 하나를 이용하여 본체의 전방, 즉 주행방향의 장애물을 감지할 수 있다.
또, 장애물감지부(1402)는 전방을 촬영하여 장애물을 감지하는 카메라를 포함할 수 있다. 카메라는 디지털 카메라로, 이미지센서(미도시)와 영상처리부(미도시)를 포함할 수 있다. 이미지센서는 광학 영상(image)을 전기적 신호로 변환하는 장치로, 다수개의 광 다이오드(photo diode)가 집적된 칩으로 구성되며, 광 다이오드로는 픽셀(pixel)을 예로 들 수 있다. 렌즈를 통과한 광에 의해 칩에 맺힌 영상에 의해 각각의 픽셀들에 전하가 축적되며, 픽셀에 축적된 전하들은 전기적 신호(예를들어, 전압)로 변환된다. 이미지센서로는 CCD(Charge Coupled Device), CMOS(Complementary Metal Oxide Semiconductor) 등이 잘 알려져 있다. 또, 상기 영상처리부로 DSP 등이 구비될 수 있다.
위치감지부(1401)는 위치정보를 송수신하기 위한 복수의 센서모듈을 포함한다. 위치감지부(1401)는 GPS신호를 송수신하는 GPS모듈, 또는 위치정보송출기(50, 도 3)로부터 위치정보를 송수신하는 위치센서모듈을 포함한다. 예를 들어, 위치정보송출기가 초음파, UWB(Ultra Wide Band), 적외선 중 어느 하나의 방식으로 신호를 송신하는경우, 그에 대응하여 초음파, UWB, 적외선신호를 송수신하는 센서모듈이 구비된다.
UWB(Ultra Wide Band) 센서모듈로 구현되는 경우, 위치정보송출기(50)와 이동 로봇(100) 사이에 장애물이 존재하더라도, 장애물 등을 관통하여 신호가 송수신될 수 있으므로, 일정 영역 내에서는 초광대역 신호(또는, UWB 신호)의 송수신이 원활하게 이루어진다.
본 발명에서는 다른 설명이 없다면, 위치정보송출기(50)와 이동 로봇(100), 위치정보송출기(50)와 단말기(200), 그리고 이동 로봇(100)과 단말기(200)가, 적어도 하나의 UWB센서 모듈을 구비하여, 서로 초광대역 신호(또는, UWB 신호)를 주고받는 가능한 것으로 전제할 수 있다.
또한, 이동 로봇(100)이 단말기(200)를 추종하여 이동하는 경우에도, 전술한 센서모듈을 이용하여 위치를 판단할 수 있다.
예를 들어, 이동 로봇(100)이 단말기(200)를 추종하여 주행하는 경우, 단말과 이동 로봇은 각각 UWB센서를 구비하고, 상호 무선 통신을 수행한다. 단말은 구비되는 UWB센서로부터 신호를 송출하고, 이동 로봇은 UWB센서를 통해 수신되는 단말의 신호를 바탕으로 단말의 위치를 판단하여 단말을 추종하여 이동할 수 있다.
앞서 설명한 바와 같이 UWB센서의 초광대역 신호는 장애물을 관통하여 신호를 전송할 수 있으므로 사용자가 단말기를 들고 이동하더라도 신호 전송에 영향을 주지않는다. 다만, 일정크기 이상의 장애물인 경우, 신호가 전송되지 않거나 또는 관통은 하더라도 전송거리가 감소될 수는 있다.
또한, 단말기와 이동 로봇에 각각 구비되는 UWB 센서는 센서 상호 간의 거리를 추정 내지 측정할 수 있다. 이동 로봇이 단말기를 추종하며 주행하는 경우, 이동 로봇은 단말기와의 거리에 따라 소정 거리를 벗어나지 않도록 주행을 제어한다. 즉, 이동 로봇은 단말기와의 이격 거리가 너무 가깝거나 멀지 않도록 적정 거리를 유지하면서 추종 주행할 수 있다.
위치감지부(1401)는 하나 또는 복수의 UWB센서를 포함하여 이루어질 수 있다. 예를 들어, 위치감지부(1401)가 두 개의 UWB센서를 구비한 경우, 예를 들어 이동 로봇 본체의 좌측과 우측에 각각 구비되어, 각각 신호를 수신하고, 수신된 복수의 신호를 비교하여 위치를 감지할 수 있다.
예를 들어, 이동 로봇과 단말기의 위치에 따라, 좌측의 센서와 우측의 센서에서 측정되는 거리가 상이한 경우, 이를 바탕으로 이동 로봇과 단말기의 상대적 위치, 이동 로봇의 방향을 판단할 수 있다.
한편, 센싱부(1400)는, 전술한 장애물감지부(1402) 및 위치감지부(1401)외에 본체의 배면에 설치되어 낭떠러지를 감지하는, 낭떠러지 감지센서, 습도나 비오는 날씨 상황을 감지할 수 있는 우중 센서(rain sensor), 근접센서, 터치 센서, RGB 센서, 배터리 게이지 센서, 가속도 센서, 지자기 센서, 중력 센서, 자이로스코프 센서, 조도 센서, 환경 센서(온도계, 방사능 감지 센서, 열 감지 센서, 가스 감지 센서 등)복수의 360 도 센서, 바닥상태 감지 센서 등의 다양한 센서를 포함할 수 있다.
또한, 센싱부(1400)는 본체의 움직임을 감지하기 위해 적어도 하나의 기울기센서(미도시)를 포함할 수 있다. 기울기센서는 본체의 전, 후, 좌, 우 방향으로 기울어지는 경우, 기울어진 방향과 각도를 산출한다. 기울기센서는 틸트센서, 가속도센서 등이 사용될 수 있고, 가속도센서의 경우 자이로식, 관성식, 실리콘반도체식 중 어느 것이나 적용 가능하다. 또한, 그외에 본체의 움직임을 감지할 수 있는 다양한 센서 또는 장치가 사용될 수 있을 것이다.
제어부(1800)는 데이터의 입출력을 제어하고, 설정에 따라 이동 로봇이 주행하도록 주행부(1300)를 제어한다. 제어부(1800)는 주행부(1300)를 제어하여 좌륜 구동모터와 우륜 구동모터의 작동을 독립적으로 제어함으로써 본체(10)가 직진 또는 회전하여 주행하도록 한다.
제어부(1800)는 센싱부(1400) 통해 수신되는 신호에 대응하여 주행방향을 결정하여 주행부를 제어한다. 또한, 제어부(1800)는 단말기와의 거리에 따라 이동 로봇이 주행 또는 정지하도록 하고, 주행속도를 가변하도록 주행부(1300)를 제어한다. 그에 따라 이동 로봇은 단말의 위치변화에 대응하는 위치를 추종하며 이동할 수 있게 된다.
또한, 제어부(1800)는 설정 모드에 따라 이동 로봇이 단말기(200)를 추종하여 이동하도록 제어할 수 있다.
또, 제어부(1800)는 단말기(200)로부터 수신되는 위치정보 또는 위치감지부(1401)를 통해 산출된 위치정보를 바탕으로 영역에 대한 가상의 경계를 설정할 수 있다. 또, 제어부(1800)는 설정되는 경계에 의해 형성되는 영역 중 어느 일 영역을 주행영역으로 설정할 수 있다. 제어부(1800)는 불연속적인 위치정보를 선 또는 곡선으로 연결하여 폐루프(closed loop) 형태로 경계를 설정하고, 내부 영역을 주행영역을 설정한다. 또, 제어부(1800)는 경계가 복수로 설정되는 경우에는 경계에 의해 형성되는 영역 중 어느 하나를 주행영역으로 설정할 수 있다.
제어부(1800)는 주행영역 및 그에 따른 경계가 설정되면, 주행영역 내에서 주행하며 설정된 경계를 벗어나지 않도록 주행부(1300)를 제어한다. 제어부(1800)는 수신되는 위치정보를 바탕으로 현재위치를 산출하고, 산출된 현재위치가 경계에 의해 설정된 주행영역 내에 위치하도록 주행부(1300)를 제어한다.
또한, 제어부(1800)는 장애물감지부(1402)에 의해 입력되는 장애물정보를 판단하여, 장애물을 회피하여 주행할 수 있다. 또한, 제어부(1800)는 장애물정보에 근거하여 필요한 경우, 기 설정된 주행영역을 수정할 수 있다.
예를 들어, 제어부(1800)는 장애물감지부로부터 입력되는 장애물 정보에 대응하여 이동방향 또는 주행경로를 변경하여 장애물을 통과하거나 또는 장애물을 회피하여 주행하도록 주행부(1300)를 제어할 수 있다.
또한, 제어부(1800)는 낭떠러지가 감지되는 경우 일정거리 이상 접근하지 않도록 설정할 수 있다. 또한, 제어부(1800)는 감지되는 장애물에 대하여, 주행정보를 단말기(200)로 전송하고 단말에 표시되도록 함으로써, 단말기(200)를 통해 입력되는 사용자의 선택에 따라 주행방향을 변경할 수 있다.
전원부(1900)는 충전가능한 배터리(또는, 배터리 모듈)(미도시)를 포함한다. 상기 배터리는 이동 로봇(100)로부터 탈착가능하게 장착될 수 있다. 센싱부(1400)를 통해, 배터리 게이지가 부족한 것으로 감지되면, 제어부(1800)는 배터리 충전을 위해 충전 스테이션의 위치로 이동하도록 주행부(1300)를 제어할 수 있다. 센싱부(1400)에 의하여 충전 스테이션의 존재가 감지되면, 배터리의 충전이 수행된다.
다음, 도 2c를 참조하여 본 발명에 따른 이동 로봇(100)과 통신하는 단말기(200)의 주요 구성을 설명하겠다.
도 2c를 참조하면, 단말기(200)는 사용자에 의해 이동가능한 이동 단말기를 포함하며, 통신부(210), 입력부(220), UWB 모듈(230), 센싱부(240), 디스플레이부(251), 메모리(260), 및 제어부(280)를 포함하여 이루어질 수 있다.
통신부(210)는 무선통신을 통해 외부의 서버 또는 이동 로봇(100)과 통신할 수 있다. 통신부(210)는 지그비, 블루투스 등의 근거리 무선통신뿐 아니라, 와이파이, 와이브로 등의 통신모듈을 포함하여 데이터를 송수신한다. 또, 통신부(210)는 초광대역 신호를 송신하는 UWB 모듈을 포함할 수도 있다.
입력부(220)는 적어도 하나의 버튼, 스위치, 터치패드 등의 입력수단을 포함할 수 있다.
디스플레이부(251)는 터치센서를 포함하여, 터치 입력을 통하여 제어명령을 입력받도록 이루어질 수 있다. 또, 디스플레이부(251)는 이동 로봇(100)을 제어하기 위한 제어화면, 설정된 경계와 이동 로봇(100)의 위치가 표시된 맵 화면을 출력하도록 이루어질 수 있다.
메모리(260)에는 이동 로봇(100)의 주행과 관련된 데이터들이 저장될 수 있다. 또한, 메모리(260)에는 이동 로봇(100)와 단말기(200)의 위치정보가 저장되고, 이동 로봇의 주행영역 및 그 경계에 대한 정보가 저장될 수 있다. 예를 들어, 메모리(1600)는, 마이크로 프로세서(micro processor)에 의해 읽힐 수 있는 데이터를 저장하는 것으로, HDD(Hard Disk Drive), SSD(SolidState Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장 장치 중 어느 하나일 수 있다.
센싱부(240)는 위치정보를 송수신하기 위한 위치감지부(미도시)와, 단말기(200)의 공간 움직임의 변화를 센싱하기 위한 자이로 센서 및 가속도 센서, 지자기 센서, IMU(Inertia Measurement Unit) 센서 중 적어도 일부를 포함할 수 있다.
위치감지부는 위치정보를 송수신하기 위한 복수의 센서모듈을 포함한다. 예를 들어, GPS모듈, UWB(Ultra Wide Band) 모듈, 지자기 센서, 가속도 센서, 자이로 센서, 등을 포함하여, 단말기(200)의 현재 위치뿐만 아니라, 기울기 등의 자세 변화를 통해 가리키는 지점의 좌표를 파악할 수 있다.
위치감지부에 포함된 또는 별도의 UWB 모듈(230)는 이동 로봇(100) 및/또는 위치정보송출기(50)와 초광대역 신호를 주고받을 수 있다. 그리하여, 단말기(200)의 위치뿐만 아니라, 단말기(200) 기준의 이동 로봇(100)의 위치, 단말기(200) 기준의 위치정보송출기(50)의 위치, 이동 로봇(100) 기준의 특정 위치정보송출기(50) 등을 파악할 수 있다.
UWB 모듈(230)은 이동 로봇(100)에 구비된 UWB 모듈을 통해 초광대역 신호을 송신하거나 수신할 수 있다. 단말기(200)는 이동 로봇(100)과 통신하여, 이동 로봇(100)의 주행 또는 제초 동작을 제어할 수 있다는 점에서, '원격제어장치'의 역할을 수행할 수 있다.
단말기(200)는, UWB 모듈(210)외에, 자이로 센서, 거리측정 센서을 더 포함할 수 있다.
자이로 센서는 단말기(200)의 움직임에 따른 3축값의 변화를 감지할 수 있다. 구체적으로, 단말기(200)가 x, y, z 축 값들 중 적어도 하나가 변화하는 움직임에 따른 각속도를 감지할 수 있다.
또한, 자이로 센서는 특정 시점에 감지된 x, y, z 축값을 기준점으로 하고, 소정 입력/소정 시간 경과 후에 기준점을 기준으로 변화한 x', y', z' 축값 감지할 수 있다. 이를 위해, 상기 자이로 센서 외에 자기 센서(미도시) 및 가속도 센서(미도시)가 단말기(200)에 추가로 구비될 수 있다.거리측정센서는 레이저 광 신호, IR 신호, 초음파 신호, 반송파 주파수, 임펄스 신호 중 적어도 하나를 방사하고, 그로부터 반사되는 신호를 근거로 단말기(200)로부터 해당 신호까지의 거리를 산출할 수 있다.
이를 위해, 상기 거리측정 센서는, 예를 들어 ToF(Time of Flight) 센서를 포함할 수 있다. 예를 들어, ToF 센서의 경우, 특정 주파수로 변종된 광 신호를 방출하는 발신기와 반사된 신호를 수신 및 측정하는 수신기로 이루어지며, 단말기(200)에 설치되는 경우 신호의 영향을 받지 않도록 발신기와 수신기가 서로 이격되게 배치될 수 있다.
이하에서는, 전술한 레이저 광 신호, IR 신호, 초음파 신호, 반송파 주파수, 임펄스 신호, 초광대역 신호를 통칭하여, '신호'로 명명할 수 있다. 본 명세서에서는 장애물에 의한 영향이 거의 없는 '초광대역 신호'를 예시로 설명하였다. 따라서, 거리측정 센서는 단말기(200)로부터 신호가 방사된 지점까지의 거리를 산출하는 역할을 수행한다고 말할 수 있다. 또, 거리측정 센서는 신호를 방사하는 발신기와 반사된 신호를 수신하는 수신기를 하나 또는 복수 개 포함하여 이루어질 수 있다.
이하, 도 3은 이동 로봇에 대한 경계 설정을 위한 장치들, 예를 들어 이동 로봇(100), 단말기(200), GPS(60), 위치정보송출기(50)의 신호흐름을 설명하기 위한 개념도이다.
위치정보송출기(50)가 UWB 센서를 구비하여 신호를 송출하는 경우, 단말기(200)에 구비된 UWB 모듈을 통해 위치정보송출기(50)로부터 위치정보와 관련된 신호를 수신할 수 있다. 이때 위치정보송출기(50)의 신호방식과, 이동 로봇(100)과 단말기(200) 간의 신호방식은 동일하거나 또는 상이할 수 있다.
예를 들어, 단말기(200)가 초음파를 송출하고 이동 로봇(100)이 단말기(200)의 초음파를 수신하여 단말기(200)를 추종하도록 주행할 수 있다. 또 다른 예로, 단말기(200)에 마커를 부착하고, 이동 로봇(100)이 단말기의 주행방향을 촬영하여 단말기(200)에 부착된 마커를 인식함으로써, 이동 로봇(100)이 단말기(200)를 추종하여 주행할 수 있다.
도 3에서, 위치정보는 위치정보송출기(50) 또는 GPS(60)으로부터 수신될 수 있다. 위치정보에 대응되는 신호는 GPS신호, 초음파신호, 적외선신호, 전자기신호 또는 UWB(Ultra Wide Band)신호가 사용될 수 있다.
이 중, UWB(Ultra Wide Band) 신호는 적외선 신호 등과 다르게 장애물을 투과할 수 있고 GPS신호에 비하여 위치 오차가 훨씬 적다는 점에서 장점을 갖는다. 이에, 본 발명에서는 UWB 신호를 위주로 설명하겠으나, 다른 신호나 GPS 신호가 명확하게 제외한다는 의미는 아니다.
이동 로봇은, 주행영역과 경계를 설정하기 위해 위치정보를 수집해야한다. 이동 로봇(100)은, 영역의 어느 한 지점을 기준위치로 설정하여 위치정보를 수집할 수 있다. 이때, 초기 시작지점, 충전 스테이션의 위치, 위치정보송출기(50) 중 어느 하나의 위치를 기준위치로 설정할 수 있다. 이동 로봇(100)은 설정된 기준위치를 바탕으로 영역에 대한 좌표 및 지도를 생성하여 저장할 수 있다. 이동 로봇(100)은 지도가 생성되면, 저장된 지도를 바탕으로 이동할 수 있다.
또한, 이동 로봇(100)은 매 동작 시, 새로운 기준위치를 설정하여, 새로 설정된 기준위치를 바탕으로 영역 내에서의 위치를 판단할 수 있다.
또한, 이동 로봇(100)은, 소정 경로로 이동하는 단말기(200)로부터 수집된 위치정보를 수신할 수 있다. 단말기(200)는 임의로 이동할 수 있고, 이동시키는 주체에 따라 경로가 변경될 수 있으나, 이동 로봇의 주행영역을 설정하기 위한 경우, 주행영역의 외곽을 따라 이동하는 것이 바람직할 것이다.
단말기(200)는 기준위치를 바탕으로 영역 내에서의 위치를 좌표로 산출한다. 또한, 이동 로봇(100)은 단말기(200)를 추종하여 이동하는 중에, 위치정보를 수집할 수 있다.
단말기(200) 또는 이동 로봇(100)이 단독으로 소정 경로를 따라 이동하는 경우, 단말기(200) 또는 이동 로봇(100)은 GPS(60) 또는 위치정보송출기(50)로부터 전송된 신호에 근거하여 현재위치를 산출할 수 있다.
이동 로봇(100)과 단말기(200)는 소정의 영역에 대하여 동일한 기준위치를 설정하여 이동할 수 있다. 기준위치가 매 동작 시 변경되는 경우, 단말기(200)를 기준으로 설정된 기준위치와 그로부터 수집된 위치정보를 이동 로봇(100)으로 전송할 수 있다. 그러면, 이동 로봇(100)은 수신된 위치정보에 근거하여 경계를 설정할 수 있다.
한편, 이동 로봇(100)과 단말기(200)는 초광대역 무선기술(Ultra-wide Band, UWB)을 사용하여 서로의 상대 위치를 파악할 수 있다. 이를 위해, UWB 모듈 중 어느 하나는 UWB 앵커가 되고 다른 하나는 UWB 태그가 될 수 있다.
예를 들어, 단말기(200)의 UWB 모듈(230)은 초광대역 신호를 방출하는 'UWB 태그(tag)'로 동작하고, 이동 로봇(100)의 UWB 모듈은 초광대역 신호를 수신하는 'UWB 앵커(anchor)'일 수 있다.
그러나, 이에 한정되는 것은 아님을 미리 밝혀둔다. 예를 들어, 단말기(200)의 UWB 모듈(230)이 UWB 앵커로 동작하고 이동 로봇(100)의 UWB 모듈이 UWB 태그로 동작할 수 있다. 또한, UWB 모듈은 하나의 UWB 앵커와 복수의 UWB 태그를 포함하여 이루어질 수도 있다.
UWB 통신 기술을 통해 이동 로봇(100)와 단말기(200)가 서로의 상대 위치를 파악하는 방법은 다음과 같다. 먼저, 예를 들어 ToF(Time of Flight) 기술과 같은 거리측정 기술을 사용하여 이동 로봇(100)과 단말기(200)의 이격거리를 산출한다.
구체적으로, 단말기(200)에서 방사되는 초광대역 신호인, 제1 임펄스 신호가 이동 로봇(100)로 송출된다. 이를 위해, 단말기(200)의 UWB 모듈은 발신용인 'UWB 태그'로 이동 로봇(100)의 UWB 모듈은 수신용인 'UWB 앵커'로 동작할 수 있다.
여기서, 초광대역 신호(또는, 임펄스 신호)는, 특정 공간 내에서는 장애물이 존재하더라도 원활하게 송수신이 가능하고, 여기에서 상기 특정 공간은 반경이 수십 미터(m)일 수 있다.
제1 임펄스 신호는 이동 로봇(100)의 UWB 앵커를 통해 수신될 수 있다. 제1 임펄스 신호를 수신한 이동 로봇(100)는 단말기(200)로 응답신호를 송출한다. 그러면, 단말기(200)는 응답신호에 대한 초광대역 신호인, 제2 임펄스 신호를 이동 로봇(100)로 송출할 수 있다. 여서, 상기 제2 임펄스 신호에는 상기 응답신호를 수신한 시각과 그에 따라 제2 임펄스 신호를 발신한 시각을 기초로 산출된 지연시간 정보가 포함될 수 있다.
이동 로봇(100)의 제어부는 응답신호를 송출한 시간과 상기 제2 임펄스 신호가 이동 로봇(100)의 UWB 앵커에 도착한 시간과, 상기 제2 임펄스 신호에 포함된 지연시간 정보를 기초로, 다음과 같이 이동 로봇(100)와 단말기(200) 사이의 거리(Distance)를 산출할 수 있다.
Figure PCTKR2020001479-appb-img-000001
여기에서, t2는 제2 임펄스 신호의 도착시간이고, t1은 응답신호의 송출시간이며, treply는 지연시간이며, c는 빛의 속도를 나타내는 상수값이다.
이와 같이 이동 로봇(100)와 단말기(200)에 구비된, UWB 태그와 UWB 앵커 사이에서 송수신되는 신호의 시간차를 측정하여, 이동 로봇(100)과 단말기(200) 사이의 거리를 파악할 수 있다.
또, 이와 동일 또는 유사한 방식으로, 이동 로봇(100)과 위치정보송출기(50)의 이격거리, 단말기(200)와 위치정보송출기(50) 간의 이격거리도 파악할 수 있을 것이다.
이하에서는, 도 4를 참조하여, 와이어의 매설 없이 이동 로봇(100)에 대한 경계를 설정하는 것을 설명하겠다.
와이어의 매설 없이 위치정보송출기(50)와 단말기(200), 이동 로봇(100)을 이용하여 또는 위치정보송출기(50)와 이동 로봇(100)을 이용하여 주행영역의 기준이 되는 가상의 경계를 설정할 수 있다. 이러한 경계를 기준으로 구분된 주행영역을 '와이어레스(wireless) 영역'으로 명명될 수 있다.
'와이어레스(wireless) 영역'은 하나 일수도 있고 복수 개일 수도 있다. 또, 하나의 와이어레스(wireless) 영역은 이동 로봇(100)에 의하여 수행되는 잔디깎기 기능이 보다 효율적으로 수행될 수 있도록, 해당 영역 내에 추가로 설정된 복수의 스팟 영역(spot area)을 포함할 수 있다.
이동 로봇(100)은 실외 영역에서 설정된 주행영역을 이동하며 잔디깎기를 수행할 수 있도록, 경계를 설정해주어야 한다. 그리고, 설정된 경계의 내측에 이동 로봇(100)이 주행할 주행영역, 즉 와이어레스(wireless) 영역이 지정된다.
도 4를 참조하면, 실외에는 도시된 하우스 외에, 다양한 장애물들(10a, 10b, 10c)이 존재할 수 있다. 여기서, 장애물들(10a, 10b, 10c)은 예컨대, 실외에 존재하는 건축물, 바위, 나무, 수영장, 연못, 조각상, 정원 등의 고정 장애물과 움직이는 이동 장애물을 모두 포함할 수 있다. 또, 장애물들(10a, 10b, 10c)의 크기 및 형상도 매우 다양할 수 있다.
장애물이 설정된 경계에 근접하여 존재하는 경우, 처음부터 경계가 이러한 다양한 장애물들(10a, 10b, 10c)을 회피하도록 설정되어야할 것이다.
한편, 도 4와 같이 설정된 경계(410)를 기준으로 주행영역 내측에 장애물들(10a, 10b, 10c)이 존재하는 경우에는, 장애물들(10a, 10b, 10c) 각각에 대한 추가 경계를 설정하거나 또는 기존의 경계(410)를 변경해주어야 할 것이다.
또한, 본 발명에서는, 와이어의 매설 없이 경계를 설정하기 위해, 소정 영역에 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)가 미리 설치될 수 있다.
복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는 신호를 송출할 수 있다. 구체적으로, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는 서로에게 신호를 송출하거나, 이동 로봇(100) 및/또는 단말기(200)에 신호를 송출할 수 있다.
여기서, 상기 신호는 예를 들어, UWB 신호, 초음파 신호, 적외선 신호, 블루투스 신호, 지그비 신호 등을 모두 포함할 수 있으나, 이하에서는 UWB 신호로 설명하겠다.
복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는 서로 이격되게 적어도 3개 이상 설치될 수 있다. 또한, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는, UWB 센서 미포함시 신호간섭을 최소화하기 위해, 기준높이 이상의 고지점에 설치될 수 있다.
복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는 설정될 경계에 인접한 위치에 설치되는 것이 바람직하다. 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는 설정될 경계의 바깥쪽에 설치될 수도 있고 안쪽에 설치될 수도 있다.
예를 들어, 도 4에서는 경계(R)의 안쪽에 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)가 설치된 것으로 도시되었으나, 이에 한정되지 않는다. 예를 들어, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는 경계(R) 바깥쪽에 설치될 수도 있고, 일부는 경계(R) 안쪽에 나머지는 경계(R) 바깥쪽에 설치되는 것도 가능하다.
위치정보송출기(50M, 51, 52, 53, 54, 55)가 UWB 센서를 포함한 경우, 소정 영역에 위치한 이동 로봇(100) 및/또는 단말기(200)와 초광대역신호를 주고받음으로써, 이동 로봇(100) 및/또는 단말기(200)의 위치정보를 산출할 수 있다.
예를 들어, 이동 로봇(100)은 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)의 신호의 양/세기를 비교하여, 각 위치정보송출기를 기준으로 이격된 거리와 방향을 산출함으로써, 이동 로봇(100)의 위치를 산출할 수 있다. 단말기(200)의 위치정보를 산출하는 방법도 이와 유사하게 수행될 수 있다.
일 예에서, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55) 중 적어도 하나, 예를 들어 위치정보송출기(50M)는 UWB 태그로부터 수신된 신호의 방향인, 각도 을 인지할 수 있는 AoA(Angle Of Arrival) 측위가 가능한 UWB 앵커일 수 있다. 이와 같이, 수신된 신호의 각도가 인지될 경우, UWB 태그에 대하여 보다 정교한 위치 인식이 가능해진다.
또한, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55) 중 적어도 하나는 경계 설정을 위한 기준 위치정보송출기(50M)가 될 수 있다. 기준 위치정보송출기(50M)는 예를 들어 도 4에 도시된 바와 같이 충전 스테이션(70)이 위치한 곳에 설치될 수 있다.
기준 위치정보송출기(50M)를 기준으로 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)의 좌표값들이 설정될 수 있다. 구체적으로, 기준 위치정보송출기(50M)와 나머지 위치정보송출기(51, 52, 53, 54, 55) 간에 서로 신호를 주고받아, 기준 위치정보송출기(50M)를 영점으로 하는 다른 위치정보송출기들의 위치에 대응되는 x, y 좌표값들이 산출될 수 있다. 그에 따라, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)에 대한 위치정보가 설정될 수 있다.
이동 로봇(100)이 기준 위치정보송출기(50M)가 위치한 충전 스테이션(70)을 작동의 시작지점으로 하는 경우, 매 동작 시, 이동 로봇(100)의 위치를 파악하는 것이 보다 용이해질 수 있다. 또, 이동 로봇(100)의 주행 중 배터리 게이지가 부족한 경우, 충전 스테이션(70)이 위치한 기준 위치정보송출기(50M)으로 이동하여, 배터리를 충전할 수 있다.
이와 같이 충전 스테이션(70)이 위치한 곳에 기준 위치정보송출기(50M)이 설치된 경우, 충전 스테이션(70)의 위치를 별도로 설정해줄 필요가 없다.
한편, 이동 로봇(100)이 주행에 따라 기준 위치정보송출기(50M)로부터 상당히 멀어진 경우, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)로부터 송출되는 신호의 양/세기를 기준으로, 이동 로봇의 현재 위치에 가까운 위치정보송출기를 기준 위치정보송출기로 변경할 수 있다.
한편, 충전 스테이션(70)이 도 4와 다르게, 경계(R)를 벗어나서 위치한 경우, 즉 충전 스테이션(70)의 안쪽으로 경계가 설정된 경우, 이동 로봇(100)은 배터리 충전을 위해 경계를 벗어나서 충전 스테이션으로 복귀할 수 있다.
다만, 충전 스테이션(70)이 경계를 벗어나서 위치한 경우, 충전 스테이션(70)과 경계 내에 설정된 주행영역 사이에 이동영역(미도시)을 추가 설정해줌으로써, 이동 로봇(100)이 경계 밖에 위치한 충전 스테이션(70)으로 복귀할 수 있게 유도할 수 있다.
이하, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)와 단말기(200)를 이용하여 이동 로봇(100)을 위한 경계 및 경계를 기준으로 주행영역을 설정하는 방법을 보다 구체적으로 설명하겠다.
먼저, 단말기(200)가 영역 내에 설치된 위치정보송출기(55)로부터 잔디가 심어진 영역의 외곽을 따라 제1경로로 이동한다. 이때, 단말기(200)는 사람에 의해 이동될 수도 있으나, 드론 등의 또 다른 운송수단에 의해 이동될 수도 있을 것이다.
단말기(200)는 위치정보송출기 또는 GPS 를 통해 자신의 현재 위치를 파악할 수 있다. 그리고, 단말기(200)가 이동함에 따라 복수의 위치정보송출기로부터 송출된 신호에 근거하여, 각 위치정보송출기까지의 거리와 방향을 산출할 수 있다. 그에 따라, 단말기(200)의 위치변화에 대응되는 복수의 지점들의 좌표를 인식할 수 있고, 이를 위치정보로 저장할 수 있다.
복수의 위치정보송출기(50M, 51, 52, 53, 54, 55) 각각은 신호를 구분하기 위한 고유정보가 포함된 UWB를 송출할 수 있다.
단말기(200)는 제1경로로 이동하는 중, 제1위치정보송출기(51)가 송출하는 제1신호와 제2위치정보송출기(52)가 송출하는 제2신호, 제3위치정보송출기(53)가 송출하는 제3신호와, 제4위치정보송출기(54)가 송출하는 제4신호를 구분하여 분석 및 처리할 수 있다.
제1경로에 대응되는 이동이 완료되면, 예를 들어 제1경로가 폐곡선 형상을 이루거나 지정된 종료지점에 도달한 경우, 단말기(200)는 제1경로를 이동하며 저장해 둔 위치정보를 이동 로봇(100)에 전송해준다.
그러면, 이동 로봇(100)은, 단말기(200)가 제1경로를 따라 이동하는 동안 저장된 위치정보를 순차적으로 연결한 선 또는 그 외측선을 영역(R) 내측의 경계(410)로 설정할 수 있다.
이와 같이 설정된 경계(410)를 기준으로 내측영역을 주행영역 또는 와이어레스 영역으로 설정할 수 있다.
이동 로봇(100)은 설정된 주행영역 또는 와이어레스 영역을 테스트 주행할 수 있다. 이때, 이동 로봇(100)에 의해 경계 및/또는 주행영역의 일부가 수정될 수도 있다. 예를 들어, 새로운 장애물이 감지된 경우, 기존의 장애물이 제거된 경우, 또는 바닥이 고르지 못하거나 움푹 패인 지점이 감지된 경우, 이동 로봇(100)의 주행 성능으로 인해 주행불지점으로 감지된 경우, 수집된 상황 정보를 고려하여, 이동 로봇(100)에 대한 경계 및/또는 주행영역의 일부를 수정할 수 있다.
한편, 비록 도시되지는 않았지만, 다른 실시 예에서는, 단말기(200)가 제1경로를 이동하는 동안, 이동 로봇(100)이 소정의 이격거리를 두고 단말기(200)의 위치를 추종함으로써, 추가적인 테스트 주행 없이 이동 로봇(100)에 대한 경계 및/또는 주행영역을 설정할 수 있다.
본 발명에서 위치정보송출기는 UWB 신호를 송출하는 'UWB 앵커'로 동작한다. 그리고, 이동 로봇(100)에 구비된 UWB 모듈은 UWB 신호를 수신하는 'UWB 태그'로 동작한다.
또한, 이와 같이 가상의 경계가 설정된 후에도, 이동 로봇(100)의 실시간 위치를 계산하기 위해, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55) 간에 그리고/또는 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)와 이동 로봇(100) 간의 상호 통신을 위해 주기적으로 신호, 즉 UWB 신호를 주고 받는다.
즉, UWB 앵커와 UWB앵커 간에, 그리고 UWB 앵커와 UWB 태그간에 주기적이고 지속적으로 UWB(Ultra Wideband) 통신이 수행된다.
위치가 고정된 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)의 경우, 실외의 특성상 발생되는 노이즈를 제외하면, 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)은 동일한 통신 경로를 사용하며, 어느 하나에서 다른 하나로 송출되는 신호의 세기나 방향이 동일하게 유지될 것이다.
이에, 본 발명에서는 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55) 및 이동 로봇(100) 간에 주고받는 신호를 이용하여, 경계 내에 이동체가 진입한 것을 감지하고 그 위치를 모니터링하는 방법을 구현하였다.
본 명세서에서 사용된, '이동체'는 스스로 이동이 가능한 사람, 동물, 사물 또는 운송수단에 의해 이동되는 다양한 객체들을 모두 포함한다. 또한, 본 명세서에서, '이동체'는 경계 내에 진입할 정당한 권한이 없는 경우, 예를 들어 침입자, 와 경계 내에 진입할 정당한 권한이 있거나 그러한 자로부터 허락을 받은 경우도 모두 적용된다.
또한, 본 명세서에서 사용된, '이동체의 진입'은 적어도 일정 시간 동안 또는 일정 횟수 이상 이동체의 존재가 감지된 경우를 의미한다. 따라서, 이동체가 매우 빠르게 통과한 경우는 제외될 수 있다.
또한, 본 명세서에서 사용된, '경계 내의 이동체의 진입'은 상기 이동체가 상기 경계 내에 들어오고, 적어도 복수의 위치정보송출기 간의 또는 위치정보송출기와 이동 로봇 간의 통신 경로상에 위치하거나 또는 그 통신 경로를 지나가는 것을 의미한다.
또한, 본 명세서에서는 도 4를 참조하여 이미 설명한 바와 같이, 경계 주변에 설치된 복수의 위치정보송출기 상호간에 그리고 복수의 위치정보송출기와 이동 로봇 간에 통신을 위해, 상호 신호를 주고받을 수 있음을 전제로 설명한다.
구체적으로, 본 발명에 따른 이동 로봇(100)의 제어부는, 영역 내에 설치된 위치정보송출기의 신호, 예를 들어 UWB 신호에 기반하여 산출된 위치정보에 근거하여 상기 영역에 대한 가상의 경계를 설정할 수 있다.
이와 같이 가상의 경계가 설정되면, 이동 로봇(100)의 제어부는 위치정보송출기 간에 상호 송출되는 UWB신호와 이동 로봇(100)의 통신부 및 위치정보송출기 간에 송출되는 UWB신호로부터 각각 측위 관련 정보(location determination-related data)를 산출할 수 있다.
여기서, 상기 측위(location determination) 관련 정보는, 위치정보송출기 간에 어느 하나에서 다른 하나로 송출되는 UWB신호와 그에 대한 응답신호, 그리고 위치정보송출기로부터 이동 로봇(100)으로 송출되는 UWB신호와 그에 대한 응답신호에 근거하여 산출되는, UWB 앵커 및 태그의 위치 측정과 관련된 데이터를 모두 포함한다.
구체적으로, 상기 측위(location determination) 관련 정보는 송출되는 신호의 신호세기 정보, 신호방향 및 각도 정보뿐만 아니라 송출신호와 응답신호에 기반하여 산출되는 거리 정보, 지연시간 정보(또는, 시간차 정보)에 관한 데이터를 모두 포함할 수 있다.
이동 로봇(100)의 제어부는, 이와 같이 산출된 측위 관련 정보의 변화를 모니터링하고, 그 변화량이 기준범위를 벗어나는 것에 응답하여 경계 내에 이동체의 진입을 감지할 수 있다.
구체적으로, 복수의 위치정보송출기 간에 서로 신호를 송출하는 동안, 복수의 위치정보송출기 사이에 방해물, 즉 이동체가 존재할 경우, 송출되는 신호가 이동체를 투과(또는, 일부 반사)하여 다른 위치정보송출기로 전달되므로, 신호의 교란이 발생하게 된다.
이에, 복수의 위치정보송출기 간에 송출되는 신호의 신호세기, 신호방향 및 각도에 관한 데이터와, 송출되는 신호에 대한 응답신호에 기반하여 산출된 거리정보, 시간차 정보 중 일부가 기준범위를 초과하는 정도로 변화했다면, 복수의 위치정보송출기 사이에 이동체가 존재하거나 통과한 것으로 볼 수 있다.
여기서, 이동체의 존재로 보기 위해 기준범위를 초과하는 변화를 요구하는 이유는, 실외 측위의 특성상 발생되는 노이즈로 인한 측위 관련 정보의 변화는 제외하기 위함이다.
따라서, 상기 기준범위는 일정 크기 이상의 이동체가 복수의 위치정보송출기의 통신 경로 사이에 존재할 때 발생되는 신호 교란의 최소임계범위를 의미한다고 말할 수 있다.
이와 같이 측위 관련 정보의 변화량이 기준범위를 벗어난 경우, 복수의 위치정보송출기의 통신 경로 사이에 방해물이 놓인 것으로 판단하여, 경계 내에 이동체가 진입한 것으로 감지할 수 있다. 그에 따라, 이동 로봇(100)의 제어부는, 기설정된 동작으로 이동체에 대한 모니터링 동작을 수행한다.
이때, 상기 모니터링 동작은 이동 로봇의 현재 위치, 이동 로봇의 동작 상태, 감지된 이동체의 위치에 따라 달라질 수 있다. 이에 대해서는 이하에서 보다 구체적으로 설명하겠다.
한편, 이동체의 진입 여부를 감지하는 동안, 상기 이동 로봇(100)은 복수의 위치정보송출기와 통신 중인 것으로 충분하고, 작동 중일 필요는 없다.
예를 들어, 이동 로봇(100)이 충전 스테이션에서 배터리를 충전하는 동안에도, 주변의 위치정보송출기들로부터 수신되는 신호로부터 측위 관련 정보의 변화량을 모니터링함으로써, 경계 내의 이동체의 진입을 감지할 수 있다.
이하, 도 5a 내지 도 5c를 참조하여 본 발명에 따른 이동 로봇(100)이 가상의 경계 내에 진입한 이동체를 감지하여 모니터링 동작을 수행하는 방법을 구체적으로 설명하겠다.
먼저, 도 5a를 참조하면, 도 4를 참조하여 설명한 바와 같이 영역 내에 경계(410)가 일단 설정된 후에도, 영역 내에 설치된 복수의 위치정보송출기(50M, 51, 52, 53, 54, 55)는 인접한 다른 위치정보송출기와 UWB 통신을 수행할 수 있다.
예를 들어, 제1위치정보송출기(51)와 제2위치정보송출기(52) 간에, 제2위치정보송출기(52)와 제3위치정보송출기(53) 간에, 제3위치정보송출기(53)와 제4위치정보송출기(54), 제4위치정보송출기(54)와 제5위치정보송출기(55) 간에, 그리고 제5위치정보송출기(55)와 기준위치정보송출기(50M) 간에 각각의 통신 경로(501, 502, 503, 504, 505)로 UWB 신호(이하, '제1신호')를 서로 송출할 수 있다.
이와 같이 제1신호를 통해 측정된 신호세기, 신호방향, 거리 데이터, 각도 데이터 등의 정보가 주기적으로 이동 로봇(100)에 전송된다. 그에 따라, 이동 로봇(100)은 복수의 위치정보송출기 간의 거리 정보와 각도 정보 등의 측위 관련 정보가 지속적으로 획득된다.
이때, 제4위치정보송출기(54)와 제5위치정보송출기(55) 사이에 제3자(30)가 침입한 경우, 제4위치정보송출기(54)와 제5위치정보송출기(55) 간에 송출되는 제1신호와 응답신호에 교란이 발생된다.
그에 따라, 제4위치정보송출기(54)와 제5위치정보송출기(55) 간에 송출되는 UWB 신호와 응답신호에 대응되는 신호세기, 신호방향, 거리 데이터, 각도 데이터 등이 변경된다. 이는, 측위 관련 정보에 대한 오차로 인식될 수 있다.
한편, 위치정보송출기로부터 송출되는 신호에는, 위치정보송출기에 대한 식별정보가 포함되므로, 이동 로봇(100)은 신호 교란이 제4위치정보송출기(54)와 제5위치정보송출기(55) 간에 송출된 제1신호로 기인한 것을 인식할 수 있다.
구체적으로, 도 5b를 참조하면, 제4위치정보송출기(54)로부터 제5위치정보송출기(55)로 송출된 제1신호가, 제3자(30)의 신체 일부를 만나 일부는 반사되고 일부는 투과되거나 또는 전부투과하되 회절되어 제5위치정보송출기(55)로 전달된다. 즉, 비가시거리(non-line of sight, NLOS) 통신 환경으로 전환된다.
이때, 제3자(30)가 동일지점에 충분히 머물고 있다면, 제4위치정보송출기(54)로부터 송출된 제1신호 및 반사신호와 제5위치정보송출기(55)로부터 송출된 제1신호 및 반사신호를 기초로 제4위치정보송출기(54)로부터의 거리데이터와 제5위치정보송출기(55)로부터의 거리데이터를 산출하여, 제3자(30)의 위치를 파악할 수도 있다.
그리고, 도 5c에 도시된 바와 같이 제4위치정보송출기(54)와 제5위치정보송출기(55) 간에 송출되는 제1신호 및 응답신호가 변경된 통신 경로(504')로 전달된다. 그에 따라, 측위 관련 정보에 대한 오차가 발생된다.
이는, 그 구간이 지속될수록, 즉 제3자(30)가 머무는 시간이 경과할수록, 제4위치정보송출기(54)와 제5위치정보송출기(55) 간에 송출되는 신호에 기반한 측위 관련 정보에 포함된 데이터 오차도 더욱 커지게 된다.
이후, 제3자(30)가 완전히 경계(410) 내부로 들어가면, 다시 제4위치정보송출기(54)와 제5위치정보송출기(55) 간의 통신 경로가 이전 상태로 복귀된다. 즉, 가시거리(line of sight, LOS) 통신 환경으로 전환된다.
그리고, 제4위치정보송출기(54)와 제5위치정보송출기(55) 간에 송출된 제1신호에 기반한 측위 관련 정보에 포함된 데이터 오차도 다시 제거된다.
이동 로봇(100)의 제어부는, 이와 같이, (제1시점) 측위 관련 정보 수신 -> (제2시점) 측위 관련 정보의 오차 발생 -> (제3시점) 다시 측위 관련 정보 수신의 과정을 거친 위치정보송출기(54, 55)을 인식할 수 있다.
그에 따라, 제4위치정보송출기(54)와 제5위치정보송출기(55) 사이에 이동체가 진입한 것으로 판단하여, 기설정된 모니터링 동작을 수행할 수 있다.
일 예로, 도 5c에 도시된 바와 같이, 이동 로봇(100)의 전방이 제4위치정보송출기(54)와 제5위치정보송출기(55)가 위치한 지점을 향하도록 회전 및 이동시킬 수 있다. 나아가, 이동 로봇(100)에 카메라가 구비된 경우, 카메라를 활성화하여 제4위치정보송출기(54)와 제5위치정보송출기(55) 주변의 영상 정보를 획득할 수도 있다.
이와 같이, 본 발명에서는 추가적인 장비 없이, 실외에서 이동 로봇(100)에 대한 경계를 설정하기 위해 설치한 위치정보송출기와 이동 로봇(100)을 이용하여 경계 내로 침입하는 이동체를 감지할 수 있다. 그에 따라, 추가적인 장비나 복잡한 설계 없이 외부 침입을 감시할 수 있는 홈 가드(home guard) 기능을 넓은 실외에서도 제공할 수 있다.
이하, 도 6을 참조하여, 넓은 실외 영역에 홈 가드(home guard) 기능을 구현하기 위한 이동 로봇이 제어방법을 보다 구체적으로 살펴보겠다.
도 6을 참조하면, 먼저, 본 발명에 따른 이동 로봇(100)이 영역 내에 복수로 설치되어 신호를 송출하는 위치정보송출기와 통신을 수행한다(S10).
예를 들어, 상기 이동 로봇(100)과 위치정보송출기는 UWB(Ultra-wide-band) 통신을 수행할 수 있다. 이러한 경우, 위치정보송출기는 UWB 앵커로 동작하고, 이동 로봇(100)은 UWB 태그로 동작할 수 있다.
한편, 일 실시 예에서, 상기 이동 로봇(100)은 위치정보송출기의 신호, 예를 들어 UWB 신호에 기반하여 산출된 위치정보에 근거하여 영역에 대한 가상의 경계를 설정할 수 있다.
와이어의 매설없이 위치정보송출기를 이용하여 경계를 설정하는 방법은 도 4를 참조하여 자세히 설명하였으므로, 여기서는 자세한 설명을 생략하겠다.
위치정보송출기 간에 그리고 위치정보송출기와 이동 로봇(100) 간에는 주기적으로 통신이 수행된다.
예를 들어, 위치정보송출기 간에 송수신되는 UWB신호는 제1통신경로를 사용하고, 위치정보송출기와 이동 로봇(100) 간에 송수신되는 UWB신호는 제2통신경로를 사용할 수 있다.
제1통신경로를 통해 송출되는 UWB신호에 기반하여, 이동 로봇이 상기 영역을 벗어나지 않기 위한 측위 관련 정보가 산출된다. 또, 제2통신경로를 통해 송출되는 UWB신호에 기반하여, 이동 로봇의 현재 위치를 산출하기 위한 측위 관련 정보가 산출된다.
제1통신경로를 통해 송수신되는 UWB신호에 근거하여 위치정보송출기 간의 거리정보와 각도정보가 획득된다.
또, 제2통신경로를 통해 송수신되는 UWB신호에 근거하여, 이동 로봇(100)과 위치정보송출기 간의 거리정보(distance data)와 각도정보(angle data)가 실시간으로 획득된다. 그에 따라, 이동 로봇(100)이 경계 내의 주행영역을 이동하면서, 고정된 위치정보송출기로부터 UWB신호에 기반한 거리정보와 각도정보를 수신하여, 자신의 위치를 정확하게 인식할 수 있다.
이와 같이, 이동 로봇(100)의 제어부는, 위치정보송출기 간에 송출되는 제1신호 및 이동 로봇(100) 본체, 보다 정확하게는 UWB 모듈과 위치정보송출기 간에 송출되는 제2신호 중 적어도 하나에 근거하여 측위 관련 정보를 산출할 수 있다(S20).
이를 위해, 이동 로봇(100)은 복수의 위치정보송출기로부터 초당 약 6회 이상의 데이터를 수신할 수 있고, 수신된 데이터로부터 신호세기, 신호방향, 거리데이터, 각도데이터 등의 측위 관련 정보(location determination-related data)를 산출할 수 있다.
계속해서, 이동 로봇(100)의 제어부는, 산출된 측위 관련 정보(location determination-related data)의 변화량을 모니터링하여, 그 변화량이 기준범위를 초과하는 경우, 영역 내에 이동체가 진입한 것으로 감지한다(S30).
여기에서, 상기 기준범위는 일정 크기 이상의 이동체가 복수의 위치정보송출기의 통신 경로 사이에 존재할 때 발생되는 신호 교란의 최소임계범위를 의미한다.
따라서, 측위 관련 정보의 변화량이 상기 기준범위 이내이면, 이동 로봇(100)의 제어부는, 이를 노이즈에 의한 영향으로 보고 이동체의 진입이 아닌 것으로 결정한다.
일 실시 예에서, 이동 로봇(100)의 제어부는 영역 내의 이동체의 진입 여부를 결정하기 위해, NLOS/ LOS 정보를 추가로 사용할 수 있다.
여기서, 상기 NLOS/ LOS 정보는 송수신되는UWB 신호의 속성이 비가시거리(non-line of sight, NLOS) 신호인지 또는 가시거리(line of sight, LOS) 신호인지에 관한 정보를 의미한다. 또는, 상기 NLOS/ LOS 정보는 송수신되는UWB 신호가 비가시거리(non-line of sight, NLOS) 채널 환경인지 또는 가시거리(line of sight, LOS) 채널 환경인지에 관한 정보를 의미한다.
LOS 신호는 가리거리에서 송수신점에 직접 도달하는 직진성 전파를 의미한다. NLOS 신호는, 비가시거리 즉 장애물 등에 의해 가려져서 회절, 반사 등에 의해 전파되는 비직진성 전파를 의미한다.
예를 들어, 복수의 위치정보송출기 사이에 이동체가 존재하는 경우, 제1신호의 통신 환경이 또는 신호 속성이 LOS 에서 NLOS 로 전환될 수 있다.
이에, 이동 로봇(100)의 제어부는, 송수신되는UWB 신호에 기반하여 산출된 측위 관련 정보의 변화량이 상기 기준범위를 초과하고, 임의의 두 위치정보송출기 간에 송출되는 신호, 즉 UWB 신호의 속성이 비가시거리(non-line of sight, NLOS) 신호 및 가시거리(line of sight, LOS) 신호 중 어느 하나에서 다른 하나로 변경된 것에 응답하여, 해당 위치정보송출기의 통신 경로상에 이동체가 진입한 것으로 결정할 수 있다.
여기에서, 상기 UWB 신호의 속성이 비가시거리(non-line of sight, NLOS) 신호인지 상기 가시거리(line of sight, LOS) 신호인지는 상기 UWB 신호에 대한 채널임펄스응답을 획득하여 결정될 수 있다.
채널임펄스응답(Channel Impulse Response, CIR)은 신호, 예를 들어 UWB 신호의 다중 경로 또는 경로 변경에 의한 시간지연(및 신호감쇠, 신호간섭)을 포함하는 시간영역의 응답신호를 의미한다. 채널임펄스응답의 측정은 비전 정보 또는 역 이산 푸리에 변환(inverse discrete Fourier transform, IDFT) 등의 알려진 방법을 사용하여 측정될 수 있다. 본 발명에서는 통신 환경의 변화 여부만 알면 충분하므로, 채널임펄스응답을 측정하는 자세한 설명은 생략하겠다.
이와 같이 경계 내에 이동체의 진입이 감지된 것에 응답하여, 이동 로봇(100)의 제어부는 그 감지에 대응되는 동작을 수행할 수 있다(S40).
일 실시 예에서, 상기 이동체 진입의 감지에 대응되는 동작은 상기 이동체의 진입을 알리는 알림을 출력하는 동작일 수 있다. 여기에서, 상기 알림의 출력 형태는, 기설정된 신호, 신호음, 음성, 화면, LED 출력이거나, 또는 연동된 단말을 통한 기설정된 신호, 신호음, 음성, 화면, LED 출력을 포함할 수 있다.
일 실시 예에서, 상기 이동에 진입의 감지에 대응되는 동작은 이동체에 대한 위치를 추적하기 위한 동작을 포함할 수 있다.
또, 다른 예에서, 상기 이동체 진입의 감지에 대응되는 동작은 이동체에 대한 위치에 근거하여, 이동 로봇(100)이 주행하는 동작을 포함할 수 있다. 또, 다른 예에서, 상기 이동체 진입의 감지에 대응되는 동작은 이동체의 진입 및 현재 위치와 관련된 정보를 외부로 전송하는 동작을 포함할 수 있다.
일 실시 예에서, 이동 로봇(100)의 제어부는, 위치정보송출기 간에 송출되는 제1신호에 기반하여 산출된 측위 관련 정보의 변화량이 기준범위를 초과한 경우 영역 내에 이동체의 진입으로 감지할 수 있다.
그리고, 이 후에는 위치정보송출기와 이동 로봇 간에 송출되는 제2신호에 기반하여 산출된 측위 관련 정보의 변화량이 기준범위를 초과한 경우, 삼각측량법 등을 이용하여 이동체의 이동 및 위치를 감지할 수 있다.
한편, 측위 관련 정보의 오차가 장시간 지속되는 경우에는 이동체에 의한 영향이 아니라, 위치정보송출기의 오류/고장로 인한 것이 아닌지 확인할 필요가 있다.
이에, 이동 로봇(100)의 제어부는 측위 관련 정보의 변화량이 기준범위를 초과하는 UWB 신호의 송출시간 및 지속시간을 추가로 모니터링할 수 있다. 모리터링에 따라 상기 지속시간이 임계값을 초과하는 경우에는, 위치정보송출기 확인하기 위한 기설정된 동작을 수행할 수 있다.
한편, 본 발명에서 말하는 '이동체'는 제3자나 동물 등과 같이 위험요소가 있는 침입자뿐만 아니라, 애완동물이나 유아 등과 같이 보호받아야하는 대상체나 그리고 정당권한 있는 사용자도 포함된다. 이동체의 속성이 어디에 해당하는지에 따라 이동 로봇(100)의 모니터링 동작도 달라진다.
이하, 도 7 및 도 8은 이동 로봇이 경계 내에 진입한 이동체의 위치를 검출하는 방법의 서로 다른 실시 예를 보여주고 있다.
먼저, 도 7은 이동체로 '침입자'가 발생한 경우이다. 이러한 경우, 이동체에 대한 지속적인 모니터링이 필요하다.
예를 들어, 침입자(30)가 제4위치정보송출기(54)와 제5위치정보송출기(55) 사이를 통과하여 진입한 경우, 이동 로봇(100)은 측위 관련 정보의 변화량이 기준범위를 벗어난 신호(50')를 송출한 위치정보송출기(54 또는 55)의 위치를 감지하여, 침입자(30)의 진입 위치를 인식할 수 있다.
이를 위해, 위치정보송출기(54, 55)는 이동 로봇(100)과 통신할 때, 자신의 식별정보를 포함시켜서 신호를 전송한다. 그러면, 이동 로봇(100)은 기 저장된 위치정보송출기의 위치정보 중 수신된 식별정보에 매칭되는 위치정보송출기의 위치정보를 검출할 수 있다.
제4위치정보송출기(54)와 제5위치정보송출기(55) 간에 상호 송출된 제1신호와 응답신호의 지연시간에 기반하여, 침입자(30)와의 거리 데이터를 측정할 수 있다.
이에, 이동 로봇(100)의 제어부는, 제4위치정보송출기(54)와 제5위치정보송출기(55)의 위치정보와 그로부터 측정된 거리 데이터(및 각도 데이터)에 근거하여 침입자(30)가 진입한 제1지점(P1)의 위치를 인식할 수 있다.
이후, 침입자(30)가 제1지점(P1)에서 제2지점(P2)으로 이동하면, 위치정보송출기(50M)와 이동 로봇(100) 간에 송출되는 제2신호에 교란이 발생된다.
그에 따라, 다른 위치정보송출기(51, 52, 53, 54, 55)의 통신경로(601, 602, 603, 604, 605)와 다르게, 변경된 통신 경로(606')로 제2신호가 이동 로봇(100)에 수신된다.
이동 로봇(100)의 제어부는, 자신의 현재 위치와 위치정보송출기(50M) 간의 거리정보에 근거하여 이동체의 위치를 검출할 수 있다.
구체적으로, 이동 로봇(100)의 제어부는, 위치정보송출기(50M)에서 송출된 제2신호로부터 산출된 측위 관련 정보에 오차가 커진 것을 검출할 수 있고, 그에 따라 이동체가 통신 경로(606')상에 존재함을 인식하게 된다.
또, 이동 로봇(100)의 제어부는, 상기 오차 발생 전, 제1시점에 위치정보송출기(50M)로부터 송출된 제2신호 및 그 응답신호와 오차 발생한 제2시점에 송출된 제2신호 및 그 응답신호의 시간 차를 비교하여, 위치정보송출기(50M)로부터 이동체에 대한 거리 데이터와 각도 데이터를 획득할 수 있다.
이동 로봇(100)의 제어부는, 다른 위치정보송출기로부터 송출된 제2신호에 근거하여 자신의 현재 위치를 파악할 수 있다. 구체적으로, UWB 신호를 이용한 이동 로봇의 위치 계산은, 신호의 도달 시간의 차이를 이용한 TDoA(Time Difference of Arrival) 기술, 신호가 수신된 방향각을 이용하는AOA(Angle Of Arrival) 기술 등을 사용하여 실시간으로 산출된다.
이제, 이동 로봇(100)의 제어부는, 자신의 현재 위치로부터 위치정보송출기(50M)까지의 거리 정보와 위치정보송출기(50M)로부터 이동체까지의 거리 정보를 산출하여, 이동체가 이동한 제2지점(P2)의 위치를 인식할 수 있다.
한편, 비록 도시되지는 않았지만 정당권한 있는 사용자는 약속된 동작을 수행하여, 이동 로봇(100)이 진입을 인식할 수 있도록 구현가능하다.
예를 들어, 정당권한 있는 사용자가 등록된 단말을 소지한 경우, 현재 위치에서 가까운 위치정보송출기에 포인팅 동작을 수행하여 등록된 단말을 소지한 사용자임을 인식하도록 동작될 수 있다. 또는, 정당권한 있는 사용자가 약속된 경로나 지점을 이용하여 경계 내에 진입함으로써, 이동 로봇(100)이 침입자가 아님을 인식하게 할 수도 있다.
다음, 도 8을 참조하여 이동체가 보호받아야하는 대상체인 경우 상기 영역 내에서의 위치를 인식하는 방법을 구체적으로 설명하겠다.
이동체가 보호받아야하는 대상체인 경우, 이동체에 UWB 안테나(230)가 장착 될 수 있다. 그이고, 이동 로봇(100)에는, 장착된 UWB 안테나(230)에 대한 식별정보를 저장되어 있다. 이동 로봇(100)은 복수의 위치정보송출기는 고정된 노드로 인식하고, 상기 장착된 UWB 안테나(230)는 이동하는 노드로 인식할 수 있다.
이동 로봇(100)의 제어부는, 장착된 UWB 안테나(230) 및 위치정보송출기와 통신하여, 예를 들어 삼각측량법 등을 통해 이동체의 위치를 인식할 수 있다. 따라서, 이때는 이동체가 영역 내에 진입하였는지를 구분하여 인식할 필요가 없다.
먼저, 제1위치정보송출기(51)와 제2위치정보송출기(52) 간에 제1통신경로(501)로 송출되는 제1신호에 근거하여 위치정보송출기 간의 거리정보를 파악할 수 있다.
또, 이동 로봇(100)과 상기 위치정보송출기들 간에 서로 다른 제2통신경로(601, 602)로 송출되는 제2신호들에 근거하여 이동 로봇(100)의 현재 위치를 파악할 수 있다.
그리고, 이와 같이 파악된 위치정보송출기의 위치와 이동로봇의 위치로부터 이동체로 송출되는 UWB 신호('제3신호')에 근거하여, 이동체에 대한 거리정보를 파악함으로써, 이동체의 현재 위치를 검출할 수 있다.
또, 이동 로봇(100)의 제어부는, 검출된 이동체의 현재 위치에 기반하여 본체가 이동되도록 주행부를 제어할 수 있다.
구체적으로, 이동 로봇(100)의 제어부는 이동 로봇(100)이 이동체에 접근하지 않도록 이동 로봇(100)의 주행부를 제어할 수 있다. 예를 들어, 이동 로봇(100)의 제어부는 이동체의 현재 위치를 피하여 이동하도록 주행 경로를 변경하거나 또는 주행속도를 변경할 수 있다.
한편, 이동 로봇(100)의 제어부는 UWB 안테나(230)로부터 송출되는 제3신호를 수신하여, 이동체가 이동 로봇(100)에 가까워지도록 접근하는 것을 감지할 수 있다. 이러한 경우, 이동 로봇(100)의 제어부는, 경고 알람을 출력하고 일시적으로 주행을 중단할 수 있다.
이와 같이, 본 발명에서는 침입자에 대한 홈 가드 기능뿐만 아니라, 보호 받아야하는 대상체가 작업중인 이동 로봇(100)에 접근하는지를 감시함으로써, 안전 서비스를 제공할 수 있다.
도 9는 경계 내의 이동체의 진입 감지 후, 이동체에 대한 모니터링 동작으로 이동체의 이동 경로를 추적하는 방법을 예시를 보여준다.
본 발명에 따른 이동 로봇(100)의 제어부는, 경계 내에 존재하는 이동체의 위치를 검출한 다음, 검출된 이동체의 위치를 향해 본체가 회전 또는 이동하도록 주행부를 제어할 수 있다.
이동 로봇(100)의 UWB 태그는 복수의 위치정보송출기로부터 송출되는 UWB 신호에 기반하여, 자신의 현재 위치를 파악한다. 그리고, 이동 로봇(100)의 UWB 태그를 통해 형성되는 UWB 감지영역 내에 존재하는 장애물을 센싱할 수 있다. 이를 이용하여, 경계 내측의 주행영역에서 이동하는 이동체의 이동 경로를 추적할 수 있다.
예를 들어 도 9에서, 이동 로봇(100)이 제5위치정보송출기(100)로부터 교란된 제1신호(606')가 수신된 것에 응답하여, 제5위치정보송출기(100)의 위치를 향해 본체를 회전시킨다. 그 후, 이동체가 이동하여 위치정보송출기(50M)와 이동 로봇(100) 간의 신호 경로내에 들어오면, 위치정보송출기(50M)로부터 교란된 제2신호(606')가 이동 로봇(100)으로 수신된다.
이동 로봇(100)의 제어부는, 제1신호(606')가 수신된 제1시점에 대응되는 이동체의 제1위치와 제2신호(606')가 수신된 제2시점에 대응되는 이동체의 제2위치를 파악할 수 있다.
다음, 이동 로봇(100)이 제1위치정보송출기(100)로부터 교란된 제2신호(601')를 수신하게 되면, 해당 시점, 즉 제3시점에 대응되는 이동체의 제3위치를 파악할 수 있다. 그리고, 상기 제1위치, 제2위치, 제3위치를 시간순서대로 연결하여 이동체의 궤적, 즉 이동 경로를 생성할 수 있다.
이동 로봇(100)의 제어부는, 검출된 이동체의 위치의 변화에 대응되는 경로 정보를 외부단말로 전송할 수 있다.
구체적으로, 상기 생성된 이동체에 대한 이동 경로는 이동 로봇(100)에 시간 정보와 함께 저장된다. 그리고 저장된 이동 경로 및 시간 정보는 사용자 요청에 따라 또는 정해진 조건을 만족하는 경우, 외부단말/외부서버/보안업체에 전송될 수 있다.
여기서, 상기 정해진 조건은, 이동체의 이동 경로가 집 내부로 향하는 것으로 추정된 경우, 특정 지점을 통과한 경우 등을 포함할 수 있다.
또한, 일 실시 예에서, 상기 이동 로봇(100)은 상기 이동체의 영역 내 진입의 감지에 대응되는 동작으로 기설정된 경고 알람을 출력할 수 있다. 여기서, 상기 경고 알람은 기설정된 신호음, 음성, LED 깜빡임 등을 포함할 수 있다.
또 다른 예로, 이동 로봇(100)은 전방에 구비된 카메라를 활성화하여, 상기 검출된 이동체의 위치가 카메라의 화각범위 내에 오도록 본체를 회전 또는 이동시킨 다음, 촬영동작을 수행하여 이동체에 대한 영상 정보를 획득할 수도 있다.
이와 같이 획득된 영상 정보는, 사용자 요청에 따라 또는 기설정된 조건을 만족하는 경우(예, 이동체가 이동 로봇에 접근하거나 또는 접근하여 충격을 가하는 경우), 기 설정된 외부단말/외부서버/보안업체에 전송될 수 있다.
도 10 은 본 발명의 실시 예에 따른 이동 로봇이 이동체의 위치에 근거한 본체의 주행과 이동체의 위치 알림을 수행하는 방법의 흐름도이다. 그리고, 도 11은 이동체 진입을 알림해주는 단말기 화면의 예시이다.
먼저 도 10을 참조하면, 본 발명에 따른 이동 로봇(100)은 상기 위치정보송출기 간의 신호, 즉 제1신호로부터 산출되는 측위 관련 정보의 변화량이 기준범위를 벗어나는 것에 응답하여, 상기 영역 내의 이동체의 진입을 감지할 수 있다(S1010).
이를 위해, 이동 로봇(100)은 위치정보송출기 간에 송출되는 제1신호에 기반한 거리 정보와 각도정보를 주기적으로 획득할 수 있다. 또, 이동 로봇(100)은 채널임펄스응답에 근거하여, 제1신호의 통신 환경이 NLOS 및 LOS 중 어느 하나에서 다른 하나로 가변되었는지 여부를 파악할 수 있다.
다음, 이동 로봇(100)의 제어부는 측위 관련 정보의 변화량이 기준범위를 초과한 UWB신호를 송출한 위치정보송출기 (또한, 이와 근접한 다른 위치정보송출기)의 위치정보에 기초하여, 이동체가 진입한 위치를 결정할 수 있다(S1020).
이 후, 위치정보송출기 간에 송출되는 제1신호 및 위치정보송출기와 이동 로봇(100) 간에 송출되는 제2신호로부터 산출된 측위 관련 정보, 예를 들어 거리 정보와 각도 정보의 변화량을 모니터링하여 경계 내측에 존재하는 이동체의 현재 위치를 검출한다(S1030).
한편, 일 실시 예에서는, 이동체에 대한 보다 정확한 위치 검출을 위해, 이동 로봇(100)이 이동을 중단할 수 있다. 이러한 경우, 이동 로봇(100)이 현재 위치 고정된 위치정보송출기와 같은 역할을 수행하게 된다.
이와 같이, 이동체의 현재 위치가 검출되면, 이동 로봇(100)은 이동체의 현재 위치를 피하여 본체가 이동되도록 주행부를 제어할 수 있다(S1040). 즉, 이동체가 감지된 경우에도, 이동체의 현재 위치에 근거하여 이동 로봇(100)이 작업을 계속 수행할 수 있다.
계속해서, 이동 로봇(100)은 이동체의 위치정보와 그 위치정보의 변화에 대응되는 복수의 위치좌표를 저장한 다음, 저장된 위치좌표에 근거하여 생성된 경로 정보를 외부단말로 전송할 수 있다(S1050).
이때, 전송에 따른 부하 감소를 방지하기 위해, 기설정된 조건을 만족한 경우에 한하여 이동체에 대한 경로 정보가 전송되도록 동작될 수 있다.
도 11을 참조하면, 단말기(200)와 이동 로봇(100)의 네트워크 통신이 가능해지면, 단말기(200)에는 통신중임을 알려주는 제1화면(1101)이 출력된다.
그리고, 경계 내에 이동체의 진입이 감지된 경우, 이동 로봇(100)으로부터 이동체에 관한 정보가 전송되면, 단말기(200)에는 수신된 정보에 대응되는 경고를 포함하는 제2화면(1110)이 출력된다.
이때, 이동 로봇(100)에서 전송되는 이동체에 관한 정보로, 이동체의 속성, 이동체의 위치, 이동체가 경계 내에 진입한 시점 등이 포함될 수 있다.
여기서, 이동체의 속성은 이동체에 등록된 UWB 안테나가 있는지, 정당 권한 있는 사용자의 진입으로 볼 수 있는 기설정된 동작이 감지되었는지 여부로 결정된다. 전술한 두 가지에 해당하지 않는 경우 이동체의 속성은 '침입자'로 결정될 수 있다.
한편, 비록 도시되지는 않았지만, 제2화면(1110)에 터치입력이 가해지면, 경고해제 또는 상세보기를 선택적으로 수행할 수 있는 UI(User Interface)가 화면에 제공될 수 있다.
예를 들어, 상세보기를 선택한 경우 이동체의 현재 위치 및 이동 경로에 관한 정보가 텍스트, 이미지, 영상 등의 형태로 제공될 수 있다.
또, 예를 들어 상세보기 선택 없이 일정 시간 내에 경고해제가 선택되지 않으면, 알람 레벨(예, 신호음 증진, 진동 추가 등)을 증진시켜서 침입 발생 경고를 알림해줄 수 있다.
또한. 비록 도시되지는 않았지만, 일 예에서는 경계 내의 이동체의 진입을 감지하는 기능(제1기능)과 경계 내에서 이동하는 이동체의 위치를 모니터링하는 기능(제2기능)을 선택적으로 수행하도록 동작할 수 있다.
또는, 다른 예에서는 사용자 입력을 통해 미리 지정된 시간대 동안(예, 밤~새벽) 상기 제1기능 및 제2기능이 활성화되고, 해당 시간대가 도과되면 상기 제1기능 및 제2기능이 비활성화로 전환되도록 동작될 수 있다.
이상에서 살펴본 바와 같이, 본 발명의 실시 예 따른 이동 로봇 및 그 제어방법은, 오픈된 실외 영역에서도 추가 장비 없이 이동 로봇의 위치를 계산하기 위해 필요한 UWB 앵커와 UWB 태그만으로 설정된 경계 내에 침입하는 이동체를 감지하는 홈 가드(home guard) 기능을 제공할 수 있다.
또한, UWB 통신을 이용하여 경계 내에 존재하는 이동체의 위치와 이동 경로를 파악할 수 있고, 이동체의 속성에 따라 이동체의 위치를 피하여 주행하거나 또는 침입자의 위치와 이동 경로를 외부에 알림해줌으로써, 오픈된 실외영역에서도 추가 장비 없이 안전과 보안을 동시에 만족시킬 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 이동 로봇의 제어부(1800)를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (16)

  1. 본체를 이동시키는 주행부;
    영역 내에 복수로 설치되어 신호를 송출하는 위치정보송출기와 통신하는 통신부;
    상기 영역 내에서 상기 위치정보송출기 간에 송출되는 제1신호 및 상기 본체와 상기 위치정보송출기 간에 송출되는 제2신호 중 적어도 하나에 근거하여 측위 관련 정보를 산출하는 제어부를 포함하고,
    상기 제어부는,
    상기 산출된 측위 관련 정보의 변화량이 기준범위를 벗어나는 것에 응답하여 상기 영역 내에의 이동체의 진입을 감지하고, 상기 감지에 대응되는 동작을 수행하는 것을 특징으로 하는 이동 로봇.
  2. 제1항에 있어서,
    상기 측위 관련 정보는,
    상기 제1신호 및 상기 제1신호에 대한 응답신호 또는 상기 제2신호 및 상기 제2신호에 대한 응답신호에 기반하여 산출된 거리 정보, 신호세기 정보, 신호방향 및 각도정보 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 이동 로봇.
  3. 제1항에 있어서,
    상기 제어부는,
    상기 제1신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어나고,
    상기 제1신호의 속성이 비가시거리(non-line of sight, NLOS) 신호 및 가시거리(line of sight, LOS) 신호 중 어느 하나에서 다른 하나로 변경된 것에 응답하여 상기 영역 내에 이동체가 진입한 것으로 결정하는 것을 특징으로 하는 이동 로봇.
  4. 제1항에 있어서,
    상기 제어부는,
    상기 제1신호의 속성이 비가시거리(non-line of sight, NLOS) 신호 및 가시거리(line of sight, LOS) 신호 중 어느 하나에서 다른 하나로 변경된 것에 응답하여, 상기 영역 내에 이동체가 진입한 것을 감지하고,
    상기 제1신호의 속성이 비가시거리(non-line of sight, NLOS) 신호인지 상기 가시거리(line of sight, LOS) 신호인지는 상기 제1신호에 대한 채널임펄스응답을 획득하여 결정되는 것을 특징으로 하는 이동 로봇.
  5. 제1항에 있어서,
    상기 제어부는,
    상기 제1신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 근거하여 상기 영역 내의 이동체의 진입을 감지하고,
    상기 진입의 감지 후 상기 제2신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 응답하여 상기 이동체의 이동을 감지하는 것을 특징으로 하는 이동 로봇.
  6. 제1항에 있어서,
    상기 제어부는,
    상기 측위 관련 정보의 변화가 기준범위를 벗어난 신호를 송출한 위치정보송출기의 위치정보에 근거하여 상기 이동체의 진입 위치를 인식하는 것을 특징으로 하는 이동 로봇.
  7. 제1항에 있어서,
    상기 제어부는,
    상기 위치정보송출기의 신호에 근거하여 상기 본체의 현재 위치를 인식하고,
    상기 이동체의 진입이 감지되면 상기 본체의 현재 위치와 상기 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 신호를 송출한 위치정보송출기 간의 거리정보에 근거하여 상기 이동체의 위치를 검출하는 것을 특징으로 하는 이동 로봇.
  8. 제1항에 있어서,
    상기 제어부는,
    상기 감지에 대응되는 동작으로, 감지된 이동체의 위치를 향해 상기 본체가 회전 또는 이동하도록 상기 주행부를 제어하는 것을 특징으로 하는 이동 로봇.
  9. 제1항에 있어서,
    상기 제어부는,
    상기 감지에 대응되는 동작으로, 감지된 이동체의 위치 정보와 그 위치정보의 변화에 대응되는 경로 정보를 외부단말로 전송하는 것을 특징으로 하는 이동 로봇.
  10. 제1항에 있어서,
    상기 제어부는,
    상기 감지에 대응되는 동작으로, 출력부를 통해, 기설정된 경고 알람을 출력하는 것을 특징으로 하는 이동 로봇.
  11. 제1항에 있어서,
    상기 이동체에 UWB 안테나가 장착된 경우,
    상기 제어부는,
    상기 UWB 안테나 및 상기 위치정보송출기와 통신하여 상기 이동체의 위치를 인식하고,
    상기 이동체의 위치에 근거하여 상기 본체가 이동하도록 상기 주행부를 제어하는 것을 특징으로 하는 이동 로봇.
  12. 제1항에 있어서,
    상기 이동체에 UWB 안테나가 장착된 경우,
    상기 제어부는,
    상기 UWB 안테나로부터 송출된 신호에 근거하여 상기 이동체가 상기 본체에 접근하는 것이 감지되면, 상기 본체의 주행속도를 조절하거나 기 설정된 주행 경로를 변경하는 것을 특징으로 하는 이동 로봇.
  13. 제1항에 있어서,
    상기 제어부는,
    상기 위치정보송출기의 신호에 기반하여 산출된 위치정보에 근거하여 상기 영역에 대한 가상의 경계를 설정하고, 상기 본체가 상기 설정된 경계를 벗어나지 않도록 상기 주행부를 제어하는 것을 특징으로 하는 이동 로봇.
  14. 이동 로봇의 제어방법으로서,
    영역 내에 복수로 설치되어 신호를 송출하는 위치정보송출기와 통신하는 단계;
    상기 영역 내의 위치정보송출기 간에 송출되는 제1신호 및 상기 이동 로봇과 상기 위치정보송출기 간에 송출되는 제2신호 중 적어도 하나에 근거하여 측위 관련 정보를 산출하는 단계;
    상기 산출된 측위 관련 정보의 변화가 기준범위를 벗어나는 것에 응답하여 상기 영역 내에의 이동체의 진입을 감지하는 단계; 및
    상기 진입의 감지에 대응되는 동작을 수행하는 단계를 포함하는 것을 특징으로 하는 이동 로봇의 제어방법.
  15. 제14항에 있어서,
    상기 영역 내에 이동체의 진입을 감지하는 단계는,
    상기 제1신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 근거하여 상기 영역 내의 이동체의 진입을 감지하는 단계와,
    상기 진입의 감지 후 상기 제2신호로부터 산출된 측위 관련 정보의 변화가 기준범위를 벗어난 것에 응답하여 상기 이동체의 이동을 감지하는 단계를 포함하는 것을 특징으로 하는 이동 로봇의 제어방법.
  16. 제14항에 있어서,
    상기 감지에 대응되는 동작을 수행하는 단계는,
    산출된 측위 관련 정보의 변화가 기준범위를 벗어난 신호를 송출한 위치정보송출기 간의 위치정보에 기초하여 상기 이동체의 진입 위치를 결정하는 단계;
    상기 제1신호와 상기 제2신호로부터 산출되는 측위 관련 정보의 변화를 모니터링하여 상기 이동체의 현재 위치를 검출하는 단계;
    상기 검출된 이동체의 현재 위치를 피하여 본체를 주행하는 단계; 및
    상기 검출된 이동체의 위치정보와 그 위치정보의 변화에 대응되는 경로 정보를 외부단말로 전송하는 단계를 포함하여 이루어지는 것을 특징으로 하는 이동 로봇의 제어방법.
PCT/KR2020/001479 2019-01-31 2020-01-31 이동 로봇 및 그 제어방법 WO2020159278A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/310,361 US20220111522A1 (en) 2019-01-31 2020-01-31 Mobile robot and control method therefor
EP20748373.6A EP3919238B1 (en) 2019-01-31 2020-01-31 Mobile robot and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190012986A KR102269851B1 (ko) 2019-01-31 2019-01-31 이동 로봇 및 그 제어방법
KR10-2019-0012986 2019-01-31

Publications (2)

Publication Number Publication Date
WO2020159278A2 true WO2020159278A2 (ko) 2020-08-06
WO2020159278A3 WO2020159278A3 (ko) 2020-09-24

Family

ID=71840083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001479 WO2020159278A2 (ko) 2019-01-31 2020-01-31 이동 로봇 및 그 제어방법

Country Status (4)

Country Link
US (1) US20220111522A1 (ko)
EP (1) EP3919238B1 (ko)
KR (2) KR102269851B1 (ko)
WO (1) WO2020159278A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022079170A3 (en) * 2020-10-15 2022-06-16 Security Alarms & Co. S.A. Devices and system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11548373B1 (en) * 2018-12-10 2023-01-10 Amazon Technologies, Inc. Thermal management for a delivery autonomous ground vehicle
KR102206388B1 (ko) * 2019-01-31 2021-01-22 엘지전자 주식회사 이동 로봇 및 이의 제어 방법
EP4157757A4 (en) * 2020-06-02 2024-01-10 Oceaneering International, Inc. AUTONOMOUS AND SEMI-AUTONOMOUS MATERIAL HANDLING SYSTEM IN AN OUTDOOR YARD
KR20220082452A (ko) 2020-12-10 2022-06-17 삼성전자주식회사 펫 케어 시스템, 펫 케어 로봇 및 펫 케어 로봇의 제어 방법
JP2023022898A (ja) * 2021-08-04 2023-02-16 ローム株式会社 発信素子撮像装置及び発信素子撮像方法
KR20230046080A (ko) * 2021-09-29 2023-04-05 삼성전자주식회사 로봇 및 그 제어 방법
KR20240048414A (ko) * 2022-10-06 2024-04-15 삼성전자주식회사 초광대역 통신 신호를 이용하여 위치를 추정하기 위한 방법 및 장치
WO2024153713A1 (en) * 2023-01-18 2024-07-25 Adb Safegate Bv Uwb runway incursion detection and warning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125508A (ko) 2014-04-30 2015-11-09 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20170026818A1 (en) 2015-07-23 2017-01-26 Irobot Corporation Pairing a beacon with a mobile robot

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177903B1 (en) * 1999-06-14 2001-01-23 Time Domain Corporation System and method for intrusion detection using a time domain radar array
US8456304B2 (en) * 2006-07-12 2013-06-04 Intelligent Automation, Inc. Perimeter security system
US8542109B2 (en) * 2008-07-29 2013-09-24 Flir Systems, Inc. Foliage penetrating sensor array for intrusion detection
KR101334961B1 (ko) * 2011-08-03 2013-11-29 엘지전자 주식회사 잔디 깎기용 이동로봇 시스템 및 이의 제어방법
US10678236B2 (en) * 2013-10-25 2020-06-09 Samsung Electronics Co., Ltd. Cleaning robot
EP3084543B1 (en) * 2013-12-19 2021-05-19 Husqvarna AB Obstacle detection for a robotic lawnmower
US9375842B2 (en) * 2014-05-15 2016-06-28 Irobot Corporation Autonomous mobile robot confinement system
US9516806B2 (en) * 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
US10197999B2 (en) * 2015-10-16 2019-02-05 Lemmings, Llc Robotic golf caddy
KR20180064951A (ko) * 2016-12-06 2018-06-15 주식회사 비트센싱 레이더와 반사체를 이용한 직선의 가상펜스 시스템
US11357376B2 (en) * 2018-07-27 2022-06-14 Panasonic Intellectual Property Corporation Of America Information processing method, information processing apparatus and computer-readable recording medium storing information processing program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125508A (ko) 2014-04-30 2015-11-09 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20170026818A1 (en) 2015-07-23 2017-01-26 Irobot Corporation Pairing a beacon with a mobile robot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919238A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022079170A3 (en) * 2020-10-15 2022-06-16 Security Alarms & Co. S.A. Devices and system
EP4235610A3 (en) * 2020-10-15 2024-01-24 Algorized Sàrl Devices and system

Also Published As

Publication number Publication date
KR20210080310A (ko) 2021-06-30
US20220111522A1 (en) 2022-04-14
EP3919238A4 (en) 2022-11-02
KR20200101528A (ko) 2020-08-28
KR102269851B1 (ko) 2021-06-28
WO2020159278A3 (ko) 2020-09-24
EP3919238B1 (en) 2024-04-24
EP3919238A2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020159278A2 (ko) 이동 로봇 및 그 제어방법
WO2020032413A1 (en) Moving robot and controlling method thereof
WO2020027496A1 (en) Moving robot and controlling method thereof
WO2020171317A1 (en) Moving robot system comprising moving robot and charging station
AU2019334724B2 (en) Plurality of autonomous mobile robots and controlling method for the same
EP3829830A1 (en) Moving robot, system of moving robot and method for moving to charging station of moving robot
WO2019212278A1 (en) Plurality of autonomous mobile robots and controlling method for the same
AU2019262482B2 (en) Plurality of autonomous mobile robots and controlling method for the same
AU2019262467B2 (en) A plurality of robot cleaner and a controlling method for the same
WO2020032501A1 (en) Station apparatus and moving robot system
AU2019262468B2 (en) A plurality of robot cleaner and a controlling method for the same
WO2019194628A1 (ko) 이동 로봇 및 그 제어방법
WO2015060672A1 (ko) 청소 로봇
WO2019212239A1 (en) A plurality of robot cleaner and a controlling method for the same
AU2019262477B2 (en) Plurality of autonomous mobile robots and controlling method for the same
WO2019212276A1 (en) Plurality of autonomous mobile robots and controlling method for the same
WO2019212281A1 (en) Plurality of autonomous mobile robots and controlling method for the same
WO2019212240A1 (en) A plurality of robot cleaner and a controlling method for the same
EP3927503A1 (en) Plurality of autonomous mobile robots and controlling method for the same
WO2021006542A1 (en) Mobile robot using artificial intelligence and controlling method thereof
WO2020050566A1 (en) Plurality of autonomous mobile robots and controlling method for the same
WO2020027611A1 (en) Moving robot, moving robot system, and method for moving to charging station of moving robot
WO2021230441A1 (ko) 이동 로봇 시스템의 송출기 및 이의 이탈 감지 방법
EP3787461A1 (en) Plurality of autonomous mobile robots and controlling method for the same
WO2021182855A1 (ko) 이동 로봇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748373

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020748373

Country of ref document: EP

Effective date: 20210831