WO2019189808A1 - ナノカーボンの電子伝達作用 - Google Patents

ナノカーボンの電子伝達作用 Download PDF

Info

Publication number
WO2019189808A1
WO2019189808A1 PCT/JP2019/014133 JP2019014133W WO2019189808A1 WO 2019189808 A1 WO2019189808 A1 WO 2019189808A1 JP 2019014133 W JP2019014133 W JP 2019014133W WO 2019189808 A1 WO2019189808 A1 WO 2019189808A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
tert
aromatic ring
compound
electrode
Prior art date
Application number
PCT/JP2019/014133
Other languages
English (en)
French (fr)
Inventor
辻 勝巳
圭三 米田
曽我部 敦
淳典 平塚
仁志 六車
尚▲徳▼ 岩佐
丈士 田中
耕平 折原
Original Assignee
東洋紡株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 東洋紡株式会社
Priority to CN201980023140.1A priority Critical patent/CN111954641B/zh
Priority to JP2020511116A priority patent/JP7398744B2/ja
Priority to EP19775049.0A priority patent/EP3778476A4/en
Priority to US17/043,175 priority patent/US11906461B2/en
Publication of WO2019189808A1 publication Critical patent/WO2019189808A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Definitions

  • Nanocarbon Since nanocarbon has high electrical conductivity, its application as a conductive material that conducts electrons with other substances is advancing. For example, it has been proposed that nanocarbon is mixed with ink composed of carbon, resin, and organic solvent, printed on a substrate, and used as an electrode for a biosensor (Patent Document 1). Carbon nanotubes, which are a kind of nanocarbon, are used in sensors for measuring peroxides (Patent Document 2), or formed into a film with an enzyme and used as sensors or electrodes for fuel cells ( Patent Document 3). Furthermore, it has also been reported that electron transfer from an enzyme to an electrode by direct electron transfer by using single-walled carbon nanotubes (Non-patent Document 1). This makes it possible to use glucose dehydrogenase (FADGDH) having flavin adenine dinucleotide as a coenzyme for a glucose sensor without a mediator, which conventionally required a mediator.
  • FADGDH glucose dehydrogenase
  • Item 1 A nanocarbon electron transfer action accelerator comprising a compound having an aromatic ring skeleton.
  • Item 2. A nanocarbon in which a compound having an aromatic ring skeleton is attached or in close proximity by an intermolecular interaction.
  • Item 3. Item 3. The nanocarbon according to Item 2, wherein the compound having an aromatic ring skeleton alone is a compound that does not have a function as a mediator.
  • Compounds having an aromatic ring skeleton are thymol, phenol, bis (4-hydroxyphenyl) sulfone, tyrosine disodium hydrate, sodium salicylate, toluene, 5-hydroxyindole, aniline, leucoquinizarin, carvacrol, 1,5-naphthalenediol 4-isopropyl-3-methylphenol, 2-isopropylphenol, 4-isopropylphenol, 1-naphthol, 2-tert-butyl-5-methylphenol, 2,4,6-trimethylphenol, 2,6-diisopropylphenol 2-tert-butyl-4-ethylphenol, 6-tert-butyl-2,4-xylenol, 2-tert-butyl-4-methylphenol, 2-tert-butyl-6-methylphenol, 2,4- J-tert Butylphenol, 2,4-di-tert-butyl-5-methylphenol, bis (p-hydroxyphenyl) methane, 3-ter
  • Item 5. An electrode in which nanocarbon, a compound having an aromatic ring skeleton, and an enzyme are loaded on a substrate.
  • Item 6. The electrode according to Item 5, wherein the nanocarbon is a carbon nanotube.
  • Item 7. The electrode according to Item 5 or 6, wherein the carbon nanotube is a single-walled carbon nanotube.
  • Item 8. Item 8. The electrode according to any one of Items 5 to 7, wherein the enzyme is flavin-binding glucose dehydrogenase.
  • Item 9. Item 9. The electrode according to any one of Items 5 to 8, wherein a dispersant is further loaded on the substrate.
  • Item 10. Item 10.
  • Item 11. Item 11.
  • Item 12. Use of a compound having an aromatic ring skeleton for promoting or improving electron transfer of nanocarbon.
  • Item 13. Item 13. The use according to Item 12, wherein the electron transfer of the nanocarbon is an electron transfer between the electrode and the enzyme.
  • Compounds having an aromatic ring skeleton are thymol, phenol, bis (4-hydroxyphenyl) sulfone, tyrosine disodium hydrate, sodium salicylate, toluene, 5-hydroxyindole, aniline, leucoquinizarin, carvacrol, 1,5-naphthalenediol 4-isopropyl-3-methylphenol, 2-isopropylphenol, 4-isopropylphenol, 1-naphthol, 2-tert-butyl-5-methylphenol, 2,4,6-trimethylphenol, 2,6-diisopropylphenol 2-tert-butyl-4-ethylphenol, 6-tert-butyl-2,4-xylenol, 2-tert-butyl-4-methylphenol, 2-tert-butyl-6-methylphenol, 2,4- J-tert Butylphenol, 2,4-di-tert-butyl-5-methylphenol, bis (p-hydroxyphenyl) methane, 3-ter
  • Item 16. The use according to any one of Items 12 to 15, wherein the nanocarbon is a carbon nanotube.
  • Item 17. A method for promoting or improving electron transfer of nanocarbon, comprising attaching or bringing a compound having an aromatic ring skeleton into or near the nanocarbon.
  • Item 18. The method according to Item 17, wherein the electron transfer of the nanocarbon is an electron transfer between the enzyme and the electrode.
  • Item 19 Item 19. The method according to Item 18, wherein the enzyme is flavin-binding glucose dehydrogenase.
  • Item 20. Item 20.
  • Compounds having an aromatic ring skeleton are thymol, phenol, bis (4-hydroxyphenyl) sulfone, tyrosine disodium hydrate, sodium salicylate, toluene, 5-hydroxyindole, aniline, leucoquinizarin, carvacrol, 1,5-naphthalenediol 4-isopropyl-3-methylphenol, 2-isopropylphenol, 4-isopropylphenol, 1-naphthol, 2-tert-butyl-5-methylphenol, 2,4,6-trimethylphenol, 2,6-diisopropylphenol 2-tert-butyl-4-ethylphenol, 6-tert-butyl-2,4-xylenol, 2-tert-butyl-4-methylphenol, 2-tert-butyl-6-methylphenol, 2,4- J-tert Butylphenol, 2,4-di-tert-butyl-5-methylphenol, bis (p-hydroxyphenyl) methane, 3-ter
  • Item 24 The method according to any one of Items 17 to 22, which is selected from the group consisting of p-cresol.
  • Item 24. The method according to any one of Items 17 to 23, wherein the nanocarbon is a carbon nanotube.
  • Item 25 A sensor comprising an electrode immersed in a solvent containing a compound having an aromatic ring skeleton, wherein the electrode is loaded with nanocarbon and an enzyme on a substrate.
  • Item 26. Item 26. The sensor according to Item 25, wherein the concentration of the compound having an aromatic ring skeleton in the solvent is 0.000001 to 2% (w / v).
  • the electron transfer action of nanocarbon is promoted. Therefore, the application field of the electron transfer action of nanocarbon is expanded.
  • the nanocarbon can be stably and / or more effectively used as a mediator for the exchange of electrons between the enzyme and the electrode.
  • Example 1 The structure of the electrode produced in Example 1 is shown.
  • “1” is a PET film
  • “2” is an adhesive sheet
  • “3” is a gold-deposited PET film
  • “4” is a working electrode site.
  • Example 1 the cyclic voltammogram measured by mounting thymol on a working electrode part is shown.
  • Example 1 the cyclic voltammogram measured by mounting phenol in a working electrode site
  • Comparative Example 1 a cyclic voltammogram measured by placing menthol on the working electrode site is shown.
  • a cyclic voltammogram measured by placing cyclohexanol on the working electrode site is shown.
  • Comparative example 1 the cyclic voltammogram measured without mounting a compound in a working electrode site
  • the structure of the electrode produced in Example 3 is shown.
  • “5” is a PET film
  • “6” is an adhesive sheet
  • “7” is a carbon paste-printed PET film
  • “8” is a working electrode site.
  • Example 3 the cyclic voltammogram measured by adding thymol to a buffer solution is shown.
  • Comparative example 3 the cyclic voltammogram measured without adding thymol to a buffer solution is shown.
  • Example 4 the cyclic voltammogram measured without adding thymol to a buffer solution is shown.
  • Example 4 the cyclic voltammogram measured by adding thymol to a buffer solution so that it may become 0.00001% (w / v) is shown. In Example 4, the cyclic voltammogram measured by adding thymol to a buffer solution so as to be 0.0001% (w / v) is shown. In Example 4, the cyclic voltammogram which measured by adding thymol to a buffer solution so that it might become 0.001% (w / v) is shown. In Example 4, the cyclic voltammogram measured by adding thymol to a buffer solution so as to be 0.01% (w / v) is shown.
  • Example 7 the cyclic voltammogram measured by adding thymol to the buffer solution is shown.
  • comparative example 5 the cyclic voltammogram measured without adding thymol to a buffer solution is shown.
  • Example 8 the cyclic voltammogram measured by mounting a single-walled carbon nanotube on the working electrode site is shown.
  • Example 8 the cyclic voltammogram measured by mounting the multi-walled carbon nanotube on the working electrode site is shown.
  • Comparative Example 6 a cyclic voltammogram measured by placing a single-walled carbon nanotube on the working electrode site is shown.
  • Comparative Example 6 a cyclic voltammogram measured by placing multi-walled carbon nanotubes on the working electrode site is shown.
  • Example 9 the cyclic voltammogram measured by mounting the single-walled carbon nanotube on the working electrode site is shown. In Example 9, the cyclic voltammogram measured by mounting the multi-walled carbon nanotube on the working electrode site is shown.
  • Comparative Example 7 a cyclic voltammogram measured by placing a single-walled carbon nanotube on the working electrode site is shown. In Comparative Example 7, a cyclic voltammogram measured by placing multi-walled carbon nanotubes on the working electrode site is shown.
  • Nanocarbon is not particularly limited as long as it is a substance having an electron transfer function and recognized as nanocarbon.
  • a substance means a carbon material mainly composed of carbon including, for example, carbon nanotube, carbon nanohorn, carbon nanotwist, cocoon, carbon nanocoil, graphene, fullerene and the like.
  • the carbon nanotube may be a single-walled carbon nanotube, a double-walled carbon nanotube, or a multi-walled carbon nanotube.
  • the nanocarbon is preferably a carbon nanotube, and is preferably a single-walled carbon nanotube.
  • the nanocarbon electron transfer action accelerator is composed of a compound having an aromatic ring skeleton.
  • the number of ring-constituting atoms in the aromatic ring skeleton is, for example, 5 to 18, preferably 5 to 16, and more preferably 5 to 14.
  • the aromatic ring skeleton includes a skeleton composed of one benzene ring, a skeleton composed of 2 or more (for example, 2 to 4) benzene rings (naphthalene skeleton, anthracene skeleton, etc.), a benzene ring and another aromatic ring (nitrogen-containing aromatic ring).
  • Consists of skeletons (fused with phenanthroline, benzofuran, benzimidazole, carbazole, etc.), carbon and other elements (nitrogen, oxygen, sulfur, etc.) And having a skeleton composed of an aromatic ring (triazine skeleton, triazole skeleton, pyridine skeleton, etc.).
  • the compound having an aromatic ring skeleton is preferably a compound that alone does not have a function as a mediator. Not having a function as a mediator alone means that it does not have a function of conducting electron transfer between an electrode and an enzyme or between an electrode and a substrate like benzoquinone and 1-methoxyphenazine methosulfate. means.
  • the compound having an aromatic ring skeleton preferably has an electron-donating substituent.
  • the electron-donating substituent is a hydroxy group, an amino group, a methyl group, or the like.
  • a preferred electron donating substituent is a hydroxy group.
  • Examples of the compound having an electron-donating substituent and an aromatic ring skeleton include compounds having a benzene ring substituted with a hydroxy group (for example, thymol, phenol, bis (4-hydroxyphenyl) sulfone, tyrosine disodium hydrate, Sodium salicylate, 5-hydroxyindole, leucoquinizarine, carvacrol, 1,5-naphthalenediol, 4-isopropyl-3-methylphenol, 2-isopropylphenol, 4-isopropylphenol, 1-naphthol, 2-tert-butyl-5 -Methylphenol, 2,4,6-trimethylphenol, 2,6-diisopropylphenol, 2-tert-butyl-4-ethylphenol, 6-tert-butyl-2,4-xylenol, 2-tert-butyl-4 -Methylphenone 2-tert-butyl-6-methylphenol, 2,4-di-tert-butyl
  • the electron transfer action between the nanocarbon and another substance can be promoted by bringing the nanocarbon electron transfer action promoter close to or attached to the nanocarbon.
  • the electron transfer promoter and nanocarbon are preferably attached or close to each other by intermolecular interaction. There are no particular restrictions on the amount of the electron transfer action promoter that is placed close to or attached to promote the electron transfer action of the nanocarbon.
  • Nanocarbon with an electron transfer action promoter approaching or adhering The nanocarbon with an enhanced electron transfer action can be obtained by bringing the above-described electron transfer action accelerator close to or attached to the nanocarbon.
  • the means for bringing the electron transfer action promoter close to or attached to the nanocarbon can be carried out by mixing nanocarbon and an electron transfer action promoter (including mixing in a solution) or by placing an electron transfer action promoter on the nanocarbon.
  • the electron transfer action promoter arranged close to or attached to the nanocarbon may or may not be fixed.
  • the immobilization is not limited as long as the functions of the nanocarbon and the electron transfer action promoter are not hindered, and can be appropriately selected from known means and used.
  • the nanocarbon and the electron transfer accelerator that can be used in the nanocarbon having the electron transfer action accelerator in the vicinity or attached thereto are the above-mentioned 1. Is as described above.
  • Electrode has a substrate, and it is preferable that nanocarbon, a compound having an aromatic ring skeleton, and an enzyme are loaded on the substrate.
  • the compound having a nanocarbon and an aromatic ring skeleton is as described in 1 above.
  • the loading amount of the compound having an aromatic ring skeleton is not particularly limited.
  • the loading amount of the compound having an aromatic ring skeleton is, for example, 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the nanocarbon. It is.
  • the loading amount of the compound having an aromatic ring skeleton is, for example, 100000 parts by mass or less, preferably 10,000 parts by mass or less, and more preferably 1000 parts by mass or less with respect to 100 parts by mass of nanocarbon.
  • the lower limit and the upper limit can be arbitrarily combined.
  • the loading amount of the compound having an aromatic ring skeleton is, for example, 0.001 part by mass or more, preferably 0.01 part by mass or more, more preferably 0.1 part by mass with respect to 100 parts by mass of the enzyme loading. That's it.
  • the loading amount of the compound having an aromatic ring skeleton is, for example, 1 million parts by mass or less, preferably 100000 parts by mass or less, and more preferably 10,000 parts by mass or less with respect to 100 parts by mass of the enzyme.
  • the lower limit and the upper limit can be arbitrarily combined.
  • the substrate is not particularly limited as long as it is suitable for an electrode on which an enzyme used for a biosensor is immobilized.
  • a substrate in which a metal film (for example, a metal thin film) is formed on an insulating substrate can be used.
  • a metal film for example, a metal thin film
  • the insulating substrate for example, a glass substrate or a plastic substrate (for example, a PET substrate) can be used.
  • the type of metal forming the metal film is not particularly limited as long as it is used for the electrode. For example, gold, platinum, titanium, etc. can be mentioned.
  • the substrate may be a substrate in which a carbon film (for example, a thin film made of carbon paste) is formed instead of the metal film.
  • the enzyme is preferably one that liberates electrons with a catalytic reaction.
  • examples of such an enzyme include oxidoreductase.
  • the oxidoreductase include glucose dehydrogenase, glucose oxidase, lactate oxidase, cholesterol oxidase, alcohol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, lactate dehydrogenase, alcohol dehydrogenase, glycerol oxidase, glycerol-3-phosphorus.
  • Examples include acid oxidase, uricase, choline oxidase, xanthine oxidase, and hydroxybutyrate dehydrogenase.
  • the enzyme is preferably glucose dehydrogenase, preferably flavin-bound glucose dehydrogenase, and preferably glucose dehydrogenase (also referred to as “FADGDH”) having flavin adenine dinucleotide (FAD) as a coenzyme.
  • FADGDH glucose dehydrogenase
  • FADGDH retains FAD in a three-dimensional recess formed of a polypeptide, and conventionally, a substance called a mediator is required to transfer the electrons generated there to the electrode.
  • nanocarbon preferably carbon nanotube, more preferably single-walled carbon nanotube
  • electrons can be transmitted to the electrode without using a mediator.
  • FADGDH is not limited, and any type can be used.
  • Specific examples of FADGDH can include those derived from any of the following organisms: Aspergillus tereus, Aspergillus oryzae, Alpergillus niger, Aspergillus foretidas, Alpergillus aureus, Aspergillus virgecolor, Aspergillus Kawachi, Alpergillus awamori, Agrobacterium tumefaciens, Cytoferga marinoflava, Agaricus bisporus, Macrorepiota racodes, Burkholderia cepacia, Mucor subtilisima, Mucor gilier mondi, Mucor purini, Mucor jabanicas, Mucor Silcineroides, Mucor Silcineroides F Silcineroides, Mucor Himaris, Mucor Himaris et ⁇ Sylvaticus, Mucor dimorphosporus, Absidia cy
  • FADGDH preferred in one embodiment is FADGDH derived from Aspergillus oryzae, FADGDH derived from Mucor Himalis, FADGDH derived from Mucor subtilisus, FADGDH derived from Silcinera simplex, FADGDH derived from Metallicium sp or F from AD
  • it has 80% or more identity with the amino acid sequence of SEQ ID NOs: 1 to 6, more preferably 90% identity with the amino acid sequence of SEQ ID NOs: 1 to 6, more preferably And those having 95% or more identity with the amino acid sequences of SEQ ID NOs: 1 to 6 and having glucose dehydrogenation activity.
  • Amino acid sequence identity can be calculated using commercially available or analytical tools available through telecommunications lines (Internet), for example, the National Biotechnology Information Center (NCBI) homology algorithm BLAST (Basic local alignment). search tool) http://www.ncbi.nlm.nih.gov/BLAST/, using default (initial setting) parameters.
  • NCBI National Biotechnology Information Center
  • the amino acid sequence of SEQ ID NO: 1 is that of FADGDH derived from Aspergillus oryzae
  • the amino acid sequence of SEQ ID NO: 2 is that of FADGDH derived from Mucor Himalis
  • the amino acid sequence of SEQ ID NO: 3 is mucor
  • the amino acid sequence of SEQ ID NO: 4 is that of Silcineella simplex
  • the amino acid sequence of SEQ ID NO: 5 is that of FADGDH derived from Metalidium sp.
  • the amino acid sequence is that of FADGDH derived from Coretotricum sp.
  • a dispersant may be further loaded on the substrate.
  • the dispersant is not particularly limited as long as it is a substance that can suppress and disperse the nanocarbon on the substrate.
  • examples of the dispersant include sodium cholate, sodium deoxycholate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide, octylphenol ethoxylate, and the like.
  • the preferred dispersant is sodium cholate, sodium deoxycholate.
  • Nanocarbon a compound having an aromatic ring skeleton, and an enzyme can be loaded on a substrate by any means.
  • a solution in which each of these substances is dispersed or dissolved is prepared, and they are sequentially added to a predetermined portion on the substrate (if the substrate is a metal thin film formed on an insulating substrate, a metal thin film is formed. It can be loaded by repeating the operation of dripping and drying it at the place where it was made.
  • the dispersion medium or solvent is not particularly limited, and examples thereof include water, alcohol solvents (for example, ethanol), ketone solvents (for example, acetone), and combinations thereof.
  • the loading order is arbitrary, but in one embodiment, it is preferable to load in the order of nanocarbon ⁇ enzyme ⁇ a compound having an aromatic ring skeleton, or nanocarbon ⁇ a compound having an aromatic ring skeleton ⁇ an enzyme.
  • the amount of the nanocarbon, the compound having an aromatic ring skeleton, or the enzyme used is not particularly limited.
  • the nanocarbon, the compound having an aromatic ring skeleton, and the enzyme may be immobilized on a substrate. Immobilization can be carried out by appropriately selecting a known method. For example, a liquid in which a substance suitable for immobilization such as tetrafluoroethylene / perfluoro [2- (fluorosulfonylethoxy) polyvinyl ether] copolymer (eg, Nafion (trademark)) and carboxymethylcellulose is dissolved on the substrate.
  • a substance suitable for immobilization such as tetrafluoroethylene / perfluoro [2- (fluorosulfonylethoxy) polyvinyl ether] copolymer (eg, Nafion (trademark)) and carboxymethylcellulose is dissolved on the substrate.
  • a substance suitable for immobilization such as tetrafluoroethylene / perfluoro [2- (fluorosulfonylethoxy) polyvinyl ether] copolymer (e
  • the dispersant is preferably blended in a dispersion in which nanocarbon is dispersed.
  • the blending ratio of the dispersing agent is arbitrary, but it is preferable to blend, for example, 0.2 to 2% (w / v).
  • the mixing ratio of nanocarbon is arbitrary, but it is preferable to add 0.05 to 0.5% (w / v), for example.
  • the sensor preferably includes the above three electrodes.
  • the sensor preferably includes the three electrodes as a working electrode.
  • the sensor preferably has a counter electrode (counter electrode) in addition to the working electrode.
  • the sensor can further include a configuration normally provided in a biosensor such as a potentiostat and a current detection circuit. Specific configurations of the counter electrode, the potentiostat, the current detection circuit, and the like are arbitrary as long as the sensor can perform the intended measurement, and can be designed by appropriately selecting from means known in the art. it can.
  • the working electrode included in the sensor may be one obtained by removing a compound having an aromatic ring skeleton from the above three electrodes.
  • the solvent in which each electrode is immersed includes a compound having an aromatic ring skeleton.
  • the solvent includes a buffer solution, and examples thereof include an acetate buffer solution, a citrate buffer solution, a phosphate buffer solution, and a borate buffer solution.
  • the concentration of the substance to be measured or the substrate in the solvent is not particularly limited and can be set to any concentration necessary for measurement.
  • the concentration of the compound having an aromatic ring skeleton in the solvent is not particularly limited.
  • the lower limit of the concentration is, for example, 0.000001% (w / v), preferably 0.000005% (w / v), more preferably 0.00001% (w / v), more preferably 0.00005%.
  • W / v more preferably 0.0001% (w / v), more preferably 0.0005% (w / v), more preferably 0.001% (w / v), more preferably 0.8. 005% (w / v), more preferably 0.01% (w / v).
  • the upper limit of the concentration is, for example, 2% (w / v), preferably 1.5% (w / v), more preferably 1% (w / v).
  • the lower limit and the upper limit of the concentration can be arbitrarily combined.
  • Example 1 An electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet obtained by vapor-depositing gold on a PET substrate (FIG. 1).
  • FIG. 1 “1” is a PET film
  • “2” is an adhesive sheet
  • “3” is a gold-deposited PET film
  • “4” indicates a working electrode site.
  • FIG. 2 shows a case where thymol is used
  • FIG. 3 shows a case where phenol is used.
  • the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 1 below.
  • Comparative Example 1 A cyclic voltammogram was measured in the same manner as in Example 1 except that the compound (1) of Example 1 was changed to the following compound (3) or (4). (3) Menthol (dissolved in 50% (v / v) ethanol) (4) Cyclohexanol (dissolved in 40 mM sodium phosphate buffer) The results are shown in FIG. 4 (menthol), FIG. 5 (cyclohexanol), and FIG. 6 (no compound added). In the cyclic voltammograms shown in FIGS. 4 to 6, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 2 below.
  • Example 1 From the results of Example 1 and Comparative Example 1, it was found that the current can be measured by adding thymol or phenol even when the current is not measured only by immobilizing the enzyme and the carbon nanotube at the working electrode site. On the other hand, it was found that no current was measured when menthol or cyclohexanol was used instead of thymol and phenol.
  • Example 2 Similarly to Example 1, an electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet obtained by vapor-depositing gold on a PET substrate. 5 ⁇ L of an aqueous dispersion containing 2% (w / v) sodium cholate and 0.15% (w / v) single-walled carbon nanotubes (outer diameter 1.1 to 1.7 nm) was dropped onto the working electrode site. And dried. After drying the carbon nanotube dispersion, 5 ⁇ L of FADGDH (having the amino acid sequence of SEQ ID NO: 2; 20 U / ⁇ L) dissolved in ultrapure water was dropped at the working electrode site and dried. After drying the FADGDH solution, 5 ⁇ L of 3% (w / v) Nafion solution was dropped onto the working electrode site, and dried to immobilize the carbon nanotubes and FADGDH on the working electrode.
  • aqueous dispersion containing 2% (w / v) sodium cholate and 0.15%
  • Example 1 As described above, it was confirmed that the current measured in Example 1 was observed even when thymol or phenol was changed to the compounds (5) to (10) above.
  • Comparative Example 2 A cyclic voltammogram was obtained in the same manner as in Example 2 except that any one of the compounds (5) to (10) was replaced with the compound (3) or (4). In the obtained cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 4 below.
  • Example 3 Using a sheet obtained by printing a carbon paste on a PET substrate, an electrode chip having a working electrode portion of 9 mm 2 was produced (FIG. 7).
  • “5” is a PET film
  • “6” is an adhesive sheet
  • “7” is a carbon paste-printed PET film
  • “8” indicates a working electrode site.
  • 5 ⁇ L of an aqueous dispersion of 0.15% (w / v) single-walled carbon nanotubes (outer diameter 1.1 to 1.7 nm) containing 2% (w / v) sodium cholate was dropped onto the working electrode site. And dried.
  • Comparative Example 3 Measurement by cyclic voltammetry was performed in the same manner as in Example 3 except that thymol was not added to 40 mM sodium phosphate buffer (pH 7.4). The obtained cyclic voltammogram is shown in FIG. In this cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 6 below.
  • Example 3 and Comparative Example 3 it was confirmed that the current can be measured not by immobilizing thymol on the electrode but also by containing thymol in the buffer solution. This result supports that a compound having an aromatic ring skeleton mediates and accelerates the transfer of electrons between the coenzyme FAD and the carbon nanotube.
  • Example 4 Similarly to Example 1, an electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet obtained by vapor-depositing gold on a PET substrate. 5 ⁇ L of an aqueous dispersion containing 2% (w / v) sodium cholate and 0.15% (w / v) single-walled carbon nanotubes (outer diameter 1.1 to 1.7 nm) was dropped onto the working electrode site. And dried. After drying the carbon nanotube dispersion, 5 ⁇ L of FADGDH (having the amino acid sequence of SEQ ID NO: 2; 20 U / ⁇ L) dissolved in ultrapure water was dropped at the working electrode site and dried.
  • FADGDH having the amino acid sequence of SEQ ID NO: 2; 20 U / ⁇ L
  • the current is measured by adding a very small amount (0.00001% (w / v)) of thymol to the buffer solution even under conditions where the current is not measured simply by immobilizing the enzyme and carbon nanotubes at the working electrode site. Turned out to be. Further, it was found that a current value of 60% or more of the maximum current value obtained by addition of thymol was measured by adding thymol to the buffer solution so as to be 0.001% (w / v).
  • Example 5 Any one of the following compounds (11) to (14) was added and dissolved in 40 mM sodium phosphate buffer (pH 7.4) so as to be 0.1% (w / v).
  • An electrode tip produced in the same manner as in Example 1 was set on the working electrode of an electrochemical analyzer (ALS / CHI 660B) and referenced. A silver / silver chloride electrode was set on the electrode, and a platinum wire was set on the counter electrode, and immersed in a sodium phosphate buffer solution in which the aniline was dissolved or a 40 mM sodium phosphate buffer solution (pH 7.4).
  • the current can be measured by adding the compounds (11) to (14) even under conditions where the current is not measured only by immobilizing the enzyme and the carbon nanotube at the working electrode site.
  • Example 6 Similarly to Example 1, an electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet obtained by vapor-depositing gold on a PET substrate. 5 ⁇ L of an aqueous dispersion containing 2% (w / v) sodium cholate and 0.15% (w / v) single-walled carbon nanotubes (outer diameter 1.1 to 1.7 nm) was dropped onto the working electrode site. And dried. After drying the carbon nanotube dispersion, 5 ⁇ L of FADGDH (having the amino acid sequence of SEQ ID NO: 2; 20 U / ⁇ L) dissolved in ultrapure water was dropped at the working electrode site and dried.
  • FADGDH having the amino acid sequence of SEQ ID NO: 2; 20 U / ⁇ L
  • the electrode tip prepared above was set on the working electrode of an electrochemical analyzer (ALS / CHI 660B), the silver / silver chloride electrode was set on the reference electrode, and the platinum wire was set on the counter electrode.
  • the three electrodes were immersed in a 40 mM sodium phosphate buffer (pH 7.4). In the case where glucose was not added to this buffer solution (0 mM) or glucose was added to 48 mM, measurement by cyclic voltammetry was performed. In the obtained cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 9 below.
  • Example 6 and Comparative Example 4 From the results of Example 6 and Comparative Example 4, the current was measured by adding the compounds (15) to (33) even under conditions where the current was not measured simply by immobilizing the enzyme and carbon nanotubes at the working electrode site. Turned out to be. On the other hand, it was found that no current was measured when compound (34) was added. Compounds (15) to (33) all have an aromatic ring skeleton, whereas compound (34) has ⁇ electrons but does not have an aromatic ring skeleton. Therefore, it is considered that the compounds (15) to (33) have an aromatic ring skeleton, thereby mediating and facilitating the exchange of electrons between the coenzyme FAD and the carbon nanotube.
  • Example 7 Similarly to Example 1, an electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet obtained by vapor-depositing gold on a PET substrate. 7. An aqueous dispersion containing 2% (w / v) sodium cholate and 0.092% (w / v) multi-walled carbon nanotubes (NC7000, Nanocyl, outer diameter 5 to 15 nm) at the working electrode site. 2 ⁇ L was dropped and dried. After drying the carbon nanotube dispersion, 5 ⁇ L of FADGDH (having the amino acid sequence described in SEQ ID NO: 2; 20 U / ⁇ L) dissolved in ultrapure water was dropped at the working electrode site and dried.
  • FC7000 multi-walled carbon nanotubes
  • the electrode tip prepared above is set on the working electrode of the electrochemical analyzer (ALS / CHI 660B), the silver / silver chloride electrode is set on the reference electrode, the platinum wire is set on the counter electrode, and phosphorus containing 0.01% (w / v) thymol
  • the sample was immersed in a sodium acid buffer and measured by cyclic voltammetry.
  • FIG. 15 shows cyclic voltammograms measured at glucose concentrations of 0 mM, 10 mM, and 48 mM, respectively. In this cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 11 below.
  • Comparative Example 5 Measurement by cyclic voltammetry was carried out in the same manner as in Example 4 except that thymol was not added to 40 mM sodium phosphate buffer (pH 7.4). The obtained cyclic voltammogram is shown in FIG. In this cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 12 below.
  • Example 7 As in Example 7 and Comparative Example 5, it was confirmed that even when multi-walled carbon nanotubes were used, the current could be measured by including thymol in the buffer solution.
  • Example 8 Similarly to Example 1, an electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet obtained by vapor-depositing gold on a PET substrate. 5 ⁇ L of an aqueous dispersion containing 2% (w / v) sodium cholate and 0.15% (w / v) single-walled carbon nanotubes (outer diameter 1.1 to 1.7 nm) at the working electrode site, or 8.2 ⁇ L of an aqueous dispersion containing 2% (w / v) sodium cholate and 0.092% (w / v) multi-walled carbon nanotubes (outer diameter 5 to 15 nm) was dropped and dried.
  • the electrode tip prepared above is set on the working electrode of the electrochemical analyzer (ALS / CHI 660B), the silver / silver chloride electrode is set on the reference electrode, the platinum wire is set on the counter electrode, and phosphorus containing 0.01% (w / v) thymol
  • the sample was immersed in a sodium acid buffer and measured by cyclic voltammetry. Cyclic voltammograms measured at glucose concentrations of 0 mM, 10 mM, and 48 mM are shown in FIG. 17 (single-walled carbon nanotubes) and FIG. 18 (multi-walled carbon nanotubes), respectively. In this cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 13 below.
  • Comparative Example 6 Measurement by cyclic voltammetry was performed in the same manner as in Example 8 except that thymol was not added to 40 mM sodium phosphate buffer (pH 7.4). The obtained cyclic voltammograms are shown in FIG. 19 (single-walled carbon nanotubes) and FIG. 20 (multi-walled carbon nanotubes). In this cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 14 below.
  • Example 8 and Comparative Example 6 it was confirmed that the current value was increased by including thymol in the buffer solution when either single-walled carbon nanotubes or multi-walled carbon nanotubes were used.
  • Example 9 Similarly to Example 1, an electrode chip having a working electrode portion of 9 mm 2 was produced using a sheet obtained by vapor-depositing gold on a PET substrate. 5 ⁇ L of an aqueous dispersion containing 2% (w / v) sodium cholate and 0.15% (w / v) single-walled carbon nanotubes (outer diameter 1.1 to 1.7 nm) at the working electrode site, or 8.2 ⁇ L of an aqueous dispersion containing 2% (w / v) sodium cholate and 0.092% (w / v) multi-walled carbon nanotubes (outer diameter 5 to 15 nm) was dropped and dried.
  • the electrode tip prepared above is set on the working electrode of the electrochemical analyzer (ALS / CHI 660B), the silver / silver chloride electrode is set on the reference electrode, the platinum wire is set on the counter electrode, and phosphorus containing 0.01% (w / v) thymol
  • the sample was immersed in a sodium acid buffer and measured by cyclic voltammetry. Cyclic voltammograms measured at lactic acid concentrations of 0 mM, 5 mM, and 12 mM are shown in FIG. 21 (single-walled carbon nanotubes) and FIG. 22 (multi-walled carbon nanotubes), respectively. In this cyclic voltammogram, the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 15 below.
  • Comparative Example 7 Measurement by cyclic voltammetry was performed in the same manner as in Example 8 except that thymol was not added to 40 mM sodium phosphate buffer (pH 7.4).
  • the obtained cyclic voltammograms are shown in FIG. 23 (single-walled carbon nanotubes) and FIG. 24 (multi-walled carbon nanotubes).
  • the current value of +0.6 V when sweeping from ⁇ 0.8 V to +0.8 V was as shown in Table 16 below.
  • Example 9 As in Example 9 and Comparative Example 7, it was confirmed that the current value was increased by including thymol in the buffer solution when either single-walled carbon nanotubes or multi-walled carbon nanotubes were used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

ナノカーボンと他の物質との電子伝達作用を促進する手段の提供。 芳香環骨格を有する化合物からなる、ナノカーボンの電子伝達作用促進剤。

Description

ナノカーボンの電子伝達作用
 ナノカーボンと他の物質との電子伝達に関する技術が開示される。
 ナノカーボンは電気の伝導率が高いことから他の物質との電子伝達を行う導電材料としての応用が進んでいる。例えばナノカーボンをカーボンと樹脂および有機溶剤からなるインクに混合し基板上に印刷してバイオセンサ用の電極として用いることが提案されている(特許文献1)。また、ナノカーボンの一種であるカーボンナノチューブは過酸化物を測定するセンサに用いられたり(特許文献2)、酵素とともにフィルム状に成形し、センサや燃料電池の電極として用いられたりしている(特許文献3)。さらに単層カーボンナノチューブを用いることで酵素から直接電子移動で電極への電子伝達を行うことも報告されている(非特許文献1)。これは従来メディエーターが必須であった、フラビンアデニンジヌクレオチドを補酵素とするグルコースデヒドロゲナーゼ(FADGDH)をメディエーターなしでグルコースセンサーに用いることを可能にする。
WO2005088288 WO2011007582 WO2012002290
ACS Catal. 2017, 7, 725_734
 ナノカーボンと他の物質との電子伝達作用を促進する手段の提供が1つの課題である。
 かかる課題等を解決すべく鋭意研究を重ねた結果、芳香環骨格を有する化合物にナノカーボンの電子伝達機能を促進する作用があることを見出した。斯かる知見に更なる研究と改良を重ね、下記に代表される発明を提供するに至った。
項1.
芳香環骨格を有する化合物からなる、ナノカーボンの電子伝達作用促進剤。
項2.
芳香環骨格を有する化合物が分子間相互作用により付着または近接して存在する、ナノカーボン。
項3.
芳香環骨格を有する化合物が単独ではメディエーターとしての機能を有しない化合物である、項2に記載のナノカーボン。
項4.
芳香環骨格を有する化合物がチモール、フェノール、ビス(4-ヒドロキシフェニル)スルホン、チロシン二ナトリウム水和物、サリチル酸ナトリウム、トルエン、5-ヒドロキシインドール、アニリン、ロイコキニザリン、カルバクロール、1,5-ナフタレンジオール、4-イソプロピル-3-メチルフェノール、2-イソプロピルフェノール、4-イソプロピルフェノール、1-ナフトール、2-tert-ブチル-5-メチルフェノール、2,4,6-トリメチルフェノール、2,6-ジイソプロピルフェノール、2-tert-ブチル-4-エチルフェノール、6-tert-ブチル-2,4-キシレノール、2-tert-ブチル-4-メチルフェノール、2-tert-ブチル-6-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチル-5-メチルフェノール、ビス(p-ヒドロキシフェニル)メタン、3-tert-ブチルフェノール、2-イソプロピル-5-メチルアニソール、o-クレゾール、m-クレゾール、及びp-クレゾールから成る群より選択される項2又は3に記載のナノカーボン。
項5.
基板上にナノカーボン、芳香環骨格を有する化合物、及び酵素が積載された、電極。
項6.
ナノカーボンがカーボンナノチューブである、項5に記載の電極。
項7.
カーボンナノチューブが単層カーボンナノチューブである、項5又は6に記載の電極。
項8.
酵素がフラビン結合型グルコースデヒドロゲナーゼである、項5~7のいずれかに記載の電極。
項9.
基板上に分散剤が更に積載された、項5~8のいずれかに記載の電極。
項10.
基板が炭素または金属の薄膜が形成された基板である、項5~9のいずれかに記載の電極。
項11.
項5~10のいずれかに記載の電極を含むセンサ。
項12.
ナノカーボンの電子伝達を促進又は向上するための、芳香環骨格を有する化合物の使用。
項13.
ナノカーボンの電子伝達が、電極と酵素の間の電子伝達である、項12に記載の使用。
項14.
酵素がフラビン結合型グルコースデヒドロゲナーゼである、項13に記載の使用。
項15.
芳香環骨格を有する化合物がチモール、フェノール、ビス(4-ヒドロキシフェニル)スルホン、チロシン二ナトリウム水和物、サリチル酸ナトリウム、トルエン、5-ヒドロキシインドール、アニリン、ロイコキニザリン、カルバクロール、1,5-ナフタレンジオール、4-イソプロピル-3-メチルフェノール、2-イソプロピルフェノール、4-イソプロピルフェノール、1-ナフトール、2-tert-ブチル-5-メチルフェノール、2,4,6-トリメチルフェノール、2,6-ジイソプロピルフェノール、2-tert-ブチル-4-エチルフェノール、6-tert-ブチル-2,4-キシレノール、2-tert-ブチル-4-メチルフェノール、2-tert-ブチル-6-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチル-5-メチルフェノール、ビス(p-ヒドロキシフェニル)メタン、3-tert-ブチルフェノール、2-イソプロピル-5-メチルアニソール、o-クレゾール、m-クレゾール、及びp-クレゾールから成る群より選択される、項12~14のいずれかに記載の使用。
項16.
ナノカーボンがカーボンナノチューブである、項12~15のいずれかに記載の使用。
項17.
ナノカーボンの電子伝達を促進又は向上する方法であって、芳香環骨格を有する化合物をナノカーボンに付着又は近接させることを含む方法。
項18.
ナノカーボンの電子伝達が、酵素及び電極の間の電子伝達である、項17に記載の方法。
項19.
酵素がフラビン結合型グルコースデヒドロゲナーゼである、項18に記載の方法。
項20.
ナノカーボンに付着又は近接させることが、電極の基板上にナノカーボン、芳香環骨格を有する化合物、及び酵素を積載することである、項17~19のいずれかに記載の方法。
項21.
ナノカーボンに付着又は近接させることが、基板上にナノカーボン及び酵素を積載した電極を、芳香環骨格を有する化合物を含む溶媒に浸漬することである、項17~19のいずれかに記載の方法。
項22.
溶媒中の芳香環骨格を有する化合物の濃度が、0.000001~2%(w/v)である、項21に記載の方法。
項23.
芳香環骨格を有する化合物がチモール、フェノール、ビス(4-ヒドロキシフェニル)スルホン、チロシン二ナトリウム水和物、サリチル酸ナトリウム、トルエン、5-ヒドロキシインドール、アニリン、ロイコキニザリン、カルバクロール、1,5-ナフタレンジオール、4-イソプロピル-3-メチルフェノール、2-イソプロピルフェノール、4-イソプロピルフェノール、1-ナフトール、2-tert-ブチル-5-メチルフェノール、2,4,6-トリメチルフェノール、2,6-ジイソプロピルフェノール、2-tert-ブチル-4-エチルフェノール、6-tert-ブチル-2,4-キシレノール、2-tert-ブチル-4-メチルフェノール、2-tert-ブチル-6-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチル-5-メチルフェノール、ビス(p-ヒドロキシフェニル)メタン、3-tert-ブチルフェノール、2-イソプロピル-5-メチルアニソール、o-クレゾール、m-クレゾール、及びp-クレゾールから成る群より選択される、項17~22のいずれかに記載の方法。
項24.
ナノカーボンがカーボンナノチューブである、項17~23のいずれかに記載の方法。
項25.
芳香環骨格を有する化合物を含む溶媒に浸漬された電極を含むセンサであって、前記電極が、基板上にナノカーボン及び酵素が積載されているセンサ。
項26.
溶媒中の芳香環骨格を有する化合物の濃度が、0.000001~2%(w/v)である、項25に記載のセンサ。
 ナノカーボンの電子伝達作用が促進される。よって、ナノカーボンの電子伝達作用の利用分野が拡大される。一実施形態において、ナノカーボンを酵素と電極との電子の授受の媒介物質として安定的及び/又はより効果的に利用することができる。
実施例1で作製した電極の構造を示す。「1」はPETフィルムであり、「2」は粘着シートであり、「3」は金蒸着PETフィルムであり、「4」は作用電極部位である。 実施例1において、作用電極部位にチモールを載置して測定したサイクリックボルタモグラムを示す。 実施例1において、作用電極部位にフェノールを載置して測定したサイクリックボルタモグラムを示す。 比較例1において、作用電極部位にメントールを載置して測定したサイクリックボルタモグラムを示す。 比較例1において、作用電極部位にシクロヘキサノールを載置して測定したサイクリックボルタモグラムを示す。 比較例1において、作用電極部位に化合物を載置することなく測定したサイクリックボルタモグラムを示す。 実施例3で作製した電極の構造を示す。「5」はPETフィルムであり、「6」は粘着シートであり、「7」はカーボンペースト印刷PETフィルムであり、「8」は作用電極部位である。 実施例3において、緩衝液にチモールを添加して測定したサイクリックボルタモグラムを示す。 比較例3において、緩衝液にチモールを添加することなく測定したサイクリックボルタモグラムを示す。 実施例4において、緩衝液にチモールを添加することなく測定したサイクリックボルタモグラムを示す。 実施例4において、緩衝液にチモールを0.00001%(w/v)となるように添加して測定したサイクリックボルタモグラムを示す。 実施例4において、緩衝液にチモールを0.0001%(w/v)となるように添加して測定したサイクリックボルタモグラムを示す。 実施例4において、緩衝液にチモールを0.001%(w/v)となるように添加して測定したサイクリックボルタモグラムを示す。 実施例4において、緩衝液にチモールを0.01%(w/v)となるように添加して測定したサイクリックボルタモグラムを示す。 実施例7において、緩衝液にチモールを添加して測定したサイクリックボルタモグラムを示す。 比較例5において、緩衝液にチモールを添加することなく測定したサイクリックボルタモグラムを示す。 実施例8において、作用電極部位に単層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。 実施例8において、作用電極部位に多層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。 比較例6において、作用電極部位に単層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。 比較例6において、作用電極部位に多層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。 実施例9において、作用電極部位に単層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。 実施例9において、作用電極部位に多層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。 比較例7において、作用電極部位に単層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。 比較例7において、作用電極部位に多層カーボンナノチューブを載置して測定したサイクリックボルタモグラムを示す。
1.ナノカーボンの電子伝達作用促進剤
 ナノカーボンは、電子伝達機能を有する、ナノカーボンとして認識される物質であれば特に制限されない。そのような物質としては、例えば、カーボンナノチューブ、カーボンナノホーン、カーボンナノツイスト、コクーン、カーボンナノコイル、グラフェン、フラーレンなどを含む、主に炭素により構成されている炭素材料を意味する。カーボンナノチューブは、単層カーボンナノチューブであっても、二層カーボンナノチューブ、多層カーボンナノチューブであってもよい。一実施形態においてナノカーボンは、カーボンナノチューブであることが好ましく、単層カーボンナノチューブであることが好ましい。
 ナノカーボンの電子伝達作用促進剤は、芳香環骨格を有する化合物からなることが好ましい。芳香環骨格の環構成原子の数は、例えば5~18、好ましくは5~16、さらに好ましくは5~14である。芳香環骨格には、1つのベンゼン環からなる骨格、2以上(例えば、2~4)のベンゼン環からなる骨格(ナフタレン骨格、アントラセン骨格など)、ベンゼン環と他の芳香環(含窒素芳香環、含酸素芳香環、含硫黄芳香環など)との縮合環からなる骨格(フェナントロリン骨格、ベンゾフラン骨格、ベンゾイミダゾール骨格、カルバゾール骨格など)、炭素と他の元素(窒素、酸素、硫黄など)により構成される芳香環からなる骨格(トリアジン骨格、トリアゾール骨格、ピリジン骨格など)を有するものが包含される。芳香環骨格を有する化合物は、単独ではメディエーターとしての機能を有しない化合物であることが好ましい。単独でメディエーターとしての機能を有しないとは、ベンゾキノンや1-メトキシフェナジンメトサルフェートのように電極と酵素との間あるいは電極と基質との間で電子伝達を単独で行うという機能を持たないことを意味する。
 一実施形態において、芳香環骨格を有する化合物は、電子供与性の置換基を有することが好ましい。電子供与性の置換基とはヒドロキシ基、アミノ基、及びメチル基等のことである。好ましい電子供与性の置換基は、ヒドロキシ基である。電子供与性の置換基及び芳香環骨格を有する化合物としては、ヒドロキシ基が置換されたベンゼン環を有する化合物(例えば、チモール、フェノール、ビス(4-ヒドロキシフェニル)スルホン、チロシン二ナトリウム水和物、サリチル酸ナトリウム、5-ヒドロキシインドール、ロイコキニザリン、カルバクロール、1,5-ナフタレンジオール、4-イソプロピル-3-メチルフェノール、2-イソプロピルフェノール、4-イソプロピルフェノール、1-ナフトール、2-tert-ブチル-5-メチルフェノール、2,4,6-トリメチルフェノール、2,6-ジイソプロピルフェノール、2-tert-ブチル-4-エチルフェノール、6-tert-ブチル-2,4-キシレノール、2-tert-ブチル-4-メチルフェノール、2-tert-ブチル-6-メチルフェノール、2,4-ジ-tert-ブチルフェノール、および2,4-ジ-tert-ブチル-5-メチルフェノール、ビス(p-ヒドロキシフェニル)メタン、3-tert-ブチルフェノール、o-クレゾール、m-クレゾール、p-クレゾール)、アミノ基が置換されたベンゼン環を有する化合物(例えば、アニリン)、メチル基が置換されたベンゼン環を有する化合物(例えば、トルエン、2-イソプロピル-5-メチルアニソール)を挙げることができる。
 上記化合物の中でも、チモール、フェノールおよびカルバクロールが好ましい。
 ナノカーボンの電子伝達作用促進剤を、ナノカーボンに近接又は付着させることによって、ナノカーボンと他の物質間での電子伝達作用を促進させることができる。電子伝達作用促進剤とナノカーボンとは、分子間相互作用によって付着又は近接していることが好ましい。ナノカーボンの電子伝達作用を促進させるために近接又は付着して配置する電子伝達作用促進剤の量は特に制限されない。
2.電子伝達作用促進剤が近接又は付着したナノカーボン
 上述の電子伝達作用促進剤をナノカーボンに近接又は付着させることにより、電子伝達作用が促進されたナノカーボンを得ることができる。ナノカーボンに電子伝達作用促進剤を近接又は付着させる手段は特に制限されない。例えば、ナノカーボンと電子伝達作用促進剤とを混合すること(溶液中での混合を含む)、又はナノカーボン上に電子伝達作用促進剤を配置することによって実施することができる。ナノカーボンに近接又は付着して配置された電子伝達作用促進剤は、固定されていても、固定されていなくてもよい。固定は、ナノカーボン及び電子伝達作用促進剤の機能を阻害しない限り制限されず、公知の手段から適宜選択して使用することができる。
 電子伝達作用促進剤が近接又は付着したナノカーボンにおいて、使用可能なナノカーボン及び電子伝達促進剤は、上記1.について記載したとおりである。
3.電極
 電極は、基板を有し、該基板上にナノカーボン、芳香環骨格を有する化合物、及び酵素が積載されていることが好ましい。ナノカーボン及び芳香環骨格を有する化合物は上記1で記載したとおりである。
 芳香環骨格を有する化合物の積載量は、特に制限されない。芳香環骨格を有する化合物の積載量は、ナノカーボンの積載量100質量部に対して、例えば、0.001質量部以上、好ましくは0.01質量部以上、さらに好ましくは0.1質量部以上である。また、芳香環骨格を有する化合物の積載量は、ナノカーボンの積載量100質量部に対して、例えば、100000質量部以下、好ましくは10000質量部以下、さらに好ましくは1000質量部以下である。前記下限及び上限は任意に組み合わせることができる。また、芳香環骨格を有する化合物の積載量は、酵素の積載量100質量部に対して、例えば、0.001質量部以上、好ましくは0.01質量部以上、さらに好ましくは0.1質量部以上である。また、芳香環骨格を有する化合物の積載量は、酵素の積載量100質量部に対して、例えば、1000000質量部以下、好ましくは100000質量部以下、さらに好ましくは10000質量部以下である。前記下限及び上限は任意に組み合わせることができる。
 基板は、バイオセンサに利用される酵素を固定させた電極に適したものであれば特に制限されない。例えば、基板は、絶縁性基板上に金属膜(例えば、金属薄膜)が形成されたものを使用することができる。絶縁性基板は、例えば、ガラス基板又はプラスチック基板(例えば、PET基板)を用いることができる。金属膜を形成する金属の種類は、電極に使用されるものであれば特に制限されない。例えば、金、白金、及びチタン等を挙げることができる。また、基板は、金属膜の代わりに炭素膜(例えば、カーボンペーストによる薄膜)が形成されたものであってもよい。
 酵素は、触媒反応に伴って電子を遊離するものが好ましい。そのような酵素としては、例えば、酸化還元酵素を挙げることができる。酸化還元酵素としては、例えば、グルコースデヒドロゲナーゼ、グルコースオキシダーゼ、乳酸オキシダーゼ、コレステロールオキシダーゼ、アルコールオキシダーゼ、ザルコシンオキシダーゼ、フルクトシルアミンオキシダーゼ、ピルビン酸オキシダーゼ、乳酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、グリセロールオキシダーゼ、グリセロール-3-リン酸オキシダーゼ、ウリカーゼ、コリンオキシダーゼ、キサンチンオキシダーゼ、及びヒドロキシ酪酸デヒドロゲナーゼ等を挙げることができる。
 一実施形態において、酵素は、グルコースデヒドロゲナーゼであることが好ましく、フラビン結合型グルコースデヒドロゲナーゼであることが好ましく、フラビンアデニンジヌクレオチド(FAD)を補酵素とするグルコースデヒドロゲナーゼ(「FADGDH」とも称する)が好ましい。FADGDHは、ポリペプチドで形成される3次元構造のくぼみにFADを保持するため、そこで生成された電子を電極に伝達するためには、従来、メディエーターと呼ばれる物質を要した。これに対し、ナノカーボン(好ましくは、カーボンナノチューブ、より好ましくは単層カーボンナノチューブ)を用いることにより、メディエーターを利用しなくても、電子を電極に伝達することが可能となる。また、上述の電子伝達促進剤を利用することにより、ナノカーボンを介した電子伝達を格段に効率的に(又は強力に)行うことが可能となる。
 FADGDHの種類は制限されず、任意のものを使用することができる。FADGDHの具体例としては、次の生物のいずれかに由来するものを挙げることができる:アスペルギルス・テレウス、アスペルギルス・オリゼ、アルペルギルス・ニガー、アスペルギルス・フォエチダス、アルペルギルス・アウレウス、アスペルギルス・バージカラー、アスペルギルス・カワチ、アルペルギルス・アワモリ、アグロバクテリウム・ツメファシエンス、サイトファーガ・マリノフラバ、アガリカス・ビスポラス、マクロレピオタ・ラコデス、ブルクホルデリア・セパシア、ムコール・サブチリシマス、ムコール・ギリエルモンディ、ムコール・プライニ、ムコール・ジャバニカス、ムコール・シルシネロイデス、ムコール・シルシネロイデス・エフ・シルシネロイデス、ムコール・ヒエマリス、ムコール・ヒエマリス・エフ・シルバチカス、ムコール・ダイモルフォスポラス、アブシジア・シリンドロスポラ、アブシジア・ヒアロスポラ、アクチノムコール・エレガンス、シルシネラ・シンプレックス、シルシネラ・アンガレンシス、シルシネラ・シネンシス、シルシネラ・ラクリミスポラ、シルシネラ・マイナー、シルシネラ・ムコロイデス、シルシネラ・リジダ、シルシネラ・アンベラータ、シルシネラ・ムスカエ、メタリジウム・エスピー及びコレトトリカム・エスピー。
 一実施形態において好ましいFADGDHは、アスペルギルス・オリゼ由来のFADGDH、ムコール・ヒエマリス由来のFADGDH、ムコール・サブチリシマス由来のFADGDH、シルシネラ・シンプレックス由来のFADGDH、メタリジウム・エスピー由来のFADGDH又はコレトトリカム・エスピー由来のFADGDHであり、好ましくは、配列番号1~6のアミノ酸配列と80%以上の同一性を有し、より好ましくは、配列番号1~6のアミノ酸配列と90%以上の同一性を有し、さらに好ましくは、配列番号1~6のアミノ酸配列と95%以上の同一性を有し、グルコース脱水素活性を有するものを挙げることができる。アミノ酸配列の同一性は、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができ、例えば、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/ においてデフォルト(初期設定)のパラメータを用いて、算出することができる。なお、配列番号1のアミノ酸配列は、アスペルギルス・オリゼ由来のFADGDHのものであり、配列番号2のアミノ酸配列は、ムコール・ヒエマリス由来のFADGDHのものであり、配列番号3のアミノ酸配列は、ムコール・サブチリシマス由来のFADGDHのものであり、配列番号4のアミノ酸配列は、シルシネラ・シンプレックス由来のFADGDHのものであり、配列番号5のアミノ酸配列は、メタリジウム・エスピー由来のFADGDHのものであり、配列番号6のアミノ酸配列は、コレトトリカム・エスピー由来のFADGDHのものである。
 基板上に分散剤が更に積載されていてもよい。分散剤は、基板上でのナノカーボンの凝集を抑制し、分散させることが可能な物質であれば、特に制限されない。分散剤としては、例えば、コール酸ナトリウム、デオキシコール酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、セチルトリメチルアンモニウムブロミド、オクチルフェノールエトキシレート等を挙げることができる。一実施形態において、好ましい分散剤は、コール酸ナトリウム、デオキシコール酸ナトリウムである。
 ナノカーボン、芳香環骨格を有する化合物、及び、酵素は、任意の手段で基板に積載することができる。例えば、これらの物質の各々を分散又は溶解させた溶液を調製し、それらを順次基板上の所定部位(基板が、絶縁性基板上に金属薄膜が形成されたものである場合、金属薄膜が形成された場所)に滴下し、乾燥させるという操作を繰り返すことにより、積載することができる。分散媒又は溶媒としては、特に制限されず、水、アルコール系溶媒(例えば、エタノール)、ケトン系溶媒(例えば、アセトン)、これらの組合せが挙げられる。
 積載する順序は任意であるが、一実施形態において、ナノカーボン→酵素→芳香環骨格を有する化合物、又はナノカーボン→芳香環骨格を有する化合物→酵素の順で積載することが好ましい。
 ナノカーボン、芳香環骨格を有する化合物、酵素の使用量は特に制限されない。
 一実施形態において、ナノカーボン、芳香環骨格を有する化合物、及び、酵素は、基板に固定化されてもよい。固定化は、公知の方法を適宜選択して実施することができる。例えば、テトラフルオロエチレン/パーフルオロ[2-(フルオロスルホニルエトキシ)ポリビニルエーテル]共重合体(例:ナフィオン(商標))及びカルボキシルメチルセルロース等の固定化に適した物質を溶解させた液体を、基板上の上記各物質を積載した部位に滴下し、乾燥させることによって、固定化することができる。一実施形態において、ナノカーボン、芳香環骨格を有する化合物、及び酵素を基板に積載したのち、これらの物質を覆うようにカルボキシルメチルセルロース等のポリマー物質で処理することが好ましい。
 一実施形態において、分散剤は、ナノカーボンを分散させた分散液に配合することが好ましい。分散剤の配合割合は任意であるが、例えば、0.2~2%(w/v)配合することが好ましい。なお、ナノカーボンの配合割合も任意であるが、例えば、0.05~0.5%(w/v)配合することが好ましい。
4.センサ
 センサは、上記3の電極を含むことが好ましい。一実施形態において、センサは、上記3の電極を作用電極として含むことが好ましい。センサは、作用電極の他に、対極(カウンター電極)を有することが好ましい。センサは、更にポテンションスタット及び電流検出回路等のバイオセンサが通常備える構成を備えることができる。カウンター電極、ポテンションスタット、及び電流検出回路等の具体的な構成は、センサが目的とする測定が可能である限り任意であり、当該技術分野に公知の手段から適宜選択して設計することができる。
 一実施形態においてセンサが含む作用電極は、上記3の電極から芳香環骨格を有する化合物を除いたものであってもよい。このような作用電極を用いる場合、各電極を浸漬する溶媒(測定対象物質又は基質を含むもの)は、芳香環骨格を有する化合物を含むことが好ましい。溶媒としては、典型的には、緩衝液が挙げられ、その例としては、酢酸塩緩衝液、クエン酸塩緩衝液、リン酸塩緩衝液、硼酸塩緩衝液などが挙げられる。
 溶媒中の測定対象物質又は基質の濃度は、特に限定されず、測定に必要な任意の濃度に設定できる。
 溶媒中の芳香環骨格を有する化合物の濃度は、特に限定されない。前記濃度の下限は、例えば、0.000001%(w/v)、好ましくは0.000005%(w/v)、より好ましくは0.00001%(w/v)、より好ましくは0.00005%(w/v)、より好ましくは0.0001%(w/v)、より好ましくは0.0005%(w/v)、より好ましくは0.001%(w/v)、より好ましくは0.005%(w/v)、より好ましくは0.01%(w/v)である。前記濃度の上限は、例えば、2%(w/v)、好ましくは1.5%(w/v)、より好ましくは1%(w/v)である。前記濃度の下限及び上限は任意に組み合わせることができる。
 これらのセンサを用いて目的物の検出・測定が可能である。
 以下、実施例により本発明についてさらに詳細に説明するが、本発明はこれらに制限されるものではない。
実施例1
 PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した(図1)。図1において、「1」はPETフィルムであり、「2」は粘着シートであり、「3」は金蒸着PETフィルムであり、「4」は作用電極部位を示す。この作用電極部位に2%(w/v)のコール酸ナトリウム及び0.15%(w/v)の単層カーボンナノチューブ(SuperPureTubes、NanoIntegris社、外径1.1~1.7nm)を含む水分散液を5μL滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解したFADGDH(配列番号2のアミノ酸配列を有する;20U/μL)を5μL滴下し乾燥させた。FADGDH液の乾燥後、作用電極部位に下記の(1)又は(2)の化合物(各1%(w/v)溶液)を5μL滴下し乾燥させた。
(1)チモール(50%(v/v)エタノールに溶解)
(2)フェノール(40mMリン酸ナトリウム緩衝液に溶解)
 化合物液の乾燥後、作用電極部位に3%(w/v)ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ及びFAD-GDHを作用電極に固定化した。電気化学アナライザー(ALS/CHI 660B、エービーエス(株)社製)の作用極に上記で作製した電極チップ、参照電極に銀/塩化銀電極、対極に白金線をセットした。この3電極を40mMリン酸ナトリウム緩衝液(pH7.4)に浸漬した。この緩衝液にグルコースを添加しない(0mM)、或いはグルコースを10mM又は48mMとなるように添加する場合において、サイクリックボルタンメトリーによる測定を実施した。
 グルコース濃度0mM、10mM、48mMでそれぞれ測定したサイクリックボルタモグラムを図2及び図3に示す。図2は、チモールを用いた場合であり、図3は、フェノールを用いた場合である。
 このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表1の通りであった。
Figure JPOXMLDOC01-appb-T000001
比較例1
 実施例1の化合物(1)を下記の化合物(3)又は(4)に変更した以外は、実施例1と同様にして、サイクリックボルタモグラムを測定した。
(3)メントール(50%(v/v)エタノールに溶解)
(4)シクロヘキサノール(40mMリン酸ナトリウム緩衝液に溶解)
 結果を図4(メントール)、図5(シクロヘキサノール)、及び図6(化合物添加なし)に示す。図4~6に示すサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表2の通りであった。
Figure JPOXMLDOC01-appb-T000002
 実施例1と比較例1の結果から、作用電極部位に酵素とカーボンナノチューブを固定化しただけでは電流が測定されない条件でも、チモール又はフェノールを添加することにより電流が測定されることが判明した。一方、チモール及びフェノールに代えてメントールやシクロヘキサノールを使用した場合には電流は測定されないことが判明した。
実施例2
 実施例1と同様に、PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した。この作用電極部位に2%(w/v)のコール酸ナトリウム及び0.15%(w/v)の単層カーボンナノチューブ(外径1.1~1.7nm)を含む水分散液を5μL滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解したFADGDH(配列番号2のアミノ酸配列を有する;20U/μL)を5μL滴下し乾燥させた。FADGDH液の乾燥後、作用電極部位に3%(w/v)ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ、FADGDHを作用電極に固定化した。
 次いで、40mMリン酸ナトリウム緩衝液(pH7.4)に以下の(5)~(10)のいずれかの化合物を0.1%(w/v)添加溶解した。
(5)フェノール
(6)ビス(4-ヒドロキシフェニル)スルホン
(7)チロシン二ナトリウム水和物
(8)サリチル酸ナトリウム
(9)トルエン
(10)5-ヒドロキシインドール
 電気化学アナライザー(ALS/CHI 660B)の作用極に上記で作製した電極、参照電極に銀/塩化銀電極、対極に白金線をセットし、上記(5)~(10)のいずれかの化合物を溶解したリン酸ナトリウム緩衝液に浸漬した。この緩衝液にグルコースを添加しない(0mM)、或いはグルコースを10mM又は48mMとなるように添加する場合において、サイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表3の通りであった。
Figure JPOXMLDOC01-appb-T000003
 上記のとおり、実施例1で測定された電流は、チモール又はフェノールを上記(5)~(10)の化合物に変更しても観測されることが確認された。
比較例2
 上記(5)~(10)のいずれかの化合物を上記(3)又は(4)の化合物に代えた以外は、実施例2と同様にして、サイクリックボルタモグラムを得た。得られたサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表4の通りであった。
Figure JPOXMLDOC01-appb-T000004
 上記のとおり、実施例2の構成において、化合物(5)~(10)を添加しないかこれらをメントール又はシクロヘキサノールに置き換えると電流は実質的に測定されないことが確認された。
 化合物(1)、(2)、(5)~(10)は、いずれも芳香環骨格を有するのに対し、化合物(3)及び(4)は、これらを有していない。よって、化合物(1)、(2)、(5)~(10)は、芳香環骨格を有することにより、補酵素であるFADとカーボンナノチューブとの間の電子の授受を媒介し、促進すると考えられる。
実施例3
 PET基板にカーボンペーストを印刷したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した(図7)。図7において、「5」はPETフィルムであり、「6」は粘着シートであり、「7」はカーボンペースト印刷PETフィルムであり、「8」は作用電極部位を示す。この作用電極部位に2%(w/v)のコール酸ナトリウムを含む0.15%(w/v)の単層カーボンナノチューブ(外径1.1~1.7nm)の水分散液を5μL滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解したFADGDH(配列番号2に記載のアミノ酸配列を有する;20U/μL)を5μL滴下し乾燥させた。FADGDH液の乾燥後、作用電極部位に1%(w/v)カルボキシメチルセルロース液を5μL滴下し、乾燥させカーボンナノチューブ、FAD-GDHを作用電極に固定化した。50%(v/v)エタノールに溶解した5%(w/v)チモール溶液を40mMリン酸ナトリウム緩衝液(pH7.4)に0.1%(w/v)チモールとなるよう添加混合した。
 電気化学アナライザー(ALS/CHI 660B)の作用極に上記で作製した電極、参照電極に銀/塩化銀電極、対極に白金線をセットし、0.01%(w/v)チモールを含むリン酸ナトリウム緩衝液に浸漬した。この緩衝液にグルコースを添加しない(0mM)、或いはグルコースを10mM又は48mMとなるように添加する場合において、サイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムを図8に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表5の通りであった。
Figure JPOXMLDOC01-appb-T000005
比較例3
 40mMリン酸ナトリウム緩衝液(pH7.4)にチモールを添加しない以外は、実施例3と同様にしてサイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムを図9に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表6の通りであった。
Figure JPOXMLDOC01-appb-T000006
 実施例3及び比較例3のとおり、電極にチモールを固定化するのではなく、緩衝液にチモールを含有させることによっても、電流の測定が可能になることが確認された。この結果は、芳香環骨格を有する化合物が、補酵素であるFADとカーボンナノチューブとの間の電子の授受を媒介し、促進することを裏付けるものである。
実施例4
 実施例1と同様に、PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した。この作用電極部位に2%(w/v)のコール酸ナトリウム及び0.15%(w/v)の単層カーボンナノチューブ(外径1.1~1.7nm)を含む水分散液を5μL滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解したFADGDH(配列番号2のアミノ酸配列を有する;20U/μL)を5μL滴下し乾燥させた。
 FADGDH液の乾燥後、作用電極部位に3%(w/v)ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ及びFADGDHを作用電極に固定化した。
 次いで、100%エタノールに溶解した10%(w/v)チモール溶液を40mMリン酸ナトリウム緩衝液(pH7.4)に添加し、4種類の濃度(0.00001、0.0001、0.001、0.01(w/v))のチモール含有緩衝液を調製した。
 電気化学アナライザー(ALS/CHI 660B)の作用極に上記で作製した電極チップ、参照電極に銀/塩化銀電極、対極に白金線をセットし、上記のいずれかの濃度のチモール含有緩衝液、又は40mMリン酸ナトリウム緩衝液(pH7.4)に浸漬し、サイクリックボルタンメトリーによる測定を実施した。グルコース濃度0mM、10mM、48mMでそれぞれ測定したサイクリックボルタモグラムを図10~図14に示す。チモール濃度(w/v)は図10が0%、図11が0.00001%、図12が0.0001%、図13が0.001%、図14が0.01%の場合である。
 このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表7の通りであった。
Figure JPOXMLDOC01-appb-T000007
 上記のとおり、作用電極部位に酵素とカーボンナノチューブを固定化しただけでは電流が測定されない条件でも、緩衝液にチモールをごく少量(0.00001%(w/v))添加することにより電流が測定されることが判明した。また、チモール添加により得られる最大電流値の6割以上の電流値が、緩衝液にチモールを0.001%(w/v)となるように添加することにより測定されることが判明した。
実施例5
 40mMリン酸ナトリウム緩衝液(pH7.4)に以下の(11)~(14)のいずれかの化合物を0.1%(w/v)となるように添加溶解した。
(11)アニリン
(12)o-クレゾール
(13)m-クレゾール
(14)p-クレゾール
 実施例1と同様に作製した電極チップを電気化学アナライザー(ALS/CHI 660B)の作用極にセットし、参照電極に銀/塩化銀電極、対極に白金線をセットし、上記アニリンを溶解したリン酸ナトリウム緩衝液、又は40mMリン酸ナトリウム緩衝液(pH7.4)に浸漬した。この緩衝液にグルコースを添加しない(0mM)、又はグルコースを48mMとなるように添加する場合において、サイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表8の通りであった。
Figure JPOXMLDOC01-appb-T000008
 上記のとおり、作用電極部位に酵素とカーボンナノチューブを固定化しただけでは電流が測定されない条件でも、(11)~(14)の化合物を添加することにより電流が測定されることが判明した。
実施例6
 実施例1と同様に、PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した。この作用電極部位に2%(w/v)のコール酸ナトリウム及び0.15%(w/v)の単層カーボンナノチューブ(外径1.1~1.7nm)を含む水分散液を5μL滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解したFADGDH(配列番号2のアミノ酸配列を有する;20U/μL)を5μL滴下し乾燥させた。FADGDH液の乾燥後、作用電極部位に下記(15)~(33)の化合物(各1%(w/v)液)を5μL滴下し乾燥させた。
(15)ロイコキニザリン(80%(v/v)アセトンに溶解)
(16)カルバクロール(50%(v/v)エタノールに溶解)
(17)1,5-ナフタレンジオール(50%(v/v)エタノールに溶解)
(18)4-イソプロピル-3-メチルフェノール(50%(v/v)エタノールに溶解)
(19)2-イソプロピルフェノール(50%(v/v)エタノールに溶解)
(20)4-イソプロピルフェノール(50%(v/v)エタノールに溶解)
(21)1-ナフトール(50%(v/v)エタノールに溶解)
(22)2-tert-ブチル-5-メチルフェノール(50%(v/v)エタノールに溶解)
(23)2,4,6-トリメチルフェノール(50%(v/v)エタノールに溶解)
(24)2,6-ジイソプロピルフェノール(50%(v/v)エタノールに溶解)
(25)2-tert-ブチル-4-エチルフェノール(50%(v/v)エタノールに溶解)
(26)6-tert-ブチル-2,4-キシレノール(50%(v/v)エタノールに溶解)
(27)2-tert-ブチル-4-メチルフェノール(50%(v/v)エタノールに溶解)
(28)2-tert-ブチル-6-メチルフェノール(50%(v/v)エタノールに溶解)
(29)2,4-ジ-tert-ブチルフェノール(50%(v/v)エタノールに溶解)
(30)2,4-ジ-tert-ブチル-5-メチルフェノール(50%(v/v)エタノールに溶解)
(31)ビス(p-ヒドロキシフェニル)メタン(50%(v/v)エタノールに溶解)
(32)3-tert-ブチルフェノール(50%(v/v)エタノールに溶解)
(33)2-イソプロピル-5-メチルアニソール(80%(v/v)エタノールに溶解)
 (15)~(33)の化合物液の乾燥後、作用電極部位に3%(w/v)ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ、FADGDHを作用電極に固定化した。
 電気化学アナライザー(ALS/CHI 660B)の作用極に上記で作製した電極チップ、参照電極に銀/塩化銀電極、対極に白金線をセットした。この3電極を40mMリン酸ナトリウム緩衝液(pH7.4)に浸漬した。この緩衝液にグルコースを添加しない(0mM)、又はグルコースを48mMとなるように添加する場合において、サイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表9の通りであった。
Figure JPOXMLDOC01-appb-T000009
比較例4
 上記(15)~(33)の化合物を下記(34)の化合物に代えた以外は、実施例3と同様にして、サイクリックボルタモグラムを測定した。
(34)ピペリレン(100%アセトンに溶解)
 得られたサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表10の通りであった。
Figure JPOXMLDOC01-appb-T000010
 実施例6と比較例4の結果から、作用電極部位に酵素とカーボンナノチューブを固定化しただけでは電流が測定されない条件でも、(15)~(33)の化合物を添加することにより電流が測定されることが判明した。一方、化合物(34)を添加した場合には電流は測定されないことが判明した。
 化合物(15)~(33)は、いずれも芳香環骨格を有するのに対し、化合物(34)はπ電子を有するが芳香環骨格を有していない。よって、化合物(15)~(33)は、芳香環骨格を有することにより、補酵素であるFADとカーボンナノチューブとの間の電子の授受を媒介し、促進すると考えられる。
実施例7
 実施例1と同様に、PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した。この作用電極部位に2%(w/v)のコール酸ナトリウム及び0.092%(w/v)の多層カーボンナノチューブ(NC7000、Nanocyl社、外径5~15nm)を含む水分散液を8.2μL滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解したFADGDH(配列番号2に記載のアミノ酸配列を有する;20U/μL)を5μL滴下し乾燥させた。FADGDH液の乾燥後、作用電極部位に3%(w/v)ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ、FAD-GDHを作用電極に固定化した。100%エタノールに溶解した10%(w/v)チモール溶液を40mMリン酸ナトリウム緩衝液(pH7.4)に0.01%(w/v)となるように添加混合した。
 電気化学アナライザー(ALS/CHI 660B)の作用極に上記で作製した電極チップ、参照電極に銀/塩化銀電極、対極に白金線をセットし、0.01%(w/v)チモールを含むリン酸ナトリウム緩衝液に浸漬し、サイクリックボルタンメトリーによる測定を実施した。グルコース濃度0mM、10mM、48mMでそれぞれ測定したサイクリックボルタモグラムを図15に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表11の通りであった。
Figure JPOXMLDOC01-appb-T000011
比較例5
 40mMリン酸ナトリウム緩衝液(pH7.4)にチモールを添加しない以外は、実施例4と同様にしてサイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムを図16に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表12の通りであった。
Figure JPOXMLDOC01-appb-T000012
 実施例7及び比較例5のとおり、多層カーボンナノチューブを用いた場合にも緩衝液にチモールを含有させることによって、電流の測定が可能になることが確認された。
実施例8
 実施例1と同様に、PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した。この作用電極部位に2%(w/v)のコール酸ナトリウム及び0.15%(w/v)の単層カーボンナノチューブ(外径1.1~1.7nm)を含む水分散液5μL、または2%(w/v)のコール酸ナトリウム及び0.092%(w/v)の多層カーボンナノチューブ(外径5~15nm)を含む水分散液8.2μLを滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解したグルコースオキシダーゼ(20U/μL)を5μL滴下し乾燥させた。グルコースオキシダーゼ液の乾燥後、作用電極部位に3%(w/v)ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ、グルコースオキシダーゼを作用電極に固定化した。100%エタノールに溶解した10%(w/v)チモール溶液を40mMリン酸ナトリウム緩衝液(pH7.4)に0.01%(w/v)となるように添加混合した。
 電気化学アナライザー(ALS/CHI 660B)の作用極に上記で作製した電極チップ、参照電極に銀/塩化銀電極、対極に白金線をセットし、0.01%(w/v)チモールを含むリン酸ナトリウム緩衝液に浸漬し、サイクリックボルタンメトリーによる測定を実施した。グルコース濃度0mM、10mM、48mMでそれぞれ測定したサイクリックボルタモグラムを図17(単層カーボンナノチューブ)、図18(多層カーボンナノチューブ)に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表13の通りであった。
Figure JPOXMLDOC01-appb-T000013
比較例6
 40mMリン酸ナトリウム緩衝液(pH7.4)にチモールを添加しない以外は、実施例8と同様にしてサイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムを図19(単層カーボンナノチューブ)、図20(多層カーボンナノチューブ)に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表14の通りであった。
Figure JPOXMLDOC01-appb-T000014
 実施例8及び比較例6のとおり、単層カーボンナノチューブおよび多層カーボンナノチューブのいずれを用いた場合にも緩衝液にチモールを含有させることによって、電流値が増大することが確認された。
実施例9
 実施例1と同様に、PET基板に金を蒸着したシートを用いて、9mmの作用電極部位を持つ電極チップを作製した。この作用電極部位に2%(w/v)のコール酸ナトリウム及び0.15%(w/v)の単層カーボンナノチューブ(外径1.1~1.7nm)を含む水分散液5μL、または2%(w/v)のコール酸ナトリウム及び0.092%(w/v)の多層カーボンナノチューブ(外径5~15nm)を含む水分散液8.2μLを滴下し乾燥させた。カーボンナノチューブ分散液の乾燥後、作用電極部位に超純水に溶解した乳酸オキシダーゼ(配列番号7のアミノ酸配列を有する;20U/μL)を5μL滴下し乾燥させた。乳酸オキシダーゼ液の乾燥後、作用電極部位に3%(w/v)ナフィオン液を5μL滴下し、乾燥させカーボンナノチューブ、乳酸オキシダーゼを作用電極に固定化した。100%エタノールに溶解した10%(w/v)チモール溶液を40mMリン酸ナトリウム緩衝液(pH7.4)に0.01%(w/v)となるように添加混合した。
 電気化学アナライザー(ALS/CHI 660B)の作用極に上記で作製した電極チップ、参照電極に銀/塩化銀電極、対極に白金線をセットし、0.01%(w/v)チモールを含むリン酸ナトリウム緩衝液に浸漬し、サイクリックボルタンメトリーによる測定を実施した。乳酸濃度0mM、5mM、12mMでそれぞれ測定したサイクリックボルタモグラムを図21(単層カーボンナノチューブ)、図22(多層カーボンナノチューブ)に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表15の通りであった。
Figure JPOXMLDOC01-appb-T000015
比較例7
 40mMリン酸ナトリウム緩衝液(pH7.4)にチモールを添加しない以外は、実施例8と同様にしてサイクリックボルタンメトリーによる測定を実施した。得られたサイクリックボルタモグラムを図23(単層カーボンナノチューブ)、図24(多層カーボンナノチューブ)に示す。このサイクリックボルタモグラムにおいて-0.8Vから+0.8Vへ掃引する際の+0.6Vの電流値は下記表16の通りであった。
Figure JPOXMLDOC01-appb-T000016
 実施例9及び比較例7のとおり、単層カーボンナノチューブおよび多層カーボンナノチューブのいずれを用いた場合にも緩衝液にチモールを含有させることによって、電流値が増大することが確認された。

Claims (11)

  1. 芳香環骨格を有する化合物からなる、ナノカーボンの電子伝達作用促進剤。
  2. 芳香環骨格を有する化合物が分子間相互作用により付着または近接して存在する、ナノカーボン。
  3. 芳香環骨格を有する化合物が単独ではメディエーターとしての機能を有しない化合物である、請求項2に記載のナノカーボン。
  4. 芳香環骨格を有する化合物がチモール、フェノール、ビス(4-ヒドロキシフェニル)スルホン、チロシン二ナトリウム水和物、サリチル酸ナトリウム、トルエン、5-ヒドロキシインドール、アニリン、ロイコキニザリン、カルバクロール、1,5-ナフタレンジオール、4-イソプロピル-3-メチルフェノール、2-イソプロピルフェノール、4-イソプロピルフェノール、1-ナフトール、2-tert-ブチル-5-メチルフェノール、2,4,6-トリメチルフェノール、2,6-ジイソプロピルフェノール、2-tert-ブチル-4-エチルフェノール、6-tert-ブチル-2,4-キシレノール、2-tert-ブチル-4-メチルフェノール、2-tert-ブチル-6-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチル-5-メチルフェノール、ビス(p-ヒドロキシフェニル)メタン、3-tert-ブチルフェノール、2-イソプロピル-5-メチルアニソール、o-クレゾール、m-クレゾール、及びp-クレゾールから成る群より選択される請求項2又は3に記載のナノカーボン。
  5. 基板上にナノカーボン、芳香環骨格を有する化合物、並びに酵素が積載された、電極。
  6. ナノカーボンがカーボンナノチューブである、請求項5に記載の電極。
  7. カーボンナノチューブが単層カーボンナノチューブである、請求項5又は6に記載の電極。
  8. 酵素がフラビン結合型グルコースデヒドロゲナーゼである、請求項5~7のいずれかに記載の電極。
  9. 基板上に分散剤が更に積載された、請求項5~8のいずれかに記載の電極。
  10. 基板が炭素または金属の薄膜が形成された基板である、請求項5~9のいずれかに記載の電極。
  11. 請求項5~10のいずれかに記載の電極を含むセンサ。
PCT/JP2019/014133 2018-03-29 2019-03-29 ナノカーボンの電子伝達作用 WO2019189808A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980023140.1A CN111954641B (zh) 2018-03-29 2019-03-29 纳米碳的电子传递作用
JP2020511116A JP7398744B2 (ja) 2018-03-29 2019-03-29 ナノカーボンの電子伝達作用
EP19775049.0A EP3778476A4 (en) 2018-03-29 2019-03-29 NANOCARBON ELECTRON TRANSFER ACTION
US17/043,175 US11906461B2 (en) 2018-03-29 2019-03-29 Electron transfer by nanocarbon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018065464 2018-03-29
JP2018-065464 2018-03-29
JP2019029534 2019-02-21
JP2019-029534 2019-02-21

Publications (1)

Publication Number Publication Date
WO2019189808A1 true WO2019189808A1 (ja) 2019-10-03

Family

ID=68062012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014133 WO2019189808A1 (ja) 2018-03-29 2019-03-29 ナノカーボンの電子伝達作用

Country Status (5)

Country Link
US (1) US11906461B2 (ja)
EP (1) EP3778476A4 (ja)
JP (1) JP7398744B2 (ja)
CN (1) CN111954641B (ja)
WO (1) WO2019189808A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149587A1 (ja) * 2020-01-23 2021-07-29 池田食研株式会社 グルクロン酸の製造方法
JP7472609B2 (ja) 2020-04-02 2024-04-23 artience株式会社 酵素センサー用電極及び酵素センサー
WO2024101215A1 (ja) * 2022-11-11 2024-05-16 東洋紡株式会社 試料中の基質の測定方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088288A1 (ja) 2004-03-10 2005-09-22 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブバイオセンサ
JP2008064724A (ja) * 2006-09-11 2008-03-21 Osaka Univ カーボンナノチューブ電極及び当該電極を用いたセンサー
JP2010156605A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemical Medience Corp 電気的分析方法
WO2011007582A1 (ja) 2009-07-17 2011-01-20 国立大学法人北海道大学 Cntセンサーによる過酸化物を電気的に測定する方法
WO2012002290A1 (ja) 2010-06-29 2012-01-05 国立大学法人東北大学 タンパク質を包含したカーボンナノチューブフィルム、それを電極とするセンサ及び発電デバイス
US20120132525A1 (en) * 1999-11-15 2012-05-31 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
US20130209807A1 (en) * 2012-02-13 2013-08-15 Florida State University Research Foundation, Inc. Functionalized Carbon Nanotube Sheets for Electrochemical Biosensors and Methods
JP2014194411A (ja) * 2013-02-28 2014-10-09 Aisin Seiki Co Ltd 修飾電極、当該修飾電極の製造方法、当該修飾電極を備えるバイオ電池並びにバイオセンサー
JP2015131734A (ja) * 2014-01-09 2015-07-23 国立大学法人信州大学 単層カーボンナノチューブ、それを含む電極シート、それの製造方法、および、それの分散体の製造方法
WO2017098076A1 (es) * 2015-12-10 2017-06-15 Consejo Superior De Investigaciones Científicas (Csic) Biosensor electrocrómico
US20170173036A1 (en) * 2014-07-21 2017-06-22 B.G. Negev Technologies And Applications Ltd. (Ben Gurion University) Phenothiazine/phenothiazone -graphene oxide composite
US20170322167A1 (en) * 2016-05-04 2017-11-09 Massachusetts Institute Of Technology Polymer / single-walled carbon nanotube composite for gas detection

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955559B2 (en) * 2005-11-15 2011-06-07 Nanomix, Inc. Nanoelectronic electrochemical test device
US20050208304A1 (en) * 2003-02-21 2005-09-22 California Institute Of Technology Coatings for carbon nanotubes
US8859151B2 (en) 2003-11-05 2014-10-14 St. Louis University Immobilized enzymes in biocathodes
CN101151764A (zh) * 2003-11-05 2008-03-26 圣路易斯大学 生物阴极中的固定化酶
WO2005093400A1 (ja) 2004-03-25 2005-10-06 Ultizyme International Ltd. 燃料電池型ワイヤレス酵素センサー
CN100594379C (zh) * 2007-06-29 2010-03-17 浙江大学 一种碳纳米管修饰的血糖生物传感器
ES2441361T3 (es) 2007-09-18 2014-02-04 Ultizyme International Ltd. Electrodo enzimático
CN101475790B (zh) 2008-01-04 2012-10-10 杨光 新型木材胶粘剂及其制备方法
CN102478539A (zh) * 2010-11-19 2012-05-30 中国科学院海洋研究所 一种羟丙基壳聚糖/碳纳米管修饰的电化学传感器的应用
JP5584740B2 (ja) 2011-09-26 2014-09-03 アークレイ株式会社 グルコースセンサ
JP6901717B2 (ja) * 2016-08-29 2021-07-14 国立研究開発法人産業技術総合研究所 グルコースセンサ用試薬、グルコースセンサ、グルコースセンサの製造方法、および、グルコース測定装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120132525A1 (en) * 1999-11-15 2012-05-31 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
WO2005088288A1 (ja) 2004-03-10 2005-09-22 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブバイオセンサ
JP2008064724A (ja) * 2006-09-11 2008-03-21 Osaka Univ カーボンナノチューブ電極及び当該電極を用いたセンサー
JP2010156605A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemical Medience Corp 電気的分析方法
WO2011007582A1 (ja) 2009-07-17 2011-01-20 国立大学法人北海道大学 Cntセンサーによる過酸化物を電気的に測定する方法
WO2012002290A1 (ja) 2010-06-29 2012-01-05 国立大学法人東北大学 タンパク質を包含したカーボンナノチューブフィルム、それを電極とするセンサ及び発電デバイス
US20130209807A1 (en) * 2012-02-13 2013-08-15 Florida State University Research Foundation, Inc. Functionalized Carbon Nanotube Sheets for Electrochemical Biosensors and Methods
JP2014194411A (ja) * 2013-02-28 2014-10-09 Aisin Seiki Co Ltd 修飾電極、当該修飾電極の製造方法、当該修飾電極を備えるバイオ電池並びにバイオセンサー
JP2015131734A (ja) * 2014-01-09 2015-07-23 国立大学法人信州大学 単層カーボンナノチューブ、それを含む電極シート、それの製造方法、および、それの分散体の製造方法
US20170173036A1 (en) * 2014-07-21 2017-06-22 B.G. Negev Technologies And Applications Ltd. (Ben Gurion University) Phenothiazine/phenothiazone -graphene oxide composite
WO2017098076A1 (es) * 2015-12-10 2017-06-15 Consejo Superior De Investigaciones Científicas (Csic) Biosensor electrocrómico
US20170322167A1 (en) * 2016-05-04 2017-11-09 Massachusetts Institute Of Technology Polymer / single-walled carbon nanotube composite for gas detection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACS CATAL, vol. 7, 2017, pages 725 - 734
HOU, C. ET AL.: "An integrated device of enzymatic biofuel cells and supercapacitor for both efficient electric energy conversion and storage", ELECTROCHIMICA ACTA, vol. 245, 22 May 2017 (2017-05-22), pages 303 - 308, XP085150730, doi:10.1016/j.electacta.2017.05.136 *
See also references of EP3778476A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149587A1 (ja) * 2020-01-23 2021-07-29 池田食研株式会社 グルクロン酸の製造方法
JP7472609B2 (ja) 2020-04-02 2024-04-23 artience株式会社 酵素センサー用電極及び酵素センサー
WO2024101215A1 (ja) * 2022-11-11 2024-05-16 東洋紡株式会社 試料中の基質の測定方法

Also Published As

Publication number Publication date
JPWO2019189808A1 (ja) 2021-03-18
EP3778476A4 (en) 2022-03-09
CN111954641B (zh) 2024-03-12
CN111954641A (zh) 2020-11-17
EP3778476A1 (en) 2021-02-17
JP7398744B2 (ja) 2023-12-15
US20210293742A1 (en) 2021-09-23
US11906461B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2019189808A1 (ja) ナノカーボンの電子伝達作用
Rubianes et al. Enzymatic biosensors based on carbon nanotubes paste electrodes
Muguruma et al. Mediatorless direct electron transfer between flavin adenine dinucleotide-dependent glucose dehydrogenase and single-walled carbon nanotubes
Portaccio et al. Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection
Antiochia et al. Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages
Ambrosi et al. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes
Pramoda et al. Superior performance of a MoS2‐RGO composite and a Borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine
Manso et al. Alcohol dehydrogenase amperometric biosensor based on a colloidal gold–carbon nanotubes composite electrode
Tominaga et al. d-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode
JP4863398B2 (ja) カーボンナノチューブを用いたバイオセンサ
Adachi et al. Bioelectrocatalytic performance of d-fructose dehydrogenase
Kim et al. Bacterial cellulose–carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase
JP2009222726A (ja) インク
Suprun et al. Direct electrochemistry of heme proteins on electrodes modified with didodecyldimethyl ammonium bromide and carbon black
Pankratov et al. A comparative study of biocathodes based on multiwall carbon nanotube buckypapers modified with three different multicopper oxidases
Zhang et al. Amperometric biosensors based on recombinant bacterial laccase CotA for hydroquinone determination
Palanisamy et al. A highly sensitive and selective enzymatic biosensor based on direct electrochemistry of hemoglobin at zinc oxide nanoparticles modified activated screen printed carbon electrode
Chng et al. Nanographite impurities in carbon nanotubes: their influence on the oxidation of insulin, nitric oxide, and extracellular thiols
Chen et al. Comparison of commercial and lab‐made MWCNT buckypaper: physicochemical properties and bioelectrocatalytic O2 reduction
Torrinha et al. A self-powered biosensor for glucose detection using modified pencil graphite electrodes as transducers
Bandapati et al. Fully assembled membraneless glucose biofuel cell with MWCNT modified pencil graphite leads as novel bioelectrodes
WO2022025266A1 (ja) 対極の改質剤
JP7492708B2 (ja) 対極の改質剤
Swetha et al. Selective electrochemical recognition of the α-naphthol isomer and in situ immobilization of naphthoquinones for tunable electrocatalysis.
JP7492707B2 (ja) 対極の改質剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019775049

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019775049

Country of ref document: EP

Effective date: 20201029