WO2019189643A1 - 腫脹発生抑制型腫瘍溶解性ウイルス - Google Patents

腫脹発生抑制型腫瘍溶解性ウイルス Download PDF

Info

Publication number
WO2019189643A1
WO2019189643A1 PCT/JP2019/013767 JP2019013767W WO2019189643A1 WO 2019189643 A1 WO2019189643 A1 WO 2019189643A1 JP 2019013767 W JP2019013767 W JP 2019013767W WO 2019189643 A1 WO2019189643 A1 WO 2019189643A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
tumor
vegf
antibody
polypeptide
Prior art date
Application number
PCT/JP2019/013767
Other languages
English (en)
French (fr)
Inventor
具紀 藤堂
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to AU2019244150A priority Critical patent/AU2019244150A1/en
Priority to CN201980023832.6A priority patent/CN111989397A/zh
Priority to US17/042,161 priority patent/US20210023152A1/en
Priority to JP2020511025A priority patent/JP7429046B2/ja
Priority to KR1020207030924A priority patent/KR20200136972A/ko
Priority to CA3095427A priority patent/CA3095427A1/en
Priority to EP19777039.9A priority patent/EP3789489A4/en
Priority to CN202410202104.4A priority patent/CN118001307A/zh
Publication of WO2019189643A1 publication Critical patent/WO2019189643A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/768Oncolytic viruses not provided for in groups A61K35/761 - A61K35/766
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/763Herpes virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/32Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16632Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an oncolytic virus that suppresses the occurrence of swelling, and particularly relates to an oncolytic virus having a gene encoding a VEGF antagonist.
  • the present invention also relates to a pharmaceutical composition and a tumor treatment method for treating a tumor using this virus.
  • an object of the present invention is to provide an oncolytic virus that suppresses the occurrence of swelling.
  • Corticosteroids exist as an existing treatment for tumors and swelling around the tumors, but corticosteroids have a side effect of suppressing immunity.
  • antiviral immunity is one of the important therapeutic mechanisms, corticosteroids are not suitable for use in combination with viral therapy.
  • the anti-VEGF antibody drug bevacizumab (trade name: Avastin (registered trademark)) may be administered for the purpose of reducing brain edema, but bevacizumab has an adverse effect on wound healing.
  • bevacizumab trade name: Avastin (registered trademark)
  • the present inventor has found that the above problem can be solved by expressing a VEGF antagonist that antagonizes VEGF in an oncolytic virus, and has completed the present invention. That is, the present invention relates to the following.
  • VEGF vascular endothelial growth factor
  • a pharmaceutical composition for treating a tumor comprising a therapeutically effective amount of the oncolytic virus according to any one of [9].
  • the tumor is a nervous system tumor, pituitary tumor, medulloblastoma, melanoma, brain tumor, prostate cancer, head and neck cancer, esophageal cancer, renal cancer, renal cell cancer, pancreatic cancer, breast cancer, lung cancer, colon cancer Selected from the group consisting of colon cancer, stomach cancer, skin cancer, ovarian cancer, bladder cancer, sarcoma, squamous cell carcinoma, neuroectodermal, thyroid tumor, lymphoma, hepatocellular carcinoma, mesothelioma, epidermoid carcinoma and benign tumor
  • the pharmaceutical composition for tumor treatment according to [10] which is a human tumor.
  • the present invention also relates to the following methods and uses.
  • a method for treating a tumor comprising administering a therapeutically effective amount of the oncolytic virus according to any one of [1] to [9] to a subject in need of tumor treatment.
  • the tumor is a nervous system tumor, pituitary tumor, medulloblastoma, melanoma, brain tumor, prostate cancer, head and neck cancer, esophageal cancer, renal cancer, renal cell cancer, pancreatic cancer, breast cancer, lung cancer, colon cancer Selected from the group consisting of colon cancer, stomach cancer, skin cancer, ovarian cancer, bladder cancer, sarcoma, squamous cell carcinoma, neuroectodermal, thyroid tumor, lymphoma, hepatocellular carcinoma, mesothelioma, epidermoid carcinoma and benign tumor
  • the method according to [14] which is a human tumor.
  • the tumor is a nervous system tumor, pituitary tumor, medulloblastoma, melanoma, brain tumor, prostate cancer, head and neck cancer, esophageal cancer, renal cancer, renal cell cancer, pancreatic cancer, breast cancer, lung cancer, colon cancer Selected from the group consisting of colon cancer, stomach cancer, skin cancer, ovarian cancer, bladder cancer, sarcoma, squamous cell carcinoma, neuroectodermal, thyroid tumor, lymphoma, hepatocellular carcinoma, mesothelioma, epidermoid carcinoma and benign tumor
  • the use according to [18] which is a human tumor.
  • [20] [18] The use according to [18], wherein the tumor is a brain tumor, the drug is locally administered, and the drug is a swelling-suppressing type. [21] The use according to any of [18] to [20], wherein the medicament is used in combination with another tumor treatment method selected from chemotherapy and radiation therapy.
  • the present invention it is possible to provide an oncolytic virus that suppresses the occurrence of swelling. Thereby, tumor treatment can be performed more safely and easily.
  • the leader sequence on the N-terminal side is cleaved by signal peptidase, and only the C-terminal side is sent into the rough endoplasmic reticulum.
  • the FMDV-2A sequence is cleaved during translation.
  • the L chain is similarly sent into the rough endoplasmic reticulum. Thereafter, it is sent to the Golgi apparatus, and the basic amino acid target sequence Arg-X- (Lys / Arg) -Arg is specifically recognized and cleaved by furin. This cleaves the self-cleavable 2A sequence residues, resulting in the formation of a double-chain antibody that is secreted extracellularly.
  • T-BV and TV H V L have ICP6 deleted, LacZ and polyA (PA) in the deleted region and the reverse cytomegalovirus promoter (CMVP) and downstream antibody expression genes (antibody in the figure) (A).
  • PA LacZ and polyA
  • CMVP reverse cytomegalovirus promoter
  • A antibody in the figure
  • T-BAC that facilitates maintenance and amplification of the G47 ⁇ genome by inserting BAC into the ICP6 deletion site of the G47 ⁇ genome has a loxP sequence and an FRT sequence.
  • the shuttle vector plasmid into which the gene has been inserted and using the two recombinase systems of Cre / loxP and FLP / FRT, the insertion of the foreign gene and the excision of the BAC occur, and the foreign gene
  • the inserted G47 ⁇ can be produced.
  • KM kanamycin resistance gene
  • CP chloramphenicol resistance gene
  • lmd ⁇ stuffer sequence
  • GFP Green Fluorescent Protein Amino acid sequence design for anti-human VEGF antibody expression.
  • the amino acid sequences of the Fab region of bevacizumab and the Fc region of human IgG1 were obtained from the databases of the International (ImMunoGeneTics) Information System (IMGT) and National Center for Biotechnology Information (NCBI), respectively.
  • IMGT International (ImMunoGeneTics) Information System
  • NCBI National Center for Biotechnology Information
  • Foot-and-mouth disease virus (FMDV) 2A is a combination of Ig kappaNleader sequence and signal peptidase recognition site bound to the N-terminal side of the polypeptide corresponding to heavy chain (H chain) and light chain (L chain), respectively.
  • the amino acid sequence for anti-human VEGF antibody expression was designed by linking with the sequence and furin recognition sequence. Amino acid sequence design for anti-VEGF scFv expression. Liang, W. C., et al.
  • the amino acid sequence for anti-VEGF scFv expression was designed by linking Ig kappa leader sequence and signal peptidase recognition sequence as secretion signals on the N-terminal side.
  • the linker the GS linker generally used in scFv was used. It is a schematic diagram which shows the structure of pEX-K-BV. It is a figure which shows the cDNA sequence of sVEGFR1. It shows the cDNA sequence of T-VEGFscFv (V H V L C L).
  • Restriction enzyme underline
  • Kozak sequence start codon (square frame), Ig kappa leader sequence (underline)
  • heavy chain VH linker (square frame), light chain VL, light chain CL (bold), start codon (square frame)
  • restriction enzymes underlined.
  • CDNA of an anti-human VEGF antibody expression gene Based on the amino acid sequence of FIG. 4, after conversion to a base sequence optimized for human codons, Kozak sequence, start codon and BamHI recognition sequence were linked to the N-terminus, and NotI recognition sequence was linked to the C-terminus, A cDNA encoding antibody expression was designed.
  • CDNA of anti-VEGF scFv expression gene was designed.
  • CDNA was designed from the amino acid sequence of G6-31 described in Liang, W. C., et al. (2006) The Journal of biological chemistry 281, 951-961 using genetic information processing software GENETYX.
  • the cDNA corresponding to each of the heavy chain and the light chain was connected by a linker to produce an anti-VEGF scFv expression cDNA.
  • the linker As the linker, the GS linker generally used in scFv was used.
  • an Ig kappa leader sequence and a signal peptidase recognition sequence were bound to the N-terminal side of the VH sequence as a secretion signal.
  • HEK293T was transfected with BV / SV-01, and SDS-PAGE and native PAGE were performed using the culture supernatant. Supernatant transfected with SV-01 was used as a negative control, and Avastin (registered trademark) was used as a positive control. Anti-human IgG (H + L) antibody was used for protein detection. Both SDS-PAGE (Fig. 11A) and native PAGE (Fig. 11B) have the same results as the positive control Avastin (registered trademark), and the protein expressed by the anti-human VEGF antibody expression gene used for the new virus production this time was confirmed to be a double chain antibody.
  • anti-VEGF antibodies were detected in the T-BV infected cell supernatant, respectively, and both were detected from the T-01 and mock culture supernatants. It was below the limit. Detection of anti-VEGF antibody from T-BV in U87MG subcutaneous tumor. After confirming that the U87MG subcutaneous tumor of Balb / c nu / nu female mice became 5 mm, the mice were divided into 9 groups of T-01, T-BV and mock groups.
  • a single dose of 2 x 10 6 pfu of virus was administered into the tumor, 3 mice in each group were euthanized in PID2, 4 and 6, the subcutaneous tumor was removed, and the anti-human VEGF antibody contained therein was detected by ELISA. Quantified. At any time point, expression of anti-human VEGF antibody was observed from the T-BV group. bar ; SEM Vascular endothelial cell tube formation test. The culture supernatant of Vero cells infected with T-01 or T-BV was used as a specimen.
  • the culture supernatant of Vero cells infected with T-01 or T-BV was used as a specimen.
  • As a negative / positive control for VEGF action mock with unc / cell virus-uninfected cell supernatant added without cell supernatant, and as a negative / positive control for anti-VEGF action on T-01 culture Pc1 (4 ng / mL) and pc2 (4 ⁇ g / mL) to which Avastin (registered trademark) was added to the clean medium at two levels were set.
  • TGS is a suspension cell
  • the cell killing effect was evaluated using MTS assay.
  • the ratio of the number of viable cells in each group to the number of viable cells in the control group was shown as cytopathic effect.
  • the cell killing effect of T-01 and T-BV was considered to be almost the same. bar; ⁇ SD in vitro replication assay.
  • Vero cells (FIG. 18A) and U87MG cells (FIG. 18B) were infected with a virus at an MOI of 0.01, and after 24 hours and 48 hours of culture, the cells were collected together with the medium, and the titer of the virus contained therein was measured.
  • T-01 and T-BV replication capacity was considered to be almost the same at any time point. bar ; SD Examination of anti-tumor effect of T-BV in U87MG subcutaneous tumor model.
  • Balb / c nu / nu female mice were transplanted with 2 x 10 6 U87MG cells subcutaneously on the left flank, and when the tumor diameter became 6 mm larger, each group was divided into 3 groups: T-BV, T-01, and mock.
  • Each group of 10 animals was randomly distributed, 2 ⁇ 10 5 pfu of virus was opened 3 times in the middle of the tumor, administered twice into the tumor, the tumor diameter was measured 2-3 times a week, and the tumor volume was calculated.
  • Balb / c nu / nu female mice were transplanted with 2 x 10 5 cells of U87MG cells in the right frontal lobe using stereotaxic brain surgery device, and 3 groups of T-BV, T-01, mock 10 days after transplantation Each group was randomly assigned 10 animals, and 1 ⁇ 10 6 pfu of virus was administered once into the tumor, and the survival period of each individual was recorded.
  • T2WI and T1WI (CE) Single administration was performed, and MRI (T2WI and T1WI (CE)) was imaged on PID2, 4, and 6.
  • Avastin (registered trademark) 5 mg / kg was intraperitoneally administered every day from the virus administration day to the fifth day.
  • the appearance of a high-signal area with T2WI around the tumor was observed after virus administration.
  • Examination of tumor suppression effect of T-BV in U87MG intracerebral tumor model (1) (MRI). Swelling (edema) was quantified based on the MRI data of the U87MG brain tumor model.
  • the area of the high signal area at T2WI and T1WI (CE) was measured using free software Osirix.
  • T2WI and T1WI For each of T2WI and T1WI (CE), calculate the ratio of the high signal area of each imaging day to the high signal area before virus administration, and divide the value at T2WI by the value at T1WI (CE). The relative value of the area was determined (FIG. 23A). In the mock group, there was almost no swelling, and the relative value was consistently about 1. In the T-01 group, an increase in the relative value was observed at PID2, 4, and 6, whereas in the T-BV group, the relative values were significantly lower in PID4, 6, and T + A groups in PID2, 4, and 6 (all p ⁇ 0.05), and the occurrence of swelling was considered to be suppressed (FIG. 23B).
  • Mouse ⁇ -actin (mActb) was used as a house keeping gene. Compared to the mock group, the expression of mouse AQP4 was significantly increased in the T-01 group (p ⁇ 0.01), and in the T-BV group and T + A group, the expression of AQP4 was increased in the T-01 group. There was a significant decrease (both p ⁇ 0.01). bar ; SEM Comparative study of T-BV and T-VHVL tumor suppressive effects in U87MG brain tumor model (typical image).
  • mice Against U87MG brain tumors using the Balb / c nu / nu female mice, performed grouping T-01, T-BV, T + A, and in mock groups nine mice per group, 1 x 10 6 The pfu virus was administered once into the tumor, the right frontal lobe was collected at PID2, 4 and 6, and a single cell suspension was prepared.
  • T + A group Avastin (registered trademark) 5 mg / kg was intraperitoneally administered daily from the virus administration day to euthanasia.
  • a 1 ⁇ 10 6 pfu virus was administered once into the tumor, and three blood was collected from each group in PID 1 and 3, and anti-human VEGF antibody contained in the serum was quantified by ELISA.
  • Avastin registered trademark
  • 5 mg / kg was administered once intraperitoneally on the day of virus administration.
  • anti-human VEGF antibody was detected in the T + A group, but in all other groups, it was below the detection limit.
  • bar SEM It is a graph which shows confirmation of VEGF inhibitory factor protein expression of T-sVEGFR1 and T-VEGFscFv by ELISA method.
  • ELISA was performed using supernatant obtained by infecting Vero with T-01, T-sVEGFR1 and T-VEGFscFv and culturing for 48 hours.
  • n 3; Error bar, standard deviation; ND, Not detected. It is a graph which shows the result of a vascular endothelial cell tube formation test.
  • T-01, T-sVEGFR1 and T-VEGFscFv were infected with Vero at MOI 0.2 and cultured for 2 days. The supernatant was collected and concentrated 40-fold, then added to Matrigel Matrix-coated wells, and HUVEC 2 ⁇ 10 4 cells / well.
  • the positive control was Bevacizmab added to Medium 200/1% LSGS at 4 ⁇ g / ml, and the negative control was Medium 200/1% LSGS only. After culturing for 22 hours, HUVEC tube formation images were taken under a microscope (FIG. 31A), and the total lumen length was calculated and compared.
  • n 3; Error bar, standard deviation; *, p ⁇ 0.05
  • HUVEC was spread at 1 ⁇ 10 5 cells / well in the upper chamber.
  • 40-fold concentrated supernatant obtained by infecting T-01, T-sVEGFR1 and T-VEGFscFv with MOI 0.2 and culturing for 2 days was added to the lower well.
  • HUVEC was spread at 1 ⁇ 10 5 cells / well in the upper chamber.
  • the positive control was Bevacizmab added to Medium 200/1% LSGS at 4 ⁇ g / ml, and the negative control was Medium 200/1% LSGS only.
  • HUVEC that migrated through the upper chamber membrane and migrated to the lower well with calcein AM solution was fluorescently stained and photographed under a fluorescent microscope (FIG. 32A), and the fluorescence intensity was measured (FIG. 32B).
  • FIG. 32A fluorescent microscope
  • FIG. 32B the fluorescence intensity was measured.
  • migration of HUVEC was significantly suppressed as compared with the group infected with T-01.
  • n 3; Error bar, standard deviation; *, p ⁇ 0.05
  • HT-29 was seeded on a 6-well plate at 4 ⁇ 10 5 cells / well, infected with T-01, T-sVEGFR1 and T-VEGFscFv at MOI 0.01, and cultured for 24 and 48 hours. The titer was measured. At both 24 hours and 48 hours, the T-sVEGFR1 and T-VEGFscFv-infected groups had almost the same titer of the replicated virus as the T-01-infected group.
  • n 3; Error bar, standard deviation. It is a graph which shows the result of the in vitro cell killing assay in HT-29 of T-sVEGFR1 and T-VEGFscFv.
  • HT-29 was seeded on a 6-well plate at 2 ⁇ 10 5 cells / well and infected with T-01, T-sVEGFR1 and T-VEGFscFv at MOI 0.1 and 0.01. Viable cells were measured every 24 hours for 4 days after infection, and the ratio of the number of cells to Mock was calculated.
  • T-sVEGFR1 and T-VEGFscFv showed a cell killing effect almost equivalent to T-01.
  • n 3; Error bar, standard deviation.
  • a VEGF antagonist refers to a molecule that neutralizes, blocks, reduces or interferes with the biological activity of vascular endothelial growth factor (VEGF) and interferes with the interaction between VEGF and the VEGF receptor. Includes molecules that bind to, for example, VEGF or VEGF receptors and inhibit or otherwise interfere with the interaction between VEGF and VEGF receptors.
  • the VEGF antagonist of this embodiment binds to VEGF or a VEGF receptor with a Kd of 1 nM to 1 ⁇ M, preferably 500 nM to 1 ⁇ M.
  • VEGF antagonist examples include an anti-VEGF antibody, an anti-VEGF receptor antibody, a VEGF receptor, a soluble VEGF receptor (sVEGFR), a peptide ligand, a nucleic acid having a VEGF inhibitory action, and the like, and preferably an anti-VEGF antibody or sVEGFR It is.
  • VEGF includes not only human VEGF but also non-human VEGF (for example, VEGF such as mouse, rat, and non-human primate).
  • the VEGF of this embodiment is VEGF of an organism to which the virus of this embodiment is administered.
  • VEGF is preferably human VEGF.
  • VEGF has seven types of growth factors called the VEGF family: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PLGF-1, and PLGF-2 (PLGF: placental growth factor)
  • VEGF is VEGF-A involved in proliferation of vascular endothelial cells, promotion of tube formation, and the like.
  • the VEGF antagonist of this embodiment is an anti-VEGF antibody that binds to VEGF with sufficient affinity and specificity.
  • the anti-VEGF antibody commercially available products (for example, bevacizumab, ranibizumab, ramcilmab, etc.) may be used, and other known anti-VEGF antibodies may be used.
  • Bevacizumab is an antibody that inhibits the binding between VEGF-A and its receptors (VEGFR-1 and VEGFR-2) by specifically binding to VEGF-A.
  • Ranibizumab is a Fab fragment of a monoclonal antibody against vascular endothelial growth factor-A (VEGF-A).
  • Ramucirumab is an antibody against VEGFR-2 and inhibits signal transduction by VEGF ligands by inhibiting the binding of not only VEGF-A but also C, D and VEGFR-2.
  • an anti-VEGF antibody prepared using a VEGF antigen by a method known to those skilled in the art may be used.
  • the VEGF antagonist of this embodiment is bevacizumab.
  • the anti-VEGF antibody of this embodiment is preferably an antibody that binds to VEGF-A and / or an antibody that inhibits the binding between VEGF and VEGFR-1.
  • the antibody when the VEGF antagonist is an anti-VEGF antibody, the antibody may be a full-length antibody or a fragment thereof.
  • the antibody may be a polyclonal antibody or a monoclonal antibody, and is preferably a monoclonal antibody.
  • the type of antibody is not particularly limited, and human antibodies, humanized antibodies, chimeric antibodies, antibodies derived from other animals (eg, mouse antibodies, rat antibodies, rabbit antibodies, sheep antibodies, camel antibodies, avian antibodies) Any antibody can be used, but preferably, an antibody against the same organism as the tumor to be lysed by an oncolytic virus having a gene encoding the antibody can be used.
  • the oncolytic virus is human oncolytic
  • a human antibody or humanized antibody against human VEGF can be used. Any antibody can be produced using a known technique.
  • a well-known antibody can be used.
  • the VEGF antagonist may be a fragment of an anti-VEGF antibody.
  • an antibody fragment means either an antibody fragment itself or an antibody fragment bound with an arbitrary molecule, which recognizes the same epitope as the original antibody. It is not particularly limited as long as it contains the complementarity determining region (CDR) of the original antibody.
  • CDR complementarity determining region
  • Fab fragment consisting of V L , V H , C L and C H regions; further including a hinge region one linked V L and V H in artificial polypeptide linker; the Fab Fv consisting of the V L and V H; 'fragments; two Fab is F (ab being linked by a disulfide bridge at the hinge region') 2 fragments in addition to scFv is chain antibody, sdFv, diabody, sc (Fv ) 2 but may be mentioned, without being limited to, a heavy chain variable region (V H) which is a two variable regions constituting the antigen binding site of antibodies And a light chain variable region (V L ).
  • V H heavy chain variable region
  • V L light chain variable region
  • scFv can be prepared by connecting V H and V L with a known linker (such as a GS linker (SEQ ID NO: 11)).
  • a known linker such as a GS linker (SEQ ID NO: 11)
  • the antibody or fragment thereof preferably has a long half-life in tumor cells.
  • the half-life of a double-chain antibody is prolonged due to the presence of the Fc portion, and an antibody-dependent immune reaction can be expected.
  • the oncolytic virus of this embodiment is a gene encoding a polypeptide of any of the following (i) to (iii): (i) the polypeptide of SEQ ID NO: 2; (ii) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the polypeptide of SEQ ID NO: 2 and having a VEGF-binding ability; (iii) 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 98% or more or 99% or more of homology with the polypeptide of SEQ ID NO: 2 and has VEGF binding ability
  • the oncolytic virus of the present embodiment is a gene encoding any of the following polypeptides (vii) to (ix): (vii) the polypeptide of SEQ ID NO: 30; (viii) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the polypeptide of SEQ ID NO: 30, and having a VEGF-binding ability; (ix) 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 98% or more, or 99% or more of homology with the polypeptide of SEQ ID NO: 30, and has VEGF binding ability A polypeptide having; And a gene encoding a polypeptide of any of the following (x) to (xii): (x) the polypeptide of SEQ ID NO: 31; (xi) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the polypeptide of SEQ ID NO: 31, and having
  • the oncolytic virus of the present embodiment preferably has a gene further encoding a polypeptide of Furin recognition sequence (SEQ ID NO: 8) and FMDV-2A (SEQ ID NO: 9), and the above (vii) to a gene encoding any of the polypeptides of SEQ ID NOs: 8 and 9 between a gene encoding any of the polypeptides of (ix) and a gene encoding any of the polypeptides of (x) to (xii) It is more preferable to have.
  • the VEGF antagonist of this embodiment is a soluble VEGF receptor (sVEGFR).
  • sVEGFR soluble VEGF receptor
  • sVEGFR-1, -2 and -3 are known.
  • sVEGFR is sVEGFR-1 having binding ability to VEGF-A and B.
  • Known sVEGFR can be used, for example, those described in ParkPJE et al. (1994) J Biol Chem. Vol. 269 (41): 25646-54, commercially available products, and the like.
  • the oncolytic virus of the present embodiment is a virus that has a gene having any of the following polynucleotides (xiii) to (xv) and expresses a polypeptide encoded by these polynucleotides: is there.
  • xiii a polynucleotide encoded by the base sequence of SEQ ID NO: 26;
  • xiv a polynucleotide encoding a polypeptide comprising the nucleotide sequence of one or several bases deleted, substituted or added and having a VEGF-binding ability in the polynucleotide encoded by the base sequence of SEQ ID NO: 26 ;
  • xv 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 98% or more, or 99% or more homology with the polynucleotide encoded by the nucleotide sequence of SEQ ID NO: 26;
  • a polynucleotide encoding a polypeptide having VEGF binding ability a polypeptide having VEGF binding ability.
  • amino acid sequence in which one or several amino acids are deleted, substituted or added is referred to
  • the number of amino acids to be deleted, substituted or added is determined by the polypeptide comprising the amino acid sequence, although it is not particularly limited as long as it has VEGF binding ability, it can be, for example, 1 to 5, 1 to 3, or 1 to 2.
  • the deletion, substitution or substitution place may be at the end of the peptide, in the middle, at one place, or at two or more places.
  • a base sequence in which one or several bases are deleted, substituted or added is referred to, the number of bases to be deleted, substituted or added is encoded by the base sequence.
  • the polypeptide is not particularly limited as long as it has VEGF-binding ability, and can be, for example, 1 to 5, 1 to 3, or 1 to 2.
  • the deletion, substitution or substitution place may be at the end of the polynucleotide, at the middle, at one place, or at two or more places.
  • Whether or not the above polypeptide has VEGF binding ability can be determined using a method known to those skilled in the art. For example, the determination can be made using the ELISA described in Examples described later.
  • the amino acid may be a natural amino acid, a derivative thereof, an artificial amino acid, or a non-natural amino acid.
  • the amino acids of this embodiment are preferably natural amino acids.
  • the oncolytic virus of the present embodiment has a gene encoding a VEGF antagonist, and when administered to a tumor cell, expresses the VEGF antagonist with viral replication.
  • a technique for modifying an oncolytic virus so as to express a gene encoding a VEGF antagonist a known technique can be used.
  • DNA encoding a VEGF antagonist can be inserted into an expression vector by a known method (such as a method using a restriction enzyme), and the expression vector can be transfected into an oncolytic virus.
  • the expression vector can further contain a promoter that regulates the expression of the target gene, a replication origin, a selectable marker gene, and the like. The promoter and origin of replication can be appropriately selected according to the type of oncolytic virus and vector into which the gene is introduced.
  • the amino acid sequence or base sequence of the antibody to be expressed can be obtained, and the target region can be expressed by a known technique.
  • a sequence encoding a polypeptide corresponding to the heavy chain and the light chain of the antibody is introduced so that the heavy chain and the light chain are expressed in equal amounts from the cDNA to enable efficient antibody production.
  • the virus can be modified by introducing both the foot-and-mouth disease (FMDV) -2A sequence with self-cleaving activity and the amino acid sequence encoding the furin cleavage site.
  • FMDV foot-and-mouth disease
  • An example of an antibody expression mechanism from such an antibody expression gene is shown in FIG.
  • the introduction site of the gene is not particularly limited as long as the oncolytic virus maintains oncolytic performance.
  • a gene encoding a VEGF antagonist can be introduced into a site where a nonessential gene of the virus is deleted.
  • a gene encoding a VEGF antagonist can be introduced by deleting a non-essential gene shown in Table 1 described below. The expression of the introduced gene can be confirmed using a known method, as shown in the Examples described later.
  • the oncolytic virus is a virus having a large genome size, such as herpes simplex virus (HSV), for example, Fukuhara, H. et al. (2005). Cancer research, 65, 10663-10668, WO2005 / 103237
  • HSV herpes simplex virus
  • the described T-BAC system or the equivalent can be used.
  • a BAC plasmid having a loxP site and an FRT site and having at least one marker gene expression cassette inserted between the loxP site and the FRT site is inserted into the HSV genome.
  • a shuttle vector in which at least one expression cassette of a gene encoding a target protein, at least one marker gene, a loxP site and an FRT site are inserted is prepared, and Cre recombinase is used.
  • the shuttle vector is inserted into the loxP site of the HSV genome, the host is co-infected with the HSV genome and a vector capable of expressing the Flp recombinase, and the region between the FRT sites on the genome is excised.
  • the can to express the purpose of the VEGF antagonist is conveniently create a virus in a tumor cell.
  • an oncolytic virus (also referred to as an anti-cancer virus) is a virus that can be used for cancer treatment, infects tumor cells, selectively replicates in tumor cells, and Any known viruses can be used as long as they have the ability to destroy tumor cells in the replication process, infect other surrounding tumor cells, and further replicate. Many such viruses are mutants of naturally occurring viruses that have been genetically modified to increase tumor selectivity. It may be attenuated if necessary, and may be modified with modification for enhancing antitumor activity (incorporation of a suicide gene, etc.).
  • the oncolytic viruses that can be used in this embodiment include herpes simplex virus types I and II (HSV-1 and HSV-2), adenovirus, poliovirus, measles virus, reovirus, vaccinia virus, seneca Examples include viruses or virus variants selected from the group consisting of viruses (Seneca Valley virus), vesicular stomatitis virus (VSV), Newcastle disease virus, and Coxsackie virus.
  • viruses Sendeca Valley virus
  • VSV vesicular stomatitis virus
  • NDV vesicular stomatitis virus
  • Coxsackie virus a virus having a genome of a size capable of containing an antibody is preferable (in general, only about 1/10 of the genome can be modified), preferably HSV-1 and HSV-2 and vaccinia. Viruses can be used.
  • examples of oncolytic viruses that are adenovirus mutants include ONYX-015 (Khuri et al. (2000). Nat. Med 6 (8): 879-85, etc.), H101 (Oncorine) (Xia et al. (2004). Ai Zheng 23 (12): 1666-70), Telomelysin (OBP-301) (Kawashima T. et al. (2004) Clim Cancer Res. 10: 285-292) and the like.
  • oncolytic viruses that are poliovirus variants include Goetz et al. (2010). Cytokine & Growth Factor Reviews 21 (2-3): 197, Lal, R. et al. (2009). Current opinion in molecular therapeutics 11 (5): 532-9 and the like.
  • oncolytic viruses that are measles virus mutants include MV-Edm (McDonald et al. (2006). Breast Cancer Treat. 99 (2): 177-84) and MV-CEA, MV using the same. -NIS, etc., and HMWMAA (Kaufmannufet al. (2013). J. Invest. Dermatol. 133 (4): 1034-42) and the like.
  • an oncolytic virus that is a reovirus is Reolysin (Oncolytic Biotech).
  • oncolytic viruses that are vacciniaur mutants include MDRVV002 (miRNA-dependent recombinant vaccinia virus 002) and MDRVV003 (MAPK-dependent recombinant vaccinia virus 003), and D C Mansfield et al. (2016). Gene Therapy. , 23, 357-368, Steve H. Thorne (2014). Frontiers Oncology, 4: 155, and the like.
  • NTX-010 An example of an oncolytic virus that is a Seneca virus is NTX-010 (Rudin et al., (2011). Clin. Cancer. Res. 17 (4): 888-95).
  • VSV vesicular stomatitis virus
  • Newcastle disease viruses examples include 73-TPV701 and HDV-HUJ strains, Phuangsab et al. (2001). Cancer Lett. 172 (1): 27-36, Lorence et al. (2007) .Curr.Cancer Drug Targets7 (2): 157-67, Freeman et al. (2006). Mol. Ther. 13 (1): 221-8, etc.
  • oncolytic viruses that are coxsackie virus variants include coxsackie A (CVA) CVA21 and its variants (Kelly EJ. Et al. (2008) Nat Med, 14: 1278-1283), coxsackie virus type B 3 Group (CVB3) (Miyamoto S. et al. (2012) Cancer Res. 72: 2609-2621) and the like.
  • CVA coxsackie A
  • CVB3 coxsackie virus type B 3 Group
  • the oncolytic virus is an HSV variant, preferably an HSV-1 variant.
  • an oncolytic HSV-1 mutant can be prepared with reference to, for example, Patent Documents 1 to 3.
  • HSV-1 is classified as a double-stranded DNA virus having an envelope, and has the following features advantageous for cancer treatment. 1) Infects all types of human cells; 2) Virus life cycle and genome sequence have been elucidated; 3) Most of the viral genes are known to function and can be genetically manipulated 4) Due to the large viral genome (about 152 kb), large genes and multiple genes can be incorporated.
  • HSV-1 has the following advantages suitable for clinical application: 5) All cells can be killed with relatively low multiplicity of infection (MOI); 6) Antiviral drugs exist that inhibit proliferation 7) Since blood anti-HSV-1 antibody does not affect the spread of virus from cell to cell, it can be administered repeatedly; 8) Because there are mice and monkeys that are sensitive to HSV-1 In addition, pre-clinical assessment of safety and efficacy can be performed in animals; 9) viral DNA is not incorporated into the host cell genome and exists extrachromosomally.
  • MOI multiplicity of infection
  • Genome of HSV-1 is 82% of the long unique region (U L) and 12% of short unique region (Us) of the two unique sequence region, located both ends terminal repeat (TR) and Inverted repeat ( (IR) inverted repeat sequence (Table 1, Todo, T. (2008). A journal and virtual library 13, 2060-2064). Since the two regions of L and S can independently take two directions, HSV-1 genomic DNA consists of four isomers. This genome is encoded in RL1, RL2, UL1 ⁇ on U L UL56, TR S on RS1, U S total 84 genes are unidirectional in US1 ⁇ US12 on on TR L, of which About half of the genes are genes that are unnecessary for virus growth. By deleting these non-essential gene parts, pathogenicity can be reduced and gene transfer can be performed (Carson, J. et al. (2010). Drugs of the future 35, 183-195).
  • the oncolytic virus When the oncolytic virus is an HSV-1 variant, it can have any one or more of the following characteristics. -Inactivation of enzymes involved in viral DNA synthesis such as thymidine kinase (TK), ribonucleotide reductase (RR), uracil-N-glycosylase (uracil-N-glycosylase, UNG or UDG) Acquiring tumor cell-specific replication ability. -Acquisition of tumor cell-specific replication ability by deleting the gene ⁇ 34.5 encoding the protein ICP34.5 involved in the pathogenicity of HSV-1. Acquisition of anti-tumor effect by deleting ⁇ 47.
  • TK thymidine kinase
  • RR ribonucleotide reductase
  • uracil-N-glycosylase uracil-N-glycosylase
  • UNG or UDG uracil-N-glycosylase
  • genes for enhancing safety by preventing reversion to the wild-type e.g., endogenous ⁇ 34.5 gene, ICP47 gene, .alpha.0 gene (ICP0 gene), U L 41 gene (vhs gene ), deletion or inactivation of U L 56 gene.
  • -Enhancement of anti-tumor immunity and survival by expressing immune stimulating genes IL-4, IL-10, GM-CSF, IL-12, soluble B7.1, etc.
  • angiogenesis-suppressing effect and anti-tumor effect by expressing a gene that expresses angiogenesis-suppressing factors such as platelet factor 4, thrombospondin, endostatin, dominant negative FGF, angiostatin.
  • angiogenesis-suppressing factors such as platelet factor 4, thrombospondin, endostatin, dominant negative FGF, angiostatin.
  • metalloproteinase inhibitors involved in local tumor invasion. -Promoting the spread of viral infection by overexpressing metalloproteinase.
  • -Tumor or tissue specific promoters calponin promoter, E2F-responsive cell cycle dependent promoter B-myb, Nestin promoter, carcinoembryonic antigen (CEA), ⁇ -fetoprotein (AFP), MUC-1, Musashi enhancer
  • CEA carcinoembryonic antigen
  • AFP ⁇ -fetoprotein
  • MUC-1 Musashi enhancer
  • the virus replication ability specific to tumor cells is controlled by controlling the viral gene with / promoter.
  • the oncolytic virus of the present embodiment preferably has any one or more of the following features (a) to (c), more preferably the following features (a) to (c): Has HSV-1. HSV-1 mutants having these characteristics can be prepared with reference to Patent Document 3 and the like.
  • the ICP6 gene is deleted or inactivated, or is expressed under the control of a tumor-specific promoter or a tissue-specific promoter.
  • the ⁇ 34.5 gene is deleted or inactivated.
  • C The ICP47 gene is deleted or inactivated.
  • ICP6 which is a large subunit of RR, which is an enzyme important for nucleotide metabolism and viral DNA synthesis in non-dividing cells, and / or phosphorus produced during viral infection
  • RR an enzyme important for nucleotide metabolism and viral DNA synthesis in non-dividing cells, and / or phosphorus produced during viral infection
  • HSV-1 is expected to enhance stimulation of immune cells by maintaining host cell MHC class I expression. Furthermore, since HSV-1 having both of the above characteristics (b) and (c) has a deletion of ⁇ 47, the US11 late promoter in which the genome overlaps with ⁇ 47 is simultaneously deleted. Therefore, the expression of the US11 gene is ICP47 immediate. -It is under the control of early promoter, the expression time is advanced, and the virus replication ability attenuated by ⁇ 34.5 deletion is restored only to tumor cells.
  • deletion or inactivation of a gene refers to suppressing the expression of the gene through deletion of all or part of the gene, substitution of some bases, modification, insertion of unnecessary sequences, etc. It can be carried out by a known method.
  • a tumor-specific promoter or a tissue-specific promoter means a promoter that enables the expression of a gene under its control specifically in a desired tumor cell or tissue, and is known according to the gene
  • These promoters can be used.
  • a telomerase reverse transcriptase promoter (hTERT promoter) or an E2F promoter can be used.
  • the oncolytic virus of this embodiment can also be produced by further modifying G207 and G47 ⁇ .
  • G47 ⁇ is an oncolytic HSV-1 that improves safety while significantly improving tumor cell-selective virus replication and induction of anti-tumor immunity. Can also be safely administered (during phase II trial).
  • composition relates to a pharmaceutical composition comprising the oncolytic virus of this embodiment described above. Since the pharmaceutical composition of this embodiment specifically grows in tumor cells and suppresses the occurrence of swelling, repeated administration can be easily performed.
  • M1 macrophages having strong antibacterial activity, antiviral activity, and antitumor effect are superior to M2 macrophages. Even when the state is maintained and the M1 is dominant, the virus titer of the oncolytic virus in the pharmaceutical composition does not decrease, so that a high tumor treatment effect can be obtained.
  • the virus of this embodiment has a higher tumor therapeutic effect compared to an oncolytic virus having the same configuration except that it does not have a gene encoding a VEGF antagonist.
  • the VEGF antagonist eg, anti-VEGF antibody
  • the VEGF antagonist is expressed in the tumor site.
  • the risk of side effects such as inhibition of wound healing is reduced compared to systemic administration of.
  • Confirmation of the replication ability of the virus and the expression level of the VEGF antagonist can be performed by a known method, as shown in Examples described later.
  • tumors for which the pharmaceutical composition of this embodiment is effective include, for example, nervous system tumors (for example, astrocytoma, oligodendroglioma, meningioma, neurofibroma, glioblastoma, ependymoma, nerve sheath) Tumor, neurofibrosarcoma, neuroblastoma), pituitary tumor (eg, pituitary adenoma), medulloblastoma, melanoma, brain tumor, prostate cancer, head and neck cancer, esophageal cancer, renal cancer, renal cell carcinoma , Pancreatic cancer, breast cancer, lung cancer, colon cancer, colon cancer, stomach cancer, skin cancer, ovarian cancer, bladder cancer, sarcoma (eg osteosarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, fibrosarcoma, liposarcoma, Hemangiosarcoma), squam
  • the pharmaceutical composition of this embodiment suppresses the occurrence of swelling, it can treat tumors not only causing swelling but also causing various symptoms associated with swelling.
  • symptoms associated with brain swelling include not only minor symptoms such as headache, but also severe symptoms such as paralysis, aphasia, and disturbance of consciousness due to pressure on surrounding normal tissue and increased intracranial pressure.
  • the pharmaceutical composition of the embodiment it is possible to reduce the patient's QOL without causing an increase in intracranial pressure or temporary deterioration of neurological symptoms due to the treatment of the tumor without causing such symptoms. Can be treated without swelling.
  • the pharmaceutical composition of this embodiment is particularly effective in treating intracranial tumors, including brain tumors, where there is little extracranial metastasis and local treatment is important.
  • the swelling includes swelling of the tumor itself and swelling around the tumor, and refers to a state in which the tumor and / or its surrounding volume is increased and expanded.
  • the “swelling suppression type” refers to any one or more of suppression of the occurrence of swelling, reduction of the size of the generated swelling, and prevention of expansion of the swelling.
  • the present inventors have found that the swelling that is particularly problematic when an oncolytic virus is administered is swelling of the tumor itself, and the virus of this embodiment is The occurrence of swelling associated with the administration of the oncolytic virus, including the swelling of the tumor itself, can be suppressed.
  • swelling occurs immediately after administration. If local administration is repeated again at the same site while this swelling continues, the swelling further expands.
  • the virus of this embodiment the occurrence of this swelling is suppressed, and tumor treatment can be performed more safely and easily.
  • Edema (a state in which moisture accumulates and expands) may occur with the above swelling.
  • the degree of swelling can be confirmed by measuring the degree of swelling. That is, the degree of occurrence of swelling can be measured using techniques known to those skilled in the art in measuring swelling and edema. As shown in the examples described later, the degree of occurrence of swelling (edema) can be confirmed by, for example, comparing high signal areas with T2-weighted MRI. The degree of occurrence can also be confirmed by quantifying substances that have been confirmed to be involved in the occurrence of swelling and / or edema.
  • AQP aquasporin
  • the administration method of the pharmaceutical composition of the present embodiment is not particularly limited, and for example, intravenous, intraarterial, intraventricular, intraperitoneal, intrathoracic, intrathecal, subcutaneous, intradermal, intraepidermal, intramuscular, mucosal surface (Eg, intraocular, intranasal, pulmonary, buccal, intestinal, rectal, vaginal, urinary tract).
  • it is locally administered directly to the tumor tissue by injection, endoscope or surgical method.
  • the VEGF antagonist is expressed locally in the tumor, so the risk of side effects such as wound healing inhibition is reduced compared to systemic administration of the VEGF antagonist. Even when administered, it has the advantage that wound healing associated with surgical methods is not inhibited.
  • the pharmaceutical composition of the present embodiment can be formulated by a known formulation method for introducing a virus into the body of a mammal including a human.
  • an adjuvant or an arbitrary carrier may be contained, and it may be simply diluted with a physiologically acceptable solution such as sterile saline or sterile buffered saline without adding the adjuvant or carrier.
  • the preparation may be a frozen preparation, a dried preparation, a freeze-dried preparation or the like suitable for long-term storage.
  • the pharmaceutical composition of this embodiment contains a therapeutically effective amount of the oncolytic virus of this embodiment.
  • a therapeutically effective amount refers to the amount of an agent by which one or more symptoms of the tumor being treated are thereby alleviated to a certain extent, more specifically, a reduction in tumor size, Meaning an amount that exhibits at least one of inhibition of metastasis (delay or cessation), inhibition of tumor growth (delay or cessation), and alleviation of one or more symptoms associated with the tumor.
  • Specific dosages can be appropriately determined by those skilled in the art depending on the degree of symptoms, age, sex, body weight, sensitivity difference, administration method, administration timing, administration interval, properties of the preparation, promoter strength, etc. it can.
  • the pharmaceutical composition of the present embodiment comprises, for example, about 10 1 to about 10 12 plaque forming units (pfu), preferably about 10 7 to about 10 10 pfu, more preferably about 10 8 pfu to about 5 ⁇ 10 9 .
  • pfu plaque forming units
  • Each can be administered once or divided into several times by injection.
  • count of administration of the pharmaceutical composition of this embodiment can be suitably set according to an object patient and an object disease.
  • the first two doses can be administered within 2 weeks, followed by 3-5 week intervals.
  • the pharmaceutical composition of the present embodiment is of a type that suppresses the occurrence of swelling, even when administered multiple times, the side effect that the swelling increases with each administration, and the next administration is refrained until the swelling that occurs at the time of administration is reduced There is an advantage that there is no such inconvenience.
  • the pharmaceutical composition of the present embodiment can further contain other active ingredients, and can also be used in combination with pharmaceutical compositions containing other active ingredients.
  • the pharmaceutical composition of the present embodiment can be used in combination with other tumor treatment methods such as surgery (tumor resection, etc.), chemotherapy, radiation therapy, immunotherapy, hormone therapy, and combinations thereof. Since the viral therapy using the pharmaceutical composition of the present embodiment is based on a mechanism different from the existing tumor therapy, the tumor therapy effect can be enhanced by using in combination with other therapy such as radiation therapy and chemotherapy.
  • the present embodiment also relates to a method for treating a tumor using a tumorigenic virus that suppresses the occurrence of swelling.
  • This embodiment also relates to the use of tumorigenic oncolytic viruses in the manufacture of a medicament for treating tumors.
  • the said method and use can be implemented with reference to the description concerning the said pharmaceutical composition.
  • A. material 1 Cell line and medium African green monkey kidney cell line Vero, human colon cancer cell line HT-29, mouse colon cancer cell line CT26, human glioma cell line U87MG, U251MG, NMC-G1, human embryonic kidney cell line HEK293T, human umbilical vein Endothelial cells HUVEC (BD TM HUVEC-2), human umbilical vein endothelial cells HUVEC-2 and human glioma stem cell lines TGS-01, TGS-04 and 1123 / M were used.
  • Vero, HT-29, CT26 and U87MG are all from the American Type Culture Collection (ATCC), HEK293T is from RIKEN BioResource Center, HUVEC is from BD Bioscience (USA), HUVEC-2 is from Corning Life Sciences, NMC -G1 was purchased from JCRB cell bank.
  • TGS-01 and TGS-04 were cultured in serum-free medium from an excised tissue of a glioblastoma patient who underwent craniotomy tumor removal at the University of Tokyo Medical Hospital Neurosurgery. Floating cell mass)
  • a glioma stem cell line that was isolated and established by evaluation of its ability to form, and was stored in the inventor's laboratory.
  • 1123 / M was a stem cell established from an excised tissue of an oligodendroglioma patient, which was transferred from Ohio State University.
  • G47 ⁇ which is an oncolytic HSV-1 virus, was stored in the inventor's laboratory.
  • Vero, U87MG, U251MG and NMC-G1 were cultured in Dulbecco's modified Eagle's medium (DMEM) (gibco) supplemented with 10% fetal bovine serum (FBS) (Sigma Aldrich).
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • HT-29 was cultured in McCoy's 5A (Modified) medium supplemented with 10% FBS
  • CT26 was cultured in RPMI 1640 medium supplemented with 10% FBS.
  • HUVEC and HUVEC-2 were cultured in Medium 200PRF (gibco) supplemented with 1% Low Serum Growth Supplement (LSGS) (gibco).
  • LSGS Low Serum Growth Supplement
  • TGS-01 and TGS-04 are DMEM / F12 (1: 1) (gibco) 500 mL, B-27 (gibco) 10 mL, 45% D-Glucose (Sigma Aldrich) 7 mL, 200 mM L-glutamin (gibco ) Medium with 5 mL and 1.875 mL of Insulin (gibco) added to EGF (Peprotech) (20 ng / mL) and bFGF (Peprotech) (20 ng / mL) at a ratio of 1,000 / min. Thereafter, the cells were cultured in SCM).
  • 1123 / M is obtained by adding EGF (20 to 500 mL of DMEM / F12 (1: 1) to 10 mL of B-27, 5 mL of 200 mM L-glutamin, and 550 ⁇ L of Heparin (5 mg / mL) (Sigma Aldrich).
  • EGF 20 to 500 mL of DMEM / F12 (1: 1) to 10 mL of B-27, 5 mL of 200 mM L-glutamin, and 550 ⁇ L of Heparin (5 mg / mL) (Sigma Aldrich).
  • ng / mL) and bFGF (Peprotech) (20 ng / mL) were each cultured in a medium supplemented with a 1/1000 amount at the time of use. EGF and bFGF were added to the medium once every 3 days. All cells were cultured in an incubator with 5% CO 2 at 37 ° C.
  • VP-SFM gibco
  • L-glutamin gibco
  • Opti-MEM Sigma Aldrich
  • Virus A typical structure of a virus prepared and used in this example is shown in FIG. All viruses were produced using G47 ⁇ , which is a genetically modified HSV-1, as a basic skeleton.
  • T-01 is a control virus in which only a LacZ and cytomegalovirus (CMV) promoter is inserted without inserting a foreign gene into the 894 bp deletion site of the ICP6 gene.
  • CMV cytomegalovirus
  • T-BV and to prepare this TV H V L the anti-human VEGF antibody expression gene and an anti-VEGF single chain antibody (VEGF scFv) expressed genes are inserted downstream of the CMV promoter, respectively. Details of the inserted antibody expression gene and a virus production method will be described later.
  • FBS fetal bovine serum
  • Antibody anti-human VEGF antibody bevacizumab (trade name: Avastin (registered trademark) was purchased from Chugai. Western blotting antibodies were purchased from Bethyl for goat anti-human IgG-heavy and light chain monkey-absorbed antibodies and from Santa Cruz for donkey anti-goat IgG-HRP conjugated.
  • Antibodies for ELISA include Human VEGF (100-20), Murine VEGF (450-32) and Rabbit anti-Murine VEGF antibody (500-P131) from PeproTech, Goat anti-Human IgG-Fc Fragment Antibody HRP conjugated (A80- 104P) and Goat anti-Rabbit IgG-Fc Fragment Antibody HRP conjugated (A120-111P) were purchased from Bethyl.
  • Antibodies for immunohistochemical staining include rabbit anti-HSV-1 antibody (B0114, polyclonal), HRP-labeled anti-rabbit polymer (K4003) from Dako, rat anti-mouse CD31 antibody (DIA-310, monoclonal) from dianova, rat anti-rat Mouse F4 / 80 antibody (ab6640, monoclonal) was purchased from abcam and Mouse MAX PO (Rat) (414311) was purchased from Nichirei.
  • the antibodies for flow cytometry analysis are Purified Anti-mouse CD16 / 32 Antibody (101301), Pacific Blue anti-mouse CD45 Antibody (103126), APC anti-mouse / human CD11b Antibody (101212), Brilliant Violet 570 anti-mouse Ly -6G / Ly-6C (Gr-1) Antibody (108431) and PE / Cy7 anti-mouse CX3CR1 Antibody (149015) from BioLegend, Rat anti-mouse F4 / 80: RPE Antibody (MCA497PE) from Bio-Rad, I purchased each one.
  • MCA497PE RPE Antibody
  • mice Using the female BALB / cnu / nu mice in the experimental animal postnatal 5-6 weeks (nude mice). Mice were purchased from Nippon Charles River or Japan SLC and bred in a specific pathogen free environment. Animal experiments complied with the “Law on Animal Protection and Management” and followed the University of Tokyo Animal Experiment Implementation Manual of the University of Tokyo Bioscience Committee.
  • T-BAC system is a bacterial artificial chromosome (BAC), a cloning vector based on the F-factor plasmid replicon that can stably hold large DNA fragments of up to 1 million bp in E. coli. It is a technology for producing recombinant HSV-1 that facilitates maintenance and amplification of the G47 ⁇ genome by inserting it into the ICP6 deletion site of the G47 ⁇ genome (Fukuhara, H. et al. (2005). Cancer research, 65, 10663-10668). This T-BAC contains loxP and FRT sequences.
  • BAC bacterial artificial chromosome
  • the recombinase of Cre / loxP and FLP / FRT is mixed with SV-01, which is a shuttle vector plasmid having loxP and FRT sequences.
  • SV-01 is a shuttle vector plasmid having loxP and FRT sequences.
  • Example 1.1 Preparation of Antibody-Expressed cDNA Regarding the cDNA of an anti-human VEGF antibody expression gene, the amino acid sequence of the Fab region of bevacizumab and the amino acid sequence of the human IgG1 Fc region are respectively represented by the international ImMunoGeneTics information system (IMGT) and National Center for Obtained from Biotechnology Information (NCBI) database. Polypeptides corresponding to heavy chain and light chain, respectively, which binds Ig kappa leader sequence and signal peptidase recognition site as a secretion signal to the N-terminal side, are combined with foot-and-mouth disease virus (FMDV) -2A sequence and furin recognition sequence . The amino acid sequence and overall structure are shown in FIG. Finally, Kozak sequence and initiation codon are inserted at the transcription start point, and both ends of the sequence are sandwiched between restriction enzyme sites BamHI and NotI. Requested and produced as one cDNA.
  • IMGT international ImMunoGeneT
  • cDNAs corresponding to these heavy and light chains which are the basic structure of scFv with 4 glycines and 1 serine (Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 12)) They were linked by a linked GS linker, and an Ig kappa leader sequence and a signal peptidase recognition site were linked to the N-terminal side. The amino acid sequence and overall structure are shown in FIG. Finally, a Kozak sequence and an initiation codon were inserted at the transcription start point, and both ends of the sequence were sandwiched between restriction enzyme sites BamHI and NotI to prepare a single cDNA. Regarding the procedures in the following Examples 1.2 to 1.7, only those related to T-BV are shown. TV H V L, and T-sVEGFR1 was prepared as in Example 1.8 below.
  • Example 1.2 Amplification of anti -human VEGF antibody expression gene carrying plasmid (pEX-K-BV) pEX-K-BV (manufactured by Eurofin Genomics Co., Ltd.) (FIG. 6) Dissolve in TE buffer (equivalent to 1 ng), add to One shot DH5 ⁇ -T1 Competent Cell, leave on ice for 30 minutes, heat-treat at 42 ° C for 45 seconds, add SOC medium, and incubate at 37 ° C for 1 hour. Thereafter, the whole amount of the culture solution was spread on an LB agar medium supplemented with kanamycin and cultured at 37 ° C. overnight.
  • Colonies were picked and cultured in kanamycin-added LB medium at 37 ° C. for 8 hours. The pellet was collected by centrifugation, and plasmid DNA was extracted using QIAprep Spin Miniprep Kit (Qiagen).
  • Example 1.3 Insertion of Anti-human VEGF Antibody Expression Gene into Shuttle Vector SV-01 SV-01 was treated with restriction enzymes with BamHI and NotI and treated with CIAP.
  • restriction enzymes with BamHI and NotI
  • CIAP treated with CIAP.
  • the purpose of improving separation is because pEX-K obtained when restriction enzymes are treated with BamHI and NotI, and the size of the anti-human VEGF antibody expression gene is 2,507 bp and 2,261 bp.
  • BglII that cleaves pEX-K almost in the middle was used in combination.
  • a target band was cut out in a UV transilluminator (UVP), and a DNA fragment of the target size was extracted using a QIAquick Gel Extraction Kit (Qiagen).
  • the extracted DNA fragment was mixed with DNA Ligation Kit Mighty Mix (Takara), then mixed with One shot PIR1 Competent Cell, heat-treated, cultured at 37 ° C for 1 hour, and spread on kanamycin-added LB agar medium Incubated overnight at 37 ° C. Colonies were collected and cultured at 37 ° C. for 24 hours in LB medium supplemented with kanamycin.
  • the pellets were collected by centrifugation, and DNA was extracted using QIAprep Spin Miniprep Kit.
  • the extracted DNA was treated with restriction enzymes with BamHI and NotI, and then electrophoresed on a 1% agarose gel to confirm insertion of the anti-human VEGF antibody expression gene into SV-01.
  • Example 1.4 Insertion of SV-01 into T-BAC SV-01 (hereinafter referred to as “BV / SV-01”) in which insertion of an anti-human VEGF antibody expression gene was confirmed was treated with T-BAC and Cre-recombinase. And BV / SV-01 was inserted into T-BAC by Cre-recombination. After ethanol precipitation, mix with ElectroMax DH10B Electrocompetent Cell, place in cuvette, electroporate with Gene Pulse Xcell electroporation system (Bio-Rad) at 1.2 kV, 25 mF, 200 ⁇ , then kanamycin -It culture
  • Gene Pulse Xcell electroporation system Bio-Rad
  • Colonies were collected and cultured in kanamycin-added LB medium at 37 ° C. for 24 hours, and then centrifuged to collect pellets, and BV / SV-01 / T-BAC was extracted with QIAprep Spin Miniprep Kit.
  • Example 1.5 Confirmation of BV / SV-01 / T-BAC Recombination The structure was confirmed by PCR and restriction enzyme treatment. PCR uses BV / SV-01 / T-BAC as a template and forward / reverse primer in ICP6 (ICP6-f1) / LacZ (SV01-r1) or SV-01 (SV01-f1) / LacZ (SV01 -r1) was set, and the insertion of BV / SV-01 was confirmed. T-BAC was placed as a negative control for insertion, and mock (no template DNA) was placed as a negative control for PCR.
  • PCRs were performed using a Veriti thermal cycler (Thermo Fisher Scientific) at 94 ° C for 2 minutes, followed by 25 cycles of "98 ° C 10 seconds ⁇ 57 ° C 30 seconds ⁇ 68 ° C 1 minute 30 seconds" Finally, it was treated at 68 ° C. for 7 minutes.
  • the PCR product was electrophoresed on a 1% agarose gel at 100 V for 25 minutes to confirm the electrophoretic pattern.
  • restriction enzyme treatment BV / SV-01 / T-BAC was subjected to restriction enzyme treatment with HindIII and KpnI and then electrophoresed overnight at 50 V on a 0.6% agarose gel. T-BAC was used as a negative control.
  • Example 1.6 Co-transfection of BV / SV-01 / T-BAC, pOG44 into Vero BV / SV-01 / T-BAC and FLP recombinase expression plasmid pOG44 (Thermo Fisher Scientific) Promega) was added and allowed to stand at room temperature for 15 minutes, and this was added to Vero cells substituted with Opti-MEM, and cultured at 5% CO 2 and 37 ° C. for 3 hours. Thereafter, the cells were cultured overnight in 10% v / v FBS-added DMEM and in 1% v / v heat-inactivated FBS-added DMEM for 72 hours at 5% CO 2 and 37 ° C.
  • Example 1.7 Isolation of single clone by limiting dilution method and purification of virus After co-transfection, 50% cytopathic effect (CPE) was confirmed, and fluorescence microscope BIOREVO (KEYENCE) was used. After confirming that 70-80% of the plaque formed by the virus had disappeared, that is, excision of BAC by FLP, the Vero cells were detached with a cell scraper and the culture broth was removed. It was collected. Centrifugation was performed and phosphate buffer saline (PBS) was added to the pellet. Freezing and thawing were repeated three times, and then ultrasonication was performed to extract intracellular virus. Subsequently, a single virus clone was isolated by limiting dilution.
  • CPE cytopathic effect
  • BIOREVO fluorescence microscope BIOREVO
  • a 96-well plate was seeded with 1 ⁇ 10 4 Vero cells per well, and infected with a virus titer of 0.3 pfu / well. Shake for 5 minutes at room temperature, incubate for 90 minutes at 37 ° C with 5% CO 2 , remove virus solution, add 1% v / v heat-inactivated FBS-added DMEM, and incubate for 6 days at 5% CO 2 at 34.5 ° C Wells in which GFP-negative single plaques were observed were selected for 3 wells per 3 96-well plates, and the whole culture solution was collected. This virus solution was amplified in a 6-well plate and then subjected to limiting dilution again using a 96-well plate. By repeating these series of operations three times in total, a virus that can be finally regarded as a single clone was isolated.
  • the isolated virus was purified. 16 T150 flasks seeded with 1 x 10 7 Vero cells per plate were infected with the isolated virus at MOI 0.01, shaken at room temperature for 5 minutes, then 5% CO 2 at 37 ° C for 90 minutes After incubation, the virus solution was removed, VP-SFM supplemented with L-glutamine (25 mL / flask) was added, and the mixture was cultured at 5% CO 2 and 34.5 ° C. Confirm that it has become CPE, peel off the cells with a cell scraper, collect the whole culture, centrifuge at 800 ⁇ g, collect the pellet, add 16 mL of PBS to suspend, and freeze / thaw three times.
  • the suspension was filtered sequentially with a 0.8 ⁇ m filter and a 0.45 ⁇ m filter, and then slowly and gently layered on a centrifuge tube containing 4 mL of 30% v / v sucrose (Sigma Aldrich) / PBS, and the ultracentrifuge Avanti HP-26XP (Beckman Coulter) using, 4 ° C., and centrifuged 90 min at 24,000 ⁇ g. The pellet was collected and rinsed with 5 mL of cold PBS.
  • Example 1.8 Production of TV H V L and T-sVEGFR1
  • soluble VEGF receptor 1 sVEGFR1
  • sVEGFR1 which is a VEGF inhibitor (Park JE et al (1994) J Biol Chem. Vol. 269 (41): 25646-54) (FIG. 7)
  • VEGFscFv VH-VL
  • T-BAC system single chain anti-VEGF antibody VEGFscFv
  • VEGFscFv protein secreted into the culture supernatant of T-VH-VL cannot be detected by ELISA
  • VEGFscFv with ⁇ chain fused to the C-terminus of VEGFscFv (VH-VL) for detection by ELISA for ⁇ chain T-VEGFscFv (VH-VLCL) into which (VH-VLCL) was inserted was also prepared (FIG. 8).
  • Example 2 Structural confirmation of T-BV by Southern blotting The final product T-BV was confirmed by Southern blotting.
  • Viral DNA was extracted from 150 ⁇ L of purified virus (titer 8.4 ⁇ 10 8 pfu / mL) using QIAamp MinElute Virus Spin Kit (Qiagen), and concentrated by ethanol precipitation. The concentrated DNA was subjected to restriction enzyme treatment with HindIII at 37 ° C. for 16 hours, and electrophoresed on a 0.6% agarose gel at 45 V for 13 hours. After confirming the electrophoresis pattern with a UV transilluminator (UVP), the gel was immersed in 0.25 M hydrochloric acid at room temperature for 20 minutes for depurination.
  • UV transilluminator UV transilluminator
  • denaturing buffer (3 M NaCl, 0.4 M NaOH) was permeated at room temperature for 30 minutes to denature the DNA.
  • Turbo Blotter system GE Healthcare
  • viral DNA fragments were transferred from the gel to a Nytran SPC nylon membrane (GE Healthcare).
  • UV CrossLinker UV irradiation was performed at 254 nm, 120 mJ / cm 2 for 2 minutes, and the DNA was immobilized on a Nytran SPC nylon membrane.
  • Probes were BV / SV-01 treated with BamHI and NotI, SV-01 treated with BglI, and electrophoresed on 0.7% agarose gel at 100 V for 30 minutes, and each band was excised and QIA Quick Gel Extraction DNA was extracted using Kit. Subsequently, DNA was labeled using an AlkPhos Direct Labeling and Detection System with CDP-Star (GE Healthcare) to prepare a BV probe and a LacZ probe, respectively.
  • Hybridization buffer (GE Healthcare) preheated to 55 ° C in a hybridization incubator (Taitec) is sealed in a hybrid bag with Nytran SPC nylon membrane, reacted at 55 ° C for 30 minutes, and then labeled probe was added and hybridization was carried out overnight at 55 ° C.
  • Example 3 Measurement of virus titer
  • the titer of virus used was expressed in terms of plaque forming unit (pfu), and was measured as follows. The titer was measured every time the virus was used in the experiment to confirm that the actual titer would not be significantly different from the expected titer. Vero cells were seeded in 6-well plates at 3.6 ⁇ 10 5 cells / 2 mL 10% FBS-added DMEM / well and cultured overnight at 37 ° C. with 5% CO 2 .
  • a three-stage dilution series of virus was prepared with Dulbecco's phosphate buffered saline (DPBS) (Sigma Aldrich) supplemented with 1% v / v heat-inactivated FBS. Wash plates with 1% v / v heat-inactivated FBS-added DPBS at 1 mL / well, and then add the virus solution diluted in 3 stages to 2 wells at a concentration of 700 ⁇ L / well. Added one by one. The 6-well plate to which the virus solution had been added was shaken at room temperature for 5 minutes and cultured at 5% CO 2 and 37 ° C. for 1 hour.
  • DPBS Dulbecco's phosphate buffered saline
  • Example 4 Examination of cell killing effect of virus in vitro
  • Example 4.1 Examination of cell-killing effect in U87MG cells
  • U87MG cells were seeded in 6-well plates at 2 x 10 5 cells / 2 mL 10% v / v DBS / well with FBS, 5% CO 2 at 37 ° C. Cultured overnight.
  • Each virus, each concentration 3 wells, virus solution or mock (1% v / v v Heat-inactivated FBS-added DPBS) was added at 700 ⁇ L / well.
  • Example 4.2 Examination of cell killing effect in TGS-01 and TGS-04 TGS-01 and TGS-04 TGS-01 and TGS-04 need to be cultured in a serum-free medium in order to maintain stem cell properties. In order to form a floating cell mass (sphere), an evaluation different from that of the adherent cell is required. Therefore, the ratio using tetrazolium compound ([3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H-tetrazolium, inner salt; MTS]) Evaluation was performed in the MTS test in which the number of living cells was measured by a color method.
  • tetrazolium compound [3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H-tetrazolium, inner salt; MTS]
  • the MTS test quantifies the number of viable cells by measuring the absorbance at 490 nm of the colored solution obtained by converting MTS into a chromogenic formazan product by NADPH or NADH in metabolically active cells. This is an evaluation method. In this experiment, measurement was performed using CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay Kit (Promega).
  • Example 5 In Vitro Virus Replication Test Vero cells and U87MG cells were seeded in 6-well plates at 3 x 10 5 cells / 2 mL, 10% v / v FBS-added DMEM / well, 5% CO 2 at 37 ° C overnight. Cultured. Prepare virus dilutions of T-01 and T-BV with a MOI of 0.01 in DPBS with 1% v / v heat-inactivated FBS. Each virus, each concentration 3 well, virus solution or mock (1% v / v heat 700 ⁇ L / well of inactivated FBS-added DPBS) was added.
  • Example 6 Confirmation of expressed protein
  • Example 6.1 Confirmation of Expression Protein by Western Blotting First , a sample was prepared. HEK293T cells are plated in 6-well plates at 8 x 10 5 cells / 2 mL 10% v / v FBS-added DMEM / well, cultured at 5% CO 2 at 37 ° C for 8 hours, then 1.6 ⁇ g BV / SV-01 and the SV-01 were mixed with the transfection reagent FuGENE HD and OptiMEM as a control, was added dropwise into HEK293T cells for 48 hours at 5% CO 2, 37 °C, the BV / SV-01 and SV-01 to HEK293T cells Transfected.
  • the supernatant was collected, filtered through a 0.2 ⁇ m filter, and concentrated by ultrafiltration using Amicon Ultra-15, 10K (Merck Millipore) and stored as a specimen.
  • Avastin registered trademark (Chugai Pharmaceutical Co., Ltd.) was used as a positive control.
  • Polyacrylamide gel electrophoresis was performed by SDS-PAGE in the presence of sodium dodecyl sulfate (SDS) and native PAGE without using SDS.
  • Example 6.1.1 SDS-PAGE 40% w / v-Acrylamide / Bis Mixed Solution (29: 1) 2.4 mL, 1 M Tris / HCl 3 mL, distilled water 2.47 mL, SDS (10% v / v) 80 ⁇ L, APS (10% v / v ) 40 ⁇ L and TEMED 8 ⁇ L were mixed to prepare a 12% separate gel, poured between glass plate sets for gel preparation, overlaid with distilled water from the top, and left for about 20 minutes.
  • Distilled water and 4x loading buffer (0.25 M Tris ⁇ HCl pH 6.8, 8% v / v SDS, 40% v / v glycerol, 20% v / v 2- Mercaptoethanol and 0.2% v / v bromophenol blue) were mixed, boiled at 100 ° C. for 10 minutes, and then rapidly cooled on ice. Samples were loaded into wells, and 10 mA, 250 V, 10 W in the stacking gel and 20 mA, 250 V, 10 W in the separating gel were run at room temperature.
  • PVDF polyvinylidene fluoride
  • transfer buffer 0.048 M Tris, 0.039 M Glysin, 20% v / v methanol, SDS (10%) 100 ⁇ L.
  • Proteins were transferred to PVDF membrane at 100 mA, 60 min using a transblot SD cell (Bio-Rad). After blocking for 50 minutes at room temperature using Blocking One, goat anti-human IgG-heavy and light chain monkey-absorbed antibody (1/2000 dilution) was reacted overnight at 4 ° C. as the primary antibody.
  • HRP donkey anti-goat IgG-horseradish peroxidase conjugated
  • Example 6.1.2 native PAGE As the gel, precast gel NativePAGE Novex 3-12% Bis Tris Gels (Thermo Fisher Sientific) was used. After the gel is set in the electrophoresis tank, the anode buffer (0.05 M BisTris, 0.05 M Tricine) is used in the anode tank, and the cathode buffer (0.05 M BisTris, 0.05 M Tricine, NativePAGE Cathode Additive (Thermo) is used in the cathode tank. Fisher Scientific) was poured in. Distilled water and 4x NativePAGE Sample Buffer (Thermo Fisher Scientific) were mixed so that the amount of protein to be loaded was unified at 500 ng.
  • Thermo Fisher Scientific 4x NativePAGE Sample Buffer
  • Donkey anti-goat IgG-HRP conjugated (1/2000 dilution) is reacted as an antibody at room temperature for 2 hours.
  • Pierce Western Blotting Substrate Plus (40: 1) (Thermo Fisher Scientific) is reacted at room temperature for 5 minutes. Taken with LAS4000.
  • Recombinant Human VEGF 165 50 ng / 100 ⁇ L of Recombinant Human VEGF 165 (Peprotech) was placed in a microtiter well and reacted at room temperature for 1 hour to immobilize the antigen. After washing 5 times with ELISA Wash Solution 100 ⁇ L / well, 200 ⁇ L / well of Blocking Solution was added and blocking was performed at room temperature for 30 minutes. After washing 5 times with ELISA Wash Solution 200 ⁇ L / well, 100 ⁇ L / well of standard and specimen were added and reacted at room temperature for 1 hour.
  • Example 7 Confirmation of function of T-BV expressing antibody Using HUVEC-2, vascular endothelial cell lumen formation test and vascular endothelial cell migration test were performed to confirm the VEGF inhibitory effect of the protein expressed by T-BV. It was. First, a sample was prepared. After confirming that the expression level of VEGF from Vero cells was almost the same as that of U87MG cells, Vero cells were used for specimen preparation.
  • Vero cells are seeded at 8 x 10 6 cells in a T150 flask, cultured at 37 ° C under 5% CO 2 for 8 hours, and then T-01, T-BV, mock (1% v / v heat-inactivated FBS-added DPBS ) At a MOI of 0.2, shaken at room temperature for 5 minutes, and cultured at 37 ° C., 5% CO 2 for 1 hour. The virus solution was removed, the medium was replaced with 15 mL of DMEM, and the cells were further cultured at 37 ° C. and 5% CO 2 for 3 days. The supernatant was collected, ultrafiltered with Amicon Ultra-15, 10K, and concentrated 40 times.
  • Example 7.1 Vascular Endothelial Cell Tube Formation Test BD BioCoat Angiogenesis System-Endothelial Cell Tube Formation (BD Bioscience) was used. BD BioCoat Angiogenesis Plate was lysed at 4 ° C. 24 hours before cell seeding, and then seeded with 2 ⁇ 10 4 cells / well of HUVEC-2.
  • HBSS Hanks' Balanced Salt Solution
  • Example 7.2 Vascular Endothelial Cell Migration Test BD BioCoat Angiogenesis System-Endothelial Cell Migration (BD Bioscience) was used. HUVEC-2 was seeded at 1 x 10 5 cells / well in the upper chamber, and the lower well was added to 3 groups with 19 ⁇ L of the prepared sample, and Avastin® was added to mock 19 ⁇ L as a positive control. Evaluation was performed in a total of 6 groups, 2 groups added with 380 pg / 19 ⁇ L or 380 ng / 19 ⁇ L (each, pc1, pc2) and a group without addition of cell culture supernatant as a negative control. Three wells were performed for each group.
  • Example 8 Confirmation of Cross-Species Crossability of T-BV Expressed Antibody First , a specimen was prepared. HEK293T cells were seeded at 6 x 10 6 cells in a T150 flask, incubated at 37 ° C, 5% CO 2 for 8 hours, infected with T-BV at MOI 3, shaken at room temperature for 5 minutes, then 37 ° C, 5% Incubated with CO 2 for 1 hour. After removing the virus solution and adding 15 mL of VP-SFM and further culturing for 15 hours, the supernatant was recovered and concentrated 20 times by ultrafiltration. As primary antibodies, T-BV infection supernatant concentrate, Avastin (registered trademark) and rabbit anti-mouse VEGF antibody were used.
  • the Fc portion is derived from human for T-BV infection supernatant concentrate and Avastin (registered trademark)
  • anti-human IgG-Fc antibody is used
  • rabbit anti-mouse VEGF antibody anti-rabbit IgG is used.
  • -Fc antibodies were detected using each. Based on the ELISA performed on the cell supernatant concentrate prepared above, the anti-human VEGF antibody concentration was 8.85 ng / mL, and the positive controls were Avastin (registered trademark) and anti-mouse VEGF antibody concentrations of 8.85 ng. Two levels were set: / mL and 0.885 ng / mL. As a negative control, VP-SFM was used.
  • the negative control is 2 for each well on which each VEGF is immobilized.
  • a crossover reaction system for reacting types of secondary antibodies was set up.
  • the ELISA kit used was ELISA Starter Accessory Kit (Bethyl). Human VEGF or mouse VEGF was added to micro titer wells at 50 ng / 100 / ⁇ L / well, and reacted at room temperature for 1 hour to immobilize the antigen. After washing 5 times with ELISA Wash Solution 100 ⁇ L / well, ELISA Blocking Solution 200 ⁇ L / well was added and blocking was performed at room temperature for 30 minutes. After washing 5 times with ELISA Wash Solution 200 ⁇ L / well, each sample was put in 100 ⁇ L / well and allowed to react at room temperature for 1 hour.
  • each secondary antibody (diluted 1/100000) was added in an amount of 100 L / well and allowed to react at room temperature for 1 hour.
  • ELISA Wash Solution add 100 ⁇ L / well of TMB Substrate, react for 15 minutes under light shielding, add 100 ⁇ L / well of Stop Solution, and use a 96-well plate reader AD200 to add 450 The absorbance at nm was measured.
  • Example 9 Animal experiment The virus solution used for the treatment in the animal experiment was PBS with 10% sterilized filter-sterilized glycerol, and the cell suspension was DMEM / F12 (1: 1 for TGS). ), DMEM was used in other cell lines.
  • DMEM DMEM was used in other cell lines.
  • 1% v / v heat-inactivated FBS-added DPBS was added to Vero cells in place of the virus solution during purification, and the subsequent procedure was administered in the same manner as the virus.
  • anesthesia by intraperitoneal injection of ketamine (Daiichi Sankyo) and xylazine (Bayer) or inhalation of isoflurane (Pfizer) was used.
  • Example 9.1 Examination of antitumor effect Example 9.1.1 Intratumoral administration experiment of virus in subcutaneous tumor model 2 x suspended in 50 ⁇ L DMEM in the left flank of BALB / c nu / nu mice under general anesthesia by intraperitoneal administration of ketamine and xylazine 10 6 cells of U87MG cells were transplanted subcutaneously using a 26 G needle. Tumor measurement was performed at a frequency of 2 to 3 times a week using calipers, and the tumor volume was calculated as tumor major axis ⁇ minor axis ⁇ thickness (mm 3 ). After confirming that the tumor diameter was 6 mm larger, each treatment group was randomly divided into 10 groups, and then intratumoral administration of the virus was performed.
  • the puncture site is 2 mm to the right outer side from the bregma and 1 mm forward, and a vertical skin incision of about 4 mm in length is made directly above this, and after the periosteum has been peeled off, the puncture needle is placed in the brain. After proceeding to a depth of 3 mm from the table, the cell suspension was injected over 2 minutes, held for 5 minutes, and then the puncture needle was removed over 2 minutes. The skin was sutured with 5-0 bicyclyl (Johnson & Johnson). For TGS-01 and TGS-04, 1 ⁇ 10 5 cells suspended in 2 ⁇ L of DMEM were transplanted into the right frontal lobe using the same procedure.
  • Example 9.2 Examination of swelling suppression effect Example 9.2.1 Magnetic Resonance Imaging (MRI)
  • Example 9.2.1.1.1 Preparation of intracerebral tumor model using various human brain tumor cell lines and intratumoral administration of virus
  • U87MG, U251MG , NMC-G1, TGS-01, 1123 / M were used to create a tumor model in the brain of BALB / c nu / nu mice, and the test was performed using U87MG, which was the easiest to visualize tumors using MRI. It was. Number of transplanted cells: 2 ⁇ 10 5 (cells), virus administration date: 12 days after tumor implantation, virus dose: 1 ⁇ 10 6 (pfu).
  • Tumor cell transplantation was performed in the right frontal lobe by the same method as described above. After confirming that the tumor was of a size suitable for virus administration by MRI, intratumoral administration was performed in the same manner as described above.
  • intratumoral administration was performed in the same manner as described above.
  • T-01 and Avastin (registered trademark) combination group T + A group; Avastin (registered trademark) 5 mg / kg administered intraperitoneally for 5 consecutive days after intratumoral administration of T-01
  • T1WI contrast agent Magnevist
  • T2WI and T1WI were imaged on all individuals the day before that, and individuals with a size and shape suitable for intratumoral administration of the virus were selected. Later, they were randomly divided into mock and virus treatment groups. MRI was also imaged in the same imaging phase 2, 4 and 6 days after virus administration (post inoculation day (PID) 2, 4, 6).
  • Example 9.2.1.3 Evaluation of Swelling Area Using the DICOM image processing free software Osirix, the captured image was measured for the area of the high signal area at T2WI and the contrast area at T1WI (CE). Regarding the area of the high signal area (mm 2 ) in each of T2WI and T1WI (CE), the images taken on the day before the virus administration were S 2p and S 1p , respectively, and the images taken on the nth day after the virus administration were S 2n , S 1n, and swelling (edema) around the tumor was calculated as a relative value by (S 2n / S 2p ) ⁇ (S 1n / S 1p ).
  • Example 9.2.2.1 Preparation of U87MG Intracerebral Tumor Model and Intratumoral Administration of Virus 2 ⁇ suspended in 2 ⁇ L of DMEM in the right frontal lobe of BALB / c nu / nu mice in the same manner as described above. 10 5 cells of U87MG cells were transplanted. After 10 days after tumor transplantation, each treatment group was randomly divided into 6 mice, and then 1 x 10 6 pfu / 5 ⁇ L of T-01, T-BV, or mock was intratumorally administered in the same manner as described above did. T + A group was set as a positive control.
  • Example 9.2.2.2 RT-qPCR All mice were euthanized to PID6, the right frontal lobe containing the tumor was excised, and RNA was extracted using RNeasy Plus Mini Kit (Qiagen). Subsequently, cDNA was prepared from this RNA using the reverse transcriptase ReverTra Ace qPCR RT master mix (Toyobo). PCR primers were Taqman Gene Expression Assays mouse AQP4 primer (Mm — 00802131_m1) and mouse ⁇ -actin primer (Mm — 02619580_g1), and a 7500 Fast real-time PCR system (Thermo Fisher Scientific) was used. Data analysis was calculated using a cycle comparison method using mouse ⁇ -actin as a reference gene.
  • 2 x 10 suspended in 2 ⁇ L of DMEM in the right frontal lobe of BALB / c nu / nu mice 5 cells of U87MG cells were transplanted.
  • 1 x 10 6 pfu / 5 ⁇ L of T-01, T-BV, TV H V L 10 days after tumor implantation when MRI confirmed that the tumor was of a size suitable for virus administration
  • mock was administered intratumorally in the same manner as described above.
  • MRI imaging method, timing, and evaluation of swelling were carried out in the same manner as the experiment for confirming the effect of suppressing T-BV swelling.
  • Example 9.3.1.1 Preparation of U87MG intracerebral tumor model and intratumoral administration of virus, preparation of preparation Suspended in 2 ⁇ L of DMEM in the right frontal lobe of BALB / c nu / nu mice in the same manner as described above. 2 ⁇ 10 5 cells of U87MG cells were transplanted. Ten days after tumor transplantation, each treatment group was divided into 6 mice, and 1 ⁇ 10 6 pfu / 5 ⁇ L of T-01, T-BV, or mock was intratumorally administered in the same manner as described above.
  • T + A group was set, and Avastin (registered trademark) 5 mg / kg was administered every day from virus administration day to euthanasia.
  • Avastin registered trademark
  • the brain was removed and fixed by infiltrating with neutral buffered formaldehyde (10) (Sigma-Aldrich) for 24 hours.
  • paraffin block with Paraffin embedding block preparation device Tissue-Tek TEC Plus Serial sections were prepared by slicing the tumor center at a thickness of 4 ⁇ m.
  • Example 9.3.1.2 The immunohistochemical staining preparation was stretched overnight on a spreader at 43 ° C. and dried, then immersed in xylene for 30 minutes for deparaffinization, 100% ethanol, 90% v Hydrophilic treatment was performed by immersing in / v ethanol and 70% v / v ethanol for 10 minutes each. After washing with distilled water, antigen activation treatment was performed by a microwave method, and endogenous peroxidase was blocked using Peroxidase-Blocking Solution (Dako). After washing with Tris-HCl Buffer Saline (TBS) for 10 minutes, blocking was performed by immersing in 1.5% v / v Normal Goat Serum (Vector Laboratories) for 15 minutes at room temperature.
  • TBS Tris-HCl Buffer Saline
  • the primary antibody reaction was performed at room temperature for 1 hour with the following antibodies and dilution ratio.
  • Anti-HSV-1 antibody (1: 2000), anti-mouse CD31 antibody (1:40), anti-mouse F4 / 80 antibody (1: 2000).
  • 1.5% v / v Normal Goat Serum was used.
  • the secondary antibody reaction was performed at room temperature for 30 minutes using HRP-labeled anti-rabbit polymer or Mouse MAX PO (Rat). After washing with TBS for 10 minutes, detection was performed by immersing in DAB Substrate Kit (Vector Laboratories).
  • Example 9.3.2.1 Preparation of U87MG intracerebral tumor model and intratumoral administration of virus
  • each treatment group was divided into 9 groups, and for virus administration, 1 x 10 6 pfu / 5 ⁇ L of T-01, T-BV, or mock was treated in the same manner as described above. It was administered internally.
  • a T + A group was set, and Avastin (registered trademark) 5 mg / kg was administered every day until the euthanasia for a maximum of 5 days from the virus administration day.
  • Naural tissue dissociation kit Miltenyi Biotec
  • gentleMACS Octo Dissociator Miltenyi Biotec
  • the sample was suspended in 1 mL.
  • 2 ⁇ L of anti-mouse CD16 / 32 antibody was added and reacted on ice for 5 to 10 minutes to block nonspecific binding of the antibody via the Fc receptor.
  • the amount of antibody added per 100 ⁇ L of specimen was determined as follows.
  • Anti-CD45 antibody 0.5 ⁇ L
  • anti-CD11b antibody 1 ⁇ L
  • anti-F4 / 80 antibody 5 ⁇ L
  • anti-Gr-1 antibody 0.5 ⁇ L
  • anti-CX3CR1 antibody 0.5 ⁇ L
  • Macrophages are CD45 positive, CD11b positive, and F4 / 80 positive populations.
  • M1 can be separated as Gr-1 high CX3CR1 low and M2 can be separated as Gr-1 low CX3CR1 high .
  • the CD45 positive fraction is developed in a two-dimensional plot with CD11b and F4 / 80.
  • M1 macrophages and M2 macrophages were separated by developing a two-dimensional plot with Gr-1 and CX3CR1. For each of M1 and M2, the proportion of CD45 positive cells was calculated, and the ratio of M1 / M2 was calculated to evaluate the M1 / M2 shift status of macrophages.
  • Example 9.3.2.3 Virus replication test and measurement of virus titer (in vivo)
  • U87MG cells were subcutaneously transplanted into mice to form tumors. About 20 days after the tumor transplantation, it was confirmed that the tumor diameter was about 6 mm, and each treatment group was randomly divided into 12 mice, and the virus was administered in the same manner as described above.
  • Administration was intraperitoneal administration (T + A) of 1 ⁇ 10 6 pfu of T-01, T-BV, mock or T-01 + Avastin®.
  • T + A Avastin (registered trademark) was intraperitoneally administered for 5 days in an amount of 5 mg / kg body weight (administration started immediately before virus inoculation).
  • Example 9.4.1 Confirmation of antibody expression at the local administration site after administration of T-BV for subcutaneous tumor model 50 ⁇ L DMEM was suspended in the left flank of BALB / c nu / nu mice. 2 ⁇ 10 6 cells of U87MG cells were transplanted. When the tumor diameter became 5 mm larger, each group was randomly divided into 9 groups of T-01, T-BV, and mock groups, and 2 x 10 6 pfu / 20 ⁇ L of T-01 and T-BV A single dose was administered intratumorally.
  • ELISA was performed using wells in which human VEGF was immobilized in the same manner as described above, and a standard serially diluted Avastin (registered trademark) was used. Absorbance at 450 nm was measured with a 96-well plate reader, a calibration curve was drawn using image processing free software ImageJ based on the standard, and the anti-human VEGF antibody concentration in the sample was calculated.
  • Example 9.4.2 Confirmation of blood concentration of expressed antibody after administration of virus in intracerebral tumor model
  • the blood concentration of anti-human VEGF antibody expressed was measured by ELISA. Measured with In the same manner as described above, 2 x 10 5 cells of U87MG cells suspended in 2 ⁇ L of DMEM were transplanted into the right frontal lobe of BALB / c nu / nu mice, and T-01 group, T-BV 10 days after tumor transplantation After grouping into 6 groups each, T + A group and mock group, 1 ⁇ 10 6 pfu / 5 ⁇ L of T-01, T-BV or mock was administered intratumorally for virus administration.
  • Avastin registered trademark 5 mg / kg was administered once intraperitoneally on the day of virus administration. Intravenous blood was collected from 3 mice in each group for PID 1 and 3, and the VEGF concentration in the serum was measured by ELISA.
  • Example 10 TV H V L, and T-sVEGFR1, the TV H V L, and T-sVEGFR1 prepared in Example 1.8, were evaluated as follows.
  • Example 10.1 Measurement of virus titer Vero cells were seeded on a 6-well plate at 3.6 ⁇ 10 5 cells / well and cultured under conditions of 37 ° C. and 5% CO 2 . After 16 hours, after washing with PBS supplemented with 1% heat-inactivated FBS (1% IFBS), a 10-fold diluted series of virus solution was added and cultured under conditions of 37 ° C. and 5% CO 2 .
  • the virus solution was removed, 1% IFBS-added DMEM supplemented with 0.1% human immunoglobulin was added as a medium, and the cells were cultured under conditions of 34.5 ° C. and 5% CO 2 .
  • the cells were washed with PBS and fixed with methanol. After drying, it was stained with Giemsa solution diluted 20-fold with distilled water, washed and dried, and the number of plaques was counted under a microscope to calculate the virus titer (pfu / ml).
  • Example 10.2 Confirmation of structure of viral DNA by Southern blotting
  • the viral DNA was extracted from the purified virus using the QIAamp DNA Mini Kit (QIAGEN, Netherlands) according to the manufacturer's protocol, and then the restriction enzyme was used using Kpn I. Processed. After electrophoresis for 16 hours at a voltage of 35 V using a 0.6% agarose gel, the viral DNA was transferred to a nylon membrane (Turbo Blotter, Whatman, US).
  • Probes were prepared by labeling the DNA fragments of sVEGFR1 and VEGFscFv with alkaline phosphatase (AlkPhos Direct with CDP-Star, GE Healthcare, USA), and hybridized with the membrane to which the DNA was transcribed, and AlkPhos Direct with CDP-Star. (GE Healthcare, USA).
  • Example 10.3 Confirmation of VEGF inhibitor protein expression of T-sVEGFR1 and T-VEGFscFv (in vitro) Human sVEGF-R1 / FLT-1 ELISA Kit (BioVendor, USA) was used to confirm soluble VEGFR1 protein expressed when cells were infected with T-sVEGFR1. Human Kappa ELISA Kit (Bethyl Laboratories, USA) was used to confirm the single-chain anti-VEGF antibody. Vero cells were seeded on a 6-well plate at 3 ⁇ 10 5 cells / well and cultured under conditions of 37 ° C. and 5% CO 2 .
  • the cells were washed with PBS supplemented with 1% IFBS, infected with T-01, T-sVEGFR1 or T-VEGFscFv at a multiplicity of infection (MOI) of 0.5, and cultured under conditions of 37 ° C. and 5% CO 2 .
  • Mock negative control added 1% IFBS-added PBS instead of the virus solution.
  • the virus solution was removed, 1% IFBS-added DMEM was added, and the cells were cultured at 37 ° C. under 5% CO 2 conditions. After 48 hours, the culture supernatant was collected and measured by ELISA according to the manufacturer's protocol.
  • Example 10.4 Vascular endothelial cell tube formation test (in vitro) The vascular endothelial cell tube formation test was performed using BD BioCoat TM Angiogenesis System-Endothelial Cell Tube Formation (BD Bioscience, USA). Vero was seeded in a T-150 flask at 1 ⁇ 10 7 cells, and cultured under conditions of 37 ° C. and 5% CO 2 . After 16 hours, T-01, T-sVEGFR1 or T-VEGFscFv was infected with MOI 0.2 and cultured under conditions of 37 ° C. and 5% CO 2 . After 90 minutes, the virus solution was removed, DMEM (without serum) was added, and the cells were cultured under conditions of 37 ° C.
  • DMEM without serum
  • Example 10.5 Vascular endothelial cell migration test (in vitro) Vascular endothelial cell migration test was performed using BD BioCoat TM Angiogenesis System-Endothelial Cell Migration (BD Bioscience, USA). Vero cells were seeded in a T-150 flask at 1 ⁇ 10 7 cells and cultured under conditions of 37 ° C. and 5% CO 2 . After 16 hours, T-01, T-sVEGFR1 or T-VEGFscFv was infected with MOI 0.2 and cultured under conditions of 37 ° C. and 5% CO 2 . After 90 minutes, the virus solution was removed, DMEM (without serum) was added, and the cells were cultured under conditions of 37 ° C. and 5% CO 2 .
  • the culture supernatant was collected, and human immunoglobulin was added to 50 ⁇ g / ml to inactivate the virus.
  • the collected culture supernatant was ultrafiltered with Amicon® Ultra-15 10K and concentrated 40 times.
  • the upper chamber was seeded with HUVEC at 1 ⁇ 10 5 cells / well. Further, 19 ⁇ l of culture supernatant concentrated per well and 731 ⁇ l of Medium 200 supplemented with 1% LSGS were added to the lower 24-well plate.
  • 750 ⁇ l of Bevacizmab added to Medium 200 supplemented with 1% LSGS to 4 ⁇ g / ml was added to each well.
  • HUVEC was fluorescently stained with calcein AM solution. After each well was photographed using BIOREVO (KEYENCE, Osaka), fluorescence intensity was measured at 494/517 nm, and HUVEC that migrated to the lower well through the membrane in the upper chamber was evaluated.
  • BIOREVO BIOREVO
  • Example 10.6 Virus replication test (in vitro) HT-29 was seeded on a 6-well plate at 4 ⁇ 10 5 cells / well and cultured under conditions of McCoy's 5A (Modified) supplemented with 10% FBS at 37 ° C. and 5% CO 2 . After 16 hours, the cells were washed with PBS containing 1% IFBS, infected with T-01, T-sVEGFR1 or T-VEGFscFv at a MOI of 0.01, and cultured at 37 ° C. under 5% CO 2 conditions. After 1 hour, the virus solution was removed, 1% IFBS-added McCoy's 5A (Modified) was added, and the cells were cultured under conditions of 37 ° C. and 5% CO 2 . After 24 and 48 hours, the cells were scraped with a cell scraper, and the titer of the virus recovered together with the supernatant was measured.
  • McCoy's 5A Modified
  • Example 10.7 Examination of cell killing effect of virus (in vitro) HT-29 was seeded on a 6-well plate at 2 ⁇ 10 5 cells / well and cultured under conditions of 37 ° C. and 5% CO 2 . After 16 hours, the cells were washed with PBS supplemented with 1% IFBS, infected with T-01, T-sVEGFR1 or T-VEGFscFv at MOI 0.1 and 0.01, and cultured under conditions of 37 ° C. and 5% CO 2 . Mock added PBS containing 1% IFBS instead of the virus solution.
  • Example 10.8 Examination of VEGF expression level in HT-29 cell line and CT26 cell line Seed HT-29 or CT26 in a 6-well plate at 3 ⁇ 10 5 cells / well, and under conditions of 37 ° C and 5% CO 2 , HT-29 was added with 1% IFBS McCoy's 5A (Modified), CT26 was cultured in RPMI1640 supplemented with 1% IFBS. After 48 hours, collect the culture supernatant and quantify VEGF in the supernatant using Human VEGF Quantikine ELISA Kit (R & D Systems, USA) for HT-29 and Mouse VEGF Quantikine ELISA Kit (R & D Systems, USA) for CT26. did.
  • Example 10.9 Examination of anti-tumor effect on HT-29 subcutaneous tumor model BALB / c nu / nu (5 weeks old, female, SLC, Shizuoka) was given a general anesthesia by intraperitoneal administration of xylazine and ketamine, 1 ⁇ 10 6 cells / 50 ⁇ l McCoy's 5A (Modified) (without serum) was administered to each mouse subcutaneously on the left flank. 14 days after tumor diameter reached 5 mm, Day 0, mice were randomly divided into 4 groups, T-01, T-sVEGFR1, T-VEGFscFv or Mock 1 ⁇ 10 6 pfu / 20 ⁇ l per tumor Was administered intratumorally.
  • Example 10.10 CD31 immunohistochemical staining of HT-29 subcutaneous tumor model BALB / c nu / nu (5 weeks old, female, SLC, Shizuoka) was subjected to general anesthesia, and one mouse was subcutaneously subcutaneously on the left flank of mice.
  • HT-29 was administered at 1 ⁇ 10 6 cells / 50 ⁇ l McCoy's 5A (Modified) (no serum). 14 days later was designated as Day 0, and the mice were randomly divided into 4 groups, and T-01, T-sVEGFR1, T-VEGFscFv or Mock was administered into 1 ⁇ 10 6 pfu / 20 ⁇ l tumor per mouse. The virus was similarly administered on Day 3.
  • mice On Day 3 (before the second virus administration) and Day 7, the mice were euthanized by cervical dislocation, and the subcutaneous tumor tissue was excised and fixed in formalin. After 24 hours, the fixed tissue was washed with PBS and embedded in paraffin. A 4 ⁇ m thick paraffin section was treated with a 200-fold diluted immunosaver (Nisshin EM Co., Ltd., Tokyo) at 98 ° C. for 45 minutes to activate the antigen. After blocking with 2% Normal Goat Serum / TBS, rabbit anti-CD31 antibody (abcam, UK) is diluted 50-fold with 2% BSA / TBS as the primary antibody and reacted with tissue sections for 1 hour.
  • EnVision + System-HRP Labeled Polymer Anti-Rbbit (Dako, Denmark) was reacted for 30 minutes, and antibodies were detected with DAB Substrate kit (Vector laboratories, Burlingame, CA). Tumor angiogenesis was assessed by microvessel density within the tumor. According to the paper by Weidner N et al. (19), the microvessel density was defined as the average number of microvessels per visual field using a microscope ( ⁇ 20) of tissue sections, and no tissue sections were obtained using Nanozoomer (HAMAMATSU, Shizuoka). The images were taken at 10 locations, and the results of counting CD31 positive cells were averaged.
  • Example 10.11 Quantification of viral DNA by Real Time Quantitative Polymerase Chain Reaction (PCR) BALB / c nu / nu (5 weeks old, female, SLC, Shizuoka) was subjected to general anesthesia and 1 mouse was subcutaneously applied to the left abdomen.
  • HT-29 cells per mouse were administered at 1 ⁇ 10 6 cells / 50 ⁇ l McCoy's 5A (Modified) (no serum).
  • Day 0 was set, mice were randomly divided into 4 groups, and T-01, T-sVEGFR1, T-VEGFscFv or Mock was administered into 1 ⁇ 10 6 pfu / 20 ⁇ l tumor per mouse.
  • mice were euthanized by cervical dislocation, subcutaneous tumors were excised and stored frozen at -80 ° C. Later, thawed, homogenized with PBS, and viral DNA was extracted using the QIAamp DNA Mini Kit according to the manufacturer's protocol.
  • primers and probes for detecting HSV-1 DNA the following ones designed for the region of the gene encoding HSV-1 DNA polymerase were used.
  • HSV DNApoly-F 5'-GGCACGCGGCAGTACTTT-3 '(SEQ ID NO: 27)
  • HSV DNApoly-R 5'-CCATGCGCTCGCAGAGA-3 '(SEQ ID NO: 28)
  • HSV DNApoly-T 5'-AGGTCGACAGGCACCTACAATGCCG-3 'TAMRA (Reporter dye: FAM) (SEQ ID NO: 29)
  • FAM Reporter dye: FAM
  • SEQ ID NO: 29 For Real Time Quantitative PCR, TaqMan Fast Universal PCR Master Mix (2 ⁇ ) (Applied Biosystems, USA) was used. Quantification of the viral genome copy number is based on the creation of a plasmid containing the gene sequence encoding HSV-1 DNA polymerase, a dilution series of the DNA, and a calibration curve. It was measured.
  • Example 10.12 Examination of anti-tumor effect on CT26 subcutaneous tumor model BALB / c (5 weeks old, female, SLC, Shizuoka) was given a general anesthesia by intraperitoneal administration of xylazine and ketamine, and the mouse was subcutaneously in the left abdomen. Per mouse was administered 1 ⁇ 10 5 cells / 50 ⁇ l RPMI1640 (without serum) of CT26 derived from BALB / c. 10 days after the tumor diameter reached 5 mm was set as Day 0, the mice were randomly divided into 4 groups, and T-01, T-sVEGFR1, T-VEGFscFv and Mock were 1 x 10 6 pfu / 20 ⁇ l per mouse It was administered intratumorally.
  • the virus was similarly administered on Day 3 three days after the first virus administration.
  • the antibody gene of the production strain it is a humanized anti-human VEGF monoclonal antibody prepared by humanizing the framework region (FR) while keeping the complementarity determining region (CDR) involved in antigen specificity.
  • Efficient antibody production from cDNA requires the expression of equal amounts of heavy and light chains, so in the amino acid sequence design, the polypeptides corresponding to the heavy and light chains should be And the method of couple
  • the sequence information of the cDNA of the anti-human VEGF antibody expression gene and the cDNA of the VEGF scFv expression gene prepared from the amino acid sequences is shown in FIGS. 9 and 10, respectively.
  • proteins are reduced and disulfide bonds are cleaved before migrating.
  • antibody heavy chains and the disulfide bonds that connect the heavy and light chains are cleaved. 50 kDa) and two bands corresponding to the light chain (25 kDa) are detected.
  • native PAGE proteins are run undenatured, so they can be run with higher order structure, and only one band corresponding to tetramer (150 kDa) is detected.
  • protein expression from the prepared cDNA was analyzed by performing these two types of PAGE.
  • T-BV structure confirmation (result of Example 2)
  • the final product T-BV was confirmed by Southern blotting using DNA extracted from the virus.
  • a DNA probe (BV probe) corresponding to the inserted anti-human VEGF antibody expression gene and a probe corresponding to the LacZ gene region (LacZ probe) were used.
  • BV probe DNA probe
  • LacZ probe probe corresponding to the LacZ gene region
  • T-BV expression antibody evaluation Result IIa Quantification of T-BV expression antibody (result of Example 6.2)
  • ELISA against anti-human VEGF antibody was performed using the virus-infected cell culture supernatant of Vero cells and U87MG cells.
  • the T-01 and mock culture supernatants were both below the detection limit, whereas T-BV-infected culture supernatants were each 256 pg / mL, 69 pg / mL of anti-VEGF antibody was detected (FIG. 12).
  • the amount of antibody expression of T-BV in vivo was quantified.
  • U87MG subcutaneous tumor prepared in the left flank of BALB / c nu / nu mice was divided into 9 groups each in T-01, T-BV and mock groups, then 2 x 10 6 pfu Was administered once into the tumor. Subcutaneous tumors were removed from each group of 3 mice in PID2, 4, and 6, and the anti-human VEGF antibody contained therein was quantified by ELISA.
  • PID2 is 186.2 pg / mL, 44.0 pg / mL, 38.8 pg / mL
  • PID4 is 93.4 pg / mL, 19.6 pg / mL, and 41.4 pg / mL, respectively.
  • vascular endothelial cell tube formation test is formed by utilizing the phenomenon that angiogenesis stimulating factors such as VEGF induce tube formation of vascular endothelial cells in the Matrigel basement membrane matrix uniformly coated in the plate. This is an experimental method used to screen for angiogenesis stimulating factors by quantifying the length of the tube.
  • the total lumen length ( ⁇ m) is 817, 26,558, 16,408, 1,117, 24,267, 7,358 in the order of nc, mock, pc1, pc2, T-01, and T-BV.
  • the vascular endothelial cell migration test utilizes the phenomenon that vascular endothelial cells migrate toward angiogenesis stimulating factors such as VEGF, and one of two compartments separated by a membrane uniformly coated with human fibronectin, such as VEGF
  • angiogenesis stimulating factors such as VEGF
  • VEGF angiogenesis stimulating factors
  • VEGF vascular endothelial growth factor
  • the fluorescence intensity for nc is 2.76, 2.63, 0.62, 2.85, 1.77 in the order of mock, pc1, pc2, T-01, T-BV, and T-BV is HUVEC compared to T-01.
  • T-BV was considered to have almost the same replication ability as T-01 (FIG. 18). This is because the tumor cells are destroyed in the process of virus replication, and the target protein is expressed from the therapeutic gene along with the replication. Is important.
  • TGS-01 and TGS-04 intracerebral tumor models were prepared, and 2 x 10 6 pfu T-01, T-BV or mock were added to each group.
  • AQP4 after virus administration by Vd RT-qPCR (results of Example 9.2.2)
  • AQP was found in 1992 and is a membrane protein that selectively permeates water molecules.
  • 13 types from AQP0 to AQP12 have been reported. Structurally, most of them are 6-pass membrane proteins composed of 300 amino acids or less, and the NPA box called asparagine (N) -proline (P) -alanine (A) is preserved in two places. It is characterized by the presence of high parts. This portion is highly hydrophobic and is folded into the membrane without penetrating the membrane to form a water molecule passage hole.
  • AQP1 AQP3, AQP4, AQP5, AQP8, AQP9, AQP11, AQP12 and many other types of AQP are expressed in the brain. It is considered that it is involved in the movement of water at the blood brain barrier.
  • AQP4 has been reported to be strongly related to the development of brain edema, and is likely to be involved in the development of brain edema at an early stage. Therefore, for the purpose of quantifying the change in swelling after virus administration, RT-qPCR for mouse AQP4 was quantified using the right frontal lobe of a U87MG intracerebral tumor model after virus administration.
  • T-01, T-BV, T + A mock group for U87MG brain tumor model, extract right frontal lobe from PID6, extract RNA, and create cDNA using reverse transcriptase Quantitative PCR was performed using Taqman primers for mouse AQP and mouse ⁇ -actin.
  • AQP4 expression was significantly increased in T-01 group compared to mock group (p ⁇ 0.001), and AQP4 expression was significantly increased in T-BV group and T + A group compared to T-01 group It was decreased (p ⁇ 0.001) (FIG. 25). From these results, it was considered that brain swelling was reduced by T-BV administration or T-01 combined with Avastin (registered trademark) systemic administration. From the results of RT-qPCR for MRI and AQP4, it was shown that T-BV has a swelling-inhibiting effect equivalent to that of systemic administration of Avastin (registered trademark) with respect to swelling after virus administration to brain tumors.
  • mice CD31 staining confirmed viral infection of the tumor, followed by mouse CD31 staining as an angiogenesis evaluation and mouse F4 / 80 staining as an infiltration macrophage evaluation. It was. Regarding mouse CD31 staining, in the mock group, the shape and distribution of blood vessels were uniform, whereas in the virus administration group, the blood vessel diameter was thick and showed non-uniform distribution.
  • the blood vessel density tended to be higher in the virus-administered group compared to mock, but no significant difference or trend was observed between the virus-administered groups. Similarly, no clear inhibition of angiogenesis was observed in TV H V L. In the evaluation of infiltrating macrophages, macrophage infiltration into the tumor was observed in the mock group, but the overall distribution was sparse and uniform, whereas in the virus administration group, the cells were densely concentrated around the virus-infected area. There were no obvious differences between the virus groups.
  • results VIIIb flow cytometry (results of Example 9.3.2)
  • M1 macrophages are induced by bacterial infection or viral infection and exhibit strong antibacterial or antiviral activity and antitumor effect.
  • M2 macrophages have functions of tissue repair, angiogenesis, promotion of tumor growth, and immunosuppression.
  • TAM Tumor-associated macrophage
  • M1 macrophages have phagocytosis (phagocytosis) activity, it was thought that the virus titer could be reduced by dominating M1, but surprisingly, it has a negative effect on virus replication.
  • the high anti-tumor effect of T-BV was not accompanied by an effect on virus titer.
  • Intravenous blood was collected from 3 mice in each group for PID1 and PID3, and anti-human VEGF antibody in the separated serum was quantified by ELISA. 114.5 ng / mL and 106.9 ng / mL of anti-VEGF antibodies were detected in PID1 and PID3 only in the T + A group that received a single intraperitoneal administration of Avastin (registered trademark). In the BV group and other groups, all were below the detection limit (FIG. 29).
  • T-sVEGFR1 and T-VEGFscFv evaluation results (results of Example 10) (1) Confirmation of viral genome structures of T-sVEGFR1, T-VEGFscFv (VH-VL) and T-VEGFscFv (VH-VLCL) by Southern blotting First, T-sVEGFR1, T-VEGFscFv (VH-VL) and T -When conducting experiments using VEGFscFv (VH-VLCL), DNA was extracted from each purified virus and Southern blotting was performed to confirm that each VEGF inhibitor gene was correctly incorporated into each viral DNA. .
  • VEGFscFv (VH-VL) probe DNA fragments of 5543 bp and 5868 bp were detected in T-VEGFscFv (VH-VL) and T-VEGFscFv (VH-VLCL), respectively, and VEGFscFv (VH-VL) and VEGFscFv (VH-VL) VLCL) gene insertion was confirmed (not shown).
  • the Southern blot using the sVEGFR1 probe a 6798 bp DNA fragment was detected in T-sVEGFR1, and insertion of the sVEGFR1 gene was confirmed (not shown).
  • T-sVEGFR1 and T-VEGFscFv each express VEGF inhibitory factor, in order to examine whether these actually have anti-VEGF function, vascular endothelial cell lumen formation test and vascular endothelial cell migration test were conducted. Conducted and compared with T-01.
  • a vascular endothelial cell luminal formation test In order to examine the effect of T-sVEGFR1 and T-VEGFscFv on the luminal formation of HUVEC, which is a vascular endothelial cell, a vascular endothelial cell luminal formation test was performed. Viral culture supernatant and HUVEC were co-cultured with Matrigel Matrix, and the effect of viral culture supernatant on lumen formation was compared from the total length of HUVEC lumen after 22 hours. As a result, tube formation was significantly suppressed in the T-sVEGFR1 and T-VEGFscFv-infected groups compared to the T-01-infected group (FIG. 31).
  • a vascular endothelial cell migration test was performed to examine the effects of T-sVEGFR1 and T-VEGFscFv on HUVEC migration.
  • the virus culture supernatant and HUVEC were co-cultured. After 16 hours, the migrated HUVEC was fluorescently stained, and then the fluorescence intensity was measured to compare the influence of the virus culture supernatant on HUVEC migration. As a result, migration was significantly suppressed in the T-sVEGFR1 and T-VEGFscFv-infected groups compared to the T-01-infected group (FIG. 32).
  • T-sVEGFR1 and T-VEGFscFv have anti-VEGF function in vitro.
  • Virus replication test (in vitro) It is known that when a gene is inserted into a virus, the virus replication ability is reduced. Therefore, in order to examine whether T-sVEGFR1 and T-VEGFscFv have replication ability equivalent to T-01, in vitro viral replication assay was performed using HT-29. As a result of measuring the titer of the replicated virus, after 24 hours, T-01 was 6.43 ⁇ 0.47 times the amount of virus infected, T-sVEGFR1 was 9.94 ⁇ 2.95 times, and T-VEGFscFv was 16.07 ⁇ 11.28 times Virus titer.
  • T-01 was 51.79 ⁇ 3.09 times
  • T-sVEGFR1 was 69.04 ⁇ 8.25 times
  • T-VEGFscFv was 88.10 ⁇ 41.70 times (FIG. 33). From the above, it was shown that T-sVEGFR1 and T-VEGFscFv have almost the same replication ability as T-01 in vitro.
  • MOI 0.01 was 38 ⁇ 7.65% in the T-01 infected group, 43 ⁇ 0.71% in the T-sVEGFR1 infected group, and 49 ⁇ 6.68% in the T-VEGFscFv infected group (FIG. 34). From the above, it was shown that T-sVEGFR1 and T-VEGFscFv have a cytocidal effect almost equivalent to T-01 in vitro.
  • VEGF protein was detected (human VEGF: 709.5 ⁇ 129.0 [pg / ml], mouse VEGF: 682.7 ⁇ 3.3 [pg / ml]), HT-29 and CT26 were confirmed to be cell lines producing VEGF protein. Therefore, these cell lines were considered suitable for examining the antitumor effects of T-sVEGFR1 and T-VEGFscFv in vivo.
  • T-sVEGFR1 and T-VEGFscFv Antitumor effect of T-sVEGFR1 and T-VEGFscFv on HT-29 subcutaneous tumor model
  • a nude mouse subcutaneous tumor model was prepared using HT-29 confirmed to produce VEGF, and the therapeutic effect was observed.
  • HT-29 was subcutaneously administered to the left abdomen of nude mice to produce a subcutaneous tumor.T-01, T-sVEGFR1, T on Day 0 after 14 days and 3 days after the tumor diameter reached 5 mm -VEGFscFv and Mock were administered into the subcutaneous tumor.
  • T-sVEGFR1 and T-VEGFscFv administration groups showed significantly stronger antitumor effects compared to T-01 (FIG. 35).
  • the anti-tumor effect was similar between the T-sVEGFR1 administration group and the T-VEGFscFv administration group. From these results, it was shown that T-sVEGFR1 and T-VEGFscFv have a significantly stronger antitumor effect than T-01 in the HT-29 subcutaneous tumor model.
  • T-sVEGFR1 and T-VEGFscFv Intratumoral neovascularization by CD31 immunohistochemical staining of HT-29 subcutaneous tumor model
  • T-sVEGFR1 and T-VEGFscFv showed significantly higher antitumor effects than T-01 It was. Therefore, in order to clarify the mechanism of action of T-sVEGFR1 and T-VEGFscFv to enhance the antitumor effect, the effect of virus on tumor neovascularization was examined.
  • HT-29 was administered subcutaneously to the left abdomen of nude mice to produce a subcutaneous tumor. -01, T-sVEGFR1, T-VEGFscFv and Mock were administered intradermally.
  • Subcutaneous tumor tissues were collected on Day 3 (before the second virus administration) and Day 7, and after formalin fixation, paraffin sections were prepared, and immunohistochemical staining for the vascular endothelial cell marker CD31 was performed (FIG. 10A). .
  • the microvessels in the tissue sections subjected to immunostaining were counted, and the intratumoral microvessel density was determined.
  • the count number under the microscope ( ⁇ 20) was 52.3 ⁇ 9.2 count for the Mock infection group, 31.6 ⁇ 5.9 count for the T-01 infection group, 13.7 ⁇ 5.8 count for the T-sVEGFR1 infection group, T -VEGFscFv infection group was 11.8 ⁇ 4.9 count.
  • the Mock infection group was 48.0 ⁇ 7.0 count
  • the T-01 infection group was 36.4 ⁇ 11.1 count
  • the T-sVEGFR1 infection group was 11.3 ⁇ 1.7 count
  • the T-VEGFscFv infection group was 11.0 ⁇ 3.8 count.
  • intratumoral microvessels were significantly reduced compared to the T-01 administration group (FIG. 36).
  • T-sVEGFR1 and T-VEGFscFv have a function to suppress tumor neovascularization, and this tumor angiogenesis inhibitory function is enhanced antitumor effect of these two viruses compared to T-01 It was thought to be one of the mechanisms of action.
  • the combination of anti-VEGF antibody Bevacizmab and therapeutic HSV reduces the infiltration of macrophages into the tumor and improves the replication efficiency of the virus. It has also been reported that the antitumor effect was enhanced. Therefore, one of the mechanisms of action enhancement of T-sVEGFR1 and T-VEGFscFv compared to T-01 may be to improve virus infection efficiency by suppressing infiltration of macrophages into the tumor. It was.
  • HT-29 was subcutaneously administered to the left abdomen of nude mice to produce a subcutaneous tumor, and 14 days after the tumor diameter reached 5 mm, Day On day 0, T-01, T-sVEGFR1, T-VEGFscFv and Mock were administered into the subcutaneous tumor on Day 0. On day 3, subcutaneous tumors were collected and DNA was extracted, and real-time PCR was performed using a gene encoding HSV-1 DNA polymerase as a target to quantify intratumoral viral DNA. Three days after virus administration, DNA was extracted from the tumor and subjected to real-time PCR.
  • T-sVEGFR1 and T-VEGFscFv have significantly higher antitumor effects compared to T-01 in normal mice as well as in nude mice.
  • T-BV and Avastin registered trademark
  • TV H V L showed a swelling suppression tendency.
  • VEGF is involved in brain swelling associated with virus administration (FIGS. 22 and 25).
  • HSV-1 infection and angiogenesis were confirmed by immunohistochemical staining in individuals with a high signal area around the tumor by MRI (T2WI) after virus administration to the U87MG intracerebral tumor model. From this, it was considered that the high signal area around the tumor in T2WI caused by virus administration appeared when tumor cells were infected with virus.
  • the appearance of the anti-VEGF antibody is suppressed, the occurrence of swelling was considered to be involved in VEGF.
  • tumor treatment with an oncolytic virus can be performed without causing swelling, which has industrial applicability in the medical field.
  • SEQ ID NO: 1 Whole amino acid sequence for expression of anti-human VEGF antibody described in FIG. 4
  • SEQ ID NO: 2 V H chain of FIG. 4 (amino acid sequence)
  • SEQ ID NO: 3 CH chain (amino acid sequence) in FIG.
  • SEQ ID NO: 4 VL chain (amino acid sequence) of FIG.
  • Sequence number 5 CL chain (amino acid sequence) of FIG.
  • SEQ ID NO: 6 Ig kappa leader sequence (amino acid sequence) of FIG.
  • SEQ ID NO: 7 signal peptidase recognition sequence (amino acid sequence) of FIG.
  • SEQ ID NO: 8 Furin recognition sequence (amino acid sequence) of FIG.
  • SEQ ID NO: 9 FMDV-2A sequence of FIG.
  • SEQ ID NO: 11 GS linker of FIG. 5
  • SEQ ID NO: 10 Whole amino acid sequence for anti-VEGF scFv expression shown in FIG. 5
  • SEQ ID NO: 12 1 unit of GS linker of FIG. 5
  • SEQ ID NO: 13 Anti-human VEGF of FIG. Antibody expression gene
  • SEQ ID NO: 14 cDNA for VH of FIG.
  • SEQ ID NO 15 cDNA of the C H in FIG. 9
  • SEQ ID NO: 16 cDNA for VL in FIG.
  • SEQ ID NO 17 cDNA of C L in FIG. 9
  • SEQ ID NO: 18 Ig kappa leader sequence (cDNA) of FIG.
  • SEQ ID NO: 19 signal peptidase recognition sequence (cDNA) of FIG. SEQ ID NO: 20: Furin recognition sequence (cDNA) of FIG. SEQ ID NO: 21: FMDV-2A sequence (cDNA) of FIG. SEQ ID NO: 22: anti-VEGF scFv expression gene cDNA of FIG. SEQ ID NO: 23: Gs linker (cDNA) of FIG. SEQ ID NO: 24: cDNA of T-VEGFsc (V H V L C L ) of FIG. SEQ ID NO: 25: CL cDNA of FIG. SEQ ID NO: 26: cDNA for sVEGFR1 in FIG.
  • SEQ ID NO: 27 HSV DNApoly-F
  • SEQ ID NO: 28 HSV DNApoly-R
  • SEQ ID NO: 29 HSV DNApoly-T
  • SEQ ID NO 30 V H chain + C H chain of FIG. 4 (amino acid sequence)
  • SEQ ID NO: 31 VL chain + CL chain (amino acid sequence) in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

腫脹発生抑制型腫瘍治療用ウイルスを提供することを目的とする。血管内皮細胞増殖因子(VEGF)拮抗剤をコードする遺伝子を有する、腫瘍溶解性ウイルス及び当該ウイルスを含む腫瘍治療用医薬組成物を提供する。

Description

腫脹発生抑制型腫瘍溶解性ウイルス
 本発明は、腫脹発生抑制型腫瘍溶解性ウイルスに関し、特にVEGF拮抗剤をコードする遺伝子を有する腫瘍溶解性ウイルスに関する。本発明は、また、このウイルスを用いた、腫瘍を治療するための医薬組成物及び腫瘍治療方法に関する。
 ウイルスを用いた新しい腫瘍治療法として、腫瘍細胞にウイルスを感染させ、ウイルスの複製に伴いウイルスが腫瘍細胞を破壊することにより、腫瘍を治療する研究が進められている。既存の腫瘍治療法と異なり、ウイルス複製に伴う直接的な殺細胞作用に加えて、腫瘍細胞を破壊する過程で腫瘍細胞特異的な抗腫瘍免疫が惹起され、免疫を介して全身に治療効果を及ぼすという特徴がある。近年、HSV-1やアデノウイルスといったウイルスゲノムに人為的遺伝子改変を導入して、腫瘍選択性を高めた遺伝子組換え腫瘍溶解性ウイルスが開発されている(特許文献1~3、非特許文献1~3)。
特許第4212897号公報 特許第4921669号公報 WO2011/101912
Todo, T. et al. (2000). Molecular Therapy, 2, 588-595. Markert, J. M. et al. (2000). Gene Therapy, 7, 867-874. Martuza, R. L. et al. (2000). Journal of Clinical Investigation, 105, 841-846.
 本発明者が腫瘍溶解性ウイルスを用いた腫瘍治療法の臨床開発を行う過程で、ウイルスを投与した直後より腫瘍及び腫瘍周囲に腫脹が生じることが判明した。特に、脳腫瘍に対してウイルス療法を行う際に腫脹が出現すると、頭蓋内圧亢進や一時的な神経症状の悪化を来す可能性があり、治療を妨げる要因となり得る。腫瘍溶解性ウイルスを投与した直後より腫瘍及び腫瘍周囲に腫脹が生じることは、本発明者が臨床開発を実施する過程で判明した事象である。
 このような背景のもと、本発明は、腫脹発生抑制型腫瘍溶解性ウイルスを提供することを目的とする。
 腫瘍及び腫瘍周囲の腫脹の既存治療薬として副腎皮質ホルモン(ステロイド)が存在するが、副腎皮質ホルモンは免疫を抑制する副作用がある。一方、ウイルス療法は抗腫瘍免疫を惹起することが重要な治療機序の一つであるため、副腎皮質ホルモンはウイルス療法との併用には不向きである。また、悪性神経膠腫(悪性脳腫瘍)においては、抗VEGF抗体医薬のベバシズマブ(商品名:Avastin(登録商標))が脳浮腫軽減目的で投与されることがあるが、ベバシズマブは創傷治癒を妨げる副作用があり、手術でウイルス投与を行う脳腫瘍のウイルス療法との併用においては問題点が多い。
 本発明者は、鋭意研究を重ねた結果、VEGFに拮抗するVEGF拮抗剤を、腫瘍溶解性ウイルスに発現させることで、上記課題を解決し得ることを見出し、本発明を完成させた。すなわち、本発明は、以下のものに関する。
[1]
 血管内皮細胞増殖因子(VEGF)拮抗剤をコードする遺伝子を有する、腫瘍溶解性ウイルス。
[2]
 VEGF拮抗剤が、抗VEGF抗体又はその断片である、[1]に記載の腫瘍溶解性ウイルス。
[3]
 VEGF拮抗剤が、V鎖及びV鎖を含む抗VEGF抗体又は一本鎖抗VEGF抗体である、[2]に記載の腫瘍溶解性ウイルス。
[4]
 以下の(i)~(iii)のいずれかのポリペプチドをコードする遺伝子:
(i) 配列番号2のポリペプチド;
(ii) 配列番号2のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
(iii) 配列番号2のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
及び以下の(iv)~(vi)のいずれかのポリペプチドをコードする遺伝子:
(iv) 配列番号4のポリペプチド;
(v) 配列番号4のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
(vi) 配列番号4のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
を有する、[2]又は[3]の記載の腫瘍溶解性ウイルス。
[5]
 抗VEGF抗体が、ヒトモノクローナル抗体又はヒト化モノクローナル抗体である、[2]~[4]のいずれかに記載の腫瘍溶解性ウイルス。
[6]
 VEGF拮抗剤が、可溶性VEGF受容体である、[1]に記載の腫瘍溶解性ウイルス。
[7]
 以下の(xiii)~(xv)のいずれかのポリペプチドをコードする遺伝子を有する、[6]に記載の腫瘍溶解性ウイルス。
(xiii) 配列番号26の塩基配列によりコードされるポリペプチド;
(xiv) 配列番号26の塩基配列によりコードされるポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
(xv) 配列番号26の塩基配列によりコードされるポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド。
[8]
 単純ヘルペスウイルスI型及びII型(HSV-1及びHSV-2)、アデノウイルス、ポリオウイルス、麻疹ウイルス、レオウイルス、ワクシニアウイルス、セネカウイルス、水泡性口内炎ウイルス(VSV)、ニューカッスル病ウイルス及びコクサッキーウイルスからなる群から選択されるウイルスの変異体である、[1]~[7]のいずれかに記載の腫瘍溶解性ウイルス。
[9]
 腫瘍溶解性ウイルスが、単純ヘルペスウイルスI型変異体であって、(a)~(c)のいずれか一以上の特徴を有する、[1]~[7]のいずれかに記載の腫瘍溶解性ウイルス。
(a)ICP6遺伝子が欠失又は不活化されている、或いは腫瘍特異的プロモーター又は組織特異的プロモーターの制御下で発現する;
(b)γ34.5遺伝子が欠失又は不活化されている;
(c)ICP47遺伝子が欠失又は不活化されている。
[10]
 [1]~[9]のいずれかに記載の腫瘍溶解性ウイルスを治療有効量含む、腫瘍治療用医薬組成物。
[11]
 前記腫瘍が、神経系型腫瘍、下垂体部腫瘍、髄芽細胞腫、黒色腫、脳腫瘍、前立腺癌、頭頚部癌、食道癌、腎癌、腎細胞癌、膵臓癌、乳癌、肺癌、結腸癌、大腸癌、胃癌、皮膚癌、卵巣癌、膀胱癌、肉腫、扁平上皮癌、神経外胚葉、甲状腺腫瘍、リンパ腫、肝細胞腫、中皮腫、類表皮癌及び良性腫瘍からなる群より選択されるヒト腫瘍である、[10]に記載の腫瘍治療用医薬組成物。
[12]
 前記腫瘍が脳腫瘍であり、局所投与される、腫脹発生抑制型の[10]に記載の腫瘍治療用医薬組成物。
[13]
 化学療法及び放射線療法から選択される他の腫瘍治療法と併用される、[10]~[12]のいずれかに記載の腫瘍治療用医薬組成物。
 本発明は、また、以下の方法及び使用にも関する。
[14]
 [1]~[9]のいずれかに記載の腫瘍溶解性ウイルスの治療有効量を、腫瘍の治療を必要とする対象に投与することを含む、腫瘍の治療方法。
[15]
 前記腫瘍が、神経系型腫瘍、下垂体部腫瘍、髄芽細胞腫、黒色腫、脳腫瘍、前立腺癌、頭頚部癌、食道癌、腎癌、腎細胞癌、膵臓癌、乳癌、肺癌、結腸癌、大腸癌、胃癌、皮膚癌、卵巣癌、膀胱癌、肉腫、扁平上皮癌、神経外胚葉、甲状腺腫瘍、リンパ腫、肝細胞腫、中皮腫、類表皮癌及び良性腫瘍からなる群より選択されるヒト腫瘍である、[14]に記載の方法。
[16]
 前記腫瘍が脳腫瘍であり、前記ウイルスが局所投与される、[14]に記載の方法であって、腫脹発生が抑制される、方法。
[17]
 化学療法及び放射線療法から選択される他の腫瘍治療法と併用される、[14]~[16]のいずれかに記載の方法。
[18]
 腫瘍を治療するための医薬の製造における、[1]~[9]のいずれかに記載の腫瘍溶解性ウイルスの使用。
[19]
 前記腫瘍が、神経系型腫瘍、下垂体部腫瘍、髄芽細胞腫、黒色腫、脳腫瘍、前立腺癌、頭頚部癌、食道癌、腎癌、腎細胞癌、膵臓癌、乳癌、肺癌、結腸癌、大腸癌、胃癌、皮膚癌、卵巣癌、膀胱癌、肉腫、扁平上皮癌、神経外胚葉、甲状腺腫瘍、リンパ腫、肝細胞腫、中皮腫、類表皮癌及び良性腫瘍からなる群より選択されるヒト腫瘍である、[18]に記載の使用。
[20]
 前記腫瘍が脳腫瘍であり、前記医薬が局所投与され、前記医薬が腫脹発生抑制型である、[18]に記載の使用。
[21]
 前記医薬が化学療法及び放射線療法から選択される他の腫瘍治療法と併用される、[18]~[20]のいずれかに記載の使用。
 本発明によれば、腫脹発生抑制型腫瘍溶解性ウイルスを提供することができる。これにより、より安全かつ容易に腫瘍治療を行うことができる。
抗体発現遺伝子からの抗体の発現メカニズム(Zitvogel, L., et al. (1994) Human gene therapy 5, 1493-1506,より改変)。口蹄疫病ウイルス(FMDV)2A配列を使うと、上流と下流の遺伝子発現がほぼ同等となる。タンパク分泌はsignal recognition particle (SRP)を介して行われる。H鎖のIg kappa leader sequenceがリボソームで翻訳されると、SRPがこれを認識して結合し、小胞体上に存在するSRP受容体に結合することで、膜上のtransloconを介して、下流のポリペプチド鎖が粗面小胞体内に送り込まれる。この際にN末端側のleader sequenceはシグナルペプチダーゼによって切断され、そのC末端側のみが粗面小胞体内へ送り込まれる。FMDV-2A配列は翻訳時にシス切断される。L鎖に関しても同様に粗面小胞体内へ送り込まれる。その後ゴルジ体に送られ、furinによって塩基性アミノ酸標的配列Arg-X-(Lys/Arg)-Argが特異的に認識され切断される。これによって、自己開裂した2A配列の残基が切離され、結果として二本鎖抗体が形成され、細胞外に分泌される。 本実施例で用いたウイルスの構造。TRL、IRLに存在する2つのγ34.5に欠失、ULに存在するICP6にLacZ遺伝子を挿入することによる不活化、USに存在するα47とそれに重複するUS11プロモーター領域に欠失を有するG47Δを基本骨格とする。T-BV及びT-VHVLは、ICP6を欠失させ、欠失領域にLacZとpolyA(PA)及び逆向きのサイトメガロウイルスプロモーター(CMVP)とその下流にそれぞれの抗体発現遺伝子(図中antibodyと表記)を挿入して作製した(A)。LacZとPA、CMVpのみが挿入されたT-01をコントロールウイルスとして使用した(B)。 T-BACシステム。BACをG47ΔのゲノムのICP6欠失部位に挿入することによって、G47Δゲノムの維持や増幅を容易としたT-BACは、loxP配列とFRT配列を持ち、同様にこの2つの配列を有し、治療遺伝子が挿入されたシャトルベクタープラスミドであるSV-01と混合して、Cre/loxPとFLP/FRTの2つのリコンビナーゼシステムを併用することで、外来遺伝子の挿入とBACの切り出しが起こり、外来遺伝子が挿入されたG47Δの作製が可能となる。KM:カナマイシン耐性遺伝子、CP:クロラムフェニコール耐性遺伝子、lmd:λスタッファー配列、GFP:Green Fluorescent Protein 抗ヒトVEGF抗体発現のためのアミノ酸配列の設計。ベバシズマブのFab領域、ヒトIgG1のFc領域のアミノ酸配列をそれぞれthe international ImMunoGeneTics information system(IMGT)、National Center for Biotechnology Information(NCBI)のデータベースから入手した。重鎖(H鎖)、軽鎖(L鎖)それぞれに対応するポリペプチドのN末端側に分泌シグナルとしてIg kappa leader sequence及びシグナルペプチダーゼ認識部位を結合したもの同士を、口蹄疫病ウイルス(FMDV)2A配列及びfurin認識配列で結合し、抗ヒトVEGF抗体発現のためのアミノ酸配列を設計した。 抗VEGF scFv発現のためのアミノ酸配列の設計。Liang, W. C., et al. (2006) The Journal of biological chemistry 281, 951-961に記載されている抗VEGF抗体G6-31のH鎖及びL鎖のFabに対応するアミノ酸配列をリンカーでつなぎ、N末端側には分泌シグナルとしてIg kappa leader sequence及びシグナルペプチダーゼ認識配列を結合して、抗VEGF scFv発現のためのアミノ酸配列を設計した。リンカーはscFvで一般的に使われているGSリンカーを使用した。 pEX-K-BVの構造を示す模式図である。 sVEGFR1のcDNA配列を示す図である。 T-VEGFscFv(VHVLCL)のcDNA配列を示す図である。制限酵素(下線)、コザック配列、開始コドン(四角枠)、Ig kappa leader sequence(下線)、重鎖VH、リンカー(四角枠)、軽鎖VL、軽鎖CL(太字)、終始コドン(四角枠)、制限酵素(下線)の順で記載されている。 抗ヒトVEGF抗体発現遺伝子のcDNA。図4のアミノ酸配列を元に、ヒトでのコドンに最適化した塩基配列への変換した後、N末端にKozak配列、開始コドン、BamHI認識配列を、C末端にNotI認識配列をそれぞれ結合し、抗体発現をエンコードするcDNAを設計した。 抗VEGF scFv発現遺伝子のcDNA。Liang, W. C., et al. (2006) The Journal of biological chemistry 281, 951-961に記載されているG6-31のアミノ酸配列から遺伝情報処理ソフトウェアGENETYXを用いてcDNAを設計した。重鎖、軽鎖それぞれに対応するcDNAをリンカーでつなぎ、抗VEGF scFv発現cDNAを作製した。リンカーはscFvで一般的に使われているGSリンカーを使用した。T-BVと同様に、VH配列のN末端側には分泌シグナルとしてIg kappa leader sequence及びシグナルペプチダーゼ認識配列を結合した。 BV/SV-01をトランスフェクションしたHEK293T細胞上清を用いたウエスタンブロッティング。HEK293TにBV/SV-01をトランスフェクションし、その培養上清を用いてSDS-PAGE及びnative PAGEを行った。陰性対照にはSV-01をトランスフェクションした上清、陽性対照にはAvastin(登録商標)を用いた。タンパク質の検出には抗ヒトIgG(H+L)抗体を用いた。SDS-PAGE(図11A)、native PAGE(図11B)いずれにおいても陽性対照であるAvastin(登録商標)と同様の結果となり、今回新規ウイルス作製に用いた抗ヒトVEGF抗体発現型遺伝子の発現するタンパク質が二本鎖抗体であることが確認された。 ウイルス感染上清を用いたELISAによる抗ヒトVEGF抗体の発現量の定量。6穴プレートに撒いたVero細胞及びU87MG細胞に対して、T-01、T-BV又はmockをMOI 0.2で感染させ、2 mL培地中で72時間培養した後に、上清を回収し、限外濾過によって2.7倍に濃縮したものを検体とした。スタンダードはAvastin(登録商標)の8段階希釈系列を使用した。ELISAプレートのウェルにヒトVEGFを固相化し、抗ヒトIgG(Fc)抗体で検出した。450 nmの吸光度を測定し、検体の抗VEGF抗体濃度を算出した。Vero細胞、U87MG細胞について、T-BVの感染細胞上清からは、それぞれ256 pg/mL、69 pg/mLの抗VEGF抗体が検出され、T-01及びmockの培養上清からはいずれも検出限界以下であった。 U87MG皮下腫瘍におけるT-BVからの抗VEGF抗体の検出。Balb/c nu/nu 雌マウスのU87MG皮下腫瘍が5 mmになったことを確認し、T-01、T-BV及びmock群の各群9匹ずつに群分けした。2 x 10pfuのウイルスを腫瘍内に単回投与し、PID2、4、6に各群3匹ずつマウスを安楽死させ、皮下腫瘍を摘出し、そこに含まれる抗ヒトVEGF抗体をELISAで定量した。いずれの時点においてもT-BV群からは抗ヒトVEGF抗体の発現を認めた。bar;SEM 血管内皮細胞管腔形成試験。T-01又はT-BV感染させたVero細胞の培養上清を検体として用いた。VEGF作用に関する陰性対照/陽性対照として、細胞上清を加えていないn.c./ウイルスを未感染の細胞上清を加えたmockを、抗VEGF作用に関する陰性対照/陽性対照として、T-01の培養上清/培地にAvastin(登録商標)を2段階の濃度で添加したp.c.1(4 ng/mL)・p.c.2(4 μg/mL)を、それぞれ設定した。HUVEC-2を各検体を加えた培地で22時間培養後に、カルセインで染色し、管腔形成像を蛍光顕微鏡下で撮影し、形成された管腔の長さを測定し、全長を算出した。T-BV群ではT-01群と比較して、有意に管腔形成が抑制された(p = 0.014)。bar;SEM 血管内皮細胞遊走試験。T-01又はT-BV感染させたVero細胞の培養上清を検体として用いた。VEGF作用に関する陰性対照/陽性対照として、細胞上清を加えていないn.c./ウイルスを未感染の細胞上清を加えたmockを、抗VEGF作用に関する陰性対照/陽性対照として、T-01の培養上清/培地にAvastin(登録商標)を2段階の濃度で添加したp.c.1(4 ng/mL)・p.c.2(4 μg/mL)を、それぞれ設定した。HUVEC-2を各検体を加えた培地で16時間培養後に、遊走してきたHUVEC-2をカルセインで染色した後に蛍光顕微鏡下で撮影し、蛍光強度を算出して比較した。T-BV群ではT-01群と比較して、有意に遊走が抑制された(p = 0.007)。bar;SEM 抗VEGF抗体の種間交差性の検討。T-BVをHEK293T細胞にMOI 3で感染させ、15時間培養した上清を用いた。また、対照として抗ヒトVEGF抗体であるAvastin(登録商標)、ウサギ抗マウスVEGF抗体を用いた。また検出抗体と固相化したVEGFとの交差反応による偽陽性を除外するために、mockに関しては2種類の検出抗体を反応させた。450 nmでの吸光度を測定した。抗マウスVEGF抗体はマウスVEGF(mVEGF)・ヒトVEGF(hVEGF)の両方に結合したが、T-BV感染細胞上清及びAvastin(登録商標)はhVEGFにのみ結合した。この結果から、T-BVの発現抗体はAvastin(登録商標)と同様にhVEGFに対する特異性が高いと考えられた。 in vitro cytotoxicity assay。U87MG細胞(図17A)、TGS-01細胞(図17B)、TGS-04細胞(図17C)におけるin vitro cytotoxicity assayを行った。TGSは浮遊系細胞であるため、MTS assayを用いて殺細胞効果を評価した。コントロール群における生存細胞数に対する各群の生存細胞数の割合をcytopathic effectとして示した。T-01とT-BVの殺細胞効果はほぼ同等と考えられた。bar; ±SD in vitro replication assay。Vero細胞(図18A)、U87MG細胞(図18B)に対してウイルスをMOI 0.01で感染させ、24時間及び48時間培養後に培地ごと細胞を回収し、そこに含まれるウイルスの力価を測定した。いずれの細胞・ウイルスにおいても24時間から48時間までにウイルスの複製を認め、いずれの時点でもT-01とT-BVの複製能はほぼ同等と考えられた。bar;SD U87MG皮下腫瘍モデルにおけるT-BVの抗腫瘍効果の検討。Balb/c nu/nu 雌マウスの左側腹部皮下に2 x 106 cellsのU87MG細胞を移植し、腫瘍径が6 mm大になった時点でT-BV、T-01、mockの3群に各群10匹ずつランダムに振り分け、2 x 105 pfuのウイルスを中3日開けて腫瘍内に2回投与し、週2-3回腫瘍径を測定し、腫瘍体積を算出した。ウイルス投与後20日目の時点で、T-01群ではmockに対して有意な腫瘍増大抑制効果を認め(p = 0.00749、独立t検定)、さらにT-BVはT-01と比較して有意な腫瘍増大抑制効果を認めた(p = 0.0211、独立t検定)。bar;SEM U87MG脳内モデルにおけるT-BVの抗腫瘍効果の検討。Balb/c nu/nu 雌マウスの右前頭葉内に2 x 105 cellsのU87MG細胞を定位脳手術装置を用いて移植し、移植後10日目にT-BV、T-01、mockの3群に各群10匹ずつランダムに振り分け、1 x 10pfuのウイルスを腫瘍内に単回投与し、その後の各個体の生存期間を記録した。ウイルス投与後27日目の時点でmock群は全滅したのに対して、76日目の最終フォローアップの時点で、T-01群で3匹、T-BV群で6匹の生存を認めた。T-01、T-BVともにmockと比較して有意な生存延長効果を示し(ともにp < 0.001)、T-BVはT-01よりも生存期間の延長傾向がみられた(p = 0.163)。 TGS-01及びTGS-04脳内腫瘍モデルにおけるT-BVの抗腫瘍効果の検討。Balb/c nu/nu 雌マウスの右前頭葉内に1 x 105 cellsのTGS-01細胞(図21A)又はTGS-04細胞(図21B)を定位脳手術装置を用いて移植し、それぞれ移植後10日目及び20日目にT-BV、T-01、mockの3群に各群10匹ずつランダムに振り分け、2 x 106 pfuのウイルスを腫瘍内に単回投与し、各個体の生存期間を記録した。TGS-01脳内腫瘍モデルでは、mock群と比較してT-BV群、T-01群ともに生存期間の有意な延長を認め(ともにp < 0.01)、さらにT-BVはT-01と比較しても生存期間の有意な延長を認めた(p = 0.0475)。TGS-04脳内腫瘍モデルでは、mockと比較してT-01では生存の延長を認めなかったが、T-BVでは生存期間の有意な延長を認めた(p = 0.0495)。 脳腫瘍細胞株(U87MG細胞)を用いた脳内腫瘍モデルのMRI撮影。Balb/c nu/nu 雌マウスの右前頭葉内に2 x 105 cellsのU87MG細胞を定位脳手術装置を用いて移植し、移植後11日目にウイルス投与前のMRI(pre)を撮像し、12日目に全20匹に対して、mock群、T-01群、T-BV群及びT+A群に無作為にグループ分けをした上で、2 x 106pfuのウイルスを腫瘍内に単回投与し、PID2、4、6にMRI(T2WI及びT1WI(CE))を撮像した。T+A群については、ウイルス投与日から5日目までAvastin(登録商標) 5 mg/kgを連日腹腔内投与した。ウイルス投与後に腫瘍周囲のT2WIでの高信号域の出現を認めた。 U87MG脳内腫瘍モデルにおけるT-BVの腫脹抑制効果の検討(1)(MRI)。U87MG脳内腫瘍モデルのMRIデータを元に、腫脹(浮腫)の定量を行った。T2WI及びT1WI(CE)での高信号域の面積の計測をフリーソフトウェアOsirixを用いて行った。T2WI、T1WI(CE)それぞれについて、ウイルス投与前の高信号域に対する、各撮像日の高信号域の比を算出し、T2WIでの値をT1WI(CE)での値で除することで、腫脹領域の相対値を求めた(図23A)。mock群では腫脹をほとんど認めず、相対値も一貫してほぼ1で経過していた。T-01群ではPID2、4、6で相対値の上昇を認めるのに対して、T-BV群ではPID4、6、T+A群ではPID2、4、6では相対値が有意に低く(すべてp < 0.05)、腫脹の発生が抑えられていると考えられた(図23B)。bar;SEM U87MG脳内腫瘍モデルにおけるT-BVの腫脹抑制効果の検討(2)(RT-qPCR)。Balb/c nu/nu 雌マウスを用いたU87MG脳内腫瘍モデルに対して、mock、 T-01、T-BV及びT+A群で各群6匹ずつグループ分けを行い、1 x 106 pfuのウイルスを腫瘍内に単回投与した。T+A群では、ウイルス投与日から5日目までAvastin(登録商標) 5 mg/kgを連日腹腔内投与した。PID6に右前頭葉を採取し、抽出したRNAから逆転写酵素を用いてcDNAを作製して、マウスAQP4に対する定量PCRを行った。house keeping geneとしてマウスβアクチン(mActb)を用いた。mock群と比較して、T-01群ではマウスAQP4の発現が有意に上昇し(p < 0.01)、T-01群と比較してT-BV群及びT+A群では、AQP4の発現が有意に低下していた(ともにp < 0.01)。bar;SEM U87MG脳内腫瘍モデルにおけるT-BVとT-VHVLの腫脹抑制効果の比較検討(代表的画像)。Balb/c nu/nu 雌マウスの右前頭葉内に2 x 105 cellsのU87MG細胞を定位脳手術装置を用いて移植し、移植後11日目にウイルス投与前のMRI(pre)を撮像し、12日目に全20匹に対して、mock群、T-01群、T-BV群及びT-VHVL群に無作為にグループ分けをした上で、2 x 106 pfuのウイルスを腫瘍内に単回投与し、PID2、4、6にMRI(T2WI及びT1WI(CE))を撮像した。 U87MG脳内腫瘍モデルにおけるT-BVとT-VHVLの腫脹抑制効果の比較検討(浮腫領域の定量)。U87MG脳内腫瘍モデルのMRIデータに関して、前述の実験と同様に腫脹(浮腫)の評価を行った。T-01と比較した場合に、T-BVはPID4で有意に腫脹領域の縮小を認め(p = 0.022)、T-VHVLに関してもT-01と比較して腫脹領域の縮小傾向が見られた。bar;SEM U87MG脳内腫瘍モデルに対するウイルス投与後のフローサイトメトリーによるマクロファージの評価(代表的散布図)。Balb/c nu/nu 雌マウスを用いたU87MG脳内腫瘍に対して、T-01、T-BV、T+A、及びmock群で各群9匹ずつにグループ分けを行い、1 x 106 pfuのウイルスを腫瘍内に単回投与し、PID2、4、6に右前頭葉を採取し、単細胞懸濁液を調整した。T+A群については、ウイルス投与日から安楽死までAvastin(登録商標) 5 mg/kgを連日腹腔内投与した。散乱光の二次元プロットでミエリン分画を除き、doublet除去、死細胞除去を行った後、CD45陽性、CD11b陽性、F4/80 陽性でゲーティングしたものをGr-1及びCX3CR1で展開し、M1(Gr-1highCX3CR1low )、M2(Gr-1lowCX3CR1high )の2つの細胞集団を分離した。mock投与群では一貫してM2分画が優位であるのに対して、ウイルス投与群ではPID2にM1分画が優位となった。 M1/M2比の経時的推移。M1、M2それぞれについて、CD45陽性細胞中の割合を算出し、M1/M2の比を算出することで、M1、M2のどちらが優位であるか評価を行った。mock群ではM1/M2の経時的な推移は0.04 - 0.03 - 0.05と一貫してM2優位な状態であるのに対して、ウイルス投与群ではM1/M2 > 1となり、M1優位となった。T-01群ではこのM1/M2の値が6.21 - 1.81 - 0.13と時間経過とともに低下し、M1優位な状態からM2優位な状態に戻るのに対して、T-BV群及びT+A群ではM1/M2の値は、それぞれ6.87 - 1.64 - 0.69、6.42 - 1.41 - 0.69と時間経過とともに低下するものの、PID6でもM1の割合が比較的保たれており、それぞれのM1/M2比はT-01よりも優位に高かった(p < 0.05、 p < 0.01)。bar;SEM M1優位な状態が継続することによる、ウイルス力価への影響を調べた。T-01、T-BV及びT+A群について、PID1, PID3及びPID7におけるウイルス力価を調べたところ、いずれの測定日においても、3つの群間でのウイルス力価に有意差は見られなかった。 U87MG脳内腫瘍に対するT-BV投与後の血清中の抗VEGF抗体の定量。Balb/c nu/nu 雌マウスのU87MG脳内腫瘍に対して、mock、T-01、T-BV及びT+A群を設定し、各群6匹ずつに群分けした。1 x 106 pfuのウイルスを腫瘍内に単回投与し、PID1、3に各群3匹ずつ静脈採血を行い、その血清に含まれる抗ヒトVEGF抗体をELISAで定量した。T+A群については、ウイルス投与日にAvastin(登録商標) 5 mg/kgを腹腔内に単回投与した。いずれの時点においてもT+A群からは抗ヒトVEGF抗体が検出されたが、他の群ではすべて検出限界以下であった。bar;SEM ELISA法によるT-sVEGFR1及びT-VEGFscFvのVEGF阻害因子タンパク質発現確認を示すグラフである。VeroにT-01、T-sVEGFR1及びT-VEGFscFvを感染させ、48時間培養した上清を用いてELISAを行った。A. T-sVEGFR1の培養上清では、sVEGFR1タンパク質が検出された。B. T-VEGFscFvの培養上清ではVEGFscFvタンパク質が検出された。いずれも、mock及びT-01の培養上清では、検出されなかった。n = 3; Error bar, 標準偏差; ND, Not detected. 血管内皮細胞管腔形成試験の結果を示すグラフである。T-01、T-sVEGFR1及びT-VEGFscFvをVeroにMOI 0.2で感染して2日間培養した上清を回収し40倍濃縮した後、Matrigel Matrixがコートされたウェルに加え、さらにHUVECを2×104cells/wellとなるようにまいた。陽性対照は、Bevacizmabを4 μg/mlとなるようにMedium 200 / 1% LSGS に添加したものを、また、陰性対照はMedium 200 / 1% LSGSのみを加えた。22時間培養後、HUVECの管腔形成像を顕微鏡下で撮影し (図31A) 、管腔の長さの合計を算出し、比較した。T-sVEGFR1及びT-VEGFscFv感染群では、T-01感染群と比較して有意にTube Formationが抑制された (図31B)。n = 3; Error bar, 標準偏差; *, p < 0.05 血管内皮細胞遊走試験の結果を示すグラフである。上部チャンバーにHUVECを1×105 cells/wellとなるようにまいた。また、下部ウェルには、T-01、T-sVEGFR1及びT-VEGFscFvをMOI 0.2で感染して2日間培養した上清を40倍濃縮したものを加えた。また、上部チャンバーにHUVECを1×105 cells/wellとなるようにまいた。陽性対照は、Bevacizmabを4 μg / mlとなるようにMedium 200 / 1% LSGSに添加したものを、また、陰性対照はMedium 200 / 1% LSGSのみを加えた。22時間培養後、calcein AM solutionで上部チャンバーのメンブレンを通過して下部ウェルに遊走したHUVECを蛍光染色して、蛍光顕微鏡下で撮影し (図32A) 、蛍光強度を測定した (図32B)。T-sVEGFR1及びT-VEGFscFv感染群では、T-01感染群と比較して有意にHUVECのMigrationが抑制された。n = 3; Error bar, 標準偏差; *, p < 0.05 T-sVEGFR1、T-VEGFscFvのHT-29でのin vitroウイルス複製アッセイの結果を示すグラフである。HT-29を6 wellプレートに4×105cells/wellとなるように播種し、T-01、T-sVEGFR1及びT-VEGFscFvをMOI 0.01で感染させ、24時間及び48時間培養後、ウイルスの力価を測定した。24時間後及び48時間後いずれにおいても、T-sVEGFR1及びT-VEGFscFv感染群では、複製したウイルスの力価はT-01感染群とほぼ同等であった。n = 3; Error bar, 標準偏差。 T-sVEGFR1、T-VEGFscFvのHT-29における in vitro 殺細胞アッセイの結果を示すグラフである。HT-29を6 wellプレートに2×105cells/wellとなるように播種し、T-01、T-sVEGFR1及びT-VEGFscFvをMOI 0.1及び0.01で感染させた。感染後、4日間に渡り、24時間後ごとにそれぞれ生存細胞を測定し、Mockに対する細胞数の割合を算出した。T-sVEGFR1及びT-VEGFscFv はT-01とほぼ同等の殺細胞効果を示した。n = 3; Error bar, 標準偏差。 HT-29皮下腫瘍モデルに対するT-sVEGFR1及びT-VEGFscFvの抗腫瘍効果を示すグラフである。BALB/c nu/nuの左側腹部皮下にHT-29を1×106cells / 50 μl 投与し、皮下腫瘍を作製した。Day 0とDay 3の二回 、T-01、T-sVEGFR1、T-VEGFscFv及びMockを1×106pfu / 20 μl腫瘍内に投与した。Day 32において、T-sVEGFR1及びT-VEGFscFv投与群では、T-01投与群と比較して、有意に強い抗腫瘍効果がみられた。n = 8; Error bar, 標準偏差; **, p < 0.01 HT-29皮下腫瘍の腫瘍内微小血管密度を示すグラフである。HT-29皮下腫瘍の組織切片のCD31陽性細胞をカウントし、腫瘍内微小血管密度を求めた結果、Day 3及びDay 7ともにT-sVEGFR1及びT-VEGFscFv投与群において、T-01投与群と比較して有意に腫瘍内微小血管が減少した。n = 3; Error bar, 標準偏差; *, p < 0.05 CT26皮下腫瘍に対するT-sVEGFR1及びT-VEGFscFvの抗腫瘍効果を示すグラフである。BALB/cマウスの左側腹部皮下にCT26を1×10cells/ 50μl 投与し、皮下腫瘍を作製した。Day 0とDay 3の2回 、T-01、T-sVEGFR1、T-VEGFscFv及びMockを1×106pfu/ 20 μl腫瘍内に投与した。腫瘍体積を測定したところ、Day 28において、T-sVEGFR1及びT-VEGFscFv投与群では、T-01と比較して、有意に強い抗腫瘍効果がみられた。n = 7; Error bar, 標準偏差; *, p < 0.05
 以下、本発明の実施形態(「本実施形態」ともいう。)に基づき、本発明について詳しく説明する。以下の実施形態は、本発明を説明するための例示であり、本発明をこの実施の形態のみに限定する趣旨ではない。
 本実施形態は、一態様において、VEGF拮抗剤をコードする遺伝子を有する、腫瘍溶解性ウイルスに関する。本明細書中、VEGF拮抗剤とは、血管内皮細胞増殖因子(VEGF)の生物学的活性を中和、遮断、低減又は妨害する分子を指し、VEGF及びVEGF受容体間の相互作用を妨害する分子、例えばVEGF又はVEGF受容体に結合し、VEGFとVEGF受容体間の相互作用を阻害するか、又は他の方法で妨げる分子を含む。一態様において、本実施形態のVEGF拮抗剤は、1nM~1μM、好ましくは500nM~1μMのKdでVEGF又はVEGF受容体と結合する。VEGF拮抗剤としては、抗VEGF抗体、抗VEGF受容体抗体、VEGF受容体、可溶性VEGF受容体(sVEGFR)、ペプチドリガンド、VEGF阻害作用を有する核酸等が挙げられ、好ましくは、抗VEGF抗体又はsVEGFRである。
 本実施形態において、「VEGF」は、ヒトVEGFのみならず、非ヒトVEGF(例えば、マウス、ラット、ヒト以外の霊長類等のVEGF)を含む。一態様において、本実施形態のVEGFは、本実施形態のウイルスの投与対象である生物のVEGFであり、例えば本実施形態をヒトに投与する場合、VEGFは好ましくはヒトVEGFである。VEGFには、VEGFファミリーと呼ばれる7種類の増殖因子、すなわち、VEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-E、PLGF-1及びPLGF-2(PLGF:胎盤増殖因子)が存在し、それぞれが異なる物理的及び生物学的性質を有するが、本実施形態において、好ましくは、VEGFは、血管内皮細胞の増殖、管腔形成促進等に関与する、VEGF-Aである。
 一態様において、本実施形態のVEGF拮抗剤は、十分な親和性及び特異性でVEGFと結合する抗VEGF抗体である。抗VEGF抗体としては、市販品(例えば、ベバシズマブ、ラニビズマブ、ラムシルマブ等)を用いてもよいし、他の公知の抗VEGF抗体を用いてもよい。ベバシズマブは、VEGF-Aと特異的に結合することにより、VEGF-Aとその受容体(VEGFR-1及びVEGFR-2)との結合を阻害する抗体である。ラニビズマブ(Ranibizumab)は血管内皮増殖因子-A(VEGF-A)に対するモノクローナル抗体のFab断片である。ラムシルマブは、VEGFR-2に対する抗体であり、VEGF-Aのみならず、C、DとVEGFR-2との結合を阻害することにより、VEGFリガンドによるシグナル伝達を阻害する。さらに、抗VEGF抗体として、VEGF抗原を用いて当業者に公知の方法を用いて作製した抗VEGF抗体を用いてもよい。一態様において、本実施形態のVEGF拮抗剤は、ベバシズマブである。
 一態様において、本実施形態の抗VEGF抗体は、VEGF-Aと結合する抗体及び/又は、VEGFと、VEGFR-1との結合を阻害する抗体であることが好ましい。
 本実施形態の一態様において、VEGF拮抗剤が抗VEGF抗体である場合、抗体は完全長抗体であっても、その断片であってもよい。抗体は、ポリクローナル抗体であってもモノクローナル抗体であってもよく、好ましくはモノクローナル抗体である。一態様において、抗体の種類は特に限定されず、ヒト抗体、ヒト化抗体、キメラ抗体、他の動物由来の抗体(例えば、マウス抗体、ラット抗体、ウサギ抗体、ヒツジ抗体、ラクダ抗体、トリ抗体)等、任意のものを用いることができるが、好ましくは、当該抗体をコードする遺伝子を有する腫瘍溶解性ウイルスが溶解対象とする腫瘍と同一の生物に対する抗体を用いることができる。例えば、腫瘍溶解性ウイルスがヒト腫瘍溶解性である場合、ヒトVEGFに対するヒト抗体又はヒト化抗体を用いることができる。いずれの抗体も、公知の手法を用いて作製することができる。また、公知の抗体を用いることができる。
 本実施形態の一態様において、VEGF拮抗剤は、抗VEGF抗体の断片であってもよい。本明細書において抗体の断片は、抗体の断片自体又は抗体の断片に任意の分子を結合させたもののいずれかであって、もとの抗体と同一のエピトープを認識するものを意味する。もとの抗体の相補性決定領域(CDR)を含むものであれば特に限定されず、具体的には、V、V、C及びC領域からなるFabフラグメント;さらにヒンジ領域を含むFab’フラグメント;2つのFabがヒンジ領域でジスルフィド結合によって連結されているF(ab’)2フラグメント;V及びVからなるFv;V及びVを人工のポリペプチドリンカーで連結した一本鎖抗体であるscFvのほか、sdFv、Diabody、sc(Fv)2が挙げられるが、これらに限定されず、抗体の抗原結合部位を構成する2つの可変領域である重鎖可変領域(V)及び軽鎖可変領域(V)を有するものであれば特に限定されない。
 これらは、いずれも、公知の手法を用いて作製することができる。例えば、scFvは、V及びVを、既知のリンカー(GSリンカー(配列番号:11)等)で結んで作成することができる。
 一態様において、抗体又はその断片は、腫瘍細胞内における半減期の長いものが好ましい。例えば、一本鎖抗体と比較した場合、二本鎖抗体はFc部分の存在により半減期が延長し、抗体依存性の免疫反応が期待できる。
 一態様において、本実施形態の腫瘍溶解性ウイルスは、以下の(i)~(iii)のいずれかのポリペプチドをコードする遺伝子:
(i) 配列番号2のポリペプチド;
(ii) 配列番号2のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
(iii) 配列番号2のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
及び以下の(iv)~(vi)のいずれかのポリペプチドをコードする遺伝子:
(iv) 配列番号4のポリペプチド;
(v) 配列番号4のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
(vi) 配列番号4のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
を有し、これらのポリペプチドを発現するウイルスである。
 一態様において、本実施形態の腫瘍溶解性ウイルスは、以下の(vii)~(ix)のいずれかのポリペプチドをコードする遺伝子:
(vii) 配列番号30のポリペプチド;
(viii) 配列番号30のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
(ix) 配列番号30のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
及び以下の(x)~(xii)のいずれかのポリペプチドをコードする遺伝子:
(x) 配列番号31のポリペプチド;
(xi) 配列番号31のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
(xii) 配列番号31のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上90%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
を有し、これらのポリペプチドを発現するウイルスである。
 一態様において、本実施形態の腫瘍溶解性ウイルスは、Furin認識配列(配列番号8)及びFMDV-2A(配列番号9)のポリペプチドをさらにコードする遺伝子を有することが好ましく、上記(vii)~(ix)のいずれかのポリペプチドをコードする遺伝子と、(x)~(xii)のいずれかのポリペプチドをコードする遺伝子との間にこれらの配列番号8及び9のポリペプチドをコードする遺伝子を有することがより好ましい。
 一態様において、本実施形態のVEGF拮抗剤は、可溶性VEGF受容体(sVEGFR)である。sVEGFRとしては、sVEGFR-1、-2及び-3が知られており、一態様において、好ましくは、sVEGFRは、VEGF-A及びBとの結合能を有するsVEGFR-1である。sVEGFRとしては公知のものを用いることができ、例えば、Park JE et al. (1994) J Biol Chem. Vol. 269(41):25646-54に記載のもの、市販品等を用いることができる。
 一態様において、本実施形態の腫瘍溶解性ウイルスは、以下の(xiii)~(xv)のいずれかのポリヌクレオチドを有する遺伝子を有し、これらのポリヌクレオチドがコードするポリペプチドを発現するウイルスである。
(xiii) 配列番号26の塩基配列によりコードされるポリヌクレオチド;
(xiv) 配列番号26の塩基配列によりコードされるポリヌクレオチドにおいて、1又は数個の塩基が欠失、置換又は付加された塩基配列からなり、かつVEGF結合能を有するポリペプチドをコードするポリヌクレオチド;
(xv) 配列番号26の塩基配列によりコードされるポリヌクレオチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチドをコードするポリヌクレオチド。
 本明細書において、「1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列」という場合、欠失、置換、又は付加されるアミノ酸の個数は、そのアミノ酸配列からなるポリペプチドが、VEGF結合能を有する限り特に限定されないが、例えば、1~5個、1~3個、又は1~2個とすることができる。欠失、置換又は置換される場所は、ペプチドの末端であっても、中間であってもよく、1ヶ所であっても2ヶ所以上であってもよい。
 同様に、本明細書において、「1又は数個の塩基が欠失、置換又は付加された塩基配列」という場合、欠失、置換、又は付加される塩基の個数は、その塩基配列がコードするポリペプチドが、VEGF結合能を有する限り特に限定されないが、例えば、1~5個、1~3個、又は1~2個とすることができる。欠失、置換又は置換される場所は、ポリヌクレオチドの末端であっても、中間であってもよく、1ヶ所であっても2ヶ所以上であってもよい。
 上記ポリペプチドがVEGF結合能を有するか否かは、当業者に公知の手法を用いて判断することができる。例えば、後述の実施例に記載のELISAを用いて判断することができる。
 本実施形態において、アミノ酸は、天然アミノ酸に加え、その誘導体や人工のアミノ酸、非天然アミノ酸であってもよい。一態様において、本実施形態のアミノ酸は、好ましくは天然アミノ酸である。
 本実施形態の腫瘍溶解性ウイルスは、VEGF拮抗剤をコードする遺伝子を有し、腫瘍細胞に投与されると、ウイルス複製に伴って、VEGF拮抗剤を発現する。VEGF拮抗剤をコードする遺伝子を発現するよう腫瘍溶解性ウイルスを改変する手法としては、公知の手法を用いることができる。例えば、VEGF拮抗剤をコードするDNAを、公知の方法(制限酵素を利用する方法等)で、発現ベクターに挿入し、当該発現ベクターを腫瘍溶解性ウイルスにトランスフェクトさせることができる。発現ベクターは、さらに目的遺伝子の発現を調節するプロモーター、複製起点、選択マーカー遺伝子等を含むことができる。プロモーター及び複製起点は、遺伝子を導入する腫瘍溶解性ウイルス及びベクターの種類に応じて適宜選択することができる。
 例えば、VEGF拮抗剤が、抗VEGF抗体又はその断片である場合、発現させようとする抗体のアミノ酸配列又は塩基配列を入手し、目的の領域を、公知の手法により発現させることができる。例えば、cDNAから重鎖と軽鎖が等量ずつ発現して効率的な抗体産生が可能となるよう、抗体の重鎖及び軽鎖に対応するポリペプチドをコードする配列を導入し、好ましくは、自己切断活性を有する口蹄疫病(FMDV)-2A配列及びfurin開裂部位をコードするアミノ酸配列を共に導入して、ウイルスを改変することができる。さらに、重鎖及び軽鎖に対応するポリペプチドそれぞれのN末端に、分泌のためのシグナル配列を有してもよい。このような抗体発現遺伝子からの抗体の発現メカニズムの一例を図1に示す。
 上記遺伝子の導入箇所は、腫瘍溶解性ウイルスが腫瘍溶解性能を維持する限り特に限定されず、例えばウイルスの非必須遺伝子を欠損させた箇所にVEGF拮抗剤をコードする遺伝子を導入することができる。ウイルスがHSV-1である場合、後述の表1に示す非必須遺伝子を欠損させて、VEGF拮抗剤をコードする遺伝子を導入することができる。導入した遺伝子の発現は、後述の実施例に示すとおり、公知の手法を用いて確認することができる。
 特に、腫瘍溶解性ウイルスが単純ヘルペスウイルス(HSV)等、ゲノムサイズの大きなウイルスである場合、例えばFukuhara, H. et al. (2005). Cancer research, 65, 10663-10668、WO2005/103237号に記載のT-BACシステム又はこれに準じたものを用いることができる。HSVウイルスについてT-BACシステムを用いる場合、loxP部位及びFRT部位を有し、loxP部位とFRT部位との間にマーカー遺伝子の発現カセットが少なくとも1種類挿入されたBACプラスミドを、HSVゲノムに挿入する第一工程と、目的タンパク質をコードする遺伝子の発現カセットが少なくとも1種類と、少なくとも1種類のマーカー遺伝子と、loxP部位及びFRT部位と、がそれぞれ挿入されたシャトルベクターを作製し、Creリコンビナーゼを用いてシャトルベクターをHSVゲノムのloxP部位に挿入する第二工程と、HSVゲノムと、Flpリコンビナーゼを発現可能なベクターと、を宿主に共感染させ、該ゲノム上のFRT部位に挟まれた領域を切り出し、目的の遺伝子組換えHSVを産生させる第三工程と、を含む方法により、腫瘍細胞において目的のVEGF拮抗剤を発現させることがウイルスを簡便に作成することができる。
(腫瘍溶解性ウイルス)
 本実施形態において、腫瘍溶解性ウイルス(oncolytic virus。抗がんウイルスともいう。)は、がんの治療に用い得るウイルスであり、腫瘍細胞に感染し、腫瘍細胞で選択的に複製し、ウイルス複製過程で腫瘍細胞を破壊し、周囲の他の腫瘍細胞に感染し、さらに複製する能力を有するものであれば特に限定されず、既知のウイルスを用いることができる。そのようなウイルスの多くは、天然に存在するウイルスを、腫瘍選択性が高まるよう遺伝子改変した変異体である。必要に応じて弱毒化し、抗腫瘍活性増強のための改変(自殺遺伝子の組み込み等)を加えたものであってもよい。
 例えば、本実施形態において使用し得る腫瘍溶解性ウイルスとしては、単純ヘルペスウイルスI型及びII型(HSV-1及びHSV-2)、アデノウイルス、ポリオウイルス、麻疹ウイルス、レオウイルス、ワクシニアウイルス、セネカウイルス(セネカバレーウイルス)、水泡性口内炎ウイルス(VSV)、ニューカッスル病ウイルス、コクサッキーウイルスからなる群から選択されるウイルス若しくはウイルス変異体が挙げられる。抗体遺伝子を発現させるためには、抗体が入るサイズのゲノムを有するウイルスが好ましく(一般に、ゲノムの1/10程度しか改変することができないため)、好ましくは、HSV-1及びHSV-2並びにワクシニアウイルスを用いることができる。
 例えば、アデノウイルス変異体である腫瘍溶解性ウイルスの例としては、ONYX-015(Khuri et al.(2000). Nat. Med 6(8): 879-85等)、H101(Oncorine)(Xia et al. (2004). Ai Zheng 23(12): 1666-70)、Telomelysin (OBP-301)(Kawashima T. et al. (2004) Clim Cancer Res. 10: 285-292)等が挙げられる。
 ポリオウイルス変異体である腫瘍溶解性ウイルスの例としては、Goetz et al. (2010). Cytokine & Growth Factor Reviews 21 (2-3): 197、Lal, R. et al. (2009). Current opinion in molecular therapeutics 11 (5): 532-9等に記載のものが挙げられる。
 麻疹ウイルス変異体である腫瘍溶解性ウイルスの例としては、MV-Edm(McDonald et al. (2006). Breast Cancer Treat. 99(2): 177-84)及びこれを用いたMV-CEA、MV-NIS等、並びにHMWMAA(Kaufmann et al. (2013). J. Invest. Dermatol. 133(4): 1034-42)等が挙げられる。
 レオウイルスである腫瘍溶解性ウイルスの例としては、Reolysin(Oncolytic Biotech)が挙げられる。
 ワクシニアウルス変異体である腫瘍溶解性ウイルスの例としては、MDRVV002(miRNA-dependent recombinant vaccinia virus 002)及びMDRVV003(MAPK-dependent recombinant vaccinia virus 003)、並びにD C Mansfield et al. (2016). Gene Therapy, 23, 357-368、SteveH. Thorne (2014). Frontiers in Oncology, 4:155等に記載のものが挙げられる。
 セネカウイルスである腫瘍溶解性ウイルスの例としては、NTX-010(Rudin et al., (2011). Clin. Cancer. Res. 17(4): 888-95)が挙げられる。
 水泡性口内炎ウイルス(VSV)変異体である腫瘍溶解性ウイルスの例としては、Stojdl et al. (2000). Nat. Med. 6(7): 821-5、Stojdl et al. (2003). Cancer Cell 4(4): 263-75等に記載のウイルスが挙げられる。
  ニューカッスル病ウイルスである腫瘍溶解性ウイルスの一例としては、73-TPV701及びHDV-HUJ株、Phuangsab et al. (2001). Cancer Lett. 172(1): 27-36、Lorence et al. (2007). Curr. Cancer Drug Targets 7(2): 157-67、Freeman et al. (2006). Mol. Ther. 13(1): 221-8等に記載のウイルスが挙げられる。
 コクサッキーウイルス変異体である腫瘍溶解性ウイルスの例としては、コクサッキーA(CVA)であるCVA21及びその改変体(Kelly EJ. Et al. (2008) Nat Med, 14: 1278-1283)、コクサッキーウイルスB型3群(CVB3)(Miyamoto S. et al.(2012) Cancer Res. 72: 2609-2621)等が挙げられる。
 本実施形態の一態様において、腫瘍溶解性ウイルスは、HSV変異体であり、好ましくはHSV-1変異体である。腫瘍溶解性ウイルスがHSV-1変異体である場合、例えば特許文献1~3を参照して腫瘍溶解性のHSV-1変異体を作製することができる。HSV-1は、エンベロープを有する二本鎖DNAウイルスに分類され、癌治療に有利な以下の特徴を備えている。1)ヒトのあらゆる種類の細胞に感染可能である;2)ウイルスの生活環とゲノム配列が解明されている;3)ウイルス遺伝子の大半は機能が判明しており、遺伝子操作を加えることが可能である;4)ウイルスゲノムが大きい(約152kb)為に、大きな遺伝子や複数の遺伝子を組み込むことができる。さらに、HSV-1は臨床応用に適した以下の利点を備える;5)比較的低いmultiplicity of infection(MOI)で全ての細胞の死滅が可能である;6)増殖を抑制する抗ウイルス薬が存在する;7)血中抗HSV-1抗体は、ウイルスの細胞から細胞への感染拡大に影響しないため、繰り返し投与が可能である;8)HSV-1に感受性を示すマウスやサルが存在するために、動物で安全性や効果の前臨床的評価を行える;9)ウイルスDNAが宿主細胞のゲノムに取り込まれず染色体外に存在する。
 HSV-1のゲノムは、82%のlong unique region(U)と12%のshort unique region(Us)の2つの固有配列領域と、それぞれの両端に位置するterminal repeat(TR)とinverted repeat(IR)の倒置反復配列からなる(表1、Todo, T.(2008).  a journal and virtual library 13, 2060-2064)。LとSの2つの領域はそれぞれ独立して2つの方向を取り得るため、HSV-1ゲノムDNAは4つのアイソマーからなる。このゲノムにはTR上のRL1、RL2、U上のUL1~UL56、TR上のRS1、U上のUS1~US12に合計84個の遺伝子が一方向性にコードされており、そのうちの約半数がウイルス増殖には不必要な遺伝子であり、これら非必須遺伝子部分を欠損させることで病原性の減弱や、遺伝子導入が可能である(Carson, J. et al. (2010). Drugs of the future 35, 183-195)。
Figure JPOXMLDOC01-appb-T000001

 
 腫瘍溶解性ウイルスがHSV-1変異体である場合、以下の特徴のいずれか一つ以上を有し得る。
-ウイルスDNA合成に関わる酵素例えば、チミジンキナーゼ(thymidine kinase,TK)、リボヌクレオチド還元酵素(ribonucleotide reductase,RR)、ウラシル-N-グリコシラーゼ(uracil-N-glycosylase,UNG又はUDG)等の不活化による、腫瘍細胞特異的な複製能の獲得。
-HSV-1の病原性に関わるタンパク質ICP34.5をコードする遺伝子γ34.5を欠失させることによる、腫瘍細胞特異的な複製能の獲得。
-α47を欠失させることによる、抗腫瘍効果の獲得。
-野生型への復帰を防止して安全性を高めるための遺伝子の欠失又は不活化(例えば、内在性γ34.5遺伝子、ICP47遺伝子、α0遺伝子(ICP0遺伝子)、U41遺伝子(vhs遺伝子)、U56遺伝子の欠失又は不活化)。
-免疫刺激遺伝子(IL-4,IL-10,GM-CSF,IL-12,可溶型B7.1等)を発現させることによる、抗腫瘍免疫の増強及び生存延長。
-血小板第四因子、トロンボスポンジン、エンドスタチン、ドミナントネガティブFGF、アンジオスタチン等の血管新生抑制因子を発現する遺伝子を発現させることによる、血管新生抑制効果及び抗腫瘍効果の増強。
-腫瘍の局所浸潤に関与するmetalloproteinase阻害因子を発現させることによる、抗腫瘍効果の増強。
-metalloproteinaseを過剰発現させることによる、ウイルスの感染拡大促進。
-腫瘍あるいは組織特異的なプロモーター(calponinのプロモーター、E2F反応性細胞周期依存性プロモーターB-myb、Nestinプロモーター、癌胎児性抗原(CEA)、α-フェトプロテイン(AFP)、MUC-1、Musashiのエンハンサー/プロモーター等)でウイルス遺伝子を制御することによる、腫瘍細胞特異的なウイルス複製能の増強。
 一態様において、本実施形態の腫瘍溶解性ウイルスは、好ましくは以下の(a)~(c)の特徴のいずれか一つ以上、より好ましくは、以下の(a)~(c)の特徴を有するHSV-1である。これらの特徴を有するHSV-1変異体は、特許文献3等を参照して作製することができる。
(a)ICP6遺伝子が欠失又は不活化されている、或いは腫瘍特異的プロモーター又は組織特異的プロモーターの制御下で発現する。
(b)γ34.5遺伝子が欠失又は不活化されている。
(c)ICP47遺伝子が欠失又は不活化されている。
 上記(a)及び(b)の特徴に関し、非分裂細胞におけるヌクレオチド代謝及びウイルスDNA合成のために重要な酵素であるRRの大サブユニットであるICP6、並びに/或いは、ウイルス感染の際に生じるリン酸化PKRの機能に拮抗するγ34.5を欠失することで、正常細胞では増殖できないが、分裂がさかんでRR活性が上昇しPKRのリン酸化が抑制されている腫瘍細胞でのみ増殖が可能なウイルスとなる。また、上記(c)の特徴に関し、α47遺伝子がコードするタンパク質は、TAPを阻害して宿主細胞表面のMHCクラスIの発現を抑制することで宿主の免疫サーベイランスから逃れる作用を有するため、α47遺伝子欠失HSV-1では宿主細胞のMHCクラスI発現の維持により、免疫細胞に対する刺激が強くなると期待される。さらに上記(b)及び(c)の特徴をいずれも有するHSV-1は、α47の欠失によって、α47とゲノムが重なっているUS11 late promoterが同時に欠失するため、US11遺伝子の発現がICP47 immediate-early promoterの制御下におかれることで発現時期が早まり、γ34.5欠失によって減弱したウイルス複製能を腫瘍細胞に限って復元する作用を有する。
 本明細書において、遺伝子の欠失又は不活化とは、遺伝子の全部又は一部を欠失させるか、一部の塩基の置換、修飾、不要な配列の挿入等を通じて、当該遺伝子の発現を抑制することを指し、公知の方法により実施することができる。
 本明細書において、腫瘍特異的プロモーター又は組織特異的プロモーターとは、所望の腫瘍細胞や組織において特異的に、その制御下にある遺伝子の発現を可能にするプロモーターを意味し、遺伝子に応じて既知のプロモーターを用いることができる。例えば、テロメラーゼ逆転写酵素プロモーター(hTERTプロモーター)やE2Fプロモーターを用いることができる。
 上記(a)~(c)に記載の、γ34.5遺伝子、ICP6遺伝子及び/又はICP47遺伝子の欠失又は不活化を含むHSVとしては、γ34.5遺伝子を2コピーとも欠失させ、ICP6遺伝子を不活化させたG207、γ34.5遺伝子遺伝子の2コピーの欠失、ICP6遺伝子の不活化、及びICP47遺伝子の欠失を含むG47Δが挙げられる。従って、本実施形態の腫瘍溶解性ウイルスは、G207やG47Δにさらに改変を加えることによって作製することもできる。
 特に、G47Δは、安全性を向上させる一方で、腫瘍細胞選択的ウイルス複製と抗腫瘍免疫の惹起を格段に改善した腫瘍溶解性HSV-1であり、治療域の広さから、ヒトの脳内にも高用量を安全に投与することが可能である(第II相試験中)。
(医薬組成物)
 本実施形態の一態様は、上述の本実施形態の腫瘍溶解性ウイルスを含む医薬組成物に関する。本実施形態の医薬組成物は、腫瘍細胞で特異的に増殖し、しかも腫脹発生を抑制するため、繰り返し投与も容易に行うことができる。
 また、一態様において、本実施形態の医薬組成物によれば、後述の実施例に示すとおり、強い抗菌活性、抗ウイルス活性、抗腫瘍効果を有するM1マクロファージが、M2マクロファージと比較して優位な状態が維持され、しかもM1優位な状態であっても医薬組成物中の腫瘍溶解性ウイルスのウイルス力価が低下しないため、高い腫瘍治療効果が得られる。一態様において、本実施形態のウイルスは、VEGF拮抗剤をコードする遺伝子を有しない点を除いて同一の構成を有する腫瘍溶解性ウイルスと比較して、高い腫瘍治療効果を有する。ウイルス力価の測定、M1及びM2マクロファージの比較並びに抗腫瘍効果(in vitroでの殺細胞効果、in vivoでの生存率延長効果を含む)の確認は、後述の実施例に示すとおり、既知の方法により行うことができる。
 さらに、一態様において、本実施形態の医薬組成物によれば、腫瘍溶解性ウイルスが腫瘍内で複製するたびに腫瘍局所においてVEGF拮抗剤(例えば、抗VEGF抗体)を発現するため、VEGF拮抗剤の全身投与と比較して創傷治癒阻害等の副作用のリスクが軽減される。ウイルスの複製能及びVEGF拮抗剤の発現量の確認は、後述の実施例に示すとおり、既知の方法により行うことができる。
 本実施形態の医薬組成物が有効な腫瘍としては、例えば、神経系型腫瘍(例えば星状細胞腫、乏突起膠腫、髄膜腫、神経繊維腫、神経膠芽腫、上衣腫、神経鞘腫、神経繊維肉腫、神経芽細胞腫)、下垂体部腫瘍(例えば、下垂体腺腫)、髄芽細胞腫、黒色腫、脳腫瘍、前立腺癌、頭頚部癌、食道癌、腎癌、腎細胞癌、膵臓癌、乳癌、肺癌、結腸癌、大腸癌、胃癌、皮膚癌、卵巣癌、膀胱癌、肉腫(例えば、骨肉腫、軟骨肉腫、横紋筋肉腫、平滑筋肉腫、線維肉腫、脂肪肉腫、血管肉腫)、扁平上皮癌、神経外胚葉、甲状腺腫瘍、リンパ腫、肝細胞腫、中皮腫、類表皮癌、良性腫瘍(例えば、甲状腺の良性腫瘍又は良性前立腺肥大症)等が挙げられる。
 本実施形態の医薬組成物は、腫脹発生を抑制するため、腫脹のみならず、腫脹に伴う諸症状を引き起こすことなく、腫瘍の治療を行うことができる。例えば、脳内の腫脹に伴う症状としては、頭痛など軽微な症状のみならず、周囲正常組織への圧迫及び頭蓋内圧亢進による麻痺や失語、意識障害などの重篤な症状が含まれるが、本実施形態の医薬組成物に寄れば、このような症状を引き起こすことなく腫瘍の治療を行うことがの原因頭蓋内圧亢進や一時的な神経症状の悪化を引き起こすことなく、患者のQOLを低下させることなく腫脹の治療を行うことができる。一態様において、本実施形態の医薬組成物は、頭蓋外への転移がほとんどなく、局所治療が重要な、脳腫瘍を含めた頭蓋内の腫瘍の治療に特に有効である。
 本実施形態において、腫脹とは、腫瘍自体の腫れ、及び腫瘍の周囲のむくみのいずれも含み、腫瘍及び/又はその周囲の体積が増加し、膨張した状態を指す。本実施形態において、「腫脹発生抑制型」とは、腫脹の発生の抑制、発生する腫脹サイズの縮小、及び腫脹の拡大予防のいずれか一つ以上を指す。理論に束縛されるものではないが、腫瘍溶解性ウイルスを投与した場合に特に問題になる腫脹は、腫瘍自体の腫れであることを本発明者は見出しており、本実施形態のウイルスは、このような腫瘍自体の腫れも含む、腫瘍溶解性ウイルスの投与に伴う腫脹発生を抑制することができる。腫瘍溶解性ウイルスを注射等により幹部に局所投与すると、投与後すぐに腫脹が発生する。この腫脹が持続したまま再度同一部位に局所投与を繰り返すと、さらに腫脹が拡大する。一方、本実施形態のウイルスによれば、この腫脹発生が抑制され、より安全かつ容易に腫瘍治療を行うことができる。
 上記の腫脹に伴って浮腫(水分が蓄積して膨張した状態)も発生し得る。外形的には、腫脹と浮腫とは必ずしも明確に区別できないため、本実施形態において、腫脹の発生の程度は、浮腫の発生の程度の測定によっても確認することができる。すなわち、腫脹の発生の程度は、腫脹及び浮腫の測定において当業者に公知の手法を用いて測定することができる。後述の実施例に示すとおり、例えばMRIのT2強調での高信号域の比較によって腫脹(浮腫)の発生の程度を確認することができる。また、腫脹及び/又は浮腫の発生との関与が確認されている物質を定量することによっても、その発生の程度を確認することができる。例えば、脳における腫脹であれば、脳浮腫との関係が知られているアクアスポリン(AQP)1、AQP3、AQP4、AQP5、AQP8、AQP9、AQP11、AQP12、特にAQP4を定量することにより、その発生の程度を確認することができる。
 本実施形態の医薬組成物の投与方法は特に限定されず、例えば、静脈内、動脈内、脳室内、腹腔内、胸腔内、脊髄腔内、皮下、皮内、表皮内、筋肉内、粘膜表面(例えば、眼、鼻腔内、肺、口腔、腸、直腸、膣、尿路表面)内に投与され得る。好ましくは、注射、内視鏡又は外科的方法により、腫瘍組織に直接局所投与される。局所投与されることにより、VEGF拮抗剤が腫瘍局所において発現するため、VEGF拮抗剤の全身投与と比較して創傷治癒阻害等の副作用のリスクが軽減され、特に外科的方法により腫瘍溶解性ウイルスが投与された場合であっても、外科的方法に伴う創傷の治癒が阻害されないという利点を有する。
 本実施形態の医薬組成物は、ヒトを含む哺乳動物の体内にウイルスを導入するための公知の製剤化方法によって製剤化することができる。例えば、アジュバントや任意の担体を含んでいてもよく、アジュバントや担体を添加せずに無菌生理食塩水又は無菌緩衝生理食塩水のような生理学的に許容される溶液で単に希釈したものでもよい。長期保存に適した凍結製剤、乾燥製剤、凍結乾燥製剤等としてもよい。
 本実施形態の医薬組成物は、本実施形態の腫瘍溶解性ウイルスを治療有効量含む。本明細書において、治療有効量とは、治療する腫瘍の一つ又は複数の症状が、それによりある程度緩和される作用物質の量を意味し、より具体的には、腫瘍サイズの低下、腫瘍の転移の阻害(遅延又は停止)、腫瘍増殖の阻害(遅延又は停止)、及び腫瘍と関連する一つ又は複数の症状の緩和、の少なくとも一つを示す量を意味する。具体的な投与量は、症状の程度、投与対象の年齢、性別、体重、感受性差、投与方法、投与時期、投与間隔、製剤の性質、プロモーターの強度等により、当業者が適宜決定することができる。
 本実施形態の医薬組成物は、例えば、約10~約1012プラーク形成単位(pfu)、好ましくは約10~約1010pfu、さらに好ましくは約10pfu~約5×10を、注射によりそれぞれ1回又は数回に分けて投与することができる。本実施形態の医薬組成物の投与回数は、対象患者及び対象疾患に応じて適宜設定すことができる。例えば、2週間以内に最初の2回を投与し、その後、3~5週間間隔で投与することができる。本実施形態の医薬組成物は腫脹発生抑制型であるため、複数回投与した場合でも、投与の度に腫脹が増大するという副作用や、投与時に発生した腫脹が縮小するのまで次の投与を控えるといった不都合がないという利点を有する。
 本実施形態の医薬組成物は、さらに他の有効成分を含有することもできるし、他の有効成分を含有する医薬組成物と組み合わせて用いることもできる。また、本実施形態の医薬組成物は、他の腫瘍治療法、例えば、手術(腫瘍切除等)、化学療法、放射線療法、免疫療法、ホルモン療法及びこれらの組み合わせと併用して用いることができる。本実施形態の医薬組成物によるウイルス療法は既存の腫瘍治療法とは異なる機序によるため、例えば放射線療法、化学療法等他の治療法との併用により、腫瘍治療効果が増強し得る。
 本実施形態はまた、腫脹発生抑制型腫瘍溶解性ウイルスを用いた、腫瘍の治療方法にも関する。本実施形態はまた、腫瘍を治療するための医薬の製造における、腫脹発生抑制型腫瘍溶解性ウイルスの使用にも関する。当該方法及び使用は、上記医薬組成物にかかる記載を参照して実施することができる。
 異なる定義が無い限り、ここに用いられるすべての用語(技術用語及び科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書及び関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、又は、過度に形式的な意味において解釈されるべきではない。
A.材料
1.細胞株及び培地
 アフリカミドリザル腎細胞株Vero、ヒト大腸がん細胞株HT-29、マウス大腸癌細胞株CT26、ヒトグリオーマ細胞株U87MG、U251MG、NMC-G1、ヒト胎児腎細胞株HEK293T、ヒト臍帯静脈内皮細胞HUVEC (BDTM HUVEC-2)、ヒト臍帯静脈内皮細胞HUVEC-2並びにヒトグリオーマ幹細胞株TGS-01、TGS-04及び1123/Mを使用した。Vero、HT-29、CT26及びU87MGはいずれもAmerican Type Culture Collection(ATCC)より、HEK293Tは理化学研究所バイオリソースセンターより、HUVECは、BD Bioscience (USA)より、HUVEC-2はCorning Life Sciencesより、NMC-G1はJCRB cell bankより、ぞれぞれ購入した。TGS-01及びTGS-04は、東京大学医学部附属病院脳神経外科で開頭腫瘍摘出術を施行された膠芽腫患者の摘出組織から無血清培地で培養し、がん幹細胞マーカー及び限界希釈によるスフィア(浮遊細胞塊)形成能の評価によって分離して樹立したグリオーマ幹細胞株であり、本発明者の研究室で保存されているものを使用した。1123/Mは、乏突起膠腫患者の摘出組織から樹立された幹細胞で、オハイオ州立大学から譲渡されたものを使用した。腫瘍溶解性HSV-1ウイルスであるG47Δは、本発明者の研究室で保存されているものを使用した。
 Vero、U87MG、U251MG、NMC-G1は10% fetal bovine serum(FBS)(Sigma Aldrich)添加Dulbecco’s modified Eagle’s medium(DMEM)(gibco)で培養した。HT-29は10% FBS を添加したMcCoy’s 5A (Modified) 培地、CT26は10% FBSを添加したRPMI 1640培地で培養した。HUVEC、HUVEC-2は1% Low Serum Growth Supplement(LSGS)(gibco)添加Medium200PRF(gibco)にて培養した。TGS-01、TGS-04はDMEM/F12(1:1)(gibco)500 mLにB-27(gibco)10 mL、45% D-Glucose(Sigma Aldrich)7 mL、200 mM L-glutamin(gibco)5 mL、Insulin(gibco)1.875 mL を加えた培地にEGF(Peprotech)(20 ng/mL)、bFGF(Peprotech)(20 ng/mL)をそれぞれ用時に1,000分の1量を加えた培地(以下、SCM)で培養した。1123/MはDMEM/F12(1:1)500 mLにB-27 10 mL、200 mM L-glutamin 5 mL、Heparin(5 mg/mL)(Sigma Aldrich) 550 μLを加えた培地にEGF(20 ng/mL)、bFGF(Peprotech)(20 ng/mL)をそれぞれ用時に1,000分の1量を加えた培地で培養した。EGF及びbFGFは3日に1回の頻度で培地内に添加した。すべての細胞はインキュベーターで5% CO2、37℃で培養した。ウイルス培養用無血清培地として1% L-glutamin(gibco)添加VP-SFM(gibco)を、co-transfection培地としてOpti-MEM(Sigma Aldrich)を使用した。
2.ウイルス
 本実施例で作製及び使用したウイルスの代表的な構造を図2に示す。いずれのウイルスも遺伝子組換えHSV-1であるG47Δを基本骨格として作製された。T-01は、ICP6遺伝子の894 bpの欠失部位に外来遺伝子を挿入せず、LacZ及びサイトメガロウイルス(CMV)プロモーターのみを挿入したコントロールウイルスである。今回作製したT-BV及びT-VHVLは、抗ヒトVEGF抗体発現遺伝子及び抗VEGF一本鎖抗体(VEGF scFv)発現遺伝子がそれぞれCMVプロモーターの下流に挿入されている。挿入された抗体発現遺伝子の詳細及びウイルスの作製方法に関しては後述する。
3.大腸菌、大腸菌用培地及び抗生物質
 トランスフェクション用大腸菌として、それぞれOne shot DH5α-T1 Competent Cell(Thermo Fisher Scientific)とOne shot PIR1 Competent Cell(Thermo Fisher Scientific)を、エレクトロポレーション用大腸菌としてElectroMax DH10B Electrocompetent Cell(Thermo Fisher Scientific)を、それぞれ使用した。トランスフェクション用培地として、SOC培地(Thermo Fisher Scientific)を使用した。大腸菌の培養にはLB(Thermo Fishier Scientific)培地を使用した。また培地に添加する抗生物質として、カナマイシン硫酸塩(Sigma Aldrich)、クロラムフェニコール(Sigma Aldrich)を使用した。
4.血清
 血清はウシ胎児血清(Fetal Bovine Serum;FBS)(Sigma Aldrich)を用いた。熱非働化処理に関しては56℃、30分間の熱処理を行った。
5.抗体
 抗ヒトVEGF抗体であるベバシズマブ(商品名:Avastin(登録商標))は中外製薬より購入した。
 ウエスタンブロッティング用抗体は、goat anti-human IgG- heavy and light chain monkey-absorbed antibodyをBethylから、donkey anti-goat IgG- HRP conjugatedをSanta Cruzから、それぞれ購入した。
 ELISA用抗体は、Human VEGF(100-20)、Murine VEGF(450-32)及びRabbit anti-Murine VEGF antibody(500-P131)をPeproTechから、Goat anti-Human IgG-Fc Fragment Antibody HRP conjugated(A80-104P)及びGoat anti-Rabbit IgG-Fc Fragment Antibody HRP conjugated(A120-111P)をBethylから、それぞれ購入した。
 免疫組織化学染色用抗体は、ウサギ抗HSV-1抗体(B0114、ポリクローナル)、HRP標識抗ウサギポリマー(K4003)をDakoから、ラット抗マウスCD31抗体(DIA-310、モノクローナル)をdianovaから、ラット抗マウスF4/80抗体(ab6640、モノクローナル)をabcamから、Mouse MAX PO (Rat)(414311)を ニチレイから、それぞれ購入した。
 フローサイトメトリー解析用抗体は、Purified Anti-mouse CD16/32 Antibody(101301)、Pacific Blue anti-mouse CD45 Antibody(103126)、APC anti-mouse/human CD11b Antibody(101212)、Brilliant Violet 570 anti-mouse Ly-6G/Ly-6C(Gr-1)Antibody(108431)及びPE/Cy7 anti-mouse CX3CR1 Antibody(149015)をBioLegendから、Rat anti-mouse F4/80: RPE Antibody(MCA497PE)をBio-Radから、それぞれ購入した。
6.実験動物
 生後5-6週のBALB/cnu/nuマウス(ヌードマウス)の雌を使用した。マウスは日本チャールズリバー又は日本SLCから購入し、specific pathogen free環境下で飼育した。動物実験は「動物愛護及び管理に関する法律」を遵守し、東京大学バイオサイエンス委員会の東京大学動物実験実施マニュアルに従った。
B.実験方法
実施例1:ウイルスの作成
 T-BV、T-VHVL、T-sVEGFR1の作製にはT-BACシステムを用いた。T-BACシステムとは、100万bpまでの大きなDNA断片を大腸菌内に単一コピーで安定して保持させることができるF因子プラスミドのレプリコンに基づくクローニングベクターであるbacterial artificial chromosome(BAC)を、G47ΔのゲノムのICP6欠失部位に挿入することによって、G47Δゲノムの維持や増幅を容易とした遺伝子組換えHSV-1の製造技術である(Fukuhara, H. et al. (2005). Cancer research, 65, 10663-10668)。このT-BACにはloxP配列及びFRT配列が含まれており、同様にloxP配列とFRT配列を持つシャトルベクタープラスミドであるSV-01と混合して、Cre/loxP及びFLP/FRTの2つのリコンビナーゼシステムを利用することで、SV-01に搭載された外来遺伝子の挿入とBACの切り出しが起こり、外来遺伝子が挿入されたG47Δの作製が可能となる(図3)。
実施例1.1 抗体発現cDNAの作製
 抗ヒトVEGF抗体発現遺伝子のcDNAに関して、ベバシズマブのFab領域のアミノ酸配列及びヒトIgG1 Fc領域のアミノ酸配列をそれぞれthe international ImMunoGeneTics information system(IMGT)、及びNational Center for Biotechnology Information(NCBI)のデータベースから入手した。重鎖、軽鎖にそれぞれ対応するポリペプチドのN末端側に分泌シグナルとしてIg kappa leader sequence及びシグナルペプチダーゼ認識部位を結合したものを、口蹄疫病ウイルス(FMDV)-2A配列及びfurin認識配列で結合した。アミノ酸配列及び全体の構造を図4に示す。最終的には転写開始点にKozak配列と開始コドンを挿入し、配列の両端を制限酵素部位BamHIとNotIで挟み、ヒトでのコドンに最適化した塩基配列への変換をユーロフィンジェノミクス株式会社に依頼して1本のcDNAとして作製した。
 VEGF scFv発現のためのcDNAに関しては、文献(Liang, W. C. et al.(2006). Journal of Biological Chemistry, 281, 951-961)に記載されたヒト・マウス両方のVEGFに結合性を持つ抗VEGF抗体のひとつのクローンであるG6-31の重鎖、軽鎖のアミノ酸配列に基づいて、遺伝情報処理ソフトウェアGENETYX(ゼネティックス)を用いて、それぞれに対応するcDNAを作製した。この重鎖、軽鎖に対応するcDNAを、scFvの基本的構造である4つのグリシンと1つのセリンを繋げたもの(Gly-Gly-Gly-Gly-Ser(配列番号:12))を3つ連結したGSリンカーで結合し、N末端側にIg kappa leader sequenceとシグナルペプチダーゼ認識部位を結合した。アミノ酸配列及び全体の構造を図5に示す。最終的には転写開始点にKozak配列と開始コドンを挿入し、配列の両端を制限酵素部位BamHIとNotIで挟み、1本のcDNAとして作製した。以後の実施例1.2~1.7における手順に関しては、T-BVに関するもののみ示す。T-VHVL及びT-sVEGFR1は、後述の実施例1.8のとおり作製した。
実施例1.2 抗ヒトVEGF抗体発現遺伝子搭載プラスミド(pEX-K-BV)の増幅
 抗ヒトVEGF抗体発現遺伝子搭載プラスミドである pEX-K-BV(ユーロフィンジェノミクス株式会社製)(図6)をTE buffer に溶解し(1 ng相当)、One shot DH5α-T1 Competent Cellに加えて氷上に30分間静置し、42℃で45秒間熱処理の後、SOC培地を加え、37℃、1時間培養の後、培養液をカナマイシン添加LB寒天培地に全量まき、37℃で一晩培養した。コロニーを採取し、カナマイシン添加LB培地で37℃、8時間培養した。遠心してペレットを回収し、QIAprep Spin Miniprep Kit(Qiagen)を用いてプラスミドDNAを抽出した。
実施例1.3 抗ヒトVEGF抗体発現遺伝子のシャトルベクターSV-01への挿入
 SV-01についてはBamHI、NotIで制限酵素処理し、CIAP処理をした。pEX-K-BVについては、BamHI、NotIで制限酵素処理した場合に得られるpEX-K、抗ヒトVEGF抗体発現遺伝子のサイズが2,507 bp、2,261 bpと泳動バンドが近いため、分離を改善する目的で、抗ヒトVEGF抗体発現遺伝子内には認識部位がなく、pEX-Kをほぼ中間で切断するBglIIを併用した。1% アガロースゲルで50 V、80分間電気泳動したのち、UVトランスイルミネーター(UVP)内で目的のバンドを切り出して、QIAquick Gel Extraction Kit(Qiagen)を用いて目的サイズのDNA断片を抽出した。抽出したDNA断片をDNA Ligation Kit Mighty Mix(Takara)と混ぜたのち、One shot PIR1 Competent Cellと混合して、熱処理を加えた後、37℃で1時間培養し、カナマイシン添加LB寒天培地にまいて、37℃で一晩培養した。コロニーを採取してカナマイシン添加LB培地で37℃、24時間培養した後に、遠心してペレットを回収し、QIAprep Spin Miniprep Kit を用いてDNAを抽出した。抽出したDNAをBamHI及びNotIで制限酵素処理した後に1% アガロースゲルで電気泳動してSV-01への抗ヒトVEGF抗体発現遺伝子の挿入確認を行った。
実施例1.4 SV-01のT-BACへの挿入
 抗ヒトVEGF抗体発現遺伝子の挿入が確認されたSV-01(以下「BV/SV-01」という。)をT-BAC及びCre-recombinaseと混合して37℃で1時間反応させ、Cre-recombinationによるBV/SV-01のT-BACへの挿入を行った。エタノール沈殿を行った後、ElectroMax DH10B Electrocompetent Cellと混合してキュベットに入れ、Gene Pulse Xcellエレクトロポレーションシステム(Bio-Rad)を用いて1.2 kV、25 mF、200 Ωでエレクトロポレーションした後、カナマイシン・クロラムフェニコール添加LB寒天培地で37℃、一晩培養した。コロニーを採取してカナマイシン添加LB培地で37℃、24時間培養した後に、遠心してペレットを回収し、QIAprep Spin Miniprep KitでBV/SV-01/T-BACを抽出した。
実施例1.5 BV/SV-01/T-BACの組換えの確認
 PCR及び制限酵素処理による構造確認を行った。PCRはBV/SV-01/T-BACを鋳型として、forward/reverse primerをICP6内(ICP6-f1)/LacZ内(SV01-r1)又はSV-01内(SV01-f1)/LacZ内(SV01-r1)にそれぞれ設定し、BV/SV-01の単一での挿入を確認した。挿入の陰性対照としてT-BACを、PCRの陰性対照としてmock(鋳型DNAなし)をおいた。両PCRともにVeritiサーマルサイクラー(Thermo Fisher Scientific)を用いて、denatureを94℃、2分間で行った後、「98℃ 10秒→57℃ 30秒→68℃ 1分30秒」を25サイクル行い、最後に68℃、7分間処理した。PCR産物を1% アガロースゲルで100 V、25分間電気泳動し、泳動パターンの確認を行った。
 制限酵素処理に関しては、BV/SV-01/T-BACをHindIII、KpnIで制限酵素処理した後、0.6% アガロースゲルで50 V、一晩電気泳動した。陰性対照として、T-BACを用いた。
実施例1.6 VeroへのBV/SV-01/T-BAC、pOG44のコトランスフェクション
 BV/SV-01/T-BAC及びFLPリコンビナーゼ発現プラスミドpOG44(Thermo Fisher Scientific)にトランスフェクション試薬FuGENE HD(Promega)を加え、室温で15分間静置後、これをOpti-MEMに置換したVero細胞に添加し、5% CO2、37℃で3時間培養した。その後、10% v/v FBS添加DMEMで一晩、1% v/v 熱非働化FBS添加DMEMで72時間、5% CO2、37℃で培養した。
実施例1.7 限界希釈法による単一クローンの単離とウイルスの精製
 コトランスフェクション後に50% cytopathic effect(CPE)が確認できたところで蛍光顕微鏡BIOREVO(KEYENCE)を用いてGreen Fluorescence Protein(GFP)の蛍光を観察し、ウイルスにより形成されたプラークの7~8割の蛍光が消失していること、すなわち、FLPによるBACの切り出しを確認した後、Vero細胞をセルスクレーパーで剥離して培養液ごと回収した。遠心してペレットにphosphate buffer saline(PBS)を加えて、凍結・解凍を3回繰り返した後、超音波破砕操作を加え、細胞内のウイルスを抽出した。続いて限界希釈法で、ウイルスの単一クローンの単離を行った。96穴プレートに1ウェルあたり1 x 10個のVero細胞をまき、そこに0.3 pfu/wellのウイルス力価で感染を行った。室温で5分間振盪、5% CO2、37℃で90分間培養後、ウイルス液を除き、1% v/v 熱非働化FBS添加DMEMを加えて5% CO2、34.5℃で6日間培養後、GFP陰性の単一プラークを認めるウェルを、96穴プレート3枚あたり3ウェル選択し、培養液ごと回収した。このウイルス液を6穴プレートで増幅した後、再度96穴プレートを用いて限界希釈を行った。これら一連の操作を計3回繰り返すことで、最終的に単一クローンとみなすことのできるウイルスを単離した。
 続いて単離したウイルスの精製を行った。1枚あたりにVero細胞1 x 107 cellsを撒いたT150フラスコ16枚に対して、単離したウイルスをMOI 0.01で感染させ、室温で5分間振盪後、5% CO2、37℃で90分間培養後、ウイルス液を除き、L-glutamine添加VP-SFM 25 mL/フラスコを加え、5% CO2、34.5℃で培養した。CPEになったことを確認し、細胞をセルスクレーパーで剥離し、培養液ごと回収後、800×gで遠心してペレットを回収し、PBS 16 mLを加えて懸濁後、凍結・解凍を3回繰り返し、2分間の超音波破砕操作を加えた。懸濁液を0.8 μmフィルター、0.45 μmフィルターで順に濾過した後、30% v/v スクロース(Sigma Aldrich)/PBS 4 mLを入れた遠沈管にゆっくり静かに重層し、超遠心機Avanti HP-26XP(Beckman Coulter)を用いて、4℃、24,000×gで90分間遠心した。ペレットを回収し、cold PBS 5 mLでリンスした後、10% グリセロール(Merck Millipore)/PBS 1.6 mLを加え、短時間の超音波破砕を繰り返してペレットを溶解した。150 μLずつ分注した後、ドライアイス・エタノールで凍結し、-80℃で保存し、以下の評価実験に用いた。
実施例1.8 T-V H V L 及びT-sVEGFR1の作成
 上記実施例における、T-BVの作製手順に準じて、VEGF阻害因子である可溶型VEGF受容体1 (sVEGFR1) (Park JE et al. (1994) J Biol Chem. Vol. 269(41):25646-54)(図7)、もしくは一本鎖抗VEGF抗体VEGFscFv (VH-VL) (16, 17, 18)、の遺伝子のcDNAをT-BACシステムを用いて、G47Δの基本骨格のICP6欠失部位に挿入し、作製されたVEGF拮抗剤発現型HSV-1であるT-sVEGFR1とT-VH-VLを作製した。T-VH-VLの培養上清中に分泌されるVEGFscFvタンパク質はELISA法で検出できないため、κ鎖に対するELISA法で検出するためにVEGFscFv (VH-VL) のC末端にκ鎖を融合したVEGFscFv (VH-VLCL)を挿入したT-VEGFscFv (VH-VLCL)(図8)も作製した。
実施例2 サザンブロット法によるT-BVの構造確認
 最終産物であるT-BVについては、サザンブロット法による構造確認を行った。精製ウイルス(titer 8.4 x 108 pfu/mL)150 μLからQIAamp MinElute Virus Spin Kit(Qiagen)を用いてウイルスDNAを抽出し、エタノール沈殿で濃縮した。濃縮したDNAをHindIIIで37℃、16時間かけて制限酵素処理し、0.6% アガロースゲルで45 V、13時間電気泳動した。UVトランスイルミネーター(UVP)で泳動パターンを確認した後、ゲルを0.25 M 塩酸に室温で20分間浸し、脱プリン化を行った。続いてDenaturing Buffer(3 M NaCl, 0.4 M NaOH)に室温で30分間浸透し、DNAの変性を行った。Turbo Blotterシステム(GEヘルスケア)を用いて、ゲルからNytran SPCナイロンメンブレン(GEヘルスケア)にウイルスDNA断片を転写した。UV CrossLinker(UVP)を用いて、254 nm、120 mJ/cm2で2分間UV照射を行い、DNAをNytran SPCナイロンメンブレン上に固定した。プローブは、BV/SV-01をBamHI、NotIで、SV-01をBglIでそれぞれ制限酵素処理し、0.7% アガロースゲルで100 V、30分間電気泳動し、それぞれのバンドを切り出してQIA Quick Gel Extraction Kitを用いてDNAを抽出した。続いてAlkPhos Direct Labelling and Detection System with CDP-Star(GEヘルスケア)を用いてDNAの標識を行い、BVプローブ、LacZプローブをそれぞれ作製した。
 あらかじめハイブリダイゼーションインキュベーター(Taitec)で55℃に温めておいたHybridization buffer(GEヘルスケア)をNytran SPCナイロンメンブレンとともにハイブリバッグに入れてシールし、55℃、30分間反応させた後、標識済のプローブを加えて55℃で一晩ハイブリダイゼーションを行った。Nytran SPCナイロンメンブレンを一次洗浄液(2 M urea, 0.1% v/v SDS, 50 mM Na phosphate(pH7.0), 150 mM NaCl, 1 mM MgCl2 , 0.2% v/v Blocking Reagent)で55℃、20分間洗浄の後、二次洗浄液(50 mM Tris base, 100 mM NaCl)で、室温、10分間洗浄した。Detection Solution(GEヘルスケア)で室温、4分間処理したのち、ImageQuant LAS-4000(GEヘルスケア)で撮影した。
実施例3 ウイルス力価の測定
 本実施例において、使用したウイルスの力価(タイター)は単位をplaque forming unit(pfu)で表し、以下のように測定した。タイターの測定は、実際のタイターが予想タイターと大きく異なることがないかを確認する目的で、実験でウイルスを使用するたびに行った。Vero細胞を3.6 x 105cells/2 mL 10% FBS添加DMEM/wellずつ6穴プレートにまき、5% CO2、37℃下で一晩培養した。翌日に予想タイターを元に、1% v/v 熱非働化FBS添加Dulbecco’s phosphate buffered saline(DPBS)(Sigma Aldrich)でウイルスの3段階の希釈系列を調製した。1% v/v 熱非働化FBS添加DPBS 1 mL/wellでVero細胞が播種されたプレートを洗浄した後に、3段階に希釈したウイルス液を各濃度2ウェルずつ、計6ウェルに700 μL/wellずつ加えた。ウイルス液を添加した6穴プレートを室温で5分間振盪し、5% CO2、37℃で1時間培養した。ウイルス液を除き、1% v/v 熱非働化FBS添加DMEMに5% ヒト免疫グロブリンG(日本血液製剤機構)を0.1% v/vとなるように添加した培地を2 mL/wellずつ加え、5% CO2、34.5℃で72時間培養した。培地を除き、PBS 1 mL/wellで1回洗浄した後、メタノール 1 mL/wellを加え、室温で5分間静置し、固定を行った。メタノールを除去して乾燥した後、20分の1倍希釈Giemsa染色液(Merck Millipore)で染色し、蒸留水で洗浄した。乾燥させた後、顕微鏡でプラーク数を測定し、希釈倍率を元にタイターをpfu/mLとして算出した。
実施例4 in vitroにおけるウイルスの殺細胞効果の検討
実施例4.1 U87MG細胞での殺細胞効果の検討
 U87MG細胞を6穴プレートに2 x 105 cells/2 mL 10% v/v FBS添加DMEM/wellずつまき、5% CO2、 37℃で一晩培養した。1% v/v 熱非働化FBS添加DPBSでMOI 0.1、0.01のT-01とT-BVのウイルス希釈液を調製し、各ウイルス、各濃度3ウェルずつ、ウイルス液又はmock(1% v/v 熱非働化FBS添加DPBS)を700 μL/well加えた。室温で5分間振盪し、5% CO2、37℃で1時間培養した後、ウイルス液を除き、1% v/v熱非働化FBS添加DMEM 2 mL/wellを加えて、5% CO2、34.5℃で培養した。感染から4日間連続で生細胞数をCoulter Counter(Beckman Coulter)により計測し、mockの生細胞数に対する割合として算出した。
実施例4.2 TGS-01、TGS-04での殺細胞効果の検討
 TGS-01、TGS-04は幹細胞性維持のため無血清培地での培養が必要であり、無血清培地での培養で浮遊細胞塊(スフィア)を形成するため、接着系細胞とは異なる評価が必要となる。そこで、テトラゾリウム化合物 ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS])を用いた比色法で生細胞数を測定するMTS試験での評価を行った。MTS試験は、MTSが代謝活性のある細胞内のNADPH又はNADHによって、発色性のホルマザン産物へと変換され、得られた着色溶液の490 nmにおける吸光度を測定することで、生細胞数の定量化を行う評価法である。本実験ではCellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay Kit(Promega)を用いて測定を行った。非接着処理96穴プレート(NUNC)にTGS細胞を4,000 cells/SCM 50 μL/wellずつまき、1% v/v 熱非働化FBS添加DPBSでMOI 1、0.1、0.01のT-01及びT-BVのウイルス希釈液を調製し、各ウイルス、各濃度3ウェルずつ、ウイルス液又はmock(1% v/v 熱非働化FBS添加DPBS)を10 μL/well加えた。室温で5分間振盪の後、5% CO2、37℃で1時間培養し、SCM 50 μL加えて、5% CO2、37℃で培養した。感染から1日後に、MTS+フェナジンメトサルフェート(PMS)の混合液(20:1)を20 μL/wellずつ加え、さらに5% CO2、37℃で24時間培養後に96ウェルプレートリーダーAD200(Beckman Coulter)で490 nmの吸光度を測定した。この試薬の添加と24時間後の測定を感染から4日間連続で行い、mockでの吸光度に対する割合として算出した。
実施例5 in vitroにおけるウイルス複製試験
 Vero細胞及びU87MG細胞を6穴プレートに3 x 105cells/2 mL 10% v/v FBS添加DMEM/wellずつまき、5% CO、37℃で一晩培養した。1% v/v 熱非働化FBS添加DPBSでMOI 0.01のT-01とT-BVのウイルス希釈液を調製し、各ウイルス、各濃度3 wellずつ、ウイルス液又はmock(1% v/v 熱非働化FBS添加DPBS)を700 μL/well加えた。室温で5分間振盪し、5% CO2、37℃で1時間培養した後、ウイルス液を除き、1% v/v 熱非働化FBS添加DMEM 2 mL/wellを加えて、5% CO2、37℃で培養した。感染から24時間後及び48時間後に、細胞をセルスクレーパーで剥がし、培養液ごと、各ウェル毎に回収した。ドライアイス・エタノールによる凍結と融解を3サイクル繰り返した後、1分間の超音波による細胞破砕処理を加えたものを用いて、前述の方法と同様にタイターの測定を行った。
実施例6 発現タンパクの確認
実施例6.1 ウエスタンブロット法による発現タンパクの確認
 はじめに検体の調製を行った。6穴プレートにHEK293T細胞を8 x 10cells/2 mL 10% v/v FBS添加DMEM/wellずつまき、5% CO2、37℃で8時間培養した後、1.6 μg BV/SV-01及びコントロールとしてSV-01をトランスフェクション試薬FuGENE HDとOptiMEMとを混合し、HEK293T細胞に滴下し、5% CO2、37℃で48時間培養し、BV/SV-01及びSV-01をHEK293T細胞にトランスフェクションした。上清を回収し、0.2 μmフィルターで濾過し、Amicon Ultra-15, 10K(Merck Millipore)を用いて限外濾過で濃縮したものを検体として保存した。陽性対照として、Avastin(登録商標)(中外製薬)を用いた。
 ポリアクリルアミドゲル電気泳動(PAGE)は、ドデシル硫酸ナトリウム(SDS)存在下で行うSDS-PAGEと、SDSを用いないnative PAGEを行った。
実施例6.1.1 SDS-PAGE
 40% w/v-Acrylamide/Bis Mixed Solution(29:1)2.4 mL、1 M Tris/HCl 3 mL、蒸留水 2.47 mL、SDS(10% v/v) 80 μL、APS(10% v/v)40 μL、TEMED 8 μLを調合して12%のseparate gelを作製し、ゲル作製用ガラス板セットの間に流し込み、上から蒸留水を重層して20分ほど静置し、固まったところで上層の蒸留水を除き、40% w/v-Acrylamide/Bis Mixed Solution(29:1)312.5 μL、1 M Tris/HCl 312.5 μL、蒸留水 1.835 mL、SDS(10% v/v)25 μL、APS(10% v/v)12.5 μL、TEMED 2.5 μLを調合した5%のstacking gelを重層することでゲルを作製した。ゲルを泳動槽内にセットした後、陽極槽・陰極槽には泳動バッファー(0.12 M Tris・HCl、0.192 M グリシン、3.47 mM SDS)を注いだ。ロードするタンパク量は500 ngで統一されるように、蒸留水及び4x loading buffer (0.25 M Tris・HCl pH 6.8、8% v/v SDS、40% v/v glycerol、20% v/v 2-メルカプトエタノール、0.2% v/v ブロモフェノールブルー) を混合し、100℃で10分間沸騰の後、on iceで急冷した。検体をウェルにロードし、stacking gel内は10 mA、250 V、10 W、separating gel内では20 mA、250 V、10 W、ともに室温で泳動した。ポリフッ化ビニリデン(PVDF)膜(Merck Millipore)をメタノールに浸した後、トランスファバッファー(0.048 M Tris、0.039 M Glysin、20% v/v メタノール、SDS(10%)100 μL)に浸した状態で、トランスブロットSDセル(Bio-Rad)を用いて100 mA、60分でタンパク質をPVDF膜にトランスファーした。Blocking Oneを用いて室温で、50分間ブロッキングした後、一次抗体としてgoat anti-human IgG-heavy and light chain monkey-absorbed antibody(1/2000希釈)を4℃で一晩反応させた。PVDF膜を洗浄した後、二次抗体としてdonkey anti-goat IgG-horseradish peroxidase(HRP)conjugated(1/2000希釈)を室温で2時間反応させ、洗浄の後、Pierce Western Blotting Substrate(1:1)(Thermo Fisher Scientific)を室温で5分間反応させ、LAS4000で撮影した。
実施例6.1.2 native PAGE
 ゲルは、プレキャストゲルNativePAGE Novex 3-12% Bis Tris Gels(Thermo Fisher Sientific)を使用した。ゲルを泳動槽内にセットした後、陽極槽には陽極バッファー(0.05 M BisTris、0.05 M Tricine)を、陰極槽には陰極バッファー(泳動バッファー(0.05 M BisTris、0.05 M Tricine、NativePAGE Cathode Additive(Thermo Fisher Scientific))を注いだ。ロードするタンパク量は500 ngで統一されるように、蒸留水及び4x NativePAGE Sample Buffer(Thermo Fisher Scientific)を混合した。検体をウェルにロードし、始めの60分間は150 V、8-10 mAで、残りは250 V、2-4 mAで30-90分、熱による変性を防ぐため、すべて4℃低温室内で泳動した。PVDF膜へのタンパク質のトランスファーはXcell2 Blot Module(Thermo Fisher Scientific)を用いて、inner chamberをトランスファバッファー(0.5 M Tricine、0.5 M Bis-Tris、0.02 M EDTA)で、outer chamberを蒸留水で満たし、25 V、1時間でタンパク質をPVDF膜にトランスファーした。Blocking Oneで室温、50分間ブロッキングした後、一次抗体としてgoat anti-human IgG-heavy and light chain monkey-absorbed antibody(1/2000希釈)を4℃で一晩反応させた。PVDF膜を洗浄した後、二次抗体としてdonkey anti-goat IgG- HRP conjugated(1/2000希釈)を室温で2時間反応させ、洗浄の後、Pierce Western Blotting Substrate Plus(40:1)(Thermo Fisher Scientific)を室温で5分間反応させ、LAS4000で撮影した。
実施例6.2 ELISAによるin vitroにおける抗ヒトVEGF抗体発現の定量
 6穴プレートにU87MG細胞を4 x 10cells/2 mL 10% v/v FBS添加DMEM/wellずつまき、5% CO2、37℃で12時間培養した後、1% v/v 熱非働化FBS添加DPBSでMOI 0.2のT-01とT-BVのウイルス希釈液を作製し、各ウイルス3ウェルずつ、ウイルス液又はmock(1% v/v 熱非働化FBS添加DPBS)を700 μL/well加えた。室温で5分間振盪し、5% CO2、37℃で1時間培養した後、ウイルス液を除き、DMEM 2 mL/wellを加えて、5% CO2、37℃で72時間培養した。上清を回収し、Amicon Ultra-15, 10Kを用いて限外濾過で2.7倍濃縮したものを検体とした。検量線を描くためのスタンダードとしてはAvastin(登録商標)を使用し、原液(25 mg/mL)を基準に90 ng/mLから1/3ずつ8段階の希釈系列を作製した。スタンダード及び検体、検出抗体の希釈にはSample/conjugate diluent(Bethyl)を用いた。ELISAにはELISA Starter Accessory Kit(Bethyl)を使用した。micro titer wellにRecombinant Human VEGF 165(Peprotech)を50 ng/100μLずつ入れ、室温で1時間反応させ、抗原の固相化を行った。ELISA Wash Solution 100 μL/wellで5回洗浄した後、Blocking Solution 200 μL/wellを入れ、室温で30分間ブロッキングを行った。ELISA Wash Solution 200 μL/wellで5回洗浄した後、スタンダード及び検体を100 μL/wellずつ入れ、室温で1時間反応させた。ELISA Wash Solution 100 μL/wellで5回洗浄した後、検出抗体としてgoat anti-human IgG-Fc fragment antibody HRP conjugated(1/100000希釈)を100 μL/wellずつ入れ、室温で1時間反応させた。5回洗浄の後、TMB Substrateを100 μL/wellずつ加え、遮光して15分間反応させた後、Stop Solution(0.18 M H2SO4)を100 μL/wellずつ加え、96ウェルプレートリーダーAD200を用いて450 nmの吸光度を測定した。スタンダードで得られた吸光度を元に検量線を描き、検体の抗ヒトVEGF抗体濃度を算出した。検量線は画像処理フリーソフトウェアImage Jで作製した。
実施例7 T-BV発現抗体の機能の確認
 HUVEC-2を用いて、血管内皮細胞管腔形成試験及び血管内皮細胞遊走試験を行い、T-BVの発現するタンパク質のVEGF阻害効果の確認を行った。はじめに検体の調製を行った。Vero細胞からのVEGF発現量はU87MG細胞とほぼ同等であることを確認の上、検体調製にはVero細胞を用いた。Vero細胞をT150フラスコに8 x 10cellsずつまき、37℃、5% CO2下で8時間培養の後、T-01、T-BV、mock(1% v/v 熱非働化FBS添加DPBS)をMOI 0.2で感染させ、室温で5分間振盪し、37℃、5% CO2下で1時間培養した。ウイルス液を除き、DMEM 15 mLに交換し、37℃、5% CO2下でさらに3日間培養した。上清を回収し、Amicon Ultra-15, 10Kで限外濾過して40倍濃縮した。
実施例7.1 血管内皮細胞管腔形成試験
 BD BioCoat Angiogenesis System-Endothelial Cell Tube Formation(BD Bioscience)を用いて行った。BD BioCoat Angiogenesis Plateを細胞播種の24時間前に4℃で溶解後、HUVEC-2を2 x 104 cells/wellずつ播種した。各ウェルに調製した検体を2.5 μLずつ添加した3群に加え、陽性対照としてmock 2.5 μLにAvastin(登録商標)を10 pg/2.5 μL又は10 ng/2.5 μL添加した2群(各、p.c.1、p.c.2)、陰性対照として細胞培養上清を添加しない群の計6群での評価を行った。各群3ウェルずつ行った。各ウェルの培養液の総量が50 μLとなるように1% v/v LSGS添加Medium200を加え、37℃、5% CO2で17時間培養した。培養液を除き、Hanks’ Balanced Salt Solution(HBSS)(Thermo Fisher Scientific) 100 μL/wellで洗浄を2回繰り返した後、8 μg/mL Calcein AM(BD Bioscience)を50 μL/wellずつ加え、37℃で30分間標識した。Calcein AMを除き、HBSS 100 μL/wellで2回洗浄後に蛍光顕微鏡BIOREVOで各wellを撮影した後、管腔の長さを測定し各群3ウェルの管腔長総和の平均値として算出した。
実施例7.2 血管内皮細胞遊走試験
 BD BioCoat Angiogenesis System-Endothelial Cell Migration(BD Bioscience)を用いて行った。上部チャンバーにHUVEC-2を1 x 105cells/wellずつ播種し、下部のウェルには調整した検体を19 μLずつ添加した3群に加え、陽性対照としてmock 19 μLにAvastin(登録商標)を380 pg/19 μL又は380 ng/19 μL添加した2群(各、p.c.1、p.c.2)、陰性対照として細胞培養上清を添加しない群の計6群での評価を行った。各群3ウェルずつ行った。各ウェルの培養液の総量が750 μLとなるように1% v/v LSGS添加Medium200を加え、37℃、5% CO2で22時間培養した。24穴プレートに8 μg/mL Calcein AMを500 μL/wellずつ分注したものを別途準備しておき、上部チャンバーの中の培養液及びメンブレン下面に付着した培地を除き、Calcein AMの入った24穴プレートに移して37℃で90分間標識した。蛍光顕微鏡BIOREVOで各ウェルにおける494 nm/517 nmでの蛍光強度を測定して、各群3ウェルの平均値として算出した。
実施例8 T-BVの発現抗体の種間交差性の確認
 はじめに検体の調製を行った。T150フラスコにHEK293T細胞を6 x 106 cells撒き、37℃、5% CO2で8時間培養した後、T-BVをMOI 3で感染させ、室温で5分間振盪の後、37℃、5% CO2で1時間培養した。ウイルス液を除き、VP-SFMを15 mL加え、さらに15時間培養した後、上清を回収し、限外濾過で20倍濃縮して作製した。一次抗体には、T-BVの感染上清濃縮液、Avastin(登録商標)及びウサギ抗マウスVEGF抗体を用いた。二次抗体には、T-BVの感染上清濃縮液及びAvastin(登録商標)に関してはFc部分がヒト由来であるため、抗ヒトIgG-Fc抗体を、ウサギ抗マウスVEGF抗体に関しては抗ウサギIgG-Fc抗体を、それぞれ用いて検出した。上記で作製した細胞上清濃縮液について行ったELISAで、抗ヒトVEGF抗体濃度は8.85 ng/mLであったことに基づき、陽性対照はAvastin(登録商標)及び抗マウスVEGF抗体の濃度を8.85 ng/mLと0.885 ng/mLの二段階に設定した。陰性対照は、VP-SFMを用いた。固相化した2種類のVEGFと、検出のための2種類の二次抗体との間の交差反応による偽陽性の可能性を考慮し、陰性対照では各VEGFを固相化したウェルそれぞれに2種類の二次抗体を反応させるクロスオーバーの反応系を設定した。
 ELISAキットはELISA Starter Accessory Kit(Bethyl)を使用した。micro titer wellに、ヒトVEGF又はマウスVEGFを50 ng/100 μL/wellずつ入れ、室温で1時間反応させ、抗原の固相化を行った。ELISA Wash Solution 100 μL/wellで5回洗浄した後、ELISA Blocking Solution 200 μL/wellを入れ、室温で30分間ブロッキングを行った。ELISA Wash Solution 200 μL/wellで5回洗浄した後、検体100 μL/wellずつ入れ、室温で1時間反応させた。ELISA Wash Solution 100 μL/wellで5回洗浄の後、各二次抗体(1/100000希釈)を100 μL/wellずつ入れて、室温で1時間反応させた。ELISA Wash Solutionで5回の洗浄の後、TMB Substrateを100 μL/wellずつ入れ、遮光下で15分間反応の後、Stop Solutionを100 μL/wellずつ加えて、96ウェルプレートリーダーAD200を用いて450 nmの吸光度を測定した。
実施例9 動物実験
 動物実験において治療に用いたウイルス液は、全てフィルター滅菌したグリセロールを10%の割合で添加したPBSを使用し、細胞懸濁液に関してはTGSについてはDMEM/F12(1:1)を、それ以外の細胞株ではDMEMを使用した。またmock群に関しては、精製の際にウイルス液の代わりに1% v/v 熱非働化FBS添加DPBSをVero細胞に添加し、以後の手順はウイルスと同様に精製したものを投与した。全身麻酔はケタミン(第一三共)とキシラジン(バイエル)の腹腔内注射又はイソフルラン(ファイザー)の吸入による麻酔法を用いた。
実施例9.1 抗腫瘍効果の検討
実施例9.1.1 皮下腫瘍モデルにおけるウイルスの腫瘍内投与実験
 ケタミンとキシラジンの腹腔内投与による全身麻酔下のBALB/c nu/nuマウスの左側腹部に、50 μL DMEMに懸濁した2 x 10cellsのU87MG細胞を26 G針を用いて皮下に移植した。腫瘍計測はノギスを用いて週2~3回の頻度で行い、腫瘍体積は腫瘍長径×短径×厚さ(mm3)で算出した。
 腫瘍径が6 mm大になったことを確認し、各治療群それぞれ10匹ずつに無作為に群分けをした後に、ウイルスの腫瘍内投与を行った。ケタミンとキシラジンの腹腔内投与による全身麻酔下に10% v/v グリセロール添加PBSで希釈した2 x 10pfu/20 μLのT-01、T-BV又はmockを、30 G針を装着したマイクロシリンジ#1710(Hamilton)を用いて投与した。ウイルス初回投与日をday 0とし、day 3にも同量のウイルスの腫瘍内投与を行った。ウイルス投与後も、引き続き週に2-3回の腫瘍径の計測を行い、腫瘍体積を算出した。
実施例9.1.2 脳内腫瘍モデルにおけるウイルスの腫瘍内投与による生存実験
 ケタミンとキシラジンの腹腔内投与による全身麻酔下に、BALB/c nu/nuマウスの頭部を小動物脳定位固定装置MODEL900(David Kopf Instruments)で固定し、右前頭葉内にDMEM 2 μLに懸濁した2 x 105 cellsのU87MG細胞を、マイクロシリンジ#1701N(Hamilton)を用いて注入した。刺入部位はbregmaから右外側に2 mm、前方に1 mmの部位とし、この直上に長さ4 mm程度の縦の皮膚切開をおき、骨膜を剥離した後に穿頭した後、穿刺針を脳表から深さ3 mmに進め、2分間かけて細胞懸濁液を注入し、5分間保持した後、2分間かけて穿刺針を抜去した。皮膚を5-0バイクリル(ジョンソン・エンド・ジョンソン)で縫合した。TGS-01、TGS-04に関しては、DMEM 2 μLに懸濁した1 x 105 cellsを同じ操作手順で右前頭葉内に移植した。
 腫瘍が2~3 mm大になるのを目処として、U87MG及びTGS-01に関しては腫瘍移植から10日目、TGS-04に関しては20日目に各治療群それぞれ10匹ずつ無作為に群分けをした後に、ウイルスの腫瘍内投与を行った。ケタミンとキシラジンの腹腔内投与による全身麻酔下にマウスの頭部を小動物脳定位固定装置で固定し、腫瘍移植においた皮膚切開部を再開創し、U87MGについては10% v/v グリセロール添加PBSで希釈した1 x 10pfu/5 μLのT-01、T-BV又はmockを、TGS-01及びTGS-04については2 x 10pfu/5 μLのT-01、T-BV又はmock を、それぞれマイクロシリンジ#1701Nを用いて注入した。異なるウイルスの混入を防ぐため、マイクロシリンジはウイルス毎に別のものを準備した。刺入部位・深さは腫瘍移植時と同じに設定した。2分間かけてウイルス液を注入し、5分間保持した後、2分間かけて穿刺針を抜去した。皮膚を5-0バイクリルで縫合した。ウイルスは単回投与で、投与日をday 0とし、各マウスの生存期間を記録した。
実施例9.2 腫脹抑制効果の検討
実施例9.2.1 核磁気共鳴画像法(magnetic resonance imaging; MRI)
実施例9.2.1.1 各種ヒト脳腫瘍細胞株を用いた脳内腫瘍モデルの作製及びウイルスの腫瘍内投与
 各種ヒト脳腫瘍に対するT-BVの腫脹抑制効果の検討を行うために、U87MG、U251MG、NMC-G1、TGS-01、1123/Mを用いてBALB/c nu/nuマウス脳内腫瘍モデルを作製し、MRIを用いた腫瘍の描出が最も容易であったU87MGを用いて試験を行った。移植した細胞数:2 x 105(cells)、ウイルス投与日:腫瘍移植から12日後、ウイルス投与量:1 x 106(pfu)。前述と同様の方法で右前頭葉内に腫瘍細胞移植を行った。MRIで腫瘍がウイルス投与に適した大きさであることを確認の後、前述と同様の方法で腫瘍内投与した。また陽性対照として、T-01とAvastin(登録商標)併用群(T+A群;T-01の腫瘍内投与から5日間連続でAvastin(登録商標)5 mg/kgの腹腔内投与を行う)を設定した。
実施例9.2.1.2 MRIの撮像
 イソフルランによる吸入麻酔下及び呼吸モニタリング下にMRI撮像を行った。撮像は小動物用MRI ICON 1TTM(Brucker Biospin)を用いた。MRIの撮像パラメーターは以下のとおり設定した。
T2強調像(T2WI): repetition time (TR) = 2,000 msec; echo time (TE) = 85 msec; 6 slices; thickness = 0.7 mm; field of view (FOV) = 20 x 20 mm; matrix = 96 x 96; number of averages (NA) = 8。
T1強調像(T1WI): TR = 400 msec; TE = 12 msec; 6 slices; thickness = 0.7 mm; FOV = 20 x 20 mm; matrix = 96 x 96; NA = 10。
 造影T1WI(T1WI(CE))はT2WI撮像後にMRI用造影剤マグネビスト(登録商標)(バイエル)をPBSで20分の1倍に希釈したものを100 μL経眼窩静脈投与した後に撮像した。
 腫瘍移植後はT2WI、T1WI(CE)を適宜撮像し、腫瘍形成を確認した。腫瘍が形成されたことを確認後、ウイルス投与日を決め、その前日に全個体に関してT2WI及びT1WI(CE)を撮像し、大きさ及び形状がウイルスの腫瘍内投与に適している個体を選出した後に、無作為にmock群及びウイルス治療群に群分けをした。ウイルス投与2、4、6日後(post inoculation day (PID) 2、4、6)にもMRIを同じ撮像フェーズで撮像した。
実施例9.2.1.3 腫脹領域の評価
 撮像した画像は、DICOM画像処理フリーソフトウェアOsirixを用いてT2WIでの高信号域及びT1WI(CE)での造影領域の面積を計測した。T2WI及びT1WI(CE)それぞれにおける高信号域の面積(mm2)について、ウイルス投与前日に撮像したものをそれぞれS2p、S1pとし、ウイルス投与後n日目に撮像したものについてはそれぞれS2n、S1nとし、腫瘍周囲の腫脹(浮腫)を(S2n/S2p)÷(S1n/S1p)で相対値として算出した。
実施例9.2.2 RT-qPCRによるマウスアクアポリン(AQP)4の定量
実施例9.2.2.1 U87MG脳内腫瘍モデルの作製及びウイルスの腫瘍内投与
 前述と同様の方法で、BALB/c nu/nuマウスの右前頭葉内にDMEM 2 μLに懸濁した2 x 105cellsのU87MG細胞の移植を行った。腫瘍移植10日後に各治療群それぞれ6匹ずつに無作為に群分けをした後、1 x 10pfu/5 μLのT-01、T-BV又はmockを前述と同様の方法で腫瘍内投与した。陽性対照として、T+A群を設定した。
実施例9.2.2.2 RT-qPCR
 PID6に全てのマウスを安楽死させ、腫瘍を含んだ右前頭葉を摘出し、RNeasy Plus Mini Kit(Qiagen)を用いてRNAを抽出した。続いてこのRNAから、逆転写酵素ReverTra Ace qPCR RT master mix(Toyobo)を用いてcDNAを作製した。PCRプライマーはTaqman Gene Expression AssaysのマウスAQP4のプライマー(Mm_00802131_m1)及びマウスβアクチンのプライマー(Mm_02619580_g1)を使用し、7500 FastリアルタイムPCRシステム(Thermo Fisher Scientific)を用いた。データ解析はマウスβアクチンをリファレンス遺伝子としてサイクル比較法を用いて算出した。
実施例9.2.3 T-BVとT-V H V L の腫脹抑制効果の比較
 前述と同様の方法で、BALB/c nu/nuマウスの右前頭葉内にDMEM 2 μLに懸濁した2 x 105 cellsのU87MG細胞の移植を行った。ウイルス投与に関しては、MRIで腫瘍がウイルス投与に適した大きさであることを確認できた腫瘍移植10日後に、1 x 10pfu/5 μLのT-01、T-BV、T-VHVL又はmockを前述と同様の方法で腫瘍内投与した。MRIの撮像方法、タイミング及び腫脹の評価に関しては、T-BVの腫脹抑制効果確認実験と同様に行った。
実施例9.3 ウイルス投与後の腫瘍環境に対する影響
実施例9.3.1 脳腫瘍モデルに対するウイルス投与後の病理学的検討(免疫組織化学染色)
実施例9.3.1.1 U87MG脳内腫瘍モデルの作製及びウイルスの腫瘍内投与、プレパラート作製
 前述と同様の方法で、BALB/c nu/nuマウスの右前頭葉内にDMEM 2 μLに懸濁した2 x 105cellsのU87MG細胞の移植を行った。腫瘍移植10日後に各治療群それぞれ6匹ずつに群分けをした後、1 x 10pfu/5 μLのT-01、T-BV又はmockを前述と同様の方法で腫瘍内投与した。陽性対照として、T+A群を設定し、Avastin(登録商標) 5 mg/kgをウイルス投与日から安楽死まで連日投与した。PID2、4にマウスを各群3匹ずつ安楽死させた後、脳を摘出し、中性緩衝ホルムアルデヒド(10)(Sigma-Aldrich)に24時間浸透させて固定した。固定パラフィン包埋装置Tissue-Tek VIP-5-Jr(サクラ精機)でパラフィン包埋し、パラフィン包埋ブロック作製装置Tissue-Tek TECプラス(サクラ精機)でパラフィンブロックを作製し、ミクロトーム(Leica)で腫瘍中心部を4 μmの厚さで薄切して連続切片を作製した。
 また、T-BV、T-VHVLを投与した場合の血管新生の評価を目的として、同様にBALB/c nu/nuマウスの右前頭葉内にDMEM 2 μLに懸濁した2 x 105cellsのU87MG細胞を移植して脳内腫瘍モデルを作製し、腫瘍移植10日後に各治療群それぞれ6匹ずつに群分けをした後、1 x 10pfu/5 μLのT-01、T-BV、T-VHVL又はmockを前述と同様の方法で腫瘍内投与した。以下、同様にパラフィン切片を作製した。
実施例9.3.1.2 免疫組織化学染色
 プレパラートを43℃の伸展器上で一晩伸展・乾燥させた後、キシレンに30分浸して脱パラフィン処理を行い、100% エタノール、90% v/v エタノール、70% v/v エタノールに10分ずつ浸して親水化処理をした。蒸留水で洗浄の後、マイクロウェーブ法で抗原賦活化処理を行い、Peroxidase-Blocking Solution(Dako)を用いて内因性ペルオキシダーゼのブロッキングを行った。Tris-HCl Buffer Saline(TBS)で10分間洗浄した後、1.5% v/v Normal Goat Serum(Vector Laboratories)に室温で15分浸してブロッキングを行った。一次抗体反応は以下の抗体及び希釈倍率で、室温で1時間反応させた。抗HSV-1抗体(1:2000)、抗マウスCD31抗体(1:40)、抗マウスF4/80抗体(1:2000)。希釈には1.5% v/v Normal Goat Serumを用いた。一次抗体反応の後、TBSで10分間洗浄した。二次抗体反応はHRP標識抗ウサギポリマー又はMouse MAX PO (Rat)を用いて、室温で30分間反応させた。TBSで10分間洗浄の後、DAB Substrate Kit(Vector Laboratories)に浸して検出した。検出の後、ヘマトキシリンで7分間対比染色を行い、70% v/v エタノール、90% v/v エタノール、100% エタノールに各10分間ずつ順次浸して脱水し、キシレンに10分浸して透徹した後に、非脂溶性封入剤マウントクイック(大道産業)で封入した。
実施例9.3.1.3 腫瘍血管新生に関しての評価
 腫瘍血管新生については、ウイルス投与後のU87MG脳内腫瘍モデルに対するマウスCD31の免疫組織化学染色を行ったプレパラートを用いて、腫瘍内の血管数を計測することで評価した。血管数の計測はWeidnerらの方法(Weidner, N. et al. (1991) The New England journal of medicine 324, 1-8)に従って行った。バーチャルスライドスキャナNanozoomer(浜松ホトニクス)を用いて、各群各日n = 3の検体プレパラートに関して倍率200倍で血管密度が最大の部分を撮像し、CD31陽性細胞をカウントして平均血管数を算出した。
実施例9.3.2 脳腫瘍モデルに対するウイルス投与後のマクロファージの変化
実施例9.3.2.1 U87MG脳内腫瘍モデルの作製及びウイルスの腫瘍内投与
 前述と同様の方法で、BALB/c nu/nuマウスの右前頭葉内にDMEM 2 μLに懸濁した2 x 105 cellsのU87MG細胞の移植を行った。腫瘍移植10日後に各治療群それぞれ9匹ずつに群分けをした後、ウイルス投与に関しては、1 x 10pfu/5 μLのT-01、T-BV又はmockを前述と同様の方法で腫瘍内投与した。陽性対照として、T+A群を設定し、Avastin(登録商標) 5 mg/kgをウイルス投与日から最長5日間、安楽死まで連日投与した。
実施例9.3.2.2 フローサイトメトリーによるマクロファージの評価
 PID2、4、6にマウスを各群3匹ずつ安楽死させた後、速やかに腫瘍を含む右前頭葉を摘出し、Naural tissue dissociation kit(Miltenyi Biotec)及びgentleMACS Octo Dissociator(Miltenyi Biotec)を用いて、組織を分散して単細胞懸濁液を調製した。細胞懸濁液をエッペンドルフチューブに移し、PBS 1 mLに懸濁し、Fixable Viability Dye eFluor 780(Affymetrix)を1 μL加えてvortexし、4℃、遮光下で30分間反応させ、死細胞の染色を行った。Flow Cytometry Staining Buffer(eBioscience)で2回洗浄した後、1 mLに懸濁して検体とした。はじめに抗マウスCD16/32抗体を2 μL加え、on iceで5~10分間反応させ、Fcレセプターを介した抗体の非特異的結合のブロッキングを行った。条件検討の結果、検体100 μLあたりに添加する抗体量は以下のように決定した。抗CD45抗体(0.5 μL)、抗CD11b抗体(1 μL)、抗F4/80抗体(5 μL)、抗Gr-1抗体(0.5 μL)、抗CX3CR1抗体(0.5 μL)。これらの抗体全てを各検体チューブに添加した染色サンプルの他に、蛍光補正のために1種類の抗体のみを添加した単染色サンプル、及び感度調整のための無染色サンプルも併せて準備した。tappingで混和し、4℃、遮光下で30分間反応させた後、Flow Cytometry Staining Bufferで2回洗浄した。Flow Cytometry Staining Buffer 100 μLに懸濁し、4% v/v ホルマリン/PBS 10 μLを加えて固定し、フローサイトメーターCytoFLEX(Beckman Coulter)で解析を行った。はじめに無染色検体で各蛍光の感度調整を行い、単染色サンプルで蛍光補正を行った後に、染色サンプルの解析を行った。マクロファージはCD45陽性、CD11b陽性、F4/80陽性の集団で、このうち、M1はGr-1highCX3CR1low、M2はGr-1lowCX3CR1highとして分離可能である。散乱光の二次元プロットによってミエリン分画をゲートアウトし、死細胞染色によって死細胞除去を行った後、CD45陽性分画について、CD11b及びF4/80で二次元プロット展開し、両陽性細胞について、Gr-1及びCX3CR1で二次元プロット展開することによって、M1マクロファージ、M2マクロファージを分離した。M1、M2それぞれについて、CD45陽性細胞中の割合を算出し、M1/M2の比を算出することで、マクロファージのM1/M2シフト状況の評価を行った。
実施例9.3.2.3 ウイルス複製試験及びウイルス力価の測定 (in vivo)
 前述と同様の方法で、U87MG細胞をマウスに皮下移植して腫瘍を形成した。腫瘍移植約20日後、腫瘍径が6mm大程度となったことを確認し、各治療群それぞれ12匹ずつに無作為に群分けをした後に、前述と同様の方法でウイルスの投与を行った。投与は、1 x 10pfuのT-01、T-BV、mock又はT-01+Avastin(登録商標)の腹腔内投与(T+A)であった。T+A群では、Avastin(登録商標)を5mg/kg体重の量で5日間腹腔内投与した(ウイルス接種の直前から投与開始)。ウイルス接種直後、1日後、3日後又は7日後に、腫瘍を回収し、300μLの氷冷PBS中でホモジェナイズし、凍結と融解を3サイクル繰り返した後、力価を実施例3と同様の手法によりVero細胞を用いて測定した(各群の各測定日につき、n=3)。
実施例9.4 in vivoにおけるT-BVの抗体発現の確認
実施例9.4.1 皮下腫瘍モデルに対するT-BV投与後の投与局所での抗体発現の確認
 前述と同様の方法で、BALB/c nu/nuマウスの左側腹部に50 μL DMEMに懸濁した2 x 10cellsのU87MG細胞を移植した。腫瘍径が5 mm大になった時点でT-01群、T-BV群、mock群各群9匹ずつ無作為に分け、2 x 10pfu/20 μLのT-01、T-BVを腫瘍内に単回投与した。PID2、4、6にマウスを各群3匹ずつ安楽死させて皮下腫瘍を摘出し、1/100量のコンプリートプロテアーゼインヒビターカクテル(Roche)及び1/1000量の1Mジチオトレイトール(Wako)を添加したice-cold Cell Lysis Buffer(Wako)500 μL中で破砕した後、Amicon Ultra-15, 10Kで2倍に濃縮した。マウスのin vivo検体にはマウスIgGが多く含まれており、ELISAへの非特異的な反応を低減するため、免疫沈降法を利用してマウスIgGを除去することとし、Anti-mouse IgG(H&L), F(ab’)2 Fragment(Sepharose Bead Conjugate)(Cell Signaling Technology)を10 μLずつ検体に加え、4℃で1時間転倒混和後に遠心し、得られた上清をELISAに用いた。ELISAは、前述と同様の方法で、ヒトVEGFを固相化したウェルを用い、スタンダードはAvastin(登録商標)を段階希釈したものを用いた。96ウェルプレートリーダーで450 nmの吸光度を計測し、スタンダードをもとに画像処理フリーソフトウェアImageJを用いて検量線を描き、検体中の抗ヒトVEGF抗体濃度を算出した。
実施例9.4.2 脳内腫瘍モデルにおけるウイルス投与後の発現抗体の血中濃度の確認
 T-BVを脳内腫瘍モデルに投与した際に、発現する抗ヒトVEGF抗体の血中濃度をELISAで測定した。前述と同様の方法でBALB/c nu/nuマウスの右前頭葉内にDMEM 2 μLに懸濁した2 x 105 cellsのU87MG細胞を移植し、腫瘍移植10日後にT-01群、T-BV群、T+A群及びmock群それぞれ6匹ずつに群分けをした後に、ウイルス投与に関しては、1 x 10pfu/5 μLのT-01、T-BV又はmockを腫瘍内投与した。T+A群に関しては、Avastin(登録商標) 5 mg/kgをウイルス投与日に腹腔内に単回投与した。PID1、3に各群3匹ずつ静脈採血を行い、血清中のVEGF濃度をELISAで測定した。
実施例10 T-V H V L 及びT-sVEGFR1の評価
実施例10では、実施例1.8で作製したT-VHVL及びT-sVEGFR1について、以下のとおり評価した。
実施例10.1 ウイルスの力価測定
 Vero細胞を6 wellプレートに3.6×10cells/wellとなるように播種し、37℃、5% CO2の条件下で培養した。16時間後、1% 熱非働化FBS (1% IFBS) 添加PBSで洗浄後、10倍の希釈系列のウイルス液を加え、37℃、5% CO2の条件下で培養した。1時間後、ウイルス液を除き、0.1% ヒト免疫グロブリンを加えた1% IFBS 添加DMEMを培地として加え、34.5℃、5% CO2条件下で培養した。3日後、PBSで洗浄し、メタノールで固定した。乾燥させた後、蒸留水で20倍希釈したギムザ液で染色し、洗浄、乾燥し、顕微鏡下でプラーク数をカウントし、ウイルス力価 (pfu/ml) を算出した。
実施例10.2 ウイルスDNAのサザンブロッティング法による構造確認
 精製したウイルスから、QIAamp DNA Mini Kit (QIAGEN, Netherlands) を用いて、メーカーのプロトコールに従ってウイルスDNAを抽出した後、Kpn Iを用いて制限酵素処理した。0.6% アガロースゲルを用いて、35 Vの電圧で16時間電気泳動した後、ナイロン膜(Turbo Blotter, Whatman, US) にウイルスDNAを転写した。プローブはsVEGFR1及びVEGFscFvのDNA断片をアルカリフォスファターゼで標識してそれぞれ作製し (AlkPhos Direct with CDP-Star, GE Healthcare, USA)、DNAが転写された膜とハイブリダイゼーションを行い、AlkPhos Direct with CDP-Star (GE Healthcare, USA) を用いて検出した。
実施例10.3 T-sVEGFR1及びT-VEGFscFvのVEGF阻害因子タンパク質発現確認 (in vitro)
 T-sVEGFR1を細胞に感染させた際に発現する可溶型VEGFR1タンパク質の確認には、Human sVEGF-R1 / FLT-1 ELISA Kit (BioVendor, USA) を、T-VEGFscFvを感染させた際に発現する一本鎖抗VEGF抗体の確認には、Human Kappa ELISA Kit (Bethyl Laboratories, USA) をそれぞれ用いた。
Vero細胞を6 wellプレートに3×105 cells/wellとなるように播種し、37℃、5% CO2条件下で培養した。16時間後、1% IFBS 添加PBSで洗浄し、T-01、T-sVEGFR1もしくはT-VEGFscFvをmultiplicity of infection (MOI) 0.5で感染させ、 37℃、5% CO2条件下で培養した。Mock (陰性コントロール) は、1% IFBS添加PBSをウイルス液の代わりに加えた。1時間後、ウイルス液を除き、1% IFBS 添加DMEMを加え、37℃、5% CO2条件下で培養した。48時間後、培養上清を回収し、メーカーのプロトコールに従って、ELISA法による測定を行った。
実施例10.4 血管内皮細胞管腔形成試験 (in vitro)
 血管内皮細胞管腔形成試験は、BD BioCoatTM Angiogenesis System-Endothelial Cell Tube Formation (BD Bioscience, USA) を用いて行った。VeroをT-150フラスコに1×10cells播種し、37℃、5% CO2条件下で培養した。16時間後、T-01、T-sVEGFR1もしくはT-VEGFscFvをMOI 0.2で感染させ、37℃、5% CO2条件下で培養した。90分後、ウイルス液を除き、DMEM (血清なし) を加え、37℃、5% CO2条件下で培養した。2日後、培養上清を回収し、ヒト免疫グロブリンを50 μg/mlとなるように加え、ウイルスを不活化した。回収した上清をAmicon(R) Ultra-15 10K (Merck Millipore, Ireland) で限外濾過し、40倍濃縮した。Matrigel Matrixがコートされた96 wellプレートに1 well当たり、HUVECを2×10cells /wellとなるように播種した。そこに、濃縮した培養上清2.5 μlと1% LSGS添加Medium 200を47.5 μl加え、37℃、5% CO2条件下で培養した。なお、陽性対照として、抗VEGFヒト化モノクローナル抗体であるBevacizmab (中外製薬、東京) を4 μg/mlとなるように1% LSGS 添加Medium 200に加えたもの50 μlを各ウェルに加えた。また、陰性対照として1% LSGS 添加Medium 200のみを50 μl加えた。18時間後、BIOREVO (KEYENCE, 大阪) で各ウェルを撮影した後、管腔の長さをImage Jソフトウェアで測定し、長さの合計を算出して比較した。
実施例10.5 血管内皮細胞遊走試験 (in vitro)
 血管内皮細胞遊走試験は、BD BioCoatTM Angiogenesis System-Endothelial Cell Migration (BD Bioscience, USA) を用いて行った。Vero細胞をT-150フラスコに1×107cells播種し、37℃、5% CO2条件下で培養した。16時間後、T-01、T-sVEGFR1もしくはT-VEGFscFvをMOI 0.2で感染させ、37℃、5% CO2条件下で培養した。90分後、ウイルス液を除き、DMEM (血清なし) を加え、37℃、5% CO2条件下で培養した。2日後、培養上清を回収し、ヒト免疫グロブリンを50 μg/mlとなるように加え、ウイルスを不活化した。回収した培養上清をAmicon(R) Ultra-15 10Kで限外濾過し、40倍濃縮した。上部チャンバーにはHUVECを1×105 cells/wellとなるように播種した。また、下部の24 wellプレートには1 wellあたり濃縮した培養上清19 μlと1% LSGS 添加Medium 200を731 μl加えた。なお、陽性対照として、Bevacizmabを4 μg/ml となるように1% LSGS 添加Medium 200に添加したもの750μlを各ウェルに加えた。また、陰性対照として1% LSGS 添加Medium 200のみを750 μl加えた。37℃、5% CO2条件下で22時間培養後、calcein AM solutionでHUVECを蛍光染色した。BIOREVO (KEYENCE, 大阪) を用いて各ウェルを撮影した後、494 / 517 nmで蛍光強度を測定し、上部チャンバーのメンブレンを通過して下部ウェルに遊走したHUVECを評価した。
実施例10.6 ウイルス複製試験 (in vitro)
 HT-29を6 wellプレートに4×105 cells/wellとなるように播種し、10% FBS 添加McCoy’s 5A (Modified)、37℃、5% CO2条件下で培養した。16時間後、1% IFBS 添加PBSで洗浄し、T-01、T-sVEGFR1もしくはT-VEGFscFvをMOI 0.01で感染させ、37℃、5% CO2条件下で培養した。1時間後、ウイルス液を除き、1% IFBS 添加McCoy’s 5A (Modified)を加え、37℃、5% CO2条件下で培養した。24時間及び48時間後に、セルスクレーパーで細胞をかきとり、上清とともに回収したウイルスの力価を測定した。
実施例10.7 ウイルスの殺細胞効果の検討 (in vitro)
 HT-29を6 wellプレートに2×105 cells/well播種し、37℃、5% CO2条件下で培養した。16時間後、1% IFBS 添加PBSで洗浄し、T-01、T-sVEGFR1もしくはT-VEGFscFvをMOI 0.1及び0.01で感染させ、 37℃、5% CO2条件下で培養した。Mockは、1% IFBS 添加PBSをウイルス液の代わりに加えた。1時間後、ウイルス液を除き、1% IFBS 添加McCoy’s 5A (Modified)を加え、34.5℃、5% CO2条件下で培養した。感染後、4日間に渡り、24時間後ごとにそれぞれ生存細胞をコールターカウンター (Beckman Coulter, CA, USA) で測定し、Mockに対する細胞数の割合を算出した。
実施例10.8 HT-29細胞株及びCT26細胞株の VEGF発現量の検討 (in vitro)
 HT-29もしくはCT26を6 wellプレートに3×105cells/wellとなるように播種し、37℃、5% CO2条件下で、HT-29は1% IFBS 添加McCoy’s 5A (Modified) 、CT26は1% IFBS 添加RPMI1640で培養した。48時間後、培養上清を回収し、HT-29はHuman VEGF Quantikine ELISA Kit (R&D Systems, USA) を、CT26はMouse VEGF Quantikine ELISA Kit (R&D Systems, USA) 用いて上清中のVEGFを定量した。
実施例10.9 HT-29皮下腫瘍モデルに対する抗腫瘍効果の検討
 BALB/c nu/nu(5週齢、メス、SLC社、静岡) にキシラジンとケタミンを腹腔内投与して全身麻酔をかけ、マウスの左側腹部皮下に1匹あたりHT-29を1×10cells / 50μl McCoy’s 5A (Modified) (血清なし) 投与した。腫瘍径が5 mmに達した14日後をDay 0とし、マウスを無作為に4群に分け、T-01、T-sVEGFR1、T-VEGFscFvもしくはMockを1腫瘍あたり1×106 pfu / 20 μlを腫瘍内に投与した。なお、ウイルスの希釈にはPBSに10% のグリセロール加えたものを使用した。また、Mockは陰性コントロールとして、Veroにウイルスを感染させずに、同様の培養及び精製工程を施して作製したものを使用した。また、一回目のウイルス投与から3日後のDay 3にも同様にウイルスを投与した。皮下腫瘍は週2回の頻度で長径、短径、厚みを測定し、腫瘍体積 (mm3) =長径×短径×厚みとして算出した。
実施例10.10 HT-29皮下腫瘍モデルのCD31免疫組織化学染色
 BALB/c nu/nu (5週齢、メス、SLC社、静岡) に全身麻酔をかけ、マウスの左側腹部皮下に1匹あたりHT-29を1×10cells / 50μl McCoy’s 5A (Modified) (血清なし) 投与した。14日後をDay 0とし、マウスを無作為に4群に分け、T-01、T-sVEGFR1、T-VEGFscFvもしくはMockを1匹あたり1×106 pfu / 20μl腫瘍内に投与した。Day 3にも同様にウイルスを投与した。Day 3 (2回目のウイルス投与前) とDay 7にマウスを頸椎脱臼で安楽死させ、皮下腫瘍組織を切り出し、ホルマリン固定した。24時間後、固定した組織をPBSで洗浄し、パラフィン包埋した。厚さ4 μmのパラフィン切片を98℃の200倍希釈イムノセイバー (日新EM株式会社、東京) で45分間処理し、抗原の賦活化を行った。2% Normal Goat Serum / TBSでブロッキングを行った後、1次抗体として、ウサギ抗CD31抗体(abcam, UK)を2% BSA / TBSで50倍希釈し、組織切片と1時間反応させ、EnVision+System-HRP Labeled Polymer Anti-Rbbit (Dako, Denmark) を30分反応させ、DAB Substrate kit(Vector laboratories, Burlingame, CA)で抗体の検出を行った。腫瘍血管新生については、腫瘍内の微小血管密度で評価した。微小血管密度は、Weidner Nらの論文に従って (19)、組織切片の顕微鏡 (×20) での一視野あたりの微小血管の平均数とし、Nanozoomer (HAMAMATSU, 静岡) を用いて、組織切片を無作為に10か所撮影し、CD31陽性細胞をカウントした結果を平均することによって算出した。
実施例10.11 Real Time Quantitative Polymerase Chain Reaction (PCR) によるウイルスDNAの定量
 BALB/c nu/nu(5週齢、メス、SLC社、静岡) に全身麻酔をかけ、マウスの左側腹部皮下に1匹あたりHT-29細胞を1×106 cells / 50μl McCoy’s 5A (Modified) (血清なし) 投与した。14日後をDay 0とし、マウスを無作為に4群に分け、T-01、T-sVEGFR1、T-VEGFscFvもしくはMockを1匹あたり1×106 pfu / 20 μl腫瘍内に投与した。Day 3にマウスを頸椎脱臼で安楽死させ、皮下腫瘍を切り出し、-80℃で凍結保存した。後日解凍し、PBSを加えホモジェナイズし、QIAamp DNA Mini Kitを用いて、メーカーのプロトコール通りにウイルスDNAを抽出した。HSV-1のDNAを検出するためのプライマー及びプローブは、HSV-1のDNA polymeraseをコードする遺伝子の領域に対して設計した以下のものを用いた。
HSV DNApoly-F : 5’-GGCACGCGGCAGTACTTT-3’(配列番号27)
HSV DNApoly-R : 5’-CCATGCGCTCGCAGAGA-3’(配列番号28)
HSV DNApoly-T : 5’-AGGTCGACAGGCACCTACAATGCCG-3’ TAMRA (リポータ色素:FAM)(配列番号29)
 また、Real Time Quantitative PCRは、TaqMan Fast Universal PCR Master Mix (2×) (Applied Biosystems, USA) を使用した。ウイルスのゲノムコピー数の定量は、HSV-1のDNA polymeraseをコードする遺伝子の配列を含むプラスミドを作製して、そのDNAの希釈系列を作製し、検量線を作製して、それをもとに測定した。
実施例10.12 CT26皮下腫瘍モデルに対する抗腫瘍効果の検討
 BALB/c (5週齢、メス、SLC社、静岡) にキシラジンとケタミンを腹腔内投与して全身麻酔をかけ、マウスの左側腹部皮下に1匹あたりBALB/c 由来のCT26を1×105cells / 50 μl RPMI1640 (血清なし) 投与した。腫瘍径が5 mmに達した10日後をDay 0とし、マウスを無作為に4群に分け、T-01、T-sVEGFR1、T-VEGFscFv及びMockを1匹あたり1×106 pfu / 20 μl腫瘍内に投与した。また、一回目のウイルス投与から3日後のDay 3にも同様にウイルスを投与した。皮下腫瘍は週2回の頻度で長径、短径、厚みを測定し、腫瘍体積 (mm3) =長径×短径×厚みとして算出した。
C.統計解析
 統計解析は、2群間の検定に関しては、特筆しない限り、エクセル統計(Microsoft)を用いてStudent t検定を、多群間の検定に関しては、SPSS Statistics version 22(IBM)を用いてSidak法による多重検定を、それぞれ行った。MRIを用いた腫脹の評価実験では同一個体に対する反復測定を考慮し、repeated ANOVAを行い、交互作用のあるものにはSidak法による多重検定を行った。脳内腫瘍モデルの生存期間に関してはJMP12(SAS Institute)を用いて、Kaplan Meier法で累積生存率曲線を描き、検定にはLogrank検定又はWilcoxon検定を行った。p値が0.05未満の場合に群間に有意差ありとした。
D.結果
結果I T-BVの作製
結果Ia 抗VEGF抗体発現cDNAの作製(実施例1.1の結果)
 抗VEGF抗体発現型の腫瘍溶解性ウイルスを作製するためのアミノ酸配列設計は、図4及び図5に示したとおりである。本実施例で用いた抗VEGF抗体であるベバシズマブは、165残基のヒトVEGF(VEGF165)をマウスに免疫して得られたハイブリドーマ細胞株から選択されたマウス抗ヒトVEGFモノクローナル抗体muMAb A4.6.1産生株の抗体遺伝子に関して、抗原特異性に関与する相補性決定領域(CDR)はそのままに、フレームワーク領域(FR)をヒト化することで作製したヒト化抗ヒトVEGFモノクローナル抗体である。cDNAからの効率的な抗体産生には重鎖と軽鎖が等量ずつ発現することが必要であるため、アミノ酸配列設計において、重鎖、軽鎖にそれぞれ対応するポリペプチドを、FMDV-2A配列及びfurin開裂部位のアミノ酸配列で結合する方法を採用した(図4、図1)。
 アミノ酸配列より作製した抗ヒトVEGF抗体発現遺伝子のcDNA及びVEGF scFv発現遺伝子のcDNAの配列情報をそれぞれ図9及び10に示す。
結果Ib 目的遺伝子のSV-01への挿入とcDNAからの発現タンパクの確認(実施例1.2、実施例1.3、実施例6.1の結果)
 作製したcDNAを搭載したプラスミドpEX-K-BVから目的のcDNAを制限酵素処理で切り出し、SV-01へ挿入してBV/SV-01を得た。続いて、目的のcDNAからのタンパク発現を確認する目的で、BV/SV-01をHEK293T細胞にトランスフェクションして得た培養上清中に含まれるタンパクに対して、ウエスタンブロット法を行った。一般的に、抗体に対するウエスタンブロット法での解析では、SDS-PAGEと、native PAGEの二種類の電気泳動を併用する。SDS-PAGEでは、タンパクを還元してジスルフィド結合を切断してから泳動するが、この過程で抗体の重鎖同士、及び重鎖と軽鎖をつなぐジスルフィド結合が切断されるために、重鎖(50 kDa)、軽鎖(25 kDa)に相当する2本のバンドが検出される。一方で、native PAGEでは、タンパクが未変性のまま泳動されるため、高次構造を保ったままの泳動が可能であり、四量体(150 kDa)に相当する1本のバンドのみが検出される。本実施例でもこの2種類のPAGEを行うことで、作製したcDNAからのタンパク発現の解析を行った。
 SDS-PAGEにおいて、陰性対照であるSV-01をトランスフェクションした検体では、バンドが検出されなかったのに対して、BV/SV-01をトランスフェクションした検体及び陽性対照のAvastin(登録商標)では、分子量25 kDaと50 kDaに相当する2本のバンドを検出した(図11A)。native PAGEにおいては、SV-01をトランスフェクションした検体では、バンドの検出を認めなかったのに対して、BV/SV-01をトランスフェクションした検体及びAvastin(登録商標)では分子量150 kDaに相当する1本にバンドを検出した(図11B)。これらの結果から、本実験で遺伝子組換えに使用した、抗ヒトVEGF抗体発現遺伝子からの発現タンパクが二本鎖抗体として矛盾しないことが示された。
結果Ic 目的遺伝子のG47Δへの挿入とウイルス精製(実施例1.4~1.7の結果)
 続いて、BV/SV-01のT-BACへの挿入を行った。SV-01及びT-BACにはloxP部位が内包されており、Cre-recombinationによってBV/SV-01/T-BACを作製した。この段階での構造確認のためのPCRを行った。採取した10個すべてのクローンでBV/SV-01の挿入が認められ、そのうちのひとつのクローンで二重挿入が確認された。このPCRで単一挿入が確認されたクローンから2つのクローンを選択して、それぞれのDNAをHindIIIあるいはKpnIで制限酵素処理し電気泳動パターンを確認した。HindIIIで処理したものでは、BV/SV-01が挿入された場合には、抗ヒトVEGF抗体発現遺伝子の2,261 bpが加わり、HindIIIによって切断される部位が2ヶ所増えることで、14,986 bpのバンドが消失し、13,151 bp、7,958 bp、6,233 bpの各バンドが出現した。KpnIで処理したものでは、BV/SV-01が挿入された場合にのみ、抗ヒトVEGF抗体発現遺伝子の2,261 bpが加わり、KpnIで切断される部位が5ヶ所加わることで、3,853 bpのバンドが消失し、9,010 bp、5,122 bp、175 bp、1,040 bp、677 bp、728 bpのバンドが出現すると予想され、実際に予想通りの泳動パターンが得られた。以上の結果から、この2つのクローンは予定通り組換えが起こっていることが確認できたため、続いて、FLP リコンビナーゼ発現プラスミドpOG44と混合し、Vero細胞にコトランスフェクションし、BAC配列を除去した。BACにはGFP発現遺伝子が内包されているため、蛍光顕微鏡でGFPの発現が消失していることを確認することで、BACの除去を確認した。ウイルスを回収し、限界希釈法による単一クローンの抽出を行った。
結果Id T-BVの構造確認(実施例2の結果)
 最終生成産物であるT-BVに関しては、ウイルスから抽出したDNAを用いて、サザンブロット法による構造確認を行った。プローブには挿入した抗ヒトVEGF抗体発現遺伝子に相当するDNAプローブ(BVプローブ)、LacZ遺伝子領域に相当するプローブ(LacZプローブ)を用いた。BVプローブでハイブリダイズした場合には、予想通りT-01ではバンドは検出されなかったが、T-BVでは13,151 bpのバンドが検出された。LacZプローブでハイブリダイズした場合には、T-01で検出される10,890 bpのバンドの代わりに、T-BVでは13,515 bpのバンドが検出され、予定通りの部位に抗ヒトVEGF抗体発現遺伝子が挿入されていることが確認された。
 以上の工程で、目的とするT-BVが作製されたことが確認できた。
結果II T-BVの発現抗体の評価
結果IIa T-BV発現抗体の定量(実施例6.2の結果)
 はじめにin vitroにおけるT-BVの抗体発現量の定量のため、Vero細胞及びU87MG細胞のウイルス感染細胞培養上清を用いて抗ヒトVEGF抗体に対するELISAを行った。Vero細胞、U87MG細胞について、T-01及びmockの培養上清からはいずれも検出限界以下であったのに対して、T-BVを感染させた培養上清からは、それぞれ256 pg/mL、69 pg/mLの抗VEGF抗体が検出された(図12)。
 続いてin vivoにおけるT-BVの抗体発現量の定量を行った。BALB/c nu/nuマウスの左側腹部皮下に作製したU87MG皮下腫瘍に対して、T-01群、T-BV群、mock群各群9匹ずつに無作為に分けた後に2 x 10pfuのウイルスを腫瘍内に単回投与した。PID2、4、6に各群3匹ずつから皮下腫瘍を摘出し、そこに含まれる抗ヒトVEGF抗体をELISAで定量した。T-BV群、T-01群、mock群それぞれに関して、PID2ではそれぞれ186.2 pg/mL、44.0 pg/mL 、38.8 pg/mL、PID4ではそれぞれ93.4 pg/mL、19.6 pg/mL、41.4 pg/mL、PID6ではそれぞれ137.8 pg/mL、44.1 pg/mL、55.7 pg/mLとなった(図13)。皮下腫瘍を用いたELISAでは使用する組織懸濁液のタンパク濃度が高いためにmock及びT-01では非特異的な反応がみられたものの、T-BV群ではいずれの時点でも測定値がmock及びT-01よりも有意に高くなっており、抗ヒトVEGF抗体のin vivoでの発現が示唆された。
結果IIb T-BV発現抗体の機能確認(実施例7の結果)
 T-BVの発現するタンパクのVEGF阻害作用を調べるため、血管内皮細胞管腔形成試験及び血管内皮細胞遊走試験を行った。
 血管内皮細胞管腔形成試験は、VEGFなどの血管新生刺激因子によって、プレート内に均一にコーティングされたマトリゲル基底膜マトリックス内に血管内皮細胞のチューブ形成が誘導される現象を利用して、形成されたチューブの長さを定量することで、血管新生刺激因子のスクリーニングに用いられる実験法である。本実施例では、管腔の長さの総和(μm)が、n.c.、mock、p.c.1、p.c.2、T-01 、T-BVの順に、817、26,558、16,408、1,117、24,267、7,358となり、T-BVはT-01と比較して管腔形成を有意に抑制した(p = 0.002)(図14)。
 血管内皮細胞遊走試験はVEGFなどの血管新生刺激因子に向かって血管内皮細胞が遊走する現象を利用して、ヒトフィブロネクチンを均一にコーティングしたメンブレンで区切られた2つのコンパートメントのうち、片方にVEGFなどの血管刺激因子を、他方に血管内皮細胞を入れ、メンブレンの小孔を通じて血管刺激因子の刺激によって遊走した血管内皮細胞を定量することで、血管新生刺激因子のスクリーニングに用いられる実験法である。本実施例では、n.c.に対する蛍光強度が、mock、p.c.1、p.c.2、T-01、T-BVの順に、2.76、2.63、0.62、2.85、1.77となり、T-BVはT-01と比較してHUVEC-2の遊走を有意に抑制した(p = 0.001)(図15)。
 これらの実験結果から、T-BVの発現抗体はVEGF阻害作用を持つことが示された。
結果IIc T-BV発現抗体の種間交差性の検討(実施例8の結果)
 一般的にVEGFは種間交差性を持つのに対して、抗ヒトVEGF抗体であるベバシズマブはヒトVEGFに対する特異性が高く、マウスVEGFに対してはほとんど反応しないことが知られている(Yu, L., et al. (2008). Investigative ophthalmology & visual science 49, 522-527)。本実施例のようにヒト脳腫瘍細胞株を移植したマウスモデルを使用した場合、腫瘍局所ではヒト・マウス両方のVEGFの作用が予想される。したがって、T-BVの発現する抗体のヒト及びマウスVEGFに対する結合性を確認しておくことは、T-BVの効果のメカニズムを考察する上で重要と考えられた。そこで、ヒト・マウスそれぞれのVEGFに対するT-BVの発現抗体の結合性について、ELISAを用いて評価実験を行った。
 抗マウスVEGF抗体はマウスVEGF、ヒトVEGFの両方に結合したのに対して、T-BVが発現した抗体はマウスVEGFには結合せず、ヒトVEGFにのみ結合し、Avastin(登録商標)と同様の結果を示した(図16)。このことから、T-BVの発現する抗ヒトVEGF抗体はAvastin(登録商標)と同様にヒトVEGFに対する高い種特異性があると考えられた。
結果III T-BVのウイルスとしての評価
結果IIIa in vitroにおけるT-BVの殺細胞効果の検討(実施例4の結果)
 遺伝子組換えによって目的遺伝子を挿入されたT-BVが、T-01と比較してin vitroにおいて同等の殺細胞効果を持っているかを確認するため、U87MG細胞に対してin vitro cytotoxicity assayを行った。また、化学療法にも放射線治療にも抵抗性で、膠芽腫が治療困難である要因と考えられているグリオーマ幹細胞に対する殺細胞効果を確認する目的で、TGS-01細胞、TGS-04細胞を用いたin vitro cytotoxicity assayを併せて行った。
 U87MG細胞に対して、T-01及びT-BVは、MOI 0.01で感染4日後の細胞生存率(mock群の生細胞数との比率)が、それぞれ60.9%、67.9%であり、MOI 0.1では、それぞれ20.8%、19.6%と同等の高い殺細胞効果を示した(それぞれ、p = 0.18、p = 0.15)。
 TGS-01細胞に対して、T-01及びT-BVは、MOI 0.01ではそれぞれ25.6%、43.6%、MOI 0.1ではそれぞれ4.1%、6.6%、MOI 1ではそれぞれ2.0%、1.8%であった(それぞれ、p < 0.01、p = 0.10、p = 0.84)。 
 TGS-04細胞に対しては、T-01及びT-BVは、MOI 0.01ではそれぞれ12.5%、25.8%、MOI 0.1ではそれぞれ5.4%、7.1%、MOI 1ではそれぞれ6.1%、5.5%であった(それぞれ、p = 0.08、p < 0.05、p = 0.33)。
 T-BVは、いずれの細胞株においてもT-01と比較して、ほぼ同形のグラフとなり、同等の殺細胞効果を示した(図17)。
結果IIIb in vitroにおけるT-BVの複製能の検討(実施例5の結果)
 続いて、Vero細胞及びU87MG細胞におけるT-01、T-BVのウイルス複製試験を行った。Vero細胞では、24時間後にはそれぞれ、9.71 x 104 pfu/mL、1.22 x 105 pfu/mL、48時間後にはそれぞれ、1.32 x 106 pfu/mL、1.24 x 10pfu/mLであった(各p = 0.06、0.43)。U87MG細胞では、24時間後にはそれぞれ、6.02 x 103 pfu/mL、7.81 x 103 pfu/mL、48時間後にはそれぞれ、2 x 10pfu/mL、2.16 x 105pfu/mLであった(各p = 0.29、0.53)。いずれの細胞においても、T-BVはT-01とほぼ同等の複製能を持つと考えられた(図18)。このことは、ウイルスが複製する過程で腫瘍細胞を破壊し、複製に伴って治療遺伝子から目的とするタンパクが発現されることを考慮すると、十分な殺細胞効果及びタンパク発現による機能を発揮する上で重要である。
結果IV in vivoにおけるT-BVの抗腫瘍効果の検討
結果IVa U87MG皮下腫瘍モデルにおけるT-BVの抗腫瘍効果の検討(実施例9.1.1の結果)
 U87MG皮下腫瘍モデルを作製し、腫瘍径が6 mm大になった時点でT-01、T-BV及びmockの3群に各群10匹ずつランダムに分け、2 x 105 pfuのウイルスをday 0とday 3の2回、腫瘍内投与を行った。エクセル統計(Microsoft)を用いて独立t検定により比較したところ、ウイルス投与後20日目の時点で、T-01群ではmockに対して有意な腫瘍増大抑制効果を認め(p = 0.00749)、さらにT-BVはT-01と比較して有意な腫瘍増大抑制効果を認めた(p = 0.0211)(図19)。
結果IVb U87MG脳内腫瘍モデルにおけるT-BVの抗腫瘍効果の検討(実施例9.1.2の結果)
 U87MG脳内腫瘍モデルを用いた抗腫瘍効果の検討を行った。脳腫瘍モデルに対して、10日目にT-01、T-BV及びmockの3群に各群10匹ずつランダムに分け、1 x 106 pfuのウイルスを腫瘍内に単回投与した。T-01投与群及びT-BV投与群はmock群と比較して有意な生存期間の延長を認めた(ともにp < 0.01)。T-BVはT-01よりも生存期間の延長傾向がみられた(p = 0.163)(図20)。
 以上の結果から、T-BVはT-01と比較して、in vivoにおけるより高い抗腫瘍効果を持つことが示された。
結果IVc TGS-01及びTGS-04脳内腫瘍モデルにおけるT-BVの抗腫瘍効果の検討(実施例9.1.2の結果)
 グリオーマ幹細胞であるTGS-01及びTGS-04を用いた脳内腫瘍モデルは、少ない細胞数で対側への浸潤像を示す境界不明瞭な腫瘍を形成し、実際の臨床での膠芽腫により近い病理像を示す。また、グリオーマ幹細胞は放射線治療や化学療法に対して抵抗性を示し、グリオーマが難治性である要因でもある。そこで、グリオーマ幹細胞に対するin vivoでの効果検討のために、TGS-01及びTGS-04の脳内腫瘍モデルを作製し、2 x 10pfuのT-01、T-BV又はmockを各群10匹ずつ腫瘍内に単回投与する治療実験を行った。TGS-01脳内腫瘍モデルに関しては、mockと比較して、T-BV、T-01ともに生存期間の有意な延長を認め(ともにp < 0.01)、さらにT-BVはT-01と比較して生存期間の有意な延長を認めた(p = 0.0475)。TGS-04モデルに関しては、mockと比較して、T-01では生存の延長を認めなかったが、T-BVでは生存期間の有意な延長を認めた(p = 0.0495)(図21)。
 このことから、グリオーマ幹細胞に対して、T-BVはT-01と比較してin vivoにおいてより高い抗腫瘍効果を持つことが示された。
結果V T-BVの腫脹抑制効果の検討
 U87MG脳内腫瘍モデルに対して、T-BVを投与した際に、T-01を投与した場合と比較してT2WIでの高信号域にどのような変化が生じるかを、小動物用MRIを用いて評価した。  
 また、脳浮腫発生に関してAQP4が強い関連を持つという報告があることから、RT-qPCRによるマウスAQP4の発現量の定量を行うことでT-BVの腫脹抑制効果の検証を併せて行う方針とした。
結果Va MRIによる腫脹の定量
 MRIにおいて、血管に富む腫瘍は、常磁性造影剤投与によって縦緩和時間が短縮するため、T1WIで増強され、高信号域として描出される。一方で、浮腫など自由水を含む組織は横緩和時間が長いため、T2WIで高信号域として描出される。膠芽腫に対するウイルス療法の臨床試験において、腫瘍はT1WI(CE)で高信号域として描出され、ウイルス投与後に生じる浮腫はT2WIで高信号域として描出される。したがって、本実施例では、脳内腫瘍モデルの腫瘍内へのウイルス投与後にMRIを経時的に撮像し、T1WI(CE)、T2WIにおける腫瘍周囲の高信号域を計測することで、T-BVの腫脹抑制効果の検討を行った。
結果Vb 動物モデルの検討
 U87MG、U251MG、NMC-G1、TGS-01、1123/Mの各細胞株について、BALB/c nu/nuマウスの右前頭葉内に定位脳手術装置を用いて細胞の移植を行い、経時的にMRIを撮像し、MRIを用いた腫瘍の描出が最も容易であったU87MGを用いた(図22)。なお、U251MG、NMC-G1では腫脹形成速度が遅く、U87MG、TGS-01、1123/M腫瘍の安定した造影増強を得ることが困難であった。
結果Vc U87MG脳内腫瘍モデルにおけるウイルス投与後のMRI評価(実施例9.2.1の結果)
 U87MG脳内腫瘍モデルに対して、腫瘍移植後11日目にMRIを撮像し、腫瘍の大きさ、形状を確認後に、T-01、T-BV、T+A及びmock群の各群6匹ずつに無作為にグループ分けを行った。12日目に1 x 10pfuの腫瘍内への単回投与を行い、PID2、4、6にMRIを撮像した。画像を元に面積を計測し、前述した計算式に基づいて面積比を算出した。この面積比に関して、PID2 - 4 - 6の経過で、T-01群では1.32 - 1.32 - 1.20と推移しているのに対して、T-BV群及びT+A群では、それぞれ1.12 - 1.06 - 1.04、1.01 - 1.01 - 1.04と推移しており、T-01群と比較して、T-BV群、T+A群では有意に低い結果となった(各、p = 0.015、0.002)(図23)。この結果から、T-BV投与又はT-01にAvastin(登録商標)全身投与を追加することによって、脳腫脹が軽減することが示された。
結果Vd RT-qPCRによるウイルス投与後のAQP4の定量(実施例9.2.2の結果)
 AQPは1992年に発見された、水分子を選択的に透過させる膜タンパクである。哺乳類ではAQP0からAQP12までの13種類が報告されている。構造的には、その多くが300以下のアミノ酸で構成された6回貫通型の膜タンパクであり、2箇所にNPAボックスというアスパラギン(N)-プロリン(P)-アラニン(A)という保存性の高い部分が存在することが特徴である。この部分は疎水性が高く、膜を貫通せずに膜内に折れ込んでいて水分子の通過孔を形成している。脳にはAQP1、AQP3、AQP4、AQP5、AQP8、AQP9、AQP11、AQP12と多くの種類のAQPが発現していることが報告されているが、そのなかで、AQP4は他臓器と比較して脳における発現量が非常に多く、その分布から血液脳関門における水の移動などに関与していると考えられている。また、AQP4は脳浮腫の発生に強い関連が報告されており、脳浮腫の初期段階ではその発生に関与している可能性が高い。そこで、ウイルス投与後の腫脹変化を定量する目的で、ウイルス投与後のU87MG脳内腫瘍モデルの右前頭葉を用いて、マウスAQP4に関するRT-qPCRによる定量を行った。
 U87MG脳内腫瘍モデルに対して、T-01、T-BV、T+A、mock群を設定し、PID6に右前頭葉を摘出してRNAを抽出し、逆転写酵素を用いてcDNAを作製し、マウスAQP及びマウスβアクチンに対するTaqmanプライマーを用いて定量PCRを行った。mock群と比較してT-01群ではAQP4発現が有意に上昇しており(p < 0.001)、T-01群と比較して、T-BV群及びT+A群ではAQP4発現が有意に低下していた(p < 0.001)(図25)。この結果からもT-BV投与又はT-01にAvastin(登録商標)全身投与を併用することによって、脳の腫脹が軽減すると考えられた。
 MRI及びAQP4に対するRT-qPCRの結果から、脳腫瘍に対するウイルス投与後の腫脹に関して、T-BVにはAvastin(登録商標)の全身投与と同等の腫脹抑制作用があることが示された。
結果VI T-BV及びT-V H V L の腫脹抑制効果の比較検討(実施例9.2.3の結果)
 U87MG脳内腫瘍モデルに対して、1 x 10pfuのT-01、T-BV、T-VHVL又はmockを投与し、その後経時的にMRIを撮像した(図25)。T-01と比較して、T-BVではPID4で腫脹の有意な減少を認めた(p = 0.039)。また、T-VHVLでも腫脹の抑制傾向が認められた(p = 0.397)(図26)。
結果VIII ウイルス投与後の腫瘍環境に対する影響
 抗VEGF抗体には血管新生抑制効果だけではなく免疫に対する作用があることが報告されている(Roland, C. L. et al. (2009) PloS one 4, e7669, (2009))。そこで、各種ウイルスを投与したU87MG脳内腫瘍モデルを用いて免疫組織化学染色による血管新生・マクロファージの評価を行った。
結果VIIIa 免疫組織化学染色(実施例9.3.1の結果)
 U87MG脳内腫瘍モデルに対して、T-01、T-BV、T+A又はmockを投与し、PID2、4に大脳を摘出後、パラフィン切片を作製し、免疫組織化学染色による検討を行った。ウイルス投与による変化を評価対象とするため、HSV-1染色で腫瘍に対するウイルスの感染を確認した上で、血管新生の評価としてマウスCD31染色を、浸潤マクロファージの評価としてマウスF4/80染色をそれぞれ行った。
 マウスCD31染色に関して、mock群では、血管の形状、分布ともに均一であるのに対して、ウイルス投与群では、血管径が太く、不均一な分布を示した。血管密度は、mockと比較してウイルス投与群では高い傾向にあったが、ウイルス投与群間での有意差及び傾向は認めなかった。またT-VHVLにおいても同様に明らかな血管新生の抑制は認めなかった。
 浸潤マクロファージの評価では、mock群では腫瘍へのマクロファージの浸潤を認めるものの、全体的に疎で均一な分布であるのに対して、ウイルス投与群ではウイルス感染部を中心として密に集簇している病理像が得られ、ウイルス群間での明らかな違いは認めなかった。
結果VIIIb フローサイトメトリー(実施例9.3.2の結果)
 U87MG脳内腫瘍モデルを用いた免疫組織化学染色において、ウイルス投与群ではウイルス感染部を中心としてマクロファージの集簇している病理像が得られたことから、フローサイトメトリーによる定量を行うこととした。マクロファージはM1マクロファージとM2マクロファージに大別される。M1マクロファージは細菌感染やウイルス感染などによって誘導され、強い抗菌あるいは抗ウイルス活性、抗腫瘍効果を発揮する。一方で、M2マクロファージは、組織修復や血管新生、腫瘍増殖の促進、免疫抑制機能を持つ。腫瘍の進展に伴うさまざまなサイトカインの影響によって、腫瘍組織に浸潤する腫瘍随伴マクロファージ(Tumor-associated macrophage (TAM))はM1からM2にシフトしていると考えられている。そこで、腫瘍にウイルスを投与した際に、TAMがどのように変化し、投与するウイルスによってその変化にどのような違いがあるかを確認するために、U87MG脳内腫瘍に対するPID2、4、6の右前頭葉を用いて、フローサイトメトリーを行った。代表的な散布図を図27に示す。mock群ではどの時点でも一貫してM2優位な所見が得られたのに対して、いずれのウイルス投与群でもPID2にM1優位な状態となった。その後、T-01群ではPID6にはM1優位な状態からM2優位なもとの状態に近づくのに対して、T-BV群及びT+A群ではPID6でもM1とM2の割合がほぼ等しい状態を保ち、mock群と比較してM1優位な状態が継続していた(図28-1)。
 上記のとおり、M1マクロファージは抗ウイルス活性を有するため、M1優位な状態が継続することによる、ウイルス力価への影響を調べた。T-01、T-BV及びT+A群について、PID1, PID3及びPID7のいずれにおいても、ウイルス力価に顕著な差はみられなかった(図28-2)。これらの結果から、抗ヒトVEGF抗体の発現は、ウイルス力価に悪影響を与えることなく、マクロファージがM1優位になることを介して、HSV-1に抗腫瘍活性を付与可能であることが示唆された。
 従来のM1マクロファージに関する研究結果を踏まえると、本実験で確認されたとおり、M1優位の状態が維持されることが、T-BVの抗腫瘍効果の高さの一因と考えられる。M1マクロファージはファゴサイトーシス(食作用)活性を有するため、M1優位となることによりウイルス力価が低下し得るのではないかと考えられたが、驚くべきことに、ウイルス複製に対するネガティブな作用はみられず、T-BVの抗腫瘍効果の高さは、ウイルス力価への影響を伴わなかった。
結果X in vivoにおけるT-BVの抗体発現の確認(実施例9.4の結果)
 機能付加型ウイルスを生体に投与した際に発現されるタンパクの分布を確認することは、安全性を検討する上で重要である。そこで、in vivoにおいてT-BVを脳内腫瘍に投与した際に、発現される抗ヒトVEGF抗体の血中からの検出量について評価を行った。
 BALB/c nu/nuマウスの右前頭葉に作製したU87MG脳内腫瘍に対して、T-01群、T-BV群、T+A群及びmock群各群6匹ずつに無作為に分けた後に1 x 10pfuのウイルスを腫瘍内に単回投与した。PID1、PID3に各群3匹ずつ静脈採血を行い、分離した血清中の抗ヒトVEGF抗体をELISAで定量した。Avastin(登録商標)の腹腔内への単回投与を行ったT+A群でのみ、PID1、PID3のそれぞれにおいて、114.5 ng/mL、106.9 ng/mLの抗VEGF抗体を検出したが、T-BV群をはじめ、その他の群ではいずれも検出限界以下であった(図29)。
結果XI T-sVEGFR1及びT-VEGFscFvの評価結果(実施例10の結果)
(1) T-sVEGFR1 、T-VEGFscFv (VH-VL) 及びT-VEGFscFv (VH-VLCL) のウイルスゲノム構造のサザンブロッティング法による確認
 まず、T-sVEGFR1 、T-VEGFscFv (VH-VL) 及びT-VEGFscFv (VH-VLCL) を用いて実験を行うにあたり、それぞれのウイルスDNAに正しくVEGF阻害因子の遺伝子が組み込まれているか確認するため、精製した各ウイルスからDNAを抽出し、サザンブロッティングを行った。VEGFscFv (VH-VL) プローブでは、T-VEGFscFv (VH-VL) 及びT-VEGFscFv (VH-VLCL) で、それぞれ5543bp及び5868bpのDNA断片が検出され、VEGFscFv (VH-VL) 及びVEGFscFv (VH-VLCL) の遺伝子の挿入が確認された (図示せず) 。一方、sVEGFR1プローブを用いたサザンブロットでは、T-sVEGFR1で6798 bpのDNA断片が検出され、sVEGFR1 の遺伝子の挿入が確認された(図示せず)。以上より、T-sVEGFR1 、T-VEGFscFv (VH-VL) 及びT-VEGFscFv (VH-VLCL) はG47Δの基本骨格のICP6欠失部位に正しくVEGF阻害因子の遺伝子が挿入されていることが確認できた。
(2) T-sVEGFR1及びT-VEGFscFvのVEGF阻害因子タンパク質発現確認 (in vitro)
 T-sVEGFR1及びT-VEGFscFvを細胞に感染させた際、それぞれsVEGFR1及びVEGFscFvタンパク質が培養上清中に分泌されるどうか確認するためELISA法による測定を行った。その結果、T-sVEGFR1感染群ではsVEGFR1が1.66±0.30 ng/mlの濃度で (図30A)、T-VEGFscFv感染群では、VEGFscFvタンパク質が87.30±7.99 ng/mlの濃度で (図30B) それぞれ検出された。
(3) T-sVEGFR1及びT-VEGFscFvの抗VEGF機能の検討 (in vitro)
 T-sVEGFR1及びT-VEGFscFv がそれぞれVEGF阻害因子を発現することが確認できたので、これらが実際に抗VEGF機能を有するか検討するため、血管内皮細胞管腔形成試験及び血管内皮細胞遊走試験を行い、T-01と比較評価した。
a. 血管内皮細胞管腔形成試験 
 T-sVEGFR1及びT-VEGFscFvが血管内皮細胞であるHUVECの管腔形成に及ぼす効果を検討するために、血管内皮細胞管腔形成試験を行った。ウイルスの培養上清とHUVECをMatrigel Matrixで共培養し、22時間後のHUVECの管腔の長さの合計からウイルス培養上清の管腔形成に与える影響を比較した。その結果、T-sVEGFR1及びT-VEGFscFv感染群ではT-01感染群と比較して有意に管腔形成が抑制された (図31)。
b. 血管内皮細胞遊走試験
 次にT-sVEGFR1及びT-VEGFscFvがHUVECの遊走に及ぼす効果を検討するため、血管内皮細胞遊走試験を行った。ウイルスの培養上清とHUVECを共培養し、16時間後、遊走してきたHUVECを蛍光染色した後、蛍光強度を測定し、ウイルス培養上清のHUVECの遊走に与える影響を比較した。その結果、T-sVEGFR1及びT-VEGFscFv感染群では、T-01感染群と比較して有意に遊走が抑制された(図32)。
 これらの実験結果により、T-sVEGFR1及びT-VEGFscFvは、in vitroで抗VEGF機能を有することが示された。
(4) ウイルス複製試験 (in vitro) 
 ウイルスに遺伝子を挿入した場合にウイルス複製能が減弱する可能性が知られている。そこで、T-sVEGFR1及びT-VEGFscFvが、T-01と同等の複製能をもつかを検討するために、HT-29を用いてin vitro viral replication assayを行った。複製したウイルスの力価をそれぞれ測定した結果、24時間後では、T-01は感染させたウイルス量の6.43±0.47倍、T-sVEGFR1は9.94±2.95倍、T-VEGFscFvは16.07±11.28倍のウイルス力価であった。また48時間後では、T-01は51.79±3.09倍、T-sVEGFR1は69.04±8.25倍、T-VEGFscFvは88.10±41.70倍であった (図33)。
 以上より、T-sVEGFR1及びT-VEGFscFvはin vitroで、T-01とほぼ同等の複製能を持つことが示された。
(5) ウイルスの殺細胞効果の検討 (in vitro)
 T-sVEGFR1及びT-VEGFscFvが、T-01と同等の殺細胞効果をもつかを検討するために、HT-29を用いてin vitro cytotoxicity assayを行った。その結果、4日後の細胞生存率はMOI 0.1では、T-01感染群で4.1±0.25% 、T-sVEGFR1感染群で3.9±2.34% 、T-VEGFscFv感染群で8.4±0.78% となった。また、MOI 0.01では、T-01感染群で38±7.65% 、T-sVEGFR1感染群で43±0.71% 、T-VEGFscFv感染群で49±6.68% となった (図34)。
以上より、T-sVEGFR1及びT-VEGFscFvはin vitroで、T-01とほぼ同等の殺細胞効果を有することが示された。
(6) HT-29細胞株及びCT26細胞株のVEGF発現量の検討 (in vitro)
 次に、VEGF阻害因子を発現するT-sVEGFR1及びT-VEGFscFvのin vivoにおける抗腫瘍効果をT-01と比較検討するにあたり、in vivoの実験に用いるHT-29及びCT26がVEGFタンパク質を分泌するかどうかを確認するため、ELISAを行った。
HT-29もしくはCT26の培養上清中のVEGFタンパク質量を測定したところ、VEGFタンパク質が検出され(ヒトVEGF: 709.5±129.0[pg/ml]、マウスVEGF: 682.7±3.3[pg/ml])、HT-29及びCT26はVEGFタンパク質を産生する細胞株であることが確認された。よって、これらの細胞株はT-sVEGFR1及びT-VEGFscFvのin vivoでの抗腫瘍効果検討に適すると考えられた。
(7) HT-29皮下腫瘍モデルに対するT-sVEGFR1及びT-VEGFscFvの抗腫瘍効果の検討
T-sVEGFR1及びT-VEGFscFvのin vivoにおける抗腫瘍効果を検討するため、VEGFを産生することが確認されたHT-29を用いてヌードマウス皮下腫瘍モデルを作製し、治療効果を観察した。
 HT-29をヌードマウスの左側腹部皮下に投与して皮下腫瘍を作製し、腫瘍径が5 mmに達した14日後のDay 0及びその3日後のDay 3にT-01、T-sVEGFR1、T-VEGFscFv及びMockを皮下腫瘍内に投与した。
 Day 32において、T-sVEGFR1及びT-VEGFscFv投与群では、T-01と比較して、有意に強い抗腫瘍効果がみられた (図35) 。なお、T-sVEGFR1投与群とT-VEGFscFv投与群では、抗腫瘍効果は同程度であった。
 この結果から、HT-29皮下腫瘍モデルにおいてT-sVEGFR1及びT-VEGFscFvは、T-01と比較して有意に強い抗腫瘍効果を有することが示された。
(8) HT-29皮下腫瘍モデルのCD31免疫組織化学染色による腫瘍内血管新生の検討
 HT-29皮下腫瘍モデルにおいて、T-sVEGFR1及びT-VEGFscFvは T-01より有意に高い抗腫瘍効果を示した。そこで、T-sVEGFR1及びT-VEGFscFvの抗腫瘍効果増強の作用機序を明らかにするため、腫瘍内血管新生に対するウイルスの効果について検討した。
腫瘍内血管を検討するにあたり、HT-29をヌードマウスの左側腹部皮下に投与して皮下腫瘍を作製し、腫瘍径が5 mmに達した14日後をDay 0として、Day 0及びDay 3にT-01、T-sVEGFR1、T-VEGFscFv及びMockを皮下腫瘍内に投与した。Day 3 (二回目のウイルス投与前) 及びDay 7に皮下腫瘍組織を採取して、ホルマリン固定の後、パラフィン切片を作製し、血管内皮細胞マーカーCD31に対する免疫組織化学染色を行った (図10A)。
 免疫染色を施した組織切片における微小血管をカウントし、腫瘍内微小血管密度を求めた。その結果、Day3では、顕微鏡下 (×20) でのカウント数が、 Mock感染群が52.3±9.2 count、T-01感染群が31.6±5.9 count、T-sVEGFR1感染群が13.7±5.8 count、T-VEGFscFv感染群が11.8±4.9 countであった。またDay7では、Mock感染群が48.0±7.0 count、T-01感染群が36.4±11.1 count、T-sVEGFR1感染群が11.3±1.7 count、T-VEGFscFv感染群が11.0±3.8 countであった。Day 3及びDay 7ともにT-sVEGFR1及びT-VEGFscFv投与群において、T-01投与群と比較して有意に腫瘍内微小血管が減少した (図36)。 
 このことから、T-sVEGFR1及びT-VEGFscFvは腫瘍内血管新生を抑制する機能を持つことが示され、この腫瘍血管新生抑制機能は、T-01と比較したこれら二つのウイルスの抗腫瘍効果増強の作用機序の一つと考えられた。
(9) Real Time Quantitative PCR によるウイルスDNAの定量
 CD31免疫染色の結果より示唆されたT-sVEGFR1及びT-VEGFscFvの腫瘍内血管新生抑制機能は、T-01と比較したこれら二つのウイルスの抗腫瘍効果増強の作用機序の一つと考えられた。しかし、VEGFは血管新生を促進するだけでなく、マクロファージなどのVEGF受容体陽性免疫担当細胞の遊走を促進する機能を有すると報告されている。また一方で、マクロファージは治療用ウイルスを貪食することにより、治療用ウイルスの複製効率を低下させるとの報告がある。このマクロファージの貪食作用による治療用ウイルスの複製効率低下を克服するため、抗VEGF抗体であるBevacizmabと治療用HSVを併用すると、マクロファージの腫瘍内浸潤が減少し、ウイルスの複製効率が向上することによって抗腫瘍効果が増強した、とも報告されている。
 そこで、T-sVEGFR1及びT-VEGFscFvのT-01と比較した抗腫瘍効果増強の作用機序の一つとして、マクロファージの腫瘍内浸潤抑制によるウイルスの感染効率の向上も考えられるのではないかと考えた。まず、HT-29皮下腫瘍モデルにおけるウイルスの感染効率について検討するため、HT-29をヌードマウスの左側腹部皮下に投与して皮下腫瘍を作製し、腫瘍径が5 mmに達した14日後をDay 0として、Day 0にT-01、T-sVEGFR1、T-VEGFscFv及びMockを皮下腫瘍内に投与した。Day 3に皮下腫瘍を採取してDNAを抽出し、 HSV-1のDNA polymeraseをコードする遺伝子をターゲットにリアルタイムPCRを行い、腫瘍内ウイルスDNAを定量した。
 ウイルス投与3日後に腫瘍からDNA抽出し、リアルタイムPCRを行ったところ、その結果、T-sVEGFR1及びT-VEGFscFv投与群は共にT-01投与群とほぼ同等のウイルスDNA量が検出された。なお、Mock投与群では、ウイルスDNAは検出されなかった。
このことから、T-sVEGFR1及びT-VEGFscFvとT-01との間には、ウイルスDNAの複製効率 に有意な差はなく、抗腫瘍効果増強の主要な要因ではないと考えられた。
(10) CT26皮下腫瘍モデルに対するT-sVEGFR1及びT-VEGFscFvの抗腫瘍効果の検討
 リアルタイムPCRの結果から、ウイルスの複製効率はHT-29皮下腫瘍モデルにおいて、T-sVEGFR1及びT-VEGFscFvのT-01と比較した抗腫瘍効果の増強の要因ではないことが分かった。更に、前述の腫瘍血管新生阻害機能以外にT-sVEGFR1及びT-VEGFscFv の抗腫瘍効果増強の要因がないか、検討を進めた。そこで、T-sVEGFR1及びT-VEGFscFvが抗腫瘍免疫に与える影響を調べるために、免疫機能が正常であるBALB/cマウスとVEGFを産生することが確認されたBALB/c由来の大腸癌細胞株CT26を用いて実験を行った。まず、CT26皮下腫瘍に対するT-sVEGFR1及びT-VEGFscFv の抗腫瘍効果を調べた。CT26をBALB/cの左側腹部皮下に投与して皮下腫瘍を作製し、腫瘍径が5 mmに達した10日後をDay 0として、Day 0及びDay 3にT-01、T-sVEGFR1、T-VEGFscFv及びMockを皮下腫瘍内に投与した。
 腫瘍体積を測定し、観察を続けたところ、最初のウイルス投与から28日後のDay 28において、T-sVEGFR1及びT-VEGFscFv投与群では、T-01投与群と比較して、有意に強い抗腫瘍効果がみられた (図37)。 
 この結果から、ヌードマウスでの検討と同様、免疫正常マウスにおいてもT-sVEGFR1及びT-VEGFscFvは、T-01と比較して有意に高い抗腫瘍効果を有することが示された。また、Day 28で、T-sVEGFR1 投与群では7匹中4匹、T-VEGFscFv投与群では7匹中6匹の腫瘍が消失するなど、ヌードマウスでの検討より高い治療効果を示す傾向があった。T-sVEGFR1及びT-VEGFscFv は、T-01より効率的に抗腫瘍免疫が誘導できた結果、抗腫瘍効果が高まった可能性もあると考えられた。
E.考察
(1)抗VEGF抗体発現腫瘍溶解性ウイルスの作製
 腫瘍溶解性ウイルスは腫瘍内で複製するたびに腫瘍局所においてタンパクを発現することから、非増殖型ウイルスベクターに比べてタンパク発現量が格段に多くなる一方で、タンパク発現は局所にとどまるため、全身投与と比較して副作用のリスクは軽減される。結果Xで示したとおり、Avastin(登録商標)の腹腔内投与の併用では血清中からベバシズマブが高濃度で検出されたのに対して、T-BV投与では腫瘍局所からのみ発現抗体が検出され、血清からは検出限界以下であった。
 抗VEGFとして、一本鎖抗体を導入した腫瘍溶解性ウイルスと二本鎖抗体を導入した腫瘍溶解性ウイルスとを比較した場合、いずれのウイルスも腫脹の発生を抑えた。二本鎖抗体を導入したウイルスの場合には、二本鎖抗体はFc部分の存在により半減期が延長し、抗体依存性の免疫反応が、より期待できる。
(2)ウイルス投与後の腫脹発生のメカニズム
 腫瘍に対するウイルス療法で見られる腫脹に関する報告は渉猟する限りないが、膠芽腫に対するG47Δの臨床試験ではウイルス投与後のMRI(T2WI)で腫瘍周囲の高信号域としてしばしば見られる現象である。
 本実施例でのMRIを用いたウイルス投与後の脳の腫脹の評価において、T-BV及びAvastin(登録商標)併用で腫脹抑制効果を示し、T-VHVLでは腫脹抑制傾向を示したことから、ウイルス投与に伴う脳の腫脹にはVEGFが関与することが示唆された(図22、25)。また、U87MG脳内腫瘍モデルに対するウイルス投与後のMRI(T2WI)で腫瘍周囲の高信号域を認めた個体では免疫組織化学染色でHSV-1感染と血管新生が確認できた。このことから、ウイルス投与によって生じるT2WIでの腫瘍周囲の高信号域は、腫瘍細胞にウイルスが感染した場合に出現すると考えられた。また、抗VEGF抗体の作用によってその出現が抑制されることから、腫脹の発生にはVEGFが関与すると考えられた。
 本発明によれば、腫脹をきたすことなく、腫瘍溶解性ウイルスによる腫瘍治療を行うことができ、医療の分野において産業上の利用可能性を有する。
 本出願は、2018年3月30日に出願された日本国特許出願第2018-068847号に基づく優先権を主張するものであり、この内容はここに参照として組み込まれる。
配列番号1:図4に記載の抗ヒトVEGF抗体発現のためのアミノ酸配列全体
配列番号2:図4のV鎖(アミノ酸配列)
配列番号3:図4のC鎖(アミノ酸配列)
配列番号4:図4のV鎖(アミノ酸配列)
配列番号5:図4のC鎖(アミノ酸配列)
配列番号6:図4のIg kappa leader sequence(アミノ酸配列)
配列番号7:図4のシグナルペプチダーゼ認識配列(アミノ酸配列)
配列番号8:図4のFurin認識配列(アミノ酸配列)
配列番号9:図4のFMDV-2A配列(アミノ酸配列)
配列番号11:図5のGSリンカー
配列番号10:図5に記載の抗VEGFscFv発現のためのアミノ酸配列全体
配列番号12:図5のGSリンカーのうち1ユニット
配列番号13:図9の抗ヒトVEGF抗体発現遺伝子cDNA
配列番号14:図9のVのcDNA
配列番号15:図9のCのcDNA
配列番号16:図9のVのcDNA
配列番号17:図9のCのcDNA
配列番号18:図9のIg kappa leader sequence(cDNA)
配列番号19:図9のシグナルペプチダーゼ認識配列(cDNA)
配列番号20:図9のFurin認識配列(cDNA)
配列番号21:図9のFMDV-2A配列(cDNA)
配列番号22:図10の抗VEGFscFv発現遺伝子cDNA
配列番号23:図10のGs linker(cDNA)
配列番号24:図8のT-VEGFsc(V)のcDNA
配列番号25:図8のCLのcDNA
配列番号26:図7のsVEGFR1のcDNA
配列番号27:HSV DNApoly-F 
配列番号28:HSV DNApoly-R 
配列番号29:HSV DNApoly-T 
配列番号30:図4のV鎖+C鎖(アミノ酸配列)
配列番号31:図4のV鎖+C鎖(アミノ酸配列)

Claims (13)

  1.  血管内皮細胞増殖因子(VEGF)拮抗剤をコードする遺伝子を有する、腫瘍溶解性ウイルス。
  2.  VEGF拮抗剤が、抗VEGF抗体又はその断片である、請求項1に記載の腫瘍溶解性ウイルス。
  3.  VEGF拮抗剤が、V鎖及びV鎖を含む抗VEGF抗体又は一本鎖抗VEGF抗体である、請求項2に記載の腫瘍溶解性ウイルス。
  4.  以下の(i)~(iii)のいずれかのポリペプチドをコードする遺伝子:
    (i) 配列番号2のポリペプチド;
    (ii) 配列番号2のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
    (iii) 配列番号2のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
    及び以下の(iv)~(vi)のいずれかのポリペプチドをコードする遺伝子:
    (iv) 配列番号4のポリペプチド;
    (v) 配列番号4のポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
    (vi) 配列番号4のポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド;
    を有する、請求項2又は3に記載の腫瘍溶解性ウイルス。
  5.  抗VEGF抗体が、ヒトモノクローナル抗体又はヒト化モノクローナル抗体である、請求項2~4のいずれか一項に記載の腫瘍溶解性ウイルス。
  6.  VEGF拮抗剤が、可溶性VEGF受容体である、請求項1に記載の腫瘍溶解性ウイルス。
  7.  以下の(xiii)~(xv)のいずれかのポリペプチドをコードする遺伝子を有する、請求項6に記載の腫瘍溶解性ウイルス。
    (xiii) 配列番号26の塩基配列によりコードされるポリペプチド;
    (xiv) 配列番号26の塩基配列によりコードされるポリぺプチドにおいて、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつVEGF結合能を有するポリペプチド;
    (xv) 配列番号26の塩基配列によりコードされるポリぺプチドと75%以上、80%以上、85%以上、90%以上、95%以上、98%以上又は99%以上の相同性を有し、かつVEGF結合能を有するポリペプチド。
  8.  単純ヘルペスウイルスI型及びII型(HSV-1及びHSV-2)、アデノウイルス、ポリオウイルス、麻疹ウイルス、レオウイルス、ワクシニアウイルス、セネカウイルス、水泡性口内炎ウイルス(VSV)、ニューカッスル病ウイルス及びコクサッキーウイルスからなる群から選択されるウイルスの変異体である、請求項1~7のいずれか一項に記載の腫瘍溶解性ウイルス。
  9.  腫瘍溶解性ウイルスが、単純ヘルペスウイルスI型変異体であって、(a)~(c)のいずれか一以上の特徴を有する、請求項1~7のいずれか一項に記載の腫瘍溶解性ウイルス。
    (a)ICP6遺伝子が欠失又は不活化されている、或いは腫瘍特異的プロモーター又は組織特異的プロモーターの制御下で発現する;
    (b)γ34.5遺伝子が欠失又は不活化されている;
    (c)ICP47遺伝子が欠失又は不活化されている。
  10.  請求項1~9のいずれか一項に記載の腫瘍溶解性ウイルスを治療有効量含む、腫瘍治療用医薬組成物。
  11.  前記腫瘍が、神経系型腫瘍、下垂体部腫瘍、髄芽細胞腫、黒色腫、脳腫瘍、前立腺癌、頭頚部癌、食道癌、腎癌、腎細胞癌、膵臓癌、乳癌、肺癌、結腸癌、大腸癌、胃癌、皮膚癌、卵巣癌、膀胱癌、肉腫、扁平上皮癌、神経外胚葉、甲状腺腫瘍、リンパ腫、肝細胞腫、中皮腫、類表皮癌及び良性腫瘍からなる群より選択されるヒト腫瘍である、請求項10に記載の腫瘍治療用医薬組成物。
  12.  前記腫瘍が脳腫瘍であり、局所投与される、腫脹発生抑制型の請求項10に記載の腫瘍治療用医薬組成物。
  13.  化学療法及び放射線療法から選択される他の腫瘍治療法と併用される、請求項10~12のいずれか一項に記載の腫瘍治療用医薬組成物。
PCT/JP2019/013767 2018-03-30 2019-03-28 腫脹発生抑制型腫瘍溶解性ウイルス WO2019189643A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2019244150A AU2019244150A1 (en) 2018-03-30 2019-03-28 Swelling-suppressive oncolytic virus
CN201980023832.6A CN111989397A (zh) 2018-03-30 2019-03-28 肿胀发生抑制型溶瘤病毒
US17/042,161 US20210023152A1 (en) 2018-03-30 2019-03-28 Swelling-Suppressive Oncolytic Virus
JP2020511025A JP7429046B2 (ja) 2018-03-30 2019-03-28 腫脹発生抑制型腫瘍溶解性ウイルス
KR1020207030924A KR20200136972A (ko) 2018-03-30 2019-03-28 종창 발생 억제형 종양 용해성 바이러스
CA3095427A CA3095427A1 (en) 2018-03-30 2019-03-28 Swelling-suppressive oncolytic virus
EP19777039.9A EP3789489A4 (en) 2018-03-30 2019-03-28 SWELLING INHIBITOR-TYPE ONCOLYTIC VIRUS
CN202410202104.4A CN118001307A (zh) 2018-03-30 2019-03-28 肿胀发生抑制型溶瘤病毒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068847 2018-03-30
JP2018068847 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189643A1 true WO2019189643A1 (ja) 2019-10-03

Family

ID=68060238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013767 WO2019189643A1 (ja) 2018-03-30 2019-03-28 腫脹発生抑制型腫瘍溶解性ウイルス

Country Status (8)

Country Link
US (1) US20210023152A1 (ja)
EP (1) EP3789489A4 (ja)
JP (1) JP7429046B2 (ja)
KR (1) KR20200136972A (ja)
CN (2) CN118001307A (ja)
AU (1) AU2019244150A1 (ja)
CA (1) CA3095427A1 (ja)
WO (1) WO2019189643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038857A1 (ja) * 2022-08-16 2024-02-22 具紀 藤堂 単純ヘルペスウイルスベクターを含む医薬組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921669B1 (ja) 1967-06-12 1974-06-03
WO2005103237A1 (ja) 2004-03-31 2005-11-03 Tomoki Todo 組換え単純ヘルペスウイルスの作製方法
JP4212897B2 (ja) 2001-03-27 2009-01-21 具紀 藤堂 ウイルスおよび治療法におけるそれらの使用
WO2011101912A1 (ja) 2010-02-19 2011-08-25 国立大学法人東京大学 組み換えヘルペスウイルス及び組換えヘルペスウイルスを含む医薬組成物
JP2016526531A (ja) * 2013-06-14 2016-09-05 サイオクサス セラピューティクス リミテッド B型アデノウイルスのための投与計画および製剤
WO2016174200A1 (en) * 2015-04-30 2016-11-03 Psioxus Therapeutics Limited Oncolytic adenovirus encoding a b7 protein
WO2017103291A1 (en) * 2015-12-17 2017-06-22 Psioxus Therapeutics Limited Virus encoding an anti-tcr-complex antibody or fragment
JP2018068847A (ja) 2016-11-02 2018-05-10 網矢 貞幸 減衰装置及び非常用避難ロープ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183250C (zh) * 2000-12-01 2005-01-05 卫健生物科技有限公司 高效表达肿瘤血管生成抑制因子的肿瘤细胞内特异性增殖的病毒及其构建方法
CN1167801C (zh) * 2001-10-25 2004-09-22 山西德元堂药业有限公司 重组人vegf腺病毒载体及其应用
WO2008043576A1 (en) * 2006-10-13 2008-04-17 Medigene Ag Use of oncolytic viruses and antiangiogenic agents in the treatment of cancer
MX2017011991A (es) * 2015-03-18 2018-05-28 Stemimmune Incorporated Terapia virica con una combinacion de anticuerpos.
ES2916344T3 (es) * 2016-06-16 2022-06-30 Adverum Biotechnologies Inc Composiciones y métodos para reducir la neovascularización ocular

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921669B1 (ja) 1967-06-12 1974-06-03
JP4212897B2 (ja) 2001-03-27 2009-01-21 具紀 藤堂 ウイルスおよび治療法におけるそれらの使用
WO2005103237A1 (ja) 2004-03-31 2005-11-03 Tomoki Todo 組換え単純ヘルペスウイルスの作製方法
WO2011101912A1 (ja) 2010-02-19 2011-08-25 国立大学法人東京大学 組み換えヘルペスウイルス及び組換えヘルペスウイルスを含む医薬組成物
JP2016526531A (ja) * 2013-06-14 2016-09-05 サイオクサス セラピューティクス リミテッド B型アデノウイルスのための投与計画および製剤
WO2016174200A1 (en) * 2015-04-30 2016-11-03 Psioxus Therapeutics Limited Oncolytic adenovirus encoding a b7 protein
WO2017103291A1 (en) * 2015-12-17 2017-06-22 Psioxus Therapeutics Limited Virus encoding an anti-tcr-complex antibody or fragment
JP2018068847A (ja) 2016-11-02 2018-05-10 網矢 貞幸 減衰装置及び非常用避難ロープ

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
CARSON, J. ET AL., DRUGS OF THE FUTURE, vol. 35, 2010, pages 183 - 195
D C MANSFIELD ET AL., GENE THERAPY, vol. 23, 2016, pages 357 - 368
FREEMAN ET AL., MOL. THER., vol. 13, no. 1, 2006, pages 221 - 8
FRENTZEN, A. ET AL.: "Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy", PROC. NATL. ACAD. SCI. USA, vol. 106, no. 31, 4 August 2009 (2009-08-04), pages 12915 - 12920, XP002678052, DOI: 10.1073/pnas.0900660106 *
FUKUHARA, H. ET AL., CANCER RESEARCH, vol. 65, 2005, pages 10663 - 10668
GOETZ ET AL., CYTOKINE & GROWTH FACTOR REVIEWS, vol. 21, no. 2-3, 2010, pages 197
KASUYA, HIDEKI ET AL.: "Oncolytic virus therapy incorporating anti-angiogenic genes", JAPANESE JOURNAL OF GASTROENTEROLOGICAL SURGERY, vol. 39, no. 7, 1 July 2006 (2006-07-01), pages 1184, XP055746764, ISSN: 0386-9768, DOI: https://doi.org/10.5833/jjgs.39.1141 *
KAUFMANN ET AL., J. INVEST. DERMATOL., vol. 133, no. 4, 2013, pages 1034 - 42
KAWASHIMA T. ET AL., CLIN CANCER RES, vol. 10, 2004, pages 285 - 292
KELLY EJ. ET AL., NAT MED, vol. 14, 2008, pages 1278 - 1283
KHURI ET AL., NAT. MED, vol. 6, no. 8, 2000, pages 879 - 85
LAL, R. ET AL., CURRENT OPINION IN MOLECULAR THERAPEUTICS, vol. 11, no. 5, 2009, pages 532 - 9
LIANG, W. C. ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 281, 2006, pages 951 - 961
LIANG, W. C. ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 281, 2006, pages 951 - 961
LORENCE ET AL., CURR. CANCER DRUG TARGETS, vol. 7, no. 2, 2007, pages 157 - 67
MARKERT, J. M. ET AL., GENE THERAPY, vol. 7, 2000, pages 867 - 874
MARTUZA, R. L. ET AL., JOURNAL OF CLINICAL INVESTIGATION, vol. 105, 2000, pages 841 - 846
MCDONALD ET AL., BREAST CANCER TREAT, vol. 99, no. 2, 2006, pages 177 - 84
MIYAMOTO S. ET AL., CANCER RES, vol. 72, 2012, pages 2609 - 2621
PARK JE ET AL., J BIOL CHEM, vol. 269, no. 41, 1994, pages 25646 - 54
PARK JE ET AL., J BIOL CHEM., vol. 269, no. 41, 1994, pages 25646 - 54
PHUANGSAB ET AL., CANCER LETT, vol. 172, no. 1, 2001, pages 27 - 36
ROLAND, C. L. ET AL., PLOS ONE, vol. 4, 2009, pages e7669
RUDIN ET AL., CLIN. CANCER. RES., vol. 17, no. 4, 2011, pages 888 - 95
See also references of EP3789489A4
STEVE H. THORNE, FRONTIERS IN ONCOLOGY, vol. 4, 2014, pages 155
STOJDL ET AL., CANCER CELL, vol. 4, no. 4, 2003, pages 263 - 75
STOJDL ET AL., NAT. MED., vol. 6, no. 7, 2000, pages 821 - 5
TODO, T. ET AL., MOLECULAR THERAPY, vol. 2, 2000, pages 588 - 595
TODO, T., A JOURNAL AND VIRTUAL LIBRARY, vol. 13, 2008, pages 2060 - 2064
WEIDNER, N. ET AL., THE NEW ENGLAND JOURNAL OF MEDICINE, vol. 324, 1991, pages 1 - 8
XIA ET AL., AI ZHENG, vol. 23, no. 12, 2004, pages 1666 - 70
YU, L. ET AL., INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 49, 2008, pages 522 - 527
ZITVOGEL, L. ET AL., HUMAN GENE THERAPY, vol. 5, 1994, pages 1493 - 1506

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038857A1 (ja) * 2022-08-16 2024-02-22 具紀 藤堂 単純ヘルペスウイルスベクターを含む医薬組成物

Also Published As

Publication number Publication date
AU2019244150A1 (en) 2020-10-22
CN118001307A (zh) 2024-05-10
KR20200136972A (ko) 2020-12-08
EP3789489A4 (en) 2022-01-05
EP3789489A1 (en) 2021-03-10
US20210023152A1 (en) 2021-01-28
CN111989397A (zh) 2020-11-24
JPWO2019189643A1 (ja) 2021-04-01
JP7429046B2 (ja) 2024-02-07
CA3095427A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
KR102662837B1 (ko) 바이러스 치료법의 강화를 위한 세포-기반 비히클
KR101942237B1 (ko) 종양 항원에 대한 항체의 생산 및 종양용해 우두 바이러스의 투여에 의한 종양 특이적 보체 의존적 세포독성의 생산
US20150250837A1 (en) Oncolytic virus encoding pd-1 binding agents and uses of the same
JP6378200B2 (ja) 分裂促進因子活性化タンパク質キナーゼ依存性組換えワクシニアウイルス(md−rvv)及びその使用
US9593347B2 (en) Identification of mutations in herpes simplex virus envelope glycoproteins that enable or enhance vector retargeting to novel non-HSV receptors
CN113347993A (zh) 突变牛痘病毒及其用途
EP3082834B1 (en) Stem cell delivered oncolytic herpes simplex virus and methods for treating brain tumors
CN111606999B (zh) 兼具激活免疫共刺激信号通路和阻断免疫检查点的复制型溶瘤腺病毒及其应用
JP2018512115A (ja) 糖タンパク質h融合により再標的化されたヘルペスウイルス
CN109563489A (zh) 具有经修饰的糖蛋白d的疱疹病毒
CN110536699A (zh) 被动抗体依赖性细胞介导的活化
JP7429046B2 (ja) 腫脹発生抑制型腫瘍溶解性ウイルス
KR102418528B1 (ko) 다중 표적화 재조합 헤르페스 심플렉스 바이러스 및 그 용도
US20220389085A1 (en) Tumor-targeting protein or fragment thereof, antibody binding thereto and use thereof
CN109563490A (zh) 具有经修饰的糖蛋白b的疱疹病毒
AU2020276121A1 (en) DNA construct for diagnosing and treating cancer
WO2002092816A1 (fr) Vecteur de replication a expression specifique en fonction de la cellule
US20120213742A1 (en) Virus growing in hypoxic cell or virus vector expressing gene therein
US7785870B2 (en) Cell-specific expression/replication vector
CN110734494A (zh) 抗tspan8单克隆抗体及其用途
CN117025674A (zh) 一种重组溶瘤病毒及制备方法与应用
ES2358188T3 (es) Vector de expresión/replicación específico para células.
Stanbridge et al. 160. Innate Immune Responses to Viral Vectors Are Modulated by Complement Inhibitors in an Ex Vivo Model Using Whole Human Blood

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511025

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3095427

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019244150

Country of ref document: AU

Date of ref document: 20190328

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207030924

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019777039

Country of ref document: EP

Effective date: 20201030