WO2019193953A1 - 有機半導体素子、組成物、化合物を精製する方法およびそれらの応用 - Google Patents

有機半導体素子、組成物、化合物を精製する方法およびそれらの応用 Download PDF

Info

Publication number
WO2019193953A1
WO2019193953A1 PCT/JP2019/010860 JP2019010860W WO2019193953A1 WO 2019193953 A1 WO2019193953 A1 WO 2019193953A1 JP 2019010860 W JP2019010860 W JP 2019010860W WO 2019193953 A1 WO2019193953 A1 WO 2019193953A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
organic semiconductor
organic
comparative example
formula
Prior art date
Application number
PCT/JP2019/010860
Other languages
English (en)
French (fr)
Inventor
渡邉 哲也
征夫 谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19780760.5A priority Critical patent/EP3780118A4/en
Priority to JP2020511680A priority patent/JP7001815B2/ja
Publication of WO2019193953A1 publication Critical patent/WO2019193953A1/ja
Priority to US17/061,756 priority patent/US20210020841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • the present invention relates to an organic semiconductor element, a composition, an organic semiconductor composition, an organic semiconductor film, a method for producing the composition, a method for producing an organic semiconductor element, and a method for purifying a compound.
  • Organic semiconductor elements using organic semiconductor materials are attracting a great deal of interest because they are expected to have various advantages over conventional elements using inorganic semiconductor materials such as silicon.
  • Examples of organic semiconductor elements using organic semiconductor materials include photoelectric conversion elements such as organic thin-film solar cells and solid-state imaging elements using organic semiconductor materials as photoelectric conversion materials, and non-luminescent organic transistors (referred to as organic thin film transistors). May be included).
  • An organic semiconductor element using an organic semiconductor material may be capable of manufacturing a large-area element at a lower temperature and lower cost than an element using an inorganic semiconductor material. Furthermore, since the material characteristics can be easily changed by changing the molecular structure, there are a wide variety of materials, and it is possible to realize functions and elements that could not be achieved with inorganic semiconductor materials.
  • Non-Patent Document 1 describes an absorption / emission spectrum as a synthesis method and physical properties of compound C6-TBBT in which TBBT is substituted with an alkyl group having 6 carbon atoms and compound C12-TBBT in which an alkyl group having 12 carbon atoms is substituted. CV (cyclic voltammetry) is disclosed.
  • Patent Document 1 describes a coating solution for a non-light-emitting organic semiconductor device containing a compound having a TBBT structure and a solvent having a boiling point of 100 ° C. or higher.
  • the problem to be solved by the present invention is to provide an organic semiconductor element having high heat resistance of carrier mobility.
  • the present invention which is a specific means for solving the above problems, has the following configuration.
  • An organic semiconductor element including an organic semiconductor film formed by forming a composition,
  • the composition contains a compound represented by the following formula 1,
  • the total content of elemental sodium, elemental potassium, elemental silicon and elemental aluminum in the composition is 50 ppm or less (ppm is parts per million),
  • Organic semiconductor elements In Formula 1, R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 each independently represents an alkyl group that may have a substituent or an aromatic group that may have a substituent.
  • [3] The organic semiconductor element according to [1] or [2], wherein the content of silicon element in the composition is 30 ppm or less.
  • [4] The organic semiconductor element according to any one of [1] to [3], wherein the organic semiconductor element is an organic transistor.
  • [5] A composition comprising a compound represented by the following formula 1, A composition having a total content of elemental sodium, elemental potassium, elemental silicon and elemental aluminum of 50 ppm or less in the composition; In Formula 1, R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • An organic semiconductor composition comprising the composition according to [5] or [6] and a solvent.
  • a method for producing a composition comprising a step of purifying a compound represented by the following formula 1 under reduced pressure at a temperature of 150 ° C. or higher, or Soxhlet extraction; In Formula 1, R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • An organic semiconductor element comprising an organic semiconductor film formed by forming a composition obtained by purifying a compound represented by the following formula 1 under reduced pressure at a temperature of 150 ° C or higher or by Soxhlet extraction, An organic semiconductor element in which the total content of sodium element, potassium element, silicon element and aluminum element in the composition is 50 ppm or less;
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • an organic semiconductor element having high carrier mobility heat resistance can be provided.
  • FIG. 1 is a schematic view showing a cross section of an example of a structure of an organic transistor which is a bottom gate / top contact type element.
  • FIG. 2 is a schematic view showing a cross section of an example of an organic transistor which is a bottom gate / bottom contact type element.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a hydrogen atom when used without being particularly distinguished in the description of each general formula represents that it also contains an isotope (such as a deuterium atom).
  • the atom which comprises a substituent represents that the isotope is also included.
  • the organic semiconductor element of the present invention is an organic semiconductor element including an organic semiconductor film formed by forming a film of a composition,
  • the composition contains a compound represented by the following formula 1,
  • the total content of sodium element, potassium element, silicon element and aluminum element in the composition is 50 ppm or less.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • the organic semiconductor element of the present invention has high carrier mobility heat resistance.
  • specific elements sodium ions, potassium elements, silicon elements and aluminum elements (hereinafter referred to as specific elements), especially these ions, are present in the composition
  • specific elements sodium ions, potassium elements, silicon elements and aluminum elements
  • the composition of this invention is a composition containing the compound represented by Formula 1, Comprising: The total content of the sodium element, potassium element, silicon element, and aluminum element in a composition is 50 ppm or less.
  • the organic semiconductor composition of the present invention contains the composition of the present invention and a solvent.
  • the organic semiconductor film of the present invention is formed by depositing the organic semiconductor composition of the present invention.
  • These composition, organic semiconductor composition and organic semiconductor film of the present invention can be used as an organic semiconductor material, and can be used for producing the organic semiconductor element of the present invention.
  • the “organic semiconductor material” is an organic material exhibiting semiconductor characteristics.
  • the compound represented by Formula 1 may be used as either a p-type organic semiconductor material or an n-type organic semiconductor material, but is more preferably used as a p-type.
  • carrier mobility ⁇ A higher carrier mobility ⁇ is better.
  • composition of this invention is a composition containing the compound represented by Formula 1, Comprising: The total content of the sodium element in a composition, a potassium element, a silicon element, and an aluminum element is 50 ppm or less.
  • a composition contains the compound represented by following formula 1.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 are preferably each independently a substituent.
  • preferred substituents are alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups or aromatic groups, and more preferred substituents are alkyl groups or aromatic groups, particularly preferred.
  • the substituent is an alkyl group.
  • the alkyl group represented by R 1 and R 2 is not particularly limited, but is preferably an alkyl group having 1 to 30 carbon atoms, and may be linear, branched or cyclic. From the viewpoint of improving the heat resistance of the carrier mobility, the alkyl group represented by R 1 and R 2 is preferably a linear alkyl group having 2 to 15 carbon atoms, and having 2 to 5 and 7 to 10 carbon atoms.
  • the alkenyl group represented by R 1 and R 2 is not particularly limited, but is preferably an alkenyl group having 2 to 30 carbon atoms, more preferably an alkenyl group having 3 to 18 carbon atoms, and particularly preferably an alkenyl group having 5 to 13 carbon atoms. preferable.
  • the alkynyl group represented by R 1 and R 2 is not particularly limited, but is preferably an alkynyl group having 2 to 30 carbon atoms, more preferably an alkynyl group having 3 to 18 carbon atoms, and particularly preferably an alkynyl group having 5 to 13 carbon atoms. preferable.
  • the alkoxy group represented by R 1 and R 2 is not particularly limited, but is preferably an alkoxy group having 1 to 30 carbon atoms, more preferably an alkoxy group having 3 to 18 carbon atoms, and particularly preferably an alkoxy group having 5 to 13 carbon atoms. preferable.
  • the aromatic group represented by R 1 and R 2 is not particularly limited, but is preferably an aromatic group having 6 to 30 carbon atoms, more preferably an aromatic group having 6 to 14 carbon atoms, and an aromatic group having 6 carbon atoms. Is particularly preferred.
  • the substituent represented by R 1 and R 2 further has a substituent, the preferred range of the substituent is the same as the range described in [0018] of JP-A-2015-195361.
  • R 3 to R 8 are preferably each independently a hydrogen atom or a halogen atom.
  • the halogen atom represented by R 3 to R 8 is preferably a fluorine atom.
  • the number of halogen atoms in R 3 to R 8 is preferably 0 to 6, more preferably 0 to 4, particularly preferably 0 to 2, and preferably 0. More particularly preferred.
  • the compound represented by Formula 1 is preferably a compound represented by Formula 2 below.
  • R 1 and R 2 each independently represent an alkyl group that may have a substituent or an aromatic group that may have a substituent, and the preferred range is the same as in Formula 1.
  • the total number of carbon atoms in R 1 and R 2 is preferably independently 3 to 30, more preferably 7 to 30, particularly preferably 7 to 20, and more preferably 7 to 15. More particularly preferred is 7-11, even more particularly preferred, and 9-11 is even more particularly preferred.
  • the carrier mobility is increased.
  • solubility in an organic solvent is increased.
  • the compound represented by Formula 1 preferably has a molecular weight of 3000 or less, more preferably 2000 or less, still more preferably 1000 or less, and particularly preferably 850 or less. It is preferable to make the molecular weight not more than the above upper limit value because the solubility in a solvent can be increased. On the other hand, from the viewpoint of film quality stability of the film, the molecular weight is preferably 250 or more, more preferably 300 or more, and further preferably 350 or more.
  • the compound represented by Formula 1 can be synthesized with reference to the method described in JP-A-2015-195361 and Tetrahedron 66 (2010) 8778-8784, or the method described in Examples below. Any reaction conditions may be used in the synthesis of the compound represented by Formula 1. Any solvent may be used as the reaction solvent. In order to promote the ring formation reaction, it is preferable to use an acid or a base, and it is particularly preferable to use an acid. Optimum reaction conditions vary depending on the structure of the target compound, but can be set with reference to the specific reaction conditions described in the above-mentioned literature or the methods described in the Examples below.
  • the synthetic intermediate having each substituent can be synthesized by combining known reactions. Each substituent may be introduced at any intermediate stage. After the synthesis of the intermediate, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the total content of sodium element, potassium element, silicon element and aluminum element in the composition is 50 ppm or less.
  • the total content of sodium element, potassium element, silicon element and aluminum element in the composition is preferably 20 ppm or less, more preferably 10 ppm or less, and 5 ppm or less.
  • the silicon element content in the composition is preferably 30 ppm or less, more preferably 5 ppm or less, and particularly preferably less than 1 ppm. preferable.
  • the specific element may exist as ions in the composition.
  • Organic semiconductor composition of the present invention contains the composition of the present invention and a solvent.
  • solvent used for the organic semiconductor composition.
  • an organic semiconductor composition prepared by dissolving or dispersing the composition of the present invention in a solvent is used as a coating solution, and the film is formed by a coating method.
  • a solvent may be used independently and may be used in combination of multiple.
  • the solvent is preferably an organic solvent or water.
  • a preferred embodiment of the organic solvent is the same as the preferred embodiment of the organic solvent described in JP-A-2015-195361 [0043], which is incorporated herein by reference.
  • the composition of this invention used for an organic-semiconductor composition contains the compound represented by Formula 1.
  • the concentration of the compound represented by Formula 1 in the organic semiconductor composition is preferably 0.005 to 5% by mass, more preferably 0.01 to 3% by mass, and particularly preferably 0.1 to 2% by mass. is there. By setting this range, it is easy to form a film having an arbitrary thickness. Furthermore, it is particularly preferable that the concentration of the compound represented by Formula 1 in the organic semiconductor composition is 0.4% by mass or more because an organic semiconductor film having a large crystal size can be easily formed.
  • the organic semiconductor composition may contain only one type of compound represented by Formula 1 or two or more types.
  • the organic semiconductor composition may contain additives such as a surfactant, an antioxidant, a crystallization control agent, a crystal orientation control agent, and a polymer binder.
  • additives such as a surfactant, an antioxidant, a crystallization control agent, a crystal orientation control agent, and a polymer binder.
  • Preferred embodiments of the surfactant, the antioxidant, and the polymer binder are the same as the preferred embodiments described in [0050], [0051] and [0088] of JP-A-2015-195361. Incorporated herein.
  • the use of the organic semiconductor element is not particularly limited. For example, it is preferably used for a non-light-emitting organic semiconductor element.
  • the “non-light-emitting organic semiconductor element” means an element not intended to emit light.
  • the “non-light emitting organic semiconductor element” means an element that is not intended to emit visible light.
  • “non-luminous” means light emission efficiency of 1 lm / W or less when a current is passed through the device at a current density of 0.1 mW / cm 2 at room temperature and in the atmosphere.
  • Non-light-emitting organic semiconductor element means an organic semiconductor element excluding a light-emitting organic semiconductor element such as an organic electroluminescent element.
  • the non-light-emitting organic semiconductor element is preferably a non-light-emitting organic semiconductor element using an electronic element having a film layer structure.
  • Non-light-emitting organic semiconductor elements include organic transistors, organic photoelectric conversion elements (solid-state imaging elements for optical sensors, solar cells for energy conversion, etc.), gas sensors, organic rectifying elements, organic inverters, information recording elements, etc.
  • the organic photoelectric conversion element can be used for both optical sensor applications (solid-state imaging elements) and energy conversion applications (solar cells).
  • An organic photoelectric conversion element and an organic transistor are preferable, and an organic transistor is more preferable. That is, the organic semiconductor element of the present invention is preferably an organic transistor.
  • organic EL Electro Luminescence
  • organic EL elements and organic transistors have different characteristics required for organic compounds.
  • a mobility of about 10 ⁇ 3 cm 2 / Vs is sufficient to drive the organic EL element, and it is important to increase the light emission efficiency rather than the electron transport property to improve the organic EL characteristics. Therefore, there is a demand for an element that is high and emits light uniformly within the surface.
  • organic compounds with high crystallinity (high mobility) cause luminescence defects such as in-plane electric field strength non-uniformity, non-uniform luminescence, and luminescence quenching.
  • a material with low amorphousness and high amorphousness (low mobility) is desired.
  • the required mobility is much higher in a semiconductor material for an organic transistor, an organic compound having a high molecular arrangement order and a high crystallinity is required.
  • the ⁇ conjugate plane is preferably upright with respect to the substrate.
  • the organic transistor preferably includes an organic semiconductor film in the semiconductor active layer.
  • the organic transistor may further include other layers in addition to the semiconductor active layer.
  • the organic transistor is preferably used as an organic field effect transistor (FET), and more preferably used as an insulated gate FET in which a gate-channel is insulated.
  • FET organic field effect transistor
  • laminated structure There is no restriction
  • the structure of the organic transistor there is a structure (bottom gate / top contact type) in which an electrode, an insulator layer, a semiconductor active layer (organic semiconductor film), and two electrodes are sequentially arranged on the upper surface of the lowermost substrate. be able to.
  • the electrode on the upper surface of the lowermost substrate is provided on a part of the substrate, and the insulator layer is disposed so as to be in contact with the substrate at a portion other than the electrode.
  • the two electrodes provided on the upper surface of the semiconductor active layer are arranged separately from each other.
  • FIG. 1 is a schematic view showing a cross section of an example of a structure of an organic transistor which is a bottom gate / top contact type element.
  • the substrate 11 is disposed in the lowermost layer, the electrode 12 is provided on a part of the upper surface, the electrode 12 is covered, and the insulating layer 13 is in contact with the substrate 11 at a portion other than the electrode 12. Is provided.
  • the semiconductor active layer 14 is provided on the upper surface of the insulator layer 13, and the two electrodes 15a and 15b are disposed separately on a part of the upper surface.
  • the electrode 12 is a gate, and the electrodes 15a and 15b are drains or sources, respectively.
  • the organic transistor shown in FIG. 1 is an insulated gate FET in which a channel that is a current path between a drain and a source is insulated from a gate.
  • FIG. 2 is a schematic view showing a cross section of an example of an organic transistor which is a bottom gate / bottom contact type element.
  • the substrate 31 is disposed in the lowermost layer, the electrode 32 is provided on a part of the upper surface, the electrode 32 is covered, and the insulating layer 33 is in contact with the substrate 31 at a portion other than the electrode 32. Is provided.
  • the semiconductor active layer 35 is provided on the upper surface of the insulator layer 33, and the electrodes 34 a and 34 b are below the semiconductor active layer 35.
  • the electrode 32 is a gate
  • the electrode 34a and the electrode 34b are a drain or a source, respectively.
  • the organic transistor shown in FIG. 2 is an insulated gate FET in which a channel that is a current path between the drain and the source is insulated from the gate.
  • a top gate / top contact element having an insulator and a gate electrode above the semiconductor active layer, and a top gate / bottom contact element can also be preferably used.
  • the thickness of the entire transistor is preferably 0.1 to 0.5 ⁇ m.
  • the entire organic transistor element is made of a metal sealing can, glass, an inorganic material such as silicon nitride, a polymer material such as parylene, It may be sealed with a low molecular material or the like.
  • a metal sealing can glass
  • an inorganic material such as silicon nitride, a polymer material such as parylene
  • It may be sealed with a low molecular material or the like.
  • the organic transistor preferably includes a substrate.
  • substrate A well-known material can be used, for example, polyester films, such as a polyethylene naphthalate (PEN) and a polyethylene terephthalate (PET), a cycloolefin polymer film, a polycarbonate film, a triacetyl cellulose ( TAC) film, polyimide film, and those obtained by bonding these polymer films to ultrathin glass, ceramic, silicon, quartz, glass and the like can be mentioned, and silicon is preferred.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • TAC triacetyl cellulose
  • the organic transistor preferably includes an electrode.
  • the constituent material of the electrode include metal materials such as Cr, Al, Ta, Mo, Nb, Cu, Ag, Au, Pt, Pd, In, Ni, and Nd, alloy materials thereof, carbon materials, and conductivity. Any known conductive material such as a polymer can be used without particular limitation.
  • the thickness of the electrode is not particularly limited, but is preferably 10 to 50 nm.
  • the gate width (or channel width) W and the gate length (or channel length) L but the ratio W / L is preferably 10 or more, more preferably 20 or more.
  • the organic transistor preferably includes an acceptor for promoting carrier injection.
  • Preferred examples of the material include known 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ).
  • the thickness of the acceptor is not particularly limited, but is preferably 5 nm or less.
  • the material constituting the insulator layer is not particularly limited as long as the necessary insulating effect can be obtained.
  • fluoropolymer insulating materials such as silicon dioxide, silicon nitride, PTFE (polytetrafluoroethylene), CYTOP (Cytop), polyester insulating Examples include materials, polycarbonate insulating materials, acrylic polymer insulating materials, epoxy resin insulating materials, polyimide insulating materials, polyvinyl phenol resin insulating materials, polyparaxylene resin insulating materials, and the like.
  • the top surface of the insulator layer may be surface-treated.
  • the silicon dioxide surface is surface-treated by application of hexamethyldisilazane (HMDS), octadecyltrichlorosilane (OTS), or ⁇ -phenethyltrimethoxysilane.
  • HMDS hexamethyldisilazane
  • OTS octadecyltrichlorosilane
  • ⁇ -phenethyltrimethoxysilane ⁇ -phenethyltrimethoxysilane.
  • a body layer can be preferably used, and an insulator layer surface-treated by application of ⁇ -phenethyltrimethoxysilane can be more preferably used.
  • the thickness of the insulator layer is not particularly limited, but when thinning is required, the thickness is preferably 10 to 500 nm, more preferably 20 to 200 nm, and particularly preferably 50 to 200 nm. preferable.
  • the semiconductor active layer preferably includes an organic semiconductor film formed by depositing the composition of the present invention.
  • the semiconductor active layer may be a layer further containing a polymer binder. Moreover, the residual solvent at the time of film-forming may be contained.
  • the thickness of the semiconductor active layer is not particularly limited, but when a thin film is required, the thickness is preferably 10 to 400 nm, more preferably 10 to 200 nm, and particularly preferably 10 to 100 nm. preferable.
  • the method for producing the composition of the present invention includes a step of purifying the compound represented by Formula 1 under reduced pressure or Soxhlet extraction at a temperature of 150 ° C. or higher.
  • the compound represented by Formula 1 is purified under reduced pressure or Soxhlet extraction at a temperature of 150 ° C. or higher.
  • the content of a specific element can be reduced, particularly compared with purification using silica gel or silica gel column chromatography, and among them, the content of silicon element (particularly the content of silicon ions) can be reduced. Can be reduced.
  • the content range of the specific element defined in the present invention could not be reached.
  • the compound represented by Formula 1 is purified under reduced pressure or Soxhlet extraction at a temperature of 150 ° C. or higher.
  • vacuum purification or Soxhlet extraction it is particularly preferable not to use silica gel or silica gel column.
  • the vacuum purification or Soxhlet extraction may be carried out by only one type of these treatments, but two or more types may be combined. It is preferable to perform vacuum purification or Soxhlet extraction in the final step of purification of the compound represented by Formula 1 from the viewpoint of reducing the content of the specific element.
  • the vacuum purification is performed at least at a temperature of 150 ° C. or more, preferably 170 to 400 ° C., more preferably 190 to 350 ° C., and particularly preferably 200 to 300 ° C. Performing at a temperature equal to or higher than the above lower limit is preferable from the viewpoint of separation from impurities. It is preferable to carry out at the temperature below said upper limit from a viewpoint of thermal decomposition suppression.
  • the vacuum purification is preferably performed for 1 to 30 hours, more preferably 4 to 20 hours, and particularly preferably 7 to 15 hours.
  • the purification under reduced pressure may be performed while raising the temperature, and it is preferable that the temperature and time at the stage where the temperature is not raised are within the above-mentioned preferable ranges.
  • the temperature raising rate is not particularly limited, but can be set at, for example, 1 to 10 ° C./10 minutes.
  • the vacuum purification is preferably performed while flowing an inert gas from the viewpoint of separation from impurities. Examples of the inert gas include argon gas.
  • the vacuum purification is preferably performed under a pressure condition of 0.01 to 100 mPa, more preferably performed under a pressure condition of 0.1 to 10 mPa, and particularly preferably performed under a pressure condition of 1 to 3 mPa.
  • the vacuum purification is preferably sublimation purification from a solid.
  • the state of the compound represented by Formula 1 in the purification under reduced pressure can be appropriately selected depending on the compound represented by Formula 1.
  • Soxhlet extraction can be performed using a known Soxhlet extractor.
  • a solvent used for Soxhlet extraction An organic solvent can be used.
  • Preferred organic solvents include low polarity esters such as ethyl acetate and hydrocarbons such as hexane and toluene. Among these, aromatic hydrocarbons are more preferable. Only one type of solvent may be used, or two or more types may be used. When using 2 or more types, it is preferable that 90 mass% or more of a solvent is hydrocarbons.
  • the method for producing an organic semiconductor element of the present invention comprises a step of producing a composition by the method for producing a composition of the present invention, Mixing the composition and solvent to produce an organic semiconductor composition; Forming an organic semiconductor film by forming an organic semiconductor composition;
  • the organic semiconductor element of the present invention can be easily manufactured by the manufacturing method of the present invention using film formation by a solution process using an organic semiconductor composition containing a solvent.
  • film formation by a solution process refers to a method in which an organic compound is dissolved in a solvent in which the organic compound can be dissolved, and the film is formed using the solution.
  • a vacuum process vacuum deposition method, sputtering method, ion plating method, physical vapor deposition method such as molecular beam epitaxy method or chemical vapor deposition method such as plasma polymerization without mixing the composition of the present invention with a solvent.
  • a vacuum process vacuum deposition method, sputtering method, ion plating method, physical vapor deposition method such as molecular beam epitaxy method or chemical vapor deposition method such as plasma polymerization without mixing the composition of the present invention with a solvent.
  • a vacuum process vacuum deposition method, sputtering method, ion plating method, physical vapor deposition method such as molecular beam epitaxy method or chemical vapor deposition method such as plasma polymerization without mixing the composition of the present invention with a solvent.
  • the organic semiconductor composition is produced by mixing the composition produced by the method for producing the composition of the present invention (the composition of the present invention) and a solvent.
  • a mixing method It can mix by a well-known method.
  • the mixed organic semiconductor composition is preferably used for film formation after being heated.
  • the temperature of the organic semiconductor composition after mixing is not particularly limited, but is preferably 0 to 200 ° C, more preferably 15 to 120 ° C, and particularly preferably 20 to 100 ° C.
  • an organic semiconductor composition is formed to form an organic semiconductor film.
  • the formed organic semiconductor film can be used for an organic semiconductor element as a semiconductor active layer or the like.
  • any method may be used for forming an organic semiconductor film by forming an organic semiconductor composition. It is preferable to form an organic semiconductor film by forming an organic semiconductor composition on a substrate.
  • the substrate may be heated or cooled, and the film quality and molecular packing in the film can be controlled by changing the temperature of the substrate.
  • the temperature of the substrate is not particularly limited, but is preferably 0 to 200 ° C., more preferably 15 to 120 ° C., and particularly preferably 20 to 100 ° C.
  • a printing method such as a printing method, a flexographic printing method, an offset printing method, a microcontact printing method, or a Langmuir-Blodgett (LB) method
  • LB Langmuir-Blodgett
  • the step of forming the organic semiconductor film includes a step of forming the organic semiconductor film by applying or printing the organic semiconductor composition on the substrate and then drying.
  • coating or printing it is more preferable to use a drop casting method, a casting method, a spin coating method, an ink jet method, a gravure printing method, a flexographic printing method, an offset printing method, or a microcontact printing method.
  • the organic semiconductor composition is used as a coating liquid, the coating liquid is dropped onto a part of the surface of the substrate A, and the dropped coating liquid is gradually dried to obtain the formula 1 It is preferable to form a semiconductor active layer by precipitating crystals of a compound represented by the formula:
  • Examples of the substrate A used in the method for producing an organic semiconductor film using a drop cast method include those used as a substrate for an organic transistor, and those in which an insulator layer is formed on the substrate for the organic transistor are preferable. .
  • the substrate is naturally dried on the heated substrate A and then dried under reduced pressure.
  • the temperature of the substrate A during natural drying is preferably 20 to 140 ° C., and more preferably 20 to 120 ° C.
  • the natural drying time is preferably 5 minutes to 20 hours, more preferably 10 minutes to 10 hours.
  • it is preferable to precipitate crystals of the compound represented by Formula 1. Whether or not crystals have precipitated can be confirmed by observation with a polarizing microscope.
  • Examples 1 to 3 Comparative Examples 1 to 9
  • Compound 1 corresponds to compound 4 in JP-A-2015-195361.
  • compositions 1 to 3 and Comparative Examples 2 to 10 were prepared.
  • Examples 4 to 6 and Comparative Examples 10 to 13 Using the compound 2, compositions of Examples and Comparative Examples were prepared.
  • Compound 2 corresponds to Compound 1a in Tetrahedron 66 (2010) 8778-8784.
  • Example 7 and Comparative Example 14 Using the compound 3, compositions of Examples and Comparative Examples were prepared. Compound 3 corresponds to Compound 1 in JP-A-2015-195361.
  • Example 8 and Comparative Example 15 Using the compound 4, compositions of each example and comparative example were prepared.
  • Example 8 ⁇ Preparation of the composition of Example 8> Using the composition of Comparative Example 15 obtained by purification by recrystallization described in [0094] of JP-A-2015-195361, the composition of Comparative Example 15 was prepared in the same manner as in Example 1 except for the heating conditions. The composition of Example 8 was prepared by further purification. In Example 8, the heating conditions after the temperature increase in the vacuum purification were changed at 230 ° C. to 260 ° C. for 10 hours.
  • Example 9 and Comparative Example 16 Using Compound 5, compositions of Examples and Comparative Examples were prepared. Compound 1 corresponds to compound 18 in JP-A-2015-195361.
  • Example 10 and Comparative Example 17 Using Compound 6, compositions of Examples and Comparative Examples were prepared.
  • Example 10 ⁇ Preparation of the composition of Example 10> Using the composition of Comparative Example 17 obtained by purification by recrystallization as described in [0094] of JP-A-2015-195361, the composition of Comparative Example 17 was prepared in the same manner as in Example 1 except for the heating conditions. Further purification was performed to prepare the composition of Example 10. In Example 10, the heating conditions after the temperature increase in the vacuum purification were changed from 190 ° C. to 220 ° C. for 10 hours.
  • Example 11 and Comparative Example 18 Using the compound 7, compositions of each example and comparative example were prepared.
  • Example 11 ⁇ Preparation of the composition of Example 11>
  • the composition of Comparative Example 18 obtained by purification by recrystallization described in [0094] of JP-A-2015-195361 is used, and the composition of Comparative Example 18 is the same method as in Example 1 except for the heating conditions.
  • the composition of Example 11 was prepared. In Example 11, the heating conditions after the temperature increase in the vacuum purification were changed from 190 ° C. to 220 ° C. for 10 hours.
  • Example 12 and Comparative Example 19 The compound of each Example and the comparative example was prepared using the compound 8.
  • Compound 8 corresponds to Compound 1b in Tetrahedron 66 (2010) 8778-8784.
  • Comparative Example 101 and Comparative Example 102 Using the compound 9, the composition of each comparative example was prepared. Compound 9 corresponds to compound 1 in WO2015 / 133402 A1.
  • the product name C8-BTBT (product number 747092) manufactured by Sigma-Aldrich Co. was purchased as a composition containing Compound 9, and used as the composition of Comparative Example 101.
  • the composition of Comparative Example 101 was further purified in the same manner as in Example 1 except for the heating conditions to prepare the composition of Comparative Example 102. In Comparative Example 102, the heating conditions after the temperature increase in the vacuum purification were changed from 180 ° C. to 240 ° C. for 10 hours.
  • Comparative Example 103 and Comparative Example 104 Using the compound 10, the composition of each comparative example was prepared. Compound 10 corresponds to pentacene before purification described in [0073] of JP-A No. 2003-347624.
  • the product name Pentacene (product number P1802) manufactured by Sigma-Aldrich was purchased as a composition containing Compound 9, and the composition of Comparative Example 103 was obtained.
  • the composition of Comparative Example 103 was further purified in the same manner as in Comparative Example 102 to prepare the composition of Comparative Example 104.
  • compositions of each example and comparative example were prepared.
  • Compound 11 corresponds to compound 2 in WO2015 / 133402 A1.
  • the material used for the production of the organic semiconductor element was confirmed to have a purity (absorption intensity area ratio of 254 nm) of 99.0% or more by high performance liquid chromatography.
  • ⁇ Deposition of organic semiconductor film> An organic semiconductor composition was applied onto a substrate by a drop cast method, and dried to form an organic semiconductor film.
  • the surface of the thermal oxide film of the substrate A was subjected to UV-ozone cleaning and then treated with ⁇ -phenethyltrimethoxysilane.
  • the organic semiconductor composition of each Example and Comparative Example was drop-cast on the surface of the substrate A treated with phenethyltrimethoxysilane, and then dried on a hot plate at 100 ° C. for 10 minutes to form an organic semiconductor film.
  • the obtained organic semiconductor film is used as a semiconductor active layer, and a bottom-gate / top-contact type organic transistor for measuring FET characteristics by depositing a mask and depositing F4-TCNQ 1 nm and a gold electrode 40 nm as a charge injection acceptor. An element was obtained. The obtained organic transistor element was made into the organic semiconductor element of each Example and a comparative example.
  • the organic semiconductor element using the composition of the present invention has high carrier mobility heat resistance.
  • the organic semiconductor element using the composition of the comparative example was found to have low heat resistance of carrier mobility.
  • the total content of sodium element, potassium element, silicon element and aluminum element exceeded the upper limit specified in the present invention, and the heat resistance of the carrier mobility was low.
  • the compositions of Comparative Examples 101, 103, 105, and 107 contain a compound that does not satisfy Formula 1, and the total content of sodium element, potassium element, silicon element, and aluminum element exceeds the upper limit defined in the present invention. The heat resistance of the carrier mobility was low.
  • compositions of Comparative Examples 102, 104, 106, and 108 contained a compound that did not satisfy Formula 1, and had low carrier mobility heat resistance. From the above, it was found that the heat resistance of carrier mobility cannot be increased only by reducing the total content of sodium element, potassium element, silicon element and aluminum element. And when the total content of the sodium element, the potassium element, the silicon element, and the aluminum element is reduced and the compound represented by Formula 1 is selected, it has been found that the heat resistance of the carrier mobility can be increased.
  • Electrode 11 Substrate 12 Electrode 13 Insulator Layer 14 Semiconductor Active Layer (Organic Semiconductor Film) 15a, 15b Electrode 31 Substrate 32 Electrode 33 Insulator layers 34a, 34b Electrode 35 Semiconductor active layer (organic semiconductor film)

Abstract

組成物を成膜して形成された有機半導体膜を含む有機半導体素子であって、組成物が下記式(R~Rはそれぞれ独立に水素原子または置換基を表す)で表される化合物を含み、組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である、有機半導体素子は、キャリア移動度の耐熱性が高い;組成物;有機半導体組成物;有機半導体膜;組成物の製造方法;有機半導体素子の製造方法;化合物を精製する方法。

Description

有機半導体素子、組成物、化合物を精製する方法およびそれらの応用
 本発明は、有機半導体素子、組成物、有機半導体組成物、有機半導体膜、組成物の製造方法、有機半導体素子の製造方法および化合物を精製する方法に関する。
 有機半導体材料を用いた有機半導体素子は、従来のシリコンなどの無機半導体材料を用いた素子と比較して、様々な優位性が見込まれているため、高い関心を集めている。有機半導体材料を用いた有機半導体素子の例としては、有機半導体材料を光電変換材料として用いた有機薄膜太陽電池や固体撮像素子などの光電変換素子や、非発光性の有機トランジスタ(有機薄膜トランジスタと言われることもある)が挙げられる。有機半導体材料を用いた有機半導体素子は、無機半導体材料を用いた素子と比べて低温、低コストで大面積の素子を作製できる可能性がある。さらに分子構造を変化させることで容易に材料特性を変化させることが可能であるため材料のバリエーションが豊富であり、無機半導体材料ではなし得なかったような機能や素子を実現することができる。
 有機半導体素子である有機トランジスタ用材料としては、縮合環を有する化合物を半導体活性層に用いることで、キャリア移動度を高め、トランジスタ性能を高めることが検討されている。
 ここで、有機トランジスタ用材料として、チエノ[3,2-f:4,5-f’]ビス[1]ベンゾチオフェン(以下、TBBTとも言う)構造を有する化合物が知られている。例えば、非特許文献1は、TBBTに炭素数6のアルキル基が置換した化合物C6-TBBTや、炭素数12のアルキル基が置換した化合物C12-TBBTの合成方法と物性として、吸収・発光スペクトル、CV(サイクリックボルタンメトリー)を開示している。
 また、特許文献1には、TBBT構造を有する化合物と沸点100℃以上の溶媒を含む非発光性有機半導体デバイス用塗布液が記載されている。
特開2015-195361号公報
Tetrahedron 66 (2010) 8778-8784
 近年、有機薄膜トランジスタの性能向上の観点から、有機薄膜トランジスタのキャリア移動度のより一層の向上が求められている実情がある。特に有機半導体膜のパターニングのために用いるフォトレジストの加熱条件での加熱をされた後にキャリア移動度を高く維持できること、すなわちキャリア移動度の耐熱性が求められている。
 本発明者らが、特許文献1および非特許文献1にしたがってTBBT構造を有する化合物を調製し、成膜して有機半導体膜を形成して有機半導体素子を製造したところ、キャリア移動度の耐熱性の観点ではさらに改善が求められることがわかった。
 本発明が解決しようとする課題は、キャリア移動度の耐熱性が高い有機半導体素子を提供することである。
 上記の課題を解決するために鋭意検討を行った結果、TBBT構造を有する化合物を精製し、特定のイオン含量を低くした組成物を用いた膜は、有機半導体素子とした場合のキャリア移動度の耐熱性が高いことを見出し、本発明に至った。
 上記課題を解決するための具体的な手段である本発明は、以下の構成を有する。
[1] 組成物を成膜して形成された有機半導体膜を含む有機半導体素子であって、
 組成物が下記式1で表される化合物を含み、
 組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm(ppmは、parts per million)以下である、
有機半導体素子;
Figure JPOXMLDOC01-appb-C000006
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
[2] 式1で表される化合物が下記式2で表される化合物である[1]に記載の有機半導体素子;
Figure JPOXMLDOC01-appb-C000007
式2中、RおよびRはそれぞれ独立に置換基を有してもよいアルキル基または置換基を有してもよい芳香族基を表す。
[3] 組成物中のケイ素元素の含有量が30ppm以下である[1]または[2]に記載の有機半導体素子。
[4] 有機半導体素子が有機トランジスタである[1]~[3]のいずれか一つに記載の有機半導体素子。
[5] 下記式1で表される化合物を含む組成物であって、
 組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である、組成物;
Figure JPOXMLDOC01-appb-C000008
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
[6] 組成物中のケイ素元素の含有量が30ppm以下である[5]に記載の組成物。
[7] [5]または[6]に記載の組成物および溶媒を含有する、有機半導体組成物。
[8] [7]に記載の有機半導体組成物を成膜して形成された、有機半導体膜。
[9] 下記式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出する工程を含む、組成物の製造方法;
Figure JPOXMLDOC01-appb-C000009
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
[10] [9]に記載の組成物の製造方法で組成物を製造する工程と、
 組成物および溶媒を混合して有機半導体組成物を製造する工程と、
 有機半導体組成物を成膜して有機半導体膜を形成する工程を含む、有機半導体素子の製造方法。
[11] 有機半導体膜を形成する工程が、有機半導体組成物を基板上に塗布または印刷した後、乾燥させて有機半導体膜を形成する工程を含む[10]に記載の有機半導体素子の製造方法。
[12] 下記式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出する、化合物を精製する方法;
Figure JPOXMLDOC01-appb-C000010
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
[101] 下記式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出した組成物であって、
 組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である、組成物;
Figure JPOXMLDOC01-appb-C000011
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
[102] 下記式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出した組成物を成膜して形成された有機半導体膜を含む有機半導体素子であって、
 組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である、有機半導体素子;
Figure JPOXMLDOC01-appb-C000012
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
 本発明によれば、キャリア移動度の耐熱性が高い有機半導体素子を提供することができる。
図1は、ボトムゲート・トップコンタクト型素子である有機トランジスタの一例の構造の断面を示す概略図である。 図2は、ボトムゲート・ボトムコンタクト型素子である有機トランジスタの一例の断面を示す概略図である。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明において、各一般式の説明において特に区別されずに用いられている場合における水素原子は同位体(重水素原子等)も含んでいることを表す。さらに、置換基を構成する原子は、その同位体も含んでいることを表す。
[有機半導体素子、組成物、有機半導体組成物および有機半導体膜]
 本発明の有機半導体素子は、組成物を成膜して形成された有機半導体膜を含む有機半導体素子であって、
 組成物が下記式1で表される化合物を含み、
 組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である。
Figure JPOXMLDOC01-appb-C000013
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
 これらの構成により、本発明の有機半導体素子は、キャリア移動度の耐熱性が高い。
 いかなる理論にも拘泥するものでもないが、ナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素(以下、特定元素と言う)、特にこれらのイオンが組成物中に存在すると、有機半導体膜を形成した場合の結晶配列の乱れにつながる。結晶配列の乱れが起点となり、有機半導体膜のパターニングのために用いるフォトレジストの加熱条件での加熱により有機半導体膜にヒビが入り、キャリア移動度が低下すると考えられる。
 一方、WO2015/133402の表19に記載の化合物や特開2003-347624号公報に記載のペンタセンなどの式1を満たさない化合物を用いた場合は、特定元素の総含有量を少なくしても、キャリア移動度の耐熱性を高めることはできなかった。
 これに対し、本発明では、特定元素の総含有量を少なくし、かつ、式1で表される化合物を選択することにより、両者の相乗効果によって、有機半導体膜を形成した場合の結晶配列の乱れを減らし、キャリア移動度の耐熱性を高くできる。
 以下、本発明の有機半導体素子、組成物、有機半導体組成物および有機半導体膜の好ましい態様を説明する。
 一方、本発明の組成物は、式1で表される化合物を含む組成物であって、組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である。
 本発明の有機半導体組成物は、本発明の組成物および溶媒を含有する。
 本発明の有機半導体膜は、本発明の有機半導体組成物を成膜して形成されたものである。
 これらの本発明の組成物、有機半導体組成物および有機半導体膜は、有機半導体材料として用いることができ、また、本発明の有機半導体素子の製造に用いることができる。本明細書において、「有機半導体材料」とは、半導体の特性を示す有機材料のことである。無機材料からなる半導体と同様に、正孔をキャリアとして伝導するp型(ホール輸送性)有機半導体材料と、電子をキャリアとして伝導するn型(電子輸送性)有機半導体材料がある。式1で表される化合物は、p型有機半導体材料、n型の有機半導体材料のどちらとして用いてもよいが、p型として用いることがより好ましい。有機半導体中のキャリアの流れやすさはキャリア移動度μで表される。キャリア移動度μは高い方がよい。
<組成物>
 本発明の組成物は、式1で表される化合物を含む組成物であって、組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である。
(式1で表される化合物)
 本発明では、組成物が下記式1で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000014
式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
 RおよびRはそれぞれ独立に置換基であることが好ましい。RおよびRが置換基である場合、好ましい置換基はアルキル基、アルケニル基、アルキニル基、アルコキシ基または芳香族基であり、より好ましい置換基はアルキル基または芳香族基であり、特に好ましい置換基はアルキル基である。
 RおよびRが表すアルキル基は、特に制限はないが、炭素数1~30のアルキル基が好ましく、直鎖であっても、分岐であっても、環状であってもよい。キャリア移動度の耐熱性を高める観点からは、RおよびRが表すアルキル基は、炭素数2~15の直鎖のアルキル基であることが好ましく、炭素数2~5および7~10の直鎖のアルキル基であることがより好ましい。
 特定のアルキル鎖長または形状を選択することにより、分子間の軌道の重なりが大きくなり、よりキャリア移動度を高めることができる。
 RおよびRが表すアルケニル基は、特に制限はないが、炭素数2~30のアルケニル基が好ましく、炭素数3~18のアルケニル基がより好ましく、炭素数5~13のアルケニル基が特に好ましい。
 RおよびRが表すアルキニル基は、特に制限はないが、炭素数2~30のアルキニル基が好ましく、炭素数3~18のアルキニル基がより好ましく、炭素数5~13のアルキニル基が特に好ましい。
 RおよびRが表すアルコキシ基は、特に制限はないが、炭素数1~30のアルコキシ基が好ましく、炭素数3~18のアルコキシ基がより好ましく、炭素数5~13のアルコキシ基が特に好ましい。
 RおよびRが表す芳香族基は、特に制限はないが、炭素数6~30の芳香族基が好ましく、炭素数6~14の芳香族基がより好ましく、炭素数6の芳香族基が特に好ましい。
 RおよびRが表す置換基がさらに置換基を有する場合、その置換基の好ましい範囲は、特開2015-195361号公報の[0018]に記載の範囲と同様である。例えば、アルキル基やアルコキシ基を置換基のさらなる置換基として有することが好ましい。
 R~Rはそれぞれ独立に水素原子またはハロゲン原子であることが好ましい。R~Rが表すハロゲン原子としては、フッ素原子が好ましい。R~R中のハロゲン原子の個数は0~6個であることが好ましく、0~4個であることがより好ましく、0~2個であることが特に好ましく、0個であることがより特に好ましい。
 本発明では、式1で表される化合物が下記式2で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
式2中、RおよびRはそれぞれ独立に置換基を有してもよいアルキル基または置換基を有してもよい芳香族基を表し、好ましい範囲は式1と同様である。
 RおよびRの総炭素数は、それぞれ独立に3~30であることが好ましく、7~30であることがより好ましく、7~20であることが特に好ましく、7~15であることがより特に好ましく、7~11であることがさらにより特に好ましく、9~11であることがさらに特により特に好ましい。RおよびRの総炭素数は、それぞれ独立に上記範囲の下限値以上であると、キャリア移動度が高くなる。RおよびRの総炭素数が上記範囲の上限値以下であると、有機溶媒に対する溶解性が高くなる。
 式1で表される化合物の具体例、特にRおよびRの組み合わせ、あるいは、R~Rの組み合わせの具体例を以下に示す。本発明で用いられる式1で表される化合物は、これらの具体例により限定的に解釈されるべきものではない。下記表1~3中のPhはフェニル基を表す。また、特に明記していない場合、アルキル基は直鎖アルキル基を表す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 式1で表される化合物は、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、850以下であることが特に好ましい。分子量を上記上限値以下とすることにより、溶媒への溶解性を高めることができるため好ましい。
 一方で、膜の膜質安定性の観点からは、分子量は250以上であることが好ましく、300以上であることがより好ましく、350以上であることがさらに好ましい。
 式1で表される化合物は、特開2015-195361号公報およびTetrahedron 66 (2010) 8778-8784に記載の方法または後述の実施例記載の方法を参考に合成することができる。
 式1で表される化合物の合成において、いかなる反応条件を用いてもよい。反応溶媒としては、いかなる溶媒を用いてもよい。また、環形成反応促進のために、酸または塩基を用いることが好ましく、特に酸を用いることが好ましい。最適な反応条件は、目的とする化合物の構造により異なるが、上記の文献に記載された具体的な反応条件または後述の実施例記載の方法を参考に設定することができる。
 各置換基を有する合成中間体は公知の反応を組み合わせて合成することができる。また、各置換基はいずれの中間体の段階で導入してもよい。中間体の合成後は、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製する事が好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。
(特定元素の含有量)
 本発明では、組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である。キャリア移動度の耐熱性を高める観点から、組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が20ppm以下であることが好ましく、10ppm以下であることがより好ましく、5ppm以下であることが特に好ましい。
 本発明では、キャリア移動度の耐熱性をより高める観点から、組成物中のケイ素元素の含有量が30ppm以下であることが好ましく、5ppm以下であることがより好ましく、1ppm未満であることが特に好ましい。
 なお、特定元素は、組成物中でイオンとして存在していてもよい。
<有機半導体組成物>
 本発明の有機半導体組成物は、本発明の組成物および溶媒を含有する。
(溶媒)
 有機半導体組成物に用いられる溶媒について説明する。
 溶液プロセスを用いて本発明の組成物を基板上に成膜する場合、本発明の組成物を溶媒に溶解、または分散させて有機半導体組成物を調製したものを塗布液とし、塗布法により膜を形成することができる。溶媒は単独で用いてもよく、複数組み合わせて用いてもよい。溶媒は、有機溶媒または水であることが好ましい。有機溶媒の好ましい態様は、特開2015-195361号公報の[0043]に記載の有機溶媒の好ましい態様と同じであり、この公報は参照して本明細書に組み込まれる。
(式1で表される化合物の濃度)
 有機半導体組成物に用いられる本発明の組成物は、式1で表される化合物を含む。有機半導体組成物中の式1で表される化合物の濃度は、好ましくは、0.005~5質量%、より好ましくは0.01~3質量%、特に好ましくは0.1~2質量%である。この範囲とすることにより、任意の厚さの膜を形成しやすい。さらに、有機半導体組成物中の式1で表される化合物の濃度が0.4質量%以上であることが結晶サイズの大きな有機半導体膜を形成させやすく、特に好ましい。
 有機半導体組成物は、式1で表される化合物を1種類のみ含んでもよく、2種類以上含んでもよい。
(添加剤)
 有機半導体組成物は、界面活性剤、酸化防止剤、結晶化制御剤、結晶配向制御剤、ポリマーバインダーなどの添加剤を含有してもよい。界面活性剤、酸化防止剤、ポリマーバインダーの好ましい態様は、特開2015-195361号公報の[0050]、[0051]および[0088]に記載の好ましい態様と同じであり、この公報は参照して本明細書に組み込まれる。
<有機半導体素子の用途>
 有機半導体素子の用途は特に制限はない。例えば、非発光性有機半導体素子に用いることが好ましい。本明細書において、「非発光性有機半導体素子」とは、発光することを目的としない素子を意味する。特に「非発光性有機半導体素子」とは、可視光を発光することを目的としない素子を意味する。本明細書中、「非発光性」とは、室温、大気下0.1mW/cmの電流密度で素子に電流を流した場合に、1lm/W以下の発光効率のことを言う。非発光性有機半導体素子と言えば、有機電界発光素子などの発光性有機半導体素子を除く有機半導体素子を意味する。
 非発光性有機半導体素子は、膜の層構造を有するエレクトロニクス要素を用いた非発光性有機半導体素子とすることが好ましい。非発光性有機半導体素子には、有機トランジスタ、有機光電変換素子(光センサ用途の固体撮像素子、エネルギー変換用途の太陽電池等)、ガスセンサ、有機整流素子、有機インバータ、情報記録素子などが包含される。有機光電変換素子は光センサ用途(固体撮像素子)、エネルギー変換用途(太陽電池)のいずれにも用いることができる。好ましくは、有機光電変換素子、有機トランジスタであり、さらに好ましくは有機トランジスタである。すなわち、本発明の有機半導体素子が有機トランジスタであることが好ましい。
 なお、有機EL(Electro Luminescence)素子材料として有用なものが、ただちに有機トランジスタ用半導体材料として有用であると言うことはできない。これは、有機EL素子と有機トランジスタでは、有機化合物に求められる特性が異なるためである。有機EL素子を駆動するには10-3cm/Vs程度の移動度があれば十分であり、有機EL特性向上には電子輸送性よりもむしろ発光効率を高めることが重要であり、発光効率が高く、面内での発光が均一な素子が求められている。通常、結晶性の高い(移動度が高い)有機化合物は、面内の電界強度不均一、発光不均一、発光クエンチ等、発光欠陥を生じさせる原因となるため、有機EL素子材料は結晶性を低くし、アモルファス性の高い材料(低い移動度)が望まれる。一方、有機トランジスタ用半導体材料では、求められる移動度が格段に高いため、分子の配列秩序が高い、結晶性が高い有機化合物が求められている。また、高い移動度発現のため、π共役平面は基板に対して直立していることが好ましい。
<有機半導体素子の構造>
 本発明の有機半導体素子の構造の好ましい態様を、本発明の有機半導体素子が有機トランジスタである場合を例に挙げて説明する。
 有機トランジスタは、有機半導体膜を半導体活性層に含むことが好ましい。
 有機トランジスタは、さらに半導体活性層以外にその他の層を含んでいてもよい。
 有機トランジスタは、有機電界効果トランジスタ(Field Effect Transistor、FET)として用いられることが好ましく、ゲート-チャンネル間が絶縁されている絶縁ゲート型FETとして用いられることがより好ましい。
 以下、有機トランジスタの好ましい構造の態様について、図面を用いて詳しく説明するが、本発明はこれらの態様に限定されるものではない。
(積層構造)
 有機電界効果トランジスタの積層構造としては特に制限はなく、公知の構造とすることができる。
 有機トランジスタの構造の一例としては、最下層の基板の上面に、電極、絶縁体層、半導体活性層(有機半導体膜)、2つの電極を順に配置した構造(ボトムゲート・トップコンタクト型)を挙げることができる。この構造では、最下層の基板の上面の電極は基板の一部に設けられ、絶縁体層は、電極以外の部分で基板と接するように配置される。また、半導体活性層の上面に設けられる2つの電極は、互いに隔離して配置される。
 ボトムゲート・トップコンタクト型素子である有機トランジスタの一例の構造の断面を示す概略図を図1に示す。図1の有機トランジスタは、最下層に基板11を配置し、その上面の一部に電極12を設け、さらに電極12を覆い、かつ電極12以外の部分で基板11と接するように絶縁体層13を設けている。さらに絶縁体層13の上面に半導体活性層14を設け、その上面の一部に2つの電極15aと15bとを隔離して配置している。
 図1に示した有機トランジスタは、電極12がゲートであり、電極15aと電極15bはそれぞれドレインまたはソースである。また、図1に示した有機トランジスタは、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
 有機トランジスタの構造の別の例としては、ボトムゲート・ボトムコンタクト型素子を挙げることができる。
 ボトムゲート・ボトムコンタクト型素子である有機トランジスタの一例の断面を示す概略図を図2に示す。図2の有機トランジスタは、最下層に基板31を配置し、その上面の一部に電極32を設け、さらに電極32を覆い、かつ電極32以外の部分で基板31と接するように絶縁体層33を設けている。さらに絶縁体層33の上面に半導体活性層35を設け、電極34aと34bが半導体活性層35の下部にある。
 図2に示した有機トランジスタは、電極32がゲートであり、電極34aと電極34bはそれぞれドレインまたはソースである。また、図2に示した有機トランジスタは、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
 有機トランジスタの構造としては、その他、絶縁体、ゲート電極が半導体活性層の上部にあるトップゲート・トップコンタクト型素子や、トップゲート・ボトムコンタクト型素子も好ましく用いることができる。
(厚さ)
 有機トランジスタは、より薄いトランジスタとする必要がある場合には、例えばトランジスタ全体の厚さを0.1~0.5μmとすることが好ましい。
(封止)
 有機トランジスタ素子を大気や水分から遮断し、有機トランジスタ素子の保存性を高めるために、有機トランジスタ素子全体を金属の封止缶やガラス、窒化ケイ素などの無機材料、パリレンなどの高分子材料や、低分子材料などで封止してもよい。
 以下、有機トランジスタの各層の好ましい態様について説明するが、本発明はこれらの態様に限定されるものではない。
(基板)
 有機トランジスタは、基板を含むことが好ましい。
 基板の材料としては特に制限はなく、公知の材料を用いることができ、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などのポリエステルフィルム、シクロオレフィンポリマーフィルム、ポリカーボネートフィルム、トリアセチルセルロース(TAC)フィルム、ポリイミドフィルム、およびこれらポリマーフィルムを極薄ガラスに貼り合わせたもの、セラミック、シリコン、石英、ガラスなどを挙げることができ、シリコンが好ましい。
(電極)
 有機トランジスタは、電極を含むことが好ましい。
 電極の構成材料としては、例えば、Cr、Al、Ta、Mo、Nb、Cu、Ag、Au、Pt、Pd、In、NiあるいはNdなどの金属材料やこれらの合金材料、あるいはカーボン材料、導電性高分子などの既知の導電性材料であれば特に制限することなく使用できる。
 電極の厚さは特に制限はないが、10~50nmとすることが好ましい。
 ゲート幅(またはチャンネル幅)Wとゲート長(またはチャンネル長)Lに特に制限はないが、これらの比W/Lが10以上であることが好ましく、20以上であることがより好ましい。
(アクセプター)
 有機トランジスタは、キャリア注入を促進するためのアクセプターを含むことが好ましい。材料としては公知の2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)等が好ましく挙げられる。
 アクセプターの厚さは特に制限はないが、5nm以下とすることが好ましい。
(絶縁体層)
 絶縁体層を構成する材料は必要な絶縁効果が得られれば特に制限はないが、例えば、二酸化ケイ素、窒化ケイ素、PTFE(polytetrafluoroethylene)、CYTOP(サイトップ)等のフッ素ポリマー系絶縁材料、ポリエステル絶縁材料、ポリカーボネート絶縁材料、アクリルポリマー系絶縁材料、エポキシ樹脂系絶縁材料、ポリイミド絶縁材料、ポリビニルフェノール樹脂系絶縁材料、ポリパラキシリレン樹脂系絶縁材料などが挙げられる。
 絶縁体層の上面は表面処理がなされていてもよく、例えば、二酸化ケイ素表面をヘキサメチルジシラザン(HMDS)やオクタデシルトリクロロシラン(OTS)やβ-フェニチルトリメトキシシランの塗布により表面処理した絶縁体層を好ましく用いることができ、β-フェニチルトリメトキシシランの塗布により表面処理した絶縁体層をより好ましく用いることができる。
 絶縁体層の厚さに特に制限はないが、薄膜化が求められる場合は厚さを10~500nmとすることが好ましく、20~200nmとすることがより好ましく、50~200nmとすることが特に好ましい。
(半導体活性層)
 有機トランジスタは、半導体活性層が本発明の組成物を成膜して形成された有機半導体膜を含むことが好ましい。
 半導体活性層は、ポリマーバインダーがさらに含まれた層であってもよい。また、成膜時の残留溶媒が含まれていてもよい。
 半導体活性層の厚さに特に制限はないが、薄膜化が求められる場合は厚さを10~400nmとすることが好ましく、10~200nmとすることがより好ましく、10~100nmとすることが特に好ましい。
[組成物の製造方法、化合物を精製する方法]
 本発明の組成物の製造方法は、式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出する工程を含む。
 また、本発明の化合物を精製する方法は、式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出する。
 これらの処理により、式1で表される化合物を含む組成物中の特定元素の含有量を少なくすることができ、本発明の組成物を製造することができる。
 本発明によれば、特にシリカゲルやシリカゲルカラムクロマトグラフィーを使用した精製と比較して、特定元素の含有量を少なくすることができ、その中でもケイ素元素の含有量(特にケイ素イオンの含有量)を少なくすることができる。
 なお、特開2012-43912号公報の請求項1で規定する前駆体(合成前の原料)の昇華精製では、本発明で規定する特定元素の含有量の範囲に到達できなかった。
<減圧精製またはソックスレー抽出>
 本発明では、式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出する。
 減圧精製またはソックスレー抽出では、特にシリカゲルやシリカゲルカラムを用いないことが、好ましい。
 減圧精製またはソックスレー抽出は、これらの処理のうちの1種類のみ行えばよいが、2種類以上を組み合わせてもよい。
 減圧精製またはソックスレー抽出を、式1で表される化合物の精製の最終ステップで行うことが、特定元素の含有量を少なくする観点から好ましい。なお、減圧精製またはソックスレー抽出の前処理として、その他の精製方法を行ってもよい。
(減圧精製)
 減圧精製は、少なくとも温度150℃以上で行い、170~400℃で行うことが好ましく、190~350℃で行うことがより好ましく、200~300℃で行うことが特に好ましい。上記の下限値以上の温度で行うことが、不純物との分離の観点から好ましい。上記の上限値以下の温度で行うことが、熱分解抑制の観点から好ましい。
 減圧精製は、1~30時間行うことが好ましく、4~20時間行うことがより好ましく、7~15時間行うことが特に好ましい。
 減圧精製は、昇温しながら行ってもよく、昇温しない段階における温度および時間が上記の好ましい範囲であることが、好ましい。昇温速度は、特に制限はないが、例えば1~10℃/10分間とすることができる。
 減圧精製は、不活性ガスを流しながら行うことが不純物との分離の観点から好ましい。不活性ガスとしては、例えばアルゴンガスなどを挙げることができる。
 減圧精製は、0.01~100mPaの圧力条件下で行うことが好ましく、0.1~10mPaの圧力条件下で行うことがより好ましく、1~3mPaの圧力条件下で行うことが特に好ましい。
 減圧精製における式1で表される化合物の状態としては特に制限はないが、固体であることが好ましい。すなわち、減圧精製は固体からの昇華精製であることが好ましい。減圧精製における式1で表される化合物の状態の選択は、式1で表される化合物によって、適宜選択することができる。
(ソックスレー抽出)
 ソックスレー抽出は、公知のソックスレー抽出器を用いて行うことができる。
 ソックスレー抽出に用いる溶媒としては特に制限はなく、有機溶媒を用いることができる。好ましい有機溶媒としては、低極性である酢酸エチルなどのエステル類、ヘキサンやトルエンなどの炭化水素類を挙げることができる。その中でも、芳香族炭化水素類がより好ましい。
 溶媒は1種類のみを用いてもよく、2種類以上を用いてもよい。2種類以上を用いる場合、溶媒の90質量%以上が炭化水素類であることが好ましい。
[有機半導体素子の製造方法]
 本発明の有機半導体素子の製造方法は、本発明の組成物の製造方法で組成物を製造する工程と、
 組成物および溶媒を混合して有機半導体組成物を製造する工程と、
 有機半導体組成物を成膜して有機半導体膜を形成する工程を含む。
 本発明の有機半導体素子は、溶媒を含む有機半導体組成物を用いた、溶液プロセスによる成膜を用いる本発明の製造方法により、容易に製造することができる。溶液プロセスによる成膜とは、本明細書では有機化合物を溶解させることができる溶媒中に溶解させ、その溶液を用いて成膜する方法を指す。
 ただし、本発明の有機半導体素子は、上記の製造方法以外で製造してもよい。例えば、本発明の組成物を溶媒と混合せず、真空プロセス(真空蒸着法、スパッタリング法、イオンプレーティング法、分子ビームエピタキシー法などの物理気相成長法あるいはプラズマ重合などの化学気相蒸着法)により式1で表される化合物を基板上に成膜してもよい。
<有機半導体組成物の製造>
 本発明では、本発明の組成物の製造方法で製造された組成物(本発明の組成物)および溶媒を混合して有機半導体組成物を製造する。
 混合方法としては特に制限はなく、公知の方法で混合することができる。
 混合後の有機半導体組成物は、加熱してから成膜に用いることが好ましい。混合後の有機半導体組成物の温度としては特に制限はないが、0~200℃であることが好ましく、15~120℃であることがより好ましく、20~100℃であることが特に好ましい。
<成膜>
 本発明では、有機半導体組成物を成膜して有機半導体膜を形成する。形成された有機半導体膜は、半導体活性層などとして有機半導体素子に用いることができる。
 有機トランジスタの製造方法では、有機半導体組成物を成膜して有機半導体膜を形成する方法はいかなる方法でもよい。基板上に有機半導体組成物を成膜して有機半導体膜を形成することが好ましい。
 成膜の際、基板を加熱または冷却してもよく、基板の温度を変化させることで膜質や膜中での分子のパッキングを制御することが可能である。基板の温度としては特に制限はないが、0~200℃であることが好ましく、15~120℃であることがより好ましく、20~100℃であることが特に好ましい。
 有機半導体膜を形成する工程としては、ドロップキャスト法、キャスト法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法などの塗布法;インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法などの印刷法;Langmuir-Blodgett(LB)法などの通常の方法を用いることができる。
(塗布、印刷)
 本発明では、有機半導体組成物を基板上に適用する方法として、塗布法または印刷法を用いることが好ましい。特に、有機半導体膜を形成する工程が、有機半導体組成物を基板上に塗布または印刷した後、乾燥させて有機半導体膜を形成する工程を含むことが好ましい。
 塗布または印刷の中でも、ドロップキャスト法、キャスト法、スピンコート法、インクジェット法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法を用いることがより好ましい。
 本発明では、塗布法を用いることが特に好ましい。
 塗布法の中でも、特に好ましいドロップキャスト法について説明する。
 ドロップキャスト法を用いる有機半導体膜の製造方法では、有機半導体組成物を塗布液とし、基板Aの面内の一部に塗布液を滴下し、滴下した塗布液を徐々に乾燥させることにより式1で表される化合物の結晶を析出させて半導体活性層を形成することが好ましい。
 ドロップキャスト法を用いる有機半導体膜の製造方法に用いられる基板Aとしては、有機トランジスタの基板として用いられるものを挙げることができ、有機トランジスタの基板の上に絶縁体層が形成されたものが好ましい。
(乾燥)
 ドロップキャスト法を用いる有機半導体膜の製造方法では、滴下した塗布液を徐々に乾燥させることにより式1で表される化合物の結晶を析出させて半導体活性層を形成することが好ましい。
 加熱した基板A上で、自然乾燥させてから、減圧乾燥することが膜質の観点から好ましい。
 自然乾燥時の基板Aの温度は、20~140℃であることが好ましく、20~120℃であることがより好ましい。
 自然乾燥時間は5分間~20時間であることが好ましく、10分間~10時間であることがより好ましい。
 有機半導体膜の製造方法では、式1で表される化合物の結晶を析出させることが好ましい。結晶が析出したか否かは、偏光顕微鏡による観察によって確認することができる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 各実施例および比較例の組成物では、式1を満たす以下の化合物1~8および式1を満たさない以下の化合物9~12を用いた。なお、各化合物にアラビア数字で付した番号の隣に、表1~3における化合物の「No.」を併記した。
Figure JPOXMLDOC01-appb-C000019
[実施例1~3、比較例1~9]
 化合物1を用いて、各実施例および比較例の組成物を調製した。なお、化合物1は、特開2015-195361号公報における化合物4に相当する。
<化合物1の合成および比較例1の組成物の調製>
 化合物1の合成および再結晶による精製を特開2015-195361号公報の[0092]~[0095]に記載の方法、特に[0094]に記載の精製方法にしたがって行い、比較例1の組成物を調製した。
 具体的には、合成反応終了後、室温まで冷却し、メタノールを50ml加えて、析出した固体をろ別した。固体を加熱したO-ジクロロベンゼンに溶かし、熱いままセライトおよびシリカゲルに通し、加熱したO-ジクロロベンゼンで溶離させた。得られた溶液をエバポレーターで濃縮した後に、加熱したO-ジクロロベンゼンから再結晶し、白色固体である比較例1の組成物を得た。
 特開2015-195361号公報の[0094]に記載の再結晶により精製して得られた比較例1の組成物を用い、比較例1の組成物を後述の方法でさらに精製して、実施例1~3および比較例2~10の組成物を調製した。
<温度150℃以上の昇華精製による実施例1の組成物の調製>
 比較例1の組成物(14g)をボートにセットし、アルゴンガスを流しながら2.0mPa条件下、150℃から190℃まで10℃/10分で昇温した後、200℃で80分間、215℃~220℃で10時間の条件にて昇華精製を行い、実施例1の組成物を得た。
 なお、下記表4および表5に昇温しない段階における温度を、昇華精製の温度として記載した。
<ソックスレー抽出による実施例2の組成物の調製>
 比較例1の組成物(1g)をソックスレー抽出器にセットして、トルエン50mlにて抽出および濃縮をした後、減圧乾燥し、実施例2の組成物を得た。この精製方法を「ソックスレー抽出A」とした。
<ソックスレー抽出による実施例3の組成物の調製>
 比較例1の組成物(1g)をソックスレー抽出器にセットして、トルエン50mlおよびメタノール10mlの混合溶媒にて抽出および濃縮をした後、減圧乾燥し、実施例3の組成物を得た。この精製方法を「ソックスレー抽出B」とした。
<水分散1回による比較例2の組成物の調製>
 100mlフラスコに比較例1の組成物(1g)および蒸留水50mlを入れ、1時間攪拌し、ろ過した。その後、ろ物を減圧乾燥し、比較例2の組成物を得た。
<水分散2回による比較例3の組成物の調製>
 100mlフラスコに、水分散1回を行った比較例2の組成物(0.6g)および蒸留水30mlを入れ、1時間攪拌し、ろ過した。その後、ろ物を減圧乾燥し、比較例3の組成物を得た。
<水分散3回による比較例4の組成物の調製>
 100mlフラスコに、水分散2回を行った比較例3の組成物(0.3g)および蒸留水25mlを入れ、1時間攪拌し、ろ過した。その後、ろ物を減圧乾燥し、比較例4の組成物を得た。
<再結晶1回による比較例5の組成物の調製>
 100mlフラスコに比較例1の組成物(1g)およびオルトジクロロベンゼン20mlを入れ、加熱して溶解し、水冷し、ろ過した。その後、ろ物を減圧乾燥し、比較例5の組成物を得た。
<再結晶2回による比較例6の組成物の調製>
 100mlフラスコに、再結晶1回を行った比較例5の組成物(0.6g)およびオルトジクロロベンゼン12mlを入れ、加熱して溶解し、水冷し、ろ過した。その後、ろ物を減圧乾燥し、比較例6の組成物を得た。
<再結晶3回による比較例7の組成物の調製>
 100mlフラスコに、再結晶2回を行った比較例6の組成物(0.3g)およびオルトジクロロベンゼン6mlを入れ、加熱して溶解し、水冷し、ろ過した。その後、ろ物を減圧乾燥し、比較例7の組成物を得た。
<シリカゲルクロマトグラフィー1回による比較例8の組成物の調製>
 比較例1の組成物(2g)をクロロホルムに溶解し、シリカゲルクロマトグラフィーを施した。得られた分画を減圧濃縮し、減圧乾燥し、比較例8の組成物を得た。
<シリカゲルクロマトグラフィー2回による比較例9の組成物の調製>
 シリカゲルクロマトグラフィー1回を行った比較例8の組成物(1g)をクロロホルムに溶解し、シリカゲルクロマトグラフィーを施した。得られた分画を減圧濃縮し、減圧乾燥し、比較例9の組成物を得た。
[実施例4~6および比較例10~13]
 化合物2を用いて、各実施例および比較例の組成物を調製した。なお、化合物2は、Tetrahedron 66(2010)8778-8784におけるCompound 1aに相当する。
<化合物2の合成および比較例10の組成物の調製>
 化合物2の合成およびカラムクロマトグラフィーによる精製をTetrahedron 66(2010)8778-8784に記載の方法、特に3.2.11.に記載の精製方法で行い、比較例10の組成物を調製した。
<実施例4~6および比較例11~13の組成物の調製>
 Tetrahedron 66(2010)8778-8784に記載のカラムクロマトグラフィーにより精製して得られた比較例2の組成物を用い、比較例2の組成物を加熱条件以外は実施例1と同様の方法でさらに精製して、実施例4の組成物を調製した。実施例4では減圧精製における昇温後の加熱条件を210℃~240℃で10時間に変更した。
 また、比較例2の組成物をそれぞれ実施例2、3および比較例2~4と同様の方法でさらに精製して、実施例5、6および比較例11~13の組成物を調製した。
[実施例7および比較例14]
 化合物3を用いて、各実施例および比較例の組成物を調製した。なお、化合物3は、特開2015-195361号公報における化合物1に相当する。
<化合物3の合成および比較例14の組成物の調製>
 化合物3の合成および再結晶による精製を特開2015-195361号公報の[0092]~[0094]に記載の方法、特に[0094]に記載の精製方法にしたがって行い、比較例14の組成物を調製した。具体的には、比較例1と同様にO-ジクロロベンゼンから再結晶し、白色固体である比較例14の組成物を得た。
<実施例7の組成物の調製>
 特開2015-195361号公報の[0094]に記載の再結晶により精製して得られた比較例14の組成物を用い、比較例14の組成物を実施例2と同様の方法でさらに精製して、実施例7の組成物を調製した。
[実施例8および比較例15]
 化合物4を用いて、各実施例および比較例の組成物を調製した。
<化合物4の合成および比較例15の組成物の調製>
 特開2015-195361号公報に記載の方法を参考にし、以下のスキームにて化合物4を合成した。
Figure JPOXMLDOC01-appb-C000020
 合成反応後の再結晶による精製を、特開2015-195361号公報の[0094]に記載の精製方法にしたがって行い、比較例15の組成物を調製した。具体的には、比較例1と同様にO-ジクロロベンゼンから再結晶し、白色固体である比較例15の組成物を得た。
<実施例8の組成物の調製>
 特開2015-195361号公報の[0094]に記載の再結晶により精製して得られた比較例15の組成物を用い、比較例15の組成物を加熱条件以外は実施例1と同様の方法でさらに精製して、実施例8の組成物を調製した。実施例8では減圧精製における昇温後の加熱条件を230℃~260℃で10時間に変更した。
[実施例9および比較例16]
 化合物5を用いて、各実施例および比較例の組成物を調製した。なお、化合物1は、特開2015-195361号公報における化合物18に相当する。
<化合物5の合成および比較例16の組成物の調製>
 化合物5の合成およびカラムクロマトグラフィーによる精製を特開2015-195361号公報の[0099]に記載の方法にしたがって行い、比較例16の組成物を調製した。
 具体的には、合成反応終了後、反応液を室温まで冷却し、クロロホルム、純水を用いて分液を行った。有機層を減圧蒸留により濃縮した後、カラムクロマトグラフィー(シリカゲル、ヘキサン:酢酸エチル=3:1、ヘキサン:酢酸エチル=2:1、ヘキサン:酢酸エチル=1:1で順次展開)により精製し、白色固体である比較例16の組成物を得た。
<実施例9の組成物の調製>
 特開2015-195361号公報の[0099]に記載のカラムクロマトグラフィーにより精製して得られた比較例16の組成物を用い、比較例16の組成物を実施例4と同様の方法でさらに精製して、実施例7の組成物を調製した。
[実施例10および比較例17]
 化合物6を用いて、各実施例および比較例の組成物を調製した。
<化合物6の合成および比較例17の組成物の調製>
 特開2015-195361号公報に記載の方法を参考にし、以下のスキームにて化合物6を合成した。
Figure JPOXMLDOC01-appb-C000021
 合成反応後の再結晶による精製を、特開2015-195361号公報の[0094]に記載の精製方法にしたがって行い、比較例17の組成物を調製した。具体的には、比較例1と同様にO-ジクロロベンゼンから再結晶し、白色固体である比較例17の組成物を得た。
<実施例10の組成物の調製>
 特開2015-195361号公報の[0094]に記載の再結晶により精製して得られた比較例17の組成物を用い、比較例17の組成物を加熱条件以外は実施例1と同様の方法でさらに精製して、実施例10の組成物を調製した。実施例10では減圧精製における昇温後の加熱条件を190℃~220℃で10時間に変更した。
[実施例11および比較例18]
 化合物7を用いて、各実施例および比較例の組成物を調製した。
<化合物7の合成および比較例18の組成物の調製>
 特開2015-195361号公報の[0092]~[0095]に記載の方法を参照して、化合物7の合成を行った。その後、化合物7の再結晶による精製を、特開2015-195361号公報の[0094]に記載の精製方法にしたがって行い、比較例18の組成物を調製した。具体的には、比較例1と同様にO-ジクロロベンゼンから再結晶し、白色固体である比較例18の組成物を得た。
<実施例11の組成物の調製>
 特開2015-195361号公報の[0094]に記載の再結晶により精製して得られた比較例18の組成物を用い、比較例18の組成物を加熱条件以外は実施例1と同様の方法でさらに精製して、実施例11の組成物を調製した。実施例11では減圧精製における昇温後の加熱条件を190℃~220℃で10時間に変更した。
[実施例12および比較例19]
 化合物8を用いて、各実施例および比較例の組成物を調製した。なお、化合物8は、Tetrahedron 66(2010)8778-8784におけるCompound 1bに相当する。
<化合物8の合成および比較例19の組成物の調製>
 化合物8の合成およびカラムクロマトグラフィーによる精製をTetrahedron 66(2010)8778-8784に記載の方法、特に3.2.13.で引用する3.2.11.に記載の精製方法で行い、比較例10の組成物を調製した。
<実施例12の組成物の調製>
 Tetrahedron 66(2010)8778-8784に記載のカラムクロマトグラフィーにより精製して得られた比較例19の組成物を用い、比較例19の組成物を実施例2と同様の方法でさらに精製して、実施例12の組成物を調製した。
[比較例101および比較例102]
 化合物9を用いて、各比較例の組成物を調製した。なお、化合物9は、WO2015/133402 A1における化合物1に相当する。
 化合物9を含む組成物としてシグマアルドリッチ社製の商品名C8-BTBT(商品番号747092)を購入し、比較例101の組成物とした。
 比較例101の組成物を加熱条件以外は実施例1と同様の方法でさらに精製して、比較例102の組成物を調製した。比較例102では減圧精製における昇温後の加熱条件を180℃~240℃で10時間に変更した。
[比較例103および比較例104]
 化合物10を用いて、各比較例の組成物を調製した。なお、化合物10は、特開2003-347624号公報の[0073]に記載された、精製前のペンタセンに相当する。
 化合物9を含む組成物としてシグマアルドリッチ社製の商品名ペンタセン(商品番号P1802)を購入し、比較例103の組成物とした。
 比較例103の組成物を比較例102と同様の方法でさらに精製して、比較例104の組成物を調製した。
[比較例105および比較例106]
 化合物11を用いて、各実施例および比較例の組成物を調製した。なお、化合物11は、WO2015/133402 A1における化合物2に相当する。
<化合物11の合成および比較例105の組成物の調製>
 化合物11の合成およびシリカゲルカラムクロマトグラフィーによる精製をWO2015/133402 A1の[0097]に記載の方法で行い、比較例105の組成物を調製した。精製方法は、具体的には、反応液を水洗、濃縮後シリカゲルカラムクロマトグラフィー(塩化メチレン-へキサン混合溶媒)により精製し、固体を得た。このうち一部を、Pd/C、トルエン-酢酸混合溶媒に加え、水素雰囲気下で、14時間攪拌した。反応液をろ過、濃縮、シリカゲルカラムクロマトグラフィー(塩化メチレン-ヘキサン混合溶媒)により精製した。
<比較例106の組成物の調製>
 比較例105の組成物を実施例2と同様の方法でさらに精製して、比較例106の組成物を調製した。
[比較例107および比較例108]
 化合物12を用いて、各実施例および比較例の組成物を調製した。なお、化合物12は、WO2015/133402 A1における化合物4に相当する。
<化合物12の合成および比較例107の組成物の調製>
 化合物12の合成およびシリカゲルカラムクロマトグラフィーによる精製をWO2015/133402 A1の[0099]および[0097]に記載の方法で行い、比較例107の組成物を調製した。具体的には、比較例105と同様にシリカゲルカラムクロマトグラフィーによる精製を行い、比較例107の組成物を得た。
<比較例108の組成物の調製>
 比較例107の組成物を実施例2と同様の方法でさらに精製して、比較例108の組成物を調製した。
[有機半導体素子の作製]
 有機半導体素子の作製に用いた材料は、高速液体クロマトグラフィーにより純度(254nmの吸収強度面積比)が99.0%以上であることを確認した。
<有機半導体組成物の調製>
 各実施例および比較例の組成物のいずれかをアニソールを溶媒として溶解させた0.1質量%溶液を調製し、50℃に加熱したものを、各実施例および比較例の有機半導体組成物とした。
<有機半導体膜の成膜>
 基板上に、ドロップキャスト法により有機半導体組成物を塗布し、乾燥して、有機半導体膜を成膜して形成した。
 n型シリコン基板(0.4mm厚さ)の表面に、SiOの熱酸化膜200nmを形成した、25mmx25mm基板を基板Aとして使用した。基板Aの熱酸化膜の表面は、UV-オゾン洗浄した後、β-フェニチルトリメトキシシラン処理を行った。
 基板Aのフェニチルトリメトキシシラン処理面の上に、各実施例および比較例の有機半導体組成物をドロップキャストした後、ホットプレート上で100℃10分間乾燥することで有機半導体膜を形成した。
 得られた有機半導体膜を半導体活性層として用い、さらにマスクをつけて電荷注入アクセプターとしてF4-TCNQ 1nmと金電極40nmをそれぞれ蒸着することによりFET特性測定用のボトムゲート・トップコンタクト型の有機トランジスタ素子を得た。得られた有機トランジスタ素子を、各実施例および比較例の有機半導体素子とした。
[評価]
<元素の含有量>
 各実施例および比較例の組成物を灰化および酸溶解し、アジレント社製ICP-MS HP7700を用いてナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の含有量をそれぞれppm単位で定量した。
 ナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量と、ケイ素元素の含有量をそれぞれ算出し、下記表4および5に記載した。
 なお、有機半導体素子中の有機半導体膜の特定元素の定量は、同様にして測定可能である。
<キャリア移動度の耐熱性>
(a)加熱前のキャリア移動度
 有機半導体素子のFET特性は、セミオートプローバー(ベクターセミコン製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent製、4156C)を用いて常圧・大気下で評価した。
 各実施例および比較例の有機半導体素子(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を20V~-100Vの範囲で変化させ、ドレイン電流Iを表わす式I=(w/2L)μC(V-Vthを用いてキャリア移動度μを算出した。式中、Lはゲート長、Wはゲート幅、Cは絶縁体層の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧を表す。
(b)加熱後のキャリア移動度
 各実施例および比較例の有機半導体素子を、大気下120℃にて10分間の条件で加熱した後に、加熱前のキャリア移動度と同様の方法でキャリア移動度μを測定した。この加熱の条件は、有機半導体膜のパターニングのために用いるフォトレジスト、例えばShipley社製の製品名 MICROPOSIT S1828 PHOTO RESISTの加熱条件として想定される。
(c)キャリア移動度の耐熱性の評価
 下記式より、加熱後のキャリア移動度維持率を算出した。
加熱後のキャリア移動度維持率(%)=100%×加熱後のキャリア移動度/加熱前のキャリア移動度
 算出した加熱後のキャリア移動度維持率を以下の評価基準にしたがって評価し、キャリア移動度の耐熱性を評価した。実用上はAA、AまたはBであることが好ましく、AAまたはAであることがより好ましく、AAであることが特に好ましい。得られた結果を下記表4および5に記載した。
-評価基準-
AA:95%以上。
 A:80%以上、95%未満。
 B:65%以上、80%未満。
 C:50%以上、65%未満。
 D:35%以上、50%未満。
 E:25%以上、35%未満。
 F:15%以上、25%未満。
 G:15%未満。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 上記表4および表5より、本発明の組成物を用いた有機半導体素子は、キャリア移動度の耐熱性が高いことがわかった。
 一方、比較例の組成物を用いた有機半導体素子は、キャリア移動度の耐熱性が低いことがわかった。特に、比較例1~19の組成物は、ナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が本発明で規定する上限値を超えるものであり、キャリア移動度の耐熱性が低かった。
 比較例101、103、105および107の組成物は、式1を満たさない化合物を含み、かつ、ナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が本発明で規定する上限値を超えるものであり、キャリア移動度の耐熱性が低かった。比較例102、104、106および108の組成物は、式1を満たさない化合物を含むものであり、キャリア移動度の耐熱性が低かった。
 以上より、ナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量を少なくするだけではキャリア移動度の耐熱性を高くできないことがわかった。そして、ナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量を少なくし、かつ、式1で表される化合物を選択する場合に、キャリア移動度の耐熱性を高くできることがわかった。
11 基板
12 電極
13 絶縁体層
14 半導体活性層(有機半導体膜)
15a、15b 電極
31 基板
32 電極
33 絶縁体層
34a、34b 電極
35 半導体活性層(有機半導体膜)

Claims (12)

  1.  組成物を成膜して形成された有機半導体膜を含む有機半導体素子であって、
     前記組成物が下記式1で表される化合物を含み、
     前記組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である、
    有機半導体素子;
    Figure JPOXMLDOC01-appb-C000001
    式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
  2.  前記式1で表される化合物が下記式2で表される化合物である、請求項1に記載の有機半導体素子;
    Figure JPOXMLDOC01-appb-C000002
    式2中、RおよびRはそれぞれ独立に置換基を有してもよいアルキル基または置換基を有してもよい芳香族基を表す。
  3.  前記組成物中のケイ素元素の含有量が30ppm以下である、請求項1または2に記載の有機半導体素子。
  4.  前記有機半導体素子が有機トランジスタである、請求項1~3のいずれか一項に記載の有機半導体素子。
  5.  下記式1で表される化合物を含む組成物であって、
     前記組成物中のナトリウム元素、カリウム元素、ケイ素元素およびアルミニウム元素の総含有量が50ppm以下である、組成物;
    Figure JPOXMLDOC01-appb-C000003
    式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
  6.  前記組成物中のケイ素元素の含有量が30ppm以下である、請求項5に記載の組成物。
  7.  請求項5または6に記載の組成物および溶媒を含有する、有機半導体組成物。
  8.  請求項7に記載の有機半導体組成物を成膜して形成された、有機半導体膜。
  9.  下記式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出する工程を含む、組成物の製造方法;
    Figure JPOXMLDOC01-appb-C000004
    式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
  10.  請求項9に記載の組成物の製造方法で組成物を製造する工程と、
     前記組成物および溶媒を混合して有機半導体組成物を製造する工程と、
     前記有機半導体組成物を成膜して有機半導体膜を形成する工程を含む、有機半導体素子の製造方法。
  11.  前記有機半導体膜を形成する工程が、前記有機半導体組成物を基板上に塗布または印刷した後、乾燥させて有機半導体膜を形成する工程を含む、請求項10に記載の有機半導体素子の製造方法。
  12.  下記式1で表される化合物を、温度150℃以上で減圧精製、またはソックスレー抽出する、化合物を精製する方法;
    Figure JPOXMLDOC01-appb-C000005
    式1中、R~Rはそれぞれ独立に水素原子または置換基を表す。
PCT/JP2019/010860 2018-04-03 2019-03-15 有機半導体素子、組成物、化合物を精製する方法およびそれらの応用 WO2019193953A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19780760.5A EP3780118A4 (en) 2018-04-03 2019-03-15 ORGANIC SEMICONDUCTOR ELEMENT, COMPOSITION, COMPOUND PURIFICATION PROCESS AND RELATED APPLICATION
JP2020511680A JP7001815B2 (ja) 2018-04-03 2019-03-15 有機半導体素子、組成物、化合物を精製する方法およびそれらの応用
US17/061,756 US20210020841A1 (en) 2018-04-03 2020-10-02 Organic semiconductor element, composition, method of purifying compound, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-071688 2018-04-03
JP2018071688 2018-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/061,756 Continuation US20210020841A1 (en) 2018-04-03 2020-10-02 Organic semiconductor element, composition, method of purifying compound, and application thereof

Publications (1)

Publication Number Publication Date
WO2019193953A1 true WO2019193953A1 (ja) 2019-10-10

Family

ID=68100717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010860 WO2019193953A1 (ja) 2018-04-03 2019-03-15 有機半導体素子、組成物、化合物を精製する方法およびそれらの応用

Country Status (5)

Country Link
US (1) US20210020841A1 (ja)
EP (1) EP3780118A4 (ja)
JP (1) JP7001815B2 (ja)
TW (1) TWI788544B (ja)
WO (1) WO2019193953A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864323A (zh) * 2021-01-09 2021-05-28 西安交通大学 一种利用有机半导体掺杂制备高迁移率晶体管的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347624A (ja) 2002-05-27 2003-12-05 Konica Minolta Holdings Inc 有機半導体材料の精製方法、該精製方法を用いて得られた有機半導体材料及びそれを用いた半導体素子
JP2006328006A (ja) * 2005-05-27 2006-12-07 Tosoh Corp ジベンゾビフェニレン誘導体の製造方法
JP2008516421A (ja) * 2004-10-01 2008-05-15 メルク パテント ゲーエムベーハー 有機半導体を含む電子デバイス
US20090224655A1 (en) * 2008-03-04 2009-09-10 Samsung Sdi Co., Ltd. Organic light-emitting device
JP2011082507A (ja) * 2009-09-11 2011-04-21 Fujifilm Corp 光電変換素子及びその製造方法、光センサ、並びに撮像素子及びそれらの駆動方法
JP2012043912A (ja) 2010-08-17 2012-03-01 Fujifilm Corp 有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子
WO2013122173A1 (ja) * 2012-02-17 2013-08-22 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法
WO2013141182A1 (ja) * 2012-03-23 2013-09-26 宇部興産株式会社 ベンゾビス(チアジアゾール)誘導体、およびそれを用いた有機エレクトロニクスデバイス
JP2014177405A (ja) * 2011-11-21 2014-09-25 Sharp Corp 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
WO2015133402A1 (ja) 2014-03-03 2015-09-11 富士フイルム株式会社 有機トランジスタ
JP2015195361A (ja) 2014-03-26 2015-11-05 富士フイルム株式会社 非発光性有機半導体デバイス用塗布液、有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、有機トランジスタの製造方法および有機半導体膜の製造方法の提供

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347624A (ja) 2002-05-27 2003-12-05 Konica Minolta Holdings Inc 有機半導体材料の精製方法、該精製方法を用いて得られた有機半導体材料及びそれを用いた半導体素子
JP2008516421A (ja) * 2004-10-01 2008-05-15 メルク パテント ゲーエムベーハー 有機半導体を含む電子デバイス
JP2006328006A (ja) * 2005-05-27 2006-12-07 Tosoh Corp ジベンゾビフェニレン誘導体の製造方法
US20090224655A1 (en) * 2008-03-04 2009-09-10 Samsung Sdi Co., Ltd. Organic light-emitting device
JP2011082507A (ja) * 2009-09-11 2011-04-21 Fujifilm Corp 光電変換素子及びその製造方法、光センサ、並びに撮像素子及びそれらの駆動方法
JP2012043912A (ja) 2010-08-17 2012-03-01 Fujifilm Corp 有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子
JP2014177405A (ja) * 2011-11-21 2014-09-25 Sharp Corp 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
WO2013122173A1 (ja) * 2012-02-17 2013-08-22 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法
WO2013141182A1 (ja) * 2012-03-23 2013-09-26 宇部興産株式会社 ベンゾビス(チアジアゾール)誘導体、およびそれを用いた有機エレクトロニクスデバイス
WO2015133402A1 (ja) 2014-03-03 2015-09-11 富士フイルム株式会社 有機トランジスタ
JP2015195361A (ja) 2014-03-26 2015-11-05 富士フイルム株式会社 非発光性有機半導体デバイス用塗布液、有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、有機トランジスタの製造方法および有機半導体膜の製造方法の提供

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780118A4
TETRAHEDRON, vol. 66, 2010, pages 8778 - 8784

Also Published As

Publication number Publication date
EP3780118A4 (en) 2021-06-02
TWI788544B (zh) 2023-01-01
US20210020841A1 (en) 2021-01-21
EP3780118A1 (en) 2021-02-17
TW201942120A (zh) 2019-11-01
JP7001815B2 (ja) 2022-02-04
JPWO2019193953A1 (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
JP5477978B2 (ja) 電界効果トランジスタ
WO2014034393A1 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP5975834B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
TWI609067B (zh) 有機薄膜電晶體、化合物、非發光性有機半導體元件用有機半導體材料、有機薄膜電晶體用材料、非發光性有機半導體元件用塗佈溶液以及非發光性有機半導體元件用有機半導體薄膜
TWI606053B (zh) 有機薄膜電晶體、化合物、有機半導體薄膜、有機半導體材料、有機薄膜電晶體用材料及有機半導體元件用塗佈溶液
WO2012033073A1 (ja) 有機半導体材料、有機半導体組成物、有機薄膜及び電界効果トランジスタ並びにその製造方法
WO2014156878A1 (ja) 有機薄膜トランジスタ
CN103299446A (zh) 有机半导体材料、含有该材料而成的涂布液以及有机薄膜晶体管
WO2013002217A1 (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
TWI594981B (zh) 有機薄膜電晶體、化合物及其應用
WO2012157474A1 (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
TW201437214A (zh) 有機薄膜電晶體、有機半導體薄膜、化合物、非發光性有機半導體元件用有機半導體材料、有機薄膜電晶體用材料、非發光性有機半導體元件用塗佈溶液及非發光性有機半導體元件用有機半導體薄膜
WO2012115218A1 (ja) ジアントラ[2,3-b:2',3'-f]チエノ[3,2-b]チオフェンの製造方法並びにその用途
WO2014119713A1 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP2015199716A (ja) 多環縮環化合物、有機半導体材料、有機半導体デバイス及び有機トランジスタ
TWI627176B (zh) 有機電晶體、雜稠環化合物、非發光性有機半導體元件用有機半導體材料、有機電晶體用材料、非發光性有機半導體元件用塗布溶液、非發光性有機半導體元件用有機半導體膜及非發光性有機半導體元件用有機半導體膜的製造方法
WO2013031468A1 (ja) 複素環式化合物及びその利用
TWI606052B (zh) 有機薄膜電晶體、化合物及其應用
JP7001815B2 (ja) 有機半導体素子、組成物、化合物を精製する方法およびそれらの応用
JP6231448B2 (ja) 有機半導体膜形成用の組成物、非発光性有機半導体デバイス用有機半導体膜の製造方法、非発光性有機半導体デバイス用有機半導体膜、有機膜トランジスタの製造方法および有機膜トランジスタ。
TWI643368B (zh) 有機電晶體、化合物、非發光性有機半導體元件用有機半導體材料、有機電晶體用材料、非發光性有機半導體元件用塗佈溶液以及非發光性有機半導體元件用有機半導體膜
WO2015105059A1 (ja) 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液および非発光性有機半導体デバイス用有機半導体膜
JP2017141193A (ja) 有機化合物及びその用途
JP6592863B2 (ja) 有機化合物及びその用途
WO2011065015A1 (ja) 有機半導体材料含有組成物及びそれを用いた有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019780760

Country of ref document: EP

Effective date: 20201103