WO2019194184A1 - 劣化次亜塩素酸塩から新規塩素酸化物組成物を得る製法 - Google Patents

劣化次亜塩素酸塩から新規塩素酸化物組成物を得る製法 Download PDF

Info

Publication number
WO2019194184A1
WO2019194184A1 PCT/JP2019/014649 JP2019014649W WO2019194184A1 WO 2019194184 A1 WO2019194184 A1 WO 2019194184A1 JP 2019014649 W JP2019014649 W JP 2019014649W WO 2019194184 A1 WO2019194184 A1 WO 2019194184A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
liquid
concentration
ppm
chlorine
Prior art date
Application number
PCT/JP2019/014649
Other languages
English (en)
French (fr)
Inventor
学剛 合田
Original Assignee
本部三慶株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本部三慶株式会社 filed Critical 本部三慶株式会社
Priority to JP2020512262A priority Critical patent/JP7291958B2/ja
Priority to CN201980034372.7A priority patent/CN112153900B/zh
Priority to CN202210903946.3A priority patent/CN115316399A/zh
Priority to KR1020207031287A priority patent/KR20200139740A/ko
Priority to EP19781264.7A priority patent/EP3777537A4/en
Priority to US17/044,863 priority patent/US20210206636A1/en
Priority to AU2019248959A priority patent/AU2019248959B2/en
Publication of WO2019194184A1 publication Critical patent/WO2019194184A1/ja
Priority to IL277759A priority patent/IL277759B2/en
Priority to AU2024202489A priority patent/AU2024202489A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/153Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of liquids or solids
    • A23B7/157Inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites
    • C01B11/068Stabilisation by additives other than oxides, hydroxides, carbonates of alkali or alkaline-earth metals; Coating of particles; Shaping; Granulation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/08Alkali metal chlorides; Alkaline earth metal chlorides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0086Processes carried out with a view to control or to change the pH-value; Applications of buffer salts; Neutralisation reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/024Preparation from chlorites or chlorates from chlorites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/08Chlorous acid
    • C01B11/10Chlorites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00177Controlling or regulating processes controlling the pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/42Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools

Definitions

  • chlorine is decomposed during storage, and sodium hypochlorite that has generated chloride ions and chlorate ions is regenerated to obtain a new useful disinfectant.
  • Sodium hypochlorite is a chlorinated liquid obtained through chlorine in sodium hydroxide solution and is known as a useful disinfectant for water supply, pools, and food additives, but it is unstable.
  • the chlorine component decomposes during storage, and generates chloride ions (Cl ⁇ ) and chlorate ions (ClO 3 ⁇ ) by disproportionation, and loses its effectiveness.
  • chlorate ions (ClO 3 ⁇ ) are dried and crystallized, accidents such as ignition and explosions are continually caused by friction.
  • hypochlorite ion in sodium hypochlorite decreases and the content of chloride ion and chlorate ion increases, it becomes difficult to use normally. Or you will have the merchant pick it up and dispose of it.
  • hypochlorite that has deteriorated during storage and reacting it again, it regenerates hypochlorous acid, and also reacts with chloric acid generated during storage to reduce hypochlorous acid and chlorous acid.
  • the present inventor decided to produce a disinfectant having a new commercial value by reacting sodium hypochlorite whose quality was lowered.
  • the disinfectant disinfects sodium hypochlorite with reduced concentration as chlorine gas, and also reacts with sodium chlorate, which is difficult to dispose of.
  • hypochlorite ion, chlorate ion, chloride ion, etc. contained in the deteriorated sodium hypochlorite found the conditions for gasification by the reaction, and considered to obtain the recovered liquid.
  • a large amount of various chlorine ion components are present simultaneously in the deteriorated sodium hypochlorite, and further, chlorate ions and chlorides are present. Since product ions are products accompanying the disappearance of available chlorine, they are less reactive than general chemical reaction methods using single products or saturated liquids as raw materials, and new reaction conditions and recovery methods are found. There was a need.
  • the concentration of sulfuric acid to be added, the acidity in the reaction mother liquor, and the amount of chloride ions, which are products in the deteriorated sodium hypochlorite, are important. Since it is a product from sodium chlorite, it was difficult to adjust, and it was found that it was necessary to increase the yield by adjusting the reaction product amount by combining temperature, acidity, air blowing conditions and the like.
  • chlorine gas and chlorine dioxide gas obtained by the reaction will be recovered with sodium hydroxide or calcium hydroxide, but if each is not recovered individually, the yield will be reduced and chlorate ions will be generated.
  • a technique for gradually releasing chlorine gas and then chlorine dioxide gas from the reaction mother liquor to which deteriorated sodium hypochlorite and sulfuric acid were added was necessary.
  • the first reaction in which chlorine gas is generated from a reaction mother liquor in which sulfuric acid is added to degraded sodium hypochlorite as a raw material.
  • a second reaction in which chlorine dioxide gas is generated after adding sulfuric acid or the like and changing other conditions is performed.
  • chloride ions and chlorate ions increase or decrease depending on reaction conditions such as acidity in the reaction mother liquor.
  • One feature of this production method is that the reaction is adjusted to generate chlorine dioxide gas.
  • the chlorine gas generated in the first reaction can be recovered with sodium hydroxide solution or calcium hydroxide solution, but the chlorine dioxide gas generated during the second reaction is mainly sodium hydroxide solution or calcium hydroxide solution only.
  • chlorate ions are produced in large quantities. For this reason, it is necessary to prevent the formation of chlorate ions by using a sodium hydroxide solution or calcium hydroxide solution plus hydrogen peroxide solution as a recovery solution.
  • the gas is decomposed and converted into chloride ions.
  • the recovery liquid for the first reaction and the recovery liquid for the second reaction are provided with two recovery tanks, and the recovery liquid A mainly composed of chlorine gas and the recovery liquid B mainly composed of chlorine dioxide gas are individually recovered. It is also one of the characteristics of this production method that it is mixed and stabilized later.
  • the solid disinfectant manufactured and dried in this way complies with the standard of high-quality powdered powder, which is a food additive, and the composition of the components changes even when stored at room temperature. It is also characterized by not.
  • the disinfectant produced by this method is hypochlorous acid and chlorous acid. These sterilization characteristics are combined with each other, complying with the standards of food additives such as sodium hypochlorite and advanced smooth powder, and provided as a single agent.
  • the reaction conditions are adjusted with low-grade sodium hypochlorite and general-grade sodium hypochlorite.
  • the sulfuric acid concentration in the reaction mother liquor should be 4.0% to 4.5%.
  • the sulfuric acid concentration should be 30.0% to 59.4%, and 30.0% to 40.0% in the case of advanced smooth powder.
  • the sulfuric acid concentration is 50.0 w / w% to 70.0 w / w%.
  • sodium hypochlorite In the case of general grade sodium hypochlorite, it should be 25.0% to 30.0%, and the sulfuric acid concentration to be used should be 65w / w%, and an intermediate trap tank should be installed to remove chlorine gas by washing. , Preventing contamination of the recovered liquid due to excessive generation of chlorine gas.
  • the effective chlorine concentration ratio with the recovered liquid A being 1 is 1: 0.43.
  • it meets the standard, and in order to satisfy the food additive standard of advanced powdered powder, it meets the standard in the range of the effective chlorine concentration ratio up to 1: 33.95.
  • the present invention also provides the following.
  • the solid is (1) Contains 60.0% or more of effective chlorine, (2) There is a smell of chlorine, (3) When 5 ml of water is added to 0.5 g of the solid and shaken and red litmus paper is immersed in this, the litmus paper turns blue and then fades. (4) When 2 ml of acetic acid (1 ⁇ 4) is added to 0.1 g of the solid, gas is generated and dissolved, and 5 ml of water added to the solution is filtered to give a calcium salt reaction. Item 4. The dry solid according to any one of Items 1 to 3. (Item 5) Item 5. The dry solid according to any one of Items 1 to 4, wherein the solid contains an SO 4 -based component at a detection limit of 8100 ppm or less.
  • (Item 6) Item 6.
  • (Item 7) The dry solid according to any one of items 1 to 6, wherein the effective chlorine concentration in the solid is in the range of 600,000 ppm to 900,000 ppm, and the free residual chlorine concentration is in the range of 900 ppm to 60,000 ppm. .
  • (Item 8) A liquid obtained by dissolving the dry solid according to any one of items 1 to 7.
  • (Item 9) Item 19.
  • Item 10 Item 10.
  • Item 11 Item 9.
  • the liquid according to Item 8, wherein the ratio of hypochlorite ion to chlorite ion is 1 to 6 to 30 when diluted with water so that the effective chlorine concentration is 6%.
  • Item 12 Item 12.
  • Item 13 Item 9. The liquid according to Item 8, wherein the ratio of hypochlorite ion to chlorite ion is 1 to 6 to 30 when diluted with water so that the effective chlorine concentration is 12%.
  • Item 14 14. The liquid according to item 8 or 13, wherein when diluted with water so that the effective chlorine concentration is 12%, the free residual chlorine concentration is in the range of 2,500 ppm to 12,000 ppm.
  • a process for producing a dry solid comprising hypochlorite and chlorite comprising: Preparing a solution containing hypochlorite ions, chlorate ions and chloride ions; A first reaction step of adding sulfuric acid to the solution to generate chlorine gas; In the recovered liquid A, the generated chlorine gas is reacted with sodium hydroxide or calcium hydroxide and recovered as hypochlorite ions; A second reaction step in which sulfuric acid having a higher concentration than in the first reaction step is added to the reaction mother liquor after the first reaction step to generate chlorine dioxide gas; In the recovered liquid B, the generated chlorine dioxide gas is reacted with sodium hydroxide and hydrogen peroxide and recovered as chlorite ions; A step of mixing the recovered liquid A and the recovered liquid B; Drying and solidifying the obtained mixed solution.
  • (Item 17) Item 17.
  • (Item 18) In the step of mixing the recovered liquid A and the recovered liquid B, if the effective chlorine concentration of the recovered liquid A is 1, the effective chlorine concentration of the recovered liquid B is in the range of 9.6 to 33.95.
  • (Item 19) 19 19. The method according to any one of items 15 to 18, wherein in the step of mixing the recovered liquid A and the recovered liquid B, the recovered liquid A and the recovered liquid B are each slurried and mixed.
  • (Item 20) The step of mixing the recovered liquid A and the recovered liquid B pre-drys the recovered liquid A, forms granulation nuclei, slurries the recovered liquid B, and dries the recovered liquid A into the recovered liquid B slurry.
  • 20. The method according to any one of items 15 to 19, comprising a step of charging an object.
  • Item 21 Item 21.
  • the method according to any one of Items 15 to 20, wherein the step of drying and solidifying includes a step of performing warm air drying for 20 minutes to 30 minutes.
  • (Item 22) The method according to any one of items 15 to 21, wherein the drying and solidifying step includes reducing the water contents of the recovered liquid A and the recovered liquid B to 20% or less, respectively.
  • the generated chlorine gas is reacted with sodium hydroxide or calcium hydroxide and recovered as hypochlorite ions;
  • the second reaction step in which sulfuric acid having a higher concentration than in the first reaction step is added to the reaction mother liquor after the first reaction step to generate chlorine dioxide gas, and in the recovered solution B, the generated chlorine dioxide gas is added to water.
  • the disinfectant is a solid product
  • the sulfuric acid concentration in the reaction mother liquor in the first reaction step is 4.00 to 6.37%
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step is 30.00 to 40 26.
  • the method according to item 25, wherein the sulfuric acid concentration used in the second reaction step is 0.000% and 50.0 w / w% to 70.0 w / w%.
  • the disinfectant is a liquid product
  • the sulfuric acid concentration in the reaction mother liquor in the first reaction step is 4.00 to 6.37%
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step is 30.00 to 59.
  • 26. The method according to item 25, wherein the sulfuric acid concentration used in the second reaction step is 0.04% and 50.0 w / w% to 70.0 w / w%.
  • the sulfuric acid concentration in the reaction mother liquor in the first reaction step is 4.00 to 4.50%, and the sulfuric acid concentration in the reaction mother liquor in the second reaction step is 25.00 to 30.00%.
  • the sulfuric acid concentration used in the step is 65 w / w%.
  • (Item 34) The method according to any one of Items 23 to 33, wherein the second reaction step is performed while blowing air.
  • (Item 35) The method according to any one of items 23 to 34, wherein an intermediate trap tank containing hydrogen peroxide is provided between the reaction tank and the recovery tank containing the recovery liquid B.
  • (Item 36) 36.
  • the effective chlorine concentration of the recovered liquid A is 1, and the effective chlorine concentration of the recovered liquid B is 0.43 to 0.6.
  • the disinfectant is (1) Contains 4.0% or more of effective chlorine, (2) There is a smell of chlorine, (3) Presents the reaction of sodium salt and hypochlorite, (4) A solution obtained by adding 100 ml of a phosphate buffer (pH 8) to 4 ml of an aqueous solution (1 ⁇ 25) of this product has a maximum absorption part at a wavelength of 291 to 294 nm. (5) When red litmus paper is immersed in this product, the litmus paper turns blue and then fades. 39. A method according to item 38. (Item 40) 40.
  • the disinfectant according to item 43 wherein the ratio of hypochlorite ion to chlorite ion is 1 to 0.24 to 0.3. (Item 45) 45.
  • (Item 46) A liquid chlorine oxide produced using the dry solid according to any one of items 1 to 7, (A) dissolving the dry solid in water to prepare a solution having an increased pH; (B) while maintaining the pH of the solution prepared in step (a), the calcium salt is precipitated by adding a non-calcium inorganic alkaline agent to the solution, and includes a liquid phase and a solid phase containing the calcium salt, Forming a solid-liquid mixed phase with a reduced calcium ion concentration in the liquid phase; And (c) a liquid chlorine oxide prepared by a method comprising a step of taking only the liquid phase from the solid-liquid mixed phase formed in step (b) to obtain a liquid chlorine oxide.
  • a liquid chlorine oxide produced using the dry solid according to any one of items 1 to 7, (A) a step of preparing a solution having a pH of 10.0 or more by dissolving the dry solid in water; (B) While maintaining the pH of the solution prepared in the step (a) at 10.0 or more, a calcium salt is precipitated by adding a non-calcium inorganic alkaline agent to the solution, and a solid phase containing the liquid phase and the calcium salt is precipitated.
  • the generated chlorine gas is reacted with sodium hydroxide or calcium hydroxide and recovered as hypochlorite ions;
  • the second reaction step in which sulfuric acid having a higher concentration than in the first reaction step is added to the reaction mother liquor after the first reaction step to generate chlorine dioxide gas, and in the recovered solution B, the generated chlorine dioxide gas is added to water.
  • Item 54 Item 54.
  • the method according to Item 53 which has one or more of the characteristics of the case where the disinfectant defined in Item 24 to Item 42 is replaced with a drug.
  • Item 55 A drug produced by the method according to item 53 or 54.
  • Item 56 56.
  • the drug according to item 55 wherein the drug has one or more of the characteristics when the antiseptic agent defined in item 44 or 45 is replaced with a drug.
  • Item 57 Use of the drug according to item 55 or 56 as a disinfectant.
  • Item 58 Use of the drug according to item 55 or 56 as a food additive.
  • Item 59 Use of a drug according to item 55 or 56 for sterilizing food.
  • the present invention obtains a useful new disinfectant and disinfectant from sodium hypochlorite which has been reduced in quality and produced chloride ions and chlorate ions, and is a food additive sodium hypochlorite.
  • the coexisting liquid of hypochlorite ion and chlorite ion is inferior in storage stability unless it is refrigerated, but has the advantage that long-term storage is possible by processing into a dry granular solid.
  • sodium hypochlorite and high-quality salty powder that have been completed by this method have lower chlorine odor than liquids of the same concentration, have the advantage of reducing the burden on workers and being easy to use. Even if the regeneration method is used, it can be said that the manufacturing cost is absorbed and commercialization is possible.
  • FIG. 1 shows the discoloration of permanganate K with respect to (mixed solution of recovered liquid A and recovered liquid B (sodium hypochlorite standard)). From the left, only sodium hypochlorite, hypochlorous acid The effective chlorine ratio of Na and sodium chlorite is 1: 0.6, the effective chlorine ratio of sodium hypochlorite and sodium chlorite is 1: 0.7, and only sodium chlorite is shown.
  • FIG. 2 shows the absorbance of specimen 1 and specimen 2 (for a mixed solution of recovered liquid A and recovered liquid B (sodium hypochlorite standard)).
  • hypochlorite a solution containing hypochlorite with degraded quality refers to sodium hypochlorite that has decomposed during storage and has produced chloride ions and chlorate ions. Means solution.
  • hypochlorite is sometimes abbreviated as “hypochlorite”.
  • low salt grade sodium hypochlorite solution means a sodium hypochlorite solution in which the amount of salt is reduced, The chlorate ion is 5000 to 6000 ppm, and at most 12000 ppm.
  • the “general grade sodium hypochlorite solution” means a sodium hypochlorite solution in which the amount of sodium chloride is not reduced, and in a general grade sodium hypochlorite 12% solution. About 14,000 to 26000 ppm of chlorate ions are produced at the time of distribution.
  • effective chlorine or “effective chlorine concentration” refers to the concentration of chlorine effective for bleaching action, which is contained in a disinfectant such as salash powder.
  • Effective chlorine is, for example, potassium iodide added to sodium hypochlorite of the sample, and iodine released by the formula Cl 2 + KI ⁇ I 2 + KCl (1) is redox titrated with sodium thiosulfate (I 2 + 2Na 2 S 2 O 3 ⁇ 2NaI + Na 2 S 4 O 6 (Equation (2)) can be used to determine the effective chlorine concentration.
  • free chlorine means “free residual chlorine and binding determined by the Minister of Health, Labor and Welfare in accordance with Article 17, Paragraph 2 of the Water Supply Law Enforcement Regulations”. It is a value measured by the attached table 3 (hereinafter referred to as a colorimetric method (DPD indicator)) of “Chlorine Inspection Method”, and is a value obtained by oxidizing the DPD indicator.
  • DPD indicator colorimetric method
  • SO 4 -based component means a component derived from sulfuric acid, and means sulfuric acid, sulfate or the like.
  • warm air drying as drying conditions, the storage room environment temperature of 50 ⁇ 60 ° C., the internal humidity is 10% or less, the air volume to feed the warm air 1.9m 3 / s Is done.
  • chlorine oxide refers to any oxide of chlorine. Examples thereof include hypochlorous acid, chlorous acid, chloric acid, perchloric acid, and salts thereof. Also included are dichlorine heptoxide, dichlorine hexaoxide, dichlorine trioxide, chlorine dioxide, dichlorine monoxide and the like.
  • “advanced smooth powder” satisfies the standard stipulated in the 8th edition Food Additive Official Document. Specifically: (1) Contains 60.0% or more of effective chlorine, (2) There is a smell of chlorine, (3) When 5 ml of water is added to 0.5 g of the solid and shaken and red litmus paper is immersed in this, the litmus paper turns blue and then fades. (4) When 2 ml of acetic acid (1 ⁇ 4) is added to 0.1 g of the solid, a gas is generated and dissolved, and 5 ml of water added thereto and filtered are reacted with calcium salt.
  • T.AL is used to measure the alkalinity in a sample by titrating a 0.1 mol / L hydrochloric acid-acid standard solution until the sample reaches pH 4.0, and adjusting the pH of 100 g of the sample to 4
  • the alkalinity (T.AL) is set to 1 when 0.1 mol / L hydrochloric acid required to make 0.0 is 1 mL.
  • pH 4.0 is the second neutralization point of sodium carbonate.
  • high-grade powders have a wide range of specifications, and generally chlorine oxides differ depending on the combination of pH adjusters and the like at each company. AL is often not described in the standard. However, since chlorine is contained, high T.I. It shows AL value and is highly alkaline.
  • non-calcium inorganic alkaline agent refers to a (drug) agent having an inorganic alkaline substance having a cation other than calcium. It is understood that any material can be used as long as it has an inorganic alkaline substance having a cation other than calcium. Examples include, but are not limited to, sodium carbonate, disodium hydrogen phosphate, sodium sulfate, and sodium hydroxide.
  • the “bivalent or higher inorganic alkali agent” refers to a non-calcium inorganic alkaline agent having a valence of 2 or higher.
  • a sodium-containing alkaline agent is preferred but not limited thereto.
  • divalent or higher inorganic alkali agent those having the ability to adjust the pH to 10 or less are advantageous. This is because the pH of the advanced smooth powder can be lowered. Examples of such can include, but are not limited to, sodium carbonate, disodium hydrogen phosphate, and sodium sulfate.
  • less than divalent inorganic alkaline agents, such as sodium hydroxide can optionally be used.
  • the input amount of sodium sulfate is usually around 0.1 with respect to the input amount 1 of the other inorganic alkaline agent, and may be any other amount as long as the object can be achieved, preferably 10% or less, preferably 5%.
  • 2% or less, 1% or less, etc. can be mentioned.
  • recovered liquid A refers to a recovered liquid in which the gas generated in the first reaction step is recovered in the method for treating a solution containing hypochlorite of the present invention.
  • recovered liquid B refers to a recovered liquid in which the gas generated in the second reaction step is recovered in the method for treating a solution containing hypochlorite of the present invention.
  • the present invention provides a dry solid comprising hypochlorite and chlorite.
  • the hypochlorite includes alkali metal salts or alkaline earth metal salts of hypochlorous acid, and examples thereof include sodium salts, potassium salts, calcium salts, and magnesium salts.
  • Examples of chlorite include alkali metal salts or alkaline earth metal salts of chlorous acid, and examples thereof include sodium salts, potassium salts, calcium salts, and magnesium salts.
  • the solid sterilizing disinfectant of the present invention does not change the composition of the content components even when stored at room temperature, and when it is a calcium salt, it can conform to the standard of high-quality powdered food additive. Salts such as potassium and magnesium salts can be obtained by using an alkali solution of the corresponding alkali metal or alkaline earth metal in the recovered solution or by exchanging the sodium salt or calcium salt with the corresponding metal. it can.
  • the solid is dry granular.
  • the solid comprises calcium hypochlorite.
  • the solid meets the standard specified in the 8th edition Food Additives official high-grade powder. Specifically, the solid is (1) Contains 60.0% or more of effective chlorine, (2) There is a smell of chlorine, (3) When 5 ml of water is added to 0.5 g of the solid and shaken and red litmus paper is immersed in this, the litmus paper turns blue and then fades. (4) When 2 ml of acetic acid (1 ⁇ 4) is added to 0.1 g of the solid, a gas is generated and dissolved, and 5 ml of water added thereto and filtered are reacted with calcium salt.
  • the solid contains a SO 4 -based component at a detection limit or more and 8100 ppm or less.
  • the SO 4 -based component may be 8000 ppm or less, 7000 ppm or less, 6000 ppm or less, 5000 ppm or less, 4000 ppm or less, 3000 ppm or less, 2000 ppm or less, or 1000 ppm or less.
  • the SO 4 -based component may be 100 ppm or more, 200 ppm or more, 300 ppm or more, 400 ppm or more, 500 ppm or more, 600 ppm or more, 700 ppm or more, 800 ppm or more, 900 ppm or more, 1000 ppm or more, 1100 ppm or more.
  • This SO 4 -based component is entrainment of sulfuric acid contained in the reaction tank, and the amount of SO 4 -based component can be one of the indicators that the chlorine oxide is produced according to the present invention.
  • the ratio of hypochlorite to chlorite in the solid is 1 to 5-25. This ratio is obtained by drying and solidifying the mixed solution obtained by preliminarily drying the recovered liquid A and recovered liquid B used to obtain the solid to obtain a water content of about 20%. It is a value about the thing.
  • free residual chlorine concentration effective chlorine concentration
  • the concentration of hypochlorite ions can be derived from the free residual chlorine concentration.
  • the chlorite ion concentration can be measured by ion chromatography.
  • the ratio of hypochlorite to chlorite is derived from the ratio of each ion.
  • the ratio of hypochlorite to chlorite in the solid may be 1 to 9-25.
  • the ratio of hypochlorite to chlorite in the solid may be 1 to 5-9.
  • the ratio of hypochlorite to chlorite in the solid may be any value or value range between 5 and 25, where hypochlorite is 1.
  • hypochlorite is 1, chlorite is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, Can be 21, 22, 23, 24, or 25, and can be any numerical value or range between them.
  • the ratio of hypochlorite to chlorite in the solid is 1: 5.53 to 23.59.
  • the ratio of hypochlorite to chlorite in the solid may be 1 to 8.92-23.59.
  • the ratio of hypochlorite to chlorite in the solid can be 1 to 5.53 to 8.92.
  • a dry solid having such a ratio has high purity, long-term preservation, high bactericidal effect, and low chlorine odor.
  • calcium salt it conforms to the standard standard of advanced smooth powder. If necessary, a solid having a value outside the above range may be produced.
  • the effective chlorine concentration in the solid is in the range of 600,000 ppm to 900,000 ppm, and the free residual chlorine concentration is in the range of 900 ppm to 60,000 ppm.
  • the effective chlorine concentration in the solid may be in any numerical value or numerical range within the range of 600,000 ppm to 900,000 ppm.
  • the effective chlorine concentration in the solid can be 600,000 ppm, 650,000 ppm, 700,000 ppm, 750,000 ppm, 800,000 ppm, 850,000 ppm, 900,000 ppm, and within any combination of these numbers. possible.
  • the free residual chlorine concentration in the solid may be in any numerical value or numerical range within the range of 900 ppm to 60,000 ppm.
  • the concentration of free residual chlorine in the solid is 900 ppm, 1,000 ppm, 2,000 ppm, 3,000 ppm, 4,000 ppm, 5,000 ppm, 6,000 ppm, 7,000 ppm, 8,000 ppm, 9,000 ppm, 10,000 ppm. 15,000 ppm, 20,000 ppm, 25,000 ppm, 30,000 ppm, 35,000 ppm, 40,000 ppm, 45,000 ppm, 50,000 ppm, 55,000 ppm, 60,000 ppm, any of these numbers It can be within a combination.
  • the effective chlorine concentration in the solid is in the range of 606,811 ppm to 881,677 ppm, and the free residual chlorine concentration is in the range of 901 ppm to 58,728 ppm.
  • the effective chlorine concentration in the solid may be in the range of 606,811 ppm to 881,677 ppm.
  • the effective chlorine concentration in the solid may be 606,811 ppm, 616,877 ppm, 632,513 ppm, 647,265 ppm, 781,019 ppm, 782,210 ppm, 824,064 ppm, or 881,667 ppm.
  • the free residual chlorine concentration in the solid may range from 901 ppm to 58728 ppm.
  • the free residual chlorine concentration in the solid can be 901 ppm, 2,145 ppm, 2,625 ppm, 20,785 ppm, 49,314 ppm, 55,916 ppm, or 58,728 ppm.
  • a dry solid having such a concentration has high purity, long-term storage, high bactericidal effect, and low chlorine odor.
  • calcium salt it conforms to the standard standard of advanced smooth powder. If necessary, a solid having a value outside the above range may be produced.
  • the present invention provides a liquid obtained by dissolving the dry solid.
  • the solvent for dissolving include water, alcohol, ether and the like.
  • water include arbitrary water such as tap water, well water, seawater, ion exchange water, and purified water.
  • the ratio of hypochlorite ion to chlorite ion is 1 to 7-35, and hypochlorite ion is Assuming 1, chlorite ions are 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, and any numerical value or range between them.
  • the ratio of hypochlorite ions to chlorite ions is 1: 7.16 to 34.36.
  • the free residual chlorine concentration is in the range of 150 ppm to 900 ppm, and the free residual chlorine concentration is 150 ppm, 200 ppm, 250 ppm, 300 ppm, 350 ppm, 400 ppm, 450 ppm, It can be 500 ppm, 550 ppm, 600 ppm, 650 ppm, 700 ppm, 750 ppm, 800 ppm, 850 ppm, 900 ppm and can be within any numerical value or numerical range between these numerical values. As one specific example, when diluted with water so that the effective chlorine concentration is 1%, the free residual chlorine concentration is within the range of 187.07 ppm to 836.70 ppm.
  • the ratio of hypochlorite to chlorite ions can vary depending on the degree of dilution.
  • a liquid having such a ratio has a high purity, a high bactericidal effect, and a low chlorine odor.
  • the ratio of hypochlorite ion to chlorite ion is 1 to 6-30. If hypochlorite ion is 1, Acid ions are 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and any numerical value or range between them. As one specific example, when diluted with water so that the effective chlorine concentration is 6%, the ratio of hypochlorite ion to chlorite ion is 1: 6.31 to 29.54.
  • the free residual chlorine concentration is in the range of 1,000 ppm to 6,000 ppm, and the free residual chlorine concentration is 1,000 ppm, 1,500 ppm, 2, 000ppm, 2,500ppm, 3,000ppm, 3,500ppm, 4,000ppm, 4,500ppm, 5,000ppm, 5,500ppm, 6,000ppm, within any number or range between these numbers It can be.
  • the free residual chlorine concentration is within the range of 1296.01 ppm to 5624.20 ppm.
  • the ratio of hypochlorite to chlorite ions can vary depending on the degree of dilution.
  • a liquid having such a ratio has a high purity, a high bactericidal effect, and a low chlorine odor.
  • the ratio of hypochlorite ion to chlorite ion is 1 to 6-30. If hypochlorite ion is 1, Acid ions are 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and any numerical value or range between them. As one specific example, when diluted with water so that the effective chlorine concentration is 12%, the ratio of hypochlorite ions to chlorite ions is 1: 6.39 to 28.16.
  • the free residual chlorine concentration is in the range of 2,500 ppm to 12,000 ppm, and the free residual chlorine concentration is 2,500 ppm, 3,000 ppm, 3, 500 ppm, 4,000 ppm, 4,500 ppm, 5,000 ppm, 6,000 ppm, 6,500 ppm, 7,000 ppm, 7,500 ppm, 8,000 ppm, 8,500 ppm, 9,000 ppm, 9,500 ppm, 10,000 ppm, It can be 10,500 ppm, 11,000 ppm, 11,500 ppm, 12,000 ppm, and can be within any value or range between these values.
  • the free residual chlorine concentration when diluted with water so that the effective chlorine concentration is 12%, the free residual chlorine concentration is in the range of 2736.70 ppm to 11378.81 ppm. Since free residual chlorine can be decomposed during operation, the ratio of hypochlorite to chlorite ions can vary depending on the degree of dilution. A liquid having such a ratio has a high purity, a high bactericidal effect, and a low chlorine odor.
  • the present invention is a method of producing a dry solid containing hypochlorite and chlorite, comprising providing a solution containing hypochlorite ions, chlorate ions and chloride ions.
  • a first reaction step in which sulfuric acid is added to the solution to produce chlorine gas, and the produced chlorine gas is reacted with sodium hydroxide or calcium hydroxide in the recovered liquid A to produce hypochlorite ions.
  • the second reaction step in which sulfuric acid having a higher concentration than in the first reaction step is added to the reaction mother liquor after the first reaction step to generate chlorine dioxide gas,
  • the generated chlorine dioxide gas is reacted with sodium hydroxide and hydrogen peroxide to recover it as chlorite ions, the recovery liquid A and the recovery liquid B are mixed, and the resulting mixed solution is dried.
  • This method regenerates quality-deteriorated sodium hypochlorite and provides a new useful disinfectant.
  • the solid disinfectant manufactured and dried by this method does not change the composition of the content components even when stored at room temperature, and when it is made into a calcium salt, it can conform to the standard of advanced smooth powder that is a food additive .
  • the dry solids completed by this method have the advantage of low chlorine odor, reducing the burden on workers, and being easy to use. It can be said that commercialization is possible.
  • the recovery liquid A contains calcium hydroxide.
  • the method further includes a step of adding hydrogen peroxide to the reaction mother liquor after the first reaction. It is possible to suppress the generation of chlorine gas by the step of adding hydrogen peroxide.
  • the effective chlorine concentration of the recovered liquid B is 9.6 to 33.95. Is within the range.
  • the effective chlorine concentration of the recovered liquid A is 1, whereas the effective chlorine concentration of the recovered liquid B is 9.6 or higher, 9.7 or higher, 9.8 or higher, 9.9 or higher, 10.0 or higher, 11 or higher, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, 21 or more, 22 or more, 23 or more, 24 or more, 25 or more, 26 or more, 27 or more, 28 or more 29 or more, 30 or more, 31 or more, 32 or more, 33 or more, 33.95 or less, 33.9 or less, 33.8 or less, 33.7 or less, 33.6 or less, 33.5 or less, 33 4 or less, 33.3 or less, 33.2 or less, 33.1 or less, 33 or less, 32 or less, 31 or
  • the effective chlorine concentration of the recovered liquid A is 1, whereas the effective chlorine concentration of the recovered liquid B is 9.6, 9.7, 9.8, 9.9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33.
  • the effective chlorine concentration of the recovered liquid B is 20 with respect to the effective chlorine concentration of the recovered liquids A and 1.
  • the effective chlorine concentration of the recovered liquid B is less than 9.6, the effective chlorine is considered to fall below 60%, and the effective chlorine ratio falls under the lower limit since it is not suitable for high-quality powder. If the effective chlorine ratio of the recovered liquid B exceeds 33.95, it does not meet the standards for free residual chlorine and calcium.
  • the recovered liquid A and the recovered liquid B are each made into a slurry and mixed.
  • the entire operation time is shortened and the loss of effective chlorine and the change of the composition can be prevented as compared with the case where the slurry is not slurryed.
  • the step of mixing the recovered liquid A and the recovered liquid B pre-drys the recovered liquid A, forms granulation nuclei, slurries the recovered liquid B, and recovers the recovered liquid B.
  • the step of drying and solidifying includes the step of performing hot air drying for 20 minutes to 30 minutes.
  • the internal environmental temperature is 50 to 60 ° C.
  • the internal humidity is 10% or less.
  • warm air is sent at an air volume of 1.9 m 3 / s.
  • the step of drying and solidifying includes reducing the water contents of the recovered liquid A and the recovered liquid B to 20% or less, respectively.
  • the moisture content is 26% or less, 25% or less, 24% or less, 23% or less, 22% or less, 21% or less, 20% or less, 19% or less, 18% or less, 17% or less, It can be 16% or less, 15% or less, 14% or less, 13% or less, 12% or less, 11% or less, 10% or less. If the water content is 26% or more, the free residual chlorine (hypochlorite ion) in the recovered liquid A reacts with the chlorite ion, the effective chlorine concentration decreases, and the chlorate ion increases. Purity and drying rate are also reduced.
  • the present invention provides a method for producing a new disinfectant from a solution containing hypochlorite ions, chlorate ions, and chloride ions, the concentration of hypochlorite ions in the solution, A step of quantifying the chlorate ion concentration and the chloride ion concentration, a first reaction step of adding sulfuric acid to the solution to generate chlorine gas, and the generated chlorine gas in sodium hydroxide or A step of reacting with calcium hydroxide and collecting it as hypochlorite ions, and adding a higher concentration of sulfuric acid to the reaction mother liquor after the first reaction step than in the first reaction step to produce chlorine dioxide gas.
  • the generated chlorine dioxide gas is reacted with sodium hydroxide and hydrogen peroxide and recovered as chlorite ions;
  • Mixing the liquid B, comprising the steps, a to obtain a new disinfectant it provides a method.
  • the mixture of the recovery liquid A and the recovery liquid B can be used as a disinfectant.
  • This method regenerates quality-deteriorated sodium hypochlorite and provides a new useful disinfectant.
  • the disinfectant produced by this method is a sodium salt, it can meet the standard standard as a food additive of sodium hypochlorite.
  • the solution containing hypochlorite ion, chlorate ion and chloride ion is a solution containing hypochlorite whose quality has deteriorated.
  • the solution containing the deteriorated hypochlorite is derived from a low salt grade sodium hypochlorite solution.
  • the solution containing degraded hypochlorite is derived from a general grade sodium hypochlorite solution.
  • the chlorine dioxide gas mixed in the recovered liquid A it is important to control the chlorine dioxide gas mixed in the recovered liquid A by adjusting the sulfuric acid concentration, and the acidity in the reaction mother liquor during the first reaction should not decompose chlorate ions. is important.
  • the sulfuric acid during the second reaction depends on two factors: the sulfuric acid concentration used and the sulfuric acid concentration in the reaction mother liquor during the second reaction. Moreover, it is better that the sulfuric acid concentration used in the second reaction is high. In the second reaction, only the sulfuric acid concentration in the reaction mother liquor is not important.
  • the solution containing the deteriorated hypochlorite is derived from a low salt grade sodium hypochlorite solution
  • the disinfectant is a solid product
  • the reaction in the first reaction step The sulfuric acid concentration in the mother liquor is 4.00 to 6.37%
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step is 30.00 to 40.00%
  • the sulfuric acid concentration used in the second reaction step Is 50.0 w / w% to 70.0 w / w%.
  • the sulfuric acid concentration in the reaction mother liquor in the first reaction step is 4.00%, 4.10%, 4.20%, 4.30%.
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step may be 30.0%, 31.0%, 32.0%, 33.0%, 34.0%, 35.0%. %, 36.0%, 37.0%, 38.0%, 39.0% or 40.0%, and the sulfuric acid concentration used in the second reaction step is 50.0 w / w%.
  • the solution containing the deteriorated hypochlorite is derived from a low salt grade sodium hypochlorite solution
  • the disinfectant is a liquid product
  • the reaction in the first reaction step The sulfuric acid concentration in the mother liquor is 4.00 to 6.37%
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step is 30.00 to 59.04%
  • the sulfuric acid concentration used in the second reaction step Is 50.0 w / w% to 70.0 w / w%.
  • the disinfectant is a liquid product
  • the sulfuric acid concentration in the reaction mother liquor in the first reaction step is 4.00, 4.10%, 4.20%, 4.30%, 40%, 4.50%, 4.60%, 4.70%, 4.80%, 4.90%, 5.00%, 5.10%, 5.20%, 5.30%, 5 .40%, 5.50%, 5.60%, 5.70%, 5.80%, 5.90%, 6.00%, 6.10%, 6.20%, 6.30% or 6
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step was 30.0%, 31.0%, 32.0%, 33.0%, 34.0%, 35.0%, 36 0.0%, 37.0%, 38.0%, 39.0%, 40.0%, 41.0%, 42.0%, 43.0%, 44.0%, 45.0%, 46 0.0%, 47 0%, 48.0%, 49.0%, 50.0%, 51.0%, 52.0%, 53.0%, 54.0%, 55.0%, 56.0%, 57.
  • the sulfuric acid concentration used in the second reaction step was 50.0 w / w%, 51.0 w / w%, 52.0 w / w%, 53.0 w / w%, 54.0 w / w%, 55.0 w / w%, 56.0 w / w%, 57.0 w / w%, 58.0 w / w%, 59.0 w / w %, 60.0 w / w%, 61.0 w / w%, 62.0 w / w%, 63.0 w / w%, 64.0 w / w%, 65.0 w / w%, 66.0 w / w% 67.0 w / w%, 68.0 w / w%, 69.0 w / w%, or 70.0 w / w%.
  • the solution containing the deteriorated hypochlorite is derived from a general grade sodium hypochlorite solution
  • the sulfuric acid concentration in the reaction mother liquor in the first reaction step is 4.00-4.
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step is 25.00 to 30.00%, and the sulfuric acid concentration used in the second reaction step is 65 w / w%.
  • the sulfuric acid concentration in the reaction mother liquor in the first reaction step is 4.00%, 4.10%, 4.20%, 4.30%, 4.40%, or 4.50%.
  • the sulfuric acid concentration in the reaction mother liquor in the second reaction step is 25.0%, 26.0%, 27.0%, 28.0%, 29.0% or 30.00%
  • the sulfuric acid concentration used in the reaction step is 65 w / w%.
  • the recovery liquid A contains sodium hydroxide or calcium hydroxide.
  • the recovery liquid B contains sodium hydroxide and hydrogen peroxide.
  • the reaction step can be performed while blowing air. Air serves to prevent chlorine gas and chlorine dioxide gas generated in the reaction tank from returning to the solution and preventing the reverse reaction from proceeding.
  • the first reaction step is performed while blowing air.
  • the second reaction step is performed while blowing air.
  • an intermediate trap tank containing hydrogen peroxide is provided between the reaction tank and the recovery tank containing the recovery liquid B.
  • the intermediate trap tank prevents chlorine gas from being mixed into the recovered liquid B.
  • the method further includes a step of adding hydrogen peroxide to the reaction mother liquor after the first reaction.
  • a step of adding hydrogen peroxide during the second reaction chlorine gas generation is suppressed.
  • the effective chlorine concentration of the recovery liquid A is 0.43 to 0.6, where the effective chlorine concentration of the recovery liquid A is 1. . In one embodiment, the effective chlorine concentration of the recovered liquid A is 1, and the effective chlorine concentration of the recovered liquid B is 0.43 or higher, 0.44 or higher, 0.45 or higher, 0.46 or higher, 0.47 or higher.
  • the disinfectant contains sodium hypochlorite.
  • the disinfectant is a food additive, a standard conforming product of sodium hypochlorite.
  • the disinfectant is (1) Contains 4.0% or more of effective chlorine, (2) There is a smell of chlorine, (3) Presents the reaction of sodium salt and hypochlorite, (4) A solution obtained by adding 100 ml of a phosphate buffer (pH 8) to 4 ml of an aqueous solution (1 ⁇ 25) of this product has a maximum absorption part at a wavelength of 291 to 294 nm. (5) When red litmus paper is immersed in this product, the litmus paper turns blue and then fades.
  • the sterilizing agent comprises SO 4 system components below the detection limit or 8100Ppm.
  • the SO 4 -based component may be 8000 ppm or less, 7000 ppm or less, 6000 ppm or less, 5000 ppm or less, 4000 ppm or less, 3000 ppm or less, 2000 ppm or less, or 1000 ppm or less.
  • the SO 4 -based component may be 100 ppm or more, 200 ppm or more, 300 ppm or more, 400 ppm or more, 500 ppm or more, 600 ppm or more, 700 ppm or more, 800 ppm or more, 900 ppm or more, 1000 ppm or more, 1100 ppm or more.
  • This SO 4 -based component is entrainment of sulfuric acid contained in the reaction tank, and the amount of SO 4 -based component can be one of the indicators that the chlorine oxide is produced according to the present invention.
  • the ratio of hypochlorite ion to chlorite ion in the disinfectant is 1: 0.24 to 0.3.
  • the chlorite ion derived from the recovered liquid B is obtained by ion chromatography, converted to effective chlorine, and the total effective chlorine Deducted from. Further, the remaining effective chlorine was determined as effective chlorine derived from the recovered liquid A, and a coefficient was multiplied to obtain hypochlorite ions to obtain a final ion ratio.
  • the ratio of hypochlorite ion to chlorite ion in the disinfectant is such that the hypochlorite is an arbitrary numerical value or a numerical range between 0.24 and 0.3, where hypochlorite is 1. Can be within. For example, if hypochlorite is 1, the chlorite is 0.24, 0.25, 0.26, 0.27, 0.28, 0.29 or 0.30.
  • the disinfectant having such a ratio has high purity, high bactericidal effect, and low chlorine odor.
  • the effective chlorine concentration in the disinfectant is about 60,000 ppm and the free residual chlorine concentration is in the range of about 60,000 ppm.
  • the effective chlorine concentration in the disinfectant is 55,000 ppm, 56,000 ppm, 57,000 ppm, 58,000 ppm, 59,000 ppm, 60,000 ppm, 61,000 ppm, 62,000 ppm, 63,000 ppm, 64,000 ppm, 65 Can be within the range of any combination of these numbers.
  • the effective chlorine concentration in the disinfectant is 60,114 ppm, 60,814 ppm.
  • the free residual chlorine concentration in the disinfectant is 55,000 ppm, 56,000 ppm, 57,000 ppm, 58,000 ppm, 59,000 ppm, 60,000 ppm, 61,000 ppm, 62,000 ppm, 63,000 ppm, 64,000 ppm, It can be 65,000 ppm and can be within the range of any combination of these numbers. As one specific example, they are 58,157 ppm and 59,380 ppm. A disinfectant having such a concentration has a high purity, a high bactericidal effect, and a low chlorine odor.
  • the present invention provides a bactericidal disinfectant produced by any of the above methods.
  • the ratio of hypochlorite ion to chlorite ion in the disinfectant is 1 to 0.24 to 0.3.
  • the ratio of hypochlorite ion to chlorite ion in the disinfectant is such that the hypochlorite is an arbitrary numerical value or a numerical range between 0.24 and 0.3, where hypochlorite is 1.
  • the disinfectant having such a ratio has high purity, high bactericidal effect, and low chlorine odor.
  • the effective chlorine concentration in the disinfectant is about 60,000 ppm and the free residual chlorine concentration is about 60,000 ppm.
  • the effective chlorine concentration in the disinfectant is 55,000 ppm, 56,000 ppm, 57,000 ppm, 58,000 ppm, 59,000 ppm, 60,000 ppm, 61,000 ppm, 62,000 ppm, 63,000 ppm, 64,000 ppm, 65 Can be within the range of any combination of these numbers. Specific examples are 60, 114 ppm and 60, 814 ppm.
  • the free residual chlorine concentration in the disinfectant is 55,000 ppm, 56,000 ppm, 57,000 ppm, 58,000 ppm, 59,000 ppm, 60,000 ppm, 61,000 ppm, 62,000 ppm, 63,000 ppm, 64,000 ppm, It can be 65,000 ppm and can be within the range of any combination of these numbers. As one specific example, they are 58,157 ppm and 59,380 ppm. A disinfectant having such a concentration has a high purity, a high bactericidal effect, and a low chlorine odor.
  • a liquid chloroxide produced using the dry solid comprising: (a) dissolving the dry solid in water to prepare an elevated pH solution.
  • the pH of step (a) can be 10.0 or higher.
  • the pH of step (b) can be 10.0 or higher.
  • This method may be the method shown in Japanese Patent No. 593253.
  • the calcium salt may remain as a residue, and there is a concern about the problem of foreign matter contamination in the food for the end processor who performs food processing.
  • processing of a large amount of calcium salt is very troublesome.
  • This liquid chlorine oxide is useful because calcium is removed. Even in long-term storage, there is an effect of not precipitating calcium salt.
  • the product completed by this method has the advantage that it has a lower chlorine odor than the sodium hypochlorite solution of the same concentration, which reduces the burden on workers and is easy to use.
  • the liquid or liquid chloroxide having a calcium concentration substantially below the detection limit is provided.
  • the calcium concentration in the chlorine oxide-containing liquid is 24 ppm or less.
  • the calcium concentration in the chlorine oxide-containing liquid is more preferably 23 ppm or less, 22 ppm or less, 21 ppm or less, 20 ppm or less, 19 ppm or less, 18 ppm or less, 17 ppm or less, 16 ppm or less, 15 ppm or less, 14 ppm or less, 13 ppm or less, 12 ppm or less, 11 ppm or less, 10 ppm or less, 9 ppm or less, 8 ppm or less, 6 ppm or less, 5 ppm or less, 4 ppm or less, 3 ppm or less, 2 ppm or less, 1 ppm or less, 0.9 ppm or less, 0.8 ppm or less, 0.7 ppm or less 0.6 ppm or less, 0.5 ppm or less
  • use of the dry solid, the liquid, or the liquid or liquid chloroxide as a disinfectant is provided.
  • use of the dry solid, the liquid, the disinfectant, or the liquid or liquid chloroxide as a food additive is provided.
  • use of the dry solid, the liquid, the disinfectant, or the liquid or liquid chloroxide for sterilizing food is provided.
  • a method for producing a new drug from a solution comprising hypochlorite ions, chlorate ions and chloride ions comprising the concentration of hypochlorite ions in the solution, chlorine A step of quantifying the acid ion concentration and the chloride ion concentration, a first reaction step of adding sulfuric acid to the solution to generate chlorine gas, and the generated chlorine gas in sodium hydroxide or water in the recovered liquid A A step of reacting with calcium oxide and recovering it as hypochlorite ions, and adding a higher concentration of sulfuric acid to the reaction mother liquor after the first reaction step to produce chlorine dioxide gas.
  • the generated chlorine dioxide gas is reacted with sodium hydroxide and hydrogen peroxide to recover it as chlorite ions, and the recovered liquid A Mixing the liquid B, comprising a step of obtaining a new drugs.
  • This method may have one or more of the characteristics of replacing the germicide as defined above with a drug.
  • a medicament produced by this method is provided.
  • the drug may have one or more of the characteristics of replacing the disinfectant as defined above with a drug.
  • Use of the drug as a disinfectant, use as a food additive, and use for disinfecting food can be provided.
  • the chlorine oxide produced according to the present invention uses sodium hypochlorite with reduced quality as a raw material, and therefore can contain various components in the raw material. Also in the step of treating sodium, various reactions can proceed to produce various components including various chlorine oxides. Therefore, although the recovered liquid A and the recovered liquid B can contain hypochlorite and chlorite as main components, respectively, not all components can be identified. Therefore, the disinfectant of the present invention produced by mixing the recovered liquid A and the recovered liquid B may contain components that cannot be identified, although they satisfy the standards of sodium hypochlorite and the standards of high-quality powder. . There is a possibility that such unidentified components may contribute to the improvement of the bactericidal effect and the stability, and the effect is different from the case of simply combining hypochlorite and chlorite. It is assumed that it will be obtained.
  • the amount of sulfate ion was measured by the following test method (ion chromatography).
  • Preparation of the sample solution The sample is diluted by adding water, and adjusted to 0 to 40 mg / L as sulfate ions.
  • Preparation of standard solution for calibration curve Reagent anion mixed standard IV manufactured by Kanto Chemical Co., Ltd. is used as the standard solution. (1 mL of this solution contains about 40 ⁇ g of sulfate ions).
  • Measurement conditions Use an ion chromatograph with an electrical conductivity detector (suppressor system) and measure under the following conditions.
  • Degraded sodium hypochlorite contains hypochlorite ion, chloride ion, and chlorate ion.
  • chlorate ion which is expected to be difficult to decompose, was reacted with sulfuric acid. A preliminary verification of the case was performed. Moreover, the sodium chlorate section was set in order to compare the reactivity.
  • chlorine dioxide gas was easily generated by reacting sodium chlorate with sulfuric acid, and chlorite ions could be obtained through sodium hydroxide.
  • the yield of chlorite ions was improved by adding hydrogen peroxide to sodium hydroxide.
  • chlorite ions could not be recovered from deteriorated sodium hypochlorite, only chloride ions could be recovered. Furthermore, when hydrogen peroxide was added to sodium hydroxide, chloride ions were recovered. As a result, the amount of recovered material increased.
  • this production method uses degraded sodium hypochlorite as the reaction mother liquor, but from this one reaction mother liquor, it is necessary to recover the chlorine gas as the first reaction and then to recover the chlorine dioxide gas. In addition, it has been found that it is necessary to separate and collect these gases and combine them later.
  • the reaction model is a first reaction in which chlorine gas is generated from a reaction mother liquor in which deteriorated sodium hypochlorite and a sulfuric acid solution are added, and hypochlorite ions are recovered with sodium hydroxide or calcium hydroxide.
  • hypochlorite ions are recovered with sodium hydroxide or calcium hydroxide.
  • Degradation following reaction 2 The amount of chlorate ion in the deteriorated sodium hypochlorite is small, and the reactivity is poor just by adding sulfuric acid dropwise little by little, so the batch type reaction is performed, and the sulfuric acid concentration to be added is increased to 65 w / w%. Furthermore, it was considered to generate chlorine gas and chlorine dioxide gas stepwise by raising the temperature during the reaction. Also, two types of recovery liquid A and recovery liquid B are prepared. In the first reaction, hypochlorite ions are recovered by the recovery liquid A, and after completion of the first reaction, the piping is switched. Thought to recover.
  • reaction 3 In order to confirm the sulfuric acid concentration necessary for generating chlorine gas preferentially during the first reaction, the reaction was carried out with the sulfuric acid concentration set to 50 w / w%. The sulfuric acid concentration in the reaction mother liquor at this time is 25.0%.
  • the chlorine gas recovery in the first reaction and the chlorine dioxide gas recovery in the second reaction could be further controlled stepwise.
  • the recovery rate of chlorite ions in the recovery liquid B to which sodium hydroxide and hydrogen peroxide were added was improved.
  • chlorite ions were also recovered in the recovered liquid A, possibly due to chlorine dioxide gas contamination, and generation of chlorate ions occurred because hydrogen peroxide could not be added. For this reason, it turned out that it is necessary to examine not only the concentration of sulfuric acid but also the method of adding sulfuric acid.
  • the concentration and amount of sulfuric acid in the first reaction and the second reaction, and the temperature were set, and the chlorine gas and the chlorine dioxide gas were separately collected and recovered by adding sulfuric acid twice.
  • the sulfuric acid concentration used in the first reaction was 50 w / w%, and the input amount was 25 g, so that the sulfuric acid concentration in the reaction mother liquor was 5.6%.
  • the sulfuric acid concentration was 65 w / w%, and the input amount was 250 g, so that the sulfuric acid concentration in the reaction mother liquor was 36.8%.
  • chlorine dioxide gas mixed in the recovered liquid A could be reduced, and chlorite ions and chlorate ions could be reduced.
  • the amount of chlorite ions recovered in the recovered liquid B increased by 20% from the previous level, exceeding the expected value of 60%.
  • chlorate ions are decomposed. It turned out that it was important not to let it.
  • each of the recovery liquids A and B was provided with a preliminary recovery tank. In addition, the timing of blowing air was advanced so that air was blown into the reaction vessel immediately after the raw materials were added, and the air volume was gradually increased.
  • reaction mother liquid after the first reaction contained 24378.5 ppm to 33990.4 ppm of chlorate ions. It turned out that it has increased to. Conversely, it was also found that the chloride ion decreased from 50079.5ppm to 23532.4ppm. This increase in chlorate ion is thought to be due to the increase in chlorate ion due to the re-proportionation reaction in the strong acidification by the addition of sulfuric acid, and hydrochloric acid is also generated due to the decrease in chloride ion during the addition of sulfuric acid. It was thought that it contributed to the reaction.
  • Chloride ions formed in the deteriorated sodium hypochlorite form hydrochloric acid in the presence of sulfuric acid. Then, in the second reaction, chlorine dioxide gas is formed from hydrochloric acid and chloric acid. Will occur.
  • the recovery rate of recovered liquid B increased from 63.04% to 74.48% recovery rate for effective chlorine and 71.03% to 78.91% recovery rate for chlorite ion. It was thought that it was doing. Also in this test, it was also confirmed that the reaction mother liquor after completion of the first reaction had increased chlorate ions and decreased chloride ions.
  • the sulfuric acid at the first reaction depends on the sulfuric acid concentration in the reaction mother liquor at the first reaction, regardless of the sulfuric acid concentration to be added.
  • the sulfuric acid during the second reaction depends on two factors: the sulfuric acid concentration used and the sulfuric acid concentration in the reaction mother liquor during the second reaction. Moreover, it is better that the sulfuric acid concentration used in the second reaction is higher, and 70% w / w is at least 65% w / w or higher. In the second reaction, only the sulfuric acid concentration in the reaction mother liquor is not important. I understood that.
  • the recovery rate of recovered liquid B exceeds 80% and is very good, but chloride ions are higher in concentration than chlorite ions, and this composition can only be used with sodium hypochlorite standards. .
  • general grade sodium hypochlorite is characterized by a lower chemical unit price than low-sodium sodium hypochlorite, a large amount of chloride ions in the composition, and high chlorate ions from the beginning. is there.
  • the chloride ion in the raw material was excessive, so the sulfuric acid concentration in the reaction mother liquor during the first reaction was set to a low 4.47%. Furthermore, during the second reaction, chlorate ions in the reaction mother liquor were set. In order to completely decompose, sodium chloride was additionally added to actively promote hydrochloric acid formation.
  • the recovery liquid A uses 10% calcium hydroxide, and when the recovery rate of the recovery liquid B is obtained excessively, the tendency of increasing chloride ions in the recovery liquid B has been confirmed. Therefore, it was recovered after passing through an intermediate trap tank (containing hydrogen peroxide). In addition, about the chloride ion at this time, it was considered that hydrochloric acid was entrained from the reaction tank or chlorine gas was mixed.
  • the recovery rate of recovered liquid B is in the 20% range, a large amount of chloride ions are recovered in the chloride ion recovery trap tank (containing hydrogen peroxide), and the chloride ions in recovered liquid B are also high. showed that.
  • the reaction for decomposing chlorate ions has a main reaction and a side reaction, and the reaction ratio varies depending on the reaction conditions.
  • the side reaction is considered to proceed easily.
  • the sulfuric acid concentration in the reaction mother liquor during the second reaction was set to 30%. This is because when the sulfuric acid concentration is about 20%, about 20% of chlorate ions remain, and the total decomposition has not been achieved.
  • hydrogen peroxide was added before adding sulfuric acid. Originally, hydrogen peroxide is often added for the purpose of suppressing generation of chlorine dioxide, or generates chlorine dioxide gas at a low sulfuric acid concentration, and often exhibits different reactions depending on conditions. This time, it tried adding for the purpose of side reaction suppression by hydrogen peroxide addition.
  • the effective chlorine in the recovered liquid B was measured every hour, a recovery graph of effective chlorine was prepared, and at the same time, the change in the composition in the recovered liquid B was confirmed.
  • the intermediate trap tank by performing the chlorine gas cleaning by passing the hydrogen peroxide solution through the intermediate trap tank, it plays the role of removing chloride ions, and as a result, the high-purity recovered liquid B can be recovered, and then the drying step By carrying out, it reaches a level that can be concentrated to a high concentration.
  • both chlorine dioxide gas and chlorine gas are always generated as shown in the reaction formulas (13) and (14).
  • hydrogen gas is used, so that chlorine gas Even if chlorine dioxide gas is allowed to pass through by washing, only half the amount of chlorine gas generated can be removed by reaction formulas (15) and (16).
  • chlorine dioxide gas which is also an oxidizing agent, reacts. Therefore, the recovery liquid in the present invention using sodium hypochlorite as a raw material must be chlorinated. Contain ions.
  • the amount of sodium hydroxide in the recovered liquid B in the second reaction is examined.
  • the amount of alkali in the second reaction is preferably excessive in order to prevent omission of recovery, but if there are a large number of inorganic alkali salts, the concentration rate when dried is lowered and the final concentration is also lowered.
  • the T.O. AL is 515.46, and after the reaction is 149.25, the T. of 366.21. It was found that AL was consumed in the reaction. And although the recovery rate of the recovery liquid B tends to decrease somewhat, the drying efficiency increases, so that it can be dried to a powder containing very high concentration of effective chlorine.
  • the chlorate ion after the first reaction was decomposed by 5.15%, and for the chloride concentration of 43429 ppm in the raw material, there was still excessive sulfuric acid, and the decomposition rate of the chlorate ion varied somewhat. I was able to confirm that.
  • the reaction was carried out at a sulfuric acid concentration of 30% against the chloride concentration of 18225 ppm in the reaction mother liquor after the completion of the first reaction, but almost all chloride ions and chlorate ions were produced in the recovered solution B. Because there was no reaction, the main reaction could be mainly performed, and it could be recovered with high purity.
  • the sulfuric acid concentration that can be input is determined by the chloride concentration in the raw material, and if sulfuric acid for completely decomposing effective chlorine in the raw material is input, depending on the chloride concentration, chloric acid Since ions may decrease and the yield thereafter decreases, the sulfuric acid concentration during the first reaction is determined by the chloride concentration in the raw material. If the chloride concentration is excessive, it is effective. Even if the chlorine concentration is high, a large amount of sulfuric acid cannot be added.
  • the chlorate ion concentration after the completion of the first reaction was increased to 118.24%, and the recovery rate of the recovered liquid B after the second reaction was 93.7%.
  • the chloride ion in the collection liquid B increased to 3827 ppm, and it was confirmed that increasing the sulfuric acid concentration to increase the recovery rate causes a by-product of chloride ion.
  • the concentration of chloride in the recovered liquid B may be high.
  • the concentration rate during drying will decrease. As a result, it becomes impossible to produce high-concentration high-quality powder.
  • chloride concentration in the raw material is already excessive for the reaction.
  • Chlorine gas-derived chloride ions are generated in the recovered liquid B. This event occurs when the sulfuric acid concentration is high, or when the chloride concentration in the raw material is high, but when producing a solid product by this method, the chloride ion in the recovered solution B must be about 4000 ppm. Since it cannot be concentrated to a high concentration, 40.0% is the upper limit. (However, since it is not necessary to consider the concentration rate when manufacturing a liquid product, it is not limited to this, and it is good up to 59.4%.)
  • Appropriate sulfuric acid concentration during the first reaction requires that effective chlorine be converted to chlorine gas without decomposing chlorate ions in the raw material.
  • the reaction mother liquor The sulfuric acid concentration in is determined.
  • the reaction mother liquor after the completion of the first reaction is the raw material, but the raw material contains a sufficient amount of chloride for the reaction and is often somewhat excessive. If the sulfuric acid concentration in the reaction mother liquor is increased too much, the side reaction proceeds to generate only chlorine gas, and a large amount of chloride ions are generated in the recovered liquid B. The same applies if the sulfuric acid concentration is too low.
  • an appropriate sulfuric acid concentration at the time of the second reaction is that the chlorate ions in the reaction mother liquor are totally decomposed, side reactions are controlled, and a large amount of chloride ions are not generated in the recovered solution B.
  • the sulfuric acid concentration in the reaction mother liquor of the second reaction is as follows.
  • Recovered liquid A and recovered liquid B were obtained while reacting with deteriorated sodium hypochlorite as a raw material, while preventing the regeneration of chlorate ions.
  • the effective chlorine concentration of the recovered liquid A is 1 and the effective chlorine concentration of the recovered liquid B is 0.6 as the upper limit, and 0.7 is hypochlorous acid in the confirmation test (1).
  • the item (3) was nonconforming. Therefore, considering the configuration for the purpose of the present invention, it is desirable to combine them at an effective chlorine concentration ratio of 0.43 to 0.6.
  • the disinfectant manufactured with this effective chlorine concentration ratio conformed to the standard standard as sodium hypochlorite by analysis of an external organization.
  • the free residual chlorine concentration is measured with a DPD reagent, but it is measured at 58,157 to 59,380 ppm, and since an effective chlorine concentration and an approximate value are obtained, a reaction is shown in addition to hypochlorous acid. It is possible.
  • the concentration of chlorite ion derived from the recovered liquid B was obtained by ion chromatography, converted to an effective chlorine concentration, and subtracted from the total effective chlorine concentration. Further, the remaining effective chlorine concentration was determined as the effective chlorine concentration derived from the recovered liquid A, and the hypochlorite ion concentration was obtained by multiplying by a coefficient to obtain the final ion ratio.
  • Effective chlorine concentration ⁇ 0.476 chlorite ion concentration (ClO 2 -)
  • Effective chlorine concentration ⁇ 0.726 hypochlorite ion concentration (ClO -)
  • This conversion formula was obtained by using a known concentration of chlorite ion or hypochlorite ion to derive a relationship with the effective chlorine concentration.
  • the initial effective chlorine concentration produced about 6.94% disinfectant, but even at refrigeration temperature (6 °C), the effective chlorine concentration is about 5% (about 72%) at D + 30. At 40 ° C, the effective chlorine concentration decreased to about 3.8% (about 54%) at D + 3, and sterilization that contained both hypochlorite and chlorite ions. It has been found that disinfectants (liquids) are very poor in preservability and are difficult to sell at room temperature, and are preferably sold refrigerated.
  • the effective chlorine concentration of the recovered liquid A is set to 1, and the effective chlorine concentration of the recovered liquid B is adjusted within the range of 9.6 to 33.95, and the drying process is performed.
  • the recovered liquids B and 9.6 are mainly used for the recovered liquids A and 1.
  • the yield deteriorates depending on the drying process and the order of charging.
  • free residual chlorine is easily decomposed, granulated nuclei are formed in advance only with the recovered liquid A, and then the recovered liquid B is A certain amount of concentration is advanced to make a slurry.
  • the recovered liquid B is A certain amount of concentration is advanced to make a slurry.
  • the advanced smooth powder produced by this method has a special composition compared to the commercially available advanced smooth powder, so it is not sold as a single advanced powder, but a sterilizer (food additive formulation). Or consider selling it as a disinfectant formulation.
  • the drying condition is that the internal environmental temperature is 50-60 ° C. and the internal humidity is 10% or less. Moreover, warm air is sent in at 1.9 m3 / s. The hot air at this time does not need to be directly applied to the liquid in the drying chamber, and the purpose is to maintain the temperature and humidity in the chamber.
  • the yield and content composition after drying are more stable when the granulation nucleus of the recovered liquid A and the slurry of the recovered liquid B are respectively formed and mixed.
  • hypochlorite ions and chlorite ions are mixed, effective chlorine is decomposed, and simultaneously chloride ions and chlorate ions are generated. In this case, not only the effective chlorine concentration of the final product is lowered, but also the purity is lowered by the subsidiary components.
  • the stability when liquid A and liquid B are mixed and dried is affected by two factors: the amount of water retained before drying, and the effective chlorine ratio when recovered liquid A and recovered liquid B are mixed. It was.
  • the formation of granulated nuclei with the recovered liquid A and the formation of the slurry with the recovered liquid B have resulted in improved workability and stability if dried to some extent in advance. As a guideline, it is better to pre-dry each until the total water content before drying becomes 20% or less.
  • the effective chlorine ratio when mixing the recovered liquid A and the recovered liquid B 1:20 is the highest in purity because no secondary component is generated, so that the recovered liquid A and the recovered liquid B exist stably.
  • the effective chlorine ratio was set to 1:20, and the water content was most preferably 20% or less.
  • Chlorite ion contains 1: 5.53-23.18.
  • composition of recovered liquids A and B and combined drying result (1: 33.95) It is a measurement result when the recovered liquid A is set to 1 in the effective chlorine ratio, and the recovered liquid B is mixed at 33.95 and dried. However, if the effective chlorine ratio of the recovered liquid B becomes too high, free residual chlorine and calcium Cases that do not conform to the standard are assumed. As a result of this ratio, the calcium ion concentration after drying is 5.64%, which is the lower limit of the condition that the amount of calcium in the high-quality salty powder is suitable, so this effective chlorine ratio is almost the upper limit.
  • composition of recovered liquids A and B and combined drying results (list) Composition of recovered liquids A and B and combined drying results (list)
  • (1) if there is a large amount of free residual chlorine, hypochlorite ions and chlorite ions react to reduce effective chlorine, and chloride ions and chlorate ions are generated. In this case, not only the decomposition of effective chlorine but also subcomponents that do not contribute to effective chlorine are generated, so that the dry concentration rate also decreases and the effective chlorine concentration becomes the lowest.
  • this production method is obtained from the reaction of chlorine gas, it contains about 1140 ppm or more of sulfate ions, and these sulfate ions are entrained with sulfuric acid contained in the reaction tank, and the recovered liquid contains calcium hydroxide. Because it exists in excess, it is mainly in the form of sodium sulfate.
  • composition when calcium is removed from the solid product Add ion-exchanged water and dissolve so that the effective chlorine concentration after dilution of the recovered solution after removal of Ca is 1%, 6%, and 12% based on the following recipe and Ca removal formula (*) Stirring was performed for 15 minutes with a stirrer so that there was no residue. (The 20% sodium carbonate solution obtained from the relational expression was added and the mixture was stirred for 1 minute.) Next, the mixture was allowed to stand in an incubator at 10 ° C. for 19 hours (to obtain a clear supernatant) and the precipitate was sucked Collect the supernatant so that it does not.
  • 0.05mol / L EDTA solution 1ml 3.705mgCa (OH) 2 ⁇ Standards for Food, Additives, etc.
  • Direct titration method with EDTA solution (first method) and after adding excess EDTA, acetic acid
  • second method back titration method
  • titration is performed with a zinc solution.
  • first method direct titration method with EDTA solution
  • second method back titration method
  • 10 ml of the test solution specified by the first method add 50 ml of water, add 10 ml of potassium hydroxide solution (1 ⁇ 10) and leave it for about 1 minute, then add about 0.1 g of NN indicator and immediately add 0.05 mol.
  • Titrate with / LEDTA solution The end point is when the reddish purple color of the liquid completely disappears and becomes blue.
  • the specimen was preliminarily dried from the collected liquid A to form granulated nuclei, and the preliminarily dried collected liquid B was mixed and dried.
  • the ORP oxidation-reduction potential
  • chlorine gas concentration The ORP (oxidation-reduction potential) and chlorine gas concentration were measured for the specimen (1) and specimen (2), which were the prepared mixed solution (hypochlorous acid Na standard). Further, a sodium hypochlorite solution having the same concentration was used as a comparative control. As a result, the ORP (oxidation-reduction potential) did not change even when sodium hypochlorite was diluted, whereas the oxidizing power increased by diluting both the specimens (1) and (2). Further, with respect to the chlorine gas concentration, almost no chlorine gas was released even when it was brought into contact with an organic substance, and the superiority that only about 1/31 to 1/50 was measured was confirmed.
  • the liquid product can confirm the superiority of the bactericidal effect for both the number of general viable bacteria and the number of coliforms. It was.
  • the solid product it was confirmed in the 2nd section before and after calcium removal in the high-quality salty powder, the bactericidal effect on the coliform group can be confirmed as well, and the overall characteristics of the bactericide in the present invention are as follows. It confirmed that the bactericidal effect with respect to was high.
  • the recovery rate may be improved by adding sodium chloride to the reaction mother liquor as in the R2 method. If this happens, it may be possible to reduce the cost of using sulfuric acid, so the second reaction is carried out using the reaction mother liquor (deteriorated sodium hypochlorite + sulfuric acid) that has finished the first reaction. 50% sulfuric acid and sodium chloride were added, and the decomposition rate of chlorate ions and the recovery rate in the recovered liquid B were confirmed.
  • the temperature condition for the primary reaction is preferably to react at room temperature around 30 ° C. I understood. Further, it is considered that raising the temperature too much is not preferable because steam is generated and entrainment of sulfuric acid, hydrochloric acid or the like increases in the recovered liquid.
  • the chlorate ion increased as the acidity increased rather than the influence of temperature.
  • the generation of hydrochloric acid is considered to progress, and as a result, chlorite ions and chlorate ions are detected in the recovered liquid A, and the recovery rate may be deteriorated. It is not preferable to excessively increase the sulfuric acid concentration.
  • reaction conditions differ depending on the grade of sodium hypochlorite (low salt grade and general grade) used as a raw material.
  • the recovered solution is recovered only with sodium hydroxide or calcium hydroxide in the first reaction, and is recovered by adding hydrogen peroxide to sodium hydroxide in the second reaction.
  • an intermediate tank is provided between the reaction tank and the recovery tank to prevent backflow.
  • hydrogen peroxide water is added to prevent chlorine gas from entering. It is good to add.
  • the effective chlorine in the recovery liquid A is set to 1, and the effective chlorine in the recovery liquid B should not exceed 0.6, and is preferably adjusted within the range of 0.43 to 0.6 from the features of the present invention.
  • the effective chlorine of the recovered liquid A is set to 1 and the effective chlorine of the recovered liquid B to 33.95 or less, but considering the characteristics of this product, 1: 9 .6 is desirable.
  • the dry solid produced by these methods has a very low decomposition of free residual chlorine, and becomes a chlorine oxide solid in a state where the composition of the content liquid is maintained for a long period of time.
  • the invention makes it possible not only to dispose of the deteriorated sodium hypochlorite as a raw material, but to dispose of it or restore it to inexpensive sodium hypochlorite, as well as add value to the end consumer. It can be regenerated to a certain disinfectant.
  • composition of the present invention is useful as a disinfectant.
  • the method of the present invention regenerates degraded sodium hypochlorite and provides a new useful disinfectant.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

保管中に品質低下した次亜塩素酸ナトリウムから新しい殺菌消毒剤を製造する方法を提供すること。次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液から新たな殺菌消毒剤を製造する方法であって、該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と、回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、回収液Aと回収液Bとを混合し、新たな殺菌消毒剤を得る工程と、を包含する、方法。

Description

劣化次亜塩素酸塩から新規塩素酸化物組成物を得る製法
 本発明は、保管中に塩素が分解してしまい、塩化物イオンや塩素酸イオンを生成してしまった次亜塩素酸ナトリウムを再生し、新たに有用な殺菌消毒剤を得るものである。
 次亜塩素酸ナトリウムは水酸化ナトリウム溶液に塩素を通じて得られる塩素液体であり、上水道、プール、食品添加物としての有用な殺菌消毒剤として知られているが、その一方で、不安定であるため塩素成分は保管中に分解し、塩化物イオン(Cl-)や、不均化反応により塩素酸イオン(ClO3 -)を生成し、その効力を失っていく。また、塩素酸イオン(ClO3 -)が乾燥結晶化した状態では、摩擦などにより発火、爆発など事故が後を絶えず、廃棄方法には注意を要する。
 一方で、次亜塩素酸ナトリウムの大規模製造業者は冷却機などを用いて温度管理を行う事で品質低下を防止しているが、主に食品製造業者などの少量使用者向けの小分け業者は温度管理が難しく、保管中に品質が低下してしまい、上述の問題が発生してしまう。
 また、次亜塩素酸ナトリウム中の次亜塩素酸イオンが減少し、塩化物イオンや塩素酸イオンの含有量が多くなると通常使用が難しくなり、その廃棄には脱塩素・中和して廃棄するか、業者に引き取ってもらうことになり、そこで廃棄を行うことになる。
特許第5931253号
 このような問題を本発明では解消し、保管中に品質低下してしまった次亜塩素酸ナトリウムまたは、回収した次亜塩素酸ナトリウムを資源として見なし、再反応させることで、新たに有用な価値をもった殺菌消毒剤を生産することにした。また、完成した殺菌消毒剤は、内容成分を再反応させることで次亜塩素酸イオン、亜塩素酸イオンの両方を含むこれまでに無い塩素酸化物液体を完成させるとともに、さらに乾燥させることによって、長期保存しても内容成分が変化しない固体も製造することに成功した。そして、この殺菌消毒剤は、殺菌効果の向上だけでは無く、塩素臭気も少ないという利点もあり、リサイクルに伴う製造コストを吸収できる付加価値をもった商品を生産できるという利点がある事も判明した。
 保管中に品質低下した次亜塩素酸ナトリウムを回収し、再反応させることで、次亜塩素酸を再生するとともに、保管中に生成した塩素酸も反応させ、次亜塩素酸、亜塩素酸の両方を内包した新しい殺菌消毒剤を製造する方法の研究と開発を行った。
 また、リサイクルに伴う製造コストを吸収できる付加価値のある新たな殺菌消毒剤を得る方法を与える。
 本発明者は、上記の課題を解決するべく、品質が低下した次亜塩素酸ナトリウムを再反応させ新たな商品価値をもった殺菌消毒剤を製造することにした。
 その殺菌消毒剤は、濃度低下した次亜塩素酸ナトリウムを塩素ガスとして再回収するとともに、廃棄が難しい塩素酸ナトリウムも反応させることによって、二酸化塩素ガスとして再回収し、アルカリ安定させる事によって、次亜塩素酸と亜塩素酸の両方を同時に内包する新しい塩素酸化物液体または固体である。
 まず、次亜塩素酸ナトリウムの品質の違いにより、品質劣化の違いがどのようにあるかを確認した。その時重要なのは有効塩素の消失に伴う塩化物イオンと塩素酸イオンの生成量に違いがあるかどうかであったが、一般級の次亜塩素酸ナトリウム12%液中には流通時点で塩素酸イオンが約14000~26000ppmほどが生成されているものが多く、低食塩級の次亜塩素酸ナトリウム12%液中の塩素酸イオンは5000~6000ppm、多くとも12000ppm以下であり、さらに最終的な塩化物イオンの生成量にも大きな違いがあったことから、反応製法を検討する際には、塩素酸イオン、塩化物イオンの生成最大量を考慮した上で反応製法を確立する必要があるということがわかった。但し、次亜塩素酸ナトリウムの有効塩素が分解によって消失していったとしても、有効塩素4%以下の状態では次亜塩素酸ナトリウムの規格から外れており、次亜塩素酸ナトリウムを原料に用いたとは言えない。このため、原料となる品質低下した次亜塩素酸ナトリウム(以下、劣化次亜塩素酸ナトリウムとする)としては、有効塩素が4%以上、塩素酸イオン生成量は約48000ppmまでが対象原料となることがわかった。
 次に、劣化次亜塩素酸ナトリウム中に含まれる次亜塩素酸イオン、塩素酸イオン、塩化物イオンなどの定量を行い、反応によってガス化させる条件を見つけ回収液を得ることを考えた。ただし、一般的に知られている各種塩素原料の反応製法とは異なり、劣化次亜塩素酸ナトリウム中には、各種の塩素イオン成分が同時に多く存在していること、さらに、塩素酸イオンと塩化物イオンは有効塩素の消失に伴う生成物であることから、単品あるいは飽和液を原料とした場合の一般的な化学反応方法と比較して反応性が悪く、新たな反応条件と回収方法を見つける必要があった。
 また、この反応方法については、投入する硫酸の濃度と反応母液中の酸性度、劣化次亜塩素酸ナトリウム中の生成物である塩化物イオンの量が重要であるが、特に塩化物イオンは次亜塩素酸ナトリウムからの生成物であるため調整が難しく、温度、酸性度、エアーの吹き込み条件などを組み合わせて反応生成量を調整し、収率を増加させる必要があるということがわかった。
 また、反応によって得られる塩素ガスと二酸化塩素ガスは、水酸化ナトリウムや水酸化カルシウムで回収することになるが、それぞれを個別に回収しなければ収率の低下や塩素酸イオンの生成を招くことがわかり、劣化次亜塩素酸ナトリウムと硫酸を加えた反応母液から塩素ガス、次に二酸化塩素ガスを段階的に放出させる技術が必要なことがわかった。
 つまり、劣化次亜塩素酸ナトリウムを原料として、これに硫酸を加えた反応母液から塩素ガスを発生させる第一反応。次に硫酸等を追加添加し、その他諸条件を変化させた上で二酸化塩素ガスを発生させる第二反応を行うものとする。また、第一反応中には、反応母液中の酸性度等の反応条件によって塩化物イオンや塩素酸イオンが増減することが判明した為、第一反応後に組成変化した反応母液に対して第二反応の調整を行い、二酸化塩素ガスを発生させることが本製法の特徴の一つである。
 また、第一反応で発生した塩素ガスは水酸化ナトリウム溶液や水酸化カルシウム溶液で回収することが可能だが、主に第二反応時に生じる二酸化塩素ガスを水酸化ナトリウム溶液だけや水酸化カルシウム溶液だけに吹き込むと、塩素酸イオンが多量に生成されてしまう。この為、水酸化ナトリウム溶液や水酸化カルシウム溶液に過酸化水素水を加えたものを回収液にすることで塩素酸イオンの生成を防止する必要があるが、逆に過酸化水素存在下では塩素ガスが分解されてしまい、塩化物イオンに変化してしまう。
 以上のことから、第一反応用の回収液と第二反応用の回収液は、2つの回収槽を設け、塩素ガス主体の回収液Aと二酸化塩素ガス主体の回収液Bを個別に回収し、後に混合し安定化させることも本製法の特徴の一つである。
 また、本製法で製造し、食品添加物である次亜塩素酸ナトリウムの規格基準に適合させた混合液の状態では保存性が悪く、冷蔵でしか販売することができない。
 そこで、第一反応の塩素ガスを水酸化ナトリウムに回収するだけでなく、水酸化カルシウムで回収し、のちに第二反応から得られた回収液と混合し乾燥させた固体の殺菌消毒剤も本発明の特徴の1つである。
 そして、固体の場合には、乾燥によって有効塩素を高濃度に濃縮する必要があるため、回収液のアルカリ度を極力低下させておくことと、塩化物イオンや残アルカリ成分量も極力低下させた上で回収する必要があり、このように製造し乾燥させた固体の殺菌消毒剤は、食品添加物である高度サラシ粉の規格に適合するとともに、常温で保存しても内容成分の組成が変化しないことも特徴とする。
 よって、液体の場合と固体の場合とでは、必要とされる反応条件と求められる回収液の純度は異なっているが、この方法で製造された殺菌消毒剤は、次亜塩素酸と亜塩素酸の殺菌特徴をそれぞれ併せ持つものであり、食品添加物である次亜塩素酸ナトリウムや高度サラシ粉の規格基準に適合し、これを1剤で提供することを特徴とする。
 そして、これらを実現するには、低食級次亜塩素酸ナトリウムと一般級次亜塩素酸ナトリウムで反応条件を調整し、第一反応としては、低食級次亜塩素酸ナトリウムの場合、反応母液中の硫酸濃度を4.0%~6.37%までとする。一般級次亜塩素酸ナトリウムの場合は、反応母液中の硫酸濃度を4.0%~4.5%までとする。次に第二反応としては、低食級次亜塩素酸ナトリウムの場合、最終製品が次亜塩素酸ナトリウム規格品の場合は、反応母液に過酸化水素水を加えた上で、反応母液中の硫酸濃度を30.0%~59.4%とし、高度サラシ粉の場合は、30.0%~40.0%とする。そして、硫酸濃度は50.0w/w%~70.0w/w%を使用する。一般級次亜塩素酸ナトリウムの場合は、25.0%~30.0%とし、かつ使用する硫酸濃度は65w/w%を使用することとし、さらに、中間トラップ槽を設け、塩素ガスを洗浄除去することで、塩素ガスの過剰生成に伴う回収液への混入を防止する。
 また、反応槽に対するエアーの吹き込みは原料投入直後から多量に吹き込むことによって、回収率の向上を図る必要がある。
 本製法で分別回収された回収液Aと回収液Bについては、次亜塩素酸ナトリウムの食品添加物規格を満たす為には、回収液Aを1とした有効塩素濃度比で1:0.43~1:0.6で混合すると規格に適合し、高度サラシ粉の食品添加物規格を満たすためには有効塩素濃度比で1:33.95までの範囲で規格に適合する。
 そして、この配合で製造された高度サラシ粉は、一般的に販売されている高度サラシ粉よりも長期間の保存性を有し、規格に適合することが判明した。
 本発明はまた、以下を提供する。
(項目1)
 次亜塩素酸塩および亜塩素酸塩を含む乾燥固体。
(項目2)
 前記固体が、乾燥粒状である、項目1に記載の乾燥固体。
(項目3)
 前記固体が、次亜塩素酸カルシウムを含む、項目1または2に記載の乾燥固体。
(項目4)
 前記固体が、
 (1)有効塩素60.0%以上含み、
 (2)塩素のにおいがあり、
 (3)該固体0.5gに水5mlを加えて振り混ぜ、これに赤色リトマス紙を浸すとき、リトマス紙は青変し、次に退色し、
 (4)該固体0.1gに酢酸(1→4)2mlを加えるとき、ガスを発生して溶け、これに水5mlを加えてろ過した液は、カルシウム塩の反応を呈する、
項目1~3のいずれか一項に記載の乾燥固体。
(項目5)
 前記固体が、SO系成分を検出限界以上8100ppm以下で含む、項目1~4のいずれか一項に記載の乾燥固体。
(項目6)
 前記固体における次亜塩素酸塩と亜塩素酸塩の比が、1対5~25である、項目1~5のいずれか一項に記載の乾燥固体。
(項目7)
 前記固体における有効塩素濃度が600,000ppm~900,000ppmの範囲内であり、遊離残留塩素濃度が900ppm~60,000ppmの範囲内である、項目1~6のいずれか一項に記載の乾燥固体。
(項目8)
 項目1~7のいずれか一項に記載の乾燥固体を溶解させて得られた液体。
(項目9)
 有効塩素濃度が1%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対7~35である、項目8に記載の液体。
(項目10)
 有効塩素濃度が1%となるように水で希釈した場合、遊離残留塩素濃度が150ppm~900ppmの範囲内である、項目8または9に記載の液体。
(項目11)
 有効塩素濃度が6%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6~30である、項目8に記載の液体。
(項目12)
 有効塩素濃度が6%となるように水で希釈した場合、遊離残留塩素濃度が1,000ppm~6,000ppmの範囲内である、項目8または11に記載の液体。
(項目13)
 有効塩素濃度が12%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6~30である、項目8に記載の液体。
(項目14)
 有効塩素濃度が12%となるように水で希釈した場合、遊離残留塩素濃度が2,500ppm~12,000ppmの範囲内である、項目8または13に記載の液体。
(項目15)
 次亜塩素酸塩および亜塩素酸塩を含む乾燥固体を製造する方法であって、
 次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液を用意する工程と、
 該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、
 回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、
 第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と、
 回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、
 回収液Aと回収液Bとを混合する工程と、
 得られた混合溶液を乾燥させ固体化させる工程と
を包含する、方法。
(項目16)
 前記回収液Aが水酸化カルシウムを含む、項目15に記載の方法。
(項目17)
 第1反応後の反応母液に、過酸化水素を添加する工程をさらに包含する、項目15または16に記載の方法。
(項目18)
 前記回収液Aと前記回収液Bとを混合する工程において、該回収液Aの有効塩素濃度を1とすると、回収液Bの有効塩素濃度が9.6~33.95の範囲内である、項目15~17のいずれか一項に記載の方法。
(項目19)
 前記回収液Aと前記回収液Bとを混合する工程において、該回収液Aおよび該回収液Bが、それぞれスラリー化されて混合される、項目15~18のいずれか一項の方法。
(項目20)
 前記回収液Aと回収液Bとを混合する工程が、前記回収液Aを予備乾燥し、造粒核を形成し、回収液Bをスラリー化させ、そして、回収液Bスラリーに回収液A乾燥物を投入する工程を包含する、項目15~19のいずれか一項に記載の方法。
(項目21)
 前記乾燥させ固体化させる工程が、20分~30分間の温風乾燥を行う工程を包含する、項目15~20のいずれか一項に記載の方法。
(項目22)
 前記乾燥させ固体化させる工程が、回収液Aおよび回収液Bの水分量をそれぞれ20%以下に減少させることを含む、項目15~21のいずれか一項に記載の方法。
(項目23)
 次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液から新たな殺菌消毒剤を製造する方法であって、
 該溶液中の次亜塩素酸イオン濃度、塩素酸イオン濃度および塩化物イオン濃度を定量する工程と、
 該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、
 回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、
 第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と
 回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、
 回収液Aと回収液Bとを混合し、新たな殺菌消毒剤を得る工程と、
を包含する、方法。
(項目24)
 前記次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液が、品質劣化した次亜塩素酸塩を含む溶液である、項目23に記載の方法。
(項目25)
 前記品質劣化した次亜塩素酸塩を含む溶液が、低食塩級の次亜塩素酸ナトリウム溶液に由来する、項目24に記載の方法。
(項目26)
 前記品質劣化した次亜塩素酸塩を含む溶液が、一般級の次亜塩素酸ナトリウム溶液に由来する、項目24に記載の方法。
(項目27)
 前記殺菌消毒剤が固体品であり、第一反応工程における反応母液中の硫酸濃度が4.00~6.37%であり、第二反応工程における反応母液中の硫酸濃度が30.00~40.00%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%~70.0w/w%である、項目25に記載の方法。
(項目28)
 前記殺菌消毒剤が液体品であり、第一反応工程における反応母液中の硫酸濃度が4.00~6.37%であり、第二反応工程における反応母液中の硫酸濃度が30.00~59.04%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%~70.0w/w%である、項目25に記載の方法。
(項目29)
 第一反応工程における反応母液中の硫酸濃度が4.00~4.50%であり、第二反応工程における反応母液中の硫酸濃度が25.00~30.00%であり、第二反応工程において使用される硫酸濃度が、65w/w%である、項目26に記載の方法。
(項目30)
 第一反応において、原料中の塩化物濃度をX%とし、反応母液中の硫酸濃度をY%としたとき、
(1)Y=-1.2676X+9.84393
(2)X≦4
を満たす、項目23~29にいずれか一項に記載の方法。
(項目31)
 前記回収液Aが、水酸化ナトリウムまたは水酸化カルシウムを含む、項目23~30のいずれか一項に記載の方法。
(項目32)
 前記回収液Bが、水酸化ナトリウムおよび過酸化水素を含む、項目23~31のいずれか一項に記載の方法。
(項目33)
 前記第一反応工程が、エアーを吹き込みながら行われる、項目23~32のいずれか一項に記載の方法。
(項目34)
 前記第二反応工程が、エアーを吹き込みながら行われる、項目23~33のいずれか一項に記載の方法。
(項目35)
 反応槽と回収液Bを含む回収槽との間に、過酸化水素を含む中間トラップ槽が設けられている、項目23~34のいずれか一項に記載の方法。
(項目36)
 第1反応後の反応母液に、過酸化水素を添加する工程をさらに包含する、項目23~35のいずれか一項に記載の方法。
(項目37)
 前記回収液Aと回収液Bとを混合する工程において、回収液Aの有効塩素濃度を1として、回収液Bの有効塩素濃度が、0.43~0.6である、項目23~36のいずれか一項に記載の方法。
(項目38)
 前記殺菌消毒剤が、次亜塩素酸ナトリウムを含む、項目23~37のいずれか一項に記載の方法。
(項目39)
 前記殺菌消毒剤が、
 (1)有効塩素4.0%以上含み、
 (2)塩素のにおいがあり、
 (3)ナトリウム塩の反応及び次亜塩素酸塩の反応を呈し、
 (4)本品の水溶液(1→25)4mlにリン酸緩衝液(pH8)100mlを加えた液は、波長291~294nmに極大吸収部があり、
 (5)本品に赤色リトマス紙を浸すとき、リトマス紙は青変し、次に退色する、
項目38に記載の方法。
(項目40)
 前記殺菌消毒剤が、SO系成分を検出限界以上8100ppm以下で含む、項目23~39のいずれか一項に記載の方法。
(項目41)
 前記消毒剤における次亜塩素酸イオンと亜塩素酸イオンの比が、1対0.24~0.3である、項目23~40にいずれか一項に記載の方法。
(項目42)
 前記消毒剤における有効塩素濃度が約60,000ppmであり、遊離残留塩素濃度が約60,000ppmである、項目23~41のいずれか一項に記載の方法。
(項目43)
 項目23~42のいずれか一項に記載の方法により製造された殺菌消毒剤。
(項目44)
 次亜塩素酸イオンと亜塩素酸イオンの比が、1対0.24~0.3である、項目43に記載の殺菌消毒剤。
(項目45)
 前記消毒剤における有効塩素濃度が約60,000ppmであり、遊離残留塩素濃度が約60,000ppmである、項目43または44に記載の殺菌消毒剤。
(項目46)
 項目1~7のいずれか一項に記載の乾燥固体を用いて製造された液体塩素酸化物であって、
(a)該乾燥固体を水に溶解し、pHの上昇した溶液を調製する工程;
(b)工程(a)で調製した溶液のpHを維持しつつ、該溶液に非カルシウム無機アルカリ剤を加える事でカルシウム塩を沈殿させて、液相とカルシウム塩を含む固相を含む、該液相中のカルシウムイオン濃度が低下した固液混合相を形成する工程;
および
(c)工程(b)で形成された固液混合相から液相のみを取り出して、液体塩素酸化物を得る工程
を包含する方法によって調製される、液体塩素酸化物。
(項目47)
 項目1~7のいずれか一項に記載の乾燥固体を用いて製造された液体塩素酸化物であって、
(a)該乾燥固体を水に溶解してpH10.0以上の溶液を調製する工程;
(b)工程(a)で調製した溶液のpHを10.0以上に維持しつつ、該溶液に非カルシウム無機アルカリ剤を加える事でカルシウム塩を沈殿させて、液相とカルシウム塩を含む固相を含む、該液相中のカルシウムイオン濃度を24ppm以下とする固液混合相を形成する工程;および
(c)工程(b)で形成された固液混合相から液相のみを取り出して、液体塩素酸化物を得る工程
を包含する方法によって調製される、液体塩素酸化物。
(項目48)
 カルシウム濃度が実質的に検出限界以下である、項目8~14、46および47のいずれか一項に記載の液体または液体塩素酸化物。
(項目49)
 カルシウム濃度が24ppm以下である、項目8~14、46および47のいずれか一項に記載の液体または液体塩素酸化物。
(項目50)
 項目1~7のいずれか一項に記載の乾燥固体、項目8~14のいずれか一項に記載の液体、または項目46~49のいずれか一項に記載の液体または液体塩素酸化物の殺菌消毒剤としての使用。
(項目51)
 項目1~7のいずれか一項に記載の乾燥固体、項目8~14のいずれか一項に記載の液体、項目43~45のいずれか一項に記載の殺菌消毒剤、または項目46~49のいずれか一項に記載の液体または液体塩素酸化物の食品添加物としての使用。
(項目52)
 食品を殺菌消毒するための、項目1~7のいずれか一項に記載の乾燥固体、項目8~14のいずれか一項に記載の液体、項目43~45のいずれか一項に記載の殺菌消毒剤、または項目46~49のいずれか一項に記載の液体または液体塩素酸化物の使用。
(項目53)
 次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液から新たな薬剤を製造する方法であって、
 該溶液中の次亜塩素酸イオン濃度、塩素酸イオン濃度および塩化物イオン濃度を定量する工程と、
 該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、
 回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、
 第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と
 回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、
 回収液Aと回収液Bとを混合し、新たな薬剤を得る工程と、
を包含する、方法。
(項目54)
 項目24~項目42に規定される殺菌消毒剤を薬剤に置き換えた場合の特徴のうちの1個または複数の特徴を有する、項目53に記載の方法。
(項目55)
 項目53または54に記載の方法により製造された薬剤。
(項目56)
 項目44または項目45に規定される殺菌消毒剤を薬剤に置き換えた場合の特徴のうちの1個または複数の特徴を有する、項目55に記載の薬剤。
(項目57)
 項目55または56に記載の薬剤の殺菌消毒剤としての使用。
(項目58)
 項目55または56に記載の薬剤の食品添加物としての使用。
(項目59)
 食品を殺菌消毒するための、項目55または56に記載の薬剤の使用。
 本発明は、品質低下し、塩化物イオンと塩素酸イオンを生成してしまった次亜塩素酸ナトリウムから、有用な新しい殺菌消毒剤を得るものであり、食品添加物である次亜塩素酸ナトリウムを原料に、新たに次亜塩素酸イオンと亜塩素酸イオンの特性を併せ持ちながら、次亜塩素酸ナトリウムまたは高度サラシ粉の規格に適合する殺菌消毒剤を得る発明である。また、次亜塩素酸イオンと亜塩素酸イオンの共存液体は冷蔵保管でなければ保存性が劣るが、乾燥粒状固体に加工することによって長期保存も可能したという利点がある。
 また、本方法で完成した次亜塩素酸ナトリウムや高度サラシ粉は、同濃度の液体よりも、塩素臭が低く、作業従事者への負担軽減や、使用しやすいと言う利点があり、複雑な再生方法を用いても製造コストを吸収し、実販売的な商品化が可能であると言える。
図1は、(回収液Aと回収液Bの混合溶液について(次亜塩素酸ナトリウム規格))に関し、過マンガン酸Kの退色を示し、左から、次亜塩素酸Naのみ、次亜塩素酸Naと亜塩素酸Naの有効塩素比1:0.6、次亜塩素酸Naと亜塩素酸Naの有効塩素比1:0.7、亜塩素酸Naのみを示す。 図2は、(回収液Aと回収液Bの混合溶液について(次亜塩素酸ナトリウム規格))の検体1および検体2の吸光度を示す。
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 (用語の定義)
 本明細書における用語について以下に説明する。
 本明細書において、「品質劣化した次亜塩素酸塩を含む溶液」とは、保管中に塩素が分解してしまい、塩化物イオンや塩素酸イオンを生成してしまった次亜塩素酸ナトリウムの溶液を意味する。本明細書において、次亜塩素酸塩は、「次亜」と省略することもある。
 本明細書において、「低食塩級の次亜塩素酸ナトリウム溶液」とは、食塩の量を低下させた次亜塩素酸ナトリウム溶液を意味し、低食塩級の次亜塩素酸ナトリウム12%液中の塩素酸イオンは5000~6000ppm、多くとも12000ppm以下である。
 本明細書において、「一般級の次亜塩素酸ナトリウム溶液」とは、食塩の量を低下させていない次亜塩素酸ナトリウム溶液を意味し、一般級の次亜塩素酸ナトリウム12%液中には流通時点で塩素酸イオンが約14000~26000ppmほどが生成されている。
 本明細書において、「有効塩素」または「有効塩素濃度」とは、サラシ粉などの殺菌消毒剤に含まれる、漂白作用に有効な塩素の濃度をいう。有効塩素は例えば、試料の次亜塩素酸ナトリウムにヨウ化カリウムを加え、Cl2+KI→I2+KCl (1)式により遊離したヨウ素
をチオ硫酸ナトリウムで酸化還元滴定(I2+2Na2S2O3→2NaI+Na2S4O6 (2)式)して有効塩素濃度を定量することができる。
 本明細書において、「遊離塩素」、「遊離塩素濃度」または「遊離残留塩素濃度」は、『水道法施行規則第十七条第二項の規定に基づき厚生労働大臣が定める遊離残留塩素及び結合塩素の検査方法』の別表第3(以下、比色法(DPD指示薬))により測定される値であり、DPD指示薬が酸化されることで得られる値である。
 本明細書において、「SO系成分」とは、硫酸に由来する成分を意味し、硫酸、硫酸塩などを意味する。
 本明細書において、「温風乾燥」は、乾燥条件として、庫内環境温度を50~60℃とし、庫内湿度は10%以下とし、風量は1.9m/sで温風を送り込むことにより行われる。
 本明細書において「塩素酸化物」とは、塩素の任意の酸化物をいう。例えば、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸およびそれらの塩などを挙げることができる。七酸化二塩素、六酸化二塩素、三酸化二塩素、二酸化塩素、一酸化二塩素なども含まれる。
 本明細書において「高度サラシ粉」とは、第8版食品添加物公定書の高度サラシ粉に規定される規格を満たす。具体的には、以下を満たす:
 (1)有効塩素60.0%以上含み、
 (2)塩素のにおいがあり、
 (3)該固体0.5gに水5mlを加えて振り混ぜ、これに赤色リトマス紙を浸すとき、リトマス紙は青変し、次に退色し、
 (4)該固体0.1gに酢酸(1→4)2mlを加えるとき、ガスを発生して溶け、これに水5mlを加えてろ過した液は、カルシウム塩の反応を呈する。
 本明細書において「T.AL」とは試料中のアルカリ度を測定する為に、試料をpH4.0になるまで0.1mol/L塩酸-酸標準液を滴定し、試料100gのpHを4.0にする為に必要な0.1mol/L塩酸が1mLの時、アルカリ度(T.AL)を1とする。pH4.0は炭酸ナトリウムの第二中和点である。なお、高度サラシ粉は、規格が広く、一般に、塩素酸化物は、各社でpH調整剤などの配合で異なることから、通常は、T.ALは規格に記載されないことが多い。但し、塩素が含まれるため、高いT.AL値を示し、高アルカリである。
 本明細書において「非カルシウム無機アルカリ剤」とは、カルシウム以外の陽イオンを有する無機のアルカリ物質を有する(薬)剤をいう。カルシウム以外の陽イオンを有する無機のアルカリ物質を有するものであれば、どのようなものであっても使用することができることが理解される。例えば、炭酸ナトリウム、リン酸水素二ナトリウム、硫酸ナトリウム、および水酸化ナトリウムを挙げることができるがこれらに限定されない。
 本明細書において「二価以上の無機アルカリ剤」は、非カルシウム無機アルカリ剤のうち、価数が二価以上のものをいう。ナトリウム含有アルカリ剤が好ましいがこれに限定されない。好ましい二価以上の無機アルカリ剤としては、pHを10以下にすることができる能力を有するものが有利である。高度サラシ粉のpHを下げることができるからである。そのような例としては、炭酸ナトリウム、リン酸水素二ナトリウム、および硫酸ナトリウムを挙げることができるがそれらに限定されない。ただし、二価未満の無機アルカリ剤、例えば、水酸化ナトリウムも場合により使用することができることが本発明において示されている。また、硫酸ナトリウム等を加えることが有利であり得る。理論に束縛されるものではないが、硫酸ナトリウムを加えると、反応後の沈殿槽が固化しやすく、浮遊しづらくなるため、作業性が向上するため好ましい。硫酸ナトリウムの投入量は、通常他の無機アルカリ剤の投入量1に対して0.1前後であり、目的を達成することができる限り、その他の量でもよく、10%以下、好ましくは5%以下、2%以下、1%以下等を挙げることができる。
 本明細書において「回収液A」とは、本発明の次亜塩素酸塩を含む溶液の処理方法において、第一反応工程において生成したガスを回収した回収液を示す。本明細書において「回収液B」とは、本発明の次亜塩素酸塩を含む溶液の処理方法において、第二反応工程において生成したガスを回収した回収液を示す。
 (好ましい実施形態の説明)
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきではないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。また、本発明の以下の実施形態は単独でも使用され、あるいはそれらを組み合わせて使用することができることが理解される。
 1つの局面において、本発明は、次亜塩素酸塩および亜塩素酸塩を含む乾燥固体を提供する。次亜塩素酸塩としては、次亜塩素酸のアルカリ金属塩またはアルカリ土類金属塩が挙げられ、例えば、ナトリウム塩、カリウム塩、カルシウム塩およびマグネシウム塩などが挙げられる。亜塩素酸塩としては、亜塩素酸のアルカリ金属塩またはアルカリ土類金属塩が挙げられ、例えば、ナトリウム塩、カリウム塩、カルシウム塩およびマグネシウム塩などが挙げられる。本発明の固体の殺菌消毒剤は、常温で保存しても内容成分の組成が変化せず、カルシウム塩とした場合、食品添加物である高度サラシ粉の規格に適合し得る。カリウム塩やマグネシウム塩などの塩は、回収液中に対応するアルカリ金属またはアルカリ土類金属のアルカリ溶液を使用することによって、またはナトリウム塩またはカルシウム塩を対応する金属に交換することによって得ることができる。
 1つの実施形態において、前記固体が、乾燥粒状である。
 1つの実施形態において、前記固体が、次亜塩素酸カルシウムを含む。
 1つの実施形態において、前記固体は、第8版食品添加物公定書の高度サラシ粉に規定される規格を満たす。具体的には、前記固体が、
 (1)有効塩素60.0%以上含み、
 (2)塩素のにおいがあり、
 (3)該固体0.5gに水5mlを加えて振り混ぜ、これに赤色リトマス紙を浸すとき、リトマス紙は青変し、次に退色し、
 (4)該固体0.1gに酢酸(1→4)2mlを加えるとき、ガスを発生して溶け、これに水5mlを加えてろ過した液は、カルシウム塩の反応を呈する。
 1つの実施形態において、前記固体が、SO系成分を検出限界以上8100ppm以下で含む。SO系成分は、8000ppm以下、7000ppm以下、6000ppm以下、5000ppm以下、4000ppm以下、3000ppm以下、2000ppm以下、1000ppm以下であり得る。SO系成分は、100ppm以上、200ppm以上、300ppm以上、400ppm以上、500ppm以上、600ppm以上、700ppm以上、800ppm以上、900ppm以上、1000ppm以上、1100ppm以上であり得る。このSO系成分は反応槽に含まれる硫酸の飛沫同伴であり、SO系成分量は、塩素酸化物が、本発明により作製されたことを示す指標の1つとなり得る。
 1つの実施形態において、前記固体における次亜塩素酸塩と亜塩素酸塩の比が、1対5~25である。この比率は、前記固体を得るために使用された回収液Aと回収液Bとをそれぞれ予備乾燥して約20%の水分量にして混合して得られた混合溶液を、乾燥させ固体化させたものについての値である。固体品において、遊離残留塩素濃度=有効塩素濃度とみなすことができるので、遊離残留塩素濃度から、次亜塩素酸イオンの濃度を導くことができる。亜塩素酸イオン濃度は、イオンクロマトグラフィーにより測定可能である。各イオンの比から次亜塩素酸塩と亜塩素酸塩の比が導かれる。前記固体における次亜塩素酸塩と亜塩素酸塩の比は、1対9~25であり得る。前記固体における次亜塩素酸塩と亜塩素酸塩の比は、1対5~9であり得る。前記固体における次亜塩素酸塩と亜塩素酸塩の比は、次亜塩素酸塩を1とすると、亜塩素酸塩は、5~25の間の任意の数値または数値範囲内であり得る。例えば、次亜塩素酸塩を1とすると、亜塩素酸塩は、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、または25であり得、これらの間の任意の数値または数値範囲内であり得る。1つの具体例としては、前記固体における次亜塩素酸塩と亜塩素酸塩の比が、1対5.53~23.59である。前記固体における次亜塩素酸塩と亜塩素酸塩の比は、1対8.92~23.59であり得る。前記固体における次亜塩素酸塩と亜塩素酸塩の比は、1対5.53~8.92であり得る。このような比率を有する乾燥固体は、純度が高く、長期の保存性を有し、殺菌効果が高く、塩素臭気が少ない。カルシウム塩の場合、高度サラシ粉の規格基準に適合する。必要に応じて、上記範囲以外の値の固体を作製してもよい。
 1つの実施形態において、前記固体における有効塩素濃度が600,000ppm~900,000ppmの範囲内であり、遊離残留塩素濃度が900ppm~60,000ppmの範囲内である。前記固体における有効塩素濃度は、600,000ppm~900,000ppmの範囲内の任意の数値または数値範囲内であり得る。前記固体における有効塩素濃度は、600,000ppm、650,000ppm、700,000ppm、750,000ppm、800,000ppm、850,000ppm、900,000ppmであり得、これらの数値の任意の組み合わせの範囲内であり得る。前記固体における遊離残留塩素濃度は、900ppm~60,000ppmの範囲内の任意の数値または数値範囲内であり得る。前記固体における遊離残留塩素濃度は、900ppm、1,000ppm、2,000ppm、3,000ppm、4,000ppm、5,000ppm、6,000ppm、7,000ppm、8,000ppm、9,000ppm、10,000ppm、15,000ppm、20,000ppm、25,000ppm、30,000ppm、35,000ppm、40,000ppm、45,000ppm、50,000ppm、55,000ppm、60,000ppmであり得、これらの数値の任意の組み合わせの範囲内であり得る。1つの具体例としては、前記固体における有効塩素濃度が606,811ppm~881,677ppmの範囲内であり、遊離残留塩素濃度が901ppm~58,728ppmの範囲内である。前記固体における有効塩素濃度は、606,811ppm~881,677ppmの範囲内であり得る。前記固体における有効塩素濃度は、606,811ppm、616,877ppm、632,513ppm、647,265ppm、781,019ppm、782,210ppm、824,064ppm、または881,667ppmであり得る。1つの具体例としては、前記固体における遊離残留塩素濃度は、901ppm~58728ppmの範囲であり得る。前記固体における遊離残留塩素濃度は、901ppm、2,145ppm、2,625ppm、20,785ppm、49,314ppm、55,916ppm、または58,728ppmであり得る。このような濃度を有する乾燥固体は、純度が高く、長期の保存性を有し、殺菌効果が高く、塩素臭気が少ない。カルシウム塩の場合、高度サラシ粉の規格基準に適合する。必要に応じて、上記範囲以外の値の固体を作製してもよい。
 1つの局面において、本発明は、上記乾燥固体を溶解させて得られた液体を提供する。溶解させるための溶媒としては、水、アルコール、エーテルなどが挙げられる。水としては、水道水、井戸水、海水、イオン交換水、精製水など任意の水が挙げられる。
 1つの実施形態において、有効塩素濃度が1%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対7~35であり、次亜塩素酸イオンを1とすると、亜塩素酸イオンは、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35であり得、これらの間の任意の数値または数値範囲内であり得る。1つの具体例としては、有効塩素濃度が1%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対7.16~34.36である。有効塩素濃度が1%となるように水で希釈した場合、遊離残留塩素濃度が150ppm~900ppmの範囲内であり、遊離残留塩素濃度は、150ppm、200ppm、250ppm、300ppm、350ppm、400ppm、450ppm、500ppm、550ppm、600ppm、650ppm、700ppm、750ppm、800ppm、850ppm、900ppmであり得、これらの数値の間の任意の数値または数値範囲内であり得る。1つの具体例としては、有効塩素濃度が1%となるように水で希釈した場合、遊離残留塩素濃度が187.07ppm~836.70ppmの範囲内である。遊離残留塩素は、操作中に分解され得るため、希釈の度合いにより、次亜塩素酸イオンと亜塩素酸イオンの比は変化し得る。このような比率を有する液体は、純度が高く、殺菌効果が高く、塩素臭気が少ない。
 有効塩素濃度が6%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6~30であり、次亜塩素酸イオンを1とすると、亜塩素酸イオンは、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30であり得、これらの間の任意の数値または数値範囲内であり得る。1つの具体例としては、有効塩素濃度が6%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6.31~29.54である。有効塩素濃度が6%となるように水で希釈した場合、遊離残留塩素濃度が1,000ppm~6,000ppmの範囲内であり、遊離残留塩素濃度は、1,000ppm、1,500ppm、2,000ppm、2,500ppm、3,000ppm、3,500ppm、4,000ppm、4,500ppm、5,000ppm、5,500ppm、6,000ppmであり得、これらの数値の間の任意の数値または数値範囲内であり得る。1つの具体例としては、有効塩素濃度が6%となるように水で希釈した場合、遊離残留塩素濃度が1296.01ppm~5624.20ppmの範囲内である。遊離残留塩素は、操作中に分解され得るため、希釈の度合いにより、次亜塩素酸イオンと亜塩素酸イオンの比は変化し得る。このような比率を有する液体は、純度が高く、殺菌効果が高く、塩素臭気が少ない。
 有効塩素濃度が12%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6~30であり、次亜塩素酸イオンを1とすると、亜塩素酸イオンは、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30であり得、これらの間の任意の数値または数値範囲内であり得る。1つの具体例としては、有効塩素濃度が12%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6.39~28.16である。有効塩素濃度が12%となるように水で希釈した場合、遊離残留塩素濃度が2,500ppm~12,000ppmの範囲内であり、遊離残留塩素濃度は、2,500ppm、3,000ppm、3,500ppm、4,000ppm、4,500ppm、5,000ppm、6,000ppm、6,500ppm、7,000ppm、7,500ppm、8,000ppm、8,500ppm、9,000ppm、9,500ppm、10,000ppm、10,500ppm、11,000ppm、11,500ppm、12,000ppmであり得、これらの数値の間の任意の数値または数値範囲内であり得る。1つの具体例としては、有効塩素濃度が12%となるように水で希釈した場合、遊離残留塩素濃度が2736.70ppm~11378.81ppmの範囲内である。遊離残留塩素は、操作中に分解され得るため、希釈の度合いにより、次亜塩素酸イオンと亜塩素酸イオンの比は変化し得る。このような比率を有する液体は、純度が高く、殺菌効果が高く、塩素臭気が少ない。
 1つの局面において、本発明は、次亜塩素酸塩および亜塩素酸塩を含む乾燥固体を製造する方法であって、次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液を用意する工程と、該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と、回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と、反応させて亜塩素酸イオンとして回収する工程と、回収液Aと回収液Bとを混合する工程と、得られた混合溶液を乾燥させ固体化させる工程とを包含する、方法を提供する。本方法は、品質劣化した次亜塩素酸ナトリウムを再生し、新たに有用な殺菌消毒剤を与える。本方法で製造し乾燥させた固体の殺菌消毒剤は、常温で保存しても内容成分の組成が変化せず、カルシウム塩とした場合、食品添加物である高度サラシ粉の規格に適合し得る。本方法で完成した乾燥固体は、塩素臭が低く、作業従事者への負担軽減や、使用しやすいと言う利点があり、複雑な再生方法を用いても製造コストを吸収し、実販売的な商品化が可能であると言える。
 1つの実施形態において、前記回収液Aが水酸化カルシウムを含む。
 1つの実施形態において、第1反応後の反応母液に、過酸化水素を添加する工程をさらに包含する。この過酸化水素を添加する工程により、塩素ガス生成を抑制させることが可能である。
 1つの実施形態において、前記回収液Aと前記回収液Bとを混合する工程において、該回収液Aの有効塩素濃度を1とすると、回収液Bの有効塩素濃度が9.6~33.95の範囲内である。回収液Aの有効塩素濃度、1に対して、回収液Bの有効塩素濃度は、9.6以上、9.7以上、9.8以上、9.9以上、10.0以上、11以上、12以上、13以上、14以上、15以上、16以上、17以上、18以上、19以上、20以上、21以上、22以上、23以上、24以上、25以上、26以上、27以上、28以上、29以上、30以上、31以上、32以上、33以上であり得、33.95以下、33.9以下、33.8以下、33.7以下、33.6以下、33.5以下、33.4以下、33.3以下、33.2以下、33.1以下、33以下、32以下、31以下、30以下、29以下、28以下、27以下、26以下、25以下、24以下、23以下、22以下、21以下、20以下、19以下、18以下、17以下、16以下、15以下、14以下、13以下、12以下、11以下、10以下、9.9以下、9.8以下、9.7以下の任意の数値の範囲内であり得る。回収液Aの有効塩素濃度、1に対して、回収液Bの有効塩素濃度は、9.6、9.7、9.8、9.9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33であり得る。好ましくは、回収液A、1の有効塩素濃度に対して、回収液Bの有効塩素濃度は、20である。回収液Bの有効塩素濃度が9.6未満の有効塩素比の場合では有効塩素が60%を割り込むことが考えられ、高度サラシ粉に適合しなくなるため、この有効塩素比が下限にあたる。回収液Bの有効塩素比率が33.95を超えると、遊離残留塩素とカルシウムの規格に適合しない。
 1つの実施形態において、前記回収液Aと前記回収液Bとを混合する工程において、該回収液Aおよび該回収液Bが、それぞれスラリー化されて混合される。スラリーにしてから混合して乾燥した方が、スラリー化しない場合よりも、全体の操作時間が短期化し、有効塩素の消失や組成の変化を防止できる。
 1つの実施形態において、前記回収液Aと回収液Bとを混合する工程が、前記回収液Aを予備乾燥し、造粒核を形成し、回収液Bをスラリー化させ、そして、回収液Bスラリーに回収液A乾燥物を投入する工程を包含する。事前にある程度乾燥させると作業性や安定性が向上する。
 1つの実施形態において、前記乾燥させ固体化させる工程が、20分~30分間の温風乾燥を行う工程を包含する。乾燥条件は、庫内環境温度を50~60℃とし、庫内湿度は10%以下で行われ得る。また、風量は1.9m/sで温風を送り込む。
 1つの実施形態において、前記乾燥させ固体化させる工程が、回収液Aおよび回収液Bの水分量をそれぞれ20%以下に減少させることを含む。1つの実施形態において、水分量は、26%以下、25%以下、24%以下、23%以下、22%以下、21%以下、20%以下、19%以下、18%以下、17%以下、16%以下、15%以下、14%以下、13%以下、12%以下、11%以下、10%以下であり得る。水分量が26%以上であれば、回収液A中の遊離残留塩素(次亜塩素酸イオン)と亜塩素酸イオンが反応することで、有効塩素濃度も減少し、塩素酸イオンの増加となり、純度や乾燥率も低下する。また、水分量が30%を超えると、遊離残留塩素(次亜塩素酸イオン)の自己分解が顕著となり、遊離残留塩素(次亜塩素酸イオン)が特に減少し、やはり純度や乾燥率が低下する。20%以下に減少させることが好ましいが、適切な水分量は、操作性やコストを考慮して選択され得る。
 1つの局面において、本発明は、次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液から新たな殺菌消毒剤を製造する方法であって、該溶液中の次亜塩素酸イオン濃度、塩素酸イオン濃度および塩化物イオン濃度を定量する工程と、該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と、回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、回収液Aと回収液Bとを混合し、新たな殺菌消毒剤を得る工程と、を包含する、方法を提供する。回収液Aと回収液Bとの混合物は、殺菌消毒剤として使用され得る。本方法は、品質劣化した次亜塩素酸ナトリウムを再生し、新たに有用な殺菌消毒剤を与える。本方法で製造した殺菌消毒剤は、ナトリウム塩とした場合、次亜塩素酸ナトリウムの食品添加物としての規格基準に適合することが可能である。
 1つの実施形態において、前記次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液が、品質劣化した次亜塩素酸塩を含む溶液である。
 1つの実施形態において、前記品質劣化した次亜塩素酸塩を含む溶液が、低食塩級の次亜塩素酸ナトリウム溶液に由来する。
 1つの実施形態において、前記品質劣化した次亜塩素酸塩を含む溶液が、一般級の次亜塩素酸ナトリウム溶液に由来する。
 第一反応では硫酸濃度を調整することで、回収液Aに混入する二酸化塩素ガスをコントロールすることが重要であり、第一反応時の反応母液中の酸性度としては塩素酸イオンを分解させないことが重要である。
 第二反応時の硫酸については、使用する硫酸濃度と第二反応時の反応母液中の硫酸濃度の2つに依存している。また、第二反応時に使用する硫酸濃度は高い方が良く、第二反応では反応母液中の硫酸濃度だけが重要では無い。
 1つの実施形態において、前記品質劣化した次亜塩素酸塩を含む溶液が、低食塩級の次亜塩素酸ナトリウム溶液に由来し、前記殺菌消毒剤が固体品であり、第一反応工程における反応母液中の硫酸濃度が4.00~6.37%であり、第二反応工程における反応母液中の硫酸濃度が30.00~40.00%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%~70.0w/w%である。1つのさらなる実施形態において、前記殺菌消毒剤が固体品である場合、第一反応工程における反応母液中の硫酸濃度は、4.00%、4.10%、4.20%、4.30%、4.40%、4.50%、4.60%、4.70%、4.80%、4.90%、5.00%、5.10%、5.20%、5.30%、5.40%、5.50%、5.60%、5.70%、5.80%、5.90%、6.00%、6.10%、6.20%、6.30%または6.37%であり得、第二反応工程における反応母液中の硫酸濃度は、30.0%、31.0%、32.0%、33.0%、34.0%、35.0%、36.0%、37.0%、38.0%、39.0%または40.0%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%、51.0w/w%、52.0w/w%、53.0w/w%、54.0w/w%、55.0w/w%、56.0w/w%、57.0w/w%、58.0w/w%、59.0w/w%、60.0w/w%、61.0w/w%、62.0w/w%、63.0w/w%、64.0w/w%、65.0w/w%、66.0w/w%、67.0w/w%、68.0w/w%、69.0w/w%、または70.0w/w%である。
 1つの実施形態において、前記品質劣化した次亜塩素酸塩を含む溶液が、低食塩級の次亜塩素酸ナトリウム溶液に由来し、前記殺菌消毒剤が液体品であり、第一反応工程における反応母液中の硫酸濃度が4.00~6.37%であり、第二反応工程における反応母液中の硫酸濃度が30.00~59.04%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%~70.0w/w%である。1つのさらなる実施形態において、前記殺菌消毒剤が液体品であり、第一反応工程における反応母液中の硫酸濃度は、4.00、4.10%、4.20%、4.30%、4.40%、4.50%、4.60%、4.70%、4.80%、4.90%、5.00%、5.10%、5.20%、5.30%、5.40%、5.50%、5.60%、5.70%、5.80%、5.90%、6.00%、6.10%、6.20%、6.30%または6.37%であり、第二反応工程における反応母液中の硫酸濃度は、30.0%、31.0%、32.0%、33.0%、34.0%、35.0%、36.0%、37.0%、38.0%、39.0%、40.0%、41.0%、42.0%、43.0%、44.0%、45.0%、46.0%、47.0%、48.0%、49.0%、50.0%、51.0%、52.0%、53.0%、54.0%、55.0%、56.0%、57.0%、58.0%、59.0%または59.04%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%、51.0w/w%、52.0w/w%、53.0w/w%、54.0w/w%、55.0w/w%、56.0w/w%、57.0w/w%、58.0w/w%、59.0w/w%、60.0w/w%、61.0w/w%、62.0w/w%、63.0w/w%、64.0w/w%、65.0w/w%、66.0w/w%、67.0w/w%、68.0w/w%、69.0w/w%、または70.0w/w%である。
 1つの実施形態において、前記品質劣化した次亜塩素酸塩を含む溶液が、一般級の次亜塩素酸ナトリウム溶液に由来し、第一反応工程における反応母液中の硫酸濃度が4.00~4.50%であり、第二反応工程における反応母液中の硫酸濃度が25.00~30.00%であり、第二反応工程において使用される硫酸濃度が、65w/w%である。1つのさらなる実施形態において、第一反応工程における反応母液中の硫酸濃度は、4.00%、4.10%、4.20%、4.30%、4.40%、または4.50%であり、第二反応工程における反応母液中の硫酸濃度は、25.0%、26.0%、27.0%、28.0%、29.0%または30.00%であり、第二反応工程において使用される硫酸濃度は、65w/w%である。
 1つの実施形態において、第一反応において、原料中の塩化物濃度をX%とし、反応母液中の硫酸濃度をY%としたとき、
(1)Y=-1.2676X+9.84393
(2)X≦4
を満たす。この式は、原料中の塩素酸イオンが分解されない、もしくは増加するということを上限とし、かつ、安全率を考慮して、塩素酸イオンが110%以上に増加することを条件とし、そして、この時、原料中の塩化物濃度が高ければ、添加可能な硫酸濃度は低下することを考慮して導かれる。
 1つの実施形態において、前記回収液Aが、水酸化ナトリウムまたは水酸化カルシウムを含む。
 1つの実施形態において、前記回収液Bが、水酸化ナトリウムおよび過酸化水素を含む。
 反応工程は、エアーを吹き込みながら行われ得る。エアーは、反応槽中に発生した塩素ガスや二酸化塩素ガスが、溶液への戻りや逆反応生成が進行することを妨げるのに役立つ。
 1つの実施形態において、前記第一反応工程が、エアーを吹き込みながら行われる。
 1つの実施形態において、前記第二反応工程が、エアーを吹き込みながら行われる。
 1つの実施形態において、反応槽と回収液Bを含む回収槽との間に、過酸化水素を含む中間トラップ槽が設けられている。中間トラップ槽によって、塩素ガスが回収液Bに混入することが防止される。
 1つの実施形態において、第1反応後の反応母液に、過酸化水素を添加する工程をさらに包含する。第二反応時には過酸化水素を添加することで、塩素ガス生成を抑制される。
 1つの実施形態において、前記回収液Aと回収液Bとを混合する工程において、回収液Aの有効塩素濃度を1として、回収液Bの有効塩素濃度が、0.43~0.6である。1つの実施形態において、回収液Aの有効塩素濃度を1として、回収液Bの有効塩素濃度は、0.43以上、0.44以上、0.45以上、0.46以上、0.47以上、0.48以上、0.49以上、0.5以上、0.51以上、0.52以上、0.53以上、0.52以上、0.53以上、0.54以上、0.55以上、0.56以上、0.57以上、0.58以上、0.59以上であり得、0.6以下、0.59以下、0.58以下、0.57以下、0.56以下、0.55以下、0.54以下、0.53以下、0.52以下、0.51以下、0.50以下、0.49以下、0.48以下、0.47以下、0.46以下、0.45以下、0.44以下の任意の数値の範囲であり得る。このような範囲である場合、回収液Aおよび回収液Bの混合物は、次亜塩素酸ナトリウムの食品添加物規格を満たし得る。
 1つの実施形態において、前記殺菌消毒剤が、次亜塩素酸ナトリウムを含む。
 1つの実施形態において、前記殺菌消毒剤は、食品添加物、次亜塩素酸ナトリウムの規格基準適合品である。具体的には、前記殺菌消毒剤が、
 (1)有効塩素4.0%以上含み、
 (2)塩素のにおいがあり、
 (3)ナトリウム塩の反応及び次亜塩素酸塩の反応を呈し、
 (4)本品の水溶液(1→25)4mlにリン酸緩衝液(pH8)100mlを加えた液は、波長291~294nmに極大吸収部があり、
 (5)本品に赤色リトマス紙を浸すとき、リトマス紙は青変し、次に退色する。
 1つの実施形態において、前記殺菌消毒剤が、SO系成分を検出限界以上8100ppm以下で含む。SO系成分は、8000ppm以下、7000ppm以下、6000ppm以下、5000ppm以下、4000ppm以下、3000ppm以下、2000ppm以下、1000ppm以下であり得る。SO系成分は、100ppm以上、200ppm以上、300ppm以上、400ppm以上、500ppm以上、600ppm以上、700ppm以上、800ppm以上、900ppm以上、1000ppm以上、1100ppm以上であり得る。このSO系成分は反応槽に含まれる硫酸の飛沫同伴であり、SO系成分量は、塩素酸化物が、本発明により作製されたことを示す指標の1つとなり得る。
 1つの実施形態において、前記消毒剤における次亜塩素酸イオンと亜塩素酸イオンの比が、1対0.24~0.3である。なお、液体品の場合、遊離残留塩素濃度から物質を特定して濃度を求めることが難しいため、イオンクロマトグラフィーによって回収液B由来の亜塩素酸イオンを求め有効塩素に換算し、全体の有効塩素から差し引いた。そして更に、残った有効塩素を回収液A由来の有効塩素と定め、係数をかけて、次亜塩素酸イオンを求め、最終的なイオン比とした。前記消毒剤における次亜塩素酸イオンと亜塩素酸イオンの比は、次亜塩素酸塩を1とすると、亜塩素酸塩は、0.24~0.3の間の任意の数値または数値範囲内であり得る。例えば、次亜塩素酸塩を1とすると、亜塩素酸塩は、0.24、0.25、0.26、0.27、0.28、0.29または0.30である。このような比率を有する消毒液は、純度が高く、殺菌効果が高く、塩素臭気が少ない。
 1つの実施形態において、前記消毒剤における有効塩素濃度が約60,000ppmであり、遊離残留塩素濃度が約60,000ppmの範囲内である。前記消毒剤における有効塩素濃度は、55,000ppm、56,000ppm、57,000ppm、58,000ppm、59,000ppm、60,000ppm、61,000ppm、62,000ppm、63,000ppm、64,000ppm、65,000ppmであり得、これらの数値の任意の組み合わせの範囲内であり得る。具体例としては、前記消毒剤における有効塩素濃度が60,114ppm、60,814ppmである。前記消毒剤における遊離残留塩素濃度は、55,000ppm、56,000ppm、57,000ppm、58,000ppm、59,000ppm、60,000ppm、61,000ppm、62,000ppm、63,000ppm、64,000ppm、65,000ppmであり得、これらの数値の任意の組み合わせの範囲内であり得る。1つの具体例としては、58,157ppm、59,380ppmである。このような濃度を有する消毒剤は、純度が高く、殺菌効果が高く、塩素臭気が少ない。
 1つの局面において、本発明は、上記方法のいずれかに記載の方法により製造された殺菌消毒剤を提供する。
 1つの実施形態において、前記殺菌消毒剤において、前記消毒剤における次亜塩素酸イオンと亜塩素酸イオンの比が、1対0.24~0.3である。前記消毒剤における次亜塩素酸イオンと亜塩素酸イオンの比は、次亜塩素酸塩を1とすると、亜塩素酸塩は、0.24~0.3の間の任意の数値または数値範囲内であり得る。例えば、次亜塩素酸塩を1とすると、亜塩素酸塩は、0.24、0.25、0.26、0.27、0.28、0.29または0.30である。このような比率を有する消毒液は、純度が高く、殺菌効果が高く、塩素臭気が少ない。
 1つの実施形態において、前記消毒剤における有効塩素濃度が約60,000ppmであり、遊離残留塩素濃度が約60,000ppmである。前記消毒剤における有効塩素濃度は、55,000ppm、56,000ppm、57,000ppm、58,000ppm、59,000ppm、60,000ppm、61,000ppm、62,000ppm、63,000ppm、64,000ppm、65,000ppmであり得、これらの数値の任意の組み合わせの範囲内であり得る。具体例としては、60,114ppm、60,814ppmである。前記消毒剤における遊離残留塩素濃度は、55,000ppm、56,000ppm、57,000ppm、58,000ppm、59,000ppm、60,000ppm、61,000ppm、62,000ppm、63,000ppm、64,000ppm、65,000ppmであり得、これらの数値の任意の組み合わせの範囲内であり得る。1つ具体例としては、58,157ppm、59,380ppmである。このような濃度を有する消毒剤は、純度が高く、殺菌効果が高く、塩素臭気が少ない。
 1つの実施形態において、前記乾燥固体を用いて製造された液体塩素酸化物が提供され、この液体塩素酸化物は、(a)該乾燥固体を水に溶解し、pHの上昇した溶液を調製する工程;(b)工程(a)で調製した溶液のpHを維持しつつ、該溶液に非カルシウム無機アルカリ剤を加える事でカルシウム塩を沈殿させて、液相とカルシウム塩を含む固相を含む、該液相中のカルシウムイオン濃度が低下した固液混合相を形成する工程;および(c)工程(b)で形成された固液混合相から液相のみを取り出して、液体塩素酸化物を得る工程を包含する方法によって調製される。工程(a)のpHは10.0以上であり得る。工程(b)のpHは10.0以上であり得る。この方法は、特許第5931253号に示される方法であり得る。前記乾燥固体を液体化して、使用した際には、カルシウム塩が残渣として残り得、食品加工を行う末端加工業者においては、食品中への異物混入の問題が懸念される。また、大量のカルシウム塩の処理も、非常に手間が発生する。この液体塩素酸化物は、カルシウムが除去されているので有用である。長期保管においても、カルシウム塩を析出させない効果を奏する。また、本方法で完成した製品は、同濃度の次亜塩素酸ナトリウム液よりも、塩素臭が低く、作業従事者への負担軽減や、使用しやすいと言う利点がある。長期保管が可能な原料である高度サラシ粉を用いても、化学工業製品を製造することが可能となり、かつ、この方法によって、生産され、流通した製品からはカルシウム塩が析出せず、更に、塩素臭も非常に低減されていることから、安心して、末端消費者も使用することが可能になる。
 1つの実施形態において、カルシウム濃度が実質的に検出限界以下である前記液体または液体塩素酸化物が提供される。好ましくは、塩素酸化物含有液中のカルシウム濃度は、24ppm以下である。あるいは、塩素酸化物含有液中のカルシウム濃度は、より好ましくは、23ppm以下、22ppm以下、21ppm以下、20ppm以下、19ppm以下、18ppm以下、17ppm以下、16ppm以下、15ppm以下、14ppm以下、13ppm以下、12ppm以下、11ppm以下、10ppm以下、9ppm以下、8ppm以下、7ppm以下、6ppm以下、5ppm以下、4ppm以下、3ppm以下、2ppm以下、1ppm以下、0.9ppm以下、0.8ppm以下、0.7ppm以下、0.6ppm以下、0.5ppm以下、0.4ppm以下、0.3ppm以下、0.2ppm以下、0.1ppm以下、あるいは0.01ppm以下である。これらの濃度が達成されると、塩素臭が問題のないレベルに低減し、好ましくは塩素臭が実質的に感じられないレベル(微塩素臭(例えば0.1ppm以下等))の状態を達成することができる。
 1つの実施形態において、上記乾燥固体、上記液体、または上記液体または液体塩素酸化物の殺菌消毒剤としての使用が提供される。1つの実施形態において、上記乾燥固体、上記液体、上記殺菌消毒剤、または上記液体または液体塩素酸化物の食品添加物としての使用が提供される。1つの実施形態において、食品を殺菌消毒するための、上記乾燥固体、上記液体、上記殺菌消毒剤、または上記液体または液体塩素酸化物の使用が提供される。
 1つの実施形態において、次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液から新たな薬剤を製造する方法が提供され、この方法は、該溶液中の次亜塩素酸イオン濃度、塩素酸イオン濃度および塩化物イオン濃度を定量する工程と、該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、回収液Aと回収液Bとを混合し、新たな薬剤を得る工程とを包含する。この方法は、上記に規定される殺菌消毒剤を薬剤に置き換えた場合の特徴のうちの1個または複数の特徴を有し得る。1つの実施形態において、この方法により製造された薬剤が提供される。この薬剤は、上記に規定される殺菌消毒剤を薬剤に置き換えた場合の特徴のうちの1個または複数の特徴を有し得る。この薬剤の殺菌消毒剤としての使用、食品添加物としての使用、および食品を殺菌消毒するための使用が提供され得る。
 本発明により作製される塩素酸化物は、原料として品質低下した次亜塩素酸ナトリウムを使用しているため、原料中に種々の成分を含み得るものであり、また、品質低下した次亜塩素酸ナトリウムを処理する段階においても、種々の反応が進行して種々の塩素酸化物を含む種々の成分を生成し得る。従って、回収液Aおよび回収液B中にはそれぞれ次亜塩素酸塩および亜塩素酸塩が主成分として含まれ得るものの、すべての成分を同定できるわけではない。従って、回収液Aと回収液Bとを混合させて作製される本発明の殺菌消毒剤は、次亜塩素酸ナトリウムの規格や高度サラシ粉の規格を満たすものの、同定しきれない成分を含み得る。このような同定しきれない成分が、殺菌効果の向上や安定性の向上に寄与している可能性が存在し、単に次亜塩素酸塩と亜塩素酸塩を組み合わせた場合とは異なる効果が得られることが想定される。
 なお、本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
 硫酸イオンの量は、以下の試験方法(イオンクロマトグラフィー)により測定した。
試料液の調製
試料に水を加えて希釈し、硫酸イオンとして、0~40mg/L調整する。
検量線用標準液の調製
関東化学(株)製の試薬 陰イオン混合標準IVを標準液とする。
(この液1mLは硫酸イオン約40μgを含む)。
測定条件
電気伝導検出器付イオンクロマトグラフ(サプレッサ方式)を用い、次の条件で測定する。
充填剤:エチレンビニルベンゼン-ジビニルベンゼンポリマー系陰イオン交換樹脂
カラム管:内径4.0mm、長さ250mm
溶離液:12mmol/L炭酸ナトリウム、5mmol/L重炭酸ナトリウムの混合液
カラム温度:室温
流速:1.0mL/分
試料液注入量:250μL
検量線
標準液を250μLずつ正確に、イオンクロマトグラフに注入し、得られたピーク面積から、硫酸イオンの検量線を作成する。
定量
試料液から得られたピーク面積と、検量線によって試料液中の硫酸イオンの濃度(A)を求め、次式によって試料原液中の硫酸イオンの含有量(X)〔mg/L〕を計算する。
(X)=A×K
A:試料液中の硫酸イオンの濃度(mg/L)
K:試料液を調製した時の希釈倍率
 (次亜塩素酸ナトリウムの品質劣化)
 食品添加物として流通している次亜塩素酸ナトリウム12%液には大きく低食塩級と一般級の2種類があるが、低食塩級の塩素酸イオン生成量としては、約20000~25000ppmであり、一般級の塩素酸イオン生成量としては約30000~42000ppmであった。また、理論値として有効塩が1%減少するごとに塩素酸イオンは約3500ppm増加すると考えられているが、次亜塩素酸ナトリウムの品質の違いによって、塩素酸イオン初発値が高い場合があることと、さらに、理論値以上に生成されている場合があることもわかった。
 なお、次亜塩素酸ナトリウム12%液に酸を加え、強制的に有効塩素を消失した場合の塩素酸イオン生成量は約58000~66000ppmであったため、12%次亜塩素酸ナトリウム液からはこれ以上の塩素酸イオン生成量は存在しないこともわかった。
Figure JPOXMLDOC01-appb-T000001
 (劣化次亜の反応1)
 劣化次亜塩素酸ナトリウム中には、次亜塩素酸イオン、塩化物イオン、塩素酸イオンがそれぞれ含まれているが、まず、分解反応が難しいと予想される塩素酸イオンを硫酸で反応させた場合の予備検証を行った。また、反応性を比較するため塩素酸ナトリウム区を設定した。
 その結果、塩素酸ナトリウム区は硫酸によって反応させることで二酸化塩素ガスが容易に発生し、水酸化ナトリウムを通じて亜塩素酸イオンを得ることが出来た。また、水酸化ナトリウムに過酸化水素を加えることによって、亜塩素酸イオンの収率は向上した。
 一方で、劣化次亜塩素酸ナトリウムからは亜塩素酸イオンを回収することが出来ず、塩化物イオンのみを回収できただけであり、さらに、水酸化ナトリウムに過酸化水素を加えると塩化物イオンの回収量が増加した結果となった。
 これは、劣化次亜塩素酸ナトリウムを硫酸で反応させると、先に反応性が高い次亜塩素酸イオンから塩素ガスが生じ、回収液中の過酸化水素と反応した結果、塩化物イオンの増加が考えられた。
 また、回収液中の過酸化水素が塩素ガスによって減少してしまうと、回収液中の亜塩素酸イオンの回収率が低下するとともに、塩素酸イオンの生成が生じてしまう。
 この事から、本製法は劣化次亜塩素酸ナトリウムを反応母液とするが、この一つの反応母液から、第一反応として塩素ガスを回収し、次いで二酸化塩素ガスを回収する2連続反応方法が必要であることと、さらに、これらのガスを分別して回収し、後に合体させる必要があることがわかった。
 よって、反応モデルとしては、劣化次亜塩素酸ナトリウムと硫酸溶液を加えた反応母液から塩素ガスを発生させ、水酸化ナトリウムまたは水酸化カルシウムにて次亜塩素酸イオンを回収する第一反応。次に、二酸化塩素ガスを発生させ、水酸化ナトリウムと過酸化水素にて亜塩素酸イオンを回収するという2段階の反応条件を検討する必要があるということがわかった。
・Cl2+2NaOH→NaCl+NaClO+H2O・・・・・(1)
・Cl2+2NaOH+H2O2→NaCl+NaClO+H2O
  NaClO+H2O2→NaCl+H2O+O2・・・・・(2)
・2ClO2+2NaOH→NaClO2+NaClO3+H2O・・・・・(3)
・2ClO2+2NaOH+H2O2→2NaClO2+O2+2H2O・・・・・(4)
Figure JPOXMLDOC01-appb-T000002
 (劣化次亜の反応2)
 劣化次亜塩素酸ナトリウム中の塩素酸イオンは少量であり、硫酸を少量ずつ滴下するだけでは反応性が悪い為、バッチ式での反応を行い、投入する硫酸濃度を65w/w%に上げ、さらに反応時の温度を上昇させることによって、塩素ガス、二酸化塩素ガスを段階的に発生させることを考えた。また、回収液A、回収液Bの2種類を用意し、第一反応では回収液Aで次亜塩素酸イオンを回収し、第一反応終了後に配管を切り替え、回収液Bで亜塩素酸イオンを回収することを考えた。その結果、二酸化塩素が発生し始め、亜塩素酸イオンの回収が出来始めたことから、反応母液中の温度と酸度の影響が重要であることがわかった。しかし、亜塩素酸イオンの大部分は過酸化水素を添加していない回収液A中で回収されたため収率が悪く、また過酸化水素がないために塩素酸イオンも生成されてしまった。このため、塩素ガス、二酸化塩素ガスをさらに段階的に発生させるための条件を確立し、それぞれの回収液中に吹き込む必要があるということがわかった。
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004
 (劣化次亜の反応3)
 第一反応時に塩素ガスを優先的に発生させる時に必要な硫酸濃度を確認するため、硫酸濃度を50w/w%に設定し反応を行った。また、この時の反応母液中の硫酸濃度は25.0%である。
 その結果、第一反応での塩素ガス回収、第二反応での二酸化塩素ガス回収をさらに段階的にコントロールすることができた。また、水酸化ナトリウムと過酸化水素を加えた回収液Bでの亜塩素酸イオンの回収率の向上が見られた。しかし、回収液A中にも二酸化塩素ガス混入のためか、亜塩素酸イオンが回収され、また、過酸化水素を添加できないために塩素酸イオンの生成も生じていた。このため、硫酸の濃度だけではなく、硫酸の投入方法も検討する必要があるということがわかった。
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000006
 (劣化次亜の反応4)
 劣化次亜塩素酸ナトリウムの反応を行い、反応母液中から2段階で回収を行うためには、反応温度や硫酸による酸度が重要であるが、初期硫酸濃度が高すぎると塩素ガスと二酸化塩素ガスの両方が発生してしまい、回収液の切り替えを行う事が出来ない。そこで、硫酸濃度を下げるだけではなく、2回に分けて添加し反応させたところ、収率の大きな変化は見られなかったが、50w/w%硫酸を200g投入するよりも、65w/w%硫酸100gを2回に分けて投入した場合の方が、第一反応時の二酸化塩素ガス発生量が多くなることがわかった。この事から、第一反応時における反応母液中の硫酸濃度は依然として過剰であることと、投入時の硫酸の設定濃度によっても反応性が異なっていることがわかった。
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
 (劣化次亜の反応5)
 第一反応と第二反応の硫酸濃度と量、温度をそれぞれ設定し、さらに硫酸の2回投入を行うことで塩素ガスと二酸化塩素ガスを分別回収することを検討した。第一反応時に使用する硫酸濃度は50w/w%とし、投入量は25gとすることで反応母液中の硫酸濃度を5.6%とした。また、二次反応は硫酸濃度を65w/w%とし、投入量は250gとすることで反応母液中の硫酸濃度を36.8%とした。その結果、回収液A中に混入する二酸化塩素ガスを減少させることが出来、亜塩素酸イオン、塩素酸イオンをそれぞれ減少させることができた。
 また、回収液B中の亜塩素酸イオン回収量はこれまでよりも20%増加し、期待値の60%以上となった。つまり、第一反応では硫酸濃度を調整することで、回収液Aに混入する二酸化塩素ガスをコントロールすることが重要であり、第一反応時の反応母液中の酸性度としては塩素酸イオンを分解させないことが重要であることがわかった。
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000010
 (劣化次亜の反応6)
 第一反応時と第二反応時の硫酸濃度と量が判明してきたので、処理量を5倍に上げた時の回収率の変化を確認した。また、ガスの回収漏れの有無を確認するため回収液A、Bにはそれぞれ予備回収槽を設けた。さらに、エアーを吹き込むタイミングを早め、原料投入後、すぐにエアーを反応槽に吹き込むようにし、徐々にエアー量を上げていった。
 その結果、処理量を5倍に上げても、回収液Aには次亜塩素酸イオンだけが回収出来ており、亜塩素酸イオン、塩素酸イオンの生成量は少ないままであった。また、回収液B中の亜塩素酸イオンも増加し87.42%となった。この回収率の上昇が第二反応時のエアーを送り込むタイミングによって回収率が向上した理由としては、反応槽中に発生した塩素ガスや二酸化塩素ガスを自然回収に任せると、溶液への戻りや逆反応生成が進行するものと考えられた。
 但し、反応中は反応槽でガスが発生し、さらにエアーも吹き込むことによって内圧が上昇しており、ガスやエアーの吹き込みが弱まった時点で逆流が発生する。今回の試験結果は、回収率は良好だが逆流が発生し、回収液に硫酸イオンが検出しているため、再試験を行う必要があること、反応槽と回収槽に間には圧を逃がす逆流止め用のトラップ槽を設定する必要がある。このトラップ槽は、逆流防止、反応液からの飛沫同伴の防止、さらにガス回収槽としての役目を果たすことになる。
Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012
 (劣化次亜の反応7)
 トラップ槽を設置し、それ以外の大きな変更点は無い状態で、エアーの送り込むタイミングによって回収率が向上するのかを再検証したところ、やはり、エアーを反応初期段階から送り込むほうが有効塩素の回収率が良いということがわかった。また、回収液Aには亜塩素酸イオン、塩素酸イオンが減少し、回収液Bには、塩化物イオンが減少していることから、回収液A、Bの分別回収が可能となった。
 第一反応では劣化次亜塩素酸ナトリウムと50w/w%硫酸を投入した段階では、急激に塩素ガスが生じているのでエアーを反応槽に吹き込むまでも無く、反応が弱まった1時間25分後にエアーを2時間50分送り込み、合計4時間15分の反応を行っている。次に第二反応では、反応母液に65w/w%硫酸を1000g投入した段階での二酸化塩素ガスの発生は急激だが、その後20分後には反応が弱まってくるのでエアーを徐々に強めながら3時間50分間送り込み、合計4時間5分の反応を行っている。以上のことから、特に第二反応ではエアーを反応槽に積極的に送り込み、回収液中に二酸化塩素ガスを強制的に吹き込む方が回収率は大幅に向上することがわかった。
Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014
 (劣化次亜の反応8)
 エアーの開始タイミングにおける回収率の違いを再検証するため、あえてエアー開始時間を遅らせた場合の回収率を確認することにした。
 そこで、第二反応時に2時間30分の自然反応を行い、発泡やガス発生が少なくなった段階でエアーを吹き込むことにした。なお、この方法は研究初期に実施していた方法である。
 その結果、回収率は大幅に低下している事から、エアーを吹き込むタイミングは反応初期の段階から積極的に行った方が回収率を上昇させるということを再確認することができた。そして、第二反応時の二酸化塩素ガス発生による急激な発泡は、生産量にも影響するがおよそ15分以内であるので、回収率向上のためには、この時点までで反応槽中にエアーを送り込み、徐々にエアー量を増加させていく必要があるということがわかった。
Figure JPOXMLDOC01-appb-T000015

 
Figure JPOXMLDOC01-appb-T000016
 (劣化次亜の反応9)
有用な殺菌消毒剤を検討した場合に、薬品濃度は重要である。そして、これまでは原料である劣化次亜塩素酸ナトリウムの投入量に対して、およそ等量の回収液を設定してきたが、この回収液の量を1/2にした場合にも、回収率が低下しないかどうかの濃縮回収試験を行った。
その結果、次亜塩素酸由来の有効塩素濃度として3%前後だったものが、8.38%、亜塩素酸由来の有効塩素濃度として3.5%前後だったものが4.96%の回収液を得る事が出来た。しかし、回収液Aでの濃縮回収は比較的容易であるのに対し、回収液Bの回収率が悪く、回収期待値の63.04%しか回収できていない。
また、回収液Aを得た後の反応母液の測定、回収液Bを得た後の反応母液の測定も行ったところ、第一反応後の反応母液は、塩素酸イオンが24378.5ppmから33990.4ppmまで増加していることがわかった。また、逆に塩化物イオンは50079.5ppmから23532.4ppmまで減少していることもわかった。この塩素酸イオンの増加は、硫酸投入による強酸性化における再不均化反応により、塩素酸イオンが増加していたことが考えられ、さらに硫酸投入時における塩化物イオンの減少についても塩酸が発生し、反応に寄与していたことが考えられた。
 これらは以下の化学式で説明が可能であり、劣化次亜塩素酸ナトリウム中に生成された塩化物イオンが硫酸存在下において塩酸を生成し、その後、第二反応では塩酸と塩素酸から二酸化塩素ガスが発生するものである。
2NaClO+H2SO4→Na2SO4+Cl2+H2O・・・・・(5)第一反応
2NaCl+H2SO4→2HCl+Na2SO4・・・・・(6)第一反応、第二反応
NaClO+2HCl→NaCl+Cl2+H2O・・・・・(7)第一反応
3NaClO→2NaClO+NaClO3・・・・・(8)第一反応
2NaClO3+H2SO4→2HClO3+Na2SO4・・・・・(9)第二反応
HClO3+HCl→HClO2+HClO・・・・・(10)第二反応
HClO3+HClO2→2ClO2+H2O・・・・・(11)第二反応
Figure JPOXMLDOC01-appb-T000017

 
Figure JPOXMLDOC01-appb-T000018
 (劣化次亜の反応10)
 第一反応、第二反応での反応母液中の硫酸濃度の上限を確認するため、酸度を調整し、ともに反応母液中の硫酸濃度を6.37%と37.03%に設定した試験を実施した。また、濃縮回収も実施することにした。
 その結果、回収液Aの回収率は69.87%となったが、多少の亜塩素酸イオン、塩素酸イオンの生成も進行していたため、これ以上、第一反応での酸性度を上げることは適していないことがわかった。
 また、回収液Bの回収率として、有効塩素は63.04%から74.48%の回収率、亜塩素酸イオンは71.03%から78.91%の回収率に上昇していたことから、上限には酸性度が不足していることが考えられた。また、今回の試験でも、第一反応終了後の反応母液は塩素酸イオンが増加し、塩化物イオンが減少していたことも確認した。
Figure JPOXMLDOC01-appb-T000019

 
Figure JPOXMLDOC01-appb-T000020
 (劣化次亜の反応11)
 これまでの反応方法は劣化次亜塩素酸ナトリウムに対して、ほぼ同じ重量の硫酸液を用いて第二反応を行ってきた。しかし、劣化次亜塩素酸ナトリウム中に生成されている塩素酸イオンは第一反応を経て増加しているものの反応性が高くなる濃度としては不足している。
 そこで、第二反応時の反応母液中の硫酸濃度を50%以上として第二反応を行った時の収率の違いを検証してみることにした。この時、使用する硫酸は70w/w%硫酸とし、反応母液中の硫酸濃度58.47%以上に設定した上で、第二反応を行い回収率の確認を行った。
 さらに、第一反応終了後には塩素酸の再生成が行われていることが判明したため、硫酸投入後に、還元剤として過酸化水素を反応母液中に追加投入し、回収率が向上するかも確認してみた。
 その結果、70w/w%硫酸を使用し、反応母液中の硫酸濃度を58.47%以上に増加させた場合に、反応母液中の塩素酸イオンが全分解していることと、有効塩素の回収率が大幅に上昇していたことを確認でき、有効塩素の回収率は83.46%、亜塩素酸イオンの回収率は99.63%であったことから、第二反応時に投入する硫酸の濃度は、65w/w%以上、出来れば70w/w%を使用し、かつ、反応母液中の硫酸濃度としては59.39%までは好ましい結果を得られるということがわかった。
 しかし、回収液B中には多量の塩化物イオンが生成されており、亜塩素酸イオンよりも多い。この結果は、次亜塩素酸ナトリウムなどの液体品の場合には問題は無いが、高度サラシ粉などの粉末品に加工する場合、無機塩類が多くなれば濃縮率が下がり、高濃度の有効塩素を得ることが出来なくなる。
 また、一方で、原料である劣化次亜塩素酸ナトリウムに硫酸を加え、その後に過酸化水素を添加した場合、回収率は大きく低下することが確認できた。これは、以下の化学反応によるものと考えられ、硫酸と塩化物イオンの反応によって生成された塩酸が分解されてしまい、反応に寄与しなかったことがわかる。
H2O2+2HCl→2H2O+Cl2・・・・・(12)
そして、生成された塩酸が反応前に分解されれば、回収率が低下するだけでなく、発生した塩素ガスが回収液Bに混入し、回収液B中の過酸化水素で分解され、塩化物イオンが多量に生成されてしまうことがわかった。
Figure JPOXMLDOC01-appb-T000021

 
Figure JPOXMLDOC01-appb-T000022
 (劣化次亜の反応12)
 第二反応時における反応母液中の硫酸濃度の下限値を確認するため、反応母液中の硫酸濃度を35.7%にし、再度回収率を確認してみた。また反応終了後の反応母液をそれぞれ測定し、第一反応、第二反応終了後における残渣成分を確認してみた。
 その結果、回収液B中の塩化物イオンが多いために、次亜塩素酸ナトリウム規格限定になるが、高回収率の結果となった。
Figure JPOXMLDOC01-appb-T000023

 
Figure JPOXMLDOC01-appb-T000024
 (劣化次亜の反応14)
 低食塩級次亜塩素酸ナトリウムを原料に用いて、第一反応、第二反応時の反応母液に投入する硫酸濃度をすべて70w/w%とし、その上で、第一反応時の反応母液中の硫酸濃度は6.37%に設定し、第二反応時の硫酸濃度を35.7%で製造を実施してみた。
 その結果、第一反応時の硫酸については投入する硫酸濃度に関係なく、第一反応時の反応母液中の硫酸濃度に依存していると考えられた。
 また、第二反応時の硫酸については、使用する硫酸濃度と第二反応時の反応母液中の硫酸濃度の2つに依存していることがわかった。また、第二反応時に使用する硫酸濃度は高い方が良く、70%w/w少なくとも65%w/w以上が良いということがわかり、第二反応では反応母液中の硫酸濃度だけが重要では無いということがわかった。
 そして、回収液Bの回収率は80%を超えて非常に良好であるが、亜塩素酸イオンより塩化物イオンの方が高濃度であり、この組成では次亜塩素酸ナトリウム規格でしか使用できない。
Figure JPOXMLDOC01-appb-T000025

 
Figure JPOXMLDOC01-appb-T000026
 (劣化次亜の反応15)
 低食塩次亜塩素酸ナトリウムだけではなく、一般級次亜塩素酸ナトリウム12%液が品質低下した劣化次亜塩素酸ナトリウムを用いて、本製法における反応性と回収率を確認した。
 なお、一般級次亜塩素酸ナトリウムの特徴として、低食塩次亜塩素酸ナトリウムに比べ薬品単価が安く、組成中の塩化物イオンの量が多く、また、塩素酸イオンも最初から高いという傾向にある。
 そこで、試験では、原料中の塩化物イオンが過多であったことから、第一反応時の反応母液の硫酸濃度を4.47%と低く設定し、さらに、第二反応時には反応母液中の塩素酸イオンを全分解させるために、塩化ナトリウムを追加添加し、塩酸生成を積極的に促した。
 そして、回収液Aは10%水酸化カルシウムを用いることとし、その上で、回収液Bの回収率を求め過ぎると、回収液B中の塩化物イオンが増加している傾向を確認していたことから、中間トラップ槽(過酸化水素入り)を経由してから回収した。なお、この時の塩化物イオンについては、反応槽から塩酸が飛沫同伴しているか、塩素ガスが混入しているかの2つが考えられた。
 その結果として、回収液Aの回収率は良好であったが、第一反応時の反応母液中の硫酸濃度を低下させたのにも関わらず、塩化物イオン、塩素酸イオンは共に減少した結果となり、原料に低食塩次亜塩素酸ナトリウムを使用した時とは異なる結果となった。
 また、回収液Bの回収率は20%台となり、塩化物イオンの回収トラップ槽(過酸化水素入り)に多量の塩化物イオンが回収され、また、回収液B中の塩化物イオンも高い数値を示した。
 これらは、強酸性化における塩酸の過剰生成に原因があると考えられる。本来は、強酸性下の条件の方が塩素酸を分解し、二酸化塩素ガスを生じさせやすいが、今回の一般級劣化次亜塩素酸ナトリウム中には、すでに塩化物イオンが多量に生成されてしまっており、それが強硫酸存在下で塩酸を過剰生成させる。その結果、塩素酸ナトリウムを分解した時に塩素ガスを生じる副反応が進行し、主反応が殆ど進行せずに回収率を大幅に悪化させることがわかった。このため、一般級劣化次亜塩素酸ナトリウムを用いる場合、塩化ナトリウムの追加添加は不要であり、同時に回収液Bに多量に生成している塩化物イオンは、副反応が進行した結果の塩素ガスの混入と想定された。
 従って、塩素酸イオンを分解する反応は、主反応と副反応が存在し、反応条件によって、反応比率が変化する。特に、反応終点近くになり塩素酸イオンが減少すると、副反応が進行しやすくなると考えられる。
2NaClO3+4HCl→2ClO2+Cl2+2NaCl+2H2O・・・・・(13)主反応
NaClO3+6HCl→3Cl2+NaCl+3H2O・・・・・(14)副反応
※特に一般級の劣化次亜反応の場合、酸性度、塩酸の生成量によって、主副反応の進行が変わりやすい。
Figure JPOXMLDOC01-appb-T000027

 
Figure JPOXMLDOC01-appb-T000028
 (劣化次亜の反応16)
 一般級の劣化次亜塩素酸ナトリウムを用いた場合、低食塩劣化次亜塩素酸ナトリウムと比較して、主反応と副反応の進行が逆転しやすいということが確認出来ている。例えば、第一反応時点ですでに塩素酸イオンが分解しやすい傾向にあり、それは劣化次亜塩素酸ナトリウム中に生成している多量の塩化物イオンと硫酸との反応による塩酸過剰生成に原因があるが、原料中の生成物である塩化物イオンは事前に除去することは難しい。
 そこで、一般級の劣化次亜塩素酸ナトリウムの反応については、第二反応時に過酸化水素を事前投入し、その後、硫酸を添加するという予備試験を実施することにした。これは硫酸存在下での塩素酸イオンと過酸化水素の反応による二酸化塩素ガス発生経路の追加と、過剰生成された塩酸を分解し、塩素化させることで、塩素酸イオンが副反応進行によって塩素ガスを発生させることを防止するためである。
 また、予備試験では、反応母液の反応中の組成変化を確認するため、第二反応時の硫酸投入を2回に分け、途中分析を行っている。そして、第二反応の硫酸濃度については、最終37.37%を設定した。
 その結果、第二反応(1)の硫酸濃度(21.57%)であっても、1時間程度で反応母液中の塩素酸イオンの80%以上が分解されてしまうことがわかった。但し、予備試験の設備環境では上手くガス回収することができず、回収率を検証することができなかったが、第二反応では1時間程度で80%以上の塩素酸イオンが分解し、亜塩素酸イオン>塩化物イオンの組成であったことから、主反応進行による亜塩素酸イオン生成比率が高くなる傾向を確認することができた。
 但し、その後、65w/w%硫酸を追加することで反応母液中の硫酸濃度を最終37.37%にし、反応を継続したところ、ほぼ塩化物イオンだけの回収が進み、回収液Bの亜塩素酸イオンとしての純度は極端に低下した。以上のことから、一般級の劣化次亜塩素酸ナトリウムを用いた場合、塩酸の過剰生成により、短時間で塩素酸イオンが分解してしまうので、この反応時間中に主反応をいかに優先進行させることが重要であるということがわかった。
Figure JPOXMLDOC01-appb-T000029

 
Figure JPOXMLDOC01-appb-T000030
 (劣化次亜の反応17)
 一般級の劣化次亜塩素酸ナトリウムの第一反応の硫酸条件を確認するため、反応母液中の硫酸濃度を4.0%に設定した。これは、硫酸濃度を4.5%に設定すると、第一反応時点でやや過剰に塩酸が生成されてしまった結果、塩素酸イオンが分解されてしまったと考えられたからである。
 また、第二反応時の反応母液中の硫酸濃度は30%に設定した。これは、硫酸濃度が20%程度では塩素酸イオンが20%程度残存しており、全分解に至っていなかったからである。そして、前回同様、過酸化水素を硫酸投入前に添加することにした。本来、過酸化水素は二酸化塩素発生を抑制する目的で添加したり、低い硫酸濃度で二酸化塩素ガスを発生させたりと、条件によって異なる反応を示す場合が多い。今回は、過酸化水素添加による副反応抑制を目的として添加をしてみた。
 さらにエアーについては、硫酸投入直後から大量に送り込むことにし、空トラップ槽(逆流防止・ガス回収槽)にガスを満たすことを優先した。これは、反応槽中にガスを満たしたまま放置すると溶液への戻りや逆反応が発生することを危惧したからである。
 また、回収液Bの有効塩素は、1時間ごとに測定し、有効塩素の回収グラフを作成し、同時に、回収液B中の組成の変化を確認することにした。
 その結果として、第二反応1時間後には塩素酸イオンが全分解していることを確認し、その時の有効塩素の回収率は、57.7%であり、2時間後の回収率も変化がないことから、およそ2時間程度で第二反応が終了していることを確認した。よって、設備や配管内にガス残存があることを考慮しても最大で2時間30分程度の反応と回収を行えば、第二反応は終了するということがわかった。そして、今回の試験条件でも、回収液B中の組成は亜塩素酸イオン>塩化物イオンとなり、主反応が優先的に進行したことがわかる。
 従って、第二反応で重要なことは、主反応を優先的に進行させ、塩化物イオンの生成を防止することで純度を高めることにある。この為、今回の試験では主反応が進行した結果回収率が向上したと言えるが、塩素酸イオンが全分解する硫酸濃度と、主副反応が変化する硫酸濃度が同じとは限らない。また、過酸化水素の添加や量も同様である。
Figure JPOXMLDOC01-appb-T000031

Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 (劣化次亜の反応18)
 一般級次亜塩素酸ナトリウムの場合、塩化物イオンが多量に含まれていることから、反応条件が過剰になりすぎると主副反応が入れ替わりやすい。
 そこで、第二反応時の反応母液中の硫酸濃度を40.0%に設定した上で反応させた時に、主反応と副反応のどちらが優先進行するかどうかを確認してみた。
 その結果、第二反応時の反応母液中の硫酸濃度を40.0%上げると、回収液B中からは塩化物イオンが生成されており、塩化物イオン>亜塩素酸イオンになったことから、副反応が優先的に進行したものと考えられた。また、回収率も大幅に低下したため、過酸化水素を添加したとしても、反応母液中の硫酸濃度を40.0%まで上げると塩素ガスの発生や副反応が進行することがわかった。
Figure JPOXMLDOC01-appb-T000034

Figure JPOXMLDOC01-appb-T000035

Figure JPOXMLDOC01-appb-T000036
 (劣化次亜の反応19)
 第二反応時の反応母液中の硫酸濃度が40.0%の場合は副反応が進行し、塩素ガス由来の塩化物イオンが多量に生成されてしまい回収率が悪化した。
 次に、反応母液中の硫酸濃度を30.0%にし、その上で、過酸化水素を事前添加しない場合の試験を実施した。この試験では、第二反応における塩素ガスの抑制をしないことによって、トータルでの反応性が向上し、反面、塩化物イオンが多量に生成されてくることが予測された。
 その結果として、第二反応中24分後に、回収液B中の過酸化水素が不足し、追加添加を行うことになった。これは、回収液Bに想定以上の塩素ガスあるいは二酸化塩素ガスの回収があったと考えられ、過酸化水素が不足した結果、塩素ガスは塩化物イオンとなり、二酸化塩素ガスは塩素酸イオンとして回収された。また、塩化物イオン>亜塩素酸イオンの回収組成であったことから、副反応進行に伴う塩素ガスの混入が大部分であったと考えられた。
 また、回収液B中の過酸化水素不足に伴う回収損はあったが、反応性が増した結果、亜塩素酸イオンの回収率は増加する傾向が確認できた。しかしながら、亜塩素酸イオンの回収率は上昇したが、同時に多量の塩化物イオンが生成されてしまい、純度は低下してしまう。そして、ある程度の純度が無ければ、乾燥濃縮した際に高濃度回収が困難になるため、高度サラシ粉を加工することが出来なくなる。いずれにせよ、第二反応時には過酸化水素を添加することで、塩素ガス生成を抑制させ、その上で、塩素ガスが回収液Bに混入することを防止する中間トラップ槽を追加する必要がある。
Figure JPOXMLDOC01-appb-T000037

Figure JPOXMLDOC01-appb-T000038

 
Figure JPOXMLDOC01-appb-T000039
 (劣化次亜の反応20)
 一般級次亜塩素酸ナトリウムを用いた場合の反応条件の確認として、一般級劣化次亜塩素酸ナトリウムを原料に、50w/w%硫酸を用いて、反応母液中の硫酸濃度を4.0%に設定し、エアーを投入しながら、第一反応を実施する。この時の反応時間は1時間行った。そして、回収液Aでは水酸化ナトリウム(あるいは水酸化カルシウム)で回収する。
 また、第二反応では、第一反応を終えた反応母液中に塩化物イオン生成抑制のために過酸化水素水を事前添加し、その上で、65w/w%硫酸を用いて、反応母液中の硫酸濃度を30.0%に設定し、60~70℃に温度上昇とエアーを送り込みながら第二反応を実施する。この時の反応時間は2時間~2時間30分で良い。そして、過酸化水素を入れた中間トラップ槽を経由して、回収液Bでは水酸化ナトリウムと過酸化水素で回収する。なお、中間トラップ槽で過酸化水素溶液を通過させることによって塩素ガス洗浄を行うことで、塩化物イオンを除去する役目を果たし、その結果、純度の高い回収液Bを回収出来、その後、乾燥工程を行うことで高濃度に濃縮を行うことが出来るレベルに至る。
 なお、本発明では、反応式(13)、(14)で示すとおり、二酸化塩素ガスと塩素ガスの両方が必ず生成されるが、中間トラップ槽では過酸化水素を用いていることで、塩素ガスを洗浄除去し、二酸化塩素ガスを通過させたとしても、反応式(15)、(16)により、塩素ガス発生量に対し、およそ半量しか除去することは出来ない。別の方法を用いて塩素ガスの除去を高レベルで行うと、同じく酸化剤である二酸化塩素ガスも反応してしまうため、次亜塩素酸ナトリウムを原料に用いた本発明における回収液は必ず塩化物イオンを含んでしまう。
2NaClO3+4HCl→2ClO2+Cl2+2NaCl+2H2O・・・・・(13)主反応
NaClO3+6HCl→3Cl2+NaCl+3H2O・・・・・(14)副反応
Cl2+3H2O2→2HCl+2H2O+2O2・・・・・(15)
2HCl+H2O2→2H2O+Cl2・・・・・(16)
Figure JPOXMLDOC01-appb-T000040

Figure JPOXMLDOC01-appb-T000041

Figure JPOXMLDOC01-appb-T000042
 (劣化次亜の反応21)
 これまで第二反応時には温度を60~70℃にして反応を行っていた。しかし、一般級次亜塩素酸ナトリウムを用いた場合の反応性は高く、低食塩級次亜塩素酸ナトリウムと同様の反応条件では塩化物イオンが多量に生成され過剰であるため、反応母液中の硫酸濃度を下げるなどの調整を必要としていた。
 そこで、第二反応時に常温(温度コントロール無し)での反応性を確認することにした。
 その結果、一般級次亜塩素酸ナトリウムを原料に用いた場合には、第二反応時の温度は特に調整せずとも回収率は大きく変化しないことがわかった。
Figure JPOXMLDOC01-appb-T000043

Figure JPOXMLDOC01-appb-T000044
 (劣化次亜の反応22)
 第二反応における回収液B中の水酸化ナトリウム量の検討を行う。第二反応におけるアルカリ量は回収漏れを防止するにはアルカリは過剰な方が良いが、無機アルカリ塩が多ければ、乾燥した場合の濃縮率が低下し、最終濃度が低下することにも繋がる。
 そこで、回収液Bの水酸化ナトリウムを0.5Nにし、回収率の変化を確認してみることにした。
 その結果、第二反応前の回収液BのT.ALが515.46であり、反応終了後には149.25となり、366.21のT.ALが反応で消費されたことがわかった。そして、回収液Bの回収率はやや低下する傾向にあるが、乾燥効率は上昇するため、非常に高濃度の有効塩素を含む粉末に乾燥させることも可能となる。
 しかし、劣化次亜塩素酸ナトリウムに含まれる塩素酸イオンは低濃度であり、また、塩化物イオンも副生しているため、理論値どおりの回収率を得ることは不可能である。そして、ここから得られる回収液を高濃度に乾燥濃縮するためには、35倍程度の濃縮を行う必要があり、結果として、残アルカリ、塩化物イオンも35倍に濃縮されることになる。
 以上のことを実現するためには、回収液中のアルカリ量と塩化物イオンの制御が必要になるが、次亜塩素酸ナトリウムを原料に用いる場合、必ず、亜塩素酸イオンに対して、一定量の塩化物イオンは生成されてくるため、回収液Bにおける残アルカリと無機塩の制御は重要である。
Figure JPOXMLDOC01-appb-T000045

Figure JPOXMLDOC01-appb-T000046

Figure JPOXMLDOC01-appb-T000047
 (劣化次亜の反応23)
 第一反応、第二反応における硫酸濃度が原料組成によって決定されているかどうかを検証するための試験を実施するため、塩化物が多い別メーカーの低食塩級次亜塩素酸ナトリウムを原料に用いて、反応条件の検証を行った。また、原料中の塩化物濃度の測定にはモール法を用いることで、次亜塩素酸ナトリウム中の塩素イオンとの分別定量を行うことにし、塩化物濃度と硫酸濃度との反応条件を確認することにした。
 その結果、原料中の有効塩素50,511ppm、塩化物濃度42186ppmに対して、反応母液中の硫酸濃度を6.37%で反応させたところ、有効塩素が598ppmに減少し、回収液Aで塩素回収することができたが、同時に塩素酸イオンが分解されることで減少し、硫酸が過多であることがわかった。また、第二反応の反応母液中の硫酸濃度を58.00%で反応させたところ、回収液B中に塩素由来の塩化物イオンが生成されてしまい、副反応が主体進行していることが考えられた。このため、第一反応終了後の反応母液中の塩化物濃度15,523ppmに対して、硫酸濃度を58.00%に設定し、第二反応させることも過多であることがわかった。
Figure JPOXMLDOC01-appb-T000048

Figure JPOXMLDOC01-appb-T000049
 (劣化次亜の反応24)
 第一反応条件については、(劣化次亜の反応23)と同じにすることで再現性を確認することとし、第二反応時の反応母液中の硫酸濃度を30.0%に設定した。
 その結果、第一反応後の塩素酸イオンは5.15%分解され、原料中の塩化物濃度43429ppmに対しては、やはり硫酸過多であることと、塩素酸イオンの分解率には多少のバラつきがあることも確認できた。第二反応については、第一反応終了後の反応母液中の塩化物濃度18225ppmに対し、30%硫酸濃度で反応させたが、回収液B中に塩化物イオンと塩素酸イオンがほとんど生成されていないことから、主反応を中心に反応させることが出来、高純度に回収することができた。
Figure JPOXMLDOC01-appb-T000050

Figure JPOXMLDOC01-appb-T000051
 (劣化次亜の反応25)
 原料中の塩化物濃度41983ppmに対し、第一反応時の反応母液中の硫酸濃度を4.00%に設定し、製造を行った。
 その結果、第一反応終了後の反応母液中には有効塩素が14397ppm残存し、塩素酸イオンは13.82%増加したが、有効塩素に対しては反応不足となった。
 また、反応母液中に多量の有効塩素が存在していると、回収液Bに塩化物イオンが生成されることが危惧されるが、実際は、塩化物イオンが少なく、高純度で回収するとともに、第一反応終了後の反応母液中の塩素酸イオンが増加していた影響により回収率も上昇した。
Figure JPOXMLDOC01-appb-T000052

Figure JPOXMLDOC01-appb-T000053
 (劣化次亜の反応26)
 原料中の塩化物濃度41416ppmに対し、第一反応時の反応母液中の硫酸濃度を5.00%に設定し、製造を行った。その結果、第一反応終了後の反応母液中には有効塩素が13281ppm残存し、塩素酸イオンは1.36%減少しており、やや過多であることが確認された。
Figure JPOXMLDOC01-appb-T000054

Figure JPOXMLDOC01-appb-T000055
 (劣化次亜の反応27)
 原料中の塩化物濃度41416ppmに対し、第一反応時の反応母液中の硫酸濃度を6.00%に設定し、製造を行った。その結果、第一反応終了後の反応母液中には有効塩素が13281ppm残存し、塩素酸イオンは3.6%減少しており、過多であることが確認された。また、塩素酸イオンが減少した分、
回収液Bの回収率も低下した。
Figure JPOXMLDOC01-appb-T000056

Figure JPOXMLDOC01-appb-T000057
 (劣化次亜の反応28)
 原料中の塩化物濃度42614ppmに対し、第一反応時の反応母液中の硫酸濃度を4.50%に設定し、製造を行った。また、第一反応終了後の反応母液中に有効塩素が残存することが予測できたため、エアーを含めた反応時間を2時間に設定した。
 その結果、第一反応終了後の反応母液中には有効塩素が13333ppm残存し、塩素酸イオンは12.56%増加していることを確認した。そして、これまで、同Lotの原料に対して、反応母液中の硫酸濃度を4.0%、4.5%、5.0%、6.0%、6.37%を用いて、原料中の有効塩素の分解と塩素酸イオンの増減を確認してきたが、原料中の塩化物濃度が約42000ppmに対して、4.0%、4.5%までは塩素酸イオンが増加していたが、5.0%からは塩素酸イオンが急激に減少し始めた。
 これらから、原料中の塩化物濃度によって、投入可能な硫酸濃度が決定していることと、原料中の有効塩素を全分解するための硫酸を投入してしまうと、塩化物濃度によっては塩素酸イオンが減少する場合があり、その後の収率が低下することから、第一反応時における硫酸濃度は原料中の塩化物濃度で決定することとし、仮に塩化物濃度が過多な場合には、有効塩素濃度が高くとも硫酸を多量添加することは出来ない。
Figure JPOXMLDOC01-appb-T000058

Figure JPOXMLDOC01-appb-T000059
 (劣化次亜の反応29)
 これまで、原料中の塩化物濃度約42000ppmに対して、硫酸濃度は4.5%が適正範囲内であるとしたが、別Lotで原料中の塩化物濃度が約35000ppmの原料を用いて反応試験を実施した。また、硫酸濃度としては、42000÷35000=1.2となるため、4.5%×1.2=5.4%が適正値と試算できたが、この条件は塩素酸イオンが約110%以上に増加する、反応上のバラつきを考慮した安全数値である。このため、初回は、6.0%に設定し反応を行った。
 その結果、一時反応終了後の塩素酸イオンは約104%となっており、塩素酸イオンが減少しない適正範囲内であるが、110%以下であることを確認した。また、第二反応を経た回収液Bについても、塩化物イオンが少ない純度の高いものが回収できていることを確認した。
Figure JPOXMLDOC01-appb-T000060

Figure JPOXMLDOC01-appb-T000061
 (劣化次亜の反応30)
 第一反応時の反応母液中の硫酸濃度の添加式としては、原料中の塩素酸イオンが分解されない、もしくは増加するということを上限とし、かつ、安全率を考慮して、塩素酸イオンが110%以上に増加することを条件としていた。
 そして、この時、原料中の塩化物濃度が高ければ、添加可能な硫酸濃度は低下するため、その計算式は以下のとおりとなる。また、(2)X≦4としたのは、原料中の有効塩素が過剰に残存し過ぎないためである。
(1)Y=-1.2676X+9.84393
(2)X≦4
(Y 反応母液中の硫酸濃度、X 原料中の塩化物濃度)
そこで、第一反応時には計算式どおりの5.4%の硫酸を添加し、第二反応時には40.0%硫酸濃度とした上で試験を実施した。
 その結果、第一反応終了後の塩素酸イオン濃度は118.24%に増加しており、第二反応後の回収液Bの回収率も93.7%であった。
なお、回収液B中の塩化物イオンは3827ppmに増加しており、回収率を高めるために硫酸濃度を増加させることは塩化物イオンの副生を招くことが確認された。仮に最終製品が次亜塩素酸ナトリウム溶液であれば回収液B中の塩化物濃度が高くとも良いが、高度サラシ粉の場合には、4000ppmを超えてくると乾燥時の濃縮率が低下してしまい、結果として、高濃度の高度サラシ粉を製造できなくなってしまう。
Figure JPOXMLDOC01-appb-T000062

Figure JPOXMLDOC01-appb-T000063
 (劣化次亜の反応31)
 低食塩級次亜塩素酸ナトリウムを原料に用いて、第二反応時の反応母液中の硫酸濃度を45.0%に設定し、反応を行った。その結果、回収液B中の塩化物イオンが増加し始め、また、回収率も悪化した。これは、反応母液中の塩素酸イオンが分解される際に、塩素ガスとなる副反応が進行し始めたことを現す。以上のことから、第二反応における硫酸濃度は45%を超えると急激に塩素ガスが生じるため、固体品を製造する場合には濃縮率が低下してしまうということがわかった。
Figure JPOXMLDOC01-appb-T000064

Figure JPOXMLDOC01-appb-T000065
 (劣化次亜の反応32)
 低食塩級次亜塩素酸ナトリウムを原料に用いて、第二反応時の反応母液中の硫酸濃度を40.0%に設定し、反応を行った。
 低食塩級次亜塩素酸ナトリウムを用いて、本製法を実施した場合、原料中の塩化物濃度はすでに反応には過多であることから、過酸化水素水で塩素ガス発生を防止したとしても、回収液Bには塩素ガス由来の塩化物イオンが生成されてしまう。この事象は硫酸濃度が高い場合、もしくは原料中の塩化物濃度が高い場合に発生するが、本製法で固体品を製造する場合には、回収液B中の塩化物イオンが4000ppm程度でなければ高濃度に濃縮することが出来ないため、40.0%が上限値となる。(ただし、液体品を製造する場合には濃縮率を考慮する必要が無いため、その限りではなく、59.4%まで良い。)
Figure JPOXMLDOC01-appb-T000066

Figure JPOXMLDOC01-appb-T000067
 (反応時の硫酸濃度)
 原料である劣化次亜塩素酸ナトリウムは、低食塩級と一般級の2種類があり、それぞれ塩化物イオンや塩化物濃度が異なっており、その濃度に応じて適切な硫酸濃度も変化する。
 第一反応時の適切な硫酸濃度としては、原料中の塩素酸イオンを分解させずに、有効塩素を塩素ガス化させることが条件となり、原料中の塩化物濃度を測定することで、反応母液中の硫酸濃度は決定される。
 この時、仮に原料中に高濃度の塩化物が含まれている場合には、塩素酸イオンが分解されるために硫酸の投入量を引き上げることができず、結果として、有効塩素が残存してしまうが、有効塩素を減少させるために硫酸を過投入してしまうと塩素酸イオンが分解されることで、その後の回収液Bの収率が低下してしまう。ただし、有効塩素が残存しすぎると、次段階の回収液B中に塩化物イオンが生成されてしまい純度が低下してしまうため、この場合には、エアー時間を2時間に延長し、反応母液中から有効塩素を除去することが必要である。
 そして、これまでの試験データから、この時の計算式は以下のとおりとし、第一反応終了後の塩素酸イオン濃度増加率が110%以上に安全率を加味した添加式とする。また、(2)X≦4としたのは、原料中の有効塩素が過剰に残存し過ぎないためである。
(1)Y=-1.2676X+9.84393
(2)X≦4
(Y 反応母液中の硫酸濃度、X 原料中の塩化物濃度)
 次に、第二反応については、第一反応終了後の反応母液が原料となるが、原料中には反応に十分な塩化物が含まれており、やや過剰な場合が多い。そして、反応母液中の硫酸濃度を上げ過ぎると、副反応が進行することで塩素ガスばかりが生じてしまい、回収液B中には多量の塩化物イオンが生成されてしまう。また、硫酸濃度が少なすぎても同様である。
 よって、第二反応時に適切な硫酸濃度としては、反応母液中の塩素酸イオンを全分解するとともに、副反応を制御し、回収液B中に塩化物イオンが多量生成しないことが条件となる。
 しかし、第一反応終了後の反応母液中の塩素酸イオン、塩化物濃度と硫酸濃度には緊密な関係性がさほど見られない。例えば、低食塩次亜塩素酸ナトリウムと一般級次亜塩素酸ナトリウムの一次反応終了後の塩化物イオンは3倍~7.5倍も過剰に含まれているのに、ともに硫酸濃度30%での回収率が良好である。
 そこで、これまでのデータから第二反応の反応母液中の硫酸濃度としては、以下のとおりとなる。
Figure JPOXMLDOC01-appb-T000068

※一般級次亜塩素酸ナトリウムの場合、中間トラップによる塩素ガス除去工程が必須。
(反応条件データ一覧)
Figure JPOXMLDOC01-appb-T000069
 (回収液Aと回収液Bの混合溶液について(次亜塩素酸ナトリウム規格))
 劣化次亜塩素酸ナトリウムを原料として再反応させ、塩素酸イオンの再生成防止を行いながら回収液Aと回収液Bを得ていたが、これらを混合し、食品添加物である次亜塩素酸ナトリウムの規格基準に適合させるためには、有効塩素濃度が4%以上であることと、その他の確認試験に合格する必要がある。
そこで、回収液Aと回収液Bを混合した場合の有効塩素比率を確認することにした。
 その結果、回収液Aの有効塩素濃度を1として、回収液Bの有効塩素濃度0.6を上限値として適合していることがわかり、0.7では確認試験(1)の次亜塩素酸(3)の項目で不適合となった。このことから、本発明の目的から構成を考えると、0.43~0.6の有効塩素濃度比で合体させることが望ましい。また、この有効塩素濃度比で製造された殺菌消毒剤は外部機関の分析によっても次亜塩素酸ナトリウムとしての規格基準に適合していた。
Figure JPOXMLDOC01-appb-T000070
 また、同様に以下の比率について合体させた場合における最終液体品の有効塩素濃度と遊離残留塩素濃度を測定した。
Figure JPOXMLDOC01-appb-T000071
遊離残留塩素濃度はDPD試薬にて測定するが、58,157~59,380ppm測定されており、有効塩素濃度と近似値の値が得られていることから、次亜塩素酸以外にも反応を示していることが考えられる。
 液体品の場合は、遊離残留塩素濃度から求めることが難しいため、イオンクロマトグラフィーによって回収液B由来の亜塩素酸イオン濃度を求め有効塩素濃度に換算し、全体の有効塩素濃度から差し引いた。そして更に、残った有効塩素濃度を回収液A由来の有効塩素濃度と定め、係数をかけて、次亜塩素酸イオン濃度を求め、最終的なイオン比とした。
Figure JPOXMLDOC01-appb-T000072

※は以下の換算式で計算した
(換算式)
有効塩素濃度×0.476=亜塩素酸イオン濃度(ClO2 -
有効塩素濃度×0.726=次亜塩素酸イオン濃度(ClO-
 この換算式は、既知の濃度の亜塩素酸イオンまたは次亜塩素酸イオン濃度を使用して、有効塩素濃度との関係を導くことにより得られた。
 (混合溶液の保存性について)
 本製法に基づき製造された殺菌消毒剤(食品添加物、次亜塩素酸ナトリウムの規格基準適合品)の保存性を確認した。
 その結果、初発の有効塩素濃度が約6.94%の殺菌消毒剤を製造したが、冷蔵温度(6℃)であってもD+30の時点で有効塩素濃度が約5%(約72%)、また40℃の場合には、D+3で有効塩素濃度が約3.8%(約54%)にまで減少していることがわかり、次亜塩素酸イオンと亜塩素酸イオンの両方を内包する殺菌消毒剤(液体)は保存性が非常に悪いために常温で販売することは難しく、冷蔵で販売する方が好ましいということがわかった。
Figure JPOXMLDOC01-appb-T000073
 (第一反応時の回収液組成の検討)
 第一反応における回収液を水酸化カルシウムにし、乾燥させ固体化させることによって保存性と有効塩素濃度の向上を検討することにした。その結果、劣化次亜塩素酸ナトリウム1に対して、20%水酸化カルシウムを1で回収した場合と、劣化次亜塩素酸ナトリウム2に対して、20%水酸化カルシウムを1で回収した場合において、大きな回収率の変化は見られず、濃縮回収を行えることがわかった。
 そして、劣化次亜塩素酸ナトリウム1に対して、10%水酸化カルシウムを1で回収した場合の回収率が最も高かったが、これは水酸化カルシウムスラリーの流動性が高いことが理由であると考えられた。このため、回収液の段階で有効塩素を濃縮させるよりも、のちの乾燥工程で濃縮させた方が好ましいことがわかった。
Figure JPOXMLDOC01-appb-T000074
 (回収液Aと回収液Bの混合溶液について(高度サラシ粉))
 劣化次亜塩素酸ナトリウムを原料として再反応させ、塩素酸イオン生成防止のために回収液Aと回収液Bを得ていたが、これらを混合し、食品添加物である高度サラシ粉の規格基準に遵守させる必要があり、有効塩素濃度が60%以上であることと、その他、確認試験に適合する必要がある。
 そして、その為には、回収液Aの有効塩素濃度を1として、回収液Bの有効塩素濃度は、9.6~33.95の範囲内で有効塩素濃度比を調整し乾燥工程を行う。なお、本製品の特徴から、回収液Bの比率が高くなりすぎることを避けるため、回収液A、1に対して、回収液B、9.6を主体配合とする。
 さらに、乾燥工程や投入順序によって収率が悪化することが分かり、特に遊離残留塩素は分解されやすいため、事前に回収液Aのみで造粒核を形成させておき、次に、回収液Bはある程度の濃縮を進めスラリー化させておく。この状態でそれぞれを混合し乾燥を行うと、遊離残留塩素の分解が起こりづらく、乾燥前後の組成変化が極めて少ない状態で乾燥固体を得ることができる。
 以上の方法で製造された乾燥固体は外部機関の分析によって高度サラシ粉の規格基準に適合した。
 本製法で製造された高度サラシ粉は、一般に市販流通している高度サラシ粉と比べて組成が特殊であることから、高度サラシ粉単品として販売するのではなく、殺菌料(食品添加物製剤)または消毒剤製剤として販売することが望ましいと考える。
 (回収液Aと回収液Bの標準的な組成比率)
 回収液Aと回収液Bを混合して乾燥させると、それぞれの乾燥時の濃縮率が異なるため、最終製品では有効塩素比を測定することができなくなる。このため、回収液Aと回収液Bの有効塩素比率の下限を確認するため、予備試験として、回収液A、回収液Bそれぞれを単体で乾燥させたものを使用し、それぞれの有効塩素濃度を測定の上、検体を作成した。
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
 (乾燥工程)
 乾燥条件は、庫内環境温度を50~60℃とし、庫内湿度は10%以下とする。また、風量は1.9m3/sで温風を送り込む。この時の温風は直接乾燥庫内の液体へ直接当てる必要はなく、庫内の温度と湿度を維持させることが目的である。
 その上で、回収液Aの造粒核および回収液Bのスラリーをそれぞれ形成させてから混合した方が乾燥後の収率並びに内容組成は安定する。とくに、次亜塩素酸イオンと亜塩素酸イオンは混在すると有効塩素が分解し、同時に塩化物イオンと塩素酸イオンが生成されてしまう。この場合、最終製品の有効塩素濃度が低くなるだけでなく、副成分によって純度も低下する。
Figure JPOXMLDOC01-appb-T000077
 (乾燥工程の違いによる収率の変化)
 No.1法に比べ、No.2法の方が遊離残留塩素の減少が極めて少なく、副成分である塩化物イオン、塩素酸イオンの生成も少ない。
Figure JPOXMLDOC01-appb-T000078

(乾燥工程時の水分の違いによる収率の変化)
Figure JPOXMLDOC01-appb-T000079
 A液とB液を混合し乾燥させた場合の安定性については、乾燥前に保持していた水分量と、回収液Aと回収液Bの混合時の有効塩素比の2つによって影響を受けていた。
 本製法では、回収液Aで造粒核の形成と回収液Bでのスラリーの形成ということで、事前にある程度乾燥させた方が作業性や安定性が向上するという結果を得ているが、その目安としては、乾燥前の全体水分量が20%以下になるまでそれぞれ事前乾燥させた方が良い。
 この時、水分量が26%以上であれば、回収液A中の遊離残留塩素(次亜塩素酸イオン)と亜塩素酸イオンが反応することで、有効塩素濃度も減少し、塩素酸イオンの増加となり、純度や乾燥率も低下する。また、水分量が30%を超えると、遊離残留塩素(次亜塩素酸イオン)の自己分解が顕著となり、遊離残留塩素(次亜塩素酸イオン)が特に減少し、やはり純度や乾燥率が低下する。
 さらに、回収液Aと回収液Bの混合するときの有効塩素比については、1:20が最も副成分が生成されず純度が高いことから、回収液Aと回収液Bを安定的に存在させながら乾燥する場合には、有効塩素比を1:20に設定し、水分量は20%以下にすることが最も良いという結果が得られた。
(予備乾燥後の水分量20%区における固体品の計算値)
Figure JPOXMLDOC01-appb-T000080

また、予備乾燥後の水分量20%区における固体品の測定値から、乾燥後の有効塩素比とイオン比を計算した。次亜塩素酸イオン:亜塩素酸イオンは、1:5.53~23.18を含有する。
 (回収液A、Bの組成と合体乾燥結果(1:9.61))
 有効塩素比で回収液Aを1とし、回収液Bを9.61で混合し、乾燥した場合の測定結果であるが、この有効塩素比の場合、以下の反応が過多となり、塩化物と塩素酸イオンが生成される。
ClO-+ClO2  → ClO3 - + Cl
 このため、これ以上の有効塩素比の場合では有効塩素が60%を割り込むことが考えられ、高度サラシ粉に適合しなくなるため、この有効塩素比が下限にあたる。
Figure JPOXMLDOC01-appb-T000081
 (回収液A、Bの組成と合体乾燥結果(1:33.95))
 有効塩素比で回収液Aを1とし、回収液Bを33.95で混合し、乾燥した場合の測定結果であるが、回収液Bの有効塩素比率があまりに高くなると、遊離残留塩素とカルシウムの規格に適合しない場合が想定される。この比率の結果では、乾燥後のカルシウムイオン濃度が5.64%となり、高度サラシ粉中のカルシウム量が適合する条件の下限にあるため、この有効塩素比がほぼ上限にあたる。
Figure JPOXMLDOC01-appb-T000082
 (回収液A、Bの組成と合体乾燥結果(一覧))
 (1)区の場合、遊離残留塩素が多いと次亜塩素酸イオンと亜塩素酸イオンが反応し、有効塩素が減少するとともに、塩化物イオンと塩素酸イオンが生成される。この場合、有効塩素の分解だけではなく、有効塩素に寄与しない副成分も生成されるため、乾燥濃縮率も低下し、有効塩素濃度は最も低くなる。
 その一方で、(4)区、(5)区、(6)区は、遊離残留塩素の初期投入量を下げているのにも関わらず、副生される塩化物イオン、塩素酸イオンともに生成比率が高い。この原因は不明だが、次亜塩素酸イオンと亜塩素酸イオンの有効塩素比率において、次亜塩素酸イオンが高い場合には有効塩素の分解により規格から外れていたが、逆に、低い場合においても、塩化物イオンと塩素酸イオン等の副成分に変化する割合が高くなり、純度は低下し、乾燥濃縮の妨げになることがわかった。
Figure JPOXMLDOC01-appb-T000083
 また、本製法は塩素ガスの反応から得られるものであることから1140ppm程度以上の硫酸イオンを含み、この硫酸イオンは反応槽に含まれる硫酸の飛沫同伴であり、回収液には水酸化カルシウムが過剰に存在することから、主には硫酸ナトリウムの形態をとる。
Figure JPOXMLDOC01-appb-T000084
(固体品を溶解した場合)
 下記の配合表に基づき、希釈後の有効塩素濃度が1%、6%、12%になるように、イオン交換水を加え、溶け残りが無いようにスターラーで15分間の攪拌を行った。次に、10℃のインキュベーター内で1時間静置させ(清澄な上澄み液を得る)、沈殿物を吸い込まないように上澄み液を回収する。そして、上澄み液の遊離残留塩素濃度、有効塩素濃度、各種イオン濃度(イオンクロマトグラフィー)の測定を行った。
Figure JPOXMLDOC01-appb-T000085
 固体品をイオン交換水で希釈し、液体化した場合において、やや遊離残留塩素の分解が促進されるため減少したが、有効塩素比、イオン比は別表の通りとなった。
Figure JPOXMLDOC01-appb-T000086
 (固体品からカルシウムを除去した場合の組成)
下記の配合表とCa除去の関係式(※)に基づき、Ca除去後の回収液を希釈後の有効塩素濃度が1%、6%、12%になるように、イオン交換水を加え、溶け残りが無いようにスターラーで15分間の攪拌を行った。(関係式から求めた20%炭酸ナトリウム溶液を加え、1分間の攪拌を行った。)次に、10℃のインキュベーター内で19時間静置させ(清澄な上澄み液を得る)、沈殿物を吸い込まないように上澄み液を回収する。そして、上澄み液の遊離残留塩素濃度、有効塩素濃度、各種イオン濃度(イオンクロマトグラフィー)の測定を行った。
※高度サラシ粉中のカルシウムイオン濃度(%)<X1>と、20%炭酸水素Na液の添加量(g)<Y1>の関係式(1)は、Y1=14.042X1+0.0185
 また、カルシウムイオンの測定については、NN指示薬を用い、EDTA溶液で滴定した。
0.05mol/L EDTA溶液1ml=3.705mgCa(OH)2×カルシウムイオンの分子量(40.08)/水酸化カルシウムの分子量(74.08)
=0.05mol/L EDTA溶液1ml=2.005mgCa2+ 
Figure JPOXMLDOC01-appb-T000087

 固体品をイオン交換水で希釈し、カルシウムイオンを関係式によって除去し液体化した場合において、アルカリが増加することによって遊離残留塩素の分解抑制が見られ、有効塩素比、イオン比は別表の通りとなった。
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089

<食品、添加物等の規格基準 第2 添加物 D 成分規格・保存基準各条 水酸化カルシウム>
定量法
本品約2gを正確に量り、塩酸(1→4)30mlを加えて溶かし、更に水を加えて正確に250mLとし、検液とし、カルシウム塩定量法中の第1法により定量する。
0.05mol/L EDTA溶液1ml=3.705mgCa(OH)2
<食品、添加物等の規格基準 第2 添加物 B 一般試験法 8.カルシウム塩定量法>
カルシウム塩定量法は、カルシウム塩類の含量を、エチレンジアミン四酢酸二ナトリウム(EDTA)を用いて定量する方法で、EDTA溶液による直接滴定法(第1法)と、過剰のEDTAを加えた後、酢酸亜鉛溶液で滴定する逆滴定法(第2法)がある。
操作法
別に規定するもののほか、次のいずれかの方法による。
第1法
別に規定する検液10mlを正確に量り、水50mlを加え、水酸化カリウム溶液(1→10)10mlを加えて約1分間放置した後、NN指示薬約0.1gを加え、直ちに0.05mol/LEDTA溶液で滴定する。終点は、液の赤紫色が完全に消失して青色となるときとする。
第2法
別に規定する検液20mlを正確に量り、0.02mol/LEDTA溶液25mLを正確に量って加え、次に水50ml及びアンモニア・塩化アンモニウム緩衝液(pH10.7)5mlを加えて約1分間放置した後、エリオクロムブラックT・塩化ナトリウム指示薬0.025gを加え、直ちに過剰のEDTAを0.02mol/L酢酸亜鉛溶液で滴定する。終点は、液の青色が青紫色となるときとする。別に空試験を行う。
0.05mol/L EDTA溶液1ml=3.705mgCa(OH)2×カルシウムイオンの分子量(40.08)/水酸化カルシウムの分子量(74.08)
=0.05mol/L EDTA溶液1ml=2.005mgCa2+
(保存データ)
 比較対照のため、市販品の高度サラシ粉(「トヨクロン-PTGIII」)と、本製法で生産した高度サラシ粉(「高度サラシ粉A」)を25℃と40℃とで保存試験を行ってみた。保存試験項目としては、「高度サラシ粉」公定規格試験を実施し、水分、過酸化水素水の反応による気泡の確認(遊離残留塩素)、膨張を測定することにした。
 その結果、25℃、40℃のどちらの保管温度帯であっても有効塩素の減少は殆どなく、「高度サラシ粉」公定規格試験に適合し、また、過酸化水素水による気泡の発生も確認できたことから、保存後においても、組成の変化が見られないことを確認した。
 さらに、市販「高度サラシ粉」と比較しても保存性に優れていることも確認することができた。
 検体は、回収液Aを予備乾燥し造粒核を形成させ、あわせて予備乾燥させた回収液Bを混合し、乾燥させた。
Figure JPOXMLDOC01-appb-T000090

Figure JPOXMLDOC01-appb-T000091

Figure JPOXMLDOC01-appb-T000092
 (酸化還元電位、塩素ガス濃度)
 作製した混合溶液(次亜塩素酸Na規格)である検体(1)と検体(2)について、ORP(酸化還元電位)と塩素ガス濃度を測定した。また、比較対照として同濃度の次亜塩素酸ナトリウム溶液を用いた。その結果として、ORP(酸化還元電位)については、次亜塩素酸ナトリウムは希釈しても変化が無いのに対し、検体(1)、(2)ともに希釈することによって酸化力が上昇した。また、塩素ガス濃度については、有機物と接触させてもほとんど塩素ガスの放出が見られず、約1/31~1/50程度しか測定されないという優位性を確認することができた。
Figure JPOXMLDOC01-appb-T000093

<使用器具・備品>
(株)ガステック製の気体採集器 GV-100S
(株)ガステック製の検知管 No.8LL:測定範囲 0.025~2.0ppm
(株)ガステック製の検知管 No.8La:測定範囲 0.1~16ppm
(株)ガステック製の検知管 No.8H:測定範囲 25~1000ppm
 (粉末溶解品の塩素ガス濃度)
 作製した高度サラシ粉液体品を用いて、同濃度の次亜塩素酸ナトリウムと比較した場合の有機物接触時の塩素ガス濃度を測定した。その結果、高度サラシ粉液体品は、有機物と接触させても急激に塩素ガスを発生させることなく、1/1000~1/6000程度の塩素ガスしか測定されることはなかった。そして、この事は殺菌対象食品に塩素臭の付着を低減させることにも繋がる。
<試験区>
・次亜塩素酸ナトリウム    200ppm、1000ppm
・高度サラシ粉液体品     200ppm、1000ppm
上記の各液50gを測り取り、カットキャベツ5g(液比 1:10)の条件で浸漬し、密閉した。その後、25℃で1時間浸漬を行い、塩素ガス濃度の測定を行った。
Figure JPOXMLDOC01-appb-T000094

<使用器具・備品>
(株)ガステック製の気体採集器 GV-100S
(株)ガステック製の検知管 No.8LL:測定範囲 0.025~2.0ppm
(株)ガステック製の検知管 No.8La:測定範囲 0.1~16ppm
(株)ガステック製の検知管 No.8H:測定範囲 25~1000ppm
 (殺菌効果の確認)
 本発明によって作成された液体品(次亜塩素酸Na規格)と固体品(高度サラシ粉規格)を用いて、原料菌数が高いことで知られている青ネギに対して殺菌効果を確認した。
 対照区である次亜塩素酸Naと比較して、液体品は一般生菌数、大腸菌群数ともに殺菌効果の優位性を確認でき、特に、大腸菌群に対する殺菌効果が際立って確認することができた。
 また、固体品については、高度サラシ粉中のカルシウム除去前後の2区で確認したところ、大腸菌群に対する殺菌効果を同じく確認することができ、本発明における殺菌剤の全体的な特徴として、大腸菌群に対する殺菌効果が高いということを確認した。
Figure JPOXMLDOC01-appb-T000095

Figure JPOXMLDOC01-appb-T000096
 (R2法との反応の違い1)
 原料が劣化次亜塩素酸ナトリウムではないが、類似した反応方法にR2法がある。
 R2法は塩素酸ナトリウムと塩化ナトリウムを硫酸による高酸性条件(8N~11N)のバッチ式で反応させ、二酸化塩素ガスを得るものである。R2法をそのまま劣化次亜塩素酸ナトリウムと反応させると、回収液A中に塩素酸イオンが生成するため、本製法の目的とは異なる。また、本製法では原料となる劣化次亜塩素酸ナトリウム中には塩素酸イオン、塩化物イオンの両方が自然生成されている上、第一反応を行うことで塩素酸イオン、塩化物イオンはそれぞれ増減する。また、劣化次亜塩素酸ナトリウム中に塩化物イオンは塩酸を生成するにはすでに過剰な量であり、逆に塩化物イオンによる塩酸の過剰生成を制御する必要がある。
 しかし、R2法のように反応母液中に塩化ナトリウムを加えることで回収率が向上する可能性もある。そうなれば、硫酸を使用するコストを低減することが可能になるかもしれないことから、第一反応を終えた反応母液(劣化次亜塩素酸ナトリウム+硫酸)を用いて、第二反応を実施し、50%硫酸と塩化ナトリウムを添加し、塩素酸イオンの分解率と回収液B中の回収率を確認した。
 その結果として、50%硫酸と塩化ナトリウムを添加し、反応母液中の硫酸濃度を17%前後で第二反応を行ったところ、塩化ナトリウムを添加して反応させるに連れ、反応母液中の塩素酸イオンの分解率が向上したが、塩化物イオンが増加した。さらに、回収液Bにおける亜塩素酸イオンの回収率は低く、塩化物イオンの増加が見られた。
 この結果からも、硫酸による反応母液中の酸性度が低いために副反応が進み、塩素酸を分解することで塩素ガスを生じ、反応母液中には塩化物イオンが増加し、また、回収液B中には塩素ガスが過酸化水素で分解されることで塩化物イオンが増加し、かつ、主反応が進行しなかったために、二酸化塩素の生成、亜塩素酸イオンの回収率は減少するということがわかった。
Figure JPOXMLDOC01-appb-T000097

Figure JPOXMLDOC01-appb-T000098
 (R2法との反応の違い2)
 第一反応終了後の反応母液に塩化ナトリウムを添加することで、硫酸を過剰投入しなくても塩素酸イオンの分解率を100%に到達するということがわかったが、塩素酸イオンの分解率は向上するが、逆に収率を悪化させた。
 そこで、50%w/w硫酸を用い、反応母液中の硫酸濃度を25.0%と27.28%にて反応試験を実施してみた。
 その結果、強酸性条件によって主反応が進み、二酸化塩素ガスの発生にともなう亜塩素酸イオンの回収が進行したが、依然として、回収液Bには塩化物イオンが多量に回収されており、これは副反応進行にともなう塩素ガスの混入であると考えられた。
 以上のことから、副反応は硫酸による酸性度が低い時に進行しやすいことがわかったが、過剰な硫酸濃度の時には塩酸生成が増加し、やはり副反応が進行してしまうことから、塩素酸の分解にこだわる事は副反応の進行を招き、回収率の向上には繋がらない。そして、すでに塩化物イオンが十分に存在している劣化次亜塩素酸ナトリウムの反応には、どちらかと言えば、過剰生成される塩酸の制御による副反応進行防止の方が重要である。
Figure JPOXMLDOC01-appb-T000099

Figure JPOXMLDOC01-appb-T000100
 (R2法との反応の違い3)
 第一反応終了後の反応母液に塩化ナトリウムを投入することで塩酸が生成し、硫酸を過剰投入しなくても塩素酸イオンの分解率を100%に到達させる事がわかった。
 しかし、塩素酸イオンの分解率が100%になったとしても、亜塩素酸の回収率が向上しないのは、塩素酸の分解反応には主副反応の2つがあり、反応条件によって進行が変化し、回収液B中の塩化物イオンは、塩素酸イオンの分解による塩素ガスの生成に伴うものであるということがわかった。このため、塩酸生成過剰にともない塩素酸イオンを完全分解させようとすると、塩化物イオンが大量に生成され、回収率の悪化と純度低下を招くことになる。
Figure JPOXMLDOC01-appb-T000101

Figure JPOXMLDOC01-appb-T000102
 (第一反応の条件と塩素酸イオン増加の確認基礎試験1)
 劣化次亜塩素酸ナトリウムを用いて第一反応を行った後に塩化物イオンと塩素酸イオンがどの程度増減するのかを確認してみた。また、通常の第一反応は常温で実施しており、20℃~30℃、高くても反応時の発熱で40℃である。
 そして、実験的に一次反応のみを行ってみたところ、塩化物イオンの減少と、塩素酸イオンの増加を確認し、塩素酸イオンは40℃程度までは増加を続けることがわかった。
 しかし、40℃で一次反応を行ってしまえば回収液中に亜塩素酸イオンが検出されてきてしまっているので、一次反応の温度条件としては、30℃前後の常温で反応させる方が好ましいことがわかった。また、余り温度を上昇させることは蒸気が発生し、回収液へ硫酸や塩酸などの飛沫同伴が増加するのでこれも好ましくは無いと考えられる。
Figure JPOXMLDOC01-appb-T000103

Figure JPOXMLDOC01-appb-T000104
 (第一反応の条件と塩素酸イオン増加の確認基礎試験2)
 先の試験の再検証とし、さらに65w/w%硫酸を追加することで第一反応における酸度の影響を確認した。
 その結果、温度の影響よりも酸度を上昇させた方が塩素酸イオンは増加した。しかしその反面、塩酸の生成も進むことが考えられ、その結果として、回収液Aに亜塩素酸イオンと塩素酸イオンが検出され、回収率の悪化も考えられるため、第一反応で反応母液中の硫酸濃度を過度に上げることは好ましくはない。
Figure JPOXMLDOC01-appb-T000105

 
Figure JPOXMLDOC01-appb-T000106
 (試験の解説)
 品質低下した次亜塩素酸ナトリウムである劣化次亜塩素酸ナトリウムを再反応させ、次亜塩素酸ナトリウムを再製造すること自体は目新しい技術ではないが、再製造のコストを製品単価に付加することが出来ないという問題がある。
 そこで、劣化次亜塩素酸ナトリウム中に生成してしまっている塩化物イオンと塩素酸イオンに着目し、これらも反応させることによって、各種塩素酸化物のイオンが複合した状態で存在する殺菌消毒剤を製造することができないかを検討した。
 その結果、劣化次亜塩素酸ナトリウムを反応させ、塩素ガスと二酸化塩素ガスの両方を1液で回収しようとすると、塩化物イオンに分解され、塩素酸イオンが生成されるなどの弊害があることが確認され、個別に回収するために、劣化次亜塩素酸ナトリウムと硫酸からなる反応母液から塩素ガスと二酸化塩素ガスを段階的に取り出す反応条件が必要であるということがわかった。
 また、この反応条件については、原料となる次亜塩素酸ナトリウムのグレード(低食塩級や一般級)によっても異なることがわかった。
 次に回収液については、第一反応では水酸化ナトリウムまたは水酸化カルシウムのみで回収し、第二反応では水酸化ナトリウムに過酸化水素を加えて回収する。
 さらに第二反応回収時には、反応槽と回収槽の間に、逆流防止のための中間槽を設け、特に一般級次亜塩素酸ナトリウムについては、塩素ガス混入を防止するために過酸化水素水を加えておくと良い。
 これらは後に粒状乾燥させる時に、残アルカリ成分、塩化物イオン除去を行うことによって、純度を高めることに繋がる。
 そして、回収液Aと回収液Bの混合比については、食品添加物である次亜塩素酸ナトリウムや高度サラシ粉の規格基準に適合させる必要があり、次亜塩素酸ナトリウムの場合であれば、回収液Aの有効塩素を1として、回収液Bの有効塩素は0.6を上回ってはならず、本発明の特徴からは0.43~0.6の範囲内で調整することが望ましい。同様に、高度サラシ粉の場合は、回収液Aの有効塩素を1として、回収液Bの有効塩素は33.95以下にする必要があるが、本製造物の特徴を考えると、1:9.6が望ましい。
 また、乾燥濃縮する場合には、溶液の段階で2液を合体させるよりも、それぞれある程度のスラリーにしてから混合して乾燥した方が短期化し、有効塩素の消失や組成の変化を防止できる。これらの方法で製造された乾燥固体は、遊離残留塩素の分解が極めて少なく、内容液の組成を長期間保った状態の塩素酸化物固体となる。
 以上、試験で明らかな通り、当該発明により、品質低下した次亜塩素酸ナトリウムを原料に、これを廃棄や、安価な次亜塩素酸ナトリウムに復元するだけでなく、末端消費者にとっても付加価値のある殺菌消毒剤へ再生できるものである。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本願は、日本国出願特願2018-71515(2018年4月3日出願)に対して優先権を主張するものであり、その内容はその全体が本明細書において参考として援用される。本明細書において引用した特許、特許出願および他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本発明の組成物は、殺菌消毒剤として有用である。本発明の方法は、品質劣化した次亜塩素酸ナトリウムを再生し、新たに有用な殺菌消毒剤を与える。

Claims (52)

  1.  次亜塩素酸塩および亜塩素酸塩を含む乾燥固体。
  2.  前記固体が、乾燥粒状である、請求項1に記載の乾燥固体。
  3.  前記固体が、次亜塩素酸カルシウムを含む、請求項1または2に記載の乾燥固体。
  4.  前記固体が、
     (1)有効塩素60.0%以上含み、
     (2)塩素のにおいがあり、
     (3)該固体0.5gに水5mlを加えて振り混ぜ、これに赤色リトマス紙を浸すとき、リトマス紙は青変し、次に退色し、
     (4)該固体0.1gに酢酸(1→4)2mlを加えるとき、ガスを発生して溶け、これに水5mlを加えてろ過した液は、カルシウム塩の反応を呈する、
    請求項1~3のいずれか一項に記載の乾燥固体。
  5.  前記固体が、SO系成分を検出限界以上8100ppm以下で含む、請求項1~4のいずれか一項に記載の乾燥固体。
  6.  前記固体における次亜塩素酸塩と亜塩素酸塩の比が、1対5~25である、請求項1~5のいずれか一項に記載の乾燥固体。
  7.  前記固体における有効塩素濃度が600,000ppm~900,000ppmの範囲内であり、遊離残留塩素濃度が900ppm~60,000ppmの範囲内である、請求項1~6のいずれか一項に記載の乾燥固体。
  8.  請求項1~7のいずれか一項に記載の乾燥固体を溶解させて得られた液体。
  9.  有効塩素濃度が1%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対7~35である、請求項8に記載の液体。
  10.  有効塩素濃度が1%となるように水で希釈した場合、遊離残留塩素濃度が150ppm~900ppmの範囲内である、請求項8または9に記載の液体。
  11.  有効塩素濃度が6%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6~30である、請求項8に記載の液体。
  12.  有効塩素濃度が6%となるように水で希釈した場合、遊離残留塩素濃度が1,000ppm~6,000ppmの範囲内である、請求項8または11に記載の液体。
  13.  有効塩素濃度が12%となるように水で希釈した場合、次亜塩素酸イオンと亜塩素酸イオンの比が、1対6~30である、請求項8に記載の液体。
  14.  有効塩素濃度が12%となるように水で希釈した場合、遊離残留塩素濃度が2,500ppm~12,000ppmの範囲内である、請求項8または13に記載の液体。
  15.  次亜塩素酸塩および亜塩素酸塩を含む乾燥固体を製造する方法であって、
     次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液を用意する工程と、
     該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、
     回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、
     第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と、
     回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、
     回収液Aと回収液Bとを混合する工程と、
     得られた混合溶液を乾燥させ固体化させる工程と
    を包含する、方法。
  16.  前記回収液Aが水酸化カルシウムを含む、請求項15に記載の方法。
  17.  第1反応後の反応母液に、過酸化水素を添加する工程をさらに包含する、請求項15または16に記載の方法。
  18.  前記回収液Aと前記回収液Bとを混合する工程において、該回収液Aの有効塩素濃度を1とすると、回収液Bの有効塩素濃度が9.6~33.95の範囲内である、請求項15~17のいずれか一項に記載の方法。
  19.  前記回収液Aと前記回収液Bとを混合する工程において、該回収液Aおよび該回収液Bが、それぞれスラリー化されて混合される、請求項15~18のいずれか一項の方法。
  20.  前記回収液Aと回収液Bとを混合する工程が、前記回収液Aを予備乾燥し、造粒核を形成し、回収液Bをスラリー化させ、そして、回収液Bスラリーに回収液A乾燥物を投入する工程を包含する、請求項15~19のいずれか一項に記載の方法。
  21.  前記乾燥させ固体化させる工程が、20分~30分間の温風乾燥を行う工程を包含する、請求項15~20のいずれか一項に記載の方法。
  22.  前記乾燥させ固体化させる工程が、回収液Aおよび回収液Bの水分量をそれぞれ20%以下に減少させることを含む、請求項15~21のいずれか一項に記載の方法。
  23.  次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液から新たな殺菌消毒剤を製造する方法であって、
     該溶液中の次亜塩素酸イオン濃度、塩素酸イオン濃度および塩化物イオン濃度を定量する工程と、
     該溶液に硫酸を添加し、塩素ガスを生成させる第一反応工程と、
     回収液A中において、該生成した塩素ガスを水酸化ナトリウムまたは水酸化カルシウムと反応させて次亜塩素酸イオンとして回収する工程と、
     第一反応工程後の反応母液に、第一反応工程におけるよりも高い濃度の硫酸を添加し、二酸化塩素ガスを生成させる第二反応工程と
     回収液B中において、該生成した二酸化塩素ガスを水酸化ナトリウムおよび過酸化水素と反応させて亜塩素酸イオンとして回収する工程と、
     回収液Aと回収液Bとを混合し、新たな殺菌消毒剤を得る工程と、
    を包含する、方法。
  24.  前記次亜塩素酸イオン、塩素酸イオンおよび塩化物イオンを含む溶液が、品質劣化した次亜塩素酸塩を含む溶液である、請求項23に記載の方法。
  25.  前記品質劣化した次亜塩素酸塩を含む溶液が、低食塩級の次亜塩素酸ナトリウム溶液に由来する、請求項24に記載の方法。
  26.  前記品質劣化した次亜塩素酸塩を含む溶液が、一般級の次亜塩素酸ナトリウム溶液に由来する、請求項24に記載の方法。
  27.  前記殺菌消毒剤が固体品であり、第一反応工程における反応母液中の硫酸濃度が4.00~6.37%であり、第二反応工程における反応母液中の硫酸濃度が30.00~40.00%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%~70.0w/w%である、請求項25に記載の方法。
  28.  前記殺菌消毒剤が液体品であり、第一反応工程における反応母液中の硫酸濃度が4.00~6.37%であり、第二反応工程における反応母液中の硫酸濃度が30.00~59.04%であり、第二反応工程において使用される硫酸濃度が、50.0w/w%~70.0w/w%である、請求項25に記載の方法。
  29.  第一反応工程における反応母液中の硫酸濃度が4.00~4.50%であり、第二反応工程における反応母液中の硫酸濃度が25.00~30.00%であり、第二反応工程において使用される硫酸濃度が、65w/w%である、請求項26に記載の方法。
  30.  第一反応において、原料中の塩化物濃度をX%とし、反応母液中の硫酸濃度をY%としたとき、
    (1)Y=-1.2676X+9.84393
    (2)X≦4
    を満たす、請求項23~29にいずれか一項に記載の方法。
  31.  前記回収液Aが、水酸化ナトリウムまたは水酸化カルシウムを含む、請求項23~30のいずれか一項に記載の方法。
  32.  前記回収液Bが、水酸化ナトリウムおよび過酸化水素を含む、請求項23~31のいずれか一項に記載の方法。
  33.  前記第一反応工程が、エアーを吹き込みながら行われる、請求項23~32のいずれか一項に記載の方法。
  34.  前記第二反応工程が、エアーを吹き込みながら行われる、請求項23~33のいずれか一項に記載の方法。
  35.  反応槽と回収液Bを含む回収槽との間に、過酸化水素を含む中間トラップ槽が設けられている、請求項23~34のいずれか一項に記載の方法。
  36.  第1反応後の反応母液に、過酸化水素を添加する工程をさらに包含する、請求項23~35のいずれか一項に記載の方法。
  37.  前記回収液Aと回収液Bとを混合する工程において、回収液Aの有効塩素濃度を1として、回収液Bの有効塩素濃度が、0.43~0.6である、請求項23~36のいずれか一項に記載の方法。
  38.  前記殺菌消毒剤が、次亜塩素酸ナトリウムを含む、請求項23~37のいずれか一項に記載の方法。
  39.  前記殺菌消毒剤が、
     (1)有効塩素4.0%以上含み、
     (2)塩素のにおいがあり、
     (3)ナトリウム塩の反応及び次亜塩素酸塩の反応を呈し、
     (4)本品の水溶液(1→25)4mlにリン酸緩衝液(pH8)100mlを加えた液は、波長291~294nmに極大吸収部があり、
     (5)本品に赤色リトマス紙を浸すとき、リトマス紙は青変し、次に退色する、
    請求項38に記載の方法。
  40.  前記殺菌消毒剤が、SO系成分を検出限界以上8100ppm以下で含む、請求項23~39のいずれか一項に記載の方法。
  41.  前記消毒剤における次亜塩素酸イオンと亜塩素酸イオンの比が、1対0.24~0.3である、請求項23~40にいずれか一項に記載の方法。
  42.  前記消毒剤における有効塩素濃度が約60,000ppmであり、遊離残留塩素濃度が約60,000ppmである、請求項23~41のいずれか一項に記載の方法。
  43.  請求項23~42のいずれか一項に記載の方法により製造された殺菌消毒剤。
  44.  次亜塩素酸イオンと亜塩素酸イオンの比が、1対0.24~0.3である、請求項43に記載の殺菌消毒剤。
  45.  前記消毒剤における有効塩素濃度が約60,000ppmであり、遊離残留塩素濃度が約60,000ppmである、請求項43または44に記載の殺菌消毒剤。
  46.  請求項1~7のいずれか一項に記載の乾燥固体を用いて製造された液体塩素酸化物であって、
    (a)該乾燥固体を水に溶解し、pHの上昇した溶液を調製する工程;
    (b)工程(a)で調製した溶液のpHを維持しつつ、該溶液に非カルシウム無機アルカリ剤を加える事でカルシウム塩を沈殿させて、液相とカルシウム塩を含む固相を含む、該液相中のカルシウムイオン濃度が低下した固液混合相を形成する工程;
    および
    (c)工程(b)で形成された固液混合相から液相のみを取り出して、液体塩素酸化物を得る工程
    を包含する方法によって調製される、液体塩素酸化物。
  47.  請求項1~7のいずれか一項に記載の乾燥固体を用いて製造された液体塩素酸化物であって、
    (a)該乾燥固体を水に溶解してpH10.0以上の溶液を調製する工程;
    (b)工程(a)で調製した溶液のpHを10.0以上に維持しつつ、該溶液に非カルシウム無機アルカリ剤を加える事でカルシウム塩を沈殿させて、液相とカルシウム塩を含む固相を含む、該液相中のカルシウムイオン濃度を24ppm以下とする固液混合相を形成する工程;
    および
    (c)工程(b)で形成された固液混合相から液相のみを取り出して、液体塩素酸化物を得る工程
    を包含する方法によって調製される、液体塩素酸化物。
  48.  カルシウム濃度が実質的に検出限界以下である、請求項8~14、46および47のいずれか一項に記載の液体または液体塩素酸化物。
  49.  カルシウム濃度が24ppm以下である、請求項8~14、46および47のいずれか一項に記載の液体または液体塩素酸化物。
  50.  請求項1~7のいずれか一項に記載の乾燥固体、請求項8~14のいずれか一項に記載の液体、または請求項46~49のいずれか一項に記載の液体または液体塩素酸化物の殺菌消毒剤としての使用。
  51.  請求項1~7のいずれか一項に記載の乾燥固体、請求項8~14のいずれか一項に記載の液体、請求項43~45のいずれか一項に記載の殺菌消毒剤、または請求項46~49のいずれか一項に記載の液体または液体塩素酸化物の食品添加物としての使用。
  52.  食品を殺菌消毒するための、請求項1~7のいずれか一項に記載の乾燥固体、請求項8~14のいずれか一項に記載の液体、請求項43~45のいずれか一項に記載の殺菌消毒剤、または請求項46~49のいずれか一項に記載の液体または液体塩素酸化物の使用。
PCT/JP2019/014649 2018-04-03 2019-04-02 劣化次亜塩素酸塩から新規塩素酸化物組成物を得る製法 WO2019194184A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2020512262A JP7291958B2 (ja) 2018-04-03 2019-04-02 劣化次亜塩素酸塩から新規塩素酸化物組成物を得る製法
CN201980034372.7A CN112153900B (zh) 2018-04-03 2019-04-02 由劣化次氯酸盐得到新型氯氧化物组合物的制造方法
CN202210903946.3A CN115316399A (zh) 2018-04-03 2019-04-02 干燥固体以及由其制造的液体氯氧化物
KR1020207031287A KR20200139740A (ko) 2018-04-03 2019-04-02 열화 차아염소산염으로부터 신규 염소 산화물 조성물을 얻는 제법
EP19781264.7A EP3777537A4 (en) 2018-04-03 2019-04-02 MANUFACTURING PROCESS FOR OBTAINING A NEW COMPOSITION OF CHLORINE OXIDE FROM DEGRADED HYPOCHLORITE
US17/044,863 US20210206636A1 (en) 2018-04-03 2019-04-02 Manufacturing method for obtaining novel chlorine oxide composition from degraded hypochlorite
AU2019248959A AU2019248959B2 (en) 2018-04-03 2019-04-02 Manufacturing method for obtaining novel chlorine oxide composition from degraded hypochlorite
IL277759A IL277759B2 (en) 2018-04-03 2020-10-02 Create a method for obtaining an innovative chlorine oxide compound from degraded hypochlorite
AU2024202489A AU2024202489A1 (en) 2018-04-03 2024-04-16 Manufacturing Method For Obtaining Novel Chlorine Oxide Composition From Degraded Hypochlorite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-071515 2018-04-03
JP2018071515 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019194184A1 true WO2019194184A1 (ja) 2019-10-10

Family

ID=68100452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014649 WO2019194184A1 (ja) 2018-04-03 2019-04-02 劣化次亜塩素酸塩から新規塩素酸化物組成物を得る製法

Country Status (8)

Country Link
US (1) US20210206636A1 (ja)
EP (1) EP3777537A4 (ja)
JP (2) JP7291958B2 (ja)
KR (1) KR20200139740A (ja)
CN (2) CN112153900B (ja)
AU (2) AU2019248959B2 (ja)
IL (1) IL277759B2 (ja)
WO (1) WO2019194184A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7301055B2 (ja) * 2018-09-06 2023-06-30 富士フイルム株式会社 薬液、基板の処理方法
CN115947442A (zh) * 2021-10-08 2023-04-11 香港科技大学 在高氯水环境中原位形成一氧化二氯的方法
CN114534288B (zh) * 2022-02-22 2023-08-04 沧州华宇特种气体科技有限公司 一种含盐混合溶液的分离及溶剂回收方法
CN115436558A (zh) * 2022-08-03 2022-12-06 浙江衢化氟化学有限公司 一种用离子色谱测定氯系氧化物含量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215499A (ja) * 1982-06-10 1983-12-14 上原 基靖 安定な亜塩素酸塩一次亜塩素酸塩系漂白剤の製造法
JPS5931253B2 (ja) 1972-08-25 1984-08-01 株式会社日立製作所 デプレツシヨン型負荷トランジスタを有するmisfet論理回路
JP2005523867A (ja) * 2002-04-29 2005-08-11 エスケー アクアテック カンパニー リミテッド 二酸化塩素ガスの簡易発生装置
JP2009072064A (ja) * 2007-09-18 2009-04-09 Q P Corp 包装容器詰め野菜の製造方法および変色防止材
JP2013204169A (ja) * 2012-03-27 2013-10-07 Kurita Water Ind Ltd 紙パルプ製造工程におけるスライムコントロール方法
JP2018071515A (ja) 2016-11-04 2018-05-10 三菱重工業株式会社 再生可能エネルギー型発電装置及びその組み立て方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883768A (en) * 1930-04-21 1932-10-18 Jefferson Electric Co Sign cabinet
US3002341A (en) * 1957-12-31 1961-10-03 Boeing Co Jet engine noise suppression nozzles
GB1579431A (en) * 1976-03-23 1980-11-19 Minnesota Mining & Mfg Disinfecting and/or sterilising
US4113857A (en) * 1977-05-16 1978-09-12 The Purdue Frederick Company Process for the preparation of iodophor compounds and methods for stabilizing iodophor pharmaceutical compositions containing the same
US4547381A (en) * 1983-11-10 1985-10-15 Rio Linda Chemical Co., Inc. Dry compositions for the production of chlorine dioxide
US4601608A (en) * 1985-02-19 1986-07-22 Shell Offshore Inc. Subsea hydraulic connection method and apparatus
JPH0629163B2 (ja) * 1988-04-26 1994-04-20 栗田工業株式会社 水中付着生物防除剤並びに水中生物付着防止方法
GB2304706B (en) * 1995-09-01 1999-06-30 Feedwater Treatment Services L Preparation and use of novel biocidal solutions
JP4047951B2 (ja) * 1997-08-01 2008-02-13 東ソー株式会社 晒粉組成物
US6602442B1 (en) * 1999-02-25 2003-08-05 Vulcan Chemicals Composition for generating chlorine dioxide
US6197215B1 (en) * 1999-02-25 2001-03-06 Vulcan Chemicals Composition for generating chlorine dioxide
US6669904B1 (en) * 1999-03-31 2003-12-30 Ondeo Nalco Company Stabilized bromine solutions, method of making and uses thereof for biofouling control
ITMI20011702A1 (it) * 2001-08-03 2003-02-03 Acraf Soluzione disinfettante a base di ipoclorito di sodio e procedimento per prepararla
CN1964916A (zh) * 2004-04-23 2007-05-16 安全固体方案公司 温度稳定性增加且可释放二氧化氯的固体组合物及其输送方法
EP2633757B1 (en) * 2006-08-28 2021-04-21 Honbu Sankei Co., Ltd. Aqueous chlorous acid solution for use as disinfectant
US8627509B2 (en) * 2007-07-02 2014-01-07 Rgb Networks, Inc. System and method for monitoring content
CN102487961B (zh) * 2011-12-05 2014-06-18 刘志强 空气祛味杀菌消毒剂
JP5931253B1 (ja) * 2014-06-30 2016-06-08 本部三慶株式会社 高度サラシ粉からカルシウム成分を除去し、低塩素臭の液体塩素酸化物を得る方法
CN106277458A (zh) * 2016-08-31 2017-01-04 南京钛白化工有限责任公司 降低硫酸法钛白废水中氨氮、总磷及cod含量的处理方法
CN106376596A (zh) * 2016-09-19 2017-02-08 扬中牧乐药业有限公司 一种水产养殖杀菌消毒剂
CN107018990A (zh) * 2017-04-05 2017-08-08 南昌大学 一种可分解甲醛的消毒剂
CN107298493A (zh) * 2017-05-11 2017-10-27 浙江大学 一种供水管网中雌三醇的氯胺降解方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931253B2 (ja) 1972-08-25 1984-08-01 株式会社日立製作所 デプレツシヨン型負荷トランジスタを有するmisfet論理回路
JPS58215499A (ja) * 1982-06-10 1983-12-14 上原 基靖 安定な亜塩素酸塩一次亜塩素酸塩系漂白剤の製造法
JP2005523867A (ja) * 2002-04-29 2005-08-11 エスケー アクアテック カンパニー リミテッド 二酸化塩素ガスの簡易発生装置
JP2009072064A (ja) * 2007-09-18 2009-04-09 Q P Corp 包装容器詰め野菜の製造方法および変色防止材
JP2013204169A (ja) * 2012-03-27 2013-10-07 Kurita Water Ind Ltd 紙パルプ製造工程におけるスライムコントロール方法
JP2018071515A (ja) 2016-11-04 2018-05-10 三菱重工業株式会社 再生可能エネルギー型発電装置及びその組み立て方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Japan's Specifications and Standards for Food Additives"
See also references of EP3777537A4

Also Published As

Publication number Publication date
IL277759B1 (en) 2023-03-01
CN112153900B (zh) 2022-09-13
JP7291958B2 (ja) 2023-06-16
AU2019248959A1 (en) 2020-11-26
AU2019248959B2 (en) 2024-05-09
IL277759A (en) 2020-11-30
IL277759B2 (en) 2023-07-01
US20210206636A1 (en) 2021-07-08
CN115316399A (zh) 2022-11-11
JPWO2019194184A1 (ja) 2021-05-13
JP2023107815A (ja) 2023-08-03
AU2024202489A1 (en) 2024-05-09
CN112153900A (zh) 2020-12-29
EP3777537A1 (en) 2021-02-17
EP3777537A4 (en) 2022-01-05
KR20200139740A (ko) 2020-12-14

Similar Documents

Publication Publication Date Title
WO2019194184A1 (ja) 劣化次亜塩素酸塩から新規塩素酸化物組成物を得る製法
JP5376958B2 (ja) 二酸化塩素ベースのクリーナー/清浄薬
CN102283246B (zh) 一种固体二氧化氯泡腾片剂及其制备方法
KR101098782B1 (ko) 살균제로서 사용하는 아염소산을 포함하는 수용액의 제조방법
CN110150315A (zh) 一种固体高纯二氧化氯释放剂
EP3085663B1 (en) Method for producing aqueous chlorous acid by adsorption of chlorine dioxide
EP1343376B1 (en) Concentrated aqueous bromine solutions and their preparation
EP3887306A1 (en) Method for producing haloamines and haloamine solutions
JP4602198B2 (ja) 二酸化塩素水の調製方法
AU2021102286A4 (en) Cleaning Methods
US20240156099A1 (en) Composition for generation of chlorine dioxide for use as sanitizer
US20220371927A1 (en) Hypochlorite compositions, methods of manufacture and uses thereof
CN110476962A (zh) 一种基于活性二氧化氯的消毒气雾剂的制备方法
JP5557423B2 (ja) 次亜塩素酸ナトリウム水溶液の製造方法および該製造方法によって得られる次亜塩素酸ナトリウム水溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207031287

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019781264

Country of ref document: EP

Effective date: 20201103

ENP Entry into the national phase

Ref document number: 2019248959

Country of ref document: AU

Date of ref document: 20190402

Kind code of ref document: A