WO2019194008A1 - 半導体記憶装置 - Google Patents
半導体記憶装置 Download PDFInfo
- Publication number
- WO2019194008A1 WO2019194008A1 PCT/JP2019/012473 JP2019012473W WO2019194008A1 WO 2019194008 A1 WO2019194008 A1 WO 2019194008A1 JP 2019012473 W JP2019012473 W JP 2019012473W WO 2019194008 A1 WO2019194008 A1 WO 2019194008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- vnw
- switch element
- memory cell
- memory device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 45
- 239000002070 nanowire Substances 0.000 claims abstract description 22
- 239000010410 layer Substances 0.000 description 30
- 238000010586 diagram Methods 0.000 description 18
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 229910021332 silicide Inorganic materials 0.000 description 15
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical group [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 15
- 239000002184 metal Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 5
- 229910005883 NiSi Inorganic materials 0.000 description 3
- 229910008484 TiSi Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- VLJQDHDVZJXNQL-UHFFFAOYSA-N 4-methyl-n-(oxomethylidene)benzenesulfonamide Chemical compound CC1=CC=C(S(=O)(=O)N=C=O)C=C1 VLJQDHDVZJXNQL-UHFFFAOYSA-N 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 2
- 229910008812 WSi Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910021340 platinum monosilicide Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910015890 BF2 Inorganic materials 0.000 description 1
- -1 Cu-arroy Inorganic materials 0.000 description 1
- 229910016006 MoSi Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
- H10B20/20—Programmable ROM [PROM] devices comprising field-effect components
- H10B20/25—One-time programmable ROM [OTPROM] devices, e.g. using electrically-fusible links
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823487—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823885—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0676—Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/775—Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
Definitions
- the present disclosure relates to a semiconductor memory device including a vertical nanowire (VNW: Vertical Nanowire) FET (Field Effect Transistor), and more particularly to a layout structure of a nonvolatile memory cell.
- VNW Vertical Nanowire
- FET Field Effect Transistor
- Transistors which are the basic components of LSIs, have achieved improved integration, reduced operating voltage, and increased operating speed by reducing (scaling) the gate length.
- off current due to excessive scaling and a significant increase in power consumption due to this have become a problem.
- VNW FETs vertical nanowire FETs
- nonvolatile memory cells are used in many applications.
- One of the nonvolatile memory cells is an OTP (One Time Time Programmable) memory cell. This is characterized in that the states of “1” and “0” are stored in the memory and read due to the breakdown of the insulating film.
- Patent Document 1 discloses a configuration of an OTP memory. In this configuration, two types of gate oxide film thicknesses are provided in one transistor, and the thin portion of the insulating film is destroyed, so that the states “1” and “0” are stored in the memory. .
- This disclosure is intended to provide a layout structure with a small area for a nonvolatile memory cell using a VNW FET.
- the memory cell in a semiconductor memory device including a nonvolatile memory cell, the memory cell is provided between a program element whose gate is connected to a word line, and between the program element and the bit line.
- VNW Very Nanowire
- each of the program element and the switch element is configured by one or a plurality of VNW FETs.
- the VNW FETs constituting the program element and the switch element are arranged side by side in the first direction.
- a small area layout structure can be realized for a nonvolatile memory cell using a VNW FET.
- FIG. 1 is a configuration example of a semiconductor memory device including nonvolatile memory cells according to the first and second embodiments, where (a) is a configuration diagram of a memory cell array, and (b) is a circuit diagram of the memory cell.
- FIG. 3 is a plan view showing a layout structure of the memory cell array according to the first embodiment.
- FIG. 7 is a plan view showing a layout structure of a memory cell array according to the second embodiment.
- (b) is sectional drawing which shows the layout structure of the memory cell which concerns on the modification of 1st and 2nd embodiment.
- FIG. 5 is a plan view showing a layout structure of a memory cell array according to the third embodiment. Sectional drawing which shows the layout structure of FIG. (A), (b) is sectional drawing which shows the layout structure of the memory cell which concerns on the modification of 3rd Embodiment.
- (A), (b) is sectional drawing which shows the layout structure of the memory cell which concerns on the modification of 3rd Embodiment. Sectional drawing which shows the layout structure of the memory cell which concerns on the modification of 3rd Embodiment.
- Another configuration diagram of the memory cell array according to the first and second embodiments It is a schematic diagram which shows the basic structural example of vertical nanowire FET, (a) is sectional drawing, (b) is a top view (A), (b) is a schematic plan view showing an example of a basic structure of a vertical nanowire FET and showing a structure example using local wiring
- the semiconductor memory device includes a nonvolatile memory cell, and the memory cell includes a so-called vertical nanowire FET (VNW FET).
- VNW FET vertical nanowire FET
- FIG. 15 is a schematic diagram showing an example of the basic structure of a VNW FET, where (a) is a cross-sectional view and (b) is a plan view.
- FIG. 15B illustration of metal wiring is omitted, and components that are not visible in an actual plan view are illustrated for ease of understanding.
- a P-type well 502 and an N-type well 503 are formed on a semiconductor substrate 501.
- the semiconductor substrate 501 is a P-type substrate, the P-type well need not be formed.
- a VNW FET 510 that is an N-type transistor is formed on the P-type well 502, and a VNW FET 520 that is a P-type transistor is formed on the N-type well 503.
- Reference numeral 504 denotes an insulating film
- 505 denotes an interlayer insulating film.
- the VNW FET 510 has a bottom electrode 511 serving as a source / drain electrode, a top electrode 512 serving as a source / drain electrode, and a vertical direction (a direction perpendicular to the substrate surface) between the bottom electrode 511 and the top electrode 512. And formed nanowires 513.
- the bottom electrode 511 and the top electrode 512 are doped to N conductivity type. At least a part of the nanowire 513 becomes a channel region.
- a gate insulating film 515 is formed around the nanowire 513, and a gate electrode 514 is formed around the gate insulating film 515.
- the gate electrode 514 may surround the entire periphery of the nanowire 513, or may surround only a part of the periphery of the nanowire 513. In the case where the gate electrode 514 surrounds only a part of the periphery of the nanowire 513, the gate insulating film 515 may be formed only in a portion where the gate electrode 514 surrounds the nanowire 513.
- the bottom electrode 511 is connected to a bottom region 516 formed so as to spread along the upper surface of the semiconductor substrate 501.
- the bottom region 516 is also doped with N conductivity type.
- a silicide region 517 is formed on the surface of the bottom region 516.
- a sidewall 518 is formed around the top electrode 512.
- a silicide region 519 is formed on the top electrode 512. However, the sidewall 518 and the silicide region 519 are not necessarily formed.
- the VNW FET 520 includes a bottom electrode 521 serving as a source / drain electrode, a top electrode 522 serving as a source / drain electrode, and a nanowire 523 formed between the bottom electrode 521 and the top electrode 522 in a vertical direction. Is provided.
- the bottom electrode 521 and the top electrode 522 are doped to P conductivity type. At least a part of the nanowire 523 becomes a channel region.
- a gate insulating film 525 is formed around the nanowire 523, and a gate electrode 524 is formed around the gate insulating film 525.
- the bottom electrode 521 is connected to a bottom region 526 formed so as to spread along the upper surface of the semiconductor substrate 501.
- the bottom region 526 is also doped to P conductivity type.
- a silicide region 527 is formed on the surface of the bottom region 526.
- a sidewall 528 is formed around the top electrode 522.
- a silicide region 529 is formed on the top electrode 522. However, the sidewall 528 and the silicide region 529 are not necessarily formed.
- the gate electrode region 514 of the VNW FET 510 and the gate electrode region 524 of the VNW FET 520 are connected by the gate wiring 531. Further, the bottom region 516, the silicide region 519, the gate wiring 531, the silicide region 529, and the bottom region 526 are connected to the wiring 542 formed in the metal wiring layer M1 through the contact 532 and the contact 541, respectively.
- a metal wiring layer can be laminated
- the semiconductor substrate 501 is made of, for example, bulk Si, germanium, a compound or alloy thereof.
- N-type dopants include As, P, Sb, N, C, or combinations thereof.
- P-type dopants include B, BF2, In, N, C, or combinations thereof.
- planar shape of VNW FETs 510 and 520 may be, for example, a circle, a rectangle, an ellipse, or the like.
- the material of the insulating film 504 is, for example, SiN, SiCN, or the like.
- Examples of the material of the interlayer insulating film 505 include SiO, TEOS, PSG, BPSG, FSG, SiOC, SOG, Spin-on-Polymers, SiC, or a mixture thereof.
- the material of the silicide regions 517 and 527 is, for example, NiSi, CoSi, TiSi, WSi or the like.
- the materials of the gate electrodes 514 and 524 and the gate wiring 531 are, for example, TiN, TaN, TiAl, Ti-containing metal, Ta-containing metal, Al-containing metal, W-containing metal, TiSi, NiSi, PtSi, polysilicon with silicide, and combinations of these.
- Examples of the material of the gate insulating films 515 and 525 include SiON, Si3N4, Ta2O5, Al2O3, Hf oxide, Ta oxide, and Al oxide.
- the k value is preferably 7 or more.
- Examples of the material of the silicide regions 519 and 529 provided on the top electrodes 512 and 522 include NiSi, CoSi, MoSi, WSi, PtSi, TiSi, and combinations thereof.
- a metal such as W, Cu, or Al, an alloy such as TiN or TaN, a semiconductor into which impurities are implanted, or a combination thereof may be used.
- Examples of the material of the sidewalls 518 and 528 include SiN, SiON, SiC, SiCN, and SiOCN.
- Examples of the material of the contact 532 include Ti, TiN, Ta, and TaN. Further, there are Cu, Cu-arroy, W, Ag, Au, Ni, Al and the like. Alternatively, Co or Ru may be used.
- FIG. 16 shows an example of the basic structure of a VNW FET, and shows an example of a structure using local wiring.
- a local wiring 534 is formed between the metal wiring layer M1 and the top electrode 512 of the VNW FET 510 and the top electrode 522 of the VNW FET 520.
- Bottom regions 516 and 526 and gate wiring 531 are connected to wiring 542 formed in metal wiring layer M1 through contact 533, local wiring 534 and contact 541, respectively.
- the silicide regions 519 and 529 are connected to the wiring 542 formed in the metal wiring layer M1 through the local wiring 534 and the contact 541, respectively.
- a local wiring 535 is formed between the metal wiring layer M1 and the bottom regions 516 and 526.
- the local wiring 535 corresponds to the contact 533 and the local wiring 534 in FIG.
- the silicide region 536 is used as an etching stopper in the process of forming the local wiring 535.
- VNW the bottom electrode, top electrode, and gate electrode of the VNW FET are simply referred to as “bottom, top, and gate” as appropriate.
- VNW the unit configuration
- VDD indicates a power supply voltage or a high voltage side power supply line
- VVSS indicates a power supply voltage or a low voltage side power supply line.
- the horizontal direction of the drawing is the X direction (corresponding to the first direction), and the vertical direction of the drawing is the Y direction (corresponding to the second direction).
- an expression such as “same wiring width” or the like that means that the width is the same includes a variation range in manufacturing.
- FIG. 1 is a diagram illustrating a configuration example of a semiconductor memory device including nonvolatile memory cells according to the first and second embodiments, where (a) is a configuration diagram of a memory cell array, and (b) is a configuration diagram of a memory cell. It is a circuit diagram. As shown in FIG. 1A, each memory cell 1 is connected to a corresponding word line WL and bit line BL. Note that the semiconductor memory device includes peripheral circuits such as a write circuit and a read circuit in addition to the memory cell array, but illustration thereof is omitted here. In FIG.
- the memory cell array is composed of (2 ⁇ 2) memory cells 1 (MC1 to MC4), but the number of memory cells 1 is X In the direction (the direction in which the word line WL extends) and the Y direction (the direction in which the bit line BL extends), it is not limited to this.
- the memory cell 1 is a gate oxide film destruction type OTP (One Time Programmable) memory cell.
- the memory cell 1 includes N-conductivity type transistors TP and TS connected in series.
- the transistor TP is a program element.
- the program element stores a value of “1” / “0” according to the breakdown / non-destructive state of the gate oxide film.
- the transistor TS is a switch element. The switch element controls access from the bit line BL to the program element.
- the film thickness of the gate oxide film is thinner than that of the transistor TS constituting the switch element.
- the switch element is configured by a transistor having a gate oxide film thickness similar to that of a so-called IO transistor in an input / output circuit that exchanges signals with the outside of the semiconductor integrated circuit
- the program element is a semiconductor integrated circuit This is constituted by a transistor having a gate oxide film thickness comparable to that of a so-called core transistor in the internal circuit.
- the core transistor has a lower breakdown voltage of the gate oxide film than the IO transistor.
- the write operation of the memory cell 1 is performed as follows.
- a high voltage VPP as a write voltage is applied to a desired word line WL.
- the high voltage VPP is a voltage higher than the breakdown voltage of the gate oxide film of the program element, and is 5 V, for example.
- 0 V is applied to the bit line BL connected to the memory cell 1 where the gate oxide film is destroyed, and the bit line BL connected to the memory cell 1 where the gate oxide film is not destroyed is brought into a floating state.
- the switch element becomes conductive, and the gate oxide film of the program element is destroyed by the application of the high voltage VPP.
- the read operation of the memory cell 1 is performed as follows.
- the bit line BL is precharged to 0V in advance.
- a voltage VRR lower than the high voltage VPP is applied to the desired word line WL.
- the voltage VRR is a voltage that does not destroy the gate oxide film of the program element, and is 1 V, for example.
- a current flows from the word line WL to the bit line BL via the gate of the program element, and the potential of the bit line BL rises.
- the potential of the bit line BL does not change. Due to this potential difference, the state of the memory cell 1, that is, the value “0” / “1” is read.
- FIG. 2 and 3 are diagrams showing an example of the layout structure of the memory cell array according to the first embodiment, FIG. 2 is a plan view, and FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG.
- dotted lines running vertically and horizontally in a plan view such as FIG. 2 and dotted lines running vertically in a cross-sectional view such as FIG. 3 indicate a grid used for component placement at the time of design.
- the grids are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction. Note that the grid spacing may be the same or different in the X direction and the Y direction. Further, the grid interval may be different for each layer.
- the grid of the VNW FET and the grid of the M1 wiring may be arranged at different intervals.
- each part does not necessarily have to be arranged on a grid.
- it is preferable that the components are arranged on a grid. The same applies to the following embodiments.
- the device structure according to the present embodiment is based on the structure shown in FIG. However, the structure shown in FIG. 15 and FIG. 16B or a structure based on another device structure may be used. The same applies to the following embodiments. For the sake of clarity, the illustration of the well, the STI, each insulating film, the silicide layer on the bottom, the silicide layer on the top, and the sidewall on the top is omitted. The same applies to the subsequent figures.
- FIG. 2 shows a layout of (2 ⁇ 2) memory cells MC1, MC2, MC3, MC4 constituting the memory cell array.
- Each of the memory cells MC1 to MC4 has the same structure, but the memory cells MC2 and MC4 have a structure in which the memory cells MC1 and MC3 are inverted left and right (X direction).
- the program element is composed of one VNW FET
- the switch element is composed of three VNW FETs.
- Adjacent memory cells MC1 and MC2 share a connection with the word line WL
- adjacent memory cells MC3 and MC4 share a connection with the word line WL.
- a tap for supplying the power supply voltage VSS to the P well or the P substrate on the side of the memory cells MC1 and MC3 opposite to the memory cells MC2 and MC4 and on the side of the memory cells MC2 and MC4 opposite to the memory cells MC1 and MC3. Is provided.
- Transistors TP1, TS1, TS2, and TS3 are N-conductivity type VNW FETs, each of which includes one VNW.
- the transistor TP1 constitutes a program element.
- the transistors TS1, TS2, TS3 constitute a switch element.
- the gate oxide films of the transistors TS1, TS2, TS3 are thicker than the gate oxide film of the transistor TP1.
- the transistors TP1, TS1, TS2, TS3 are arranged side by side in the X direction. Under the transistors TP1, TS1, TS2, and TS3, there is a P substrate or a P well is formed.
- the gate oxide films may be formed separately by masking the gate oxide film regions when forming the gate oxide films. The same applies to the following embodiments.
- an M2 wiring 51 extending in the X direction and serving as the word line WL is disposed.
- an M1 wiring 41 extending in the Y direction and serving as the bit line BL is disposed.
- an M1 wiring 42 extending in the Y direction for supplying the power supply voltage VSS is arranged on the upper layer of the tap portion on the right side of the memory cells MC2 and MC4.
- an M2 wiring 52 extending in the X direction and serving as a word line WL is disposed above the memory cells MC1 and MC2.
- an M1 wiring 43 extending in the Y direction and serving as the bit line BL is disposed in the upper layer of the memory cells MC1 and MC3. Further, an M1 wiring 44 extending in the Y direction for supplying the power supply voltage VSS is arranged on the upper layer of the tap portion on the left side of the memory cells MC1 and MC3 in the drawing.
- Bottom regions 11, 12, and 13 are formed.
- the bottoms of the transistors TP1 and TS1 are connected to the bottom region 11.
- the bottoms of the transistors TS2, TS3 are connected to the bottom region 12.
- the bottom region 13 is formed in the tap portion.
- the bottom region 13 is connected to an M1 wiring 42 that supplies a power supply voltage VSS via a via and a local wiring.
- the gate wiring 21 extends in the X direction and is connected to the gates of the transistors TP1, TS1, TS2, and TS3.
- the gate wiring 21 has a wiring part 21a extending from the transistor TP1 in the opposite direction to the transistor TS1.
- the wiring portion 21a is connected to the M2 wiring 51 serving as the word line WL via a via, a local wiring, and an M1 wiring.
- the wiring part 21a is shared by adjacent memory cells MC3 and MC4.
- the tops of the transistors TS1 and TS2 are connected to a local wiring 31 extending in the X direction.
- the top of the transistor TS3 is connected to the M1 wiring 41 serving as the bit line BL via a local wiring and a via. That is, the transistors TS1, TS2, and TS3 are connected in series between the bottom region 11 to which the bottom of the transistor TP1 is connected and the M1 wire 41 that becomes the bit line BL via the local wiring 31 and the bottom region 12. Has been.
- the layout structure described above has the following features, for example.
- the VNW FETs TP1, TS1, TS2, and TS3 constituting the program element and the switch element are arranged side by side in the X direction. Thereby, the layout structure of the memory cell becomes compact, and the area can be kept small.
- a gate wiring 21 extending in the X direction is connected to the gate of each VNW FET TP1, TS1, TS2, TS3. Thereby, the layout structure of the memory cell becomes more compact.
- the M2 wiring 51 serving as the word line WL extends in the X direction, and the VNW FETs TP1, TS1, TS2, TS3, the gate wiring 21, and the M2 wiring 51 overlap in plan view. Thereby, the layout structure of the memory cell becomes more compact.
- the top of the transistor TS3 is connected to the M1 wiring 41 that becomes the bit line BL.
- the connection configuration between the switch element and the bit line BL is simplified, so that the area of the memory cell can be reduced.
- the transistors TS1, TS2, and TS3 that are connected in series and that constitute the switch element, the tops of the transistors TS1 and TS2 are connected via the local wiring 31, and the bottoms of the transistors TS2 and TS3 are connected via the bottom region 12. It is connected.
- the configuration in which the VNW FETs are connected in series becomes simple, so that the area of the memory cell can be reduced.
- a wiring portion 21a for connecting the gate wiring 21 to the word line WL is provided at the end of the memory cell. Thereby, since the wiring part 21a can be supplied by the adjacent memory cell, the area of the memory cell can be reduced.
- an M1 wiring extending in the Y direction may be provided in a vacant portion between the wiring portion 21a and the M1 wiring 41.
- the wiring pattern of the M1 wiring becomes uniform.
- the power supply can be strengthened by providing the power supply wiring as the M1 wiring.
- each bottom region extends in the X direction, the region width is the same, and the arrangement pitch is constant.
- Each gate wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- Each local wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- Each M1 wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
- Each M2 wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- FIG. 4 and 5 are diagrams showing examples of the layout structure of the memory cell array according to the second embodiment.
- FIG. 4 is a plan view and FIG. 5 is a cross-sectional view taken along line BB ′ of FIG.
- Each of the memory cells MC1 to MC4 has the same structure, but the memory cells MC2 and MC4 have a structure in which the memory cells MC1 and MC3 are inverted left and right (X direction).
- the program element is composed of one VNW FET
- the switch element is composed of three VNW FETs.
- Transistors TP1, TS1, TS2, and TS3 are N-conductivity type VNW FETs, each of which includes one VNW.
- the transistor TP1 constitutes a program element.
- the transistors TS1, TS2, TS3 constitute a switch element.
- the gate oxide films of the transistors TS1, TS2, TS3 are thicker than the gate oxide film of the transistor TP1.
- the transistors TP1, TS1, TS2, TS3 are arranged side by side in the X direction. However, there is an interval of 1 grid between the transistor TP1 and the transistors TS1, TS2, TS3. Under the transistors TP1, TS1, TS2, and TS3, there is a P substrate or a P well is formed.
- an M2 wiring 51 extending in the X direction and serving as the word line WL is disposed.
- an M1 wiring 41 extending in the Y direction and serving as the bit line BL is disposed.
- an M1 wiring 42 extending in the Y direction for supplying the power supply voltage VSS is arranged on the upper layer of the tap portion on the right side of the memory cells MC2 and MC4.
- an M2 wiring 52 extending in the X direction and serving as a word line WL is disposed above the memory cells MC1 and MC2.
- an M1 wiring 43 extending in the Y direction and serving as the bit line BL is disposed in the upper layer of the memory cells MC1 and MC3. Further, an M1 wiring 44 extending in the Y direction for supplying the power supply voltage VSS is arranged on the upper layer of the tap portion on the left side of the memory cells MC1 and MC3 in the drawing.
- Bottom regions 111, 112, and 113 are formed.
- the bottoms of the transistors TP1 and TS1 are connected to the bottom region 111.
- the bottoms of the transistors TS2 and TS3 are connected to the bottom region 112.
- the bottom region 113 is formed in the tap portion.
- the bottom region 113 is connected to the M1 wiring 42 that supplies the power supply voltage VSS through vias and local wiring.
- the gate wiring 121 extends in the X direction and is connected to the gates of the transistors TP1, TS1, TS2, and TS3.
- the gate wiring 121 includes a wiring part 121a between the transistor TP1 and the transistor TS1.
- the wiring part 121a is connected to the M2 wiring 51 serving as the word line WL via a via, a local wiring, and an M1 wiring.
- the tops of the transistors TS1 and TS2 are connected to a local wiring 131 extending in the X direction.
- the top of the transistor TS3 is connected to the M1 wiring 41 serving as the bit line BL via a local wiring and a via. That is, the transistors TS1, TS2, and TS3 are connected in series between the bottom region 111 to which the bottom of the transistor TP1 is connected and the M1 wire 41 that becomes the bit line BL through the local wiring 131 and the bottom region 112. Has been.
- the layout structure described above has the following features, for example.
- the VNW FETs TP1, TS1, TS2, and TS3 constituting the program element and the switch element are arranged side by side in the X direction. Thereby, the layout structure of the memory cell becomes compact, and the area can be kept small.
- a gate wiring 121 extending in the X direction is connected to the gate of each VNW FET TP1, TS1, TS2, TS3. Thereby, the layout structure of the memory cell becomes more compact.
- the M2 wiring 51 serving as the word line WL extends in the X direction, and the VNW FETs TP1, TS1, TS2, TS3, the gate wiring 121, and the M2 wiring 51 overlap in plan view. Thereby, the layout structure of the memory cell becomes more compact.
- the top of the transistor TS3 is connected to the M1 wiring 41 that becomes the bit line BL.
- the connection configuration between the switch element and the bit line BL is simplified, so that the area of the memory cell can be reduced.
- the transistors TS1, TS2, and TS3 that form a switch element and that are connected in series have the tops of the transistors TS1 and TS2 connected via a local wiring 131, and the bottoms of the transistors TS2 and TS3 are connected via a bottom region 112. It is connected.
- the configuration in which the VNW FETs are connected in series becomes simple, so that the area of the memory cell can be reduced.
- the transistor TP1 constituting the program element and the transistors TS1, TS2 and TS3 constituting the switch element are arranged apart from each other.
- the transistor TP1 is adjacent to the transistors that constitute the program elements of the memory cells MC2 and MC3.
- the transistor constituting the program element and the transistor constituting the switch element are formed separately because the gate oxide film thickness is different.
- the transistor constituting the program element and the transistor constituting the switch element are arranged apart from each other, thereby improving manufacturing accuracy and improving the reliability of the semiconductor memory device, The effect of improving the yield is obtained.
- an M1 wiring extending in the Y direction may be provided between the wiring part 121a and the M1 wiring 41, or in a vacant part between the wiring parts 121a.
- the wiring pattern of the M1 wiring becomes uniform.
- the power supply can be strengthened by providing the power supply wiring as the M1 wiring.
- each bottom region extends in the X direction, the region width is the same, and the arrangement pitch is constant.
- Each gate wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- Each local wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- Each M1 wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
- Each M2 wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- the switch element is configured by connecting three stages of transistors in series.
- the number of connection stages of the transistors constituting the switch element is three stages. It is not limited.
- FIG. 6A and 6B are cross-sectional views showing the configuration of the memory cell according to the first modification.
- the switch element is composed of transistors TS1 and TS2 connected in two stages in series.
- the tops of the transistors TP1 and TS1 are connected by a local wiring 32, and the bottoms of the transistors TS1 and TS2 are connected to the bottom region 14. That is, the transistors TS1 and TS2 constituting the switch element are connected via the bottom region 14 between the local line 32 to which the top of the transistor TP1 constituting the program element is connected and the M1 line 41 serving as the bit line BL.
- the switch element is composed of transistors TS1 and TS2 connected in two stages in series.
- the tops of the transistors TP1 and TS1 are connected by a local wiring 32, and the bottoms of the transistors TS1 and TS2 are connected to the bottom region 14. That is, the transistors TS1 and TS2 constituting the switch element are connected via the bottom region 14
- the switch element is constituted by a single-stage transistor TS1.
- the transistors TP1 and TS1 are connected to the bottom region 15. That is, the transistor TS1 constituting the switch element is connected between the bottom region 15 to which the bottom of the transistor TP1 constituting the program element is connected and the M1 wiring 41 serving as the bit line BL.
- the switch element In the write operation of the memory cell, when the gate oxide film of the program element is destroyed by the application of the high voltage VPP, the high voltage VPP is applied to both ends of the switch element. For this reason, the source-drain of the switch element needs to have a withstand voltage against the high voltage VPP.
- VNW FETs connected in series in a plurality of stages, for example, three stages, a withstand voltage against the high voltage VPP can be easily provided.
- the switch element may be constituted by a single-stage transistor as shown in FIG. 6B.
- FIG. 6 The modification of FIG. 6 is based on the layout structure according to the first embodiment. However, in the layout structure according to the second embodiment, as in FIG. The number of connection stages may be changed.
- Modification 2 In the layout structures according to the first and second embodiments described above, the arrangement positions of the program element and the switch element may be interchanged in the X direction.
- FIG. 7A and 7B are cross-sectional views showing the configuration of the memory cell according to the second modification.
- 7A in the memory cell according to the first embodiment, the arrangement positions of the transistor TP1 constituting the program element and the transistors TS1, TS2, TS3 constituting the switch element are switched in the X direction.
- FIG. 7B in the memory cell according to the second embodiment, the arrangement position of the transistor TP1 constituting the program element and the transistors TS1, TS2, TS3 constituting the switch element are switched in the X direction.
- the configuration in FIG. 7B is the same as the memory cells MC1 and MC3 in the second embodiment except for the tap portion.
- FIG. 8A and 8B are diagrams illustrating a configuration example of a semiconductor memory device including a nonvolatile memory cell according to the third embodiment.
- FIG. 8A is a configuration diagram of a memory cell array
- FIG. 8B is a circuit diagram of the memory cell. is there.
- each memory cell 3 is connected to a corresponding first word line WLP, second word line WLR, and bit line BL.
- the semiconductor memory device includes peripheral circuits such as a write circuit and a read circuit in addition to the memory cell array, but illustration thereof is omitted here.
- FIG. 8A is a configuration diagram of a memory cell array
- FIG. 8B is a circuit diagram of the memory cell. is there.
- each memory cell 3 is connected to a corresponding first word line WLP, second word line WLR, and bit line BL.
- the semiconductor memory device includes peripheral circuits such as a write circuit and a read circuit in addition to the memory cell array, but illustration thereof is omitted here.
- FIG. 8A is
- the memory cell array is composed of (2 ⁇ 2) memory cells 3 (MC1 to MC4), but the number of memory cells 3 is X In the direction (the direction in which the bit line BL extends in this embodiment) and the Y direction (the direction in which the first and second word lines WLP and WLR extend in this embodiment) are not limited to this.
- the memory cell 3 is a gate oxide film destruction type OTP (One Time Programmable) memory cell.
- the memory cell 3 includes N-conductivity type transistors TP and TS connected in series.
- the transistor TP is a program element, and has a gate connected to the first word line WLP.
- the program element stores a value of “1” / “0” according to the breakdown / non-destructive state of the gate oxide film.
- the transistor TS is a switch element, and the gate is connected to the second word line WLR.
- the switch element controls access from the bit line BL to the program element.
- the switch element and the program element are constituted by, for example, a transistor having a gate oxide film thickness comparable to a so-called core transistor in an internal circuit of a semiconductor integrated circuit.
- the write operation of the memory cell 3 is performed as follows.
- a high voltage VPP serving as a write voltage is applied to a desired first word line WLP.
- the high voltage VPP is a voltage higher than the withstand voltage of the gate oxide film of the program element, and is 3 V, for example.
- the voltage VPR is applied to the second word line WLR.
- the voltage VPR is lower than the withstand voltage of the gate oxide film of the switch element, and the voltage (VPP ⁇ VPR) is also lower than the withstand voltage of the gate oxide film of the switch element, for example, 1V.
- the read operation of the memory cell 3 is performed as follows.
- the bit line BL is precharged to 0V in advance.
- a voltage VRR lower than the high voltage VPP is applied to the desired first and second word lines WLP and WLR.
- the voltage VRR is a voltage that does not destroy the gate oxide film of the program element, and is 1 V, for example.
- a current flows from the first word line WLP to the bit line BL via the gate of the program element, and the potential of the bit line BL rises.
- the potential of the bit line BL does not change. By this potential difference, the state of the memory cell 3, that is, the value “0” / “1” is read.
- FIG. 9 and 10 are diagrams showing examples of the layout structure of the memory cell array according to the third embodiment.
- FIG. 9 is a plan view
- FIG. 10 is a cross-sectional view taken along line C-C ′ of FIG.
- FIG. 9 shows a layout of (2 ⁇ 2) memory cells MC1, MC2, MC3, MC4 constituting the memory cell array.
- Each of the memory cells MC1 to MC4 has the same structure.
- the program element is composed of one VNW FET
- the switch element is composed of three VNW FETs.
- a tap for supplying the power supply voltage VSS to the P well or the P substrate on the side of the memory cells MC1 and MC3 opposite to the memory cells MC2 and MC4 and on the side of the memory cells MC2 and MC4 opposite to the memory cells MC1 and MC3. Is provided.
- Transistors TP1, TS1, TS2, and TS3 are N-conductivity type VNW FETs, each of which includes one VNW.
- the transistor TP1 constitutes a program element.
- the transistors TS1, TS2, TS3 constitute a switch element.
- the gate oxide films of the transistors TP1, TS1, TS2, and TS3 have the same thickness.
- the transistors TP1, TS1, TS2, TS3 are arranged side by side in the X direction. Under the transistors TP1, TS1, TS2, and TS3, there is a P substrate or a P well is formed.
- an M2 wiring 251 extending in the X direction and serving as the bit line BL is disposed.
- an M1 wiring 241 extending in the Y direction serving as the first word line WLP and an M1 wiring 242 extending in the Y direction serving as the second word line WLR are arranged.
- the M1 wires 241 and 242 are arranged on both sides in the X direction of the transistors TP1, TS1, TS2, and TS3 constituting the program element and the switch element, and overlap with the transistors TP1, TS1, TS2, and TS3 in plan view. Not.
- an M1 wiring 243 that supplies the power supply voltage VSS and extends in the Y direction is arranged on the upper layer of the tap portion on the right side of the memory cells MC2 and MC4.
- an M2 wiring 252 extending in the X direction and serving as the bit line BL is disposed above the memory cells MC1 and MC2.
- an M1 wiring 244 extending in the Y direction, which becomes the first word line WLP, and an M1 wiring 245 extending in the Y direction, which becomes the second word line WLR, are arranged.
- an M1 wiring 246 that extends in the Y direction and supplies the power supply voltage VSS is disposed in an upper layer of the tap portion on the left side of the memory cells MC1 and MC3 in the drawing.
- Bottom regions 211, 212, and 213 are formed.
- the bottoms of the transistors TP1 and TS1 are connected to the bottom region 211.
- the bottoms of the transistors TS2 and TS3 are connected to the bottom region 212.
- the bottom region 213 is formed in the tap portion.
- the bottom region 213 is connected to an M1 wiring 243 that supplies a power supply voltage VSS via a via and a local wiring.
- the gate wiring 221 is connected to the gate of the transistor TP1, and is drawn from the transistor TP1 in the opposite direction to the transistor TS1.
- the gate wiring 221 is connected to the M1 wiring 241 serving as the first word line WLP via a via and a local wiring.
- the gate wiring 222 is connected to the gates of the transistors TS1, TS2, TS3, and is drawn from the transistor TS3 in the opposite direction to the transistor TS2.
- the gate wiring 222 is connected to the M1 wiring 242 serving as the second word line WLR through a via and a local wiring.
- the tops of the transistors TS1 and TS2 are connected to a local wiring 231 extending in the X direction.
- the top of the transistor TS3 is connected to the M2 wiring 251 serving as the bit line BL via a local wiring and a via. That is, the transistors TS1, TS2, and TS3 are connected in series between the bottom region 211 to which the bottom of the transistor TP1 is connected and the M2 wiring 251 that becomes the bit line BL through the local wiring 231 and the bottom region 212. Has been.
- the layout structure described above has the following features, for example.
- the VNW FETs TP1, TS1, TS2, and TS3 constituting the program element and the switch element are arranged side by side in the X direction. Thereby, the layout structure of the memory cell becomes compact, and the area can be kept small. Further, the M2 wiring 251 serving as the bit line BL extends in the X direction, and the VNW FETs TP1, TS1, TS2, TS3, and the M2 wiring 251 overlap each other in plan view. Thereby, the layout structure of the memory cell becomes more compact.
- the M1 wirings 241 and 242 serving as the first and second word lines WLP and WLR are perpendicular to the Y direction, that is, the arrangement of the VNW FETs TP1, TS1, TS2, and TS3 constituting the program element and the switch element. Extending in the direction. Thereby, an increase in area due to the first and second word lines WLP and WLR can be suppressed.
- the transistors TS1, TS2, and TS3 connected in series constituting the switch element have the top of the transistor TS3 connected to the M2 wiring 251 that becomes the bit line BL.
- the connection configuration between the switch element and the bit line BL is simplified, so that the area of the memory cell can be reduced.
- the transistors TS1, TS2, and TS3 that form a switch element and that are connected in series have the tops of the transistors TS1 and TS2 connected via the local wiring 231 and the bottoms of the transistors TS2 and TS3 connected via the bottom region 212. It is connected.
- the configuration in which the VNW FETs are connected in series becomes simple, so that the area of the memory cell can be reduced.
- an M1 wiring extending in the Y direction may be provided in an empty portion between the M1 wiring 241 and the VNW FET TS3.
- the wiring pattern of the M1 wiring becomes uniform.
- the power supply can be strengthened by providing the power supply wiring as the M1 wiring.
- each bottom region extends in the X direction, the region width is the same, and the arrangement pitch is constant.
- Each gate wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- Each local wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- Each M1 wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
- Each M2 wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
- the gate oxide film thickness of the program element and the switch element is the same, but may be different. However, if the thicknesses of the gate oxide films of the program element and the switch element are the same, it is not necessary to form the gate oxide films separately, which facilitates the manufacture of the semiconductor memory device.
- the switch element is configured by connecting three stages of transistors in series.
- the switch element is the same as that shown in the first modification to the first and second embodiments.
- the number of connection stages of the transistors constituting the switch element is not limited to three.
- FIGS. 11A and 11B are cross-sectional views showing a configuration of a memory cell according to the third modification.
- the switch element is constituted by a one-stage transistor TS1.
- the transistors TP1 and TS1 are connected to the bottom region 214. That is, the transistor TS1 constituting the switch element is connected between the bottom region 214 to which the bottom of the transistor TP1 constituting the program element is connected and the M2 wiring 251 serving as the bit line BL.
- the switch element is composed of transistors TS1 and TS2 connected in two stages in series.
- the tops of the transistors TP1 and TS1 are connected by a local wiring 232, and the bottoms of the transistors TS1 and TS2 are connected to the bottom region 215. That is, the transistors TS1 and TS2 constituting the switch element are connected via the bottom region 215 between the local line 232 connected to the top of the transistor TP1 constituting the program element and the M2 line 251 serving as the bit line BL.
- the switch element is composed of transistors TS1 and TS2 connected in two stages in series.
- the tops of the transistors TP1 and TS1 are connected by a local wiring 232, and the bottoms of the transistors TS1 and TS2 are connected to the bottom region 215. That is, the transistors TS1 and TS2 constituting the switch element are connected via the bottom region 215 between the local line 232 connected to the top of the transistor TP1 constituting the program element and
- the first and second word lines WLP, WLR are arranged on both sides in the X direction of the program element and the switch element. Instead, one or both of the first and second word lines WLP and WLR may be arranged between the program element and the switch element.
- the switch element is constituted by a one-stage transistor TS1.
- the M1 wiring 241 serving as the first word line WLP is disposed between the transistor TP1 that is a program element and the transistor TS1 that is a switch element.
- the M1 wiring 242 serving as the second word line WLR is disposed between the transistor TP1 that is a program element and the transistor TS1 that is a switch element.
- both the M1 wiring 241 serving as the first word line WLP and the M1 wiring 242 serving as the second word line WLR are disposed between the transistor TP1 serving as the program element and the transistor TS1 serving as the switch element. Yes.
- the M1 wiring 241 that becomes the first word line WLP is not adjacent to the M1 wiring 245 that becomes the second word line WLR of the memory cell adjacent on the left side of the drawing. Thereby, crosstalk noise between the first word line WLP and the second word line WLR can be suppressed, so that the semiconductor memory device can be stably operated.
- Part 1 the configuration of the memory cell array that stores one data per memory cell has been described as an example. However, the present disclosure can also be applied to a memory cell array that stores the same data in two or three or more memory cells in order to improve reliability.
- FIG. 14 is another configuration diagram of the memory cell array according to the first and second embodiments.
- the same data is stored in two cells adjacent in the Y direction, and is read out.
- the same data is stored in the memory cells MC1 and MC3, and the same data is stored in the memory cells MC2 and MC4.
- the memory cell array according to the third embodiment can be configured similarly.
- the high voltage VPP may be simultaneously applied to the word lines WLA and WLB at the time of writing.
- the planar shape of the VNW is circular, but the planar shape of the VNW is not limited to a circle. For example, it may be a rectangle or an oval. For example, in the case of an oval, since the area of VNW per unit area is increased, a larger amount of current can be supplied to the transistor, and the semiconductor memory device can be speeded up.
- planar shape of the VNW is a shape that extends long in one direction such as an oval
- the extending direction is the same.
- the positions of the ends are aligned.
- VNWs having different planar shapes may be mixed.
- a circular VNW and an oval VNW may be mixed.
- one transistor is composed of one VNW.
- one transistor may be composed of a plurality of VNWs.
- a layout structure with a small area can be realized for a nonvolatile memory cell using a VNW FET, which is useful for miniaturization of a semiconductor chip, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
縦型ナノワイヤFET(VNW FET)を用いた不揮発性メモリセルについて、小面積のレイアウト構造を提供する。メモリセル(MC4)は、ゲートがワード線(WL)に接続されたプログラム素子と、プログラム素子とビット線(BL)との間に設けられ、ゲートがワード線(WL)に接続されたスイッチ素子とを備える。プログラム素子およびスイッチ素子はそれぞれ、1つまたは複数のVNW FET(TP1,TS1~TS3)によって構成されており、各VNW FET(TP1,TS1~TS3)は、第1方向に並べて配置されている。
Description
本開示は、縦型ナノワイヤ(VNW:Vertical Nanowire)FET(Field Effect Transistor)を備えた半導体記憶装置に関し、特に、不揮発性のメモリセルのレイアウト構造に関する。
LSIの基本構成要素であるトランジスタは、ゲート長の縮小(スケーリング)により、集積度の向上、動作電圧の低減、および動作速度の向上を実現してきた。しかし近年、過度なスケーリングによるオフ電流と、それによる消費電力の著しい増大が問題となっている。この問題を解決するため、トランジスタ構造を従来の平面型から立体型に変更した立体構造トランジスタが盛んに研究されている。その1つとして、縦型ナノワイヤFET(以下、適宜、VNW FETという)が注目されている。
また、不揮発性のメモリセルを備えた半導体記憶装置は、多くのアプリケーションにおいて用いられている。不揮発性のメモリセルの1つに、OTP(One Time Programmable)メモリセルがある。これは、絶縁膜の破壊などによって「1」「0」の状態をメモリに記憶させ、読み出すことを特徴としている。
特許文献1では、OTPメモリの構成が開示されている。この構成では、一個のトランジスタにゲート酸化膜の膜厚を2種類持たせて、膜厚が薄い部分の絶縁膜を破壊することによって、「1」「0」の状態をメモリに記憶させている。
ところが、VNW FETを用いたOTPメモリについて、構成を開示した先行文献はない。
本開示は、VNW FETを用いた不揮発性メモリセルについて、小面積のレイアウト構造を提供することを目的とする。
本開示の第1態様では、不揮発性のメモリセルを備えた半導体記憶装置において、前記メモリセルは、ゲートがワード線に接続されたプログラム素子と、前記プログラム素子とビット線との間に設けられ、ゲートが前記ワード線に接続されたスイッチ素子とを備え、前記プログラム素子および前記スイッチ素子は、それぞれ、1つまたは複数のVNW(Vertical Nanowire:縦型ナノワイヤ) FETによって構成されており、前記プログラム素子および前記スイッチ素子を構成する各VNW FETは、第1方向に並べて配置されている。
この態様によると、不揮発性のメモリセルにおいて、プログラム素子およびスイッチ素子は、それぞれ、1つまたは複数のVNW FETによって構成されている。そして、プログラム素子およびスイッチ素子を構成する各VNW FETは、第1方向に並べて配置されている。これにより、メモリセルのレイアウト構造がコンパクトになり、面積を小さく抑えることができる。
本開示によると、VNW FETを用いた不揮発性メモリセルについて、小面積のレイアウト構造を実現することができる。
以下、実施の形態について、図面を参照して説明する。以下の実施の形態では、半導体記憶装置は不揮発性のメモリセルを備えており、このメモリセルは、いわゆる縦型ナノワイヤFET(VNW FET)を備えるものとする。
図15はVNW FETの基本構造例を示す模式図であり、(a)は断面図、(b)は平面図である。なお、図15(b)では、メタル配線の図示を省いており、また、理解のしやすさのために、実際の平面視では見えない構成要素を図示している。
図15に示すように、半導体基板501上に、P型ウェル502とN型ウェル503が形成されている。ただし、半導体基板501がP型基板であるとき、P型ウェルを形成しなくてもよい。P型ウェル502上に、N型トランジスタであるVNW FET510が形成されており、N型ウェル503上に、P型トランジスタであるVNW FET520が形成されている。504は絶縁膜、505は層間絶縁膜である。
VNW FET510は、ソース/ドレイン電極となるボトム電極511と、ソース/ドレイン電極となるトップ電極512と、ボトム電極511とトップ電極512との間に、縦方向(基板面に対して垂直方向)に形成されたナノワイヤ513とを備える。ボトム電極511およびトップ電極512は、N導電型にドーピングされている。ナノワイヤ513の少なくとも一部がチャネル領域となる。ナノワイヤ513の周囲にはゲート絶縁膜515が形成されており、さらにその周囲にゲート電極514が形成されている。なお、ゲート電極514はナノワイヤ513の周囲全体を囲んでいてもよいし、ナノワイヤ513の周囲の一部のみを囲んでいてもよい。ゲート電極514がナノワイヤ513の周囲の一部のみを囲んでいる場合は、ゲート絶縁膜515はゲート電極514がナノワイヤ513を囲んでいる部分にのみ形成されていてもよい。
ボトム電極511は、半導体基板501の上面に沿って広がるように形成されたボトム領域516と接続されている。ボトム領域516も、N導電型にドーピングされている。ボトム領域516の表面にはシリサイド領域517が形成されている。また、トップ電極512の周囲に、サイドウォール518が形成されている。トップ電極512の上に、シリサイド領域519が形成されている。ただし、サイドウォール518およびシリサイド領域519は形成しなくてもよい。
同様に、VNW FET520は、ソース/ドレイン電極となるボトム電極521と、ソース/ドレイン電極となるトップ電極522と、ボトム電極521とトップ電極522との間に、縦方向に形成されたナノワイヤ523とを備える。ボトム電極521およびトップ電極522は、P導電型にドーピングされている。ナノワイヤ523の少なくとも一部がチャネル領域となる。ナノワイヤ523の周囲にはゲート絶縁膜525が形成されており、さらにその周囲にゲート電極524が形成されている。
ボトム電極521は、半導体基板501の上面に沿って広がるように形成されたボトム領域526と接続されている。ボトム領域526も、P導電型にドーピングされている。ボトム領域526の表面にはシリサイド領域527が形成されている。また、トップ電極522の周囲に、サイドウォール528が形成されている。トップ電極522の上に、シリサイド領域529が形成されている。ただし、サイドウォール528およびシリサイド領域529は形成しなくてもよい。
図15の構造では、VNW FET510のゲート電極領域514とVNW FET520のゲート電極領域524とが、ゲート配線531によって接続されている。また、ボトム領域516、シリサイド領域519、ゲート配線531、シリサイド領域529およびボトム領域526は、それぞれ、コンタクト532およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。なお、メタル配線層M1のさらに上層に、メタル配線層を積層することができる。
半導体基板501は、例えば、バルクSi、ゲルマニウム、その化合物や合金等によって構成されている。N型ドーパントの例としては、As、P、Sb、N、Cまたはこれらの組み合わせ等がある。P型ドーパントの例としては、B、BF2、In、N、Cまたはこれらの組み合わせ等がある。また、VNW FET510,520の平面形状(ナノワイヤ513,523の横断面形状)は、例えば、円形、矩形、楕円形等であってもよい。
絶縁膜504の材質は、例えば、SiN、SiCN等である。層間絶縁膜505の材料は、例えば、SiO、TEOS、PSG、BPSG、FSG、SiOC、SOG、Spin on Polymers、SiC、または、これらの混合物等がある。シリサイド領域517,527の材質は、例えば、NiSi、CoSi、TiSi、WSi等である。
ゲート電極514,524、および、ゲート配線531の材料は、例えば、TiN、TaN、TiAl、Ti-containing Metal、Ta-containing Metal、Al-containing Metal、W-containing Metal、TiSi、NiSi、PtSi、polysilicon with silicide、これらの組み合わせ等がある。ゲート絶縁膜515,525の材料は、例えば、SiON、Si3N4、Ta2O5、Al2O3、Hf oxide、Ta oxide、Al oxide等がある。また、k値は7以上であることが好ましい。
トップ電極512,522上に設けるシリサイド領域519,529の材料としては、NiSi、CoSi、MoSi、WSi、PtSi、TiSiまたはこれらの組み合わせ等がある。また、他の構成として、W、Cu、Al等のメタルや、TiN、TaN等の合金等、不純物注入された半導体等、またはこれらの組み合わせとしてもよい。サイドウォール518,528の材料としては、例えば、SiN、SiON、SiC、SiCN、SiOCN等がある。
コンタクト532の材料としては、例えば、Ti、TiN、Ta、TaN等がある。また、Cu、Cu-arroy、W、Ag、Au、Ni、Al等がある。あるいは、Co、Ruでもよい。
図16はVNW FETの基本構造例であって、ローカル配線を用いた構造例を示す。図16(a)では、メタル配線層M1と、VNW FET510のトップ電極512およびVNW FET520のトップ電極522との間に、ローカル配線534が形成されている。ボトム領域516,526およびゲート配線531は、それぞれ、コンタクト533、ローカル配線534およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。また、シリサイド領域519,529は、それぞれ、ローカル配線534およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。
図16(b)では、メタル配線層M1とボトム領域516,526との間に、ローカル配線535が形成されている。言い換えると、ローカル配線535は、図16(a)におけるコンタクト533およびローカル配線534が一体となったものに相当する。シリサイド領域536は、ローカル配線535を形成する工程において、エッチングストッパとして用いられる。
以下の説明では、VNW FETのボトム電極、トップ電極、ゲート電極のことを、適宜、単にボトム、トップ、ゲートという。また、縦型ナノワイヤ、トップ、ボトムおよびゲートからなる単位構成が、1個または複数個によって、1個のVNW FETを構成する場合、この単位構成のことを単に「VNW」といい、VNW FETと区別するものとする。また、「VDD」は電源電圧または高電圧側電源線を示し、「VSS」は電源電圧または低電圧側電源線を示す。
なお、以下の説明では、図2等の平面図において、図面横方向をX方向(第1方向に相当)、図面縦方向をY方向(第2方向に相当)としている。また、本明細書において、「同一配線幅」等のように、幅等が同じであることを意味する表現は、製造上のばらつき範囲を含んでいるものとする。
(第1実施形態)
図1は第1および第2実施形態に係る、不揮発性のメモリセルを備えた半導体記憶装置の構成例を示す図であり、(a)はメモリセルアレイの構成図、(b)はメモリセルの回路図である。図1(a)に示すように、各メモリセル1はそれぞれ、対応するワード線WLおよびビット線BLと接続されている。なお、半導体記憶装置は、メモリセルアレイ以外にも、書き込み回路、読み出し回路等の周辺回路を備えているが、ここでは図示を省略している。また、図1(a)では、図示の簡略化のために、メモリセルアレイは(2×2)個のメモリセル1(MC1~MC4)からなるものとしているが、メモリセル1の個数は、X方向(ワード線WLが延びる方向)およびY方向(ビット線BLが延びる方向)において、これに限られるものではない。
図1は第1および第2実施形態に係る、不揮発性のメモリセルを備えた半導体記憶装置の構成例を示す図であり、(a)はメモリセルアレイの構成図、(b)はメモリセルの回路図である。図1(a)に示すように、各メモリセル1はそれぞれ、対応するワード線WLおよびビット線BLと接続されている。なお、半導体記憶装置は、メモリセルアレイ以外にも、書き込み回路、読み出し回路等の周辺回路を備えているが、ここでは図示を省略している。また、図1(a)では、図示の簡略化のために、メモリセルアレイは(2×2)個のメモリセル1(MC1~MC4)からなるものとしているが、メモリセル1の個数は、X方向(ワード線WLが延びる方向)およびY方向(ビット線BLが延びる方向)において、これに限られるものではない。
本実施形態では、メモリセル1は、ゲート酸化膜破壊型のOTP(One Time Programmable)メモリセルである。図1(b)に示すように、メモリセル1は、直列接続されたN導電型トランジスタTP,TSを備える。トランジスタTPは、プログラム素子である。プログラム素子は、ゲート酸化膜の破壊/非破壊状態によって「1」/「0」の値を記憶する。トランジスタTSは、スイッチ素子である。スイッチ素子は、ビット線BLからプログラム素子へのアクセスを制御する。
プログラム素子を構成するトランジスタTPは、ゲート酸化膜の破壊を行う対象であるので、スイッチ素子を構成するトランジスタTSよりも、ゲート酸化膜の膜厚が薄い。具体的には例えば、スイッチ素子は、半導体集積回路の外部との信号のやりとりを行う入出回路におけるいわゆるIOトランジスタと同程度のゲート酸化膜厚を有するトランジスタによって構成し、プログラム素子は、半導体集積回路の内部回路におけるいわゆるコアトランジスタと同程度のゲート酸化膜厚を有するトランジスタによって構成する。コアトランジスタは、IOトランジスタよりゲート酸化膜の耐圧が低い。
メモリセル1の書き込み動作は次のように行われる。所望のワード線WLに書き込み電圧となる高電圧VPPを印加する。高電圧VPPは、プログラム素子のゲート酸化膜の耐圧よりも大きい電圧であり、例えば5Vである。そして、ゲート酸化膜の破壊を行うメモリセル1に接続されたビット線BLに0Vを与え、ゲート酸化膜の破壊を行わないメモリセル1に接続されたビット線BLをフローティング状態にする。これにより、ビット線BLに0Vが与えられたメモリセル1ではスイッチ素子が導通状態になり、プログラム素子のゲート酸化膜が、高電圧VPPの印加によって破壊される。
メモリセル1の読み出し動作は次のように行われる。ビット線BLは例えば、予め0Vにプリチャージしておく。所望のワード線WLに、高電圧VPPよりも低い電圧VRRを印加する。電圧VRRは、プログラム素子のゲート酸化膜を破壊しない電圧であり、例えば1Vである。このとき、プログラム素子のゲート酸化膜が破壊されている場合は、ワード線WLからプログラム素子のゲートを介してビット線BLに電流が流れ、ビット線BLの電位が上昇する。一方、プログラム素子のゲート酸化膜が破壊されていない場合は、ビット線BLの電位は変化しない。この電位の差によって、メモリセル1の状態すなわち値「0」/「1」が読み出される。
図2および図3は第1実施形態に係るメモリセルアレイのレイアウト構造の例を示す図であり、図2は平面図、図3は図2の線A-A’における断面図である。なお、図2等の平面図において縦横に走る点線、および、図3等の断面図において縦に走る点線は、設計時に部品配置を行うために用いるグリッドを示す。グリッドは、X方向において等間隔に配置されており、またY方向において等間隔に配置されている。なお、グリッド間隔は、X方向とY方向とにおいて同じであってもよいし異なっていてもよい。また、グリッド間隔は、層ごとに異なっていてもかまわない。例えば、VNW FETのグリッドとM1配線のグリッドとが、異なる間隔で配置されていてもよい。さらに、各部品は必ずしもグリッド上に配置される必要はない。ただし、製造ばらつきを抑制する観点から、部品はグリッド上に配置される方が好ましい。以降の実施形態についても同様である。
また、本実施形態に係るデバイス構造は、図16(a)の構造を前提としている。ただし、図15や図16(b)の構造や、他のデバイス構造を前提とした構造にもなり得る。以降の実施形態についても同様である。また、図を分かりやすくするために、ウェル、STI、各絶縁膜、ボトム上のシリサイド層、トップ上のシリサイド層、および、トップのサイドウォールについては、図示を省略している。以降の図についても同様である。
図2では、メモリセルアレイを構成する(2×2)個のメモリセルMC1,MC2,MC3,MC4のレイアウトを示している。各メモリセルMC1~MC4は同一構造を有するが、メモリセルMC2,MC4はメモリセルMC1,MC3を左右(X方向)に反転した構造である。各メモリセルMC1~MC4は、プログラム素子が1個のVNW FETによって構成されており、スイッチ素子が3個のVNW FETによって構成されている。隣り合うメモリセルMC1,MC2はワード線WLとの接続部を共有しており、隣り合うメモリセルMC3,MC4はワード線WLとの接続部を共有している。また、メモリセルMC1,MC3の、メモリセルMC2,MC4と反対側、および、メモリセルMC2,MC4の、メモリセルMC1,MC3と反対側に、PウェルまたはP基板に電源電圧VSSを供給するタップ部が設けられている。
以下、メモリセルMC4を例にとって、レイアウト構造の詳細について説明する。
トランジスタTP1,TS1,TS2,TS3は、N導電型のVNW FETであり、それぞれ1個のVNWからなる。トランジスタTP1はプログラム素子を構成する。トランジスタTS1,TS2,TS3はスイッチ素子を構成する。トランジスタTS1,TS2,TS3のゲート酸化膜の膜厚は、トランジスタTP1のゲート酸化膜の膜厚よりも厚くなっている。トランジスタTP1,TS1,TS2,TS3は、X方向に並んで配置されている。トランジスタTP1,TS1,TS2,TS3の下には、P基板がある、または、Pウェルが形成されている。
なお、ゲート酸化膜の膜厚が異なるトランジスタについては、ゲート酸化膜を形成する際に、それぞれのゲート酸化膜領域をマスクして、別々にゲート酸化膜を形成すればよい。以降の実施形態についても同様である。
メモリセルMC3,MC4の上層に、ワード線WLとなる、X方向に延びるM2配線51が配置されている。メモリセルMC2,MC4の上層に、ビット線BLとなる、Y方向に延びるM1配線41が配置されている。また、メモリセルMC2,MC4の図面右側にあるタップ部の上層に、電源電圧VSSを供給する、Y方向に延びるM1配線42が配置されている。同様に、メモリセルMC1,MC2の上層に、ワード線WLとなる、X方向に延びるM2配線52が配置されている。メモリセルMC1,MC3の上層に、ビット線BLとなる、Y方向に延びるM1配線43が配置されている。また、メモリセルMC1,MC3の図面左側にあるタップ部の上層に、電源電圧VSSを供給する、Y方向に延びるM1配線44が配置されている。
ボトム領域11,12,13が形成されている。トランジスタTP1,TS1のボトムはボトム領域11に接続されている。トランジスタTS2,TS3のボトムはボトム領域12に接続されている。ボトム領域13は、タップ部に形成されている。ボトム領域13は、ビア、ローカル配線を介して、電源電圧VSSを供給するM1配線42に接続されている。
ゲート配線21はX方向に延びており、トランジスタTP1,TS1,TS2,TS3のゲートと接続されている。ゲート配線21は、トランジスタTP1から、トランジスタTS1と反対の向きに延びる配線部21aを有している。配線部21aは、ワード線WLとなるM2配線51と、ビア、ローカル配線、M1配線を介して接続されている。配線部21aは、隣り合うメモリセルMC3,MC4によって共有されている。
トランジスタTS1,TS2のトップは、X方向に延びるローカル配線31に接続されている。トランジスタTS3のトップは、ローカル配線、ビアを介して、ビット線BLとなるM1配線41と接続されている。すなわち、トランジスタTS1,TS2,TS3は、トランジスタTP1のボトムが接続されたボトム領域11と、ビット線BLとなるM1配線41との間に、ローカル配線31およびボトム領域12を介して、直列に接続されている。
上述したレイアウト構造は、例えば次のような特徴を有する。
プログラム素子およびスイッチ素子を構成する各VNW FET TP1,TS1,TS2,TS3は、X方向に並べて配置されている。これにより、メモリセルのレイアウト構造がコンパクトになり、面積を小さく抑えることができる。また、X方向に延びるゲート配線21が、各VNW FET TP1,TS1,TS2,TS3のゲートと接続されている。これにより、メモリセルのレイアウト構造がよりコンパクトになる。さらに、ワード線WLとなるM2配線51がX方向に延びており、各VNW FET TP1,TS1,TS2,TS3、ゲート配線21、および、M2配線51が、平面視で重なりを有している。これにより、メモリセルのレイアウト構造がよりコンパクトになる。
スイッチ素子を構成する、直列に接続されたトランジスタTS1,TS2,TS3は、トランジスタTS3のトップが、ビット線BLとなるM1配線41と接続されている。これにより、スイッチ素子とビット線BLとの接続構成が簡易になるので、メモリセルの小面積化が実現できる。
スイッチ素子を構成する、直列に接続されたトランジスタTS1,TS2,TS3は、トランジスタTS1,TS2はトップ同士がローカル配線31を介して接続され、トランジスタTS2,TS3はボトム同士がボトム領域12を介して接続されている。このように、スイッチ素子を構成するVNW FETについて、トップ、ボトムを交互に接続することによって、VNW FETを直列接続する構成が簡易になるので、メモリセルの小面積化が実現できる。
ゲート配線21をワード線WLと接続するための配線部21aが、メモリセルの端に設けられている。これにより、隣り合うメモリセルによって配線部21aを供給することができるので、メモリセルの小面積化が実現できる。
なお、M1配線層において、配線部21aとM1配線41との間の空いている部分に、Y方向に延びるM1配線を設けてもよい。この場合、M1配線の配線パターンが均一になる。また、M1配線として電源配線を設けることによって、電源強化が可能になる。
また、各ボトム領域はX方向に延びており、領域幅は同一であり、かつ、配置ピッチは一定である。各ゲート配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各ローカル配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M1配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M2配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。
したがって、半導体記憶装置の製造精度が向上し、デバイス特性のばらつきが抑制される。なお、各層における領域および配線は、必ずしも全てが、方向、幅、または、配置ピッチが同一でなくてもかまわない。
(第2実施形態)
図4および図5は第2実施形態に係るメモリセルアレイのレイアウト構造の例を示す図であり、図4は平面図、図5は図4の線B-B’における断面図である。各メモリセルMC1~MC4は同一構造を有するが、メモリセルMC2,MC4はメモリセルMC1,MC3を左右(X方向)に反転した構造である。各メモリセルMC1~MC4は、プログラム素子が1個のVNW FETによって構成されており、スイッチ素子が3個のVNW FETによって構成されている。メモリセルMC1,MC3の、メモリセルMC2,MC4と反対側、および、メモリセルMC2,MC4の、メモリセルMC1,MC3と反対側に、PウェルまたはP基板に電源電圧VSSを供給するタップ部が設けられている。
図4および図5は第2実施形態に係るメモリセルアレイのレイアウト構造の例を示す図であり、図4は平面図、図5は図4の線B-B’における断面図である。各メモリセルMC1~MC4は同一構造を有するが、メモリセルMC2,MC4はメモリセルMC1,MC3を左右(X方向)に反転した構造である。各メモリセルMC1~MC4は、プログラム素子が1個のVNW FETによって構成されており、スイッチ素子が3個のVNW FETによって構成されている。メモリセルMC1,MC3の、メモリセルMC2,MC4と反対側、および、メモリセルMC2,MC4の、メモリセルMC1,MC3と反対側に、PウェルまたはP基板に電源電圧VSSを供給するタップ部が設けられている。
以下、メモリセルMC4を例にとって、レイアウト構造の詳細について説明する。
トランジスタTP1,TS1,TS2,TS3は、N導電型のVNW FETであり、それぞれ1個のVNWからなる。トランジスタTP1はプログラム素子を構成する。トランジスタTS1,TS2,TS3はスイッチ素子を構成する。トランジスタTS1,TS2,TS3のゲート酸化膜の膜厚は、トランジスタTP1のゲート酸化膜の膜厚よりも厚くなっている。トランジスタTP1,TS1,TS2,TS3は、X方向に並んで配置されている。ただし、トランジスタTP1とトランジスタTS1,TS2,TS3との間に、1グリッド分、間隔が空いている。トランジスタTP1,TS1,TS2,TS3の下には、P基板がある、または、Pウェルが形成されている。
メモリセルMC3,MC4の上層に、ワード線WLとなる、X方向に延びるM2配線51が配置されている。メモリセルMC2,MC4の上層に、ビット線BLとなる、Y方向に延びるM1配線41が配置されている。また、メモリセルMC2,MC4の図面右側にあるタップ部の上層に、電源電圧VSSを供給する、Y方向に延びるM1配線42が配置されている。同様に、メモリセルMC1,MC2の上層に、ワード線WLとなる、X方向に延びるM2配線52が配置されている。メモリセルMC1,MC3の上層に、ビット線BLとなる、Y方向に延びるM1配線43が配置されている。また、メモリセルMC1,MC3の図面左側にあるタップ部の上層に、電源電圧VSSを供給する、Y方向に延びるM1配線44が配置されている。
ボトム領域111,112,113が形成されている。トランジスタTP1,TS1のボトムはボトム領域111に接続されている。トランジスタTS2,TS3のボトムはボトム領域112に接続されている。ボトム領域113は、タップ部に形成されている。ボトム領域113は、ビア、ローカル配線を介して、電源電圧VSSを供給するM1配線42に接続されている。
ゲート配線121はX方向に延びており、トランジスタTP1,TS1,TS2,TS3のゲートと接続されている。ゲート配線121は、トランジスタTP1と、トランジスタTS1との間に、配線部121aを有している。配線部121aは、ワード線WLとなるM2配線51と、ビア、ローカル配線、M1配線を介して接続されている。
トランジスタTS1,TS2のトップは、X方向に延びるローカル配線131に接続されている。トランジスタTS3のトップは、ローカル配線、ビアを介して、ビット線BLとなるM1配線41と接続されている。すなわち、トランジスタTS1,TS2,TS3は、トランジスタTP1のボトムが接続されたボトム領域111と、ビット線BLとなるM1配線41との間に、ローカル配線131およびボトム領域112を介して、直列に接続されている。
上述したレイアウト構造は、例えば次のような特徴を有する。
プログラム素子およびスイッチ素子を構成する各VNW FET TP1,TS1,TS2,TS3は、X方向に並べて配置されている。これにより、メモリセルのレイアウト構造がコンパクトになり、面積を小さく抑えることができる。また、X方向に延びるゲート配線121が、各VNW FET TP1,TS1,TS2,TS3のゲートと接続されている。これにより、メモリセルのレイアウト構造がよりコンパクトになる。さらに、ワード線WLとなるM2配線51がX方向に延びており、各VNW FET TP1,TS1,TS2,TS3、ゲート配線121、および、M2配線51が、平面視で重なりを有している。これにより、メモリセルのレイアウト構造がよりコンパクトになる。
スイッチ素子を構成する、直列に接続されたトランジスタTS1,TS2,TS3は、トランジスタTS3のトップが、ビット線BLとなるM1配線41と接続されている。これにより、スイッチ素子とビット線BLとの接続構成が簡易になるので、メモリセルの小面積化が実現できる。
スイッチ素子を構成する、直列に接続されたトランジスタTS1,TS2,TS3は、トランジスタTS1,TS2はトップ同士がローカル配線131を介して接続され、トランジスタTS2,TS3はボトム同士がボトム領域112を介して接続されている。このように、スイッチ素子を構成するVNW FETについて、トップ、ボトムを交互に接続することによって、VNW FETを直列接続する構成が簡易になるので、メモリセルの小面積化が実現できる。
プログラム素子を構成するトランジスタTP1と、スイッチ素子を構成するトランジスタTS1,TS2,TS3とは、離間して配置されている。また、トランジスタTP1は、メモリセルMC2,MC3のプログラム素子を構成するトランジスタと隣り合っている。ここで、プログラム素子を構成するトランジスタと、スイッチ素子を構成するトランジスタとは、ゲート酸化膜厚が異なるため、別々に形成される。このため、本実施形態のように、プログラム素子を構成するトランジスタとスイッチ素子を構成するトランジスタとが離間して配置されていることによって、製造精度が高まり、半導体記憶装置の信頼性が向上し、歩留まりが向上する、という効果が得られる。
なお、M1配線層において、配線部121aとM1配線41との間、あるいは、配線部121a同士の間の空いている部分に、Y方向に延びるM1配線を設けてもよい。この場合、M1配線の配線パターンが均一になる。また、M1配線として電源配線を設けることによって、電源強化が可能になる。
また、各ボトム領域はX方向に延びており、領域幅は同一であり、かつ、配置ピッチは一定である。各ゲート配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各ローカル配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M1配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M2配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。
したがって、半導体記憶装置の製造精度が向上し、デバイス特性のばらつきが抑制される。なお、各層における領域および配線は、必ずしも全てが、方向、幅、または、配置ピッチが同一でなくてもかまわない。
(変形例1)
上述した第1および第2実施形態に係るレイアウト構造では、スイッチ素子は、トランジスタが直列に3段接続されて構成されるものとしたが、スイッチ素子を構成するトランジスタの接続段数は、3段に限られるものではない。
上述した第1および第2実施形態に係るレイアウト構造では、スイッチ素子は、トランジスタが直列に3段接続されて構成されるものとしたが、スイッチ素子を構成するトランジスタの接続段数は、3段に限られるものではない。
図6(a),(b)は変形例1に係るメモリセルの構成を示す断面図である。図6(a)では、スイッチ素子が、直列に2段接続されたトランジスタTS1,TS2によって構成されている。トランジスタTP1,TS1のトップはローカル配線32によって接続されており、トランジスタTS1,TS2のボトムはボトム領域14に接続されている。すなわち、スイッチ素子を構成するトランジスタTS1,TS2は、プログラム素子を構成するトランジスタTP1のトップが接続されたローカル配線32と、ビット線BLとなるM1配線41との間に、ボトム領域14を介して、直列に接続されている。
図6(b)では、スイッチ素子が、1段のトランジスタTS1によって構成されている。トランジスタTP1,TS1はボトム領域15に接続されている。すなわち、スイッチ素子を構成するトランジスタTS1は、プログラム素子を構成するトランジスタTP1のボトムが接続されたボトム領域15と、ビット線BLとなるM1配線41との間に、接続されている。
メモリセルの書き込み動作において、プログラム素子のゲート酸化膜が高電圧VPPの印加によって破壊されたとき、スイッチ素子の両端に高電圧VPPがかかる。このため、スイッチ素子のソース-ドレイン間は、高電圧VPPに対する耐圧を有する必要がある。ここで、スイッチ素子を、複数段例えば3段に直列接続したVNW FETによって構成することによって、高電圧VPPに対する耐圧を容易に持たせることができる。なお、例えば1個のVNW FETのソース-ドレイン間が高電圧VPPに対する耐圧を有する場合には、図6(b)に示すように、スイッチ素子を1段のトランジスタによって構成してもかまわない。
なお、図6の変形例は、第1実施形態に係るレイアウト構造をベースとしたものであるが、第2実施形態に係るレイアウト構造において、図6と同様にして、スイッチ素子を構成するトランジスタの接続段数を変えてもかまわない。
(変形例2)
上述した第1および第2実施形態に係るレイアウト構造において、プログラム素子とスイッチ素子の配置位置を、X方向において入れ替えてもかまわない。
上述した第1および第2実施形態に係るレイアウト構造において、プログラム素子とスイッチ素子の配置位置を、X方向において入れ替えてもかまわない。
図7(a),(b)は変形例2に係るメモリセルの構成を示す断面図である。図7(a)では、第1実施形態に係るメモリセルにおいて、プログラム素子を構成するトランジスタTP1と、スイッチ素子を構成するトランジスタTS1,TS2,TS3とが、X方向において配置位置が入れ替えられている。図7(b)では、第2実施形態に係るメモリセルにおいて、プログラム素子を構成するトランジスタTP1と、スイッチ素子を構成するトランジスタTS1,TS2,TS3とが、X方向において配置位置が入れ替えられている。なお、図7(b)の構成は、タップ部を除けば、第2実施形態におけるメモリセルMC1,MC3と同じ構成である。
(第3実施形態)
図8は第3実施形態に係る、不揮発性のメモリセルを備えた半導体記憶装置の構成例を示す図であり、(a)はメモリセルアレイの構成図、(b)はメモリセルの回路図である。図8(a)に示すように、各メモリセル3はそれぞれ、対応する第1ワード線WLP、第2ワード線WLR、およびビット線BLと接続されている。なお、半導体記憶装置は、メモリセルアレイ以外にも、書き込み回路、読み出し回路等の周辺回路を備えているが、ここでは図示を省略している。また、図8(a)では、図示の簡略化のために、メモリセルアレイは(2×2)個のメモリセル3(MC1~MC4)からなるものとしているが、メモリセル3の個数は、X方向(本実施形態ではビット線BLが延びる方向)およびY方向(本実施形態では第1および第2ワード線WLP,WLRが延びる方向)において、これに限られるものではない。
図8は第3実施形態に係る、不揮発性のメモリセルを備えた半導体記憶装置の構成例を示す図であり、(a)はメモリセルアレイの構成図、(b)はメモリセルの回路図である。図8(a)に示すように、各メモリセル3はそれぞれ、対応する第1ワード線WLP、第2ワード線WLR、およびビット線BLと接続されている。なお、半導体記憶装置は、メモリセルアレイ以外にも、書き込み回路、読み出し回路等の周辺回路を備えているが、ここでは図示を省略している。また、図8(a)では、図示の簡略化のために、メモリセルアレイは(2×2)個のメモリセル3(MC1~MC4)からなるものとしているが、メモリセル3の個数は、X方向(本実施形態ではビット線BLが延びる方向)およびY方向(本実施形態では第1および第2ワード線WLP,WLRが延びる方向)において、これに限られるものではない。
本実施形態においても、メモリセル3は、ゲート酸化膜破壊型のOTP(One Time Programmable)メモリセルである。図8(b)に示すように、メモリセル3は、直列接続されたN導電型トランジスタTP,TSを備える。トランジスタTPは、プログラム素子であり、ゲートが第1ワード線WLPに接続されている。プログラム素子は、ゲート酸化膜の破壊/非破壊状態によって「1」/「0」の値を記憶する。トランジスタTSは、スイッチ素子であり、ゲートが第2ワード線WLRに接続されている。スイッチ素子は、ビット線BLからプログラム素子へのアクセスを制御する。ここでは、スイッチ素子およびプログラム素子は、例えば、半導体集積回路の内部回路におけるいわゆるコアトランジスタと同程度のゲート酸化膜厚を有するトランジスタによって構成されている。
メモリセル3の書き込み動作は次のように行われる。所望の第1ワード線WLPに書き込み電圧となる高電圧VPPを印加する。高電圧VPPは、プログラム素子のゲート酸化膜の耐圧よりも大きい電圧であり、例えば3Vである。そして、第2ワード線WLRに電圧VPRを印加する。電圧VPRは、スイッチ素子のゲート酸化膜の耐圧よりも低く、かつ電圧(VPP-VPR)もスイッチ素子のゲート酸化膜の耐圧よりも低くなる電圧であり、例えば1Vである。そして、ゲート酸化膜の破壊を行うメモリセル3に接続されたビット線BLに0Vを与え、ゲート酸化膜の破壊を行わないメモリセル3に接続されたビット線BLに電圧VPRを印加する。これにより、ビット線BLに0Vが与えられたメモリセル3ではスイッチ素子が導通状態になり、プログラム素子のゲート酸化膜が、高電圧VPPの印加によって破壊される。
メモリセル3の読み出し動作は次のように行われる。ビット線BLは例えば、予め0Vにプリチャージしておく。所望の第1および第2ワード線WLP,WLRに、高電圧VPPよりも低い電圧VRRを印加する。電圧VRRは、プログラム素子のゲート酸化膜を破壊しない電圧であり、例えば1Vである。このとき、プログラム素子のゲート酸化膜が破壊されている場合は、第1ワード線WLPからプログラム素子のゲートを介してビット線BLに電流が流れ、ビット線BLの電位が上昇する。一方、プログラム素子のゲート酸化膜が破壊されていない場合は、ビット線BLの電位は変化しない。この電位の差によって、メモリセル3の状態すなわち値「0」/「1」が読み出される。
図9および図10は第3実施形態に係るメモリセルアレイのレイアウト構造の例を示す図であり、図9は平面図、図10は図9の線C-C’における断面図である。図9では、メモリセルアレイを構成する(2×2)個のメモリセルMC1,MC2,MC3,MC4のレイアウトを示している。各メモリセルMC1~MC4は同一構造を有する。各メモリセルMC1~MC4は、プログラム素子が1個のVNW FETによって構成されており、スイッチ素子が3個のVNW FETによって構成されている。また、メモリセルMC1,MC3の、メモリセルMC2,MC4と反対側、および、メモリセルMC2,MC4の、メモリセルMC1,MC3と反対側に、PウェルまたはP基板に電源電圧VSSを供給するタップ部が設けられている。
以下、メモリセルMC4を例にとって、レイアウト構造の詳細について説明する。
トランジスタTP1,TS1,TS2,TS3は、N導電型のVNW FETであり、それぞれ1個のVNWからなる。トランジスタTP1はプログラム素子を構成する。トランジスタTS1,TS2,TS3はスイッチ素子を構成する。ここでは、トランジスタTP1,TS1,TS2,TS3のゲート酸化膜の膜厚は、同じであるものとする。トランジスタTP1,TS1,TS2,TS3は、X方向に並んで配置されている。トランジスタTP1,TS1,TS2,TS3の下には、P基板がある、または、Pウェルが形成されている。
メモリセルMC3,MC4の上層に、ビット線BLとなる、X方向に延びるM2配線251が配置されている。メモリセルMC2,MC4の上層に、第1ワード線WLPとなる、Y方向に延びるM1配線241と、第2ワード線WLRとなる、Y方向に延びるM1配線242とが配置されている。M1配線241,242は、プログラム素子およびスイッチ素子を構成するトランジスタTP1,TS1,TS2,TS3のX方向における両側に配置されており、トランジスタTP1,TS1,TS2,TS3と平面視で重なりを有していない。また、メモリセルMC2,MC4の図面右側にあるタップ部の上層に、電源電圧VSSを供給する、Y方向に延びるM1配線243が配置されている。同様に、メモリセルMC1,MC2の上層に、ビット線BLとなる、X方向に延びるM2配線252が配置されている。メモリセルMC1,MC3の上層に、第1ワード線WLPとなる、Y方向に延びるM1配線244と、第2ワード線WLRとなる、Y方向に延びるM1配線245とが配置されている。また、メモリセルMC1,MC3の図面左側にあるタップ部の上層に、電源電圧VSSを供給する、Y方向に延びるM1配線246が配置されている。
ボトム領域211,212,213が形成されている。トランジスタTP1,TS1のボトムはボトム領域211に接続されている。トランジスタTS2,TS3のボトムはボトム領域212に接続されている。ボトム領域213は、タップ部に形成されている。ボトム領域213は、ビア、ローカル配線を介して、電源電圧VSSを供給するM1配線243に接続されている。
ゲート配線221は、トランジスタTP1のゲートと接続されており、トランジスタTP1から、トランジスタTS1と反対の向きに引き出されている。ゲート配線221は、第1ワード線WLPとなるM1配線241と、ビア、ローカル配線を介して接続されている。ゲート配線222は、トランジスタTS1,TS2,TS3のゲートと接続されており、トランジスタTS3から、トランジスタTS2と反対の向きに引き出されている。ゲート配線222は、第2ワード線WLRとなるM1配線242と、ビア、ローカル配線を介して接続されている。
トランジスタTS1,TS2のトップは、X方向に延びるローカル配線231に接続されている。トランジスタTS3のトップは、ローカル配線、ビアを介して、ビット線BLとなるM2配線251と接続されている。すなわち、トランジスタTS1,TS2,TS3は、トランジスタTP1のボトムが接続されたボトム領域211と、ビット線BLとなるM2配線251との間に、ローカル配線231およびボトム領域212を介して、直列に接続されている。
上述したレイアウト構造は、例えば次のような特徴を有する。
プログラム素子およびスイッチ素子を構成する各VNW FET TP1,TS1,TS2,TS3は、X方向に並べて配置されている。これにより、メモリセルのレイアウト構造がコンパクトになり、面積を小さく抑えることができる。また、ビット線BLとなるM2配線251がX方向に延びており、各VNW FET TP1,TS1,TS2,TS3、および、M2配線251が、平面視で重なりを有している。これにより、メモリセルのレイアウト構造がよりコンパクトになる。さらに、第1および第2ワード線WLP,WLRとなるM1配線241,242が、Y方向、すなわち、プログラム素子およびスイッチ素子を構成する各VNW FET TP1,TS1,TS2,TS3の並びと垂直をなす方向に延びている。これにより、第1および第2ワード線WLP,WLRによる面積の増大を抑制することができる。
スイッチ素子を構成する、直列に接続されたトランジスタTS1,TS2,TS3は、トランジスタTS3のトップが、ビット線BLとなるM2配線251と接続されている。これにより、スイッチ素子とビット線BLとの接続構成が簡易になるので、メモリセルの小面積化が実現できる。
スイッチ素子を構成する、直列に接続されたトランジスタTS1,TS2,TS3は、トランジスタTS1,TS2はトップ同士がローカル配線231を介して接続され、トランジスタTS2,TS3はボトム同士がボトム領域212を介して接続されている。このように、スイッチ素子を構成するVNW FETについて、トップ、ボトムを交互に接続することによって、VNW FETを直列接続する構成が簡易になるので、メモリセルの小面積化が実現できる。
なお、M1配線層において、M1配線241とVNW FET TS3との間の空いている部分に、Y方向に延びるM1配線を設けてもよい。この場合、M1配線の配線パターンが均一になる。また、M1配線として電源配線を設けることによって、電源強化が可能になる。
また、各ボトム領域はX方向に延びており、領域幅は同一であり、かつ、配置ピッチは一定である。各ゲート配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各ローカル配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M1配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M2配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。
したがって、半導体記憶装置の製造精度が向上し、デバイス特性のばらつきが抑制される。なお、各層における領域および配線は、必ずしも全てが、方向、幅、または、配置ピッチが同一でなくてもかまわない。
また、プログラム素子とスイッチ素子のゲート酸化膜の膜厚は同じであるものとしたが、異なっていてもよい。ただし、プログラム素子とスイッチ素子のゲート酸化膜の膜厚が同じであれば、別々にゲート酸化膜を形成する必要がないため、半導体記憶装置の製造が容易になる。
(変形例3)
上述した第3実施形態に係るレイアウト構造では、スイッチ素子は、トランジスタが直列に3段接続されて構成されるものとしたが、第1および第2実施形態に対する変形例1で示したものと同様に、スイッチ素子を構成するトランジスタの接続段数は、3段に限られるものではない。
上述した第3実施形態に係るレイアウト構造では、スイッチ素子は、トランジスタが直列に3段接続されて構成されるものとしたが、第1および第2実施形態に対する変形例1で示したものと同様に、スイッチ素子を構成するトランジスタの接続段数は、3段に限られるものではない。
図11(a),(b)は変形例3に係るメモリセルの構成を示す断面図である。図11(a)では、スイッチ素子が、1段のトランジスタTS1によって構成されている。トランジスタTP1,TS1はボトム領域214に接続されている。すなわち、スイッチ素子を構成するトランジスタTS1は、プログラム素子を構成するトランジスタTP1のボトムが接続されたボトム領域214と、ビット線BLとなるM2配線251との間に、接続されている。
図11(b)では、スイッチ素子が、直列に2段接続されたトランジスタTS1,TS2によって構成されている。トランジスタTP1,TS1のトップはローカル配線232によって接続されており、トランジスタTS1,TS2のボトムはボトム領域215に接続されている。すなわち、スイッチ素子を構成するトランジスタTS1,TS2は、プログラム素子を構成するトランジスタTP1のトップが接続されたローカル配線232と、ビット線BLとなるM2配線251との間に、ボトム領域215を介して、直列に接続されている。
(変形例4)
上述した第3実施形態に係るレイアウト構造では、第1および第2ワード線WLP,WLRは、プログラム素子およびスイッチ素子のX方向における両側に、配置されていた。この代わりに、第1および第2ワード線WLP,WLRの一方または両方を、プログラム素子とスイッチ素子の間に配置してもよい。
上述した第3実施形態に係るレイアウト構造では、第1および第2ワード線WLP,WLRは、プログラム素子およびスイッチ素子のX方向における両側に、配置されていた。この代わりに、第1および第2ワード線WLP,WLRの一方または両方を、プログラム素子とスイッチ素子の間に配置してもよい。
図12(a),(b)および図13は変形例4に係るメモリセルの構成を示す断面図である。これらのメモリセルでは、スイッチ素子が、1段のトランジスタTS1によって構成されている。図12(a)では、第1ワード線WLPとなるM1配線241が、プログラム素子であるトランジスタTP1と、スイッチ素子であるトランジスタTS1との間に配置されている。図12(b)では、第2ワード線WLRとなるM1配線242が、プログラム素子であるトランジスタTP1と、スイッチ素子であるトランジスタTS1との間に配置されている。図13では、第1ワード線WLPとなるM1配線241および第2ワード線WLRとなるM1配線242の両方が、プログラム素子であるトランジスタTP1と、スイッチ素子であるトランジスタTS1との間に配置されている。
図12(a),(b)の例では、第1ワード線WLPとなるM1配線241は、図面左側に隣接するメモリセルの第2ワード線WLRとなるM1配線245と、隣接しなくなる。これにより、第1ワード線WLPと第2ワード線WLRとの間のクロストークノイズを抑制することができるので、半導体記憶装置を安定動作させることができる。
(他の実施形態)
(その1)
上述した実施形態では、メモリセル1個につき1つのデータを記憶させるメモリセルアレイの構成を例にとって説明を行った。ただし本開示は、信頼性向上のために、2個または3個以上のメモリセルに同一データを記憶させるメモリセルアレイについても、適用可能である。
(その1)
上述した実施形態では、メモリセル1個につき1つのデータを記憶させるメモリセルアレイの構成を例にとって説明を行った。ただし本開示は、信頼性向上のために、2個または3個以上のメモリセルに同一データを記憶させるメモリセルアレイについても、適用可能である。
図14は第1および第2実施形態に係るメモリセルアレイの他の構成図である。図14の構成では、Y方向において隣り合う2個のセルに同一データを記憶させておき、これを読み出す。例えば、メモリセルMC1,MC3に同一データを記憶させ、メモリセルMC2,MC4に同一データを記憶させる。なお、第3実施形態に係るメモリセルアレイについても、同様に構成することができる。
具体的な書き込みおよび読み出し動作は、例えば次のとおりである。
書き込み時には、ワード線WLAに接続されたメモリセル(図14ではMC1,MC2)、および、ワード線WLBに接続されたメモリセル(図14ではMC3,MC4)に、順次データを書き込む。書き込みの手順は、第1実施形態で説明したものと同様である。読み出し時には、ワード線WLA,WLBに電圧VRRを同時に印加する。これにより、2個のメモリセル(例えばMC1,MC3)の一方について書き込み(ゲート酸化膜の破壊)が十分になされていない場合でも、他方のメモリセルによってビット線BLの信号に変化が生じる。したがって、記憶させたデータを正しく読み出すことができる。
あるいは、書き込み時に、ワード線WLA,WLBに高電圧VPPを同時に印加してもよい。
(その2)
上述したレイアウト構造の例では、VNWの平面形状は円形であるものとしたが、VNWの平面形状は円形に限られるものではない。例えば、矩形、長円形などであってもかまわない。例えば長円形の場合、単位面積当たりのVNWの面積が大きくなるので、トランジスタに電流をより多く流すことができ、半導体記憶装置の高速化が実現できる。
上述したレイアウト構造の例では、VNWの平面形状は円形であるものとしたが、VNWの平面形状は円形に限られるものではない。例えば、矩形、長円形などであってもかまわない。例えば長円形の場合、単位面積当たりのVNWの面積が大きくなるので、トランジスタに電流をより多く流すことができ、半導体記憶装置の高速化が実現できる。
また、VNWの平面形状が、長円形のように一方向に長く延びる形状である場合には、延びる方向は同一であるのが好ましい。また、端の位置はそろっていることが好ましい。
また、メモリセルにおいて、全てのVNWを同一形状にする必要はなく、異なる平面形状を有するVNWが混在していてもかまわない。例えば、円形のVNWと長円形のVNWとが混在していてもかまわない。
また、上述の実施形態では、1個のトランジスタは1個のVNWからなるものとしたが、1個のトランジスタを複数のVNWによって構成してもかまわない。
本開示では、VNW FETを用いた不揮発性メモリセルについて、小面積のレイアウト構造を実現できるので、例えば半導体チップの小型化に有用である。
1,3 メモリセル
11,12,14,15 ボトム領域
21 ゲート配線
21a 配線部
31,32 ローカル配線
111,112 ボトム領域
121 ゲート配線
121a 配線部
131 ローカル配線
241 M1配線(第1ワード線)
242 M1配線(第2ワード線)
251 M2配線(ビット線)
MC1,MC2,MC3,MC4 メモリセル
TP1 プログラム素子を構成するVNW FET
TS1,TS2,TS3 スイッチ素子を構成するVNW FET
BL ビット線
WL ワード線
WLP 第1ワード線
WLR 第2ワード線
11,12,14,15 ボトム領域
21 ゲート配線
21a 配線部
31,32 ローカル配線
111,112 ボトム領域
121 ゲート配線
121a 配線部
131 ローカル配線
241 M1配線(第1ワード線)
242 M1配線(第2ワード線)
251 M2配線(ビット線)
MC1,MC2,MC3,MC4 メモリセル
TP1 プログラム素子を構成するVNW FET
TS1,TS2,TS3 スイッチ素子を構成するVNW FET
BL ビット線
WL ワード線
WLP 第1ワード線
WLR 第2ワード線
Claims (12)
- 不揮発性のメモリセルを備えた半導体記憶装置であって、
前記メモリセルは、
ゲートがワード線に接続されたプログラム素子と、
前記プログラム素子とビット線との間に設けられ、ゲートが前記ワード線に接続されたスイッチ素子とを備え、
前記プログラム素子および前記スイッチ素子は、それぞれ、1つまたは複数のVNW(Vertical Nanowire:縦型ナノワイヤ) FETによって構成されており、
前記プログラム素子および前記スイッチ素子を構成する各VNW FETは、第1方向に並べて配置されている
ことを特徴とする半導体記憶装置。 - 請求項1記載の半導体記憶装置において、
前記メモリセルは、
前記プログラム素子および前記スイッチ素子を構成する各VNW FETのゲートと接続されており、前記第1方向に延びるゲート配線を備える
ことを特徴とする半導体記憶装置。 - 請求項2記載の半導体記憶装置において、
前記ワード線は、前記第1方向に延びており、
前記プログラム素子および前記スイッチ素子を構成する各VNW FET、前記ゲート配線、並びに、前記ワード線は、平面視で重なりを有している
ことを特徴とする半導体記憶装置。 - 請求項1記載の半導体記憶装置において、
前記スイッチ素子は、トップ電極が前記ビット線と接続されたVNW FETを含む
ことを特徴とする半導体記憶装置。 - 請求項1記載の半導体記憶装置において、
前記スイッチ素子は、直列に接続された第1、第2および第3のVNW FETを含み、
前記第1および第2のVNW FETは、トップ電極同士が接続されており、前記第2および第3のVNW FETは、ボトム電極同士が接続されている
ことを特徴とする半導体記憶装置。 - 請求項2記載の半導体記憶装置において、
前記ゲート配線は、前記プログラム素子から、前記第1方向において前記スイッチ素子と反対の向きに延びる第1配線部を有しており、
前記ワード線は、前記第1配線部に接続されている
ことを特徴とする半導体記憶装置。 - 不揮発性のメモリセルを備えた半導体記憶装置であって、
前記メモリセルは、
ゲートが第1ワード線に接続されたプログラム素子と、
前記プログラム素子とビット線との間に設けられ、ゲートが第2ワード線に接続されたスイッチ素子とを備え、
前記プログラム素子および前記スイッチ素子は、それぞれ、1つまたは複数のVNW(Vertical Nanowire:縦型ナノワイヤ) FETによって構成されており、
前記プログラム素子および前記スイッチ素子を構成する各VNW FETは、第1方向に並べて配置されている
ことを特徴とする半導体記憶装置。 - 請求項7記載の半導体記憶装置において、
前記ビット線は、前記第1方向に延びており、
前記プログラム素子および前記スイッチ素子を構成する各VNW FET、並びに、前記ビット線は、平面視で重なりを有している
ことを特徴とする半導体記憶装置。 - 請求項7記載の半導体記憶装置において、
前記スイッチ素子は、トップ電極が前記ビット線と接続されたVNW FETを含む
ことを特徴とする半導体記憶装置。 - 請求項7記載の半導体記憶装置において、
前記スイッチ素子は、直列に接続された第1、第2および第3のVNW FETを含み、
前記第1および第2のVNW FETは、トップ電極同士が接続されており、前記第2および第3のVNW FETは、ボトム電極同士が接続されている
ことを特徴とする半導体記憶装置。 - 請求項7記載の半導体記憶装置において、
前記第1および第2ワード線は、前記第1方向と垂直をなす第2方向に延びている
ことを特徴とする半導体記憶装置。 - 請求項11記載の半導体記憶装置において、
前記第1および第2ワード線は、前記プログラム素子および前記スイッチ素子を構成する各VNW FETと、平面視で重なりを有していない
ことを特徴とする半導体記憶装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/025,191 US11309320B2 (en) | 2018-04-02 | 2020-09-18 | Semiconductor storage device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-071030 | 2018-04-02 | ||
JP2018071030 | 2018-04-02 | ||
JP2018146865 | 2018-08-03 | ||
JP2018-146865 | 2018-08-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/025,191 Continuation US11309320B2 (en) | 2018-04-02 | 2020-09-18 | Semiconductor storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019194008A1 true WO2019194008A1 (ja) | 2019-10-10 |
Family
ID=68100404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012473 WO2019194008A1 (ja) | 2018-04-02 | 2019-03-25 | 半導体記憶装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11309320B2 (ja) |
WO (1) | WO2019194008A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009524899A (ja) * | 2006-01-27 | 2009-07-02 | キロパス テクノロジー インコーポレイテッド | 電気的にプログラム可能なヒューズ・ビット |
JP2010514168A (ja) * | 2006-12-22 | 2010-04-30 | シデンス・コーポレーション | マスクプログラム可能なアンチヒューズ構造 |
US20150380547A1 (en) * | 2014-06-26 | 2015-12-31 | Taiwan Semiconductor Manufacturing Company Limited | Memory cell array and cell structure thereof |
US20160063163A1 (en) * | 2014-08-26 | 2016-03-03 | Synopsys, Inc. | Arrays with compact series connection for vertical nanowires realizations |
US20160268002A1 (en) * | 2015-03-12 | 2016-09-15 | Qualcomm Incorporated | Differential one-time-programmable (otp) memory array |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005109516A1 (en) | 2004-05-06 | 2005-11-17 | Sidense Corp. | Split-channel antifuse array architecture |
KR101989392B1 (ko) * | 2010-10-20 | 2019-06-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 구동 방법 |
JP6383280B2 (ja) * | 2014-12-15 | 2018-08-29 | 株式会社フローディア | 不揮発性半導体記憶装置 |
-
2019
- 2019-03-25 WO PCT/JP2019/012473 patent/WO2019194008A1/ja active Application Filing
-
2020
- 2020-09-18 US US17/025,191 patent/US11309320B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009524899A (ja) * | 2006-01-27 | 2009-07-02 | キロパス テクノロジー インコーポレイテッド | 電気的にプログラム可能なヒューズ・ビット |
JP2010514168A (ja) * | 2006-12-22 | 2010-04-30 | シデンス・コーポレーション | マスクプログラム可能なアンチヒューズ構造 |
US20150380547A1 (en) * | 2014-06-26 | 2015-12-31 | Taiwan Semiconductor Manufacturing Company Limited | Memory cell array and cell structure thereof |
US20160063163A1 (en) * | 2014-08-26 | 2016-03-03 | Synopsys, Inc. | Arrays with compact series connection for vertical nanowires realizations |
US20160268002A1 (en) * | 2015-03-12 | 2016-09-15 | Qualcomm Incorporated | Differential one-time-programmable (otp) memory array |
Also Published As
Publication number | Publication date |
---|---|
US11309320B2 (en) | 2022-04-19 |
US20210005618A1 (en) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11063053B2 (en) | Integrated circuit and static random access memory thereof | |
TWI478322B (zh) | 唯讀記憶體單元陣列 | |
WO2019155559A1 (ja) | 半導体集積回路装置 | |
US20230114430A1 (en) | Non-volatile memory device with reduced area | |
US11569218B2 (en) | Semiconductor integrated circuit device | |
TW202109749A (zh) | 半導體裝置 | |
JP5378722B2 (ja) | 不揮発性記憶装置およびその製造方法 | |
WO2019220983A1 (ja) | 半導体集積回路装置 | |
WO2019194008A1 (ja) | 半導体記憶装置 | |
US11062765B2 (en) | Semiconductor integrated circuit device | |
TWI839959B (zh) | 半導體記憶體裝置及其製造方法 | |
TWI831376B (zh) | 半導體裝置及記憶體裝置的製造方法 | |
TWI850770B (zh) | 積體晶片結構及其形成方法 | |
TWI849684B (zh) | 半導體記憶體裝置及製造的方法 | |
US11688480B2 (en) | Semiconductor storage device | |
TW202347741A (zh) | 半導體裝置 | |
KR20230143977A (ko) | 반도체 메모리 장치 및 그 제조 방법 | |
JP4024813B2 (ja) | 半導体集積回路装置 | |
JP2007258739A (ja) | 半導体集積回路装置 | |
JP2004349718A (ja) | 半導体集積回路装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19780987 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19780987 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |