WO2019189916A1 - 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム - Google Patents

電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム Download PDF

Info

Publication number
WO2019189916A1
WO2019189916A1 PCT/JP2019/014381 JP2019014381W WO2019189916A1 WO 2019189916 A1 WO2019189916 A1 WO 2019189916A1 JP 2019014381 W JP2019014381 W JP 2019014381W WO 2019189916 A1 WO2019189916 A1 WO 2019189916A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical
plate
gas
flow path
electrode layer
Prior art date
Application number
PCT/JP2019/014381
Other languages
English (en)
French (fr)
Inventor
大西久男
越後満秋
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to US17/043,816 priority Critical patent/US20210119235A1/en
Priority to JP2020509381A priority patent/JP7431154B2/ja
Priority to CN201980024111.7A priority patent/CN111902984A/zh
Priority to CA3107250A priority patent/CA3107250A1/en
Priority to KR1020207030437A priority patent/KR20200135475A/ko
Priority to EP19774528.4A priority patent/EP3790089A4/en
Publication of WO2019189916A1 publication Critical patent/WO2019189916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to an electrochemical element, an electrochemical module, an electrochemical device, and an energy system.
  • Patent Document 1 discloses an electrochemical element including a long cylindrical support having an internal space, and an electrochemical reaction unit that performs power generation provided on one surface side of the cylindrical support along the longitudinal direction. Has been. One end of the cylindrical support in the longitudinal direction is connected to a gas manifold that circulates the reformed gas containing hydrogen, and the reformed gas is circulated in the internal space of the cylindrical support. The reformed gas flows in the internal space of the cylindrical support from one end portion in the longitudinal direction toward the other end portion.
  • the cylindrical support is provided with a through hole that leads from the internal space to the electrochemical reaction portion. Therefore, the reformed gas is circulated from the internal space of the cylindrical support to the electrochemical reaction part through the through hole.
  • an electrode layer, an electrolyte layer, and a counter electrode layer are sequentially laminated from the side facing the cylindrical support, and the reformed gas is circulated through the electrode layer.
  • the electrochemical reaction unit generates electricity by causing an electrochemical reaction between the reformed gas and air. Since the electrochemical reaction part is supported by the cylindrical support body in such an electrochemical element of Patent Document 1, the mechanical strength of the entire electrochemical element can be improved.
  • the internal space of the cylindrical support is modified from one end in the longitudinal direction toward the other end.
  • the flow rate of the reformed gas at each position in the short direction perpendicular to the longitudinal direction is not constant at any of a plurality of points in the longitudinal direction.
  • the flow rate of the reformed gas is faster at the central portion in the short direction of the internal space than at both ends.
  • the reformed gas flowing through the electrode layer may be insufficient at the other end in the longitudinal direction.
  • the fuel becomes deficient, and the electrode layer may be oxidized and deteriorated, and the electrode performance and mechanical strength may be reduced.
  • the concentration of the reformed gas decreases from one end in the longitudinal direction to the other end, but the flow rate of the reformed gas per unit time as compared to both ends in the short direction. Since a large amount of reformed gas is circulated, unreacted reformed gas that has not been used in the electrode layer is discharged at the other end in the longitudinal direction.
  • the reformed gas can be circulated to the other end in the longitudinal direction by suppressing the electrochemical reaction.
  • the electrochemical reaction is suppressed not only at both ends in the short direction but also at the center, the amount of unreacted reformed gas discharged at the other end in the longitudinal direction is not used in the electrode layer.
  • the fuel utilization rate is reduced and the reaction efficiency of the electrochemical reaction of the electrochemical element is reduced.
  • the present invention has been made in view of the above-described problems, and an electrochemical element capable of improving the efficiency of converting chemical energy such as fuel into electric energy or converting electric energy into chemical energy such as fuel.
  • An object is to provide an electrochemical module, an electrochemical device, and an energy system.
  • the characteristic configuration of the electrochemical device according to the present invention is as follows.
  • a conductive plate-like support having an internal channel inside The plate-like support includes, in at least a part of the plate-like support, a gas flow permissible portion capable of transmitting gas across the internal flow path and the outside, which are inside the plate-like support, and the gas
  • An electrochemical reaction portion having at least a membrane-like electrode layer, a membrane-like electrolyte layer, and a membrane-like counter electrode layer in the order of description in a state of covering all or part of the flow-permissible portion,
  • the plate-like support is in that a plurality of flow paths are formed in the internal flow path.
  • the plate-like support body forms a plurality of flow paths in the internal flow path. Therefore, gas flows separately along each of the plurality of channels by flowing through the plurality of channels in the internal channel. As a result of the rectifying action caused by the flow divided into a plurality of flow paths in this way, the gas flows in the crossing direction intersecting the flow direction of the gas as compared with the case of flowing through the internal flow path where the plurality of flow paths are not formed.
  • the flow velocity at any multiple points is generally constant. That is, the gas flow velocity is substantially constant at any of a plurality of points including the center and both ends in the flow crossing direction.
  • the amount of gas flowing through the electrochemical reaction part can be made substantially constant at any of a plurality of points including the center part and both end parts in the flow crossing direction.
  • the said plate-shaped support body exists in the point containing the 1st plate-shaped body and the 2nd plate-shaped body which forms the several flow path in the said internal flow path at least.
  • a plurality of flow paths can be easily formed by combining a first plate-like body with a second plate-like body that forms a plurality of flow paths in at least the internal flow path.
  • the plate-like support is An internal flow path forming body for forming the internal flow path; It is accommodated in the internal flow path and has a plurality of flow path forming bodies that form the plurality of flow paths.
  • an internal flow path is formed by the internal flow path forming body, and a plurality of flow path forming bodies are accommodated in the internal flow path.
  • a plurality of flow paths are formed in the internal flow path by the plurality of flow path forming bodies.
  • the flow rate of the gas flowing through each flow path becomes substantially constant at any plurality of points in the flow crossing direction due to the rectifying action caused by the gas flowing along the plurality of flow paths. Therefore, the amount of gas flowing through the electrochemical reaction part can be made substantially constant at any plurality of points including the central part and both end parts in the flow crossing direction, and the reaction efficiency of the electrochemical element can be improved.
  • the plate-like support is formed of at least a first plate-like body and a second plate-like body, The first plate-like body is in contact with the second plate-like body, and the non-contact portion where the first plate-like body is not in contact with the second plate-like body is provided in the internal flow path.
  • the flow path is formed.
  • a plurality of flow paths are formed in the internal flow path by the contact portion and the non-contact portion between the first plate-like body and the second plate-like body. That is, at least a part of the plurality of flow paths is in communication due to the presence of the non-contact portion, and the gas flows along each of the plurality of flow paths while the gas can flow through the flow paths. It flows apart. Therefore, the flow velocity of the gas can be made substantially constant at any plurality of points including the central portion and both end portions in the flow crossing direction by the rectifying action of the gas flowing through each of the plurality of flow paths.
  • the plate-like support is formed in a plate shape extending in the longitudinal direction
  • the plurality of channels are in a point extending along the longitudinal direction.
  • the channel length for reaction with the electrochemical reaction unit can be secured, and the reaction efficiency of the electrochemical element can be improved.
  • the gas flow allowing portion is a hole region provided with a plurality of through holes penetrating at least a part of the plate-like support.
  • the gas flow allowing portion is a hole region in which a plurality of through holes penetrating at least a part of the plate-like support is provided.
  • the flow allowing portion can be selectively provided more easily, and the strength of the plate-like support can be further increased. Therefore, an electrochemical element excellent in strength and durability can be realized more easily.
  • the plate-like support is formed of at least a first plate-like body and a second plate-like body, Said 1st plate-shaped body exists in the point currently formed integrally or divided
  • the second plate-like body is supported by a series of first plate-like bodies formed integrally or divided, the mechanical strength of the second plate-like body is increased. As a result, the bending strength of the electrochemical element supported by the plate-like support including the second plate-like body is increased.
  • the characteristic configuration of the electrochemical module according to the present invention is: A plurality of the electrochemical devices having a plurality of the electrochemical devices, wherein one electrochemical device and another electrochemical device are electrically connected, and the plate-like supports are opposed to each other. This is in that the elements are arranged in parallel.
  • a characteristic configuration of the electrochemical device according to the present invention includes at least the above-described electrochemical element or the above-described electrochemical module and a fuel converter, and is provided between the electrochemical element or the above-described electrochemical module and the fuel converter.
  • a gas containing a reducing component is circulated.
  • the “supply section” means a gas containing a reducing component when the electrochemical element functions as a fuel cell (electrochemical power generation cell) that “converts chemical energy such as fuel into electrical energy”.
  • the electrochemical element functions as an electrolytic cell that “converts electrical energy into chemical energy such as fuel”, it has a function of discharging a gas containing a reducing component.
  • an electrochemical module since it has an electrochemical module and a fuel converter, and has a fuel supply unit that distributes a gas containing a reducing component between the electrochemical module and the fuel converter, an existing raw fuel supply infrastructure such as city gas is provided. Can be used to realize an electrochemical device equipped with an electrochemical module having excellent durability, reliability and performance. Moreover, since it becomes easy to construct a system for recycling unused fuel gas discharged from the electrochemical module, a highly efficient electrochemical device can be realized.
  • the characteristic configuration of the electrochemical device according to the present invention is that it includes at least the above-described electrochemical element or the above-described electrochemical module, and a power converter that extracts electric power from the electrochemical element or the above-described electrochemical module.
  • the electrical output obtained from the electrochemical module excellent in durability, reliability, and performance can be boosted by the power converter or converted from direct current to alternating current. It is preferable because the electric output obtained by the chemical module can be easily used.
  • the characteristic configuration of the electrochemical device according to the present invention is that the electrochemical device or the electrochemical module described above, a fuel converter, and the electrochemical device or the electrochemical module take out electric power or the electrochemical module is powered. And a power converter that circulates.
  • the characteristic configuration of the electrochemical device according to the present invention is such that the reducing component gas from the fuel converter is circulated to the electrochemical element or the electrochemical module, or from the electrochemical element or the electrochemical module.
  • the fuel converter is provided with a fuel supply unit that distributes the reducing component gas.
  • a gas containing a reducing component in the case of functioning as a “fuel cell (electrochemical power generation cell) that converts chemical energy such as fuel into electric energy”, a gas containing a reducing component can be supplied.
  • the chemical element functions as an electrolytic cell that “converts electrical energy into chemical energy such as fuel”
  • a gas containing a reducing component can be led to the fuel converter. That is, since the fuel cell has a fuel supply unit that has an electrochemical module and a fuel converter and distributes a gas containing a reducing component between the electrochemical module and the fuel converter, the electrochemical module is operated as a fuel cell.
  • the electrochemical element module When the electrochemical element module is operated as an electrolytic cell, a gas containing water vapor or carbon dioxide is circulated through the electrode layer, and a voltage is applied between the electrode layer and the counter electrode layer. Then, in the electrode layer, electrons e ⁇ react with water molecules H 2 O and carbon dioxide molecules CO 2 to form hydrogen molecules H 2 , carbon monoxide CO, and oxygen ions O 2 ⁇ . Oxygen ions O 2 ⁇ move through the electrolyte layer to the counter electrode layer. In the counter electrode layer, oxygen ions O 2 ⁇ emit electrons and become oxygen molecules O 2 .
  • water molecule H 2 O is electrolyzed into hydrogen H 2 and oxygen O 2, and when a gas containing carbon dioxide molecule CO 2 is circulated into carbon monoxide CO and oxygen O 2.
  • a fuel converter for synthesizing various compounds such as hydrocarbons from hydrogen and carbon monoxide generated in the electrochemical module by the above electrolysis is provided. Can do.
  • the fuel supply unit allows hydrocarbons and the like produced by the fuel converter to be distributed to the electrochemical module, or taken out of the system / device and used separately as fuel or chemical raw material.
  • the characteristic configuration of the energy system according to the present invention is as follows: It is in the point which has the waste heat utilization part which reuses the heat
  • the waste heat utilization part that reuses the heat discharged from the electrochemical device and the electrochemical device or the fuel converter, it has excellent durability, reliability, and performance, and energy efficiency Even an excellent energy system can be realized. It is also possible to realize a hybrid system with excellent energy efficiency in combination with a power generation system that generates power using the combustion heat of unused fuel gas discharged from an electrochemical device. Therefore, an electrochemical element laminate having a small number of parts and easy to manufacture can be realized by an electrochemical element having an easily handled structure. In addition, an electrochemical module, an electrochemical device and an energy system using the electrochemical element laminate can be provided at low cost.
  • FIG. 4 is a cross-sectional view in the IV-IV direction of FIG. 3.
  • FIG. 5 is a cross-sectional view in the VV direction of FIG. 3.
  • FIG. 6 is an explanatory diagram showing a flow velocity in each divided flow path A. It is explanatory drawing of the manufacturing process of an electrochemical element. It is explanatory drawing of the electrochemical module which concerns on another form.
  • FIG. 1 shows an overview of an energy system and an electrochemical device.
  • the energy system includes an electrochemical device and a heat exchanger 23 as a waste heat utilization unit that reuses heat discharged from the electrochemical device.
  • the electrochemical device includes an electrochemical module M, a desulfurizer 1 and a reformer (a fuel converter such as a reformer, hereinafter referred to as a reformer) 4. It has a fuel supply part that distributes fuel gas containing a reducing component, and an inverter (an example of a power converter) 8 that extracts electric power from the electrochemical module M.
  • a reformer a fuel converter such as a reformer, hereinafter referred to as a reformer
  • the electrochemical device includes a desulfurizer 1, a reforming water tank 2, a vaporizer 3, a reformer 4, a blower 5, a combustion unit 6, an inverter 8, a control unit 9, a storage container 10, and an electrochemical module M. .
  • the desulfurizer 1 removes (desulfurizes) sulfur compound components contained in hydrocarbon-based raw fuel such as city gas. In the case where a sulfur compound is contained in the raw fuel, by providing the desulfurizer 1, the influence of the sulfur compound on the reformer 4 or the electrochemical element E can be suppressed.
  • the vaporizer 3 generates steam from the reformed water circulated from the reformed water tank 2.
  • the reformer 4 steam-reforms the raw fuel desulfurized in the desulfurizer 1 using the steam generated in the vaporizer 3 to generate a reformed gas (gas) containing hydrogen.
  • the electrochemical module M uses the reformed gas circulated from the reformer 4 and the air (gas) circulated from the blower 5 to generate an electrochemical reaction to generate electric power.
  • the combustion unit 6 mixes the reaction exhaust gas discharged from the electrochemical module M and air, and combusts the combustible component in the reaction exhaust gas.
  • the electrochemical module M has a plurality of electrochemical elements E and a gas manifold 17.
  • the plurality of electrochemical elements E are arranged in parallel while being electrically connected to each other, and one end (lower end) of the electrochemical element E is fixed to the gas manifold 17.
  • the electrochemical element E generates electricity by causing an electrochemical reaction between the reformed gas passed through the gas manifold 17 and the air passed from the blower 5.
  • the inverter 8 adjusts the output power of the electrochemical module M to the same voltage and the same frequency as the power received from the commercial system (not shown).
  • the control unit 9 controls the operation of the electrochemical device and the energy system.
  • the vaporizer 3, the reformer 4, the electrochemical module M, and the combustion unit 6 are stored in a storage container 10.
  • the reformer 4 performs the raw fuel reforming process using the combustion heat generated by the combustion of the reaction exhaust gas in the combustion unit 6.
  • Raw fuel is circulated to the desulfurizer 1 through the raw fuel supply path 12 by the operation of the booster pump 11.
  • the reformed water in the reformed water tank 2 is circulated to the vaporizer 3 through the reformed water supply path 14 by the operation of the reformed water pump 13.
  • the raw fuel supply path 12 is downstream of the desulfurizer 1 and is joined to the reformed water supply path 14, and the reformed water and raw fuel merged outside the storage container 10 are stored in the storage container. It is distributed to the vaporizer 3 provided in the inside 10.
  • the reformed water is vaporized by the vaporizer 3 and becomes steam.
  • the raw fuel containing steam generated in the vaporizer 3 is circulated to the reformer 4 through the steam-containing raw fuel supply path 15.
  • the raw fuel is steam reformed in the reformer 4 to generate a reformed gas containing hydrogen gas as a main component.
  • the reformed gas generated in the reformer 4 is circulated to the gas manifold 17 of the electrochemical module M through the reformed gas supply path 16.
  • the reformed gas circulated through the gas manifold 17 is distributed to the plurality of electrochemical elements E, and is transferred from the lower end (one end) ED, which is a connection portion between the electrochemical elements E and the gas manifold 17, to the electrochemical elements E. Distributed. Hydrogen (reducing component) in the reformed gas is mainly used for electrochemical reaction in the electrochemical element E.
  • the reaction exhaust gas containing the remaining hydrogen gas that has not been used for the reaction is discharged from the upper end (other end portion) EU of the electrochemical element E to the combustion unit 6.
  • the reaction exhaust gas is combusted in the combustion section 6 and becomes combustion exhaust gas, which is discharged from the combustion exhaust gas outlet 20 to the outside of the storage container 10.
  • a combustion catalyst section 21 (for example, a platinum-based catalyst) is disposed at the combustion exhaust gas outlet 20 to burn and remove reducing components such as carbon monoxide and hydrogen contained in the combustion exhaust gas.
  • the combustion exhaust gas discharged from the combustion exhaust gas outlet 20 is sent to the heat exchanger 23 through the combustion exhaust gas discharge path 22.
  • the heat exchanger 23 exchanges heat between the combustion exhaust gas generated by the combustion in the combustion section 6 and the circulated cold water to generate hot water. That is, the heat exchanger 23 operates as an exhaust heat utilization unit that reuses the heat exhausted from the electrochemical device.
  • the electrochemical module M has a plurality of electrochemical elements E, the surface of the electrochemical reaction part 43 of one electrochemical element E opposite to the cylindrical support 31, and the cylindrical shape of the other electrochemical elements E
  • a plurality of electrochemical elements E are arranged in parallel in a form in which the support 31 is electrically connected and in a form in which the plurality of cylindrical supports 31 face each other.
  • the electrochemical module M has a gas manifold 17 for circulating a reformed gas containing a reducing component inside the cylindrical support 31 of the plurality of electrochemical elements E.
  • a lower end ED in the axial direction of the cylindrical support 31 is connected to the gas manifold 17.
  • the electrochemical module M has the gas supply space S which distribute
  • the electrochemical element E When the electrochemical element E is attached to another member (in this embodiment, the gas manifold 17), the lower end ED of the end portion in the axial direction of the cylindrical support 31 is fixed to the other member, The electrochemical element E is cantilevered by another member.
  • the electrochemical module M includes an electrochemical element E, a gas manifold 17, a current collecting member 26, a termination member 27, and a current drawing portion 28.
  • the electrochemical element E is a hollow cylinder, and has an electrochemical reaction portion 43 on the surface of a cylindrical support 31 having an internal space (an upper surface 32a of a metal support 32 (second plate-like body) in FIG. 4 described later). And takes the shape of a long flat plate or flat bar as a whole.
  • the electrochemical element E is divided into a plurality of divided flow paths A that are divided into a plurality of divided flow paths A into a later-described reformed gas flow section 36 (internal flow path) that is an internal space.
  • the plurality of divided flow paths A extend substantially in parallel with each other along the lower end ED and the upper end EU of the electrochemical element E.
  • the electrochemical element E is configured such that the distance between the lower end ED and the upper end EU is the longitudinal direction, and the divided flow path A extends along the longitudinal direction.
  • the short side direction of the electrochemical element E is a direction substantially orthogonal to the longitudinal direction in which the divided flow path A extends.
  • the lower end ED in the longitudinal direction of the electrochemical element E is airtightly fixed to the gas manifold 17 by an adhesive member such as a glass seal material. This prevents the reformed gas from leaking out at the connecting portion between the electrochemical element E and the gas manifold 17 and prevents the air from flowing into the reformed gas flow-through portion 36 that is the internal space of the cylindrical support 31.
  • the internal space (not shown) of the gas manifold 17 can be communicated.
  • the cylindrical support 31 and the gas manifold 17 are electrically insulated.
  • the gas manifold 17 is formed in a rectangular parallelepiped shape having one internal space, for example, and functions as a buffer for the reformed gas distributed from the reformer 4. Therefore, the reformed gas in the gas manifold 17 is distributed substantially uniformly to each of the plurality of electrochemical elements E at the same pressure, the same flow rate, the same flow velocity, and the like. Further, the reformed gas in the gas manifold 17 is distributed substantially uniformly to each of the plurality of divided flow paths A of the electrochemical element E at the same pressure, the same flow rate, the same flow velocity, and the like.
  • the electrochemical reaction part 43 of the electrochemical element E is configured as a film as a whole.
  • the current collecting member 26 is bonded to the surface opposite to the cylindrical support 31 with an adhesive 29.
  • a plurality of electrochemical elements E are arranged in parallel in a state where the back surface 39 of another electrochemical element E and the current collecting member 26 are in contact with each other or are joined by welding or the like.
  • the current collecting member 26 a member having conductivity, gas permeability, and elasticity in the direction in which the electrochemical elements E are arranged in parallel is used.
  • the current collecting member 26 is an expanded metal using a metal foil, a metal mesh, or a felt-like member.
  • the adhesive 29 a material having conductivity and gas permeability is used.
  • a ceramic adhesive is used for the adhesive 29.
  • the cylindrical support 31 cantilevered by the gas manifold 17 can be displaced in the direction of parallel arrangement, and vibration or The robustness of the electrochemical module M against disturbances such as temperature changes is enhanced.
  • the plurality of electrochemical elements E arranged in parallel are sandwiched between a pair of termination members 27.
  • the end member 27 is a member that is conductive and elastically deformable, and its lower end is fixed to the gas manifold 17.
  • the termination member 27 is connected to a current drawing portion 28 that extends outward along the direction in which the electrochemical elements E are arranged in parallel.
  • the current drawing unit 28 is connected to the inverter 8 and sends a current generated by the power generation of the electrochemical element E to the inverter 8.
  • the electrochemical elements E arranged in parallel contain air (reactive gas and oxidizing components) used in the reaction in the electrochemical reaction unit 43 on the side of the electrochemical reaction unit 43.
  • the gas supply space S which the some electrochemical element E has is mutually connected by the side of the cylindrical support body 31, and becomes a continuous space.
  • the side of the electrochemical reaction part 43 is a direction orthogonal to both the axial direction of the cylindrical support 31 and the direction of the parallel arrangement of the electrochemical reaction part 43.
  • the electrochemical element E1 has a gas supply space S1
  • the electrochemical element E2 has a gas supply space S2
  • the electrochemical element E3 has a gas supply space S3.
  • gas supply space S1 and gas supply space S2 are connected via the side of the cylindrical support body 31 of the electrochemical element E2.
  • gas supply space S2 and gas supply space S3 are connected via the side of the cylindrical support body 31 of the electrochemical element E3.
  • the arrow of the gas supply space S indicates the upper side of the electrochemical reaction unit 43 in the figure, but the gas supply space S also exists on the lower side of the electrochemical reaction unit 43 in the figure. is doing.
  • the gas supply space S1 of the first electrochemical element E1 and the gas supply space of the second electrochemical element E2 S2 communicates with the side of the cylindrical support 31 of the second electrochemical element E2.
  • the air circulated from the blower 5 to the inside of the storage container 10 reaches the gas supply space S and is circulated to the electrochemical reaction unit 43. Further, the reformed gas is circulated from the gas manifold 17 to the reformed gas flow section 36 that is an internal space of the cylindrical support 31. Since the reformed gas flow section 36 is divided into a plurality of divided flow paths A by the divided body 70, the reformed gas is circulated to the electrochemical reaction section 43 via each divided flow path A. As a result, the reaction proceeds in the electrochemical reaction unit 43.
  • FIG. 1 The electrochemical element E has conductivity and is provided on a cylindrical support 31 having a reformed gas flow passage 36 formed therein, and one surface of the cylindrical support 31, and generates electric power by an electrochemical reaction. And an electrochemical reaction unit 43 to be performed.
  • the reformed gas flowing through the reformed gas flow section 36 is circulated to the electrochemical reaction section 43 through a through hole 38 described later of the cylindrical support 31.
  • the cylindrical support 31 (plate-like support) is a flat plate or a flat bar as a whole, and has a rectangular metal support 32 and a U-shaped member 33 (first plate-like) having a U-shaped cross section perpendicular to the longitudinal direction. Body, an internal flow path forming body) and a lid 34.
  • the long side of the metal support 32 and the long side of the U-shaped member 33 (sides corresponding to the two vertices of the U-shape) are joined, and one end is closed by the lid 34.
  • the cylindrical support body 31 which has internal space and is flat as a whole or a flat bar shape is configured.
  • the metal support 32 is disposed in parallel to the central axis of the cylindrical support 31.
  • the internal space of the cylindrical support 31 functions as the reformed gas flow part 36.
  • a reaction exhaust gas outlet 37 is formed in the lid 34.
  • the opposite end facing the end where the lid 34 is provided is open and functions as the reformed gas inlet 35.
  • a divided body 70 that divides the reformed gas flow section 36 into a plurality of divided flow paths A is disposed.
  • the divided body 70 is a series of corrugated plates, for example, and has a substantially constant thickness.
  • the corrugated plate a plurality of peaks and valleys having the same shape are repeatedly formed in one direction, and the peaks and valleys are formed so as to extend in an orthogonal direction orthogonal to the one direction.
  • the peaks and valleys are formed so that the width between the tops 71 of the adjacent peaks is substantially constant.
  • the widths d1 and d2 are substantially constant.
  • the corrugated plate shape includes a triangular shape, a quadrangular shape, a sine curve, etc.
  • the corrugated plate may be a corrugated plate.
  • Such a divided body 70 is arranged in the reformed gas flow section 36 so that the direction in which the peaks and valleys extend is along the central axis of the cylindrical support 31, that is, along the longitudinal direction.
  • the crest portion 71 of the divided body 70 is in contact with the lower surface 32 b of the metal support 32, and the valley bottom portion 73 is in contact with the bottom surface 33 a of the U-shaped member 33 facing the reformed gas flow portion 36.
  • a plurality of divided flow paths A extending in the longitudinal direction of the cylindrical support 31 are formed in the reformed gas flow section 36 by a space surrounded by the lower surface 32 b of the metal support 32 and the divided body 70. Is done.
  • a plurality of divided flow paths B extending in the longitudinal direction of the cylindrical support 31 are formed in the reformed gas flow section 36 by a space surrounded by the bottom surface 33 a of the U-shaped member 33 and the divided body 70.
  • the divided flow paths A and the divided flow paths B are alternately formed as shown in FIG.
  • the flow rate of the reformed gas in the plurality of divided flow paths A will be described with reference to FIG.
  • the reformed gas is circulated from the gas manifold 17 to the plurality of divided flow paths A through the reformed gas inlet 35 located at the lower end ED of the electrochemical element E.
  • the reformed gas circulated through the plurality of divided flow paths A is each divided flow path A from the lower end ED toward the upper end EU along the longitudinal direction (gas flow direction) that is the axial direction of the cylindrical support 31. Flowing inside.
  • the reformed gas has a short direction (flow intersection). The flow velocity at any number of points in the direction is almost constant.
  • FIG. 8 shows the flow velocities V1 to V4 at a plurality of arbitrary points in the longitudinal direction of the cylindrical support 31.
  • V4 indicates the magnitude of the flow velocity of the reformed gas at the central portion of the cylindrical support 31 in the short direction.
  • V3, V2, and V1 indicate the magnitude of the flow velocity from the center to the end in the short direction in order.
  • the flow rate of the reformed gas is substantially constant at any of a plurality of points including the central portion and both ends of the tubular support 31 in the short direction. Therefore, the amount of the reformed gas that is circulated from the divided flow path A to the electrochemical reaction section 43 through the through-hole 38 of the cylindrical support 31 at a plurality of points including the center and both ends in the short direction. Can be made almost constant. Thereby, in any point of the center part of a transversal direction, and both ends, an electrochemical reaction is performed in the whole electrochemical element E, and electric power generation efficiency can be improved.
  • the reformed gas accommodated in one internal space of the gas manifold 17 has the same pressure and the same flow rate with respect to each of the plurality of divided flow paths A of the electrochemical element E. It is distributed almost uniformly at the same flow rate. In this way, reforming in the divided flow path A can also be achieved by causing almost no pressure difference, flow rate difference, and flow velocity difference in the reformed gas at each inlet of the plurality of divided flow paths A into which the reformed gas is introduced.
  • the gas flow rate can be made substantially constant.
  • the material for the metal support 32, the U-shaped member 33, and the lid portion 34 a material having excellent conductivity, heat resistance, oxidation resistance, and corrosion resistance is used.
  • a material having excellent conductivity, heat resistance, oxidation resistance, and corrosion resistance is used.
  • ferritic stainless steel, austenitic stainless steel, nickel base alloy or the like is used. That is, the cylindrical support 31 is configured to be robust.
  • ferritic stainless steel is preferably used.
  • the material of the cylindrical support member 31 it is preferable to use a material thermal conductivity greater than 3Wm -1 K -1, more preferably as long as the material above the 10Wm -1 K -1.
  • a material thermal conductivity greater than 3Wm -1 K -1, more preferably as long as the material above the 10Wm -1 K -1.
  • stainless steel is suitable as a material for the cylindrical support 31 because its thermal conductivity is about 15 to 30 Wm ⁇ 1 K ⁇ 1 .
  • the material of the cylindrical support 31 is more preferably a high toughness material that does not cause brittle fracture.
  • a metal material has high toughness as compared with a ceramic material or the like, and is suitable as the cylindrical support 31.
  • the metal support 32 is provided with a plurality of through holes 38 penetrating the front and back surfaces of the metal support 32. Gas can flow between the inside and the outside of the cylindrical support 31 through the through-hole 38. That is, the hole region P2 in which the plurality of through holes 38 are provided functions as the gas flow allowing portion P2. On the other hand, gas cannot flow between the inside and the outside of the cylindrical support 31 in the region where the through hole 38 in the metal support 32 and the U-shaped member 33 is not provided. Therefore, this region functions as the gas flow prohibition portion P1.
  • the electrochemical reaction unit 43 includes an electrode layer 44 formed on the metal support 32, an intermediate layer 45 formed on the electrode layer 44, and an intermediate layer 45. And an electrolyte layer 46 formed thereon.
  • the electrochemical reaction unit 43 further includes a reaction preventing layer 47 formed on the electrolyte layer 46 and a counter electrode layer 48 formed on the reaction preventing layer 47. That is, the counter electrode layer 48 is formed on the electrolyte layer 46, and the reaction preventing layer 47 is formed between the electrolyte layer 46 and the counter electrode layer 48.
  • the electrode layer 44 is porous, and the electrolyte layer 46 is dense.
  • the member which covers all or one part of the side of the electrochemical reaction part 43 is not provided, but the side of the electrochemical reaction part 43 is open
  • Metal support 32 supports the electrode layer 44, the intermediate layer 45, the electrolyte layer 46, and the like, and maintains the strength of the electrochemical element E. That is, the metal support 32 plays a role as a support for supporting the electrochemical element E.
  • the material of the metal support 32 a material excellent in electron conductivity, heat resistance, oxidation resistance and corrosion resistance is used.
  • a material excellent in electron conductivity, heat resistance, oxidation resistance and corrosion resistance is used.
  • ferritic stainless steel, austenitic stainless steel, nickel base alloy, or the like is used.
  • an alloy containing chromium is preferably used.
  • the metal support 32 uses an Fe—Cr alloy containing Cr of 18% by mass or more and 25% by mass or less, but an Fe—Cr alloy containing 0.05% by mass or more of Mn, Fe—Cr-based alloy containing 0.15 to 1.0% by mass of Ti, Fe—Cr-based alloy containing 0.15 to 1.0% by mass of Zr, Ti and Zr Fe—Cr alloy having a total content of Ti and Zr of 0.15% by mass or more and 1.0% by mass or less, Fe—Cr system containing Cu of 0.10% by mass or more and 1.0% by mass or less An alloy is particularly preferable.
  • the metal support 32 is plate-shaped as a whole.
  • the metal support 32 has a plurality of through spaces penetrating from the front side surface to the back side surface with the surface on which the electrode layer 44 is provided as the front side surface.
  • the through space has a function of allowing gas to permeate from the back side surface to the front side surface of the metal support 32.
  • the plate-like metal support 32 can be bent and deformed into, for example, a box shape or a cylindrical shape.
  • a metal oxide layer (not shown) as a diffusion suppression layer is provided on the surface of the metal support 32. That is, a diffusion suppression layer is formed between the metal support 32 and an electrode layer 44 described later.
  • the metal oxide layer is provided not only on the surface exposed to the outside of the metal support 32 but also on the contact surface (interface) with the electrode layer 44. It can also be provided on the inner surface of the through space. By this metal oxide layer, elemental interdiffusion between the metal support 32 and the electrode layer 44 can be suppressed.
  • the metal oxide layer is mainly chromium oxide.
  • the thickness of the metal oxide layer may be a thickness that can achieve both high diffusion prevention performance and low electrical resistance.
  • the metal oxide layer can be formed by various methods, but a method of oxidizing the surface of the metal support 32 to form a metal oxide is preferably used. Further, a metal oxide layer is applied to the surface of the metal support 32 by a spray coating method (a spraying method, an aerosol deposition method, an aerosol gas deposition method, a powder jet deposition method, a particle jet deposition method, a cold spray method, etc.). Method), PVD method such as sputtering method or PLD method, CVD method or the like, or plating and oxidation treatment. Further, the metal oxide layer may include a spinel phase having high conductivity.
  • the electrode layer 44 can be provided in a thin layer state on a surface on the front side of the metal support 32 that is larger than the region where the through space is provided.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to ensure sufficient electrode performance while reducing the amount of expensive electrode layer material used and reducing costs.
  • the entire region where the through space is provided is covered with the electrode layer 44. That is, the through space is formed inside the region of the metal support 32 where the electrode layer 44 is formed. In other words, all through spaces are provided facing the electrode layer 44.
  • the electrode layer 44 for example, a composite material such as NiO—GDC, Ni—GDC, NiO—YSZ, Ni—YSZ, CuO—CeO 2 , and Cu—CeO 2 can be used.
  • GDC, YSZ, and CeO 2 can be referred to as composite aggregates.
  • the electrode layer 44 may be formed by a low-temperature baking method (for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas).
  • It is preferably formed by a deposition method, a powder jet deposition method, a particle jet deposition method, a cold spray method or the like), a PVD method (such as a sputtering method or a pulse laser deposition method), a CVD method or the like.
  • a deposition method a powder jet deposition method, a particle jet deposition method, a cold spray method or the like
  • PVD method such as a sputtering method or a pulse laser deposition method
  • CVD method or the like By these processes that can be used in a low temperature range, a good electrode layer 44 can be obtained without using firing in a high temperature range higher than 1100 ° C., for example. Therefore, it is preferable because the elemental interdiffusion between the metal support 32 and the electrode layer 44 can be suppressed without damaging the metal support 32 and an electrochemical element having excellent durability can be realized. Furthermore, it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the electrode layer 44 has a plurality of pores inside and on the surface in order to have gas permeability. That is, the electrode layer 44 is formed as a porous layer. For example, the electrode layer 44 is formed so that the density thereof is 30% or more and less than 80%. As the size of the pores, a size suitable for a smooth reaction to proceed during the electrochemical reaction can be appropriately selected.
  • the fine density is the ratio of the material constituting the layer to the space, and can be expressed as (1-porosity), and is equivalent to the relative density.
  • the intermediate layer 45 (insertion layer) can be formed in a thin layer on the electrode layer 44 while covering the electrode layer 44.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, more preferably about 4 ⁇ m to 25 ⁇ m. With such a thickness, it is possible to ensure sufficient performance while reducing the cost by reducing the amount of expensive intermediate layer material used.
  • Examples of the material of the intermediate layer 45 include YSZ (yttria-stabilized zirconia), SSZ (scandium-stabilized zirconia), GDC (gadlium-doped ceria), YDC (yttrium-doped ceria), SDC (samarium-doped ceria). Ceria) or the like can be used. In particular, ceria-based ceramics are preferably used.
  • the intermediate layer 45 is formed by a low-temperature baking method (for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition). It is preferably formed by a method such as a method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method.
  • a low-temperature baking method for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition. It is preferably formed by a method such as a method such as a powder
  • the intermediate layer 45 can be obtained without using firing in a high temperature range higher than 1100 ° C., for example. Therefore, elemental interdiffusion between the metal support 32 and the electrode layer 44 can be suppressed without damaging the metal support 32, and an electrochemical element E having excellent durability can be realized. Further, it is more preferable to use a low-temperature baking method because handling of raw materials becomes easy.
  • the intermediate layer 45 preferably has oxygen ion (oxide ion) conductivity. Further, it is more preferable to have mixed conductivity of oxygen ions (oxide ions) and electrons. The intermediate layer 45 having these properties is suitable for application to the electrochemical element E.
  • the electrolyte layer 46 is formed in a thin layer on the intermediate layer 45 while covering the electrode layer 44 and the intermediate layer 45. Moreover, it can also form in the state of a thin film whose thickness is 10 micrometers or less. Specifically, as shown in FIG. 4, the electrolyte layer 46 is provided over (stranding) the intermediate layer 45 and the metal support 32. By comprising in this way and joining the electrolyte layer 46 to the metal support body 32, the whole electrochemical element can be made excellent in robustness.
  • the electrolyte layer 46 is provided in a region on the front side surface of the metal support 32 that is larger than the region in which the through space is provided. That is, the through space is formed inside the region of the metal support 32 where the electrolyte layer 46 is formed.
  • gas leakage from the electrode layer 44 and the intermediate layer 45 can be suppressed around the electrolyte layer 46.
  • gas is circulated from the back side of the metal support 32 to the electrode layer 44 through the through space when the SOFC is operated.
  • gas leakage can be suppressed without providing another member such as a gasket.
  • the entire periphery of the electrode layer 44 is covered with the electrolyte layer 46, but the electrolyte layer 46 may be provided above the electrode layer 44 and the intermediate layer 45, and a gasket or the like may be provided around the electrode layer 44.
  • YSZ yttria stabilized zirconia
  • SSZ scandium stabilized zirconia
  • GDC gadolinium doped ceria
  • YDC yttrium doped ceria
  • SDC sinarium doped ceria
  • An electrolyte material that conducts oxygen ions such as LSGM (strontium / magnesium-added lanthanum gallate), or an electrolyte material that conducts hydrogen ions, such as a perovskite oxide, can be used.
  • LSGM sinrontium / magnesium-added lanthanum gallate
  • hydrogen ions such as a perovskite oxide
  • zirconia ceramics are preferably used.
  • the operating temperature of the SOFC using the electrochemical element E can be made higher than that of ceria ceramics and various hydrogen ion conductive materials.
  • the material of the electrolyte layer 46 is made of a material such as YSZ that can exhibit high electrolyte performance even in a high temperature range of about 650 ° C. or higher.
  • the electrolyte layer 46 is formed by a low-temperature baking method (for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range exceeding 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition). It is preferably formed by a method such as a method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method.
  • a low-temperature baking method for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range exceeding 1100 ° C.
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition. It is preferably formed by a method such as a method such as a
  • a dense electrolyte layer 46 having high gas tightness and gas barrier properties can be obtained without using baking in a high temperature range exceeding 1100 ° C., for example. Therefore, damage to the metal support 32 can be suppressed, elemental interdiffusion between the metal support 32 and the electrode layer 44 can be suppressed, and an electrochemical element E excellent in performance and durability can be realized.
  • a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a spray coating method because a dense electrolyte layer having a high gas tightness and gas barrier property can be easily obtained in a low temperature range.
  • the electrolyte layer 46 is densely configured to shield the gas leakage of the anode gas and the cathode gas and to exhibit high ionic conductivity.
  • the density of the electrolyte layer 46 is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the density is preferably 95% or more, and more preferably 98% or more.
  • the electrolyte layer 46 is configured in a plurality of layers, it is preferable that at least a part of the electrolyte layer 46 includes a layer (dense electrolyte layer) having a density of 98% or more, and 99% It is more preferable that the above layer (dense electrolyte layer) is included.
  • the reaction preventing layer 47 can be formed on the electrolyte layer 46 in a thin layer state.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, more preferably about 3 ⁇ m to 15 ⁇ m. With such a thickness, it is possible to secure sufficient performance while reducing the cost by reducing the amount of expensive reaction preventing layer material used.
  • the material of the reaction preventing layer 47 may be any material that can prevent the reaction between the component of the electrolyte layer 46 and the component of the counter electrode layer 48. For example, a ceria material or the like is used.
  • the material for the reaction preventing layer 47 a material containing at least one element selected from the group consisting of Sm, Gd and Y is preferably used. Note that it is preferable that at least one element selected from the group consisting of Sm, Gd, and Y is contained, and the total content of these elements is 1.0% by mass or more and 10% by mass or less.
  • reaction preventing layer 47 is formed by appropriately using a method that can be formed at a processing temperature of 1100 ° C. or less, damage to the metal support 32 is suppressed, and element interdiffusion between the metal support 32 and the electrode layer 44 is suppressed. Can be suppressed, and an electrochemical element E excellent in performance and durability can be realized.
  • low-temperature firing methods for example, wet methods using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
  • spray coating methods thermal spraying method, aerosol deposition method, aerosol gas deposition method, powder
  • a PVD method a sputtering method, a pulse laser deposition method, or the like
  • CVD method or the like
  • it is preferable to use a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the counter electrode layer 48 can be formed as a thin layer on the electrolyte layer 46 or the reaction preventing layer 47.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to secure sufficient electrode performance while reducing the cost by reducing the amount of expensive counter electrode layer material used.
  • the material of the counter electrode layer 48 for example, composite oxides such as LSCF and LSM, ceria-based oxides, and mixtures thereof can be used.
  • the counter electrode layer 48 preferably includes a perovskite oxide containing two or more elements selected from the group consisting of La, Sr, Sm, Mn, Co, and Fe.
  • the counter electrode layer 48 formed using the above materials functions as a cathode.
  • the counter electrode layer 48 is formed by appropriately using a method that can be formed at a processing temperature of 1100 ° C. or less, so that damage to the metal support 32 is suppressed, and the elements of the metal support 32 and the electrode layer 44 are suppressed.
  • the interdiffusion can be suppressed, and an electrochemical element E excellent in performance and durability can be realized, which is preferable.
  • low-temperature firing methods for example, wet methods using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
  • spray coating methods thermal spraying method, aerosol deposition method, aerosol gas deposition method, powder
  • a method such as a jet deposition method, a particle jet deposition method, or a cold spray method
  • a PDV method a sputtering method, a pulse laser deposition method, etc.
  • CVD method or the like
  • it is preferable to use a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the electrochemical element E is used as a power generation cell of the solid oxide fuel cell.
  • a fuel gas containing hydrogen is circulated from the back surface of the metal support 32 through the through space to the electrode layer 44, and air is circulated to the counter electrode layer 48 which is the counter electrode of the electrode layer 44. Operate at a temperature below °C.
  • oxygen O 2 contained in the air reacts with electrons e ⁇ in the counter electrode layer 48 to generate oxygen ions O 2 ⁇ .
  • the oxygen ions O 2 ⁇ move through the electrolyte layer 46 to the electrode layer 44.
  • hydrogen H 2 contained in the circulated fuel gas reacts with oxygen ions O 2 ⁇ to generate water H 2 O and electrons e ⁇ .
  • hydrogen H 2 contained in the fuel gas circulated in the electrode layer 44 releases electrons e ⁇ to generate hydrogen ions H + .
  • the hydrogen ions H + move to the counter electrode layer 48 through the electrolyte layer 46.
  • oxygen O 2 contained in the air reacts with hydrogen ions H + and electrons e ⁇ to produce water H 2 O. Due to the above reaction, an electromotive force is generated between the electrode layer 44 and the counter electrode layer 48.
  • the electrode layer 44 functions as an SOFC fuel electrode (anode)
  • the counter electrode layer 48 functions as an air electrode (cathode).
  • the electrode layer 44 is formed in a thin film in a region wider than a region where the through space on the front surface of the metal support 32 is provided.
  • the through hole of the metal support 32 can be provided by laser processing or the like.
  • the electrode layer 44 is formed by a low temperature baking method (wet method in which baking is performed in a low temperature region of 1100 ° C.
  • a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method can be used.
  • a thermal spraying method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method
  • a PVD method such as a sputtering method or a pulse laser deposition method
  • CVD method a chemical vapor deposition method
  • the electrode layer forming step is performed by a low temperature firing method, specifically, it is performed as in the following example.
  • the material powder of the electrode layer 44 and a solvent (dispersion medium) are mixed to prepare a material paste, which is applied to the front side surface of the metal support 32.
  • the electrode layer 44 is compression-molded (electrode layer smoothing step) and fired at 1100 ° C. or lower (electrode layer firing step).
  • the compression molding of the electrode layer 44 can be performed by, for example, CIP (Cold Isostatic Pressing) molding, roll press molding, RIP (Rubber Isostatic Pressing) molding, or the like.
  • the electrode layer is preferably fired at a temperature of 800 ° C. or higher and 1100 ° C. or lower.
  • the order of the electrode layer smoothing step and the electrode layer firing step can be interchanged.
  • the electrode layer smoothing step and the electrode layer firing step are omitted, or the electrode layer smoothing step and the electrode layer firing step are described later. It can also be included in the layer firing step.
  • the electrode layer smoothing step can also be performed by lapping, leveling, surface cutting / polishing, or the like.
  • a metal oxide layer (diffusion suppression layer) is formed on the surface of the metal support 32.
  • the firing process includes a firing process in which the firing atmosphere is an atmospheric condition with a low oxygen partial pressure, a high-quality metal oxide layer (diffusion restraining layer) that has a high element interdiffusion suppression effect and a low resistance value. ) Is preferable.
  • a separate diffusion suppression layer forming step may be included, including the case where the electrode layer forming step is a coating method without firing. In any case, it is desirable to carry out at a processing temperature of 1100 ° C. or lower that can suppress damage to the metal support 32.
  • a metal oxide layer (diffusion suppression layer) may be formed on the surface of the metal support 32 during the firing step in the intermediate layer forming step described later.
  • the intermediate layer 45 is formed in a thin layer on the electrode layer 44 so as to cover the electrode layer 44.
  • the intermediate layer 45 is formed by a low-temperature baking method (wet method in which baking is performed in a low temperature region of 1100 ° C. or lower), a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method can be used. Whichever method is used, it is desirable to carry out at a temperature of 1100 ° C. or lower in order to suppress the deterioration of the metal support 32.
  • the intermediate layer forming step is performed by a low-temperature firing method, specifically, it is performed as in the following example.
  • the material powder of the intermediate layer 45 and a solvent (dispersion medium) are mixed to prepare a material paste, which is applied to the surface on the front side of the metal support 32.
  • the intermediate layer 45 is compression-molded (intermediate layer smoothing step) and fired at 1100 ° C. or less (intermediate layer baking step).
  • the rolling of the intermediate layer 45 can be performed by, for example, CIP (Cold Isostatic Pressing) molding, roll pressing molding, RIP (Rubber Isostatic Pressing) molding, or the like. Further, it is preferable that the intermediate layer 45 is fired at a temperature of 800 ° C.
  • the intermediate layer 45 having high strength can be formed while suppressing damage and deterioration of the metal support 32.
  • the firing of the intermediate layer 45 is more preferably performed at 1050 ° C. or less, and further preferably performed at 1000 ° C. or less. This is because the electrochemical element E can be formed while the damage / deterioration of the metal support 32 is further suppressed as the firing temperature of the intermediate layer 45 is lowered. Further, the order of the intermediate layer smoothing step and the intermediate layer firing step can be switched.
  • the intermediate layer smoothing step can also be performed by lapping, leveling, surface cutting / polishing, or the like.
  • the electrolyte layer 46 is formed in a thin layer on the intermediate layer 45 while covering the electrode layer 44 and the intermediate layer 45. Moreover, you may form in the state of a thin film whose thickness is 10 micrometers or less. As described above, the electrolyte layer 46 is formed by a low-temperature firing method (wet method in which a firing process is performed at a low temperature of 1100 ° C.
  • a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method can be used.
  • a thermal spraying method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, A method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method
  • a PVD method such as a sputtering method or a pulse laser deposition method
  • CVD method a chemical vapor deposition method
  • electrolyte layer 46 In order to form a high-quality electrolyte layer 46 that is dense, airtight, and has high gas barrier performance in a temperature range of 1100 ° C. or lower, it is desirable to perform the electrolyte layer forming step by a spray coating method. In that case, the material of the electrolyte layer 46 is sprayed toward the intermediate layer 45 on the metal support 32 to form the electrolyte layer 46.
  • reaction prevention layer formation step In the reaction preventing layer forming step, the reaction preventing layer 47 is formed on the electrolyte layer 46 in a thin layer state. As described above, the reaction prevention layer 47 is formed by a low temperature baking method (wet method in which baking is performed in a low temperature region of 1100 ° C. or lower), a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method). , Powder jet deposition methods, particle jet deposition methods, cold spray methods, etc.), PVD methods (sputtering methods, pulsed laser deposition methods, etc.), CVD methods, etc. can be used. Whichever method is used, it is desirable to carry out at a temperature of 1100 ° C.
  • a low temperature baking method wet method in which baking is performed in a low temperature region of 1100 ° C. or lower
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method.
  • a leveling process or a surface cutting / polishing process may be performed after the formation of the reaction preventing layer 47, or a press working may be performed after the wet formation and before firing. Good.
  • the counter electrode layer 48 is formed in a thin layer on the reaction preventing layer 47.
  • the counter electrode layer 48 is formed by a low-temperature baking method (wet method in which baking is performed in a low temperature region of 1100 ° C. or lower), a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method). , Powder jet deposition methods, particle jet deposition methods, cold spray methods, etc.), PVD methods (sputtering methods, pulsed laser deposition methods, etc.), CVD methods, etc. can be used. Whichever method is used, it is desirable to carry out at a temperature of 1100 ° C. or lower in order to suppress the deterioration of the metal support 32.
  • the electrochemical element E can be manufactured as described above.
  • the intermediate layer 45 (insertion layer) and the reaction preventing layer 47 may be provided with either one or both. That is, a form in which the electrode layer 44 and the electrolyte layer 46 are formed in contact with each other, or a form in which the electrolyte layer 46 and the counter electrode layer 48 are formed in contact with each other is possible.
  • the intermediate layer forming step and the reaction preventing layer forming step are omitted. Note that a step of forming another layer can be added, or a plurality of layers of the same type can be stacked. In any case, it is preferable to perform the step at a temperature of 1100 ° C. or lower.
  • electrochemical element E comprised as mentioned above is comprised as the electrochemical module M, and when it makes an electrochemical element function as a fuel cell (electrochemical power generation cell), it operate
  • the electrochemical element E is arranged in parallel with the gas manifold 17 in a state where the plurality of electrochemical elements E are electrically connected via the current collecting member 26 and the adhesive 29. Is done.
  • the lower end ED (the lower end in the drawing in FIG. 5) opposite to the upper end EU provided with the lid 34 and the reaction exhaust gas outlet 37 is fixed to the gas manifold 17.
  • the gas manifold 17 distributes the reformed gas to the reformed gas inlet 35.
  • the electrochemical element E is maintained at an operating temperature of about 700 ° C.
  • the divided body 70 extends from the lower end ED to the upper end EU where the reaction exhaust gas discharge port 37 is provided. However, the divided body 70 is formed to extend to a position separated from the reaction exhaust gas discharge port 37 so as not to contact the reaction exhaust gas discharge port 37 to such an extent that the gas discharge from the reaction exhaust gas discharge port 37 is not hindered. It is preferable.
  • the reformed gas circulated through the reformed gas inlet 35 flows toward the reaction exhaust gas outlet 37 through the plurality of divided flow paths A formed in the reformed gas flow passage 36. On the way, a part of the reformed gas flows out from the inside to the outside of the cylindrical support 31 through the through hole 38 and reaches the electrode layer 44 of the electrochemical reaction unit 43.
  • the reformed gas flowing through the plurality of divided flow paths A is, as shown in FIG. 8 described above, the reformed gas at any point including the center and both ends in the short direction of the cylindrical support 31. The flow rate is almost constant.
  • the amount of the reformed gas circulated from the divided flow path A to the electrochemical reaction section 43 through the through-hole 38 of the cylindrical support 31 at a plurality of points in the short direction of the cylindrical support 31. Can be almost constant.
  • the air circulated from the blower 5 to the storage container 10 reaches the gas supply space S of the electrochemical element E. Air from the gas supply space S reaches the counter electrode layer 48 of the electrochemical reaction unit 43 through the current collecting member 26 and the adhesive 29 or directly from the side of the electrochemical reaction unit 43.
  • oxygen O 2 contained in the air reacts with electrons e ⁇ in the counter electrode layer 48 to generate oxygen ions O 2 ⁇ .
  • the oxygen ions O 2 ⁇ move through the electrolyte layer 46 to the electrode layer 44.
  • hydrogen H 2 contained in the circulated reformed gas reacts with oxygen ions O 2 ⁇ to generate water H 2 O and electrons e ⁇ .
  • carbon monoxide CO contained in the reformed gas that has been circulated reacts with oxygen ions O 2 ⁇ to generate carbon dioxide CO 2 and electrons e ⁇ . Due to the above reaction, an electromotive force is generated between the electrode layer 44 and the counter electrode layer 48.
  • the current collecting member 26 is connected to the counter electrode layer 48 of one electrochemical reaction portion 43 through the adhesive 29, and the current collecting member 26 contacts the back surface 39 of the other cylindrical support 31. Since the plurality of electrochemical elements E are connected in series in this way, a voltage obtained by adding the electromotive forces generated in the electrochemical elements E is generated in the current extraction unit 28.
  • the reformed gas that has reached the end of the reformed gas flow section 36 is discharged as a reaction exhaust gas from the reaction exhaust gas outlet 37 to the outside of the electrochemical element E together with the remaining hydrogen gas that has not been consumed in the electrochemical reaction section 43. Is done.
  • the reaction exhaust gas discharged from the reaction exhaust gas outlet 37 is mixed with the air circulated from the blower 5 to the storage container 10 and burned in the combustion section 6 near the reaction exhaust gas outlet 37 to heat the reformer 4. To do.
  • the reformed gas has a substantially constant flow velocity at any plurality of points in the short direction of the cylindrical support 31 due to the rectifying action caused by flowing along the plurality of divided flow paths A.
  • the amount of the reformed gas flowing through the electrochemical reaction unit 43 is substantially constant.
  • the reformed gas when the reformed gas is flowing through the reformed gas flow section 36 and the flow velocity of the reformed gas is different between the both ends in the short direction of the cylindrical support 31 and the central portion, As the longitudinal direction progresses, the flow of the reformed gas from the both ends with a slow flow rate to the electrode layer 44 becomes insufficient, the concentration of the reformed gas in the gas decreases, and the electrode layer 44 deteriorates by oxidation.
  • the reformed gas in the central portion in the short direction, the reformed gas is discharged from the reaction exhaust gas discharge port 37 at the upper end EU of the electrochemical element E without being used in the electrode layer 44. That is, the reformed gas having a high concentration is discharged from the reaction exhaust gas outlet 37.
  • the flow rate of the reformed gas is substantially constant at any of a plurality of points in the short direction of the cylindrical support 31, so that the electrochemical reaction is suppressed according to the point where the flow rate is slow. Therefore, the power generation efficiency of the electrochemical element E can be improved. That is, the amount of the reformed gas used in the electrode layer 44 can be increased to increase the utilization rate of the reformed gas.
  • the power generation efficiency is proportional to the product of the cell voltage of the electrochemical module M and the utilization rate of the reformed gas. Therefore, power generation efficiency can be improved by increasing the utilization rate of the reformed gas.
  • the electrochemical reaction part 43 is formed on the substantially entire surface of the metal support 32.
  • the electrochemical reaction part 43 may be divided
  • one electrochemical reaction part 43 is formed extending in the longitudinal direction corresponding to one divided flow path A, and separated from one electrochemical reaction part 43 corresponding to another divided flow path A.
  • Another electrochemical reaction part 43 may be formed extending in the longitudinal direction.
  • the electrochemical reaction part 43 is easier than forming the electrochemical reaction part 43 for each divided flow path A separately. Can be formed.
  • a plurality of through holes 38 are formed in the metal support 32 (# 1).
  • the through hole 38 can be formed by, for example, laser processing.
  • the metal support 32 is selectively provided with the gas flow allowing portion P2 (hole region P2) and the gas flow prohibiting portion P1.
  • an electrochemical reaction part 43 is provided so as to cover the entire hole region P2 of the metal support 32 (# 2).
  • the electrochemical reaction unit 43 is provided in the order of the electrode layer 44, the intermediate layer 45, the electrolyte layer 46, the reaction preventing layer 47, and the counter electrode layer 48. These are all formed on the metal support 32 in the form of a film. Formation of the electrochemical reaction part 43 can be appropriately performed using a wet method such as printing or spraying, an aerosol deposition method, a thermal spraying method, a sputtering method, a pulse laser deposition method, or the like.
  • the U-shaped member 33 is joined to the metal support 32, and the divided body 70 is inserted into the reformed gas flow section 36 formed by the U-shaped member 33 and the metal support 32 (# 3).
  • the lid portion 34 in which the reaction exhaust gas discharge port 37 is formed in advance is joined to the U-shaped member 33 and the metal support 32 (# 4).
  • an appropriate method such as welding can be used.
  • the electrochemical reaction part 43 is disposed on the cylindrical support 31 having an internal space that is the reformed gas flow part 36.
  • the electrochemical reaction unit 43 may not be supported by the cylindrical support 31.
  • the U-shaped member 33 may be omitted from the cylindrical support 31 and only the metal support 32 (second plate-like body) may be provided.
  • an electrochemical reaction portion 43 is disposed on the upper surface 32a of the metal support 32.
  • a divided body 70 (first plate-like body) having a plurality of divided flow paths A and B is disposed on the lower surface 32 b of the metal support body 32, and the crest portion 71 of the divided body 70 and the metal support body 32.
  • the lower surface 32b is in contact.
  • the metal support (second plate-like body) 32 and the divided body (first plate-like body) 70 constitute a plate-like support.
  • the divided flow path A and the gas manifold 17 are connected to the divided flow path A so that the reformed gas flows from the gas manifold 17. Therefore, in the divided flow path A, the reformed gas flows from the lower end ED toward the upper end EU.
  • the divided flow path A and the electrode layer 44 face each other through the metal support 32, and the reformed gas flowing through the divided flow path A is circulated to the electrode layer 44 through the through hole 38 of the metal support 32.
  • air flows from the blower 5 to the divided flow path B, and air flows from the lower end ED toward the upper end EU.
  • the current collecting member 26 is bonded to the surface opposite to the metal support 32 among the front and back surfaces of the electrochemical reaction portion 43 by the adhesive 29.
  • a plurality of electrochemical elements E are arranged in parallel in a state where the current collecting member 26 of one electrochemical element E1 and the divided body 70 of another electrochemical element E2 are in contact with each other or are joined by welding or the like. ing.
  • the current collecting member 26 of one electrochemical element E1 is in contact with the divided flow path B of the divided body 70 of another electrochemical element E2.
  • the current collecting member 26 and the adhesive 29 have gas permeability, and air flowing through the divided flow path B of the divided body 70 of another electrochemical element E2 is applied to the counter electrode layer 48 of one electrochemical element E1. Distributed. With such a configuration, the reformed gas and air are circulated through the electrochemical reaction unit 43 to cause an electrochemical reaction, and power generation is performed.
  • FIG. 10 shows an example in which the electrochemical element E1 and another electrochemical element E2 are connected via the current collecting member 26, the current collecting member 26 may be omitted. Also in this case, air flows from the blower 5 (FIG. 1) to the divided flow path B, and air flows from the lower end ED toward the upper end EU.
  • each divided body 70 since the peak portion 71 of the mountain and the lower surface 32b of the metal support 32 are in contact with each other, the plurality of flow paths are completely divided to form the divided flow paths A.
  • each divided flow path does not need to be completely divided.
  • the crest portion 71 of the divided body 70 at the left end portion and the crest portion 71 of the divided body 70 at the right end portion and the lower surface 32b of the metal support 32 are in contact with each other to form a space.
  • the crests and valleys of the divided body 70 may form a plurality of flow paths that can communicate with each other in the space.
  • the division body 70 extends along the longitudinal direction of the electrochemical element E, and thereby the peaks and valleys of the division body 70 extend along the longitudinal direction of the electrochemical element E.
  • the divided body 70 is a corrugated plate.
  • the shape of the divided body 70 is not limited to this, and may be a divided body 70 having a divided flow path A having a trapezoidal cross-sectional shape as shown in FIG. 11, for example.
  • peaks and valleys are alternately formed in a cross-sectional view, and the top surface 74 and the bottom surface 75 of the valley are straight lines parallel to each other. Are connected to each other by a slope 76.
  • the divided flow paths A and the divided flow paths B are alternately formed as shown in FIG.
  • the width d3 of the divided flow path A and the width d4 of the divided flow path B may be substantially the same, or the width d3 may be larger than the width d4.
  • the width d3 is large, it is preferable that the amount of the reformed gas flowing in the divided flow path A can be increased and the power generation efficiency can be increased.
  • a divided body 70 having a U-shaped divided flow path A whose upper side is opened in a sectional view may be used.
  • a plurality of vertical walls 78 extending upward with respect to the bottom wall 77 are formed in a sectional view.
  • a divided flow path A is formed between adjacent vertical walls 78.
  • a plurality of divided flow paths A extending in the longitudinal direction of the cylindrical support 31 are formed in the reformed gas flow section 36 by a space surrounded by the lower surface 32 b of the metal support 32 and the divided body 70. Is done.
  • the division body 70 which has flow paths, such as rectangular shape, square shape, and triangular shape, may be sufficient as the shape of a cross-sectional view.
  • the crest portion 71 of the divided body 70 is in contact with the lower surface 32 b of the metal support body 32, and the trough bottom portion 73 is a modification of the U-shaped member 33. It is in contact with the bottom surface 33 a that faces the gas passing portion 36. That is, all the divided flow paths A are separated from each other. However, if a certain amount of rectifying action is ensured by the flow of the reformed gas along the plurality of divided flow paths A, the peak 70 of the divided body 70 and the lower surface 32b of the metal support 32 are interposed between them. A gap may be formed at least in part. In this case, although the plurality of divided flow paths A are formed by the peaks and valleys of the divided body 70, at least some of the divided flow paths A communicate with each other in the gap, and each is completely separated. is not.
  • a gap may be formed between the crest portion 71 of the divided body 70 and the lower surface 32b of the metal support body 32. Further, in the divided flow path A located at both ends in the flow crossing direction, the crest portion 71 of the divided body 70 and the lower surface 32b of the metal support 32 are in contact with each other. A gap may be formed between the crest portion 71 of the body 70 and the lower surface 32 b of the metal support 32.
  • the reformed gas flows through the plurality of divided flow paths A in the reformed gas flow section 36, so It is guided along each and flows. Therefore, due to the rectifying action caused by flowing through the plurality of divided flow paths A, the amount of gas flowing through the electrochemical reaction unit 43 is substantially constant at any plurality of points including the center and both ends in the flow crossing direction.
  • the power generation efficiency can be improved by improving the reaction efficiency of the electrochemical reaction of the electrochemical element E.
  • the divided body 70 extends in substantially the same shape in the longitudinal direction of the cylindrical support 31.
  • the divided body 70 may be formed so that the shape changes at an arbitrary position in the longitudinal direction.
  • the divided body 70 is formed by connecting, for example, two different shaped divided flow paths in the longitudinal direction. Yes.
  • the divided body 70a on the front side of the paper surface and the divided body 70b on the back side of the paper surface are approximately 180 ° out of phase in the cross-sectional view of the peaks and valleys of each divided body 70a.
  • the divided flow paths B1, B2, B3, and B4 of the divided body 70a are arranged in association with, for example, the divided flow paths A1a, A2a, A3a, and A4a of the divided body 70b. Therefore, the reformed gas that has flowed along the divided flow path B1 of the divided body 70a is sent to the divided flow path A1a of the divided body 70b and flows along the divided flow path A1a. Similarly, the reformed gas that has flowed along the divided flow paths B2, B3, and B4 of the divided body 70a is sent to the divided flow paths A2a, A3a, and A4a of the divided body 70b, and then into the divided flow paths A2a, A3a, and A4a. Flowing along.
  • the divided flow paths A1, A2, A3, and A4 of the divided body 70a are arranged in association with, for example, the divided flow paths B1a, B2a, B3a, and B4a of the divided body 70b. Therefore, the reformed gas that flows along the divided flow paths A1, A2, A3, and A4 of the divided body 70a is sent to the divided flow paths B1a, B2a, B3a, and B4a of the divided body 70b, and the divided flow paths B1a, B2a. , B3a and B4a.
  • the reformed gas flowing in the divided flow path B separated from the metal support 32 in the divided body 70a is converted into the metal support in the divided body 70b. It can be made to flow through the divided flow path Aa facing 32.
  • the reformed gas that has not been circulated through the electrochemical reaction unit 43 by flowing through the divided flow path B of the divided body 70a is caused to flow into the divided flow path Aa of the divided body 70b, and the metal support is then supplied from the divided flow path Aa. It is possible to circulate to the electrochemical reaction unit 43 via 32.
  • the amount of the reformed gas used in the electrode layer 44 can be increased to increase the utilization rate of the reformed gas, and the power generation efficiency can be improved. That is, in the electrode layer 44, the reformed gas concentration is appropriately adjusted between the end of the lower end ED on the side of the reformed gas inlet 35 and the end of the upper end EU of the electrochemical element E on the side of the reaction exhaust gas outlet 37. This also makes it possible to prevent a reduction in reaction efficiency due to a shortage of reformed gas at the end portion on the reaction exhaust gas discharge port 37 side, which was the problem.
  • the reformed gas is circulated from the divided flow path A to the electrochemical reaction section 43, so that the electrochemical reaction section 43 becomes high temperature along the divided flow path A.
  • the reformed gas is not circulated from the divided flow path B that does not face the electrochemical reaction section 43, it is possible to suppress an increase in the temperature of the electrochemical reaction section 43 along the divided flow path B.
  • the electrochemical reaction part 43 along the division flow path Aa becomes high temperature
  • the high temperature of the electrochemical reaction part 43 along the division flow path Ba is suppressed. Therefore, since the area
  • the part from which the division body 70 differs in a shape in the longitudinal direction may be provided in two or more places in the longitudinal direction.
  • the phase of one waveform adjacent to each other in the longitudinal direction is different from the phase of the other waveform by approximately 180 °.
  • the peaks and valleys are formed so that the width between the tops 71 of the adjacent peaks is substantially constant, but the present invention is not limited to this.
  • the width d1 between the peak portions 71 of the peaks may be varied according to the flow rate of the reformed gas.
  • the width d1 between the crests 71 may be increased.
  • the reformed gas flow portion 36 of the cylindrical support 31 is connected to the gas manifold 17, and the reformed gas is circulated through both the divided flow path A and the divided flow path B.
  • the divided flow path B is separated from the electrochemical reaction unit 43 and cannot pass the reformed gas to the electrochemical reaction unit 43. Therefore, only the divided flow path A may be connected to the gas manifold 17 and the reformed gas may be circulated only in the divided flow path A. Further, the opening of the divided flow path B may be blocked so that the reformed gas does not flow into the divided flow path B. Thereby, the quantity of the reformed gas which is not circulated through the electrochemical reaction unit 43 and is not used for power generation can be reduced.
  • the electrochemical reaction unit 43 has the electrode layer 44, the intermediate layer 45, the electrolyte layer 46, the reaction prevention layer 47 and the counter electrode layer 48, and is laminated on the metal support 32 in this order. Is done. However, the stacking order may be reversed. For example, the electrochemical reaction unit 43 may be laminated on the metal support 32 in the order of the counter electrode layer 48, the reaction preventing layer 47, the electrolyte layer 46, the intermediate layer 45 and the electrode layer 44.
  • the electrochemical reaction part 43 is formed on the surface of the cylindrical support 31 (the upper surface 32a of the metal support 32 (second plate-like body) in FIG. 4).
  • the electrochemical reaction part 43 may be disposed in the reformed gas flow part 36 (internal flow path) and formed on the surface opposite to the surface of the cylindrical support 31.
  • the through hole 38 is provided in the metal support 32 as shown in FIG.
  • the U-shaped member 33 may be provided with a through hole.
  • both the metal support body 32 and the U-shaped member 33 may be provided with through holes.
  • the reformed gas flowing through the divided flow path A is circulated to the electrode layer 44 through the through hole of the metal support 32, and the air flowing through the divided flow path B is passed through the through hole formed in the U-shaped member 33.
  • the air flowing through the divided flow path B is passed through the through hole formed in the U-shaped member 33.
  • the divided body 70 is formed of a series of corrugated plates.
  • the divided body 70 does not need to be formed from a series of corrugated plates.
  • individually divided longitudinally extending flow paths that use the reformed gas as respective flows may be arranged as the divided bodies 70 in the reformed gas flow section 36.
  • the through hole 38 is formed in the metal support 32.
  • an opening may be provided in the metal support 32 and a gas permeable member may be fitted into the opening.
  • a metal or metal oxide having conductivity and gas impermeability which is the same material as that of the above-described embodiment, is used.
  • a material having conductivity and gas permeability is used for the gas permeable member.
  • a porous metal or a metal oxide is used. The region where the gas permeable portion of the metal support 32 is fitted becomes the gas flow allowing portion P2, and the region of the frame forming the opening of the metal support 32 becomes the gas flow prohibiting portion P1.
  • the reaction efficiency of the electrochemical reaction of the electrochemical element E is improved and the power generation efficiency is improved. it can.
  • the reaction efficiency of the electrochemical reaction of the electrochemical element E can be improved by using the electrochemical element E of the above embodiment for a solid oxide electrolytic cell, an oxygen sensor using a solid oxide, or the like. .
  • the amount of the reformed gas used in the electrode layer 44 can be increased to increase the utilization rate of the reformed gas, and the efficiency of converting chemical energy such as fuel into electric energy can be improved.
  • the electrochemical reaction unit 43 is operated as a fuel cell, hydrogen gas is circulated through the electrode layer 44, and oxygen gas is circulated through the counter electrode layer 48. Then, oxygen molecules O 2 react with electrons e ⁇ in the counter electrode layer 48 to generate oxygen ions O 2 ⁇ . The oxygen ions O 2 ⁇ move through the electrolyte layer 46 to the electrode layer 44. In the electrode layer 44, the hydrogen molecules H 2 react with the oxygen ions O 2 ⁇ to generate water H 2 O and electrons e ⁇ . Due to the above reaction, an electromotive force is generated between the electrode layer 44 and the counter electrode layer 48 to generate power.
  • the electrochemical reaction unit 43 when the electrochemical reaction unit 43 is operated as an electrolytic cell, a gas containing water vapor or carbon dioxide is circulated through the electrode layer 44, and a voltage is applied between the electrode layer 44 and the counter electrode layer 48. Then, in the electrode layer 44, electrons e ⁇ react with water molecules H 2 O and carbon dioxide molecules CO 2 to form hydrogen molecules H 2 , carbon monoxide CO, and oxygen ions O 2 ⁇ . Oxygen ions O 2 ⁇ move through the electrolyte layer 46 to the counter electrode layer 48. In the counter electrode layer 48, oxygen ions O 2 ⁇ emit electrons and become oxygen molecules O 2 .
  • water molecule H 2 O is electrolyzed into hydrogen monoxide CO and oxygen O 2 when gas containing carbon dioxide molecule CO 2 is circulated into hydrogen H 2 and oxygen O 2. .
  • the fuel supply unit allows hydrocarbons and the like generated by the fuel converter to be distributed to the electrochemical reaction unit 43, or taken out of the system / device and used separately as fuel or chemical raw material.
  • the electrochemical module M (a part of the electrochemical device 100) includes a plurality of electrochemical elements E, a gas manifold 17, and a gas manifold 171.
  • the plurality of electrochemical elements E are arranged in parallel while being electrically connected to each other, one end (lower end) of the electrochemical element E is fixed to the gas manifold 17, and the other end ( The upper end is fixed to the gas manifold 171.
  • At one end (lower end) of the electrochemical element E at least one of the plurality of divided flow paths A and the plurality of divided flow paths B is supplied with water vapor and carbon dioxide. Then, the above-described reaction occurs in the electrochemical reaction portion 43 of the electrochemical element E.
  • the heat exchanger 24 in FIG. 17 is operated as an exhaust heat utilization unit that exchanges and vaporizes the reaction heat generated by the reaction that occurs in the fuel converter 25 and water, and the heat exchanger 23 in FIG. Energy efficiency can be improved by adopting a configuration in which the exhaust heat generated by the chemical element E is exchanged with water vapor and carbon dioxide so as to operate as an exhaust heat utilization unit for preheating.
  • the power converter 93 distributes power to the electrochemical element E.
  • the electrochemical element E acts as an electrolytic cell as described above. Therefore, according to the said structure, the electrochemical apparatus 100, energy system Z, etc. which can improve the efficiency which converts electrical energy into chemical energy, such as a fuel, can be provided.
  • the plate-like support is composed of a metal support (second plate-like body) 32 and a divided body (first plate-like body) 70.
  • the metal support body (second plate-like body) 32 and the divided body (first plate-like body) 70 may be composed of separate plate-like bodies, or as shown in FIG. You may be comprised from this plate-shaped body.
  • the metal support 32 and the divided body 70 are overlapped by bending one plate-like body.
  • the metal support body 32 and the division body 70 are integrated by welding the peripheral part 1a.
  • the metal support body 32 and the division body 70 may be comprised from a series of seamless plate-shaped bodies, and may be shape
  • the division body 70 which is a 1st plate-shaped body may be comprised from one member, and may be comprised from two or more members.
  • the metal support body 32 which is a 2nd plate-shaped body may be comprised from one member, and may be comprised from two or more members.
  • the cylindrical support body 31 (plate-shaped support body) is formed of the U-shaped member (first plate-shaped body) 33 and the metal support body 32 (second plate-shaped body).
  • the reformed gas flow section (internal flow path) 36 has a divided body (first plate-shaped body, multiple flow path forming body) 70 that divides the reformed gas flow section 36 into a plurality of divided flow paths A.
  • the U-shaped member 33 (first plate-like body) and the metal support body 32 (second plate-like body) may be constituted by separate plate-like bodies, or the one described above. Or a series of plate-like bodies.
  • the U-shaped member 33 (first plate-shaped body), the metal support 32 (second plate-shaped body), and the divided body (first plate-shaped body, multiple flow path forming body) 70 are described above. You may be comprised from such one plate-shaped body or a series of plate-shaped bodies. Moreover, the U-shaped member 33 which is a 1st plate-shaped body may be comprised from one member, and may be comprised from two or more members. Moreover, although mentioned later, the division body 70 which is a 1st plate-shaped body may be comprised from one member, and may be comprised from two or more members. Furthermore, the metal support body 32 which is a 2nd plate-shaped body may be comprised from one member, and may be comprised from two or more members.
  • the divided body 70 divides the reformed gas flow section 36 into a plurality of divided flow paths A.
  • the divided body 70 extends along the longitudinal direction between the lower end ED and the upper end EU of the electrochemical element E, that is, the flow direction of the reformed gas.
  • the divided body 70 may be formed of a series of corrugated plate-like bodies between the lower end ED and the upper end EU, or may be composed of two or more corrugated plate-like bodies.
  • the divided body 70 may be composed of, for example, two or more corrugated plate-like bodies separated along the direction along the longitudinal direction, or two or more corrugated boards separated along the direction along the short side direction. You may be comprised from the plate-shaped object.
  • the divided body 70 is formed into a waveform by repeatedly forming peaks and valleys having the same shape.
  • the divided body 70 may have a plate-like portion.
  • the divided body 70 may be configured by alternately forming plate-like portions and protruding portions.
  • the projecting portion can be a portion through which a fluid such as reformed gas flows.
  • the above-described divided body 70 does not need to be formed in a corrugated shape on the entire surface, and at least a part of it may be formed in a corrugated shape.
  • part of the longitudinal direction of the divided body 70 may be a flat plate between the lower end ED and the upper end EU, and the remaining may be a corrugated plate.
  • the divided body 70 may be partly flat in the short-side direction, and the rest may be corrugated.
  • a part of the divided body 70 in FIG. 16 is formed in a corrugated plate shape and the rest is formed in a flat plate shape. As shown in FIG.
  • a flat plate portion PD is provided on the lower end ED side in the longitudinal direction, and a flat plate portion PU is provided on the upper end EU side in the longitudinal direction. 16 has a corrugated plate portion W between the flat plate portion PD and the flat plate portion PU.
  • the corrugated plate portion W divides the reformed gas flow section 36 into a plurality of divided flow paths A.
  • At least one structure 130 protruding from the flat plate portion PD is provided on the flat plate portion PD on the lower end ED side.
  • a plurality of structures 130 are provided.
  • the space between adjacent structures 130 is concave, and is formed as a concave flow path through which the reformed gas can pass. Therefore, the protruding structure 130 serves as a barrier that prevents the flow of the reformed gas, and pressure loss occurs in the flow of the reformed gas. Then, the reformed gas in a state where pressure loss is caused by the structure 130 passes through the concave flow path between the structures 130.
  • the structure 130 is substantially uniform from the flat plate portion PD to the plurality of divided flow paths A while temporarily storing the reformed gas introduced into the flat plate portion PD in the flat plate portion PD.
  • the distribution of the reformed gas flowing through each divided flow path A that is, the flow rate, flow rate, pressure, and the like of the reformed gas are substantially constant.
  • the electrochemical reaction portion the difference between the portion where the reformed gas is insufficient and the portion where the reformed gas is excessively passed is reduced, and the electrochemical reaction is performed in the entire electrochemical element, thereby reforming.
  • the reaction efficiency of the electrochemical device can be improved by improving the gas utilization rate.
  • the structural body 130 can also be provided on the flat plate portion PU on the upper end EU side.
  • FIG. 4 In FIG. 4, FIG. 6, FIG. 8, FIG. 10, and FIG. 15, the metal support 32 and the divided body 70 are in contact at a plurality of points, and the plurality of divided flow paths are completely fractionated.
  • An example is shown.
  • the metal support 32 and the divided body 70 are not in contact at a plurality of points and the plurality of flow paths are not completely fractionated, the flow velocity of the gas flowing through each flow path is It is only necessary to obtain a rectifying action that is substantially constant at any plurality of points.
  • the metal support 32 has a thickness in at least a part of the metal support 32 (second plate) of the cylindrical support 31 (plate support).
  • a plurality of through holes 38 penetrating in the direction are formed so as to be arranged in a matrix (FIG. 9 and the like).
  • independent holes extending along a direction substantially perpendicular to the thickness direction are formed instead of the plurality of through holes 38 penetrating the metal support 32 in the thickness direction. Also good. The independent hole penetrates the metal support 32 in the thickness direction at least at any point in the extending direction.
  • the independent hole extends in a direction substantially orthogonal to the thickness direction corresponding to each of the divided flow paths A, and penetrates the metal support 32 at at least one point in the extending direction. It communicates with the divided flow path A. And each independent hole is not connected with the adjacent independent hole.
  • a three-dimensional (network-like) continuous hole may be formed in at least a part of the metal support 32 instead of the plurality of through holes 38.
  • the continuous holes are formed by continuously connecting the holes in the porous metal support 32. The continuous hole passes through the metal support 32 at any point of the continuous hole.
  • FIG. 2 shows a case where the gas manifold 17 is provided at the inlet through which the gas in the flow path flows.
  • a gas manifold may be provided at the outlet through which the gas in the flow path is circulated. In this case, exhaust gas and product gas due to electrochemical reaction can be collected efficiently.
  • the electrochemical device includes an electrochemical module M including a plurality of electrochemical elements.
  • the electrochemical device of the above-described embodiment can also be applied to a configuration including one electrochemical element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Battery Mounting, Suspending (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

発電効率を向上できる電気化学素子を提供することを目的とする。電気化学素子は、内部に内部流路を有する導電性の板状支持体を備え、板状支持体は、当該板状支持体を構成する金属支持体32の少なくとも一部において、当該板状支持体の内側である内部流路と外側とに亘って気体を透過できる気体通流許容部P2と、気体通流許容部P2の全部又は一部を被覆する状態で、少なくとも膜状の電極層44と膜状の電解質層46と膜状の対極電極層48とを記載順に有する電気化学反応部43と、を有し、板状支持体は、内部流路内に複数の流路を形成している。

Description

電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
 本発明は、電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステムに関する。
 特許文献1には、内部空間を有する長尺の筒状支持体と、筒状支持体の一面側に長手方向に沿って設けられた発電を行う電気化学反応部とを備える電気化学素子が開示されている。筒状支持体の長手方向の一端部は、水素を含む改質ガスを流通するガスマニホールドに接続されており、筒状支持体の内部空間に改質ガスが流通される。改質ガスは、筒状支持体の内部空間を長手方向の一端部から他端部に向かって流れる。また、筒状支持体には、内部空間から電気化学反応部に通じる貫通孔が設けられている。よって、電気化学反応部には、貫通孔を介して筒状支持体の内部空間から改質ガスが流通される。電気化学反応部は、筒状支持体に面する側から、電極層、電解質層及び対極電極層が順に積層されており、電極層に改質ガスが流通される。一方、対極電極層にはブロアから空気が流通される。これにより、電気化学反応部は改質ガスと空気とを電気化学反応させて発電を行う。
 このような特許文献1の電気化学素子は、電気化学反応部が筒状支持体に支持されているので、電気化学素子全体の機械的強度を向上できる。
特開2016-195029号公報
 しかし、特許文献1の電気化学素子を改質ガスを燃料とした電気化学反応による発電素子として機能させた場合、筒状支持体の内部空間を長手方向の一端部から他端部に向かって改質ガスが通過するが、長手方向の任意の複数地点において、長手方向と直交する短手方向の各位置における改質ガスの流速が一定ではない。例えば、内部空間の短手方向の中央部では両端部よりも改質ガスの流速が速い。そのため、改質ガスの流速の遅い短手方向の両端部では、長手方向の一端部側では改質ガスが電極層に十分に流通されていても、長手方向の一端部から他端部に向かうほど改質ガスの濃度が減少し、長手方向の他端部側では電極層に流通される改質ガスが不足する場合がある。この場合、長手方向の他端部側の電極層では、燃料が欠乏する状態となり、電極層が酸化劣化して電極性能や機械的強度が低下する恐れがある。
 一方、短手方向の中央部では、長手方向の一端部から他端部に向かうほど改質ガスの濃度が減少するものの、短手方向の両端部に比べ改質ガスの流速く単位時間当りに流通される改質ガスが多いため、電極層で利用されなかった未反応の改質ガスが長手方向の他端部において排出される。
 よって、短手方向の両端部での電極層の酸化劣化を抑制するために、電気化学反応を抑制して長手方向の他端部側まで改質ガスを流通可能とすることが考えられる。この場合、短手方向の両端部だけでなく中央部においても電気化学反応が抑制されるため、電極層で利用されず長手方向の他端部で排出される未反応の改質ガスの量が増加する。そのため、電極層の酸化劣化を抑制できるものの、燃料利用率が低下して電気化学素子の電気化学反応の反応効率が低下する。
 そこで、本発明は上述の課題に鑑みてなされたものであり、燃料等の化学的エネルギーを電気エネルギーに変換する、あるいは電気エネルギーを燃料等の化学的エネルギーに変換する効率を向上できる電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステムを提供することを目的とする。
 本発明に係る電気化学素子の特徴構成は、
 内部に内部流路を有する導電性の板状支持体を備え、
 前記板状支持体は、当該板状支持体の少なくとも一部において、当該板状支持体の内側である前記内部流路と外側とに亘って気体を透過できる気体通流許容部と、前記気体通流許容部の全部又は一部を被覆する状態で、少なくとも膜状の電極層と膜状の電解質層と膜状の対極電極層とを記載順に有する電気化学反応部と、を有し、
 前記板状支持体は、前記内部流路内に複数の流路を形成している点にある。
 本特徴構成によれば、板状支持体は、内部流路内に複数の流路を形成している。そのため、気体は、内部流路において複数の流路を流れることで、複数の流路それぞれに沿って別れて流れる。このように複数の流路に分かれて流れることによる整流作用により、気体は、複数の流路が形成されていない内部流路を流れる場合に比べて、気体の流れ方向と交差する流れ交差方向の任意の複数地点での流速が概ね一定となる。つまり、流れ交差方向の中央部及び両端部を含む任意の複数地点において、気体の流速が概ね一定である。よって、流れ交差方向の中央部及び両端部を含む任意の複数地点において、電気化学反応部に流通される気体の量を概ね一定にできる。これにより、電気化学反応部において、気体が不足する部分と、過剰に気体が流通される部分との差を小さくし、電気化学素子全体において電気化学反応を行わせて、電気化学素子の反応効率を向上できる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記板状支持体は、第一板状体と、少なくとも前記内部流路に複数の流路を形成している第二板状体とを含む点にある。
 本特徴構成によれば、例えば第一板状体に、少なくとも前記内部流路に複数の流路を形成している第二板状体を組み合わせることで容易に複数の流路を形成できる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記板状支持体は、
 前記内部流路を形成する内部流路形成体と、
 前記内部流路に収容されており、前記複数の流路を形成する複数流路形成体とを有する点にある。
 本特徴構成によれば、内部流路形成体により内部流路が形成され、この内部流路に複数流路形成体が収容されている。この複数流路形成体により内部流路に複数の流路が形成されている。気体は、複数の流路に沿って流れることによる整流作用により、各流路を流れる気体の流速が、流れ交差方向の任意の複数地点において概ね一定となる。よって、流れ交差方向の中央部及び両端部を含む任意の複数地点において、電気化学反応部に流通される気体の量を概ね一定とし、電気化学素子の反応効率を向上できる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記板状支持体の少なくとも一部が波状と成すように構成されている点にある。
 本特徴構成によれば、板状支持体の少なくとも一部を波状に構成することで容易に複数の流路を形成できる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記複数流路形成体の少なくとも一部が波状と成すように構成されている点にある。
 本特徴構成によれば、複数流路形成体の少なくとも一部を波状に構成することで容易に複数の流路を形成できる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記板状支持体は、少なくとも第一板状体と第二板状体により形成されており、
 前記第一板状体が前記第二板状体と接触する接触部と、前記第一板状体が前記第二板状体と接触しない非接触部とによって前記内部流路内に前記複数の流路が形成されている点にある。
 本特徴構成によれば、第一板状体と第二板状体との接触部及び非接触部によって、内部流路内に複数の流路が形成されている。つまり、非接触部が存在することで複数の流路のうち少なくとも一部は連通しており、流路を超えて気体が通流可能でありつつも、気体は、複数の流路それぞれに沿って別れて流れる。よって、複数の流路それぞれを流れる気体の整流作用によって、流れ交差方向の中央部及び両端部を含む任意の複数地点において、気体の流速を概ね一定にできる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記板状支持体は、長手方向に延びた板状に形成されており、
 前記複数の流路は、前記長手方向に沿って延びている点にある。
 長手方向に延びる複数の流路に気体を流すことで、電気化学反応部との反応のための流路長を確保し、電気化学素子の反応効率を向上できる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記気体通流許容部は、前記板状支持体の少なくとも一部を貫通する複数の貫通孔が設けられている孔領域である点にある。
 本特徴構成によれば、気体通流許容部は、板状支持体の少なくとも一部を貫通する複数の貫通孔が設けられている孔領域であるので、板状支持体の少なくとも一部に気体通流許容部をより容易に選択的に設けることができる上に、板状支持体の強度をより高めることができる。したがって、強度および耐久性にすぐれた電気化学素子をより容易に実現できる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記板状支持体は、少なくとも第一板状体と第二板状体により形成されており、
 前記第一板状体は板状面に沿って、一体、もしくは分割されて一連に形成されている点にある。
 本特徴構成によれば、一体、もしくは分割されて形成された一連の第一板状体によって第二板状体が支持されるため、第二板状体の機械的強度が高まる。その結果、第二板状体を含む板状支持体に支持される電気化学素子の曲げ強度が高まる。
 本発明に係る電気化学素子の更なる特徴構成は、
 前記複数の流路と一括して連通し前記気体が流通するマニホールドをさらに備える点にある。
 本特徴構成によれば、流路の気体が流通される入口にマニホールドが備えられた場合には、複数の流路には、気体が溜められたマニホールドから一括して気体が流通される。よって、複数の流路において気体が流通される入口での圧力差を小さくでき、流れ交差方向の任意の地点における複数の流路間の気体の流速を概ね一定にできる。また、流路の気体が流通される出口にマニホールドが備えられた場合には、電気化学反応による排出ガスや生成ガスを効率良く収集することができる。
 本発明に係る電気化学モジュールの特徴構成は、
 複数の上記電気化学素子を有し、一の電気化学素子と他の電気化学素子とが電気的に接続される形態で、かつ前記板状支持体同士を対向させる形態で、複数の前記電気化学素子を並列に配置してなる点にある。
 本発明に係る電気化学装置の特徴構成は、上記の電気化学素子もしくは上記の電気化学モジュールと燃料変換器とを少なくとも有し、前記電気化学素子もしくは上記の電気化学モジュールと前記燃料変換器の間で還元性成分を含有するガスを流通する点にある。ここで、「供給部」とは、電気化学素子を「燃料等の化学的エネルギーを電気エネルギーに変換する」燃料電池(電気化学発電セル)として機能させる場合には、還元性成分を含有するガスを供給する機能を担うが、電気化学素子を「電気エネルギーを燃料等の化学的エネルギーに変換する」電解セルとして機能させる場合には、還元性成分を含有するガスを排出する機能を担う。
 つまり、電気化学モジュールと燃料変換器を有し電気化学モジュールと燃料変換器の間で還元性成分を含有するガスを流通する燃料供給部とを有するので、都市ガス等の既存の原燃料供給インフラを用い、耐久性・信頼性および性能に優れた電気化学モジュールを備えた電気化学装置を実現することができる。また、電気化学モジュールから排出される未利用の燃料ガスをリサイクルするシステムを構築し易くなるため、高効率な電気化学装置を実現することができる。
 本発明に係る電気化学装置の特徴構成は、上記の電気化学素子もしくは上記の電気化学モジュールと、前記電気化学素子もしくは上記の電気化学モジュールから電力を取り出す電力変換器とを少なくとも有する点にある。
 上記の特徴構成によれば、耐久性・信頼性および性能に優れた電気化学モジュールから得られる電気出力を、電力変換器によって昇圧したり、直流を交流に変換したりすることができるため、電気化学モジュールで得られる電気出力を利用しやすくなるので好ましい。
 本発明に係る電気化学装置の特徴構成は、上記の電気化学素子もしくは上記の電気化学モジュールと、燃料変換器と、電気化学素子もしくは上記の電気化学モジュールから電力を取り出すあるいは電気化学モジュールに電力を流通する電力変換器とを有する点にある。
 本発明に係る電気化学装置の特徴構成は、上記の電気化学素子もしくは上記の電気化学モジュールに対して燃料変換器からの還元性成分ガスを流通する、あるいは前記電気化学素子もしくは前記電気化学モジュールから燃料変換器に還元性成分ガスを流通する燃料供給部を有する点にある。
 上記の構成によれば、燃料等の化学的エネルギーを電気エネルギーに変換する」燃料電池(電気化学発電セル)として機能させる場合には、還元性成分を含有するガスを供給することができ、電気化学素子を「電気エネルギーを燃料等の化学的エネルギーに変換する」電解セルとして機能させる場合には、還元性成分を含有するガスを燃料変換器に導くことが出来る。
 つまり、電気化学モジュールと燃料変換器とを有し電気化学モジュールと燃料変換器との間で還元性成分を含有するガスを流通する燃料供給部を有するので、電気化学モジュールを燃料電池として動作させる場合、都市ガス等の既存の原燃料供給インフラを用いて供給される天然ガス等より改質器などの燃料変換器により水素を生成する構成とすると、耐久性・信頼性および性能に優れた電気化学モジュールを備えた電気化学装置を実現することができる。また、電気化学モジュールから排出される未利用の燃料ガスをリサイクルするシステムを構築し易くなるため、高効率な電気化学装置を実現することができる。
 電気化学素子モジュールを電解セルとして動作させる場合は、電極層に水蒸気や二酸化炭素を含有するガスが流通され、電極層と対極電極層との間に電圧が印加される。そうすると、電極層において電子eと水分子H2Oや二酸化炭素分子CO2が反応し水素分子H2や一酸化炭素COと酸素イオンO2-となる。酸素イオンO2-は電解質層を通って対極電極層へ移動する。対極電極層において酸素イオンO2-が電子を放出して酸素分子O2となる。以上の反応により、水分子H2Oが水素H2と酸素O2とに、二酸化炭素分子CO2を含有するガスが流通される場合は一酸化炭素COと酸素O2とに電気分解される。
 水蒸気と二酸化炭素分子COを含有するガスが流通される場合は上記電気分解により電気化学モジュールで生成した水素及び一酸化炭素等から炭化水素などの種々の化合物を合成する燃料変換器を設けることができる。燃料供給部により、この燃料変換器が生成した炭化水素等を電気化学モジュールに流通したり、本システム・装置外に取り出して別途燃料や化学原料として利用することができる。
 本発明に係るエネルギーシステムの特徴構成は、
 上記電気化学装置と、電気化学装置もしくは燃料変換器から排出される熱を再利用する排熱利用部を有する点にある。
 上記の特徴構成によれば、電気化学装置と、電気化学装置もしくは燃料変換器から排出される熱を再利用する排熱利用部を有するので、耐久性・信頼性および性能に優れ、かつエネルギー効率にも優れたエネルギーシステムを実現することができる。なお、電気化学装置から排出される未利用の燃料ガスの燃焼熱を利用して発電する発電システムと組み合わせてエネルギー効率に優れたハイブリットシステムを実現することもできる。
 したがって、部品点数が少なく、作製容易な電気化学素子積層体を、取り扱い容易な構造の電気化学素子により実現でき。また、電気化学素子積層体を利用した電気化学モジュール、電気化学装置やエネルギーシステムを安価に提供することができた。
実施形態に係るエネルギーシステムの全体構成を示す概略図である。 実施形態に係る電気化学モジュールの説明図である。 実施形態に係る電気化学モジュールの説明図である。 実施形態に係る電気化学モジュールの説明図である。 図3のIV-IV方向の断面図である。 図3のV-V方向の断面図である。 図2AのVI-VI方向の断面図である。 分割体の斜視図である。 各分割流路Aでの流速を示す説明図である。 電気化学素子の製造工程の説明図である。 別の形態に係る電気化学モジュールの説明図である。 別の分割体の斜視図である。 別の分割体の斜視図である。 別の電気化学モジュールの説明図である。 別の分割体の斜視図である。 別の形態に係る電気化学モジュールの説明図である。 別の分割体の説明図である。 別のエネルギーシステムの全体構成を示す概略図である。
<実施形態>
 以下、実施形態に係るエネルギーシステム、電気化学装置、電気化学モジュールおよび電気化学素子について図面に基づいて説明する。
<エネルギーシステム、電気化学装置>
 図1には、エネルギーシステムおよび電気化学装置の概要が示されている。
 エネルギーシステムは、電気化学装置と、電気化学装置から排出される熱を再利用する排熱利用部としての熱交換器23とを有する。
 電気化学装置は、電気化学モジュールMと、脱硫器1と改質器(改質器等の燃料変換器、以下、改質器と記載する。)4とを有し電気化学モジュールMに対して還元性成分を含有する燃料ガスを流通する燃料供給部と、電気化学モジュールMから電力を取り出すインバータ(電力変換器の一例)8とを有する。
 詳しくは電気化学装置は、脱硫器1、改質水タンク2、気化器3、改質器4、ブロア5、燃焼部6、インバータ8、制御部9、収納容器10および電気化学モジュールMを有する。
 脱硫器1は、都市ガス等の炭化水素系の原燃料に含まれる硫黄化合物成分を除去(脱硫)する。原燃料中に硫黄化合物が含有される場合、脱硫器1を備えることにより、硫黄化合物による改質器4あるいは電気化学素子Eに対する影響を抑制することができる。気化器3は、改質水タンク2から流通される改質水から水蒸気を生成する。改質器4は、気化器3にて生成された水蒸気を用いて脱硫器1にて脱硫された原燃料を水蒸気改質して、水素を含む改質ガス(気体)を生成する。
 電気化学モジュールMは、改質器4から流通された改質ガスと、ブロア5から流通された空気(気体)とを用いて、電気化学反応させて発電する。燃焼部6は、電気化学モジュールMから排出される反応排ガスと空気とを混合させて、反応排ガス中の可燃成分を燃焼させる。
 電気化学モジュールMは、複数の電気化学素子Eとガスマニホールド17とを有する。複数の電気化学素子Eは互いに電気的に接続された状態で並列して配置され、電気化学素子Eの一方の端部(下端部)がガスマニホールド17に固定されている。電気化学素子Eは、ガスマニホールド17を通じて流通される改質ガスと、ブロア5から流通された空気とを電気化学反応させて発電する。
 インバータ8は、電気化学モジュールMの出力電力を調整して、商用系統(図示省略)から受電する電力と同じ電圧および同じ周波数にする。制御部9は電気化学装置およびエネルギーシステムの運転を制御する。
 気化器3、改質器4、電気化学モジュールMおよび燃焼部6は、収納容器10内に収納される。そして改質器4は、燃焼部6での反応排ガスの燃焼により発生する燃焼熱を用いて原燃料の改質処理を行う。
 原燃料は、昇圧ポンプ11の作動により原燃料供給路12を通して脱硫器1に流通される。改質水タンク2の改質水は、改質水ポンプ13の作動により改質水供給路14を通して気化器3に流通される。そして、原燃料供給路12は脱硫器1よりも下流側の部位で、改質水供給路14に合流されており、収納容器10外にて合流された改質水と原燃料とが収納容器10内に備えられた気化器3に流通される。
 改質水は気化器3にて気化され水蒸気となる。気化器3にて生成された水蒸気を含む原燃料は、水蒸気含有原燃料供給路15を通して改質器4に流通される。改質器4にて原燃料が水蒸気改質され、水素ガスを主成分とする改質ガスが生成される。改質器4にて生成された改質ガスは、改質ガス供給路16を通して電気化学モジュールMのガスマニホールド17に流通される。
 ガスマニホールド17に流通された改質ガスは、複数の電気化学素子Eに対して分配され、電気化学素子Eとガスマニホールド17との接続部である下端(一端部)EDから電気化学素子Eに流通される。改質ガス中の主に水素(還元性成分)が、電気化学素子Eにて電気化学反応に使用される。反応に用いられなかった残余の水素ガスを含む反応排ガスが、電気化学素子Eの上端(他端部)EUから燃焼部6に排出される。
 反応排ガスは燃焼部6で燃焼され、燃焼排ガスとなって燃焼排ガス排出口20から収納容器10の外部に排出される。燃焼排ガス排出口20には燃焼触媒部21(例えば、白金系触媒)が配置され、燃焼排ガスに含有される一酸化炭素や水素等の還元性成分を燃焼除去する。燃焼排ガス排出口20から排出された燃焼排ガスは、燃焼排ガス排出路22により熱交換器23に送られる。
 熱交換器23は、燃焼部6における燃焼で生じた燃焼排ガスと、流通される冷水とを熱交換させ、温水を生成する。すなわち熱交換器23は、電気化学装置から排出される熱を再利用する排熱利用部として動作する。
<電気化学モジュールM>
 次に、図2を用いて電気化学モジュールMについて説明する。電気化学モジュールMは、電気化学素子Eを複数有し、一の電気化学素子Eの電気化学反応部43における筒状支持体31とは反対側の面と、他の電気化学素子Eの筒状支持体31とが電気的に接続される形態で、かつ、複数の筒状支持体31同士が互いに対向する形態で、複数の電気化学素子Eを並列配置してなる。
 また電気化学モジュールMは、複数の電気化学素子Eの筒状支持体31の内部に還元性成分を含有する改質ガスを流通するガスマニホールド17を有し、電気化学素子Eの端部のうち筒状支持体31の軸方向の下端EDがガスマニホールド17に接続されている。
 そして電気化学モジュールMは、ブロア5を介して、筒状支持体31の外部から電気化学反応部43に対して酸化性成分を含有する空気を流通する気体供給空間Sを有する。
 なお電気化学素子Eが他の部材(本実施形態ではガスマニホールド17)に取り付けられる際には、筒状支持体31の軸方向の端部のうち下端EDが当該他の部材に固定されて、電気化学素子Eが他の部材に片持ち支持される。
 詳しくは図2Aおよび図2Bに示されるように、電気化学モジュールMは、電気化学素子E、ガスマニホールド17、集電部材26、終端部材27および電流引出し部28を有する。
 電気化学素子Eは、中空の筒であり、内部空間を有する筒状支持体31の表面(後述の図4の金属支持体32(第二板状体)の上面32a)に電気化学反応部43を備えて構成されており、全体として長尺な平板あるいは平棒の形状をとる。また、電気化学素子Eは、その内部空間である、後述する改質ガス通流部36(内部流路)に、改質ガス通流部36を複数の分割流路Aに分割する分割体(第一板状体、複数流路形成体)70を備えている。複数の分割流路Aは、電気化学素子Eの下端EDと上端EUとの間に沿って、互いに概ね平行に延びている。なお、電気化学素子Eは、下端EDと上端EUとの間が長手方向となるように構成されており、この長手方向に沿って分割流路Aが延びている。電気化学素子Eの短手方向は、分割流路Aが延びる長手方向と概ね直交する方向である。
 そして、電気化学素子Eの長手方向の下端EDが、ガスマニホールド17に対してガラスシール材等の接着部材により気密に固定されている。これにより、電気化学素子Eとガスマニホールド17との接続部において改質ガスが漏出せず、かつ空気が流入しないように、筒状支持体31の内部空間である改質ガス通流部36とガスマニホールド17の内部空間(図示省略)とを連通できる。なお、筒状支持体31とガスマニホールド17との間は電気的に絶縁されている。
 ガスマニホールド17は、例えば、一つの内部空間を有する直方体状に形成されており、改質器4から流通される改質ガスのバッファとして機能する。よって、ガスマニホールド17内の改質ガスは、複数の電気化学素子Eそれぞれに対して、同程度の圧力、同程度の流量、同程度の流速等で概ね均一に分配される。さらに、ガスマニホールド17内の改質ガスは、電気化学素子Eの複数の分割流路Aのそれぞれに対して、同程度の圧力、同程度の流量、同程度の流速等で概ね均一に分配される。
 電気化学素子Eの電気化学反応部43は、全体として膜状に構成される。電気化学反応部43の表裏の面のうち、筒状支持体31と反対側の面に、接着材29によって集電部材26が接着されている。そして別の電気化学素子Eの背面39と集電部材26とを接触させた状態あるいは溶接等により接合した状態で、複数の電気化学素子Eが並列配置されている。
 集電部材26には、導電性と、気体透過性と、電気化学素子Eの並列配置の方向に弾性とを有する部材が用いられる。例えば集電部材26には、金属箔を用いたエキスパンドメタルや金属メッシュ、フェルト様部材が用いられる。接着材29には、導電性と気体透過性とを有する材料が用いられる。例えば接着材29には、セラミック系接着材が用いられる。これにより集電部材26および接着材29は気体透過性・気体通流性を有し、ブロア5から流通される空気が集電部材26および接着材29を透過または通流して電気化学反応部43に流通される。
 また集電部材26が電気化学素子Eの並列配置の方向に弾性を有するので、ガスマニホールド17に片持ち支持された筒状支持体31は並列配置の方向にも変位することができ、振動や温度変化等の外乱に対する電気化学モジュールMのロバスト性が高められる。
 並列配置された複数の電気化学素子Eは、一対の終端部材27に挟持されている。終端部材27は、導電性を有し弾性変形可能な部材であり、その下端がガスマニホールド17に固定されている。終端部材27には、電気化学素子Eの並列配置の方向に沿って外側に向けて延びる電流引出し部28が接続されている。電流引出し部28はインバータ8に接続され、電気化学素子Eの発電により生じる電流をインバータ8へ送る。
 図2A及び図2Bに示す通り、並列配置された電気化学素子Eは、電気化学反応部43の側方に電気化学反応部43での反応に用いられる空気(反応気体、酸化性成分を含有する空気)が流通される気体供給空間Sを有する。そして複数の電気化学素子Eが有する気体供給空間Sは、筒状支持体31の側方で互いに連通し、ひと繋がりの空間となっている。ここで電気化学反応部43の側方とは、筒状支持体31の軸方向と電気化学反応部43の並列配置の方向との両方に直交する方向である。
 図2A及び図2Bを用いて詳しく説明すると、電気化学素子E1は気体供給空間S1を有し、電気化学素子E2は気体供給空間S2を有し、電気化学素子E3は気体供給空間S3を有する。そして気体供給空間S1と気体供給空間S2とが、電気化学素子E2の筒状支持体31の側方を介して連通している。また気体供給空間S2と気体供給空間S3とが、電気化学素子E3の筒状支持体31の側方を介して連通している。なお図2A及び図2Bでは気体供給空間Sの矢印は電気化学反応部43の図中上側を指しているが、電気化学反応部43の図中下側の側方にも気体供給空間Sが存在している。
 すなわち、並列配置される複数の電気化学素子Eのうち隣接する2つの電気化学素子(E1、E2)であって、電気化学反応部43が他方の電気化学素子E2に接続される第1電気化学素子E1と、筒状支持体31が第1電気化学素子E1に接続される第2電気化学素子E2に関し、第1電気化学素子E1の気体供給空間S1と第2電気化学素子E2の気体供給空間S2とが、第2電気化学素子E2の筒状支持体31の側方を介して連通している。
 このように気体供給空間Sは相互に連通しているから、ブロア5から収納容器10の内部に流通された空気は、気体供給空間Sに到達し、電気化学反応部43へと流通される。また、筒状支持体31の内部空間である改質ガス通流部36にはガスマニホールド17から改質ガスが流通される。改質ガス通流部36は、分割体70により複数の分割流路Aに分割されているため、各分割流路Aを介して改質ガスが電気化学反応部43へと流通される。これにより電気化学反応部43にて反応が進行する。
<電気化学素子E>
 図3~5に電気化学素子Eの概略構成が示されている。電気化学素子Eは、導電性を有し、内部に改質ガス通流部36が形成された筒状支持体31と、筒状支持体31一方の面に設けられ、電気化学反応により発電を行う電気化学反応部43とを有する。改質ガス通流部36を流れる改質ガスは、筒状支持体31の後述の貫通孔38を介して電気化学反応部43に流通される。電気化学反応部43が筒状支持体31に支持されることで、電気化学素子E全体の機械的強度が向上する。
<筒状支持体31>
 筒状支持体31(板状支持体)は、全体として平板あるいは平棒状であり、長方形の金属支持体32と、長手方向に直交する断面がU字状のU字部材33(第一板状体、内部流路形成体)と、蓋部34とを有する。金属支持体32の長辺とU字部材33の長辺(U字の2つの頂点に対応する辺)とが接合され、一方の端部が蓋部34で塞がれている。これにより、内部空間を有し全体として平板あるいは平棒状の筒状支持体31が構成される。金属支持体32は、筒状支持体31の中心軸に対して平行に配置される。
 筒状支持体31の内部空間は、改質ガス通流部36として機能する。蓋部34に反応排ガス排出口37が形成される。蓋部34が設けられる端部に対向する反対側の端部は開口しており、改質ガス流入口35として機能する。
 内部空間である改質ガス通流部36には、改質ガス通流部36を複数の分割流路Aに分割する分割体70が配置されている。分割体70は、図7に示すように、例えば一連の波板であり、厚みが概ね一定である。そして、波板は、一方向には複数の同一形状の山及び谷が繰り返し形成されており、一方向と直交する直交方向には各山及び各谷が延びて形成されている。図7の分割体70の場合、隣接する山の頂部71間の幅が概ね一定となるように山及び谷が形成されている。例えば、幅d1、d2は概ね一定である。なお、波板の形状には、山及び谷の形状が三角形状、四角形状及びサイン曲線等が含まれる。例えば、波板はコルゲート板であってもよい。
 このような分割体70は、山及び谷が延びる方向が筒状支持体31の中心軸に沿った、つまり長手方向に沿うように改質ガス通流部36に配置される。分割体70の山の頂部71は、金属支持体32の下面32bと接し、谷の底部73は、U字部材33の改質ガス通流部36に面する底面33aと接する。これにより、改質ガス通流部36には、金属支持体32の下面32bと分割体70とに囲まれた空間により、筒状支持体31の長手方向に延びる複数の分割流路Aが形成される。また、改質ガス通流部36には、U字部材33の底面33aと分割体70とに囲まれた空間により、筒状支持体31の長手方向に延びる複数の分割流路Bが形成される。分割流路Aと分割流路Bとは、図4に示すように交互に形成される。
 図8を用いて、複数の分割流路Aにおける改質ガスの流速について説明する。ガスマニホールド17から、電気化学素子Eの下端EDに位置する改質ガス流入口35を介して複数の分割流路Aに改質ガスが流通される。複数の分割流路Aに流通された改質ガスは、筒状支持体31の軸方向である長手方向(気体の流れ方向)に沿って、下端EDから上端EUに向かって各分割流路A内を流れる。改質ガスは、複数の分割流路Aに沿って流れることによる整流作用により、分割されていない改質ガス通流部36を流れる場合に比べて、長手方向と直交する短手方向(流れ交差方向)の任意の複数地点での流速が概ね一定となる。
 図8では、筒状支持体31の長手方向の任意の複数地点での流速V1~V4を示している。V4は、筒状支持体31の短手方向の中央部での改質ガスの流速の大きさを示している。V3、V2、V1は、短手方向の中央部から端部に向かう流速の大きさを順に示している。この図8に示すように、筒状支持体31の短手方向の中央部及び両端部を含む任意の複数地点において、改質ガスの流速が概ね一定である。よって、短手方向の中央部及び両端部を含む任意の複数地点において、分割流路Aから筒状支持体31の貫通孔38を介して電気化学反応部43に流通される改質ガスの量を概ね一定にできる。これにより、短手方向の中央部及び両端部のいずれの地点においても、電気化学素子E全体において電気化学反応を行わせて、発電効率を向上できる。
 なお、前述の通り、ガスマニホールド17の一の内部空間に収容されている改質ガスは、電気化学素子Eの複数の分割流路Aのそれぞれに対して、同程度の圧力、同程度の流量、同程度の流速等で概ね均一に分配される。このように、改質ガスが導入される複数の分割流路Aの各入口において、改質ガスの圧力差、流量差及び流速差をほぼ生じさせないことによっても、分割流路Aでの改質ガスの流速を概ね一定にすることができる。
 金属支持体32、U字部材33および蓋部34の材料としては、導電性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、ニッケル基合金などが用いられる。すなわち筒状支持体31は堅牢に構成される。特にフェライト系ステンレス鋼が好適に用いられる。なお、後述する気体通流禁止部P1を構成するために、金属支持体32、U字部材33および蓋部34は気体を透過しない材料で形成する必要がある。
 筒状支持体31の材料にフェライト系ステンレス鋼を用いた場合、電気化学反応部43にて材料に用いられるYSZ(イットリウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近くなる。従って、低温と高温の温度サイクルが繰り返された場合も電気化学素子Eがダメージを受けにくい。よって、長期耐久性に優れた電気化学素子Eを実現できるので好ましい。
 なお筒状支持体31の材料としては、熱伝導率が3Wm-1-1を上回る材料を用いることが好ましく、10Wm-1-1を上回る材料であればさらに好ましい。例えばステンレス鋼であれば熱伝導率が15~30Wm-1-1程度であるため、筒状支持体31の材料として好適である。
 また、筒状支持体31の材料としては、脆性破壊を起こさない高靱性材料である事がさらに望ましい。セラミックス材料などと比較して金属材料は高靱性であり、筒状支持体31として好適である。
 金属支持体32には、金属支持体32の表面と裏面とを貫通して複数の貫通孔38が設けられる。この貫通孔38を通して筒状支持体31の内側と外側との間で気体の通流が可能となっている。すなわち、複数の貫通孔38が設けられている孔領域P2が、気体通流許容部P2として機能する。他方、金属支持体32やU字部材33における貫通孔38が設けられない領域は、筒状支持体31の内側と外側との間で気体が通流できない。したがって当該領域は気体通流禁止部P1として機能する。
<電気化学反応部43>
 図4および図5に示されるように、電気化学反応部43は、金属支持体32の上に形成された電極層44と、電極層44の上に形成された中間層45と、中間層45の上に形成された電解質層46とを有する。そして電気化学反応部43は、更に、電解質層46の上に形成された反応防止層47と、反応防止層47の上に形成された対極電極層48とを有する。つまり対極電極層48は電解質層46の上に形成され、反応防止層47は電解質層46と対極電極層48との間に形成されている。電極層44は多孔質であり、電解質層46は緻密である。なお電気化学素子Eにおいて電気化学反応部43の側方の全部または一部を覆う部材は設けられず、電気化学反応部43の側方は開放されている。
(金属支持体32)
 金属支持体32は、電極層44、中間層45および電解質層46等を支持して電気化学素子Eの強度を保つ。つまり金属支持体32は、電気化学素子Eを支持する支持体としての役割を担う。
 金属支持体32の材料としては、電子伝導性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス、オーステナイト系ステンレス、ニッケル基合金などが用いられる。特に、クロムを含む合金が好適に用いられる。本実施形態では、金属支持体32は、Crを18質量%以上25質量%以下含有するFe-Cr系合金を用いているが、Mnを0.05質量%以上含有するFe-Cr系合金、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、Cuを0.10質量%以上1.0質量%以下含有するFe-Cr系合金であると特に好適である。
 金属支持体32は全体として板状である。そして金属支持体32は、電極層44が設けられる面を表側面として、表側面から裏側面へ貫通する複数の貫通空間を有する。貫通空間は、金属支持体32の裏側面から表側面へ気体を透過させる機能を有する。なお、板状の金属支持体32を曲げたりして、例えば箱状、円筒状などの形状に変形させて使用することも可能である。
 金属支持体32の表面に、拡散抑制層としての金属酸化物層(図示せず)が設けられる。すなわち、金属支持体32と後述する電極層44との間に、拡散抑制層が形成されている。金属酸化物層は、金属支持体32の外部に露出した面だけでなく、電極層44との接触面(界面)にも設けられる。また、貫通空間の内側の面に設けることもできる。この金属酸化物層により、金属支持体32と電極層44との間の元素相互拡散を抑制することができる。例えば、金属支持体32としてクロムを含有するフェライト系ステンレスを用いた場合は、金属酸化物層が主にクロム酸化物となる。そして、金属支持体32のクロム原子等が電極層44や電解質層46へ拡散することを、クロム酸化物を主成分とする金属酸化物層が抑制する。金属酸化物層の厚さは、拡散防止性能の高さと電気抵抗の低さを両立させることのできる厚みであれば良い。
 金属酸化物層は種々の手法により形成されうるが、金属支持体32の表面を酸化させて金属酸化物とする手法が好適に利用される。また、金属支持体32の表面に、金属酸化物層をスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、スパッタリング法やPLD法等のPVD法、CVD法などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、金属酸化物層は導電性の高いスピネル相などを含んでも良い。
 金属支持体32としてフェライト系ステンレス材を用いた場合、電極層44や電解質層46の材料として用いられるYSZ(イットリア安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近い。従って、低温と高温の温度サイクルが繰り返された場合も電気化学素子Eがダメージを受けにくい。よって、長期耐久性に優れた電気化学素子Eを実現できるので好ましい。
(電極層)
 電極層44は、図4に示すように、金属支持体32の表側の面であって貫通空間が設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通空間が設けられた領域の全体が、電極層44に覆われている。つまり、貫通空間は金属支持体32における電極層44が形成された領域の内側に形成されている。換言すれば、全ての貫通空間が電極層44に面して設けられている。
 電極層44の材料としては、例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeOなどの複合材を用いることができる。これらの例では、GDC、YSZ、CeOを複合材の骨材と呼ぶことができる。なお、電極層44は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法やパルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1100℃より高い高温域での焼成を用いずに、良好な電極層44が得られる。そのため、金属支持体32を傷めることなく、また、金属支持体32と電極層44との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子を実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
 電極層44は、気体透過性を持たせるため、その内部および表面に複数の細孔を有する。
 すなわち電極層44は、多孔質な層として形成される。電極層44は、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1-空孔率)と表すことができ、また、相対密度と同等である。
(中間層)
 中間層45(挿入層)は、図4に示すように、電極層44を覆った状態で、電極層44の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層45の材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
 中間層45は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃より高い高温域での焼成を用いずに中間層45が得られる。そのため、金属支持体32を傷めることなく、金属支持体32と電極層44との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Eを実現できる。また、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
 中間層45としては、酸素イオン(酸化物イオン)伝導性を有することが好ましい。また、酸素イオン(酸化物イオン)と電子との混合伝導性を有すると更に好ましい。これらの性質を有する中間層45は、電気化学素子Eへの適用に適している。
(電解質層)
 電解質層46は、図4に示すように、電極層44および中間層45を覆った状態で、中間層45の上に薄層の状態で形成される。また、厚さが10μm以下の薄膜の状態で形成することもできる。詳しくは電解質層46は、図4に示すように、中間層45の上と金属支持体32の上とにわたって(跨って)設けられる。このように構成し、電解質層46を金属支持体32に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
 また電解質層46は、図4に示すように、金属支持体32の表側の面であって貫通空間が設けられた領域より大きな領域に設けられる。つまり、貫通空間は金属支持体32における電解質層46が形成された領域の内側に形成されている。
 また電解質層46の周囲においては、電極層44および中間層45からのガスのリークを抑制することができる。説明すると、電気化学素子EをSOFCの構成要素として用いる場合、SOFCの作動時には、金属支持体32の裏側から貫通空間を通じて電極層44へガスが流通される。電解質層46が金属支持体32に接している部位においては、ガスケット等の別部材を設けることなく、ガスのリークを抑制することができる。なお、本実施形態では電解質層46によって電極層44の周囲をすべて覆っているが、電極層44および中間層45の上部に電解質層46を設け、周囲にガスケット等を設ける構成としてもよい。
 電解質層46の材料としては、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)、LSGM(ストロンチウム・マグネシウム添加ランタンガレート)等の酸素イオンを伝導する電解質材料や、ペロブスカイト型酸化物等の水素イオンを伝導する電解質材料を用いることができる。特にジルコニア系のセラミックスが好適に用いられる。電解質層46をジルコニア系セラミックスとすると、電気化学素子Eを用いたSOFCの稼働温度をセリア系セラミックスや種々の水素イオン伝導性材料に比べて高くすることができる。例えば電気化学素子EをSOFCに用いる場合、電解質層46の材料としてYSZのような650℃程度以上の高温域でも高い電解質性能を発揮できる材料を用い、システムの原燃料に都市ガスやLPG等の炭化水素系の原燃料を用い、原燃料を水蒸気改質等によってSOFCのアノードガスとするシステム構成とすると、SOFCのセルスタックで生じる熱を原燃料ガスの改質に用いる高効率なSOFCシステムを構築することができる。
 電解質層46は、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃を越える高温域での焼成を用いずに、緻密で気密性およびガスバリア性の高い電解質層46が得られる。そのため、金属支持体32の損傷を抑制し、また、金属支持体32と電極層44との元素相互拡散を抑制することができ、性能・耐久性に優れた電気化学素子Eを実現できる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、スプレーコーティング法を用いると、緻密で気密性およびガスバリア性の高い電解質層が低温域で容易に得られやすいので更に好ましい。
 電解質層46は、アノードガスやカソードガスのガスリークを遮蔽し、かつ、高いイオン伝導性を発現するために、緻密に構成される。電解質層46の緻密度は90%以上が好ましく、95%以上であるとより好ましく、98%以上であると更に好ましい。電解質層46は、均一な層である場合は、その緻密度が95%以上であると好ましく、98%以上であるとより好ましい。また、電解質層46が、複数の層状に構成されているような場合は、そのうちの少なくとも一部が、緻密度が98%以上である層(緻密電解質層)を含んでいると好ましく、99%以上である層(緻密電解質層)を含んでいるとより好ましい。このような緻密電解質層が電解質層の一部に含まれていると、電解質層が複数の層状に構成されている場合であっても、緻密で気密性およびガスバリア性の高い電解質層を形成しやすくできるからである。
(反応防止層)
 反応防止層47は、電解質層46の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは3μm~15μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。反応防止層47の材料としては、電解質層46の成分と対極電極層48の成分との間の反応を防止できる材料であれば良いが、例えばセリア系材料等が用いられる。また反応防止層47の材料として、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有する材料が好適に用いられる。なお、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有し、これら元素の含有率の合計が1.0質量%以上10質量%以下であるとよい。反応防止層47を電解質層46と対極電極層48との間に導入することにより、対極電極層48の構成材料と電解質層46の構成材料との反応が効果的に抑制され、電気化学素子Eの性能の長期安定性を向上できる。反応防止層47の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属支持体32の損傷を抑制し、また、金属支持体32と電極層44との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(対極電極層)
 対極電極層48は、電解質層46もしくは反応防止層47の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。対極電極層48の材料としては、例えば、LSCF、LSM等の複合酸化物、セリア系酸化物およびこれらの混合物を用いることができる。特に対極電極層48が、La、Sr、Sm、Mn、CoおよびFeからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含むことが好ましい。以上の材料を用いて構成される対極電極層48は、カソードとして機能する。
 なお、対極電極層48の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属支持体32の損傷を抑制し、また、金属支持体32と電極層44との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(固体酸化物形燃料電池)
 以上のように電気化学素子Eを構成することで、電気化学素子を燃料電池(電気化学発電セル)として機能させる場合には、電気化学素子Eを固体酸化物形燃料電池の発電セルとして用いることができる。例えば、金属支持体32の裏側の面から貫通空間を通じて水素を含む燃料ガスを電極層44へ流通し、電極層44の対極となる対極電極層48へ空気を流通し、例えば、500℃以上900℃以下の温度で作動させる。そうすると、電解質層46に酸素イオンを伝導する電解質材料を用いた場合には、対極電極層48において空気に含まれる酸素Oが電子eと反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層46を通って電極層44へ移動する。電極層44においては、流通された燃料ガスに含まれる水素Hが酸素イオンO2-と反応し、水HOと電子eが生成される。電解質層46に水素イオンを伝導する電解質材料を用いた場合には、電極層44において流通された燃料ガスに含まれる水素Hが電子eを放出して水素イオンHが生成される。その水素イオンHが電解質層46を通って対極電極層48へ移動する。対極電極層48において空気に含まれる酸素Oと水素イオンH、電子eが反応し水HOが生成される。以上の反応により、電極層44と対極電極層48との間に起電力が発生する。この場合、電極層44はSOFCの燃料極(アノード)として機能し、対極電極層48は空気極(カソード)として機能する。
(電気化学素子の製造方法)
 次に、電気化学素子Eの製造方法について説明する。
(電極層形成ステップ)
 電極層形成ステップでは、金属支持体32の表側の面の貫通空間が設けられた領域より広い領域に電極層44が薄膜の状態で形成される。金属支持体32の貫通孔はレーザー加工等によって設けることができる。電極層44の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属支持体32の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 電極層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。まず電極層44の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作成し、金属支持体32の表側の面に塗布する。そして電極層44を圧縮成形し(電極層平滑化工程)、1100℃以下で焼成する(電極層焼成工程)。電極層44の圧縮成形は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、電極層の焼成は、800℃以上1100℃以下の温度で行うと好適である。また、電極層平滑化工程と電極層焼成工程の順序を入れ替えることもできる。
 なお、中間層45を有する電気化学素子を形成する場合では、電極層平滑化工程や電極層焼成工程を省いたり、電極層平滑化工程や電極層焼成工程を後述する中間層平滑化工程や中間層焼成工程に含めることもできる。
 なお、電極層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
(拡散抑制層形成ステップ)
 上述した電極層形成ステップにおける焼成工程時に、金属支持体32の表面に金属酸化物層(拡散抑制層)が形成される。なお、上記焼成工程に、焼成雰囲気を酸素分圧が低い雰囲気条件とする焼成工程が含まれていると元素の相互拡散抑制効果が高く、抵抗値の低い良質な金属酸化物層(拡散抑制層)が形成されるので好ましい。電極層形成ステップを、焼成を行わないコーティング方法とする場合を含め、別途の拡散抑制層形成ステップを含めても良い。いずれにおいても、金属支持体32の損傷を抑制可能な1100℃以下の処理温度で実施することが望ましい。また、後述する中間層形成ステップにおける焼成工程時に、金属支持体32の表面に金属酸化物層(拡散抑制層)が形成されても良い。
(中間層形成ステップ)
 中間層形成ステップでは、電極層44を覆う形態で、電極層44の上に中間層45が薄層の状態で形成される。中間層45の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属支持体32の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 中間層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。
 まず、中間層45の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作成し、金属支持体32の表側の面に塗布する。そして中間層45を圧縮成形し(中間層平滑化工程)、1100℃以下で焼成する(中間層焼成工程)。中間層45の圧延は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、中間層45の焼成は、800℃以上1100℃以下の温度で行うと好適である。このような温度であると、金属支持体32の損傷・劣化を抑制しつつ、強度の高い中間層45を形成できるためである。また、中間層45の焼成を1050℃以下で行うとより好ましく、1000℃以下で行うと更に好ましい。これは、中間層45の焼成温度を低下させる程に、金属支持体32の損傷・劣化をより抑制しつつ、電気化学素子Eを形成できるからである。また、中間層平滑化工程と中間層焼成工程の順序を入れ替えることもできる。
 なお、中間層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
(電解質層形成ステップ)
 電解質層形成ステップでは、電極層44および中間層45を覆った状態で、電解質層46が中間層45の上に薄層の状態で形成される。また、厚さが10μm以下の薄膜の状態で形成されても良い。電解質層46の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属支持体32の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 緻密で気密性およびガスバリア性能の高い、良質な電解質層46を1100℃以下の温度域で形成するためには、電解質層形成ステップをスプレーコーティング法で行うことが望ましい。その場合、電解質層46の材料を金属支持体32上の中間層45に向けて噴射し、電解質層46を形成する。
(反応防止層形成ステップ)
 反応防止層形成ステップでは、反応防止層47が電解質層46の上に薄層の状態で形成される。反応防止層47の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属支持体32の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。なお反応防止層47の上側の面を平坦にするために、例えば反応防止層47の形成後にレベリング処理や表面を切削・研磨処理を施したり、湿式形成後焼成前に、プレス加工を施してもよい。
(対極電極層形成ステップ)
 対極電極層形成ステップでは、対極電極層48が反応防止層47の上に薄層の状態で形成される。対極電極層48の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属支持体32の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
 以上の様にして、電気化学素子Eを製造することができる。
 なお電気化学素子Eにおいて、中間層45(挿入層)と反応防止層47とは、何れか一方、あるいは両方を備えない形態とすることも可能である。すなわち、電極層44と電解質層46とが接触して形成される形態、あるいは電解質層46と対極電極層48とが接触して形成される形態も可能である。この場合に上述の製造方法では、中間層形成ステップ、反応防止層形成ステップが省略される。なお、他の層を形成するステップを追加したり、同種の層を複数積層したりすることも可能であるが、いずれの場合であっても、1100℃以下の温度で行うことが望ましい。
 そして、以上のように構成した電気化学素子Eは、電気化学モジュールMとして構成され、電気化学素子を燃料電池(電気化学発電セル)として機能させる場合には、以下のように動作し、発電することができる。
 電気化学素子Eは、図2および図6に示されるように、複数の電気化学素子Eが集電部材26および接着材29を介して電気的に接続された状態で、ガスマニホールド17に並列配置される。そして蓋部34および反応排ガス排出口37が設けられた上端EUと反対側の下端ED(図5における紙面中下方の端部)が、ガスマニホールド17に対して固定される。ガスマニホールド17は、改質ガス流入口35に対して改質ガスを流通する。なお、電気化学素子Eは700℃程度の作動温度に維持される。
 なお、図5では、分割体70は、下端EDから反応排ガス排出口37が設けられた上端EUまで延びている。ただし、分割体70は、反応排ガス排出口37からの気体の排出を阻害しない程度に、反応排ガス排出口37とは接触しないように、反応排ガス排出口37から離隔した位置まで延びるように形成されているのが好ましい。
 改質ガス流入口35に流通された改質ガスは、改質ガス通流部36に形成された複数の分割流路Aを通って反応排ガス排出口37に向けて流れる。その途中で、改質ガスの一部は貫通孔38を通って筒状支持体31の内側から外側へと流出し、電気化学反応部43の電極層44に到達する。ここで、複数の分割流路Aを流れる改質ガスは、前述の図8の通り、筒状支持体31の短手方向の中央部及び両端部を含む任意の複数地点において、改質ガスの流速が概ね一定である。よって、筒状支持体31の短手方向の任意の複数地点において、分割流路Aから筒状支持体31の貫通孔38を介して電気化学反応部43に流通される改質ガスの量を概ね一定にできる。
 一方、ブロア5から収納容器10に流通された空気が、電気化学素子Eの気体供給空間Sに到達する。そして気体供給空間Sから空気が、集電部材26および接着材29を通って、あるいは電気化学反応部43の側方から直接、電気化学反応部43の対極電極層48に到達する。
 そうすると、対極電極層48において空気に含まれる酸素Oが電子eと反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層46を通って電極層44へ移動する。電極層44においては、流通された改質ガスに含まれる水素Hが酸素イオンO2-と反応し、水HOと電子eが生成される。また、流通された改質ガスに含まれる一酸化炭素COが酸素イオンO2-と反応し、二酸化炭素COと電子eが生成される。以上の反応により、電極層44と対極電極層48との間に起電力が発生する。
 一つの電気化学反応部43の対極電極層48に接着材29を介して集電部材26が接続され、その集電部材26が他の筒状支持体31の背面39に接触する。このようにして複数の電気化学素子Eが直列に接続されているので、電気化学素子Eに発生した起電力が足し合わされた電圧が、電流引出し部28に生じる。
 改質ガス通流部36の終端まで到達した改質ガスは、電気化学反応部43で消費されなかった残余の水素ガスと共に、反応排ガスとして反応排ガス排出口37より電気化学素子Eの外部に排出される。反応排ガス排出口37より排出された反応排ガスは、ブロア5から収納容器10に流通された空気と混合され、反応排ガス排出口37の近傍の燃焼部6にて燃焼し、改質器4を加熱する。
 上記の構成によれば、改質ガスは、複数の分割流路Aに沿って流れることによる整流作用により、筒状支持体31の短手方向の任意の複数地点において、流速が概ね一定となり、電気化学反応部43に流通される改質ガスの量が概ね一定となる。これにより、改質ガスの不足する部分と、過剰に流通される部分との差を小さくし、電気化学素子E全体において電気化学反応を行わせて、燃料利用率を向上して電気化学素子Eの発電効率を向上できる。
 例えば、改質ガス通流部36を改質ガスが流れており、筒状支持体31の短手方向の両端部と中央部とで改質ガスの流速が異なる場合には、改質ガスが長手方向に進むほど、流速の遅い両端部から電極層44への改質ガスの流通が不足し、気体中の改質ガスの濃度が低下してしまい、電極層44が酸化劣化する。一方で、短手方向の中央部では、電極層44で利用されないまま改質ガスが電気化学素子Eの上端EUの反応排ガス排出口37から排出される。つまり、濃度が高いままの改質ガスが反応排ガス排出口37から排出される。そのため、流速の遅い両端部での電極層44の酸化劣化を抑制するために、電気化学反応を抑制して電極層44で消費する改質ガスの量を抑制すると、流速の速い中央部においてさらに電極層44で利用されない改質ガスの量が増加する。結果として、電気化学素子Eの電気化学反応の反応効率が低下し、発電効率が低下してしまう。
 上記本実施形態によると、前述の通り、筒状支持体31の短手方向の任意の複数地点において改質ガスの流速が概ね一定であるので、流速の遅い地点に合わせて電気化学反応を抑制する必要がなく、電気化学素子Eの発電効率を向上できる。つまり、電極層44で利用される改質ガスの量を多くして改質ガスの利用率を高めることができる。発電効率は、電気化学モジュールMのセル電圧と、改質ガスの利用率との積に比例する。よって、改質ガスの利用率を高めることで、発電効率を向上できる。
 なお、本実施形態では、電気化学反応部43は、金属支持体32の概ね全面に形成されている。しかし、電気化学反応部43は、長手方向に延びる複数の分割流路Aそれぞれに対応して、長手方向に沿って分割されて形成されていてもよい。例えば、一の分割流路Aに対応して一の電気化学反応部43が長手方向に延びて形成され、別の分割流路Aに対応して、一の電気化学反応部43から分離された別の電気化学反応部43が長手方向に延びて形成されていてもよい。ただし、電気化学反応部43を金属支持体32の概ね全面に形成する場合には、各分割流路Aに対して別々に電気化学反応部43を形成するよりも、簡単に電気化学反応部43を形成可能である。
 次に図9を参照して、電気化学素子Eの製造の手順を説明する。
 まず、金属支持体32に複数の貫通孔38を形成する(♯1)。貫通孔38の形成は、例えばレーザー加工等により行うことができる。これにより、金属支持体32に選択的に気体通流許容部P2(孔領域P2)と気体通流禁止部P1とが設けられる。
 次に、金属支持体32の孔領域P2の全体を覆って、電気化学反応部43を設ける(♯2)。電気化学反応部43は、電極層44、中間層45、電解質層46、反応防止層47、対極電極層48の順に設けられる。これらは全て膜の状態で金属支持体32の上に形成される。電気化学反応部43の形成は、印刷やスプレー等による湿式法、エアロゾルデポジション法、溶射法、スパッタリング法、パルスレーザーデポジション法などを適宜用いて行うことができる。
 次に、U字部材33を金属支持体32に接合し、U字部材33と金属支持体32とにより形成された改質ガス通流部36に分割体70を挿入する(♯3)。
 最後に、あらかじめ反応排ガス排出口37を形成した蓋部34を、U字部材33及び金属支持体32に接合する(♯4)。各部材の接合には、溶接等の適宜の方法を用いることができる。
 〔他の実施形態〕
(1)上記実施形態の電気化学素子Eでは、電気化学反応部43が、改質ガス通流部36である内部空間を有する筒状支持体31に配置されている。しかし、電気化学反応部43は筒状支持体31に支持される形態でなくてもよい。
 例えば、図10に示すように、筒状支持体31においてU字部材33が省略され、金属支持体32(第二板状体)のみを有していてもよい。一の電気化学素子E1において、金属支持体32の上面32aに電気化学反応部43が配置されている。また、金属支持体32の下面32bに複数の分割流路A及びBを有する分割体70(第一板状体)が配置されており、分割体70の山の頂部71と金属支持体32の下面32bとは接触している。金属支持体(第二板状体)32と分割体(第一板状体)70とが板状支持体を構成している。
 ここで、分割流路Aにはガスマニホールド17から改質ガスが流通されるように、分割流路Aとガスマニホールド17とが接続されている。よって、分割流路Aでは、下端EDから上端EUに向かって改質ガスが流れる。分割流路Aと電極層44とが金属支持体32を介して対向しており、分割流路Aを流れる改質ガスが金属支持体32の貫通孔38を介して電極層44に流通される。一方、分割流路Bにはブロア5から空気が流通され、下端EDから上端EUに向かって空気が流れる。また、一の電気化学素子E1において、電気化学反応部43の表裏の面のうち、金属支持体32と反対側の面に、接着材29によって集電部材26が接着されている。
 そして、一の電気化学素子E1の集電部材26と、別の電気化学素子E2の分割体70とを接触させた状態あるいは溶接等により接合した状態で、複数の電気化学素子Eが並列配置されている。この場合、一の電気化学素子E1の集電部材26は、別の電気化学素子E2の分割体70の分割流路Bと接触している。集電部材26及び接着材29は気体透過性を有しており、別の電気化学素子E2の分割体70の分割流路Bを流れる空気が、一の電気化学素子E1の対極電極層48に流通される。
 このような構成により、電気化学反応部43には改質ガス及び空気が流通されて電気化学反応が生じ、発電が行われる。
 図10には、集電部材26を介して、電気化学素子E1と別の電気化学素子E2とが接続されている例が示されているが、集電部材26を省略しても良い。この場合も、分割流路Bにはブロア5(図1)から空気が流通され、下端EDから上端EUに向かって空気が流れる。
 上記では、各分割体70において、山の頂部71と、金属支持体32の下面32bとが接触しているため、複数の流路が完全に分割されて分割流路Aが形成されている。しかし、分割体70が金属支持体32とともに閉じた空間を形成しているのであれば、各分割流路が完全に分割されている必要はない。例えば、左の端部における分割体70の山の頂部71及び右の端部における分割体70の山の頂部71と、金属支持体32の下面32bとが接触して空間が形成され、その他の分割体70の山及び谷がその空間内に互いに連通可能な複数の流路を形成していてもよい。
 なお、分割体70は、電気化学素子Eの長手方向に沿ってのびており、これにより、分割体70の山及び谷が電気化学素子Eの長手方向に沿うように延びている。
 (2)上記実施形態では、分割体70は波板が使用された。しかし、分割体70の形状はこれに限定されず、例えば図11に示すように、断面視の形状が台形状の分割流路Aを有する分割体70であってもよい。図11の分割体70の場合、断面視において、山及び谷が交互に形成されており、山の頂面74及び谷の底面75が互いに平行な直線状であり、山の頂面74と谷の底面75とが斜面76によって接続されている。
 このような分割体70が改質ガス通流部36に配置された場合、山の頂面74は、金属支持体32の下面32bと接し、谷の底面75は、U字部材33の改質ガス通流部36に面する底面33aと接する。これにより、改質ガス通流部36には、金属支持体32の下面32bと分割体70とに囲まれた空間により、筒状支持体31の長手方向に延びる複数の分割流路Aが形成される。また、改質ガス通流部36には、U字部材33の底面33aと分割体70とに囲まれた空間により、筒状支持体31の長手方向に延びる複数の分割流路Bが形成される。分割流路Aと分割流路Bとは、図11に示すように交互に形成される。
 ここで、例えば、分割流路Aの幅d3及び分割流路Bの幅d4は概ね同一であってもよいし、幅d3が幅d4よりも大きくてもよい。幅d3が大きい場合には、分割流路A内を流れる改質ガスの量を多くし、発電効率を大きくすることができ好ましい。
 また、例えば図12に示すように、断面視の形状が上方が開口したU字状の分割流路Aを有する分割体70であってもよい。図12の分割体70の場合、断面視において、底壁77に対して上方に延びる複数の縦壁78が形成されている。隣接する縦壁78間の間に分割流路Aが形成される。このような分割体70が改質ガス通流部36に配置された場合、底壁77は、U字部材33の改質ガス通流部36に面する底面33aと接し、縦壁78の頂部78aは、金属支持体32の下面32bと接する。これにより、改質ガス通流部36には、金属支持体32の下面32bと分割体70とに囲まれた空間により、筒状支持体31の長手方向に延びる複数の分割流路Aが形成される。
 その他、断面視の形状が長方形状、正方形状及び三角形状等の流路を有する分割体70であってもよい。
 (3)上記実施形態では、図6及び図7に示すように、分割体70の山の頂部71は、金属支持体32の下面32bと接し、谷の底部73は、U字部材33の改質ガス通流部36に面する底面33aと接している。つまり、全ての分割流路Aが互いに分離されている。
 しかし、複数の分割流路Aに沿って改質ガスが流れることによる整流作用がある程度確保されるのであれば、分割体70の山の頂部71と、金属支持体32の下面32bとの間には、少なくとも一部において隙間が形成されていてもよい。この場合、分割体70の山及び谷によって複数の分割流路Aが形成されているものの、隙間において少なくとも一部の分割流路Aどうしが連通しており、それぞれが完全に分離されているわけではない。
 例えば、全ての分割流路Aにおいて、分割体70の山の頂部71と、金属支持体32の下面32bとの間に隙間が形成されていてもよい。また、流れ交差方向の両端に位置する分割流路Aにおいて、分割体70の山の頂部71と金属支持体32の下面32bとが接触するものの、その他の両端以外の分割流路Aにおいて、分割体70の山の頂部71と金属支持体32の下面32bとの間に隙間が形成されていてもよい。
 前記構成のように分割流路Aが連通している場合であっても、改質ガスは、改質ガス通流部36において複数の分割流路Aを流れることで、複数の分割流路Aそれぞれに沿って案内されて流れる。よって、複数の分割流路Aを流れることによる整流作用により、流れ交差方向の中央部及び両端部を含む任意の複数地点において、電気化学反応部43に流通される気体の量を概ね一定とし、電気化学素子Eの電気化学反応の反応効率を向上して発電効率を向上できる。
 (4)上記実施形態では、分割体70は筒状支持体31の長手方向において概ね同一形状で延びている。しかし、分割体70は、長手方向の任意の箇所において形状が変わるように形成されていてもよい。
 例えば改質ガスを分割流路AおよびBに流通する場合、図13及び図14に示すように、分割体70は、長手方向に例えば2つの異なる形状の分割流路が接続されて形成されている。図13では、紙面手前側の分割体70aと、紙面奥側の分割体70bとは、それぞれの分割体70aの山及び谷の断面視における位相が概ね180°異なる。これにより、分割体70aの例えば分割流路B1、B2、B3、B4は、分割体70bの例えば分割流路A1a、A2a、A3a、A4aに対応づけられて配置されている。よって、分割体70aの分割流路B1に沿って流れた改質ガスは、分割体70bの分割流路A1aに送り込まれ、分割流路A1aに沿って流れる。同様に、分割体70aの分割流路B2、B3、B4に沿って流れた改質ガスは、分割体70bの分割流路A2a、A3a、A4aに送り込まれ、分割流路A2a、A3a、A4aに沿って流れる。
 一方、分割体70aの例えば分割流路A1、A2、A3、A4は、分割体70bの例えば分割流路B1a、B2a、B3a、B4aに対応づけられて配置されている。よって、分割体70aの分割流路A1、A2、A3、A4に沿って流れた改質ガスは、分割体70bの分割流路B1a、B2a、B3a、B4aに送り込まれ、分割流路B1a、B2a、B3a、B4aに沿って流れる。
 このように分割流路A、B、Aa、Baを構成することで、分割体70aにおいて金属支持体32とは分離された分割流路Bを流れる改質ガスを、分割体70bにおいて金属支持体32に面する分割流路Aaに流れるようにすることができる。これにより、分割体70aの分割流路Bを流れることで電気化学反応部43に流通されなかった改質ガスを、分割体70bの分割流路Aaに流して、分割流路Aaから金属支持体32を介して電気化学反応部43に流通することができる。そのため、電極層44で利用される改質ガスの量を多くして改質ガスの利用率を高め、発電効率を向上できる。つまり、電極層44において、下端EDの改質ガス流入口35側の端部と、電気化学素子Eの上端EUの反応排ガス排出口37側の端部とで、改質ガス濃度を適度に調整することも可能となり、前記課題であった反応排ガス排出口37側の端部での改質ガス不足による反応効率の低下を防ぐことが可能となる。
 また、分割体70aでは、改質ガスが分割流路Aから電気化学反応部43に流通されることで、分割流路Aに沿って電気化学反応部43が高温となる。一方、分割体70bでは、電気化学反応部43に面していない分割流路Bからは改質ガスが流通されないため、分割流路Bに沿った電気化学反応部43の高温化を抑制できる。同様に、分割体70bでは、分割流路Aaに沿った電気化学反応部43が高温となるものの、分割流路Baに沿った電気化学反応部43の高温化は抑制される。よって、電気化学反応部43全体において、高温となる領域を分散できるため、電気化学反応部43の劣化を抑制できる。
 なお、分割体70が長手方向に形状が異なる部分は、長手方向において2カ所以上の複数個所に設けられていてもよい。この場合も上記と同様に、波形の分割体70の断面視において、長手方向に互いに隣接する一方の波形の位相と他方の波形の位相とが概ね180°異なるように形成されるようにする。
 (5)上記実施形態では、図7に示すように、隣接する山の頂部71間の幅が概ね一定となるように山及び谷が形成されているが、これに限定されない。例えば、短辺方向の任意の複数地点における改質ガスの流速が異なる場合には、改質ガスの流速に応じて山の頂部71間の幅d1等を異ならせてもよい。例えば、改質ガスの流速が速い分割流路Aでは、山の頂部71間の幅d1を大きくしてもよい。
 (6)上記実施形態では、筒状支持体31の改質ガス通流部36がガスマニホールド17に接続されており、分割流路A及び分割流路Bの両方に改質ガスが流通される。分割流路Bは、電気化学反応部43とは分離されており改質ガスを電気化学反応部43に流通できない。そこで、分割流路Aのみをガスマニホールド17に接続し、分割流路Aのみに改質ガスを流通してもよい。また、分割流路Bに改質ガスが流れないように分割流路Bの開口を塞ぐようにしてもよい。これにより、電気化学反応部43に流通されず発電に利用されない改質ガスの量を減らすことができる。
 (7)上記実施形態では、電気化学反応部43は、電極層44、中間層45、電解質層46、反応防止層47および対極電極層48を有し、この順番にて金属支持体32に積層される。しかし、積層順が逆であってもよい。例えば、電気化学反応部43は、対極電極層48、反応防止層47、電解質層46、中間層45および電極層44の順番にて金属支持体32に積層されていてもよい。
 (8)上記実施形態では、電気化学反応部43は、筒状支持体31の表面(図4の金属支持体32(第二板状体)の上面32a)に形成されている。しかし、電気化学反応部43は、改質ガス通流部36(内部流路)内に配置され、筒状支持体31の表面とは反対の面に形成されていてもよい。
 (9)上記実施形態では、図6等に示すように金属支持体32に貫通孔38が設けられている。しかし、金属支持体32に貫通孔38が設けられる代わりに、U字部材33に貫通孔が設けられていてもよい。この場合、例えば、筒状支持体31の分割流路Bに空気を流し、分割流路Bを流れる空気を、U字部材33に形成された貫通孔を介して、隣接する電気化学素子Eの対極電極層48に流通できる。
 あるいは、金属支持体32及びU字部材33の両方に貫通孔が設けられていてもよい。この場合、分割流路Aを流れる改質ガスを金属支持体32の貫通孔を介して電極層44に流通し、分割流路Bを流れる空気をU字部材33に形成された貫通孔を介して、隣接する電気化学素子Eの対極電極層48に流通できる。
 (10)上記実施形態では、分割体70は一連の波板から形成されている。しかし、筒状支持体31の改質ガス通流部36において、改質ガスが複数の流れとなって流れるのであれば、分割体70は一連の波板から形成されている必要はない。例えば、改質ガスを各流れとする、個々に分かれた長手方向に延びる流路が分割体70として改質ガス通流部36に配置されていてもよい。
 (11)上記実施形態では、金属支持体32に貫通孔38が形成されている。しかし、例えば、金属支持体32に開口部を設け、その開口部に気体透過部材が嵌め込まれてもよい。金属支持体32には、上述の実施形態と同様の材料である、導電性と気体不透過性を有する金属や金属酸化物が用いられる。気体透過部材には、導電性と気体透過性を有する材料が用いられる。例えば、多孔質金属や金属酸化物が用いられる。金属支持体32の気体透過部が嵌め込まれた領域が気体通流許容部P2となり、金属支持体32の開口部を形成する枠体の領域が気体通流禁止部P1となる。
 (12)上記の実施形態の電気化学素子Eを、電気化学装置としての固体酸化物形燃料電池に利用することで、電気化学素子Eの電気化学反応の反応効率を向上させ、発電効率を向上できる。また、上記の実施形態の電気化学素子Eを、固体酸化物形電解セルや、固体酸化物を利用した酸素センサ等に利用することで、電気化学素子Eの電気化学反応の反応効率を向上できる。
 (13)上記実施形態では、電極層44で利用される改質ガスの量を多くして改質ガスの利用率を高め、燃料等の化学的エネルギーを電気エネルギーに変換する効率を向上できる構成について説明した。
 つまり、上記実施形態では、電気化学反応部43を燃料電池として動作させ、電極層44に水素ガスが流通され、対極電極層48に酸素ガスが流通される。そうすると、対極電極層48において酸素分子Oが電子eと反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層46を通って電極層44へ移動する。電極層44においては、水素分子Hが酸素イオンO2-と反応し、水HOと電子eが生成される。以上の反応により、電極層44と対極電極層48との間に起電力が発生し、発電が行われる。
 一方、電気化学反応部43を電解セルとして動作させる場合は、電極層44に水蒸気や二酸化炭素を含有するガスが流通され、電極層44と対極電極層48との間に電圧が印加される。そうすると、電極層44において電子eと水分子HO、二酸化炭素分子COが反応し水素分子Hや一酸化炭素COと酸素イオンO2-となる。酸素イオンO2-は電解質層46を通って対極電極層48へ移動する。対極電極層48において酸素イオンO2-が電子を放出して酸素分子Oとなる。以上の反応により、水分子HOが水素Hと酸素Oとに、二酸化炭素分子COを含有するガスが流通される場合は一酸化炭素COと酸素Oとに電気分解される。
 水蒸気と二酸化炭素分子COを含有するガスが流通される場合は上記電気分解により電気化学反応部43で生成した水素及び一酸化炭素等から炭化水素などの種々の化合物などを合成する燃料変換器を設けることができる。燃料供給部により、この燃料変換器が生成した炭化水素等を電気化学反応部43に流通したり、本システム・装置外に取り出して別途燃料や化学原料として利用することができる。
 図17に示すエネルギーシステムZでは、電気化学モジュールM(電気化学装置100の一部)は、複数の電気化学素子Eとガスマニホールド17及びガスマニホールド171とを有する。複数の電気化学素子Eは互いに電気的に接続された状態で並列して配置され、電気化学素子Eの一方の端部(下端部)がガスマニホールド17に固定されており、他方の端部(上端部)がガスマニホールド171に固定されている。電気化学素子Eの一方の端部(下端部)において、複数の分割流路A及び複数の分割流路Bの少なくともいずれかは水蒸気及び二酸化炭素の供給を受ける。そして、電気化学素子Eの電気化学反応部43では上述の反応が生じる。そして、複数の分割流路A及び複数の分割流路Bの少なくともいずれかの他方の端部(上端部)と一括して連通し、出口に備えられたガスマニホールド171によって電気化学反応部43で生成した水素及び一酸化炭素等を効率良く収集することができる。
 図17中の熱交換器24を、燃料変換器25で起きる反応によって生ずる反応熱と水とを熱交換させ気化する排熱利用部として動作させるとともに、図17中の熱交換器23を、電気化学素子Eによって生ずる排熱と水蒸気および二酸化炭素とを熱交換させ予熱する排熱利用部として動作させる構成とすることにより、エネルギー効率を高めることが出来る。
 また、電力変換器93は、電気化学素子Eに電力を流通する。これにより、上記のように電気化学素子Eは電解セルとして作用する。
 よって、上記構成によれば、電気エネルギーを燃料等の化学的エネルギーに変換する効率を向上できる電気化学装置100及びエネルギーシステムZ等を提供することができる。
 (14)上記の図10では、板状支持体は、金属支持体(第二板状体)32と分割体(第一板状体)70とにより構成されている。ここで、金属支持体(第二板状体)32と分割体(第一板状体)70とは、別体の板状体から構成されていてもよいし、図15に示すように一の板状体から構成されていてもよい。図15の場合、一の板状体が折り曲げられることで、金属支持体32と分割体70とが重ね合される。そして、周縁部1aが溶接等されることで金属支持体32と分割体70とが一体化される。なお、金属支持体32と分割体70とは一連の継ぎ目のない板状体から構成されていてもよく、一連の板状体が折り曲げられることで図15のように成型されてもよい。
 また、後述しているが、第一板状体である分割体70が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。同様に、第二板状体である金属支持体32が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。
 また、図4では、筒状支持体31(板状支持体)は、U字部材(第一板状体)33と、金属支持体32(第二板状体)とにより形成されている。また、改質ガス通流部(内部流路)36に、改質ガス通流部36を複数の分割流路Aに分割する分割体(第一板状体、複数流路形成体)70が備えられている。ここで、U字部材33(第一板状体)と、金属支持体32(第二板状体)とは、別体の板状体から構成されていてもよいし、上述したような一の板状体又は一連の板状体から構成されていてもよい。さらには、U字部材33(第一板状体)と、金属支持体32(第二板状体)と、分割体(第一板状体、複数流路形成体)70とは、上述したような一の板状体又は一連の板状体から構成されていてもよい。
 また、第一板状体であるU字部材33が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。また、後述しているが、第一板状体である分割体70が、一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。さらに、第二板状体である金属支持体32が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。
 (15)上記の分割体70は、改質ガス通流部36を複数の分割流路Aに分割する。この分割体70は、電気化学素子Eの下端EDと上端EUとの間の長手方向、つまり改質ガスの通流方向に沿って延びている。分割体70は、下端EDと上端EUとの間で一連の波状の板状体から形成されていてもよいし、2以上の波状の板状体から構成されていてもよい。分割体70は、例えば、長手方向に沿う方向に沿って分離した2以上の波状の板状体から構成されていてもよいし、短手方向に沿う方向に沿って分離した2以上の波状の板状体から構成されていてもよい。
 また、分割体70は、図7に示すように同一形状の山及び谷が繰り返し形成されることで波形に構成されている。しかし、分割体70は、板状部分を有していてもよい。例えば、分割体70は、板状部分と突状部分とが交互に形成されることで構成されていてもよい。そして、突状部分を改質ガス等の流体が通流する部分とすることができる。
 (16)上記の分割体70は、全面が波板状に形成されている必要はなく、少なくとも一部が波板状に形成されていればよい。分割体70は、例えば、下端EDと上端EUとの間において、長手方向の一部が平板状であり、残りが波板状であってもよい。また、分割体70は、短手方向の一部が平板状であり、残りが波板状であってもよい。
 図16の分割体70は、一部が波板状に、残りが平板状に構成されている。図16に示すように、長手方向の下端ED側に平板状部分PDが設けられており、長手方向の上端EU側に平板状部分PUが設けられている。そして、図16の分割体70は、平板状部分PDと平板状部分PUとの間に、波板状部分Wを有している。波板状部分Wは、改質ガス通流部36を複数の分割流路Aに分割している。
 図16の分割体70において、下端ED側の平板状部分PDに、平板状部分PDから突出する少なくとも1つの構造体130が設けられている。図16の場合、複数の構造体130が設けられている。隣接する構造体130の間は凹状となっており、改質ガスが通過可能な凹状流路として形成されている。よって、突出している構造体130によって改質ガスの通流が妨げる障壁となり、改質ガスの通流には圧力損失が生じている。そして、構造体130によって圧力損失が生じた状態の改質ガスが、構造体130間の凹状流路を通過する。
 このような構成により、構造体130は、平板状部分PDに導入された改質ガスを、平板状部分PDに一時的に貯留させつつ、平板状部分PDから複数の分割流路Aに概ね均一に供給する。よって、各分割流路A内を通流する改質ガスの分布、つまり、改質ガスの流速、流量及び圧力等が概ね一定になる。これにより、電気化学反応部において、改質ガスが不足する部分と、過剰に改質ガスが通流される部分との差を小さくし、電気化学素子全体において電気化学反応を行わせて、改質ガスの利用率を向上して電気化学素子の反応効率を向上できる。
 なお、構造体130は、上端EU側に平板状部分PUにも設けることができる。
 (17)図4、図6、図8、図10、図15では、金属支持体32と分割体70とが複数点において接触しており、複数の分割流路が完全に分画されている例が示されている。しかし、必ずしも、金属支持体32と分割体70とが複数点において接触しておらず複数の流路が完全に分画されていなくとも、各流路を流れる気体の流速が、流れ交差方向の任意の複数地点において概ね一定となる整流作用が得られればよい。
 (18)上記の気体通流許容部P2では、筒状支持体31(板状支持体)の金属支持体32(第二板状体)の少なくとも一部の領域において、金属支持体32を厚み方向に貫通する複数の貫通孔38がマトリクス状に配置されるように形成されている(図9等)。
 これとは異なり、気体通流許容部P2では、金属支持体32を厚み方向に貫通する前記複数の貫通孔38の代わりに、厚み方向に概ね直交する方向に沿って延びる独立孔が形成されてもよい。当該独立孔は、延在する方向の少なくともいずれかの地点において金属支持体32を厚み方向に貫通している。例えば、当該独立孔は、各分割流路Aそれぞれに対応して当該厚み方向に概ね直交する方向に延びており、かつ延在する方向の少なくともいずれかの地点で金属支持体32を貫通して分割流路Aに連通している。そして、各独立孔は、隣接する独立孔とは連通していない。
 また、気体通流許容部P2では、前記複数の貫通孔38の代わりに、金属支持体32の少なくとも一部の領域において、三次元(網目状)連続孔が形成されてもよい。例えば、当該連続孔は、多孔質性の金属支持体32において、各孔が連続的に連結されて形成される。当該連続孔は、連続孔のいずれかの地点において金属支持体32を貫通している。
 (19)図2には、流路の気体が流通される入口にガスマニホールド17が備えられた場合が示されている。しかし、流路の気体が流通される出口にガスマニホールドが備えられていてもよく、この場合、電気化学反応による排出ガスや生成ガスを効率良く収集することができる。
 (20)上記実施形態において、電気化学装置は、複数の電気化学素子を備える電気化学モジュールMを備えている。しかし、上記実施形態の電気化学装置は1つの電気化学素子を備える構成にも適用可能である。
 なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
17  :ガスマニホールド
31  :筒状支持体
32  :金属支持体
32a :上面
32b :下面
33  :U字部材
36  :改質ガス通流部
38  :貫通孔
43  :電気化学反応部
44  :電極層
45  :中間層
46  :電解質層
47  :反応防止層
48  :対極電極層
70  :分割体
A   :分割流路
B   :分割流路
E   :電気化学素子
E3  :電気化学素子
ED  :下端
EU  :上端
Ea  :下端
P1  :気体通流禁止部
P2  :気体通流許容部
 

Claims (16)

  1.  内部に内部流路を有する導電性の板状支持体を備え、
     前記板状支持体は、当該板状支持体の少なくとも一部において、当該板状支持体の内側である前記内部流路と外側とに亘って気体を透過できる気体通流許容部と、前記気体通流許容部の全部又は一部を被覆する状態で、少なくとも膜状の電極層と膜状の電解質層と膜状の対極電極層とを記載順に有する電気化学反応部と、を有し、
     前記板状支持体は、前記内部流路内に複数の流路を形成している、電気化学素子。
  2.  前記板状支持体は、第一板状体と、少なくとも前記内部流路に複数の流路を形成している第二板状体とを含む、請求項1に記載の電気化学素子。
  3.  前記板状支持体は、
     前記内部流路を形成する内部流路形成体と、
     前記内部流路に収容されており、前記複数の流路を形成する複数流路形成体とを有する、請求項1又は2に記載の電気化学素子。
  4.  前記板状支持体の少なくとも一部が波状と成すように構成されている、請求項1~3のいずれか1項に記載の電気化学素子。
  5.  前記複数流路形成体の少なくとも一部が波状と成すように構成されている、請求項3に記載の電気化学素子。
  6.  前記板状支持体は、少なくとも第一板状体と第二板状体により形成されており、
     前記第一板状体が前記第二板状体と接触する接触部と、前記第一板状体が前記第二板状体と接触しない非接触部とによって前記内部流路内に前記複数の流路が形成されている、請求項1~5のいずれか一項に記載の電気化学素子。
  7.  前記板状支持体は、長手方向に延びた板状に形成されており、
     前記複数の流路は、前記長手方向に沿って延びている、請求項1~6のいずれか一項に記載の電気化学素子。
  8.  前記気体通流許容部は、前記板状支持体の少なくとも一部を貫通する複数の貫通孔が設けられている孔領域である、請求項1~6のいずれか一項に記載の電気化学素子。
  9.  前記板状支持体は、少なくとも第一板状体と第二板状体により形成されており、
     前記第一板状体は板状面に沿って、一体、もしくは分割されて一連に形成されている、請求項1~8のいずれか一項に記載の電気化学素子。
  10.  前記複数の流路と一括して連通し前記気体が流通するマニホールドをさらに備える、請求項1~9のいずれか一項に記載の電気化学素子。
  11.  請求項1~10の何れか一項に記載の複数の電気化学素子を有し、一の電気化学素子と他の電気化学素子とが電気的に接続される形態で、かつ前記板状支持体同士を対向させる形態で、複数の前記電気化学素子を並列に配置してなる、電気化学モジュール。
  12.  請求項1~10の何れか一項に記載の電気化学素子もしくは請求項11に記載の電気化学モジュールと燃料変換器とを少なくとも有し、前記電気化学素子もしくは前記電気化学モジュールと前記燃料変換器との間で還元性成分を含有するガスを流通する電気化学装置。
  13.  請求項1~10の何れか一項に記載の電気化学素子もしくは請求項11に記載の電気化学モジュールと、前記電気化学素子もしくは前記電気化学モジュールから電力を取り出すインバータとを少なくとも有する電気化学装置。
  14.  請求項1~10の何れか一項に記載の電気化学素子もしくは請求項11に記載の電気化学モジュールと、燃料変換器と、電気化学素子もしくは前記電気化学モジュールから電力を取り出す、あるいは電気化学モジュールに電力を流通する電力変換器とを有する電気化学装置。
  15.  請求項1~10の何れか一項に記載の電気化学素子もしくは請求項11に記載の電気化学モジュールに対して燃料変換器からの還元性成分ガスを流通する、あるいは前記電気化学素子もしくは前記電気化学モジュールから燃料変換器に還元性成分ガスを流通する燃料供給部を有する電気化学装置。
  16.  請求項12~15のいずれか一項に記載の電気化学装置と、電気化学装置もしくは燃料変換器から排出される熱を再利用する排熱利用部を有するエネルギーシステム。
     
PCT/JP2019/014381 2018-03-30 2019-03-29 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム WO2019189916A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/043,816 US20210119235A1 (en) 2018-03-30 2019-03-29 Electrochemical Element, Electrochemical Module, Electrochemical Device, and Energy System
JP2020509381A JP7431154B2 (ja) 2018-03-30 2019-03-29 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
CN201980024111.7A CN111902984A (zh) 2018-03-30 2019-03-29 电化学元件、电化学模块、电化学装置和能源系统
CA3107250A CA3107250A1 (en) 2018-03-30 2019-03-29 Electrochemical element, electrochemical module, electrochemical device, and energy system
KR1020207030437A KR20200135475A (ko) 2018-03-30 2019-03-29 전기 화학 소자, 전기 화학 모듈, 전기 화학 장치 및 에너지 시스템
EP19774528.4A EP3790089A4 (en) 2018-03-30 2019-03-29 ELECTROCHEMICAL ELEMENT, ELECTROCHEMICAL MODULE, ELECTROCHEMICAL DEVICE AND ENERGY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018070345 2018-03-30
JP2018-070345 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189916A1 true WO2019189916A1 (ja) 2019-10-03

Family

ID=68060283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014381 WO2019189916A1 (ja) 2018-03-30 2019-03-29 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム

Country Status (8)

Country Link
US (1) US20210119235A1 (ja)
EP (1) EP3790089A4 (ja)
JP (1) JP7431154B2 (ja)
KR (1) KR20200135475A (ja)
CN (1) CN111902984A (ja)
CA (1) CA3107250A1 (ja)
TW (1) TWI811329B (ja)
WO (1) WO2019189916A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255617A (ja) * 1995-03-20 1996-10-01 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用セパレータ
JP2016195029A (ja) 2015-03-31 2016-11-17 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム
JP2017183177A (ja) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 電気化学素子、セルユニット、電気化学モジュール、電気化学装置およびエネルギーシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9403234D0 (en) * 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack and a reactant distribution member therefor
AU2003256251A1 (en) * 2002-04-24 2003-11-10 The Regents Of The University Of California Planar electrochemical device assembly
JP6216283B2 (ja) * 2014-04-23 2017-10-18 本田技研工業株式会社 燃料電池スタック
JP6454904B2 (ja) * 2015-08-21 2019-01-23 トヨタ車体株式会社 燃料電池用ガス流路形成板及び燃料電池スタック
US11978937B2 (en) * 2016-03-18 2024-05-07 Osaka Gas Co., Ltd. Electrochemical element, electrochemical module, electrochemical device, and energy system
JP6751254B2 (ja) * 2016-03-23 2020-09-02 日産自動車株式会社 燃料電池スタック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255617A (ja) * 1995-03-20 1996-10-01 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用セパレータ
JP2016195029A (ja) 2015-03-31 2016-11-17 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム
JP2017183177A (ja) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 電気化学素子、セルユニット、電気化学モジュール、電気化学装置およびエネルギーシステム

Also Published As

Publication number Publication date
KR20200135475A (ko) 2020-12-02
EP3790089A4 (en) 2022-03-30
TWI811329B (zh) 2023-08-11
CA3107250A1 (en) 2019-10-03
TW201943138A (zh) 2019-11-01
CN111902984A (zh) 2020-11-06
US20210119235A1 (en) 2021-04-22
JPWO2019189916A1 (ja) 2021-04-08
JP7431154B2 (ja) 2024-02-14
EP3790089A1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP7444683B2 (ja) 金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セル、および金属支持体の製造方法
JP7202061B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
WO2019189913A1 (ja) 電気化学素子の金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セルおよび金属支持体の製造方法
WO2019189912A1 (ja) 電気化学素子の金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セルおよび金属支持体の製造方法
JP7353270B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置およびエネルギーシステム
JP2021158026A (ja) 電気化学素子の金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および固体酸化物形電解セル
WO2020203892A1 (ja) 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
WO2020203897A1 (ja) 電気化学素子、電気化学素子積層体、電気化学モジュール、電気化学装置及びエネルギーシステム
WO2019189916A1 (ja) 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
JP2021163764A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セル
JP7202060B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
JP7097735B2 (ja) 金属板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および金属板の製造方法
JP7145844B2 (ja) 電気化学素子、電気化学モジュール、固体酸化物形燃料電池、および製造方法
WO2019189914A1 (ja) 金属板の製造方法、金属板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および固体酸化物形電解セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509381

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207030437

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019774528

Country of ref document: EP

Effective date: 20201030

ENP Entry into the national phase

Ref document number: 3107250

Country of ref document: CA