WO2019189783A1 - 積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージ - Google Patents

積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージ Download PDF

Info

Publication number
WO2019189783A1
WO2019189783A1 PCT/JP2019/014050 JP2019014050W WO2019189783A1 WO 2019189783 A1 WO2019189783 A1 WO 2019189783A1 JP 2019014050 W JP2019014050 W JP 2019014050W WO 2019189783 A1 WO2019189783 A1 WO 2019189783A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
laminate
layer
conductor layer
Prior art date
Application number
PCT/JP2019/014050
Other languages
English (en)
French (fr)
Inventor
小夏 中村
佳弘 高橋
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2019189783A1 publication Critical patent/WO2019189783A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections

Definitions

  • the present invention relates to a laminate, a laminate with a conductor layer, a printed wiring board, a manufacturing method thereof, and a semiconductor package.
  • the low modulus of elasticity of the laminated plate can also cause warpage, it is also effective to increase the elasticity of the laminated plate in order to reduce warpage.
  • it is effective to reduce the expansion coefficient and increase the elasticity of the laminate.
  • Patent Document 4 uses a glass substrate having a coefficient of thermal expansion that substantially matches the coefficient of thermal expansion of an electronic component such as a silicon chip, and in a laminated plate including a cured resin layer and a glass substrate layer, It is disclosed that by including an inorganic filler in the cured product layer, a laminate having a low coefficient of thermal expansion and a high elastic modulus, suppressing warpage, and hardly causing cracks is disclosed.
  • Patent Document 4 a laminate and a laminate are manufactured by laminating a resin film layer on a glass substrate, and the glass substrate is sometimes referred to as a glass through hole [hereinafter referred to as TGV (Through Glass Via)]. ], The wiring on the front and back of the laminate cannot be conducted. Further, even if a through-hole is formed in the laminate described in Patent Document 4 and conduction is attempted, the wall surface of the TGV opened in the glass substrate is not attached with a plating for the conductor layer, so other means need to be considered. There is.
  • an object of the present invention is to provide a laminate, a laminate with a conductor layer, a printed wiring board, a manufacturing method thereof, and a semiconductor package that include a glass substrate layer and can be easily conducted on the front and back sides. It is in.
  • the present inventors have used a glass substrate having a glass through hole in a laminate including a glass substrate layer, and a thermosetting resin on the wall surface of the glass through hole. It has been found that the above problem can be solved by a laminate provided with a composition layer. That is, the present invention provides the following [1] to [18].
  • thermosetting resin composition layers comprising one or more thermosetting resin composition layers and one or more glass substrate layers, At least one glass substrate layer of the glass substrate layers has one or more glass through holes, and a thermosetting resin composition is formed on a wall surface of at least one glass through hole of the glass through holes.
  • a laminate having layers.
  • the glass substrate layer is in contact with at least one thermosetting resin composition layer, the constituent material of the thermosetting resin composition layer, and the thermosetting resin composition layer on the wall surface of the glass through hole
  • the laminate according to [1] above, wherein the constituent material is the same.
  • each of the thermosetting resin composition layers is a layer made of a thermosetting resin composition containing (A) an epoxy resin and (B) an active ester group-containing compound.
  • the equivalent ratio (ester group / epoxy group) of the ester group derived from the (B) active ester group-containing compound and the epoxy group derived from the (A) epoxy resin in the thermosetting resin composition is 0.
  • thermosetting resin composition further contains (C) a curing accelerator.
  • the surface roughness (Ra) of the thermosetting resin composition layer (excluding the thermosetting resin composition layer on the wall surface of the glass through hole) is 0.2 ⁇ m or less. ]
  • thermosetting resin composition layer is a layer obtained by forming the thermosetting resin composition into a B-stage or a C-stage. body.
  • a laminated sheet with a conductor layer formed by forming a conductor layer on the laminate according to any one of [1] to [9] above, and a thermosetting resin composition present on the wall surface of the glass through hole A laminate with a conductor layer, which also has a conductor layer on the physical layer.
  • the coating is performed by spin coating, dip coating, dip spin coating, spray coating, round spray coating, mist coating, flow coating, curtain coating, roll coating, knife coating, blade
  • the lamination according to [13] which is performed by a method selected from the group consisting of a coating method, an air doctor coating method, a bar coating method, a screen printing method, a gravure printing method, an offset printing method, a flexographic printing method, and a brush coating method.
  • Body manufacturing method [15] The method for producing a laminate according to the above [13] or [14], further comprising a step of thermosetting the applied thermosetting resin composition.
  • thermosetting resin composition or the thermoset thermosetting resin composition with active energy rays.
  • a manufacturing method of a layered product [17] A conductor layer comprising a step of producing a laminate by the method for producing a laminate according to the above [13] to [16], and a step of forming a conductor layer by plating the laminate. Manufacturing method of laminated board. [18] A method for producing a printed wiring board, comprising: a step of producing a laminate with a conductor layer by the method for producing a laminate with a conductor layer according to [17] above; and a step of forming a circuit on the conductor layer.
  • the present invention it is possible to provide a laminated body, a laminated board with a conductor layer, a printed wiring board, a manufacturing method thereof, and a semiconductor package that include a glass substrate layer and can be easily conducted on the front and back sides.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. Further, the lower limit value and the upper limit value of the numerical range can be arbitrarily combined with the lower limit value or the upper limit value of another numerical range, respectively. Moreover, unless otherwise indicated, each component and material illustrated in this specification may be used individually by 1 type, and may use 2 or more types together. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means. Embodiments in which the items described in this specification are arbitrarily combined are also included in the present invention.
  • the laminate of the present invention will be described with reference to FIG. 1 and FIG.
  • a laminate comprising one or more thermosetting resin composition layers (1) and one or more glass substrate layers (2), At least one glass substrate layer (2) of the glass substrate layer (2) has one or more glass through holes (4), and at least one glass through hole of the glass through holes.
  • It is a laminated body which has a thermosetting resin composition layer (3) on the wall surface.
  • the glass substrate layer and the thermosetting resin composition layer will be described in detail.
  • the glass substrate layer is made of a glass substrate, that is, plate glass, and does not include a layer made of glass fiber. Although it does not restrict
  • at least one glass substrate of the glass substrate layers has one or more glass through holes (TGV).
  • the TGV is a through hole formed in a glass substrate, and there is no particular limitation on the formation method.
  • the TGV can be provided by a laser, sandblast, drill, or the like.
  • the TGV is not particularly limited as long as the wall surface penetrates from the front surface to the back surface of the glass substrate.
  • thermosetting resin layer mentioned later on the wall surface of at least 1 TGV among TGV which a glass substrate layer has. It is preferable to have a thermosetting resin layer, which will be described later, on the wall surface of 80% or more of the TGV in the TGV of the glass substrate layer, and a thermosetting property which will be described later on the wall surface of 90% or more of the TGV in the glass substrate layer. It is preferable to have a resin layer, and it is more preferable to have a thermosetting resin layer to be described later on the wall surfaces of all the TGVs that the glass substrate layer has.
  • the laminate of the present invention includes one or more glass substrate layers, preferably 1 to 20 glass substrate layers, more preferably 1 to 10 glass substrate layers, and further preferably 1 to 5 glass substrate layers.
  • the glass substrate layer of a layer is included, Especially preferably, the glass substrate layer of 1 layer is included.
  • the number of glass substrate layers is not limited to these.
  • the glass substrate layer is in contact with at least one thermosetting resin composition layer, and the thermosetting resin composition on the wall surface of the TGV and the constituent material of the thermosetting resin composition layer in contact with the glass substrate layer
  • thermosetting resin composition on the wall surface of the TGV and the constituent material of the thermosetting resin composition layer in contact with the glass substrate layer
  • An embodiment in which the constituent materials of the layers are the same is preferable. On the other hand, different constituent materials may be used.
  • thermosetting resin composition layer is not particularly limited as long as it is a layer made of a composition containing a thermosetting resin (that is, a thermosetting resin composition), but from the viewpoint of adhesiveness with a conductor layer, (A) It is preferable that it is a layer which consists of a thermosetting resin composition containing an epoxy resin and (B) active type ester group containing compound. Moreover, it is preferable that this thermosetting resin composition contains (C) hardening accelerator further.
  • the thermosetting resin composition layer may be a layer in which the thermosetting resin composition is B-staged, or may be a layer in which the C-stage is formed. Including.
  • the B-stage is to cure 5 to 90% of the thermosetting resin composition
  • the C-stage is more than 90% (including 100%) of the thermosetting resin composition. Is to cure. It can be said that the B-staged thermosetting resin composition is in a semi-cured state.
  • the cure degree of a thermosetting resin composition can be calculated
  • thermosetting resin contains a thermosetting resin.
  • the thermosetting resin is preferably a thermosetting resin that is thermoset at a general thermosetting temperature of 150 to 230 ° C. from the viewpoint of productivity.
  • the thermosetting resin include an epoxy resin, a cyanate ester compound, a bismaleimide compound, a bisallyl nadiimide resin, a benzoxazine compound, and an addition reaction product of a bismaleimide compound and a diamine compound.
  • an epoxy resin, an addition reaction product of a bismaleimide compound and a diamine compound, and a cyanate ester compound are preferable, and an epoxy resin is more preferable from the viewpoint of chemical resistance.
  • thermosetting resin composition may be referred to as (A) an epoxy resin [hereinafter referred to as (A) component. And (B) an active ester group-containing compound [hereinafter sometimes referred to as component (B). ] Is preferable. Moreover, the aspect in which a thermosetting resin composition contains (A) epoxy resin and another hardening
  • the epoxy resin is preferably an epoxy resin having two or more epoxy groups in one molecule.
  • a component may be used individually by 1 type from a viewpoint of insulation reliability and heat resistance, and may use 2 or more types together. From the viewpoint of heat resistance, an aromatic epoxy resin is preferable, and a phenol novolac type epoxy resin is more preferable.
  • the component (A) commercially available products can be used. For example, “jER828EL” and “YL980” manufactured by Mitsubishi Chemical Corporation, which are bisphenol A type epoxy resins, and Mitsubishi Chemical Corporation, which is a bisphenol F type epoxy resin. “JER806H”, “YL983U”, and the like manufactured by the Company are listed.
  • Component (A) has (A1) a structural unit derived from an alkylene glycol having 3 or more carbon atoms (hereinafter sometimes referred to as “AG structural unit”) from the viewpoint of flexibility (preferably in the main chain). (A1) an epoxy resin having an AG structural unit (preferably in the main chain) and (A2) an epoxy resin not containing an AG structural unit (for example, a phenol novolac type epoxy resin) More preferably, it is used in combination with the epoxy resin already exemplified.
  • AG structural unit a structural unit derived from an alkylene glycol having 3 or more carbon atoms
  • the content ratio of (A1) an epoxy resin having an AG structural unit (preferably in the main chain) and (A2) an epoxy resin not containing an AG structural unit [(A1) / (A2)] (mass ratio) Is preferably 10/90 to 90/10, more preferably 20/80 to 80/20, more preferably 30/70 to 80/20, still more preferably 40/60 to 70/30, and particularly preferably 50 / 50 to 70/30, most preferably 55/45 to 70/30.
  • an embodiment in which the component (A) does not contain an epoxy resin having (A1) AG structural units (preferably in the main chain) and contains an epoxy resin not containing (A2) AG structural units is also preferred.
  • the alkylene glycol for forming the AG structural unit preferably has 3 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, and still more preferably 5 to 8 carbon atoms.
  • Examples of the alkylene glycol include propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, and decanediol. Among these, hexanediol is preferable, and 1,6-hexanediol is more preferable. These may be used individually by 1 type and may use 2 or more types together.
  • the AG structural unit in the component (A) is preferably repeated two or more continuously from the viewpoint of improving flexibility.
  • component (A) having the AG structural unit in the main chain include, for example, an epoxy resin having a structural unit represented by the following general formula (1).
  • (—R 1 —O—) represents a structural unit derived from an alkylene glycol having 3 or more carbon atoms
  • R 2 represents a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • n represents 1 to 15 are shown.
  • the alkylene glycol for forming a structural unit derived from an alkylene glycol having 3 or more carbon atoms represented by (—R 1 —O—) is the same as the alkylene glycol for forming the AG structural unit.
  • the preferred ones are also the same.
  • the carbon number of the divalent aliphatic hydrocarbon group represented by R 2 is preferably 1 to 5, more preferably 1 to 4.
  • Examples of the divalent aliphatic hydrocarbon group include an alkylene group having 1 to 10 carbon atoms, an alkylidene group having 2 to 10 carbon atoms, and an alkynylene group having 2 to 10 carbon atoms.
  • an alkylene group having 1 to 10 carbon atoms and an alkylidene group having 2 to 10 carbon atoms are preferable.
  • the alkylene group is preferably a methylene group, and the alkylidene group is preferably an isopropylidene group.
  • n is preferably 2 to 10.
  • component (A) a bisphenol A type epoxy resin having a structural unit derived from hexanediol in the main chain (that is, R 1 in the above general formula (1) is a residue of hexanediol) And R 2 is an isopropylidene group).
  • the content of the component (A) in the thermosetting resin composition is the total solid content of the thermosetting resin composition from the viewpoint of adhesion to the conductor layer and balance with various properties such as heat resistance. On the other hand, it is preferably 10 to 85% by mass, more preferably 30 to 80% by mass, and further preferably 45 to 75% by mass.
  • the solid content in the present embodiment refers to a component in the composition other than a volatile substance such as moisture and a solvent described later. That is, the solid content includes liquid, water tank-like or wax-like substances at room temperature around 25 ° C., and does not necessarily mean solid.
  • the active ester group-containing compound is a compound containing an active ester group, in other words, one having at least one ester group in one molecule and having a curing action of an epoxy resin.
  • the component (B) can function as a curing agent for the component (A).
  • Examples of the component (B) include compounds that contain one or more ester groups in one molecule and can cure the component (A).
  • a component may be used individually by 1 type and may use 2 or more types together.
  • the thermosetting resin composition preferably contains the component (B).
  • the thermosetting resin composition preferably contains not the component (B) but other curing agents described later as the curing agent.
  • Examples of the component (B) include ester compounds obtained from aliphatic carboxylic acids or aromatic carboxylic acids and aliphatic hydroxy compounds or aromatic hydroxy compounds.
  • an ester compound obtained from an aliphatic carboxylic acid and an aliphatic hydroxy compound is preferred from the viewpoint that inclusion of an aliphatic chain can increase solubility in an organic solvent and compatibility with an epoxy resin.
  • an ester compound obtained from an aromatic carboxylic acid and an aromatic hydroxy compound is preferred from the viewpoint that heat resistance can be improved by having an aromatic ring.
  • An ester compound obtained from an aromatic carboxylic acid and an aromatic hydroxy compound for example, carboxylates 2 to 4 hydrogen atoms of an aromatic compound such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid.
  • the equivalent ratio (ester group / epoxy group) of the ester group derived from the component (B) and the epoxy group derived from the component (A) in the thermosetting resin composition is preferably 0.5 to 1.5, 0 7 to 1.3 is more preferable.
  • the equivalent ratio (ester group / epoxy group) is within the above range, the heat resistance and the glass transition temperature tend to be better.
  • the content of the component (B) in the thermosetting resin composition is preferably 5 to 70% by mass with respect to the total solid content of the thermosetting resin composition from the viewpoint of adhesion to the conductor layer. More preferably, it is ⁇ 60% by mass, and further preferably 20 ⁇ 50% by mass.
  • the thermosetting resin composition includes (A2) an epoxy resin that does not contain an AG structural unit, and (A2) does not contain an epoxy resin that has an (A1) AG structural unit (preferably in the main chain).
  • curing agent instead of the said (B) component.
  • curing agent those known as epoxy resin curing agents can be used without particular limitation.
  • the other curing agent it is preferable to use a curing agent selected from the group consisting of phenol resin, acid anhydride, amine, hydrazide compound, dicyandiamide, cyanate resin, and the like. Among these, a phenol resin is preferable from the viewpoint of insulation reliability.
  • the phenol resin is not particularly limited as long as it is a phenol resin having two or more phenolic hydroxyl groups in one molecule.
  • compounds having two phenolic hydroxyl groups in one molecule such as resorcin, catechol, bisphenol A, bisphenol F and substituted or unsubstituted biphenol; aralkyl type phenol resin; dicyclopentadiene type phenol resin; triphenylmethane type Phenolic resins; phenolic novolak resins, cresol novolac resins, bisphenol A novolak resins, aminotriazine-modified novolac type phenolic resins and the like novolac type phenolic resins; resol type phenolic resins; p-xylylene and / or m-xylylene modified phenolic resin; melamine modified phenolic resin; terpene modified phenolic resin; dicyclopentadiene type naphtho Resins; cyclopentadiene-modified
  • a phenol resin may be used individually by 1 type, and may use 2 or more types together. Among these, from the viewpoint of insulation reliability, a novolac type phenol resin is preferable, and a bisphenol A novolac resin is more preferable.
  • a commercial item may be used as said phenol resin, for example, "YLH129” (Bisphenol A novolak resin, Mitsubishi Chemical Corporation make, brand name, hydroxyl equivalent: 117 g / eq) etc. are mentioned.
  • Examples of the acid anhydride include phthalic anhydride, 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, and 3-methyl.
  • An acid anhydride may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the amine include chain aliphatic polyamines such as diethylenetriamine, triethylenetetraamine, and diethylaminopropylamine; cyclic aliphatic polyamines such as N-aminoethylpiperazine and isophoronediamine; and aliphatic aromatics such as m-xylylenediamine. Examples include diamines; aromatic amines such as m-phenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone; and guanylureas. An amine may be used individually by 1 type and may use 2 or more types together.
  • hydrazide compound examples include adipic acid dihydrazide, sebacic acid dihydrazide, dodecanediohydrazide, isophthalic acid dihydrazide, salicylic acid dihydrazide, and the like.
  • a hydrazide compound may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the cyanate resin include 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, ⁇ , ⁇ '-bis (4-cyanatophenyl) -m-diisopropylbenzene, phenol-added dicyclo Examples include a cyanate ester compound of a pentadiene polymer, a phenol novolak type cyanate ester compound, and a cresol novolak type cyanate ester compound. One cyanate resin may be used alone, or two or more cyanate resins may be used in combination.
  • the equivalent ratio of the functional group derived from the other curing agent in the thermosetting resin composition to the epoxy group derived from the component (A) (functional group / epoxy group) is preferably 0.2 to 1.5, 0.4 to 1.0 is more preferable, and 0.4 to 0.8 is even more preferable.
  • the equivalent ratio (functional group / epoxy group) is within the above range, the heat resistance and the glass transition temperature tend to be better.
  • the content of the other curing agent in the thermosetting resin composition is preferably 5 to 60% by mass with respect to the total solid content of the thermosetting resin composition from the viewpoint of adhesion to the conductor layer. More preferred is ⁇ 50 mass%, and further more preferred is 10 to 30 mass%.
  • thermosetting resin composition preferably further contains (C) a curing accelerator.
  • the curing accelerator include (C1) imidazole compound and derivatives thereof (hereinafter, referred to as (C1). ] (C2) Phosphorus compound [hereinafter sometimes referred to as (C2). ]; Tertiary amine compounds; quaternary ammonium compounds and the like. From the viewpoint of promoting the curing reaction, (C1) imidazole compounds and derivatives thereof, and (C2) phosphorus compounds are preferred.
  • the thermosetting resin composition preferably uses the component (C1) as the component (C) from the viewpoints of storage stability and solder heat resistance.
  • the derivative of the imidazole compound may be an imidazoline compound, or an imidazole compound in which a secondary amino group is masked with acrylonitrile, isocyanate, melamine, acrylate, or the like to make it latent. May be.
  • imidazole compounds and derivatives thereof include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1,2-dimethylimidazole, 2-ethyl-1- Methylimidazole, 1,2-diethylimidazole, 1-ethyl-2-methylimidazole, 2-ethyl-4-methylimidazole, 4-ethyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, 2-phenyl- 4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4 - Tilimidazole, 2-phenyl
  • An imidazole compound may be used individually by 1 type, and may use 2 or more types together.
  • the component (C1) an addition reaction product of an imidazole compound (preferably 1-cyanoethyl-2-phenylimidazole) and trimellitic acid is preferable.
  • the thermosetting resin composition has a low reactivity at a relatively low temperature, and uses the component (C2) as the component (C) from the viewpoint of storage stability, adhesion to a conductor layer and solder heat resistance. It is preferable to do.
  • a general phosphorus compound used as a curing accelerator for epoxy resins can be used. Specific examples thereof include organic phosphine compounds such as triphenylphosphine and tributylphosphine; organic phosphite compounds such as trimethylphosphite and triethylphosphite; ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate and the like. Examples thereof include phosphonium salt compounds.
  • the component (C2) one type may be used alone, or two or more types may be used in combination. Among these, organic phosphine compounds are preferable.
  • organic phosphine examples include trimethylphosphine, tributylphosphine, dibutylphenylphosphine, butyldiphenylphosphine, triethylphosphine, ethyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, tris (4-ethylphenyl) phosphine, tris (4-propylphenyl) phosphine, tris (4-butylphenyl) phosphine, tris (isopropylphenyl) phosphine, tris (t-butylphenyl) phosphine, tris (2,4-dimethylphenyl) phosphine, tris (2,6- Dimethylphenyl) phosphine, tris (2,4,6-trimethylphenyl) phosphine, tris (2,6-dimethyl-4-e
  • the content of the (C) curing accelerator in the thermosetting resin composition is preferably 0.1 to 3 parts by mass, and 0.3 to 2.5 parts by mass with respect to 100 parts by mass of the (A) epoxy resin. Is more preferable, and 0.5 to 2.0 parts by mass is even more preferable.
  • the content of the component (C) is 0.1 parts by mass or more, the curing of the epoxy resin (A) becomes more sufficient and the heat resistance tends to be good, and when it is 3 parts by mass or less, Storage stability and ease of handling of the B-staged thermosetting resin composition tend to be improved.
  • thermosetting resin composition may further be referred to as (D) inorganic filler [hereinafter referred to as component (D). ] May or may not be contained.
  • inorganic fillers include silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, and silica. Examples include aluminum oxide, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay, talc, aluminum borate, silicon carbide, quartz powder, short glass fiber, fine glass powder and hollow glass.
  • the glass includes E glass, T glass, and D glass.
  • a component may be used individually by 1 type and may use 2 or more types together.
  • silica is preferable from the viewpoints of dielectric properties, heat resistance, and low thermal expansion.
  • examples of the silica include a precipitated silica having a high water content produced by a wet method and a dry method silica containing almost no bound water produced by a dry method. The dry process silica is further classified into crushed silica, fumed silica, fused spherical silica and the like depending on the production method.
  • AEROSIL registered trademark
  • R972 fumed silica
  • AEROSIL registered trademark
  • R202 manufactured by Nippon Aerosil Co., Ltd., trade name, specific surface area: 100 m 2 / g
  • PL-1 manufactured by Fuso Chemical Industries, trade name, 181 m 2 / G
  • PL-7 manufactured by Fuso Chemical Industry Co., Ltd., trade name, 36 m 2 / g
  • thermosetting resin composition contains the component (D)
  • the content thereof is preferably 1 to 10% by mass, more preferably 1 to 7% by mass with respect to the total solid content of the thermosetting resin composition. It is preferably 1 to 5% by mass. If content of (D) component is 10 mass% or less, it exists in the tendency for the surface of a thermosetting resin composition layer to become smooth, and for the coating property to TGV to become favorable. It can be said that the thermosetting resin composition is also preferably an embodiment that does not contain the component (D) from the viewpoint of the coating property to TGV.
  • thermosetting resin composition does not impair the effects of the present invention, any known thermoplastic resin, organic filler, flame retardant, ultraviolet absorber, antioxidant, photopolymerization initiator, fluorescent brightener Further, it can further contain an adhesion improver and the like. These may be used individually by 1 type and may use 2 or more types together.
  • thermoplastic resins include polyethylene, polypropylene, polystyrene, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, xylene resin, polyphenylene sulfide resin, polyetherimide resin, polyetherether.
  • examples include ketone (PEEK) resin, silicone resin, and tetrafluoroethylene resin.
  • a polyamide resin is preferable.
  • a thermoplastic resin may be used individually by 1 type, and may use 2 or more types together.
  • a polybutadiene-modified polyamide resin having a phenolic hydroxyl group is more preferable, a structural unit derived from a diamine, a structural unit derived from a dicarboxylic acid containing a phenolic hydroxyl group, and a dicarboxylic acid derived from a dicarboxylic acid not containing a phenolic hydroxyl group.
  • a polyamide resin having a structural unit and a structural unit derived from polybutadiene having carboxy groups at both ends is more preferable.
  • the polybutadiene-modified polyamide resin having a phenolic hydroxyl group “phenolic hydroxyl group-containing polybutadiene-modified polyamide resin (F)” described in JP-A-2017-193893 can be used.
  • organic filler examples include a resin filler made of polyethylene, polypropylene, polystyrene, polyphenylene ether resin, silicone resin, tetrafluoroethylene resin, and the like, and a resin filler having a core-shell structure.
  • An organic filler may be used individually by 1 type, and may use 2 or more types together.
  • Flame retardants include aromatic phosphate compounds, phosphazene compounds, phosphinic acid esters, metal salts of phosphinic acid compounds, red phosphorus, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and their Phosphorus flame retardants such as derivatives; Nitrogen flame retardants such as guanidine sulfamate, melamine sulfate, melamine polyphosphate and melamine cyanurate; Halogen-containing flame retardants containing bromine, chlorine, etc .; Inorganic flame retardants such as antimony trioxide Examples include flame retardants. A flame retardant may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the ultraviolet absorber include benzotriazole-based ultraviolet absorbers.
  • Examples of the antioxidant include hindered phenol-based antioxidants and hindered amine-based antioxidants.
  • Examples of the photopolymerization initiator include photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones.
  • Examples of the fluorescent whitening agent include a fluorescent whitening agent of a stilbene derivative.
  • Examples of the adhesion improver include urea compounds such as urea silane, the coupling agent, and the like.
  • Each of the ultraviolet absorber, the antioxidant, the photopolymerization initiator, the fluorescent whitening agent, and the adhesion improver may be used alone or in combination of two or more.
  • the thermosetting resin composition may be in a varnish state in which each component is dissolved or dispersed in an organic solvent. That is, the thermosetting resin composition includes a varnish state.
  • the organic solvent used for the varnish include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; butyl acetate Ester solvents such as propylene glycol monomethyl ether acetate; ether solvents such as tetrahydrofuran; aromatic solvents such as toluene, xylene and mesitylene; nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; dimethyl sulfoxide And a sulfur atom-containing solvent.
  • organic solvents may be used individually by 1 type, and may use 2 or more types together.
  • methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cellosolve, propylene glycol monomethyl ether, dimethylacetamide are preferable, and from the viewpoint of low toxicity, methyl isobutyl ketone, cyclohexanone, propylene glycol monomethyl ether Is more preferable.
  • the solid content concentration of the varnish is not particularly limited, but is preferably 1 to 60% by mass, more preferably 1 to 30% by mass, further preferably 1 to 20% by mass, and particularly preferably 1 to 10% by mass.
  • the viscosity of the varnish is preferably 1 to 1,000 cP from the viewpoint that the thickness of the thermosetting resin composition layer formed by a spin coating method or the like can be easily adjusted.
  • limiting in particular in the measuring method of a viscosity For example, it can measure using an EHD type
  • thermosetting resin composition There is no restriction
  • a known mixing device such as a kneader, a ball mill, a bead mill, a three roll, a nanomizer can be used.
  • the manufacturing method of the laminated body of this invention is the process of applying a thermosetting resin composition to the glass substrate layer which has a glass through-hole (TGV) [it is called an application process. ].
  • TGV glass through-hole
  • the glass substrate layer having TGV can be manufactured by providing TGV on the glass substrate with a laser, sandblast, drill, or the like.
  • a commercially available laser device, sand blast device, drill machine or the like can be used as a method for providing the TGV.
  • laser devices include LC-2E21B / 1C manufactured by Hitachi Via Mechanics Co., Ltd., ML605GTWII manufactured by Mitsubishi Electric Co., Ltd., and a carbon dioxide laser processing machine for substrate drilling manufactured by Matsushita Welding Systems Co., Ltd.
  • sand blasting devices include fine blasting sand blasting devices such as Elfoblaster ELP-3MR manufactured by Elfotec.
  • a drilling machine for microfabrication such as Android II made by Sangyo Sangyo Co., Ltd. can be mentioned.
  • thermosetting resin composition is applied to the glass substrate layer having TGV thus obtained.
  • the coating method for example, spin coating method, dip coating method, dip spin coating method, spray coating method, round spray coating method, mist coating method, flow coating method, curtain coating method, roll coating method. It is preferable to carry out by a method selected from the group consisting of knife coating method, blade coating method, air doctor coating method, bar coating method, screen printing method, gravure printing method, offset printing method, flexographic printing method and brush coating. Among these coating methods, it is more preferable to carry out by a method selected from the group consisting of spin coating, dip coating, and dip spin coating.
  • Application conditions are not particularly limited.
  • application is preferably performed under a rotation speed of 100 to 5,000 rpm (more preferably, a rotation speed of 250 to 800 rpm).
  • the spin coater device has a turntable that supports and rotates a substrate to be coated, and a groove shape that can adsorb and hold the substrate on the upper surface of the turntable.
  • the general thing provided with the vacuum channel formed in can be used, and there is no restriction in particular.
  • thermosetting resin composition By applying the thermosetting resin composition to the glass substrate layer having TGV, not only the thermosetting resin composition adheres to the front and back of the glass substrate layer but also the thermosetting resin composition on the wall surface of the TGV. Can be attached.
  • the glass substrate layer coated with the thermosetting resin composition is placed under a reduced pressure environment (preferably under vacuum), etc. It is preferable to remove matter.
  • a reduced pressure environment preferably under vacuum
  • the method of evacuating using a vacuum pump etc. is mentioned.
  • thermosetting resin composition After the coating step, usually, a step of drying the applied thermosetting resin composition [referred to as a drying step. ] Is preferable.
  • the organic solvent in a thermosetting resin composition can be volatilized by this drying process. Drying is preferably carried out at a temperature and time such that the curing of the thermosetting resin composition does not proceed.
  • the thermosetting resin composition is 80 to 150 ° C. (preferably 80 to 130 ° C., more preferably 80 ° C.). It is more preferable to heat dry at a temperature of ⁇ 120 ° C. for 1 to 30 minutes (preferably 3 to 30 minutes, more preferably 5 to 20 minutes) and to semi-cure (B stage).
  • thermosetting resin composition layer is formed on the front and back of the glass substrate layer and the wall surface of the TGV. If the heating and drying temperature is 80 ° C. or higher and the drying time is 1 minute or longer, the volatilization of the organic solvent proceeds sufficiently, and the tendency to suppress the generation of voids in the thermosetting resin composition layer. It is in. In addition, you may adjust drying conditions suitably with the kind of each component in a thermosetting resin composition, a mixture ratio, the thickness of a coating film, etc.
  • the surface roughness (Ra) of the thermosetting resin composition layer thus formed is preferably 0.2 ⁇ m or less, more preferably Is 0.1 ⁇ m or less.
  • the lower limit of the surface roughness (Ra) is not particularly limited, but tends to be 0.03 ⁇ m or more.
  • surface roughness (Ra) is the value measured by the method as described in an Example.
  • the thickness of the thermosetting resin composition layer (however, excluding the thermosetting resin composition layer in the wall surface of a glass through-hole) formed by passing through the said drying process becomes like this. To 50 ⁇ m, more preferably 1 to 25 ⁇ m, still more preferably 1 to 15 ⁇ m, and particularly preferably 2 to 10 ⁇ m.
  • thermosetting process It is preferable to manufacture the laminated body of this invention through the process of thermosetting the applied thermosetting resin composition layer.
  • the applied thermosetting resin composition can be cured to form a C stage.
  • the thermosetting conditions are not particularly limited.
  • the applied thermosetting resin composition has a temperature of 150 to 230 ° C. (preferably 150 to 220 ° C., more preferably 150 to 200 ° C.).
  • the thermosetting resin composition layer is sufficiently cured (C) by heating at a temperature of 155 to 190 ° C. for 10 to 180 minutes (preferably 20 to 120 minutes, more preferably 30 to 90 minutes). Stage).
  • thermosetting process from the viewpoint of preventing the occurrence of cracks, it is preferable to heat-cure the laminate without applying pressure, but the invention is not particularly limited to this, and the thermosetting property is achieved by heating and pressing by a pressing method.
  • the resin composition layer may be sufficiently cured (C stage).
  • the laminated body of this invention It is preferable to manufacture the laminated body of this invention through the process of irradiating an applied energy ray to the apply
  • the active energy ray irradiation step when the surface of the thermosetting resin composition layer has a functional group, the functional group can be modified, and the adhesiveness to the conductor layer tends to be improved.
  • the active energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, and X-rays; and particle rays such as ⁇ rays, ⁇ rays, and electron beams. Among these, ultraviolet rays are preferable.
  • the wavelength of the active energy ray is preferably 450 nm or less, and more preferably an ultraviolet lamp that emits light of 400 nm or less, more preferably 250 nm or less.
  • the ultraviolet lamp include a mercury short arc lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a capillary type ultra-high pressure lamp, a high-pressure lamp, and a metal halide lamp. Among these, a metal halide lamp having a wide ultraviolet wavelength over the entire region is preferable.
  • Irradiation with active energy rays is preferably carried out under an atmospheric pressure atmosphere.
  • the amount of active energy rays is preferably 1,000 to 5,000 mJ / cm 2 , and more preferably 2,000 to 4,000 mJ / cm 2 . If the amount of active energy rays is 1,000 mJ / cm 2 or more, the adhesive strength with the conductor layer tends to be sufficient without treating the surface of the thermosetting resin composition layer with a roughening solution, If it is 5,000 mJ / cm ⁇ 2 > or less, the said adhesive force will be easy to express favorably and it is economically advantageous.
  • the light quantity (mJ / cm 2 ) is represented by “illuminance (mW / cm 2 ) ⁇ irradiation time (seconds)”.
  • the temperature of the thermosetting resin composition layer upon irradiation with active energy rays is preferably 50 to 80 ° C.
  • a laminate with a conductor layer can be produced by performing a step of forming a conductor layer (hereinafter sometimes referred to as conductor layer A) by subjecting the laminate of the present invention to plating.
  • the laminate with a conductor layer of the present invention also has a conductor layer on the thermosetting resin composition layer present on the wall surface of the glass through hole.
  • One aspect of the method for producing a laminate with a conductor layer of the present invention will be described below. First, the laminate of the present invention is immersed in an aqueous hydrochloric acid solution of stannous chloride to neutralize the thermosetting resin composition layer, and further, a plating catalyst application treatment for attaching palladium is performed.
  • the plating catalyst application treatment is performed, for example, by immersing in a palladium chloride plating catalyst solution.
  • an electroless plating solution for example, an electroless plating layer having a thickness of 0.3 to 1.5 ⁇ m is deposited on the plating catalyst.
  • the electroless plating solution used for the electroless plating treatment a known electroless plating solution can be used.
  • the processing step for example, smear generated at the bottom of the via can be removed using the roughening solution.
  • the roughening liquid include a chromium / sulfuric acid roughening liquid, an alkaline permanganate roughening liquid (such as a sodium permanganate roughening liquid), and a sodium fluoride / chromium / sulfuric acid roughening liquid.
  • the solvent examples include alcohol solvents such as diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, and isopropyl alcohol.
  • the alkaline solution is not particularly limited as long as it is a solution that exhibits alkalinity when dissolved in water, and examples thereof include a sodium hydroxide solution and a potassium hydroxide solution.
  • it may be a mixed liquid in which a solvent and an alkaline liquid are mixed. Examples of the mixed liquid include those containing sodium hydroxide and diethylene glycol monobutyl ether.
  • a metal layer can be provided on the conductor layer A, and the thickness of the conductor layer can be increased.
  • the conductor material used at this time include gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin, and indium. It may be a single metal layer or an alloy layer.
  • the alloy layer include a layer formed from an alloy of two or more metals selected from the above group (for example, an alloy of nickel and chromium, an alloy of copper and nickel, an alloy of copper and titanium, etc.). It is done.
  • the electroplating can be performed by a known method.
  • the thickness of the entire conductor layer may be appropriately adjusted according to the desired configuration of the multilayer printed wiring board, but is generally preferably 3 to 35 ⁇ m and more preferably 5 to 30 ⁇ m.
  • the present invention also provides a printed wiring board obtained by subjecting a laminated board with a conductor layer to circuit processing.
  • the printed wiring board of the present invention can be manufactured by patterning the conductor layer of the laminated board with a conductor layer and forming a circuit.
  • a method for forming a circuit by patterning a conductor layer a known method such as a subtractive method, a full additive method, a semi-additive method (SAP: Semi-Additive Process), or a modified semi-additive method (m-SAP) is used. The method can be used.
  • the present invention also provides a semiconductor package in which a semiconductor element is mounted on the printed wiring board of the present invention.
  • the semiconductor package can be manufactured by mounting a semiconductor element such as a semiconductor chip or a memory at a predetermined position of the multilayer printed wiring board and sealing the semiconductor element with a sealing resin or the like.
  • thermosetting resin composition layer on the plated copper etching removal surface
  • This test piece is cut to about 2 mm square, and 3 points at different points in the test piece (however, on the wall surface of the glass through-hole, using an ultra-deep shape measuring microscope “VK-8500 type” manufactured by Keyence Corporation. (Excluding a certain thermosetting resin composition layer.)) Measured under the conditions of a measurement length of 149 ⁇ m, a magnification of 2,000 times, and a resolution of 0.05 ⁇ m. The value obtained by subtracting the surface roughness (Ra) of the insulating resin layer was used to calculate an average value at three locations.
  • (D) Inorganic filler] (D1): Silica (manufactured by Nippon Aerosil Co., Ltd., specific surface area: 110 ⁇ 20 m 2 / g)
  • (Thermoplastic resin] Polyamide resin: Polybutadiene-modified polyamide containing phenolic hydroxyl group “BPAM-155, manufactured by Nippon Kayaku Co., Ltd., trade name”
  • MEK methyl ethyl ketone
  • DMAc dimethylacetamide
  • thermosetting resin composition The varnish (thermosetting resin composition) was obtained by mixing each component of Table 1 with the described compounding quantity.
  • 2. Production of laminate A TGV was provided on an ultrathin glass substrate “OA-10G” (manufactured by Nippon Electric Glass Co., Ltd., trade name, thickness 500 ⁇ m) by the sandblast method. The TGV had a hole diameter of ⁇ 250 ⁇ m (average value) and was provided at intervals of a pitch of 500 ⁇ m (average value).
  • the varnish obtained by the above method is spin-coated on the glass substrate provided with the TGV in this way using a spin coater “SC-308S” (manufactured by Oshibel Co., Ltd.) (spin coating conditions, 1st: 500 rpm-30) Second, 2nd: 600 rpm-10 seconds).
  • a laminate having a thermosetting resin composition layer having a thickness of 4 ⁇ m was obtained by carrying out a drying treatment at 100 ° C. for 10 minutes to form a B stage. Further, the thermosetting resin composition layer was heat-cured under a curing condition of 170 ° C. for 60 minutes, and then the amount of light was 3 with a metal halide lamp (main wavelength: 365 nm) using a conveyor type ultraviolet irradiation device.
  • thermosetting resin composition layer was C-staged was obtained by irradiating ultraviolet rays so as to be 1,000 mJ / cm 2 .
  • an aqueous solution (swelling solution) containing 200 mL / L of diethylene glycol monobutyl ether and 5 g / L of sodium hydroxide is heated to 70 ° C., and then the laminate is immersed in the aqueous solution for 5 minutes. did.
  • the substrate with an insulating resin layer was immersed in a conditioner solution “CLC-601” (trade name, manufactured by Hitachi Chemical Co., Ltd.) at 60 ° C.
  • Pre-dip Neo Gantt B 2 minutes
  • Activator Neogant 834 trade name, alkali seeder, manufactured by Atotech Japan Co., Ltd.
  • Activator Neogant 834 trade name, alkali seeder, manufactured by Atotech Japan Co., Ltd.
  • Activator Neogant 834 trade name, alkali seeder, manufactured by Atotech Japan Co., Ltd.
  • the laminate is immersed in a “print Gantt MSK-DK plating solution” (trade name, manufactured by Atotech Japan Co., Ltd.), which is an electroless copper plating solution, for 15 minutes at 35 ° C., and then copper sulfate electrolytic plating is performed. It was.
  • Example 2 a laminate with a conductor layer was obtained by performing the same operation except that the dip coating method was adopted instead of the spin coating method in the production of the laminate, and each performance was evaluated. The results are shown in Table 1.
  • Example 3 ⁇ Examples 3 and 4> In Example 1, except having set it as the component and the compounding quantity of Table 1, the same operation was performed, the laminated board with a conductor layer was obtained, and each performance was evaluated. The results are shown in Table 1.
  • thermosetting resin composition of Example 2 was prepared by performing the same operations except that the components and blending amounts shown in Table 1 were used, and the inorganic filler was blended last. I got a thing.
  • an aqueous solution (swelling liquid) containing 200 mL / L of diethylene glycol monobutyl ether and 5 g / L of sodium hydroxide is heated to 80 ° C. and then laminated thereon. The body was soaked for 5 minutes.
  • an aqueous solution (roughening solution) containing 60 g / L of potassium permanganate and 40 g / L of sodium hydroxide was heated to 80 ° C., and the laminate was immersed in the aqueous solution for 10 minutes. Subsequently, the substrate with an insulating resin layer was neutralized by immersing the substrate with an insulating resin layer in an aqueous solution that was a neutralization solution (tin (II) chloride 30 g / L, sulfuric acid 300 mL / L with a concentration of 98 mass%) at room temperature. Thereafter, the same operation as in Example 2 was performed to obtain a laminated board with a conductor layer, and each performance was evaluated. The results are shown in Table 1.
  • Example 6 In Example 1, the same operation was performed except that the ultraviolet irradiation lamp was changed from a metal halide lamp to a UV ozone irradiation apparatus (main wavelength: 254 nm) of a low-pressure mercury lamp, thereby obtaining a laminated plate with a conductor layer. evaluated. The results are shown in Table 1.
  • Example 1 First, the varnish prepared in Example 1 was coated on a polyethylene terephthalate (PET) film and dried at 100 ° C. for 5 minutes to obtain a resin film having a thickness of 4 ⁇ m.
  • a laminate (no TGV) was prepared by attaching the resin film to a glass substrate “OA-10G” at 120 ° C. and 0.5 MPa using a vacuum laminator. The laminate was subjected to thermosetting treatment and ultraviolet irradiation in the same manner as in Example 1 to obtain a C-staged laminate.
  • Example 1 the same TGV as Example 1 was provided by the sandblasting method, then, the laminated board with a conductor layer was manufactured in the same manner as in Example 1, and each performance of the obtained laminated board with a conductor layer was evaluated. did. The results are shown in Table 1.
  • the laminated board with a conductor layer of an Example has the small surface average roughness, it turns out that the adhesive strength of a thermosetting resin composition layer and a conductor layer is high. Moreover, it turns out that the laminated board with a conductor layer of an Example is excellent also in solder heat resistance.
  • the laminate of the present invention has a low thermal expansion property and a high elastic modulus, and further has excellent adhesive strength and heat resistance with the conductor layer, and can be conducted on the front and back sides. Therefore, it is suitably used for a printed wiring board of an electronic device used for a computer, an information device terminal or the like that processes a large amount of data at high speed.

Abstract

ガラス基板層を含みながらも表裏の導通が容易な積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージを提供する。前記積層体は、具体的には、1層以上の熱硬化性樹脂組成物層及び1層以上のガラス基板層を含む積層体であって、前記ガラス基板層のうちの少なくとも1層のガラス基板層が1つ以上のガラス貫通穴を有し、且つ、前記ガラス貫通穴のうちの少なくとも1つのガラス貫通穴の壁面に熱硬化性樹脂組成物層を有する積層体である。

Description

積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージ
 本発明は、積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージに関する。
 近年、電子機器の薄型化及び軽量化に対する要求がますます強くなり、プリント配線板及び半導体パッケージの薄型化及び高密度化が進んでいる。薄型化及び高密度化に対応しながら電子部品を安定に実装するためには、実装時に生じるそりを抑えることが重要になる。
 実装時、半導体パッケージに生じるそりの主な原因の1つが、半導体パッケージに使われている積層板と当該積層板の表面に実装されるシリコンチップとの熱膨張率の差である。そのため、半導体パッケージ用積層板においては、熱膨張率をシリコンチップの熱膨張率に近付ける、すなわち低熱膨張率化する努力が行われている。また、積層板の弾性率が低いこともそりの原因となり得るため、そりを低減するには積層板を高弾性化することも有効である。このように、積層板のそりの低減のためには、積層板の低膨張率化及び高弾性化が有効である。
 積層板を低熱膨張率化及び高弾性化する手法は種々検討されており、積層板用の樹脂の低熱膨張率化、及び樹脂中の無機充填材の高充填化が知られている。特に無機充填材の高充填化は、低熱膨張率化と共に耐熱性及び難燃性の向上も期待できる(例えば、特許文献1参照)。しかし、無機充填材の充填量を増やすことは、絶縁信頼性の低下、樹脂とその表面に形成される配線層との密着不足、及び積層板製造時におけるプレス成形不良を起こすことが知られており、無機充填材の高充填化には限界がある。
 また、樹脂の選択又は改良により、低熱膨張率化を達成することも試みられている。例えば、配線板用の樹脂の架橋密度を高めることでガラス転移温度(Tg)を高くして熱膨張率を低減する方法が知られている(例えば、特許文献2及び3参照)。しかしながら、架橋密度を高めることは官能基間の分子鎖を短くすることであり、一定以上分子鎖を短くすることは反応の点で限界があり、樹脂強度の低下を引き起こすという問題もある。このため、架橋密度を高める手法での低熱膨張率化にも限界がある。
 このように、従来の積層板では、無機充填材の高充填又は低熱膨張率の樹脂の採用による低熱膨張率化及び高弾性化が図られてきたが、それらの手法では限界に達しつつある。
 このような状況下、特許文献4は、シリコンチップ等の電子部品の熱膨張率とほぼ合致した熱膨張率を有するガラス基板を用い、樹脂硬化物層及びガラス基板層を含む積層板において、樹脂硬化物層に無機充填材を含有させることにより、低熱膨張率及び高弾性率を有し、そりが抑制され、割れの生じ難い積層板が得られることを開示している。
特開2004-182851号公報 特開2000-243864号公報 特開2000-114727号公報 国際公開第2013/042748号
 しかしながら、特許文献4では、ガラス基板に樹脂フィルム層をラミネートして積層体及び積層板を製造しており、ガラス基板にはガラス貫通穴[以下、TGV(Through Glass Via)と称することがある。]がないため、積層板の表裏の配線の導通を行なうことができない。また、特許文献4に記載の積層板にスルーホールを形成して導通しようとしても、ガラス基板に開いた前記TGVの壁面には導体層用のめっきが付かないため、他の手段を検討する必要がある。
 本発明の課題は、こうした現状に鑑み、ガラス基板層を含みながらも表裏の導通が容易な積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージを提供することにある。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、ガラス基板層を含む積層体において、ガラス貫通穴を有するガラス基板を用い、該ガラス貫通穴の壁面に熱硬化性樹脂組成物層を設けた積層体であれば前記課題を解決できることを見出した。
 すなわち、本発明は、下記[1]~[18]を提供する。
[1]1層以上の熱硬化性樹脂組成物層及び1層以上のガラス基板層を含む積層体であって、
 前記ガラス基板層のうちの少なくとも1層のガラス基板層が1つ以上のガラス貫通穴を有し、且つ、前記ガラス貫通穴のうちの少なくとも1つのガラス貫通穴の壁面に熱硬化性樹脂組成物層を有する積層体。
[2]前記ガラス基板層が少なくとも1つの熱硬化性樹脂組成物層と接しており、該熱硬化性樹脂組成物層の構成材料と、ガラス貫通穴の壁面にある熱硬化性樹脂組成物層の構成材料とが同じである、上記[1]に記載の積層体。
[3]前記熱硬化性樹脂組成物層がいずれも、(A)エポキシ樹脂及び(B)活性型エステル基含有化合物を含有する熱硬化性樹脂組成物からなる層である、上記[1]又は[2]に記載の積層体。
[4]前記(A)エポキシ樹脂が、炭素数3以上のアルキレングリコールに由来する構造単位を有するエポキシ樹脂を含有する、上記[3]に記載の積層体。
[5]前記炭素数3以上のアルキレングリコールがヘキサンジオールである、上記[4]に記載の積層体。
[6]前記熱硬化性樹脂組成物中の(B)活性型エステル基含有化合物由来のエステル基と、前記(A)エポキシ樹脂由来のエポキシ基との当量比(エステル基/エポキシ基)が0.5~1.5である、上記[3]~[5]のいずれかに記載の積層体。
[7]前記熱硬化性樹脂組成物が、さらに(C)硬化促進剤を含有する、上記[3]~[6]のいずれかに記載の積層体。
[8]前記熱硬化性樹脂組成物層(但し、ガラス貫通穴の壁面にある熱硬化性樹脂組成物層を除く。)の表面粗さ(Ra)が0.2μm以下である、上記[1]~[7]のいずれかに記載の積層体。
[9]前記熱硬化性樹脂組成物層が、前記熱硬化性樹脂組成物がBステージ化又はCステージ化されてなる層である、上記[3]~[8]のいずれかに記載の積層体。
[10]上記[1]~[9]のいずれかに記載の積層体に導体層を形成してなる導体層付き積層板であって、前記ガラス貫通穴の壁面に存在する熱硬化性樹脂組成物層上にも導体層を有する、導体層付き積層板。
[11]上記[10]に記載の導体層付き積層板に回路加工してなるプリント配線板。
[12]上記[11]に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。
[13]上記[1]~[9]のいずれかに記載の積層体の製造方法であって、
 ガラス貫通穴を有するガラス基板層に熱硬化性樹脂組成物を塗布する工程を有する、積層体の製造方法。
[14]前記塗布を、スピンコート法、ディップコート法、ディップスピンコート法、スプレーコート法、ラウンドスプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、ブレードコート法、エアードクターコート法、バーコート法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法及び刷毛塗りからなる群から選択される方法で実施する、上記[13]に記載の積層体の製造方法。
[15]さらに、塗布された熱硬化性樹脂組成物を熱硬化する工程を有する、上記[13]又は[14]に記載の積層体の製造方法。
[16]さらに、塗布された熱硬化性樹脂組成物又は熱硬化された熱硬化性樹脂組成物に活性エネルギー線を照射する工程を有する、上記[13]~[15]のいずれかに記載の積層体の製造方法。
[17]上記[13]~[16]に記載の積層体の製造方法により積層体を製造する工程と、前記積層体にめっき処理を施して導体層を形成する工程と、を有する、導体層付き積層板の製造方法。
[18]上記[17]に記載の導体層付き積層板の製造方法により導体層付き積層板を製造する工程と、導体層に回路形成する工程と、を有する、プリント配線板の製造方法。
 本発明によれば、ガラス基板層を含みながらも表裏の導通が容易な積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージを提供することができる。
本発明の積層体の一例の断面図である。 本発明の積層体の一例の上面図である。
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
 また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
[積層体]
 本発明の積層体は、図1及び図2を参照しながら説明すると、
 1層以上の熱硬化性樹脂組成物層(1)及び1層以上のガラス基板層(2)を含む積層体であって、
 前記ガラス基板層(2)のうちの少なくとも1層のガラス基板層(2)が1つ以上のガラス貫通穴(4)を有し、且つ、前記ガラス貫通穴のうちの少なくとも1つのガラス貫通穴の壁面に熱硬化性樹脂組成物層(3)を有する積層体、である。
 以下、ガラス基板層及び熱硬化性樹脂組成物層について詳述する。
<ガラス基板層>
 ガラス基板層はガラス基板、つまり板ガラスからなるものであり、ガラス繊維からなる層は含まれない。ガラス基板としては、特に制限されるものではないが、例えば、無アルカリガラス、ソーダガラス、ホウケイ酸ガラス、白板ガラス、石英ガラス、バイコールガラス等が挙げられ、これらの中でも、無アルカリガラスが好ましい。
 本発明の積層体においては、ガラス基板層のうちの少なくとも1層のガラス基板が1つ以上のガラス貫通穴(TGV)を有する。該TGVは、ガラス基板に穴あけされてできたスルーホールのことであり、その形成方法に特に制限はない。例えば、TGVは、レーザー、サンドブラスト、ドリル等によって設けることができる。
 該TGVは、特に制限されるものではなく、その壁面がガラス基板の表面から裏面へ突き抜けていればよい。
 本発明の積層体においては、ガラス基板層が有するTGVのうちの少なくとも1つのTGVの壁面に、後述する熱硬化性樹脂層を有する。ガラス基板層が有するTGV中の80%以上のTGVの壁面に後述する熱硬化性樹脂層を有することが好ましく、ガラス基板層が有するTGV中の90%以上のTGVの壁面に後述する熱硬化性樹脂層を有することが好ましく、ガラス基板層が有する全てのTGVの壁面に後述する熱硬化性樹脂層を有することがより好ましい。
 1層のガラス基板層の厚みに特に制限はないが、薄型化及び軽量化の観点から、好ましくは1,000μm以下、より好ましくは800μm以下、さらに好ましくは650μm以下である。1層のガラス基板層の厚みの下限値に特に制限はないが、通常、200μm以上であり、300μm以上であってもよい。
 本発明の積層体は1層以上のガラス基板層を含むが、好ましくは1~20層のガラス基板層を含み、より好ましくは1~10層のガラス基板層を含み、さらに好ましくは1~5層のガラス基板層を含み、特に好ましくは1層のガラス基板層を含む。但し、ガラス基板層の枚数はこれらに制限されるものではない。
 また、該ガラス基板層は少なくとも1つの熱硬化性樹脂組成物層と接しているが、接している熱硬化性樹脂組成物層の構成材料と、前記TGVの壁面にある熱硬化性樹脂組成物層の構成材料とが同じである態様が好ましい。一方、それぞれ別の構成材料であってもよい。
<熱硬化性樹脂組成物層>
 前記熱硬化性樹脂組成物層は、熱硬化性樹脂を含有する組成物(つまり熱硬化性樹脂組成物)からなる層であれば特に制限はないが、導体層との接着性の観点から、(A)エポキシ樹脂及び(B)活性型エステル基含有化合物を含有する熱硬化性樹脂組成物からなる層であることが好ましい。また、該熱硬化性樹脂組成物は、さらに(C)硬化促進剤を含有することが好ましい。
 熱硬化性樹脂組成物層は、前記熱硬化性樹脂組成物がBステージ化されてなる層であってもよいし、Cステージ化されてなる層であってもよく、本発明はいずれの態様も含む。ここで、Bステージ化とは、熱硬化性樹脂組成物の5~90%が硬化することであり、Cステージ化とは、熱硬化性樹脂組成物の90%超(100%を含む。)が硬化することである。Bステージ化された熱硬化性樹脂組成物は半硬化状態であるともいえる。なお、熱硬化性樹脂組成物の硬化度は、示差走査熱量計によって測定される反応率により求めることができる。
 以下、前記熱硬化性樹脂組成物が含有する各成分について詳述する。
(熱硬化性樹脂)
 熱硬化性樹脂組成物は、熱硬化性樹脂を含有する。該熱硬化性樹脂としては、生産性の観点から、一般的な熱硬化温度150~230℃の範囲で熱硬化する熱硬化性樹脂が好ましい。
 熱硬化性樹脂としては、エポキシ樹脂、シアネートエステル化合物、ビスマレイミド化合物、ビスアリルナジイミド樹脂、ベンゾオキサジン化合物、及び、ビスマレイミド化合物とジアミン化合物との付加反応物等が挙げられる。これらの中でも、エポキシ樹脂、ビスマレイミド化合物とジアミン化合物の付加反応物、シアネートエステル化合物が好ましく、耐薬品性の観点から、エポキシ樹脂がより好ましい。
 熱硬化性樹脂組成物は、(A)エポキシ樹脂[以下、(A)成分と称することがある。]及び(B)活性型エステル基含有化合物[以下、(B)成分と称することがある。]を含有する態様が好ましい。また、熱硬化性樹脂組成物は、(A)エポキシ樹脂及びその他の硬化剤を含有する態様も好ましい。
((A)エポキシ樹脂)
 (A)エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂が好ましく、具体的には、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールT型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、トリフェニル型エポキシ樹脂、テトラフェニル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、エチレン性不飽和基を骨格に有するエポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。(A)成分は、絶縁信頼性及び耐熱性の観点から、1種を単独で使用してもよいし、2種以上を併用してもよい。耐熱性の観点からは、芳香族エポキシ樹脂が好ましく、フェノールノボラック型エポキシ樹脂がより好ましい。
 (A)成分としては、市販品を用いることができ、例えば、ビスフェノールA型エポキシ樹脂である三菱ケミカル株式会社製の「jER828EL」及び「YL980」、ビスフェノールF型エポキシ樹脂である、三菱ケミカル株式会社製の「jER806H」及び「YL983U」等が挙げられる。
 (A)成分は、柔軟性の観点から、(A1)炭素数3以上のアルキレングリコールに由来する構造単位(以下、「AG構造単位」と称することがある。)を有する(好ましくは主鎖に有する)エポキシ樹脂を含有することが好ましく、(A1)AG構造単位を有する(好ましくは主鎖に有する)エポキシ樹脂と(A2)AG構造単位を含有しないエポキシ樹脂(例えばフェノールノボラック型エポキシ樹脂等の、既に例示された前記エポキシ樹脂)と併用することがより好ましい。併用する場合、(A1)AG構造単位を有する(好ましくは主鎖に有する)エポキシ樹脂と(A2)AG構造単位を含有しないエポキシ樹脂の含有比率[(A1)/(A2)](質量比)は、好ましくは10/90~90/10、より好ましくは20/80~80/20、より好ましくは30/70~80/20、さらに好ましくは40/60~70/30、特に好ましくは50/50~70/30、最も好ましくは55/45~70/30である。
 一方で、(A)成分は、(A1)AG構造単位を有する(好ましくは主鎖に有する)エポキシ樹脂を含まず、(A2)AG構造単位を含有しないエポキシ樹脂を含有する態様も好ましい。
 前記AG構造単位を形成するためのアルキレングリコールの炭素数は、3~15が好ましく、4~10がより好ましく、5~8がさらに好ましい。
 前記アルキレングリコールとしては、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、デカンジオール等が挙げられる。これらの中でも、ヘキサンジオールが好ましく、1,6-ヘキサンジオールがより好ましい。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 また、(A)成分中における前記AG構造単位は、柔軟性を向上させる観点から、2以上連続して繰り返していることが好ましい。
 前記AG構造単位を主鎖に有する(A)成分の具体例としては、例えば、下記一般式(1)で表される構造単位を有するエポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000001

(式中、(-R-O-)は炭素数3以上のアルキレングリコールに由来する構造単位を示す。Rは炭素数1~10の2価の脂肪族炭化水素基を示す。nは1~15を示す。)
 (-R-O-)で表される炭素数3以上のアルキレングリコールに由来する構造単位を形成するためのアルキレングリコールは、前記AG構造単位を形成するためのアルキレングリコールと同じであり、同様に説明され、好ましいものも同じである。
 Rで表される2価の脂肪族炭化水素基の炭素数は、1~5が好ましく、1~4がより好ましい。前記2価の脂肪族炭化水素基としては、炭素数1~10のアルキレン基、炭素数2~10のアルキリデン基、炭素数2~10のアルキニレン基等が挙げられる。これらの中でも、炭素数1~10のアルキレン基、炭素数2~10のアルキリデン基が好ましい。前記アルキレン基としては、メチレン基が好ましく、前記アルキリデン基としては、イソプロピリデン基が好ましい。
 nは、好ましくは2~10である。
 これらのエポキシ樹脂の中でも、(A)成分としては、ヘキサンジオールに由来する構造単位を主鎖に有するビスフェノールA型エポキシ樹脂(すなわち、上記一般式(1)中のRがヘキサンジオールの残基であり、Rがイソプロピリデン基である化合物)が好ましい。
 熱硬化性樹脂組成物中における(A)成分の含有量は、導体層との接着性の観点及び耐熱性等の諸特性とのバランスの観点から、熱硬化性樹脂組成物の全固形分に対して、10~85質量%が好ましく、30~80質量%がより好ましく、45~75質量%がさらに好ましい。
 ここで、本実施形態における固形分とは、水分、後述する溶剤等の揮発する物質以外の組成物中の成分のことをいう。すなわち、固形分は、25℃付近の室温で液状、水飴状又はワックス状のものも含み、必ずしも固体であることを意味するものではない。
((B)活性型エステル基含有化合物)
 (B)活性型エステル基含有化合物は、活性型エステル基を含有する化合物であり、換言すると、エステル基を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有するものをいう。(B)成分は、(A)成分の硬化剤として機能し得る。(B)成分としては、例えば、1分子中に1個以上のエステル基を含み、(A)成分を硬化させることができる化合物が挙げられる。(B)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。熱硬化性樹脂組成物が(B)成分を含有することにより、熱硬化性樹脂組成物層の表面粗さ(Ra)が小さくても、導体層に対する接着性が良好となる傾向にある。
 前記(A)成分が(A1)AG構造単位を有する(好ましくは主鎖に有する)エポキシ樹脂を含有するとき、熱硬化性樹脂組成物は該(B)成分を含有することが好ましい。一方、前記(A)成分が(A1)AG構造単位を有する(好ましくは主鎖に有する)エポキシ樹脂を含有せずに、(A2)AG構造単位を含有しないエポキシ樹脂を含有するとき、特に制限されるわけではないが、熱硬化性樹脂組成物は、硬化剤として該(B)成分ではなく後述するその他の硬化剤を含有することが好ましい。
 (B)成分としては、例えば、脂肪族カルボン酸又は芳香族カルボン酸と、脂肪族ヒドロキシ化合物又は芳香族ヒドロキシ化合物とから得られるエステル化合物が挙げられる。これらの中でも、脂肪族鎖を含むことにより有機溶媒への可溶性及びエポキシ樹脂との相溶性を高くできるという観点からは、脂肪族カルボン酸と脂肪族ヒドロキシ化合物とから得られるエステル化合物が好ましい。一方、芳香族環を有することで耐熱性を高めることができるという観点からは、芳香族カルボン酸と芳香族ヒドロキシ化合物とから得られるエステル化合物が好ましい。
 芳香族カルボン酸と芳香族ヒドロキシ化合物とから得られるエステル化合物は、例えば、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香族化合物の水素原子の2~4個をカルボキシル基で置換した芳香族カルボン酸と、前記した芳香族化合物の水素原子の1個を水酸基で置換した1価フェノール、又は前記した芳香族化合物の水素原子の2~4個を水酸基で置換した多価フェノール等の芳香族ヒドロキシ化合物との混合物を原材料として、芳香族カルボン酸のカルボキシ基と芳香族ヒドロキシ化合物の水酸基との縮合反応にて得られる芳香族エステルが挙げられる。これらは、市販品としても入手可能であり、例えば、「EXB9451」(エステル基当量:約220g/eq)、「EXB9460」、「EXB9460S-65T」(エステル基当量:223g/eq)、「HPC-8000-65T」(エステル基当量:223g/eq)、(いずれもDIC株式会社製、商品名)、「BPN80」(三井化学株式会社製、商品名)などが挙げられる。
 熱硬化性樹脂組成物中における(B)成分由来のエステル基と、(A)成分由来のエポキシ基との当量比(エステル基/エポキシ基)は、0.5~1.5が好ましく、0.7~1.3がより好ましい。当量比(エステル基/エポキシ基)が、上記範囲内であると、耐熱性及びガラス転移温度がより良好となる傾向にある。
 熱硬化性樹脂組成物中における(B)成分の含有量は、導体層との接着性の観点から、熱硬化性樹脂組成物の全固形分に対して、5~70質量%が好ましく、10~60質量%がより好ましく、20~50質量%がさらに好ましい。
(その他の硬化剤)
 熱硬化性樹脂組成物は、前記(A)成分が(A1)AG構造単位を有する(好ましくは主鎖に有する)エポキシ樹脂を含有せずに、(A2)AG構造単位を含有しないエポキシ樹脂を含有するとき、前記(B)成分ではなく、その他の硬化剤を含有していることが好ましい。その他の硬化剤としては、エポキシ樹脂の硬化剤として公知のものを特に制限なく使用することができる。その他の硬化剤としては、フェノール樹脂、酸無水物、アミン、ヒドラジド化合物、ジシアンジアミド及びシアネート樹脂等からなる群から選択される硬化剤を使用することが好ましい。これらの中でも、絶縁信頼性の観点から、フェノール樹脂が好ましい。
 前記フェノール樹脂としては、1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂であれば特に制限はない。例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF及び置換又は非置換のビフェノール等の1分子中に2個のフェノール性水酸基を有する化合物;アラルキル型フェノール樹脂;ジシクロペンタジエン型フェノール樹脂;トリフェニルメタン型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、アミノトリアジン変性ノボラック型フェノール樹脂等のノボラック型フェノール樹脂;レゾール型フェノール樹脂;ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂;p-キシリレン及び/又はm-キシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;ジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂などが挙げられる。フェノール樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、絶縁信頼性の観点から、ノボラック型フェノール樹脂が好ましく、ビスフェノールAノボラック樹脂がより好ましい。
 前記フェノール樹脂としては市販品を使用してもよく、例えば、「YLH129」(ビスフェノールAノボラック樹脂、三菱ケミカル株式会社製、商品名、水酸基当量:117g/eq)等が挙げられる。
 前記酸無水物としては、例えば、無水フタル酸、3-メチル-1,2,3,6-テトラヒドロ無水フタル酸、4-メチル-1,2,3,6-テトラヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物及びメチルハイミック酸等が挙げられる。酸無水物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記アミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラアミン、ジエチルアミノプロピルアミン等の鎖状脂肪族ポリアミン;N-アミノエチルピペラジン、イソホロンジアミン等の環状脂肪族ポリアミン;m-キシリレンジアミン等の脂肪芳香族ジアミン;m-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン;グアニル尿素などが挙げられる。アミンは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記ヒドラジド化合物としては、例えば、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカンジオヒドラジド、イソフタル酸ジヒドラジド、サリチル酸ジヒドラジド等が挙げられる。ヒドラジド化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記シアネート樹脂としては、例えば、2,2-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エタン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物、フェノールノボラック型シアネートエステル化合物及びクレゾールノボラック型シアネートエステル化合物等が挙げられる。シアネート樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 熱硬化性樹脂組成物中における前記その他の硬化剤由来の官能基と、(A)成分由来のエポキシ基との当量比(官能基/エポキシ基)は、0.2~1.5が好ましく、0.4~1.0がより好ましく、0.4~0.8がさらに好ましい。当量比(官能基/エポキシ基)が、上記範囲内であると、耐熱性及びガラス転移温度がより良好となる傾向にある。
 熱硬化性樹脂組成物中におけるその他の硬化剤の含有量は、導体層との接着性の観点から、熱硬化性樹脂組成物の全固形分に対して、5~60質量%が好ましく、10~50質量%がより好ましく、10~30質量%がさらに好ましい。
((C)硬化促進剤)
 熱硬化性樹脂組成物は、前述のとおり、さらに(C)硬化促進剤を含有することが好ましい。
 硬化促進剤としては、例えば、(C1)イミダゾール化合物及びその誘導体[以下、(C1)と称することがある。];(C2)リン系化合物[以下、(C2)と称することがある。];第3級アミン化合物;第4級アンモニウム化合物等が挙げられる。硬化反応促進の観点から、(C1)イミダゾール化合物及びその誘導体、(C2)リン系化合物が好ましい。
 前記熱硬化性樹脂組成物は、保存安定性及びはんだ耐熱性の観点から、(C)成分として、前記(C1)成分を使用することが好ましい。
 (C1)イミダゾール化合物の誘導体としては、イミダゾリン化合物であってもよいし、または、アクリロニトリル、イソシアネート、メラミン、アクリレート等で第2級アミノ基をマスク化して潜在性を持たせたイミダゾール化合物等であってもよい。
 イミダゾール化合物及びその誘導体としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-1-メチルイミダゾール、1,2-ジエチルイミダゾール、1-エチル-2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]エチル-s-トリアジン等のイミダゾール化合物;2-メチルイミダゾリン、2-エチル-4-メチルイミダゾリン、2-ウンデシルイミダゾリン、2-フェニル-4-メチルイミダゾリン等のイミダゾリン化合物;前記イミダゾール化合物(好ましくは1-シアノエチル-2-フェニルイミダゾール)とトリメリト酸との付加反応物;前記イミダゾール化合物とイソシアヌル酸との付加反応物;前記イミダゾール化合物(好ましくは2-エチル-4-メチルイミダゾール)とジイソシアネート化合物(好ましくは、ヘキサメチレンジイソシアネート)との付加反応物;前記イミダゾール化合物と臭化水素酸との付加反応物などが挙げられる。イミダゾール化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、(C1)成分としては、イミダゾール化合物(好ましくは1-シアノエチル-2-フェニルイミダゾール)とトリメリト酸との付加反応物が好ましい。
 前記熱硬化性樹脂組成物は、比較的低温での反応性が低く、保存安定性、導体層との接着性及びはんだ耐熱性の観点から、(C)成分として、前記(C2)成分を使用することが好ましい。
 (C2)成分としては、エポキシ樹脂の硬化促進剤として用いられる一般的なリン系化合物を使用することができる。その具体例としては、例えば、トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン系化合物;トリメチルホスファイト、トリエチルホスファイト等の有機ホスファイト系化合物;エチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート等のホスホニウム塩化合物などが挙げられる。(C2)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、有機ホスフィン系化合物が好ましい。
 前記有機ホスフィンとしては、トリメチルホスフィン、トリブチルホスフィン、ジブチルフェニルホスフィン、ブチルジフェニルホスフィン、トリエチルホスフィン、エチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-プロピルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、トリス(イソプロピルフェニル)ホスフィン、トリス(t-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,6-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリス(2,6-ジメチル-4-エトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-エトキシフェニル)ホスフィン、トリシクロヘキシルホスフィン等の第3級ホスフィンが挙げられる。これらの中でも、(C2)成分としては、トリフェニルホスフィンが好ましい。
 熱硬化性樹脂組成物中における(C)硬化促進剤の含有量は、(A)エポキシ樹脂100質量部に対して、0.1~3質量部が好ましく、0.3~2.5質量部がより好ましく、0.5~2.0質量部がさらに好ましい。(C)成分の含有量が0.1質量部以上であると、(A)エポキシ樹脂の硬化がより充分となって、耐熱性が良好となる傾向にあり、3質量部以下であると、保存安定性及びBステージ化された熱硬化性樹脂組成物の取り扱い容易性が向上する傾向にある。
((D)無機充填材)
 熱硬化性樹脂組成物は、さらに(D)無機充填材[以下、(D)成分と称することがある。]を含有していてもよいし、含有していなくてもよい。
 (D)無機充填材としては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー、タルク、ホウ酸アルミニウム、炭化ケイ素、石英粉末、ガラス短繊維、ガラス微粉末及び中空ガラス等が挙げられ、これらからなる群から選択される少なくとも1種であることが好ましい。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。(D)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、誘電特性、耐熱性及び低熱膨張性の観点から、シリカが好ましい。シリカとしては、例えば、湿式法で製造された含水率の高い沈降シリカと、乾式法で製造された結合水等をほとんど含まない乾式法シリカが挙げられる。乾式法シリカとしては、さらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融球状シリカ等に分類される。
 (D)成分としては、市販品を使用することができ、例えば、ヒュームドシリカである「AEROSIL(登録商標)R972」(日本アエロジル株式会社製、商品名、比表面積:110m/g±20m/g)、「AEROSIL(登録商標)R202」(日本アエロジル株式会社製、商品名、比表面積:100m/g)、「PL-1」(扶桑化学工業株式会社製、商品名、181m/g)、「PL-7」(扶桑化学工業株式会社製、商品名、36m/g)等が挙げられる。
 熱硬化性樹脂組成物が(D)成分を含有する場合、その含有量は、熱硬化性樹脂組成物の全固形分に対して、1~10質量%が好ましく、1~7質量%がより好ましく、1~5質量%がさらに好ましい。(D)成分の含有量が10質量%以下であれば、熱硬化性樹脂組成物層の表面が平滑になり、且つTGVへの塗工性が良好となる傾向にある。
 熱硬化性樹脂組成物は、TGVへの塗工性の観点から、(D)成分を含有しない態様も好ましいといえる。
(その他の成分)
 熱硬化性樹脂組成物は、本発明の効果を阻害しない範囲において、任意に公知の熱可塑性樹脂、有機充填材、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、接着性向上剤等をさらに含有することができる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、キシレン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等が挙げられる。これらの中でも、ポリアミド樹脂が好ましい。熱可塑性樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 該ポリアミド樹脂としては、フェノール性水酸基を有するポリブタジエン変性ポリアミド樹脂がより好ましく、ジアミン由来の構造単位と、フェノール性水酸基を含有するジカルボン酸由来の構造単位と、フェノール性水酸基を含有しないジカルボン酸由来の構造単位と、両末端にカルボキシ基を有するポリブタジエン由来の構造単位とを有するポリアミド樹脂がより好ましい。フェノール性水酸基を有するポリブタジエン変性ポリアミド樹脂は、特開2017-193693号公報に記載の「フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(F)」を使用することができる。
 有機充填材としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等からなる樹脂フィラー、コアシェル構造の樹脂フィラーなどが挙げられる。有機充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 難燃剤としては、芳香族リン酸エステル化合物、ホスファゼン化合物、ホスフィン酸エステル、ホスフィン酸化合物の金属塩、赤リン、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド及びその誘導体等のリン系難燃剤;スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤;臭素、塩素等を含有する含ハロゲン系難燃剤;三酸化アンチモン等の無機系難燃剤などが挙げられる。難燃剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤が挙げられる。
 酸化防止剤としては、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤等が挙げられる。
 光重合開始剤としては、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤が挙げられる。
 蛍光増白剤としては、スチルベン誘導体の蛍光増白剤等が挙げられる。
 接着性向上剤としては、尿素シラン等の尿素化合物、前記カップリング剤などが挙げられる。
 紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び接着性向上剤は、それぞれ、1種を単独で使用してもよいし、2種以上を併用してもよい。
(ワニス)
 前記熱硬化性樹脂組成物は、各成分が有機溶媒中に溶解又は分散されたワニスの状態としてもよい。つまり、熱硬化性樹脂組成物はワニスの状態も含まれる。
 ワニスに用いる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒などが挙げられる。これらの有機溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、溶解性の観点から、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルセロソルブ、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドが好ましく、低毒性であるという観点からは、メチルイソブチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルがより好ましい。
 ワニスの固形分濃度は、特に制限されるものではないが、1~60質量%が好ましく、1~30質量%がより好ましく、1~20質量%がさらに好ましく、1~10質量%が特に好ましく、3~8質量%が最も好ましい。ワニスの固形分濃度が前記範囲内であると、ガラス基板への塗工性及びTGVの壁面への熱硬化性樹脂組成物の塗工性が良好となる傾向にある。また、ワニスの粘度は、スピンコート法等によって形成する熱硬化性樹脂組成物層の厚みを調整し易いという観点から、1~1,000cPであることが好ましい。なお、粘度の測定法方に特に制限はなく、例えばEHD型回転粘度計を用いて測定することができる。
(熱硬化性樹脂組成物の製造方法)
 熱硬化性樹脂組成物の製造方法に特に制限はなく、従来公知の製造方法を適用できる。例えば、前記有機溶媒中に前記各成分を加えた後、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式及び自転公転式分散方式等からなる群から選択される混合方式を用いて混合することにより製造することができる。
 各成分の混合には、ニーダー、ボールミル、ビーズミル、3本ロール、ナノマイザー等の公知の混合装置を用いることができる。
[積層体の製造方法]
 本発明の積層体の製造方法は、ガラス貫通穴(TGV)を有するガラス基板層に熱硬化性樹脂組成物を塗布する工程[塗布工程と称する。]を有する。
 TGVを有するガラス基板層は、前述のとおり、例えば、レーザー、サンドブラスト、ドリル等によってガラス基板にTGVを設けることによって製造できる。TGVを設ける方法としては、市販されているレーザー装置、サンドブラスト装置、ドリルマシン等を用いて実施することができる。市販されているレーザー装置としては、日立ビアメカニクス株式会社製のLC-2E21B/1C、三菱電機株式会社製のML605GTWII、松下溶接システム株式会社製の基板穴あけ用炭酸ガスレーザー加工機等が挙げられる。市販されているサンドブラスト装置としては、株式会社エルフォテック製のエルフォブラスターELP-3MR等の微細加工用サンドブラスト装置が挙げられる。また、市販されているドリルマシンとしては、碌々産業株式会社製のAndroidII等の微細加工用ドリルマシンが挙げられる。
(塗布工程)
 こうして得たTGVを有するガラス基板層に、前記熱硬化性樹脂組成物を塗布する。塗布法方に特に制限はないが、例えば、スピンコート法、ディップコート法、ディップスピンコート法、スプレーコート法、ラウンドスプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、ブレードコート法、エアードクターコート法、バーコート法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法及び刷毛塗りからなる群から選択される方法で実施することが好ましい。これらの塗布方法の中でも、スピンコート法、ディップコート法及びディップスピンコート法からなる群から選択される方法で実施することがより好ましい。
 塗布条件は特に制限されないが、例えばスピンコート法であれば、好ましくは回転速度100~5,000rpm(より好ましくは回転速度250~800rpm)の条件で塗布することが好ましい。なお、スピンコート法を採用する場合、スピンコータ装置は、塗布すべき基材を支持して回転するターンテーブルと、そのターンテーブルの上面において、前記基材を吸着及び保持することができるよう溝状に形成された真空流路と、を備えている一般的なものを使用することができ、特に制限はない。
 TGVを有するガラス基板層に熱硬化性樹脂組成物を塗布することにより、熱硬化性樹脂組成物がガラス基板層の表裏に付着するのみならず、TGVの壁面にも熱硬化性樹脂組成物を付着させることができる。
 塗布工程を経た後、必要に応じて、熱硬化性樹脂組成物が塗布されたガラス基板層を減圧環境下(好ましくは真空下)におくこと等によって、TGV部位の余分な熱硬化性樹脂組成物を除去することが好ましい。なお、減圧環境下とする方法に特に制限はないが、例えば、真空ポンプ等を用いて真空引きする方法が挙げられる。
(乾燥工程)
 前記塗布工程後は、通常、塗布された熱硬化性樹脂組成物を乾燥させる工程[乾燥工程と称する。]を有することが好ましい。該乾燥工程によって、熱硬化性樹脂組成物中の有機溶媒を揮発させることができる。乾燥は熱硬化性樹脂組成物の硬化が進行しない程度の温度及び時間で実施することが好ましく、例えば、熱硬化性樹脂組成物を80~150℃(好ましくは80~130℃、より好ましくは80~120℃)の温度で1~30分間(好ましくは3~30分間、より好ましくは5~20分間)加熱乾燥し、半硬化(Bステージ化)させることがより好ましい。当該乾燥工程を経ることで、ガラス基板層の表裏とTGVの壁面に熱硬化性樹脂組成物層が形成される。加熱乾燥温度が80℃以上であり、且つ、乾燥時間が1分以上であれば、有機溶媒の揮発が充分に進行し、熱硬化性樹脂組成物層内にボイドが発生するのを抑制できる傾向にある。なお、乾燥条件は、熱硬化性樹脂組成物中の各成分の種類、配合割合、塗膜の厚さ等によって適宜調整してもよい。
 こうして形成される熱硬化性樹脂組成物層(但し、ガラス貫通穴の壁面にある熱硬化性樹脂組成物層を除く。)の表面粗さ(Ra)は、好ましくは0.2μm以下、より好ましくは0.1μm以下である。該表面粗さ(Ra)の下限値としては、特に制限されるものではないが、0.03μm以上となる傾向にある。なお、表面粗さ(Ra)は、実施例に記載の方法によって測定した値である。
 また、上記乾燥工程を経ることにより、形成される熱硬化性樹脂組成物層(但し、ガラス貫通穴の壁面にある熱硬化性樹脂組成物層を除く。)の厚みは、好ましくは0.1~50μm、より好ましくは1~25μm、さらに好ましくは1~15μm、特に好ましくは2~10μmとなる。
(熱硬化工程)
 本発明の積層体は、塗布された熱硬化性樹脂組成物層を熱硬化する工程を経て製造することが好ましい。該熱硬化工程によって、塗布された熱硬化性樹脂組成物を硬化してCステージ化することができる。
 熱硬化の条件としては、特に制限されるものではないが、例えば、塗布された熱硬化性樹脂組成物を150超~230℃(好ましくは150超~220℃、より好ましくは150超~200℃、さらに好ましくは155~190℃)の温度で10~180分間(好ましくは20~120分間、より好ましくは30~90分間)加熱することによって、熱硬化性樹脂組成物層を十分に硬化(Cステージ化)させることができる。
 熱硬化工程では、割れの発生を防ぐ観点から、積層体を加圧しないで熱硬化させることが好ましいが、特にこれに制限されるものではなく、プレス法により加熱及び加圧することによって熱硬化性樹脂組成物層を十分に硬化(Cステージ化)させてもよい。
(活性エネルギー線照射工程)
 本発明の積層体は、塗布された熱硬化性樹脂組成物層又は熱硬化した熱硬化性樹脂組成物層に活性エネルギー線を照射する工程を経て製造することが好ましい。なお、前記熱硬化工程を経て十分に硬化させた後に、活性エネルギー線照射工程を経ることが好ましい。
 該活性エネルギー線照射工程によって、熱硬化性樹脂組成物層の表面に官能基を有するときにはその官能基を変性させることができ、導体層との接着性が向上する傾向にある。
 活性エネルギー線としては、例えば、紫外線、可視光線、赤外線、X線等の電磁波;α線、γ線、電子線等の粒子線が挙げられる。これらの中でも、紫外線が好ましい。活性エネルギー線の波長は、好ましくは450nm以下であり、400nm以下、さらには250nm以下の発光がある紫外線ランプを使用することがより好ましい。
 紫外線ランプとしては、水銀ショートアークランプ、低圧水銀ランプ、高圧水銀ランプ、毛細管型超高圧ランプ、高圧ランプ、メタルハライドランプ等が挙げられる。これらの中でも、紫外線の波長が全域で広いメタルハライドランプが好ましい。
 活性エネルギー線の照射は大気圧雰囲気下で実施することが好ましい。
 活性エネルギー線の光量は、1,000~5,000mJ/cmであることが好ましく、2,000~4,000mJ/cmであることがより好ましい。活性エネルギー線の光量が1,000mJ/cm以上であれば、粗化液で熱硬化性樹脂組成物層の表面を処理しなくても導体層との接着力が充分となる傾向にあり、5,000mJ/cm以下であれば、前記接着力が良好に発現し易く、経済的にも有利である。なお、前記光量(mJ/cm)は、「照度(mW/cm)×照射時間(秒)」で表される。
 活性エネルギー線照射時の熱硬化性樹脂組成物層の温度は、50~80℃であることが好ましい。
[導体層付き積層板及びその製造方法]
 本発明の積層体にめっき処理を施して導体層(以下、導体層Aと称することがある。)を形成する工程を経ることにより、導体層付き積層板を製造することができる。本発明の導体層付き積層板は、ガラス貫通穴の壁面に存在する熱硬化性樹脂組成物層上にも導体層を有する。本発明の導体層付き積層板の製造方法の一態様を以下に説明する。
 まず、本発明の積層板を塩化第1スズの塩酸水溶液に浸漬して熱硬化性樹脂組成物層の中和処理を行い、さらに、パラジウムを付着させるめっき触媒付与処理を行う。めっき触媒付与処理は、例えば、塩化パラジウム系のめっき触媒液に浸漬することにより行われる。次に、無電解めっき液に浸漬することにより、例えば、厚さ0.3~1.5μmの無電解めっき層をめっき触媒上に析出させる。無電解めっき処理に使用する無電解めっき液は、公知の無電解めっき液を使用することができる。
 前記めっき処理の前に、酸化性粗化液を用いて前記熱硬化性樹脂組成物層の表面を処理する処理工程を有することが好ましい。
 前記処理工程では、粗化液を用いて、例えば、ビア底部に発生したスミアを除去することができる。粗化液としては、クロム/硫酸粗化液、アルカリ過マンガン酸粗化液(過マンガン酸ナトリウム粗化液等)、フッ化ナトリウム/クロム/硫酸粗化液等が挙げられる。また、粗化液による処理は、溶媒、アルカリ液、これらの混合物液(一般的には、膨潤液又はプリディップ液)等に浸した後に行ってもよい。上記溶媒としては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、イソプロピルアルコール等のアルコール系溶媒などが挙げられる。また、アルカリ液は、水に溶解した際にアルカリ性を示す液であれば特に制限はなく、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。さらに、溶媒とアルカリ液を混合した混合液であってもよく、混合液としては、例えば、水酸化ナトリウム及びジエチレングリコールモノブチルエーテルを含むものが挙げられる。
 以上のようにして形成した導体層A上に電気めっきを施す工程を有することが好ましい。該工程により、導体層A上に金属層を設け、導体層の厚さを大きくすることができる。このときに使用する導体材料としては、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ、インジウム等が挙げられる。単金属層又は合金層であってもよい。合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル及びクロムの合金、銅及びニッケルの合金、銅及びチタンの合金等)から形成された層が挙げられる。
 該電気めっきは、公知の方法により行うことが可能である。
 導体層全体の厚さは、所望する多層プリント配線板の構成に応じて適宜調整すればよいが、一般的に、3~35μmが好ましく、5~30μmがより好ましい。
[プリント配線板及びその製造方法]
 本発明は、導体層付き積層板に回路加工してなるプリント配線板も提供する。例えば、前記導体層付き積層板の導体層をパターン加工し、回路形成することによって、本発明のプリント配線板を製造することができる。
 導体層をパターン加工し、回路形成する方法としては、サブトラクティブ法、フルアディティブ法、セミアディティブ法(SAP:SemiAdditive Process)、モディファイドセミアディティブ法(m-SAP:modified Semi Additive Process)等の公知の方法を利用することができる。
[半導体パッケージ]
 本発明は、本発明のプリント配線板に半導体素子を搭載してなる半導体パッケージも提供する。半導体パッケージは、前記多層プリント配線板の所定の位置に半導体チップ、メモリ等の半導体素子を搭載し、封止樹脂等によって半導体素子を封止することによって製造できる。
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。
 なお、各例で得られた導体層付き積層板について、以下の方法で性能を測定及び評価した。
<測定及び評価方法>
(1)導体層との接着強度
 各例で得た導体層付き積層板の導体層の一部について、不要部をエッチングで除去することにより幅5mm及び長さ100mmの部分を形成し、この一端を剥がしてつかみ具でつかみ、室温中で、垂直方向に約50mm引き剥がした際の荷重を測定した。
(2)めっき銅エッチング除去面の熱硬化性樹脂組成物層の表面粗さ(表面平均粗さ)
 各例で得た導体層付き積層板の導体層をエッチング処理して銅を除去した試験片を作製した。この試験片を2mm角程度に切断し、株式会社キーエンス製の超深度形状測定顕微鏡「VK-8500型」を用いて、試験片中の異なる任意の箇所3点(但し、ガラス貫通穴の壁面にある熱硬化性樹脂組成物層を除く。)について、測定長さ149μm、倍率2,000倍、分解能0.05μmの条件で測定し、測定長さ149μm中の粗さの最大部から最小部を引いた値を絶縁樹脂層の表面粗さ(Ra)とし、3箇所の平均値を算出した。
(3)はんだ耐熱性
 各例で得た導体層付き積層板を25mm角に切断し、その直後に、288℃±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間(単位:秒)を調べた。
(4)ガラス貫通穴(TGV)観察
 各例で得た導体層付き積層板のTGVの表面を観察するため、導体層付き積層板にガラス切りで傷を付け、割断した後、デジタルマイクロスコープ「VHX-1000」(株式会社キーエンス製)を用いて、穴部分を透過観察し、下記評価基準に従って評価した。
 A:めっきがTGVに均等に付いている。
 C:めっきがTGVについていない。
 また、表1に記載の各成分について以下に説明する。
[(A)エポキシ樹脂]
(A1):下記製造例1にて製造した、1,6-ヘキサンジオールに由来する構造単位を有するエポキシ樹脂
(A2):フェノールノボラック型エポキシ樹脂(DIC株式会社製、エポキシ当量:188g/eq)
[(B)エステル基含有化合物]
(B1):活性型エステル基含有化合物、「HPC-8000-65T」(DIC株式会社製、商品名、エステル基当量:223g/eq)
[その他の硬化剤]
フェノール樹脂:ビスフェノールAノボラック樹脂(三菱ケミカル株式会社製、水酸基当量:117g/eq)
[(C)硬化促進剤]
(C1):イミダゾール誘導体化合物、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート
(C2):トリフェニルホスフィン
[(D)無機充填材]
(D1):シリカ(日本アエロジル株式会社製、比表面積:110±20m/g)
[熱可塑性樹脂]
ポリアミド樹脂:フェノール性水酸基含有ポリブタジエン変性ポリアミド「BPAM-155、日本化薬株式会社製、商品名」
[有機溶媒]
MEK:メチルエチルケトン
DMAc:ジメチルアセトアミド
<製造例1>エポキシ樹脂(A1)の製造
 温度計及び撹拌機を取り付けたフラスコに、ビスフェノールA228g(1モル)と、1,6-ヘキサンジオールジビニルエーテル170g(1モル)とを仕込み、120℃まで1時間要して昇温した後、120℃で6時間反応させて透明半固形の変性多価フェノール類398gを得た。
 次に、温度計、滴下ロート、冷却管及び撹拌機を取り付けたフラスコに、上記変性多価フェノール類398g、エピクロロヒドリン925g(10モル)及びn-ブタノール185gを仕込み溶解させた。その後、窒素ガスパージを施しながら、65℃に昇温した後、共沸する圧力まで減圧して、49質量%水酸化ナトリウム水溶液122g(1.5モル)を5時間かけて滴下した。次いで、この条件下で0.5時間撹拌を続けた。この間、共沸で留出してきた留出分をディーンスタークトラップで分離して、水相を除去し、有機相を反応系内に戻しながら反応させた。その後、未反応のエピクロロヒドリンを減圧蒸留して留去させた。
 得られた粗エポキシ樹脂にメチルイソブチルケトン1,000gとn-ブタノール100gとを加え溶解した。さらに、この溶液に10質量%水酸化ナトリウム水溶液20gを添加して80℃で2時間反応させた後に、水洗を3回繰り返した。次いで、共沸によって系内を脱水し、精密ろ過を経た後に溶媒を減圧下で留去して、透明液体のエポキシ樹脂425g(エポキシ当量:403g/eq)を得た。
<実施例1>
(1.熱硬化性樹脂組成物の調製)
 表1に記載の各成分を、記載された配合量にて混合することによってワニス(熱硬化性樹脂組成物)を得た。
(2.積層体の製造)
 サンドブラスト法によって、極薄ガラス基板「OA-10G」(日本電気硝子株式会社製、商品名、厚さ500μm)にTGVを設けた。TGVは、穴径がφ250μm(平均値)であり、ピッチ500μm(平均値)の間隔で設けられた。
 このようにしてTGVを設けた前記ガラス基板に、前記方法によって得られたワニスをスピンコータ「SC-308S」(有限会社押鐘製)を用いてスピンコート法(スピンコート条件、1st:500rpm-30秒、2nd:600rpm-10秒)によって塗布した。100℃で10分間乾燥処理してBステージ化することにより、厚さ4μmの熱硬化性樹脂組成物層を有する積層体を得た。
 さらに、熱硬化性樹脂組成物層を170℃、60分間の硬化条件にて熱硬化処理し、次いで、コンベア式紫外線照射装置を用いて、メタルハライドランプ(主波長:365nm)にて、光量が3,000mJ/cmになるように紫外線を照射して、熱硬化性樹脂組成物層がCステージ化された積層体を得た。
(3.導体層付き積層板の製造)
 後述する無電解めっきの前処理として、ジエチレングリコールモノブチルエーテル200mL/L及び水酸化ナトリウム5g/Lを含む水溶液(膨潤液)を70℃に加温した後、上記積層体を当該水溶液に5分間浸漬処理した。次に、コンディショナー液「CLC-601」(日立化成株式会社製、商品名)に絶縁樹脂層付き基板を60℃で5分間浸漬した後、水洗し、プリディップ液「プレディップネオガントB」(アトテックジャパン株式会社製、商品名)に室温にて2分間浸漬した。次に、無電解めっき用触媒である「アクチベーター ネオガント834」(アトテックジャパン株式会社製、商品名、アルカリシーダ)に、積層体を35℃で5分間浸漬処理した後、水洗した。続いて、無電解銅めっき液である「プリントガントMSK-DKめっき液」(アトテックジャパン株式会社製、商品名)に積層体を35℃にて15分間浸漬し、さらに、硫酸銅電解めっきを行った。その後、アニール処理を170℃で30分間行い、熱硬化性樹脂組成物層の表面上に厚さ20μmのめっき導体層を形成し、導体層付き積層板を得た。
 該導体層付き積層板を用いて、前記方法に従って各性能を評価した。結果を表1に示す。
<実施例2>
 実施例1において、積層体の製造でスピンコート法の代わりにディップコート法を採用したこと以外は同様の操作を行うことによって、導体層付き積層板を得、各性能を評価した。結果を表1に示す。
<実施例3及び4>
 実施例1において、表1に記載の成分及び配合量としたこと以外は同様の操作を行うことによって、導体層付き積層板を得、各性能を評価した。結果を表1に示す。
<実施例5>
 実施例2の熱硬化性樹脂組成物の調製において、表1に記載の成分及び配合量とし、且つ無機充填材を最後に配合したこと以外は同様の操作を行うことによって、熱硬化性樹脂組成物を得た。
 次に、熱硬化性樹脂組成物層を化学粗化するために、ジエチレングリコールモノブチルエーテル200mL/L及び水酸化ナトリウム5g/Lを含む水溶液(膨潤液)を80℃に加温した後、これに積層体を5分間浸漬処理した。次に、過マンガン酸カリウム60g/L及び水酸化ナトリウム40g/Lを含む水溶液(粗化液)を80℃に加温して積層体を当該水溶液に10分間浸漬処理した。引き続き、中和液(塩化スズ(II)30g/L、濃度98質量%の硫酸300mL/L)である水溶液に絶縁樹脂層付き基板を室温で5分間浸漬処理して中和した。その後は、実施例2と同様の操作を行って、導体層付き積層板を得、各性能を評価した。結果を表1に示す。
<実施例6>
 実施例1において、紫外線照射のランプをメタルハライドランプから低圧水銀灯のUVオゾン照射装置(主波長254nm)に変更したこと以外は同様の操作を行うことによって、導体層付き積層板を得、各性能を評価した。結果を表1に示す。
<比較例1>
 まず、実施例1で調製したワニスをポリエチレンテレフタレート(PET)フィルムに塗工し、100℃で5分間乾燥させることによって、厚み4μmの樹脂フィルムを得た。真空ラミネーターを用いて、ガラス基板「OA-10G」に120℃、0.5MPaの条件で前記樹脂フィルムを貼り付けることにより、積層体(TGV無し)を作製した。
 該積層体に実施例1と同様にして熱硬化処理及び紫外線照射を行うことによって、Cステージ化された積層体を得た。該積層体について、サンドブラスト法によって実施例1と同様のTGVを設け、次いで、実施例1と同様にして導体層付き積層板の製造を行い、得られた導体層付き積層板の各性能を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1より、実施例の導体層付き積層板では、TGVの内壁に十分に導体層が存在しているため、表裏の導通が可能である。一方、比較例の導体層付き積層板ではTGVの内壁に導体層が存在していなかった。実施例で用いた積層体のTGVの内壁には熱硬化性樹脂組成物層が存在するため、該熱硬化性樹脂組成物層へ導体層が十分に付着したものと推察される。
 また、実施例の導体層付き積層板は、ガラス基板層を有しているため、低熱膨張性を有しており、且つ高い弾性率を有するといえる。
 さらに、実施例の導体層付き積層板は、表面平均粗さが小さいにも関わらず、熱硬化性樹脂組成物層と導体層との接着強度が高いことがわかる。また、実施例の導体層付き積層板は、はんだ耐熱性にも優れていることがわかる。
 本発明の積層体は、低熱膨張性を有し、且つ高い弾性率を有しているといえ、さらに、導体層との接着強度及び耐熱性に優れ、さらに表裏での導通が可能であることから、大量のデータを高速で処理するコンピュータ、情報機器端末等に用いられる電子機器のプリント配線板に好適に用いられる。
1 ガラス基板層
2 熱硬化性樹脂組成物層
3 ガラス貫通穴の壁面にある熱硬化性樹脂組成物層
4 ガラス貫通穴

Claims (18)

  1.  1層以上の熱硬化性樹脂組成物層及び1層以上のガラス基板層を含む積層体であって、
     前記ガラス基板層のうちの少なくとも1層のガラス基板層が1つ以上のガラス貫通穴を有し、且つ、前記ガラス貫通穴のうちの少なくとも1つのガラス貫通穴の壁面に熱硬化性樹脂組成物層を有する積層体。
  2.  前記ガラス基板層が少なくとも1つの熱硬化性樹脂組成物層と接しており、該熱硬化性樹脂組成物層の構成材料と、ガラス貫通穴の壁面にある熱硬化性樹脂組成物層の構成材料とが同じである、請求項1に記載の積層体。
  3.  前記熱硬化性樹脂組成物層がいずれも、(A)エポキシ樹脂及び(B)活性型エステル基含有化合物を含有する熱硬化性樹脂組成物からなる層である、請求項1又は2に記載の積層体。
  4.  前記(A)エポキシ樹脂が、炭素数3以上のアルキレングリコールに由来する構造単位を有するエポキシ樹脂を含有する、請求項3に記載の積層体。
  5.  前記炭素数3以上のアルキレングリコールがヘキサンジオールである、請求項4に記載の積層体。
  6.  前記熱硬化性樹脂組成物中の(B)活性型エステル基含有化合物由来のエステル基と、前記(A)エポキシ樹脂由来のエポキシ基との当量比(エステル基/エポキシ基)が0.5~1.5である、請求項3~5のいずれか1項に記載の積層体。
  7.  前記熱硬化性樹脂組成物が、さらに(C)硬化促進剤を含有する、請求項3~6のいずれか1項に記載の積層体。
  8.  前記熱硬化性樹脂組成物層(但し、ガラス貫通穴の壁面にある熱硬化性樹脂組成物層を除く。)の表面粗さ(Ra)が0.2μm以下である、請求項1~7のいずれか1項に記載の積層体。
  9.  前記熱硬化性樹脂組成物層が、前記熱硬化性樹脂組成物がBステージ化又はCステージ化されてなる層である、請求項3~8のいずれか1項に記載の積層体。
  10.  請求項1~9のいずれか1項に記載の積層体に導体層を形成してなる導体層付き積層板であって、前記ガラス貫通穴の壁面に存在する熱硬化性樹脂組成物層上にも導体層を有する、導体層付き積層板。
  11.  請求項10に記載の導体層付き積層板に回路加工してなるプリント配線板。
  12.  請求項11に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。
  13.  請求項1~9のいずれか1項に記載の積層体の製造方法であって、
     ガラス貫通穴を有するガラス基板層に熱硬化性樹脂組成物を塗布する工程を有する、積層体の製造方法。
  14.  前記塗布を、スピンコート法、ディップコート法、ディップスピンコート法、スプレーコート法、ラウンドスプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、ブレードコート法、エアードクターコート法、バーコート法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法及び刷毛塗りからなる群から選択される方法で実施する、請求項13に記載の積層体の製造方法。
  15.  さらに、塗布された熱硬化性樹脂組成物を熱硬化する工程を有する、請求項13又は14に記載の積層体の製造方法。
  16.  さらに、塗布された熱硬化性樹脂組成物又は熱硬化された熱硬化性樹脂組成物に活性エネルギー線を照射する工程を有する、請求項13~15のいずれか1項に記載の積層体の製造方法。
  17.  請求項13~16に記載の積層体の製造方法により積層体を製造する工程と、前記積層体にめっき処理を施して導体層を形成する工程と、を有する、導体層付き積層板の製造方法。
  18.  請求項17に記載の導体層付き積層板の製造方法により導体層付き積層板を製造する工程と、導体層に回路形成する工程と、を有する、プリント配線板の製造方法。
PCT/JP2019/014050 2018-03-29 2019-03-29 積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージ WO2019189783A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-066163 2018-03-29
JP2018066163A JP2021120180A (ja) 2018-03-29 2018-03-29 積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージ

Publications (1)

Publication Number Publication Date
WO2019189783A1 true WO2019189783A1 (ja) 2019-10-03

Family

ID=68062291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014050 WO2019189783A1 (ja) 2018-03-29 2019-03-29 積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージ

Country Status (3)

Country Link
JP (1) JP2021120180A (ja)
TW (1) TW202003238A (ja)
WO (1) WO2019189783A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343553A (zh) * 2020-04-09 2020-06-26 江苏普诺威电子股份有限公司 具有高对准精度的mems麦克风腔体板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073759A1 (ja) * 2010-12-01 2012-06-07 Hoya株式会社 電子増幅器用基板の製造方法、電子増幅器の製造方法及び放射線検出器の製造方法
JP2015135940A (ja) * 2013-12-16 2015-07-27 味の素株式会社 部品内蔵基板の製造方法および半導体装置
JP2016092107A (ja) * 2014-10-31 2016-05-23 日立化成株式会社 半導体装置及びその製造方法
JP2017204538A (ja) * 2016-05-10 2017-11-16 日立化成株式会社 柔軟性シート、透明フレキシブルプリント配線板及びそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073759A1 (ja) * 2010-12-01 2012-06-07 Hoya株式会社 電子増幅器用基板の製造方法、電子増幅器の製造方法及び放射線検出器の製造方法
JP2015135940A (ja) * 2013-12-16 2015-07-27 味の素株式会社 部品内蔵基板の製造方法および半導体装置
JP2016092107A (ja) * 2014-10-31 2016-05-23 日立化成株式会社 半導体装置及びその製造方法
JP2017204538A (ja) * 2016-05-10 2017-11-16 日立化成株式会社 柔軟性シート、透明フレキシブルプリント配線板及びそれらの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343553A (zh) * 2020-04-09 2020-06-26 江苏普诺威电子股份有限公司 具有高对准精度的mems麦克风腔体板及其制作方法
CN111343553B (zh) * 2020-04-09 2021-02-19 江苏普诺威电子股份有限公司 具有高对准精度的mems麦克风腔体板及其制作方法

Also Published As

Publication number Publication date
TW202003238A (zh) 2020-01-16
JP2021120180A (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
EP2412743B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP6582366B2 (ja) 樹脂組成物、接着フィルム、硬化物、多層プリント配線板、半導体装置及び絶縁層用樹脂組成物
JP5692201B2 (ja) 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
KR102385973B1 (ko) 지지체 부착 수지 시트
JP6156020B2 (ja) 樹脂組成物
JP2015003982A (ja) プライマー層形成用樹脂組成物
JP2017008204A (ja) 樹脂組成物
JP2002194282A (ja) ポリアミド樹脂含有ワニス及びその用途
KR102422859B1 (ko) 수지 시트
JP2017149861A (ja) 支持体付き樹脂シート
JP6545924B2 (ja) 粗化硬化体、積層体、プリント配線板及び半導体装置
JP2017157618A (ja) 支持体付き樹脂シート
JP2017059779A (ja) プリント配線板の製造方法
JP6398824B2 (ja) 樹脂シート
JP6398283B2 (ja) 樹脂組成物
WO2019189783A1 (ja) 積層体、導体層付き積層板、プリント配線板、及びそれらの製造方法、並びに半導体パッケージ
JP7176556B2 (ja) 支持体付き樹脂シート
TWI504663B (zh) Resin composition
JP6225422B2 (ja) 硬化体、硬化体の製造方法、積層体、プリント配線板及び半導体装置
JP2017154397A (ja) 支持体付き樹脂シート
KR20180133393A (ko) 적층체의 제조 방법 및 배선판의 제조 방법
JP2018048252A (ja) 樹脂組成物
JP6232747B2 (ja) 多層プリント配線板の製造法
JP2001049125A (ja) ビルドアップ型多層プリント配線板とそれに用いる樹脂組成物および樹脂フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP