WO2019188973A1 - Composition, heat dissipation member, electronic device and method for producing composition - Google Patents

Composition, heat dissipation member, electronic device and method for producing composition Download PDF

Info

Publication number
WO2019188973A1
WO2019188973A1 PCT/JP2019/012493 JP2019012493W WO2019188973A1 WO 2019188973 A1 WO2019188973 A1 WO 2019188973A1 JP 2019012493 W JP2019012493 W JP 2019012493W WO 2019188973 A1 WO2019188973 A1 WO 2019188973A1
Authority
WO
WIPO (PCT)
Prior art keywords
diyl
filler
replaced
coupling agent
ring
Prior art date
Application number
PCT/JP2019/012493
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 滝沢
武 藤原
國信 隆史
研人 氏家
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2020510070A priority Critical patent/JPWO2019188973A1/en
Publication of WO2019188973A1 publication Critical patent/WO2019188973A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • Embodiments of the present invention relate to a composition, a heat dissipation member, an electronic device, and a method for manufacturing the composition.
  • thermo conductivity material heat dissipation member
  • metal materials such as metals and inorganic materials such as metal oxides
  • these inorganic materials have problems in workability and ease of cracking and are useful as heat dissipation materials. There is no such thing.
  • Patent Document 1 discloses a phenol resin molding material containing a phenol resin and boron nitride at a predetermined ratio.
  • the molded body (heat radiating member) obtained by mixing a conventional resin and an inorganic material as described in Patent Document 1 tends to have insufficient thermal conductivity, and further higher thermal conductivity. Is required.
  • the heat radiating member is required to have high heat dissipation and high reliability. Specifically, a predetermined effect even at high temperatures. Therefore, heat resistance is required for high reliability.
  • One embodiment of the present invention provides a heat dissipating member excellent in balance between high thermal conductivity and high heat resistance, and a composition capable of forming the heat dissipating member.
  • a configuration example of the present invention is as follows.
  • composition according to [1] or [2], wherein the polymer is a polymer having at least one of structures represented by formulas (1) and (2).
  • alkylene having 1 to 10 carbon atoms at least one hydrogen may be replaced by —CH 3 or hydroxy, Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, bi
  • Ring A is a group in which at least two hydrogens are removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene;
  • at least one —CH ⁇ may be replaced by —N ⁇
  • at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms.
  • At least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—. May be replaced.
  • At least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—.
  • R 2 and R 4 are each independently a single bond or alkylene having 1 to 5 carbon atoms, In the alkylene, at least one —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, or —OCO—, and at least one hydrogen is —CH 3 or — May be replaced by OH;
  • R 3 is independently a single bond, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene, Cyclohexylene, cyclohexenylene, phenylene,
  • At least one —CH ⁇ may be replaced by —N ⁇ , and the at least one hydrogen is hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons. may be replaced, at least one -CH in halogenated alkyl alkyl or C 1 -C 10 carbon number 1-10 2 -, -O -, - CO , It may be replaced by -COO-, or -OCO-. ]
  • R 1 is independently alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, or naphthalene-2,6-diyl; Ring A is independently a group obtained by removing at least two hydrogens from benzene or naphthalene.
  • Ring B is independently a group obtained by removing at least three hydrogens from benzene or naphthalene
  • R 3 is independently a single bond, cyclohexylene, phenylene, naphthalene-2,6-diyl, or 1,1′-biphenyl-4,4′diyl.
  • composition according to any one of [1] to [7], wherein the filler is an inorganic filler selected from oxides, nitrides, carbides, and carbon materials.
  • the filler is at least one selected from alumina, silica, titania, zirconia, cordierite, boron nitride, boron carbide, boron nitride carbon, graphite, carbon fiber, carbon nanotube, and graphene.
  • composition according to any one of [1] to [11], which is for a heat dissipation member is for a heat dissipation member.
  • a heat radiation member obtained by curing the composition according to any one of [1] to [12].
  • a method for producing a composition comprising: composite A1 obtained in step a; and step c1 in which a polymer containing a hydroxy-containing ring is mixed.
  • thermoelectric member that is excellent in balance between high thermal conductivity and high heat resistance. Furthermore, it is possible to provide a heat dissipating member that is excellent in chemical stability, hardness, mechanical strength and the like.
  • FIG. 1 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 1.
  • FIG. FIG. 2 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Example 2.
  • FIG. 3 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Example 3.
  • 4 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Example 4.
  • FIG. 5 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 5.
  • FIG. 6 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 6.
  • FIG. 7 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 7.
  • FIG. 8 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Comparative Example 1.
  • FIG. 9 is a graph showing the thermal expansion behavior of the heat dissipation member manufactured in Comparative Example 2.
  • FIG. 10 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Comparative Example 3.
  • FIG. 11 is a graph showing the thermal expansion behavior of the heat dissipation member manufactured in Comparative Example 4.
  • FIG. 12 is a graph showing the thermal expansion behavior of the heat dissipation member manufactured in Comparative Example 5.
  • FIG. 13 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Comparative Example 6.
  • FIG. 14 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Reference Example 1.
  • compositions according to an embodiment of the present invention include a composite material A1 in which a coupling agent A is bonded to a first filler, a polymer including a ring having hydroxy, including. Since the present composition is characterized by including a composite material in which a filler and a coupling agent or the like are bonded in advance, the composition does not include such a composite material, and the filler and the coupling agent are simply mixed. The effects described above are different from those of the composition prepared in (1).
  • the fillers are coupled with a coupling agent and a polymer (herein, the coupling agent and the polymer are reacted with a reactive group (eg, oxiranyl or hydroxy).
  • a reactive group eg, oxiranyl or hydroxy
  • a heat dissipation member including a complex three-dimensionally bonded via a coupling agent and a polymer and / or a reactive compound is considered to exhibit high thermal conductivity not only in the horizontal direction but also in the thickness direction.
  • the present composition preferably does not have a highly polar amino or amide from the viewpoint that a heat-absorbing member with low hygroscopicity can be easily obtained.
  • a raw material having no amino or amide may be used as a raw material to be used, or amino or amide may be eliminated by curing or the like when forming a heat dissipation member.
  • the composite material B1 in which the coupling agent B is bound to the second filler, the second filler is bound to one end of the coupling agent B, and the reactive compound is bound to the other end It is also preferable to further include at least one selected from the composite material B2.
  • the heat dissipation includes a composite in which the first filler and the second filler are bonded via a coupling agent, a reactive compound, and / or a polymer. A member can be obtained. In such a composite, since the fillers are directly bonded to each other, it is considered that the heat dissipation member including the composite exhibits high thermal conductivity.
  • ⁇ Filler> It does not restrict
  • the first and second fillers may be different fillers, but for the sake of clarity, only the “first” and “second” are attached, and therefore the same filler may be used.
  • Examples of the filler include alumina, magnesia, beryllia, silica, titania, zirconia, zinc oxide, cordierite, copper oxide, cerium oxide, yttrium oxide, tin oxide, holmium oxide, bismuth oxide, cobalt oxide, and calcium oxide.
  • nitrides such as boron nitride, aluminum nitride, silicon nitride, boron nitride carbon; carbides such as boron carbide and silicon carbide; carbon materials such as diamond, graphite, carbon fiber, carbon nanotube, graphene; magnesium hydroxide, hydroxide Hydroxides such as aluminum; metals such as silicon, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium, tungsten, molybdenum, and stainless steel; inorganic fibers such as glass fibers and carbon fibers, and cloths thereof ; Polyvinylformer , Polyvinyl butyral, polyesters, polyamides, organic fillers, and the like, such as fibers or particles made of polyimide.
  • an inorganic filler selected from oxides, nitrides, carbides, and carbon materials is preferable from the viewpoint that a heat radiating member having more excellent thermal conductivity can be easily obtained.
  • the filler includes, for example, alumina, silica, titania, zirconia, cordierite, boron nitride, boron carbide, boron nitride carbon, graphite, carbon, in terms of thermal conductivity, availability, and coupling agent coupling. Fibers, carbon nanotubes, and graphene are preferred. Moreover, when these fillers are used, it is possible to easily obtain a heat radiating member having a high thermal conductivity and a very low or negative thermal expansion coefficient.
  • This composition preferably contains a highly thermally conductive inorganic filler.
  • the high thermal conductivity inorganic filler include boron nitride, aluminum nitride, silicon nitride, boron nitride carbon, boron carbide, silicon carbide, diamond, graphite, carbon fiber, carbon nanotube, beryllia, magnesia, alumina, and the like.
  • first and second fillers boron nitride, boron carbide, boron nitride carbon, graphite, carbon fiber, carbon nanotube, and graphene are preferable.
  • hexagonal boron nitride (h-BN) and graphite are preferable because the thermal conductivity in the plane direction is very high.
  • h-BN has a low dielectric constant, It is preferable because of its high insulation.
  • a plate-like filler such as h-BN or graphite because the plate-like structure can be oriented along a mold or the like during molding or curing.
  • the type, shape, size, and the like of the filler can be appropriately selected according to the purpose.
  • Examples of the shape of the filler include a plate (flat) shape, a spherical shape, an amorphous shape, a fibrous shape, a rod shape, and a cylindrical shape. .
  • the average particle size of the filler is preferably from 0.1 to 500 ⁇ m, more preferably from 1 to 200 ⁇ m, from the viewpoint that a heat radiating member excellent in thermal conductivity can be easily obtained.
  • the average particle diameter in this specification is a median diameter based on the particle size distribution measurement by a laser diffraction / scattering method.
  • the average particle diameter refers to the average value of the length of the long side when the filler shape is a plate shape, and in the case of a fiber shape or a rod shape, the average value of the fiber length or the length of the rod. That means.
  • the content of the filler in the composition is preferably 50 to 98% by weight, more preferably 60 to 97, from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. % By weight, particularly preferably 70 to 95% by weight.
  • the present composition in which the filler content is in the above range is organic such as a coupling agent, a polymer, and a reactive compound between fillers. More specifically, it can be said that the composition has a component, and more specifically, the organic component connects the fillers.
  • the usage amount of the composite material A1, the composite material B1, and the composite material B2 is preferably such an amount that the filler content falls within the above range.
  • the coupling agent (coupling agent A or B) used in the present composition is a compound having at least two reactive groups and capable of binding to a filler.
  • the coupling agent is preferably a compound capable of reacting with hydroxy.
  • Coupling agents A and B may be different coupling agents, but for the sake of clarity, only “A”, “B”, etc. are attached, so that the same coupling agent may be used. Good.
  • the coupling agent is not particularly limited, and known coupling agents such as a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent can be used. Among these, a silane coupling agent is used. preferable.
  • the coupling agent used in the present composition binds to the filler, it preferably contains a hydrolyzable group such as alkoxy capable of binding. Further, the coupling agent used in the present composition preferably reacts with hydroxy, and further preferably does not react with hydroxy to form a highly polar amide bond or urethane bond, so oxiranyl or oxetanyl, particularly It is preferred to have oxiranyl.
  • the coupling agent used in the present composition preferably does not have amino and amide from the viewpoint that a heat radiating member having lower hygroscopicity can be easily obtained.
  • Examples of the coupling agent having oxiranyl or oxetanyl include Silaace (trade names) S510 and S530 manufactured by JNC Corporation.
  • the amount of coupling agent bonded to 100 parts by weight of the filler is preferably 1 to 30 parts by weight, more preferably 2 parts, from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. -25 parts by weight, more preferably 3-20 parts by weight.
  • the composition includes a polymer comprising a ring having a hydroxy.
  • a polymer comprising a ring having a hydroxy.
  • the hydroxy may be directly bonded to the ring or may be bonded via a predetermined linking group, but the above effect is more exerted, and a heat radiating member having particularly excellent thermal conductivity can be easily obtained. From the viewpoint of being able to do so, it is preferable that it is directly bonded to the ring.
  • the ring is preferably an aromatic ring (including a heteroaromatic ring) from the viewpoint that the above-described effect is more exhibited and a heat dissipation member that is particularly excellent in heat resistance can be easily obtained.
  • the polymer is particularly preferably a polymer having hydroxy (phenolic hydroxy) bonded to an aromatic ring in the side chain.
  • the polymer in this specification refers to the compound which has 2 or more of repeating units (for example, the structure repeated m pieces in Formula (1)). In the present composition, one type of polymer may be used, or two or more types of polymers may be used.
  • the polymer is not particularly limited as long as it includes a ring having a hydroxy group.
  • the polymer may include a polymer including both the structure represented by Formula (1) and the structure represented by Formula (2), or may include a polymer including either one of them.
  • the content of the structure represented by the formulas (1) and (2) in the polymer is 100% by weight of the polymer in terms of easily obtaining a heat radiating member having better thermal conductivity and heat resistance. On the other hand, it is preferably 5 to 100% by weight, more preferably 10 to 100% by weight.
  • m is an average value of 2 to 100, and preferably an average value of 4 to 80.
  • n is independently an average value of 1 or more, preferably 1.
  • the substitution position of hydroxy bonded to ring A is not particularly limited. For example, when n is 1, the hydroxy substitution position for CH bonded to ring A is preferably ortho or para, and more preferably para.
  • the “average value of m” refers to an average value of a portion corresponding to m in a case where the polymer may exist with a certain distribution.
  • N is independently” means that when m is 2 or more, there are two or more n in formula (1). In this case, two or more n may be the same or different. Means good. The same description in this specification shows the same meaning.
  • groups represented by these codes may be the same or different. Good.
  • R 1 is independently alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2 .2] oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene,
  • alkylene having 1 to 10 carbon atoms at least one hydrogen may be replaced by —CH 3 or hydroxy, Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, bicyclo [3.1.0] hex In —3,6-diyl and 4,4
  • At least one means “at least one selected without distinction”, but usually a structure that is difficult to adopt based on common sense in this field, for example, —O— in which oxygen and oxygen are adjacent to each other. It is preferable not to contain O-.
  • R 1 is independently preferably an alkylene, cyclohexylene, or cyclohexenylene having 1 to 10 carbon atoms from the standpoint that a heat dissipation member having excellent flexibility can be easily obtained.
  • R 1 is independently preferably phenylene or naphthalene-2,6-diyl from the standpoint that an excellent heat radiating member can be easily obtained.
  • ring A is a group obtained by removing at least two hydrogens from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene, In these groups, at least one —CH ⁇ may be replaced by —N ⁇ , and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms.
  • the ring A is preferably independently a group in which at least two hydrogens are removed from benzene or naphthalene, from the viewpoint that a heat radiating member having higher heat resistance can be easily obtained. More preferably it is a group excluding at least two, preferably two hydrogens.
  • a polymer having a structure represented by the formula (1) can be synthesized by a conventionally known method.
  • a compound having a polymerizable group such as vinyl and a ring having hydroxy such as hydroxyphenyl, Specifically, it can be synthesized using vinylphenol or the like.
  • m is an average value of 2 to 100, and preferably an average value of 4 to 80.
  • n is independently 1 or more on an average value, preferably 1.
  • Ring B is independently a group in which at least three hydrogens have been removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene, In these groups, at least one —CH ⁇ may be replaced by —N ⁇ , and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms.
  • the ring B is preferably a group obtained by removing at least three hydrogens from benzene or naphthalene independently from the viewpoint that a heat radiating member having more excellent heat resistance can be easily obtained. More preferred is a group excluding at least three, preferably three hydrogens.
  • R 2 and R 4 are each independently a single bond or alkylene having 1 to 5 carbon atoms, In the alkylene, at least one —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, or —OCO—, and at least one hydrogen is —CH 3 or — It may be replaced with OH. Increasing the number of carbon atoms in the alkylene makes it easier to obtain a heat-dissipating member with excellent flexibility, while the thermal conductivity tends to decrease. Therefore, R 2 and R 4 are each independently a single bond or an alkylene having 1 to 5 carbon atoms. Are preferably combined appropriately.
  • R 3 is independently a single bond, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene, Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1, In 4-diyl, bicyclo [3.1.0] hex-3,6-diyl, and 4,4 ′-(9-fluoren
  • At least one —CH ⁇ may be replaced by —N ⁇ , and the at least one hydrogen is hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons. may be replaced, at least one -CH in halogenated alkyl alkyl or C 1 -C 10 carbon number 1-10 2 -, -O -, - CO , It may be replaced by -COO-, or -OCO-.
  • R 3 is independently a single bond, cyclohexylene, phenylene, naphthalene-2,6-diyl, or 1,1′-biphenyl-4,4. 'Diyl is preferable, and a single bond, phenylene, or naphthalene-2,6-diyl is more preferable.
  • a polymer containing a structure represented by the formula (2) can be synthesized by a conventionally known method. For example, it is synthesized by reacting a cyclic compound having a hydroxy such as phenol or cresol with formaldehyde. can do.
  • the polymer may have a structure derived from a monomer (polymerizable compound) that does not include a hydroxy-containing ring.
  • the monomer that does not contain a ring having hydroxy may be a monofunctional compound or a bifunctional or higher compound.
  • (meth) acrylic compounds such as (meth) acrylic acid alkyl esters, ethylene, propylene, styrene, acetic acid And vinyl compounds such as vinyl.
  • the polymer contains a structure derived from a monomer that does not contain a ring having hydroxy, it does not contain a ring having hydroxy in the polymer from the viewpoint of easily obtaining a heat dissipation member that is superior in heat resistance.
  • the content of the monomer-derived structure is preferably 1 to 95% by weight, more preferably 5 to 80% by weight, based on 100% by weight of the polymer.
  • a polymer having a structure derived from a monomer that does not contain a ring having a hydroxy group can be synthesized by a conventionally known method, for example, a compound that induces a structure represented by the formula (1) or (2) such as vinylphenol is polymerized.
  • polymerization may be performed using a monomer that does not contain a ring having hydroxy, and after synthesizing a compound having a structure represented by formula (1) or (2), the compound and a ring having hydroxy are formed. You may superpose
  • examples of the polymer having a structure represented by the formula (1) include polyvinylphenol resins (such as Maruka Linker series manufactured by Maruzen Petrochemical Co., Ltd.).
  • examples of the polymer having the structure represented by the formula (2) include conventionally known phenol resins such as phenol novolac resins, alkylphenol novolac resins, resol resins, and cresol novolac resins.
  • the content of the polymer in the composition is preferably 0.1 to 49% by weight, more preferably from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. Is 0.5 to 30% by weight.
  • the reactive compound is not particularly limited as long as it is a polymerizable compound that can be combined with the coupling agent and can form the composite material B2. 1 type may be sufficient as the reactive compound used for this composition, and 2 or more types may be sufficient as it.
  • the reactive compound used as a raw material for the composite material B2 is preferably a bifunctional or higher functional compound from the viewpoint of easily obtaining a heat radiating member that is superior in thermal conductivity. It may be the above.
  • the reactive compound is preferably a compound having a functional group at both ends of the main chain because it can form a linear bond, and the coupling agent preferably contains oxiranyl or oxetanyl. From the standpoint of being able to easily react with the group, a reactive compound having hydroxy is more preferable.
  • a compound represented by the formula (3) or (4) (hereinafter also referred to as “compound (3)” and “compound (4)”) is preferable.
  • the compound (3) means a compound represented by the formula (3), and may mean at least one compound represented by the formula (3).
  • compounds represented by other formulas have the same notation.
  • R 1 and R 2 are each independently hydrogen, halogen, or alkyl having 1 to 3 carbon atoms.
  • m is an integer of 2 to 4
  • n is an integer of 1 to 3
  • p is an integer of 2 to 4
  • q is an integer of 1 to 3
  • A represents a single bond, alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2, 7-diyl, dodecahydrofluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′ -(9-fluorenylidene) diphenylene, adamantanediyl, biadamantanediyl, phenanthrene-2,7-diyl, 9,10-dihydrophenanthrene-2,7-diyl, or tetradecahydrophenanthrene-2,7-diyl;
  • alkylene having 1 to 10 carbon
  • Adamantanediyl is produced by removing one hydrogen atom from any two ring carbon atoms of adamantane such as adamantane-1,2-diyl, adamantane-1,3-diyl, and the like. Refers to a divalent group.
  • biadamantanediyl refers to a divalent group generated by removing one hydrogen atom from any two ring carbon atoms of biadamantane.
  • a in formula (3) is a single bond, alkylene having 1 to 10 carbon atoms, phenylene, or at least one compound because the compound has desired physical properties and is easy to synthesize and handle. Preference is given to phenylene in which hydrogen is replaced by halogen or methyl.
  • phenylene in which hydrogen is replaced by halogen or methyl.
  • A contains alkylene, reactivity is reduced by lowering the melting point of the obtained compound. Can be improved.
  • Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 22 carbon atoms, In the alkylene, at least one —CH 2 — may be replaced with —O—, —S—, —CO—, —COO—, or —OCO—, and at least one hydrogen is replaced with a halogen. Also good.
  • Desirable Z 1 and Z 2 are each independently a single bond, — (CH 2 ) a —, —O—, — from the viewpoint of having a desired physical property, being a compound that is easy to synthesize and easy to handle.
  • a is an integer of 1 to 20.
  • Z 1 and Z 2 contain a bond such as alkylene or —O—, the reactivity can be improved by lowering the melting point of the resulting compound.
  • Particularly preferred examples of compound (3) include compounds (3-1) to (3-11).
  • R 1 , R 2 , m, n, p, q, Z 1 , and Z 2 in formulas (3-1) to (3-11) are each independently synonymous with formula (3), and R 3 to Each R 63 is independently hydrogen, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons.
  • — (C (R 3 ) (R 4 )) m — represents an alkylene having 1 to 10 carbon atoms or a halogenated alkylene having 1 to 10 carbon atoms.
  • x is an integer of 2 or more.
  • ring C is a group in which at least two hydrogens have been removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, 9,9-diphenylfluorene, adamantane, and biadamantane.
  • At least one —CH 2 — may be replaced with —O—
  • at least one —CH ⁇ may be replaced with —N ⁇
  • at least one hydrogen may be halogen, carbon It may be substituted with an alkyl having 1 to 3 or an alkyl halide having 1 to 3 carbon atoms
  • at least one —CH 2 — in the alkyl having 1 to 3 carbon atoms or the alkyl halide having 1 to 3 carbon atoms may be substituted. May be replaced by —O—, —CO—, —COO—, or —OCO—.
  • the ring C in the formula (4) is a ring selected from benzene, naphthalene, 9,9-diphenylfluorene, or adamantane from the viewpoint that the compound has desired physical properties and is easy to synthesize and handle. From the above, a group in which at least two hydrogen atoms are removed is preferable.
  • Particularly preferred examples of the compound (4) include compounds (4-1) to (4-10).
  • each x is independently synonymous with the formula (4).
  • hydroxy is described only in the lower right ring portion, but the position of hydroxy is not limited to this portion, and may be bonded to the lower left ring or the like. It may be bonded to a plurality of rings and is optional.
  • formulas (4-2) to (4-6) and formula (4-10) are independently synonymous with the formula (4).
  • a liquid crystalline reactive compound may be used from the viewpoint that a heat radiating member having better thermal conductivity can be obtained.
  • a liquid crystal compound represented by the formula (5) is preferable.
  • the compound (5) has a liquid crystal skeleton and two or more hydroxy groups, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (5) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
  • the “liquid crystalline compound” refers to a compound that exhibits a liquid crystal phase such as a nematic phase or a smectic phase.
  • the physical properties such as the liquid crystal phase expression region can be arbitrarily adjusted, and a compound having the desired physical properties can be obtained.
  • s is an integer of 0 to 4
  • t is an integer of 1 or more
  • u is an integer of 1 or more.
  • each Y is independently a single bond or alkylene having 1 to 20 carbon atoms, preferably alkylene having 1 to 10 carbon atoms.
  • alkylene groups having 1 to 20 carbon atoms at least one —CH 2 — not bonded to hydroxy is replaced with —O—, —S—, —CO—, —COO—, or —OCO—.
  • at least one hydrogen may be replaced with a halogen.
  • Y is a linear alkylene, it tends to be a compound having a wide liquid crystal phase temperature range and a low viscosity.
  • Y is branched alkylene, it tends to be a compound having good compatibility with other liquid crystal compounds.
  • each ring D is independently a ring selected from cyclohexane, cyclohexene, benzene, naphthalene, tetrahydronaphthalene, fluorene, bicyclo [2.2.2] octane, and bicyclo [3.1.0] hexane.
  • At least one —CH 2 — may be replaced with —O—
  • at least one —CH ⁇ may be replaced with —N ⁇
  • at least one hydrogen is cyano
  • It may be replaced by halogen, alkyl having 1 to 10 carbon atoms, or alkyl halide having 1 to 10 carbon atoms, and in the alkyl (including alkyl in the halogenated alkyl), at least one —CH 2 — is It may be replaced by —O—, —CO—, —COO—, —OCO—, —CH ⁇ CH—, or —C ⁇ C—.
  • the rings D When at least one of the rings D is 1,4-phenylene, it tends to be a compound having a large orientational order parameter and magnetization anisotropy. When at least two of the rings D are 1,4-phenylene, the liquid crystal phase has a wide temperature range and tends to be a compound having a high clearing point. When at least one of the rings D is a group in which at least one hydrogen on the 1,4-phenylene ring is substituted with cyano, halogen, —CF 3 , or —OCF 3 , the compound has a high dielectric anisotropy. There is a tendency. Further, when at least one of the rings D is 1,4-cyclohexylene, it tends to be a compound having a high clearing point and a low viscosity.
  • Preferred ring D includes 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl, Naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
  • More preferable ring D is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene. 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like.
  • Particularly preferred rings D are 1,4-cyclohexylene and 1,4-phenylene.
  • each W is independently a single bond or alkylene having 1 to 22 carbon atoms
  • at least one —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, —CH ⁇ N—.
  • —N ⁇ CH—, —N ⁇ N—, —N (O) ⁇ N—, or —C ⁇ C— at least one hydrogen may be replaced with a halogen.
  • W is a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH—, —CF ⁇ CF—, or —
  • (CH 2 ) 4 — in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH—, or — (CH 2 ) 4 —. In the case, it tends to be a compound having a low viscosity.
  • the liquid crystal phase tends to have a wide temperature range.
  • the melting point of the compound tends to decrease.
  • Preferred W is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, — OCF 2 —, —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — ( CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH— and the like.
  • W is a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH—, —C ⁇ C— and the like can be mentioned.
  • Particularly preferred W is a single bond, — (CH 2 ) 2 —, —COO—, or —OCO—.
  • a 6-membered ring and a condensed ring including a 6-membered ring are regarded as a ring, and for example, a 3-membered ring, a 4-membered ring, and a 5-membered ring alone are not regarded as a ring.
  • a condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
  • Compound (5) may be optically active or optically inactive.
  • the compound (5) may have an asymmetric carbon or an axial asymmetry.
  • the configuration of the asymmetric carbon may be R or S.
  • the asymmetric carbon may be located in any of rings D, W, and Y.
  • it has asymmetric carbon, it tends to be a compound having excellent compatibility with other components.
  • the compound (5) has axial asymmetry, it tends to be a compound having a large twist-inducing force.
  • the light application property may be any.
  • the reactive compound so that the amount of the reactive compound is 1 mol or slightly more than 1 mol of the target to which the compound is bonded (eg, coupling agent B in the composite material B2).
  • the content of the coupling agent and the reactive compound in the composition is preferably 1.1 to 50% by weight from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. %, More preferably 2 to 30% by weight.
  • This composition is an organic compound not bonded to a curing accelerator and filler (however, it is a compound other than a polymer containing a ring having a hydroxy), and polymerization initiation, as long as the effects of the present invention are not impaired.
  • Agents, solvents, stabilizers, organic fillers and the like may be included. Each of these other components may be used alone or in combination of two or more.
  • the coupling agent is added to a third filler different from the first filler and the second filler, which are not bound to the coupling agent, as long as the effects of the present invention are not impaired. Even if a composite material C1 in which C is bonded, a composite material C2 in which a third filler different from the first and second fillers is bonded to one end of the coupling agent C, and a reactive compound is bonded to the other end may be used. Good.
  • Each of these fillers, composite material C1, and composite material C2 may be used alone or in combination of two or more. Examples of the filler and the third filler include fillers similar to the fillers mentioned as the first and second fillers.
  • anisotropy may occur in the physical properties of the heat dissipation member.
  • the orientation of the filler is relaxed and the anisotropy is reduced. It tends to be easier.
  • the composition is cured to promote the reaction between oxiranyl or oxetanyl and hydroxy. It is preferable to use an accelerator.
  • curing accelerators include conventionally known compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate.
  • Imidazole compounds such as epoxy-imidazole adducts or derivatives thereof, phosphorus compounds such as triphenylphosphine, tetraphenylphosphonium-tetraphenylborate, triphenylphosphonium-triphenylborane, diphenylphosphinylhydroquinone, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] -undecene-7,1,5-diaza-bicyclo [4.3.0] -nonene-5 or tertiary amine salts thereof.
  • phosphorus compounds such as triphenylphosphine, tetraphenylphosphonium-tetraphenylborate, triphenylphosphonium-triphenylborane, diphenylphosphinylhydroquinone, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] -unde
  • Organic compounds not bound to filler examples include a polymerizable compound, a non-polymerizable compound, a polymer compound, and the like.
  • a polymerizable compound hereinafter also referred to as “unbonded polymerizable compound”
  • a liquid crystal compound, a polymer compound and the like are preferable.
  • the organic compound that is not bonded to the filler refers to an organic component that is not bonded to the filler when blended in the composition, and may be bonded to the filler in the heat dissipation member. .
  • the void ratio in the heat dissipation member may increase.
  • the void can be reduced, and thermal conductivity and water vapor can be reduced. There exists a tendency which can obtain easily the heat radiating member which is excellent by interruption
  • the amount of the organic compound not bonded to the filler is as follows. First, when a heat radiating member is prepared without using the compound, and there is a void in the obtained heat radiating member, the amount of the void is measured, It is desirable that the amount be filled.
  • the unbonded polymerizable compound is not particularly limited, and may be the same compound as the compound listed in the column of the reactive compound forming the composite material B2, and has liquid crystallinity. Or a compound having liquid crystallinity.
  • the unbonded polymerizable compound may be monofunctional or bifunctional or more.
  • the unbonded polymerizable compound is preferably a compound that does not reduce the moldability and mechanical strength of the composition, and examples of the compound include an epoxy resin.
  • Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, and itaconic acid derivatives.
  • Non-polymerizable liquid crystal compound is not particularly limited, but is a compound described in a list of liquid crystal compounds (LiqCryst, LCI Publisher GmbH, Hamburg, Germany), etc. Is mentioned. Among these, the compound which has the characteristic which does not flow in the temperature range where a heat radiating member is used is preferable.
  • a composite material of the liquid crystal compound and a polymer of a reactive compound forming the composite material B2 can be obtained.
  • a non-polymerizable liquid crystal compound can be present in the polymer network, such as a polymer-dispersed liquid crystal.
  • the non-polymerizable liquid crystal compound after curing the composition, the non-polymerizable liquid crystal compound may be injected into the generated void in a temperature range showing an isotropic phase.
  • the present composition containing a non-polymerizable liquid crystal compound may be polymerized.
  • the polymer compound is preferably a polymer compound that does not react with the composite material, and specific examples thereof include polyolefin resins, polyvinyl resins, polyamide resins, and polyitaconic acid resins.
  • the polymerization initiator may be appropriately selected according to the type of the unbonded polymerizable compound, and specific examples thereof include a photo radical polymerization initiator, a photo cationic polymerization initiator, and a thermal polymerization initiator.
  • a thermal polymerization initiator is preferred.
  • the thermal polymerization initiator is preferably benzoyl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxypivalate, di-t-butyl peroxide (DTBP).
  • T-butylperoxydiisobutyrate T-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile (ACN) and the like.
  • MAIB dimethyl 2,2′-azobisisobutyrate
  • AIBN azobisisobutyronitrile
  • ACN azobiscyclohexanecarbonitrile
  • the polymerization may be performed in a solvent or without a solvent.
  • the present composition may contain a solvent.
  • the solvent is preferably benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, ⁇ -butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, cyclohexane, methylcyclohexane, cyclopenta Non-cyclohexanone, propylene glycol methyl ether acetate (PGMEA), etc. are mentioned.
  • the amount of solvent used is not particularly limited, and may be determined for each individual case in consideration of polymerization efficiency, solvent cost, energy cost, and the like.
  • the composition tends to be easier to handle.
  • known stabilizers can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol, and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
  • the method for producing the present composition includes a step a in which a first filler and a coupling agent A are combined to obtain a composite material A1, and a composite material A1 obtained in step a. And c1 of mixing a polymer containing a ring having hydroxy.
  • the method includes the step a of combining the first filler and the coupling agent A to obtain the composite material A1, A step b1 of obtaining a composite material B1 by bonding the second filler and the coupling agent B, or By binding the second filler and one end of the coupling agent B and then binding the other end of the coupling agent B to the reactive compound, or binding one end of the coupling agent B and the reactive compound And then b2 to obtain the composite material B2 by bonding the other end of the coupling agent B to the second filler, Including the composite material A1 obtained in the step a, the composite material B1 obtained in the step b1 or the composite material B2 obtained in the step b2, and the step c2 of mixing a polymer containing a hydroxy-containing ring. Good.
  • the following method is preferable.
  • the filler and the coupling agent are mixed in the presence of a solvent, stirred using a stirrer or the like, and then dried. After the solvent is dried, it is kept under a vacuum condition using a vacuum dryer or the like.
  • a purification step may be performed to release and remove the coupling agent adhering to solid content (not bound) by adding a solvent after the holding, sonication, centrifugation, etc. . This purification step may be performed a plurality of times. Further, the purified composite material may be dried using an oven or the like.
  • the solvent which can melt
  • the time for mixing and stirring the filler and the coupling agent is not particularly limited, and examples thereof include 1 minute to 24 hours.
  • the drying conditions are not particularly limited as long as the solvent to be used is dried, and may be appropriately set according to the solvent to be used.
  • the holding temperature at the time of holding under the vacuum condition is preferably 20 to 250 ° C., and the holding time is 1 minute to 24 hours.
  • the step of binding the coupling agent and the reactive compound The step of binding the coupling agent (including the coupling agent bound to the filler) and the reactive compound is not particularly limited, and a known method is used. Can do. In this step, when a coupling agent combined with a filler is used, a composite material B2 or the like can be obtained.
  • the following method is preferable.
  • the coupling agent and the reactive compound are mixed using an agate mortar or a mixer and then kneaded using a biaxial roll or the like. Thereafter, if necessary, separation and purification (removal of the reactive compound not bound to the coupling agent) is performed by sonication, centrifugation, or the like.
  • step c1 and c2 the amount of filler in the obtained heat radiating member is weighed so as to be in the above range, and in step c2, the mixing ratio of the first filler and the second filler is further in the following range. Weigh out and mix with agate mortar. Then, it mixes using a biaxial roll etc.
  • the mixing ratio of the first filler and the second filler may be determined according to the number of reactive groups serving as reaction points of each component so that a desired reaction occurs sufficiently. Is preferably in a weight ratio of 1: 0.01 to 1:30, more preferably 1: 0.1 to 1:10.
  • a heat radiating member according to an embodiment of the present invention (hereinafter also referred to as “the present heat radiating member”) is obtained by curing the present composition.
  • This heat radiating member is excellent in balance with high thermal conductivity and high heat resistance, and excellent in chemical stability, hardness, mechanical strength, and the like.
  • the mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, bending elastic modulus, impact strength, and the like.
  • This heat radiating member is suitable for a heat radiating substrate, a heat radiating plate (planar heat sink), a heat radiating sheet, a heat radiating film, a heat radiating coating film, a heat radiating adhesive, a heat radiating molded product, and the like.
  • the shape, size, thickness and the like of the heat radiating member are not particularly limited, and may be appropriately selected according to a desired application.
  • Examples of the shape of the heat radiating member include a plate-like body such as a sheet, a film, and a thin film, and a molded body (eg, a housing) according to a desired application.
  • the thickness of the heat radiating member is 2 ⁇ m or more, preferably 5 ⁇ m to 10 cm, more preferably 10 ⁇ m to 1 cm, and particularly preferably 20 ⁇ m to 1 mm. What is necessary is just to change thickness suitably according to a use.
  • the thermal conductivity of the heat dissipation member can be evaluated by the thermal conductivity in the thickness direction.
  • the thermal conductivity in the vertical direction of the heat radiating member is preferably 2.2 W / (m ⁇ K) or more, more preferably 5 W / (from the viewpoint that it has excellent thermal conductivity and can be suitably used for a heat radiating plate.
  • the thermal conductivity can be measured by the method described in Examples.
  • the heat resistance of the heat dissipating member can be evaluated by measuring a 5% weight loss temperature.
  • the 5% weight reduction temperature of the heat radiating member is preferably 280 ° C. or higher, more preferably 300 ° C. or higher, and particularly preferably, from the viewpoint that it has excellent heat resistance and can be suitably used for a heat radiating member for high power. 320 ° C. or higher.
  • the 5% weight loss temperature can be specifically measured by the method described in Examples.
  • the thermal expansion coefficient of the heat radiating member can be evaluated by the elongation ratio in the plane direction (approximately perpendicular to the film thickness direction) in the range of 50 to 200 ° C.
  • the thermal expansion coefficient of the heat dissipating member is preferably ⁇ 20 to 50 ppm / K, more preferably ⁇ 5 to 20 ppm / K from the viewpoint that it is difficult to thermally expand and can be suitably used for die attachment to a metal substrate that generates heat. K.
  • the coefficient of thermal expansion can be specifically measured by the method described in the examples.
  • the moisture absorption rate of the heat dissipating member is preferably 1.5% or less from the viewpoint that it has low hygroscopicity and can be suitably used as a substrate material in a package.
  • the moisture absorption rate can be specifically measured by the method described in Examples.
  • the heat radiating member can be obtained by curing the composition, and may be molded if necessary.
  • the curing method is not particularly limited and is not particularly limited as long as the present composition is cured.
  • Thermal curing is preferable.
  • the curing temperature is, for example, room temperature to 350 ° C., preferably room temperature to 250 ° C., more preferably 50 to 200 ° C.
  • the curing time is, for example, 5 seconds to 50 hours, preferably 1 minute to 30 hours. More preferably, it is 5 minutes to 20 hours.
  • the following method is preferable.
  • the composition is sandwiched between predetermined plates, heated and pressurized using a compression molding machine, and oriented / cured by compression molding. Further, post-curing is performed using an oven or the like. Examples of the temperature at the time of heating and the temperature of post-curing include the same temperatures as those at the time of curing, and the pressure at the time of pressurization is basically preferably higher, specifically, Is 1 to 300 MPa, more preferably 10 to 300 MPa.
  • the following method using the present composition containing a solvent is also preferable. After this composition containing a solvent is applied to a substrate or the like, the solvent is removed, and then polymerization is performed by light or heat. Then, it heats to suitable temperature and performs a post-process by thermosetting.
  • Examples of the coating method include spin coating, roll coating, caten coating, flow coating, printing, micro gravure coating, gravure coating, wire bar coating, dip coating, spray coating, and meniscus coating.
  • the solvent can be removed by drying, for example, by air drying at room temperature, drying in a hot plate or a drying furnace, or blowing hot air or hot air.
  • the conditions for removing the solvent are not particularly limited, and it may be dried until the solvent is almost removed and the fluidity of the coating film is lost.
  • the substrate examples include metal substrates such as copper, aluminum, and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride, and zinc oxide; glass substrates such as alkali glass, borosilicate glass, and flint glass; alumina, and nitride.
  • Inorganic insulating substrates such as aluminum; polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene Naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, tria Chill cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and resin substrate such as a norbornene resin.
  • the resin substrate may be an unstretched film, a uniaxially stretched film, or a biaxially stretched film.
  • the resin substrate may be subjected to surface treatment such as saponification treatment, corona treatment, or plasma treatment in advance.
  • the material used as the protective layer include polyvinyl alcohol.
  • an anchor coat layer may be provided in order to improve the adhesion between the protective layer and the substrate. As long as such an anchor coat layer is a layer that improves the adhesion between the protective layer and the substrate, it may be an inorganic or organic material layer.
  • An electronic apparatus is an electronic apparatus that includes the heat dissipating member and an electronic device having a heat generating part, and is disposed in the electronic device so that the heat dissipating member contacts the heat generating part. . According to such an electronic apparatus, heat generated in the electronic device can be efficiently radiated by the heat radiating member having high thermal conductivity.
  • Examples of the electronic device include a semiconductor element.
  • an insulated gate bipolar transistor (IGBT) that requires a more efficient heat dissipation mechanism due to high power among semiconductor elements is a suitable example.
  • An IGBT is one of semiconductor elements and is a bipolar transistor in which a MOSFET is incorporated in a gate portion, and is used for power control applications and the like.
  • Examples of the electronic device provided with the IGBT include an uninterruptible power supply, an AC motor variable voltage variable frequency control device, a railway vehicle control device, an electric transportation device such as a hybrid car and an electric car, and an IH cooker.
  • the resulting mixture was added to 45 mL of tetrahydrofuran, and after sufficient stirring, the insoluble matter was settled with a centrifuge (Hitachi Koki Co., Ltd., high-speed cooling centrifuge CR22N type, 4,000 rpm ⁇ 10 min ⁇ 25 ° C.).
  • the solution containing unreacted bisphenol A was removed by decantation (hereinafter also referred to as “cleaning step”). Then, operation similar to the above-mentioned washing
  • cleaning process was performed with respect to the obtained sediment except having used 45 mL of acetone instead of 45 mL of tetrahydrofuran. Further, the above-described washing process using tetrahydrofuran and acetone in order was repeated.
  • the composite material B was obtained by drying the sediment after a series of washing processes.
  • the composite B was particles in which Silaace S510 was bonded to the boron nitride particles, and bisphenol A was further bonded to the Silaace
  • Example 1 A composition was obtained by mixing 639 mg of the composite material A, 61 mg of Marcalinker S-2P, and 18 ⁇ L of a solution of 10 mg of the curing accelerator in 2 mL of acetone.
  • a compression molding machine (Imoto Seisakusho Co., Ltd.) in which the obtained composition was sandwiched between two stainless steel plates so that the thickness of the resulting heat dissipation member was about 600 ⁇ m, and the two plates were set at 170 ° C.
  • the pressure was increased to 30 MPa using IMC-19EC) and the heating state was continued for 10 minutes to perform alignment treatment and pre-curing.
  • the boron nitride particles are plate-like particles, when the composition spreads between the stainless steel plates, the surface direction of the particles and the stainless steel plate surface were oriented in parallel. After cooling, the sample removed from the two stainless steel plates was post-cured under vacuum conditions for 15 hours using a vacuum oven (manufactured by Yamato Scientific Co., Ltd., DP300) set at 170 ° C. to obtain a heat radiating member. It was.
  • Example 2 A composition and a heat radiating member were produced in the same manner as in Example 1 except that the amounts of the composite material A1 and Marcalinker S-2P used were changed to 588 mg of the composite material A1 and 112 mg of Marcalinker S-2P, respectively.
  • Example 3 A composition and a heat radiating member were produced in the same manner as in Example 2 except that Marcalinker CMM was used instead of Marcalinker S-2P.
  • Example 4 A composition was prepared in the same manner as in Example 2 except that SP1010 was used in place of Marcalinker S-2P as a raw material for the composition. Except for this, the composition obtained in the same manner as in Example 2 was cured to produce a heat dissipation member.
  • Example 5 The composition and heat dissipation member were the same as in Example 1 except that 439 mg of composite material A1, 247 mg of composite material B, and 14 mg of markalinker S-2P were used instead of 639 mg of composite material A1 and 61 mg of Marcalinker S-2P. Was made.
  • Example 6 The composition was the same as in Example 5 except that the usage amounts of the composite material A1, composite material B, and Marcalinker S-2P were changed to 528 mg of composite material A1, 86 mg of composite material B, and 86 mg of Marcalinker S-2P, respectively. The thing and the heat radiating member were produced.
  • Example 7 A composition and a heat dissipation member were produced in the same manner as in Example 1 except that 596 mg of composite material A1, 47 mg of marcalinker S-2P, and 57 mg of jER807 were used instead of 639 mg of composite material A and 61 mg of Marcalinker S-2P. did.
  • Example 1 A composition and a heat dissipation member were prepared in the same manner as in Example 1 except that 619 mg of boron nitride particles, 61 mg of Marcalinker S-2P, and 20 mg of Silaace S510 were used instead of 639 mg of Composite A1 and 61 mg of Marcalinker S-2P. Produced.
  • composition and a heat radiating member were produced in the same manner as in Example 4 except that 589 mg of boron nitride particles, 112 mg of SP1010, and 19 mg of Silaace S510 were used instead of 588 mg of the composite material A1 and 112 mg of SP1010.
  • composition and a heat radiating member were prepared in the same manner as in Example 1 except that instead of the composite material A1 639 mg and Marcalinker S-2P 61 mg, boron nitride particles 581 mg, Marcalinker S-2P 61 mg, and jER807 58 mg were used. did.
  • composition and a heat radiating member were produced in the same manner as in Example 1 except that boron nitride particles 581 mg, marcalinker S-2P 61 mg, and jER828 58 mg were used instead of composite material A1 639 mg and Marcalinker S-2P 61 mg. did.
  • Example 6 A composition was prepared in the same manner as in Example 1 except that the raw material of the composition was changed to 588 mg of composite material A2 and 112 mg of jER828, and the pre-curing temperature was 150 ° C. and the post-curing temperature was 150 ° C. The composition obtained in the same manner as in Example 1 was cured to produce a heat dissipation member.
  • the 5% weight loss temperature of the heat radiating members obtained in the examples and comparative examples is the same as the measurement of the organic content, and the heating temperature is 140 to 900 ° C. when the heat radiating member is heated to 900 ° C.
  • the weight decrease amount at 100% was taken as 100% by weight, and the temperature when the weight decreased by 5% by weight from the weight of the heat radiating member at 140 ° C. was measured. The results are shown in Table 2.
  • the thermal conductivity was measured in advance by the specific heat of the heat radiating member (measured with a DSC type high-sensitivity differential scanning calorimeter Thermo Plus EVO2 DSC-8231, manufactured by Rigaku Co., Ltd.) and the specific gravity (manufactured by Shinko Denshi Co., Ltd. And the heat diffusivity calculated by the ai-Phase Mobile 1u thermal diffusivity measuring device manufactured by I-Phase Co., Ltd. The thermal conductivity in the thickness direction was determined. The results are shown in Table 2.
  • Example 1 in which the composite material A1 is prepared using a filler and a coupling agent in advance is more heat conductive and heat resistant than Comparative Example 1 in which no composite material is formed. (5% weight loss temperature) improved.
  • the fillers are covalently bonded via a coupling agent and a polymer, so that heat is easily transmitted and heat resistance is improved, whereas in Comparative Example 1, the coupling agent, This is probably because the formation of the covalent bond via the polymer is only partial.
  • Example 4 has improved thermal conductivity and heat resistance compared to Comparative Example 2 in which no composite material was formed.
  • Example 7 has high heat conductivity and heat resistance compared with the comparative example 3 which does not use a coupling agent, and the comparative example 4 which does not form the composite material of a coupling agent and a filler.
  • Example 5 using the composite material A1, composite material B, and Marcalinker S-2P as materials, heat resistance, low hygroscopicity, and heat conduction were compared to Reference Example 1 using only the composite material A1 and composite material B. Both sexes are excellent.
  • Example 6 in which the ratio of Marcalinker S-2P was increased, although the moisture absorption rate was slightly increased, the heat resistance and thermal conductivity were improved as compared with Example 5.
  • Examples 1 to 7 all showed a 5% weight loss temperature of 315 ° C. or higher and a thermal conductivity of 8.5 W / m ⁇ K or higher, an amino coupling agent was used.
  • Comparative Example 6 prepared using the composite material A2 and the epoxy-based polymer resulted in inferior heat resistance, moisture absorption, and thermal conductivity as compared with the Examples.
  • fillers can be covalently bonded to each other through a coupling agent and a polymer using a composite material.
  • a polymer containing a coupling agent having oxiranyl and a ring having hydroxy is used. Is considered to be particularly effective in improving material properties.
  • the thermal expansion coefficients of Examples 1 to 7 are about 10 ppm / K from the negative thermal expansion coefficient, so that the difference in thermal expansion coefficient with other members is reduced.
  • a heat radiating member having an appropriate coefficient of thermal expansion can be produced according to the application.
  • the heat radiating member is a heat-resistant material having high heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

One embodiment of the present invention relates to a composition, a heat dissipation member, an electronic device, and a method for producing a composition; and the composition contains a composite material A1, which is obtained by binding a coupling agent A to a first filler, and a polymer that comprises a ring having a hydroxy group.

Description

組成物、放熱部材、電子機器、および組成物の製造方法Composition, heat dissipation member, electronic device, and method for producing composition
 本発明の一実施形態は、組成物、放熱部材、電子機器、および組成物の製造方法に関する。 Embodiments of the present invention relate to a composition, a heat dissipation member, an electronic device, and a method for manufacturing the composition.
 近年、ハイブリッド自動車や電気自動車などの電力制御用の半導体素子や、高速コンピューター用のCPUなどにおいて、内部の半導体の温度が高くなり過ぎないように、これらを構成する材料の高熱伝導化や発生した熱を効果的に外部に放出(放熱)させる能力が重要になっている。 In recent years, in semiconductor elements for power control, such as hybrid cars and electric cars, and CPUs for high-speed computers, the temperature of internal semiconductors has been increased and heat conduction has been increased so that the temperature of internal semiconductors does not become too high. The ability to effectively release (dissipate) heat to the outside has become important.
 前記放熱の方法の一例としては、発熱部位に高熱伝導性材料(放熱部材)を接触させて熱を外部に導き、放熱する方法が挙げられる。このような高熱伝導性材料として、金属などの金属材料や金属酸化物などの無機材料が挙げられるが、これらの無機材料は、加工性や割れ易さなどに問題があり、放熱材料として有用であるとはいえない。 As an example of the heat dissipation method, there is a method in which a high heat conductive material (heat dissipation member) is brought into contact with the heat generating portion to guide heat to the outside and dissipate heat. Examples of such high thermal conductivity materials include metal materials such as metals and inorganic materials such as metal oxides, but these inorganic materials have problems in workability and ease of cracking and are useful as heat dissipation materials. There is no such thing.
 これらの問題を解決するため、樹脂と無機材料とを混合し、高熱伝導化した放熱部材の開発が行われている。例えば、特許文献1では、フェノール樹脂と、窒化ホウ素とを所定の割合で含むフェノール樹脂成形材料が開示されている。 In order to solve these problems, a heat radiating member in which a resin and an inorganic material are mixed to achieve high thermal conductivity has been developed. For example, Patent Document 1 discloses a phenol resin molding material containing a phenol resin and boron nitride at a predetermined ratio.
特開2006-096858号公報JP 2006-096858 A
 しかしながら、前記特許文献1に記載されているような、従来の樹脂と無機材料とを混合して得られる成形体(放熱部材)は、熱伝導性が十分ではない傾向にあり、さらなる高熱伝導性が求められている。 However, the molded body (heat radiating member) obtained by mixing a conventional resin and an inorganic material as described in Patent Document 1 tends to have insufficient thermal conductivity, and further higher thermal conductivity. Is required.
 また、近年の、小型化、高集積化、ハイパワー化などにより、前記放熱部材には、高放熱性と共に、高信頼性などが求められており、具体的には、高温下でも所定の効果を奏する高信頼性のために耐熱性が求められている。 In addition, due to recent downsizing, higher integration, higher power, etc., the heat radiating member is required to have high heat dissipation and high reliability. Specifically, a predetermined effect even at high temperatures. Therefore, heat resistance is required for high reliability.
 本発明の一実施形態は、高熱伝導性および高耐熱性にバランスよく優れる放熱部材および該放熱部材を形成可能な組成物を提供する。 One embodiment of the present invention provides a heat dissipating member excellent in balance between high thermal conductivity and high heat resistance, and a composition capable of forming the heat dissipating member.
 本発明者らは、前記課題を解決するために鋭意検討した。その結果、下記構成例によれば、前記課題を解決できることを見出し、本発明を完成させた。
 本発明の構成例は以下のとおりである。
The present inventors diligently studied to solve the above problems. As a result, it has been found that the above-described problems can be solved according to the following configuration example, and the present invention has been completed.
A configuration example of the present invention is as follows.
 [1] 第1のフィラーにカップリング剤Aを結合させた複合材A1と、
 ヒドロキシを有する環を含む重合体と
を含む、組成物。
[1] A composite material A1 in which a coupling agent A is bonded to a first filler;
And a polymer comprising a ring having hydroxy.
 [2] 第2のフィラーにカップリング剤Bを結合させた複合材B1、および、
 カップリング剤Bの一端に第2のフィラーが結合し、他端に反応性化合物が結合した複合材B2
から選ばれる少なくとも一つをさらに含む、[1]に記載の組成物。
[2] Composite material B1 in which coupling agent B is bound to the second filler, and
Composite material B2 in which the second filler is bonded to one end of coupling agent B and the reactive compound is bonded to the other end
The composition according to [1], further comprising at least one selected from:
 [3] 前記重合体が、式(1)および(2)で表される構造の少なくとも1つを有する重合体である、[1]または[2]に記載の組成物。 [3] The composition according to [1] or [2], wherein the polymer is a polymer having at least one of structures represented by formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000003
[式(1)中、mは、平均値で2~100であり;
 nは独立に、平均値で1以上であり;
 R1は独立に、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、または4,4’-(9-フルオレニリデン)ジフェニレンであり、
 炭素数1~10のアルキレンにおいて、少なくとも1つの水素は-CH3またはヒドロキシで置き換えられてもよく、
 シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、および4,4’-(9-フルオレニリデン)ジフェニレンにおいて、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ヒドロキシ、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
 環Aは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、および9,9-ジフェニルフルオレンから選ばれる環から、少なくとも2つの水素を除いた基であり、
 これらの基において、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、該炭素数1~3のアルキルまたは炭素数1~3のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。]
Figure JPOXMLDOC01-appb-C000003
[In the formula (1), m is an average value of 2 to 100;
n is independently an average value of 1 or more;
R 1 is independently alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1 , 4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene,
In alkylene having 1 to 10 carbon atoms, at least one hydrogen may be replaced by —CH 3 or hydroxy,
Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, bicyclo [3.1.0] hex In —3,6-diyl and 4,4 ′-(9-fluorenylidene) diphenylene, at least one —CH 2 — may be replaced by —O—, and at least one —CH═ is —N And at least one hydrogen may be replaced by hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons, and having 1 to 10 carbons In the alkyl or the halogenated alkyl having 1 to 10 carbon atoms, at least one —CH 2 — is substituted with —O—, —CO—, —COO—, or —OCO—. May be replaced;
Ring A is a group in which at least two hydrogens are removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene;
In these groups, at least one —CH═ may be replaced by —N═, and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms. In the alkyl having 1 to 3 carbon atoms or the halogenated alkyl having 1 to 3 carbon atoms, at least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—. May be replaced. ]
Figure JPOXMLDOC01-appb-C000004
[式(2)中、mは、平均値で2~100であり;
 nは独立に、平均値で1以上であり、;
 環Bは独立に、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、および9,9-ジフェニルフルオレンから選ばれる環から、少なくとも3つの水素を除いた基であり、
 これらの基において、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、該炭素数1~3のアルキルまたは炭素数1~3のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
 R2およびR4はそれぞれ独立に、単結合または炭素数1~5のアルキレンであり、
 該アルキレンにおいて、少なくとも1つの-CH2-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの水素は-CH3または-OHで置き換えられてもよく;
 R3は独立に、単結合、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、1,1’-ビフェニル-4,4’-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、または4,4’-(9-フルオレニリデン)ジフェニレンであり、
 シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、1,1’-ビフェニル-4,4’ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、および4,4’-(9-フルオレニリデン)ジフェニレンにおいて、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ヒドロキシ、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。]
Figure JPOXMLDOC01-appb-C000004
[In the formula (2), m is an average value of 2 to 100;
n is independently an average value of 1 or more;
Ring B is independently a group in which at least three hydrogens have been removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene,
In these groups, at least one —CH═ may be replaced by —N═, and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms. In the alkyl having 1 to 3 carbon atoms or the halogenated alkyl having 1 to 3 carbon atoms, at least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—. May be replaced by;
R 2 and R 4 are each independently a single bond or alkylene having 1 to 5 carbon atoms,
In the alkylene, at least one —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, or —OCO—, and at least one hydrogen is —CH 3 or — May be replaced by OH;
R 3 is independently a single bond, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene,
Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1, In 4-diyl, bicyclo [3.1.0] hex-3,6-diyl, and 4,4 ′-(9-fluorenylidene) diphenylene, at least one —CH 2 — is replaced by —O—. And at least one —CH═ may be replaced by —N═, and the at least one hydrogen is hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons. may be replaced, at least one -CH in halogenated alkyl alkyl or C 1 -C 10 carbon number 1-10 2 -, -O -, - CO , It may be replaced by -COO-, or -OCO-. ]
 [4] 前記重合体が、側鎖に、芳香環に結合したヒドロキシを有する重合体である、[1]~[3]のいずれかに記載の組成物。 [4] The composition according to any one of [1] to [3], wherein the polymer is a polymer having hydroxy bonded to an aromatic ring in a side chain.
 [5] 前記式(1)において、
 R1が独立に、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、またはナフタレン-2,6-ジイルであり、
 環Aが独立に、ベンゼンまたはナフタレンから、少なくとも2つの水素を除いた基である、
[3]に記載の組成物。
[5] In the formula (1),
R 1 is independently alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, or naphthalene-2,6-diyl;
Ring A is independently a group obtained by removing at least two hydrogens from benzene or naphthalene.
The composition according to [3].
 [6] 前記式(2)において、
 環Bが独立に、ベンゼンまたはナフタレンから、少なくとも3つの水素を除いた基であり、
 R3が独立に、単結合、シクロヘキシレン、フェニレン、ナフタレン-2,6-ジイル、または1,1’-ビフェニル-4,4’ジイルである、
[3]に記載の組成物。
[6] In the formula (2),
Ring B is independently a group obtained by removing at least three hydrogens from benzene or naphthalene,
R 3 is independently a single bond, cyclohexylene, phenylene, naphthalene-2,6-diyl, or 1,1′-biphenyl-4,4′diyl.
The composition according to [3].
 [7] 前記重合体は、(メタ)アクリル化合物およびビニル化合物から選ばれる少なくとも1種のヒドロキシを有する環を含まないモノマー由来の構造を含む、[1]~[6]のいずれかに記載の組成物。 [7] The polymer according to any one of [1] to [6], wherein the polymer includes a structure derived from a monomer that does not include a ring having at least one hydroxy group selected from a (meth) acrylic compound and a vinyl compound. Composition.
 [8] 前記フィラーは、酸化物、窒化物、炭化物、および炭素材料から選ばれる無機フィラーである、[1]~[7]のいずれかに記載の組成物。
 [9] 前記フィラーは、アルミナ、シリカ、チタニア、ジルコニア、コーディエライト、窒化ホウ素、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、およびグラフェンから選ばれる少なくとも一つである、[1]~[8]のいずれかに記載の組成物。
[8] The composition according to any one of [1] to [7], wherein the filler is an inorganic filler selected from oxides, nitrides, carbides, and carbon materials.
[9] The filler is at least one selected from alumina, silica, titania, zirconia, cordierite, boron nitride, boron carbide, boron nitride carbon, graphite, carbon fiber, carbon nanotube, and graphene. ] To [8].
 [10] 前記カップリング剤が、オキシラニルまたはオキセタニルを含む、[1]~[9]のいずれかに記載の組成物。 [10] The composition according to any one of [1] to [9], wherein the coupling agent comprises oxiranyl or oxetanyl.
 [11] 前記フィラーに結合していない有機化合物(ただし、ヒドロキシを有する環を含む重合体以外の化合物である。)を含む、[1]~[10]のいずれかに記載の組成物。 [11] The composition according to any one of [1] to [10], comprising an organic compound that is not bonded to the filler (however, it is a compound other than a polymer containing a ring having a hydroxy group).
 [12] 放熱部材用である、[1]~[11]のいずれかに記載の組成物。
 [13] [1]~[12]のいずれかに記載の組成物を硬化させて得られる、放熱部材。
[12] The composition according to any one of [1] to [11], which is for a heat dissipation member.
[13] A heat radiation member obtained by curing the composition according to any one of [1] to [12].
 [14] [13]に記載の放熱部材と、発熱部を有する電子デバイスとを備え、
 前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された、電子機器。
[14] A heat radiating member according to [13] and an electronic device having a heat generating part,
An electronic apparatus disposed in the electronic device such that the heat dissipation member is in contact with the heat generating portion.
 [15] 第1のフィラーとカップリング剤Aとを結合させて複合材A1を得る工程aと、
 工程aで得られた複合材A1、および、ヒドロキシを有する環を含む重合体を混合する工程c1と
を含む、組成物の製造方法。
[15] A step of obtaining the composite material A1 by combining the first filler and the coupling agent A;
A method for producing a composition, comprising: composite A1 obtained in step a; and step c1 in which a polymer containing a hydroxy-containing ring is mixed.
 [16] 第1のフィラーとカップリング剤Aとを結合させて複合材A1を得る工程aと、
 第2のフィラーとカップリング剤Bとを結合させて複合材B1を得る工程b1、または、
 第2のフィラーとカップリング剤Bの一端とを結合させ、次いで該カップリング剤Bの他端を反応性化合物と結合させることで、もしくは、カップリング剤Bの一端と反応性化合物とを結合させ、次いで該カップリング剤Bの他端を第2のフィラーと結合させることで複合材B2を得る工程b2と、
 工程aで得られた複合材A1と、工程b1で得られた複合材B1または工程b2で得られた複合材B2と、ヒドロキシを有する環を含む重合体とを混合する工程c2と
を含む、組成物の製造方法。
[16] A step of obtaining a composite material A1 by combining the first filler and the coupling agent A;
A step b1 of obtaining a composite material B1 by bonding the second filler and the coupling agent B, or
By binding the second filler and one end of the coupling agent B and then binding the other end of the coupling agent B to the reactive compound, or binding one end of the coupling agent B and the reactive compound And then b2 to obtain the composite material B2 by bonding the other end of the coupling agent B to the second filler,
Including the composite material A1 obtained in the step a, the composite material B1 obtained in the step b1 or the composite material B2 obtained in the step b2, and the step c2 of mixing a polymer containing a ring having a hydroxy group. A method for producing the composition.
 本発明の一実施形態によれば、高熱伝導性および高耐熱性にバランスよく優れる放熱部材を提供することができる。さらに、化学的安定性、硬度、および機械的強度などに優れる放熱部材を提供することもできる。 According to one embodiment of the present invention, it is possible to provide a heat dissipating member that is excellent in balance between high thermal conductivity and high heat resistance. Furthermore, it is possible to provide a heat dissipating member that is excellent in chemical stability, hardness, mechanical strength and the like.
図1は、実施例1で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 1 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 1. FIG. 図2は、実施例2で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 2 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Example 2. 図3は、実施例3で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 3 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Example 3. 図4は、実施例4で製造した放熱部材の熱膨張挙動を示すグラフである。4 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Example 4. FIG. 図5は、実施例5で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 5 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 5. 図6は、実施例6で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 6 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 6. 図7は、実施例7で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 7 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Example 7. 図8は、比較例1で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 8 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Comparative Example 1. 図9は、比較例2で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 9 is a graph showing the thermal expansion behavior of the heat dissipation member manufactured in Comparative Example 2. 図10は、比較例3で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 10 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Comparative Example 3. 図11は、比較例4で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 11 is a graph showing the thermal expansion behavior of the heat dissipation member manufactured in Comparative Example 4. 図12は、比較例5で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 12 is a graph showing the thermal expansion behavior of the heat dissipation member manufactured in Comparative Example 5. 図13は、比較例6で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 13 is a graph showing the thermal expansion behavior of the heat radiating member manufactured in Comparative Example 6. 図14は、参考例1で製造した放熱部材の熱膨張挙動を示すグラフである。FIG. 14 is a graph showing the thermal expansion behavior of the heat dissipating member manufactured in Reference Example 1.
 本発明を以下の詳細な説明により具体的に説明するが、以下の記載に制限されるものではない。 The present invention will be specifically described by the following detailed description, but is not limited to the following description.
≪組成物≫
 本発明の一実施形態に係る組成物(以下「本組成物」ともいう。)は、第1のフィラーにカップリング剤Aを結合させた複合材A1と、ヒドロキシを有する環を含む重合体とを含む。
 本組成物は、予めフィラーとカップリング剤等とを結合させた複合材を含むことを特徴とするため、このような複合材を含まず、単に、フィラーとカップリング剤等とを混合することで調製される組成物とは異なる、前述の効果を奏する。
≪Composition≫
A composition according to an embodiment of the present invention (hereinafter also referred to as “the present composition”) includes a composite material A1 in which a coupling agent A is bonded to a first filler, a polymer including a ring having hydroxy, including.
Since the present composition is characterized by including a composite material in which a filler and a coupling agent or the like are bonded in advance, the composition does not include such a composite material, and the filler and the coupling agent are simply mixed. The effects described above are different from those of the composition prepared in (1).
 本組成物を硬化させた一態様では、フィラー同士が、カップリング剤と重合体(なお、ここでいう、カップリング剤や重合体は、その反応性基(例:オキシラニルやヒドロキシ)が反応したものである。以下同様。)とを介して、または、カップリング剤と重合体および/または反応性化合物とを介して3次元的に結合した複合体を含む放熱部材を得ることができる。このような複合体を含む放熱部材は、水平方向だけでなく厚み方向にも高い熱伝導性を示すと考えられる。 In an embodiment in which the present composition is cured, the fillers are coupled with a coupling agent and a polymer (herein, the coupling agent and the polymer are reacted with a reactive group (eg, oxiranyl or hydroxy). The same applies to the following.), Or a heat dissipation member including a complex three-dimensionally bonded via a coupling agent and a polymer and / or a reactive compound. A heat dissipation member including such a composite is considered to exhibit high thermal conductivity not only in the horizontal direction but also in the thickness direction.
 本組成物は、低吸湿性の放熱部材を容易に得ることができる等の点から、極性の高いアミノやアミド等を有さないことが好ましい。このような本組成物は、用いる原料として、アミノやアミドを有さない原料を用いてもよいし、放熱部材を形成する際の硬化等により、アミノやアミドを消失させてもよい。 The present composition preferably does not have a highly polar amino or amide from the viewpoint that a heat-absorbing member with low hygroscopicity can be easily obtained. In such a composition, a raw material having no amino or amide may be used as a raw material to be used, or amino or amide may be eliminated by curing or the like when forming a heat dissipation member.
 本組成物の一態様として、第2のフィラーにカップリング剤Bを結合させた複合材B1、および、カップリング剤Bの一端に第2のフィラーが結合し、他端に反応性化合物が結合した複合材B2から選ばれる少なくとも一つをさらに含むことも好ましい。
 複合材A1と複合材B1やB2とを用いる一態様では、第1のフィラーと第2のフィラーとが、カップリング剤、反応性化合物および/または重合体を介して結合した複合体を含む放熱部材を得ることができる。このような複合体では、フィラー同士が直接結合しているので、該複合体を含む放熱部材は、高い熱伝導性を示すと考えられる。
As one aspect of the present composition, the composite material B1 in which the coupling agent B is bound to the second filler, the second filler is bound to one end of the coupling agent B, and the reactive compound is bound to the other end It is also preferable to further include at least one selected from the composite material B2.
In one aspect using the composite material A1 and the composite materials B1 and B2, the heat dissipation includes a composite in which the first filler and the second filler are bonded via a coupling agent, a reactive compound, and / or a polymer. A member can be obtained. In such a composite, since the fillers are directly bonded to each other, it is considered that the heat dissipation member including the composite exhibits high thermal conductivity.
<フィラー>
 第1および第2のフィラーとしては特に制限されず、無機フィラーでも、有機フィラーでもよく、従来公知のフィラーを用いることができる。
 第1および第2のフィラーは、異なったフィラーでもよいが、文言の明確化のために、「第1」や「第2」を付したにすぎないため、同一のフィラーであってもよい。
<Filler>
It does not restrict | limit especially as a 1st and 2nd filler, An inorganic filler or an organic filler may be sufficient, and a conventionally well-known filler can be used.
The first and second fillers may be different fillers, but for the sake of clarity, only the “first” and “second” are attached, and therefore the same filler may be used.
 前記フィラーとしては、アルミナ、マグネシア、ベリリア、シリカ、チタニア、ジルコニア、酸化亜鉛、コーディエライト、酸化銅、酸化セリウム、酸化イットリウム、酸化錫、酸化ホルミニウム、酸化ビスマス、酸化コバルト、酸化カルシウムなどの酸化物;窒化ホウ素、窒化アルミニウム、窒化珪素、窒化ホウ素炭素などの窒化物;炭化ホウ素、炭化珪素などの炭化物;ダイヤモンド、黒鉛、炭素繊維、カーボンナノチューブ、グラフェンなどの炭素材料;水酸化マグネシウム、水酸化アルミニウムなどの水酸化物;珪素、金、銀、銅、白金、鉄、錫、鉛、ニッケル、アルミニウム、マグネシウム、タングステン、モリブデン、ステンレスなどの金属;ガラス繊維、カーボンファイバーなどの無機繊維やそのクロス;ポリビニルホルマール、ポリビニルブチラール、ポリエステル、ポリアミド、ポリイミドなどからなる繊維または粒子などの有機フィラー等が挙げられる。
 これらの中でも、より熱伝導性に優れる放熱部材を容易に得ることができる等の点から、酸化物、窒化物、炭化物、および炭素材料から選ばれる無機フィラーが好ましい。
Examples of the filler include alumina, magnesia, beryllia, silica, titania, zirconia, zinc oxide, cordierite, copper oxide, cerium oxide, yttrium oxide, tin oxide, holmium oxide, bismuth oxide, cobalt oxide, and calcium oxide. Materials: nitrides such as boron nitride, aluminum nitride, silicon nitride, boron nitride carbon; carbides such as boron carbide and silicon carbide; carbon materials such as diamond, graphite, carbon fiber, carbon nanotube, graphene; magnesium hydroxide, hydroxide Hydroxides such as aluminum; metals such as silicon, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium, tungsten, molybdenum, and stainless steel; inorganic fibers such as glass fibers and carbon fibers, and cloths thereof ; Polyvinylformer , Polyvinyl butyral, polyesters, polyamides, organic fillers, and the like, such as fibers or particles made of polyimide.
Among these, an inorganic filler selected from oxides, nitrides, carbides, and carbon materials is preferable from the viewpoint that a heat radiating member having more excellent thermal conductivity can be easily obtained.
 前記フィラーとしては、熱伝導性、入手容易性、カップリング剤との結合性等の点から、アルミナ、シリカ、チタニア、ジルコニア、コーディエライト、窒化ホウ素、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、およびグラフェンが好ましい。
 また、これらのフィラーを用いると、熱伝導率が高く、熱膨張率が非常に小さいかまたは負である放熱部材を容易に得ることができる。
The filler includes, for example, alumina, silica, titania, zirconia, cordierite, boron nitride, boron carbide, boron nitride carbon, graphite, carbon, in terms of thermal conductivity, availability, and coupling agent coupling. Fibers, carbon nanotubes, and graphene are preferred.
Moreover, when these fillers are used, it is possible to easily obtain a heat radiating member having a high thermal conductivity and a very low or negative thermal expansion coefficient.
 本組成物は、高熱伝導性の無機フィラーを含むことが好ましい。該高熱伝導性の無機フィラーとしては、窒化ホウ素、窒化アルミニウム、窒化珪素、窒化ホウ素炭素、炭化ホウ素、炭化珪素、ダイヤモンド、黒鉛、炭素繊維、カーボンナノチューブ、ベリリア、マグネシア、アルミナ等が挙げられる。 This composition preferably contains a highly thermally conductive inorganic filler. Examples of the high thermal conductivity inorganic filler include boron nitride, aluminum nitride, silicon nitride, boron nitride carbon, boron carbide, silicon carbide, diamond, graphite, carbon fiber, carbon nanotube, beryllia, magnesia, alumina, and the like.
 第1および第2のフィラーとしては、窒化ホウ素、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、およびグラフェンが好ましい。第1および第2のフィラーとしては、平面方向の熱伝導率が非常に高いため、六方晶系の窒化ホウ素(h-BN)および黒鉛が好ましく、特に、h-BNは、誘電率も低く、絶縁性も高いため好ましい。また、例えば、h-BNや黒鉛等の板状のフィラーを用いると、成形や硬化の際に、板状構造を、例えば、金型等に沿って配向させることができるため好ましい。 As the first and second fillers, boron nitride, boron carbide, boron nitride carbon, graphite, carbon fiber, carbon nanotube, and graphene are preferable. As the first and second fillers, hexagonal boron nitride (h-BN) and graphite are preferable because the thermal conductivity in the plane direction is very high. In particular, h-BN has a low dielectric constant, It is preferable because of its high insulation. For example, it is preferable to use a plate-like filler such as h-BN or graphite because the plate-like structure can be oriented along a mold or the like during molding or curing.
 フィラーの種類、形状、大きさ等は、目的に応じて適宜選択できるが、例えば、フィラーの形状としては、板(扁平)状、球状、無定形、繊維状、棒状、筒状等が挙げられる。 The type, shape, size, and the like of the filler can be appropriately selected according to the purpose. Examples of the shape of the filler include a plate (flat) shape, a spherical shape, an amorphous shape, a fibrous shape, a rod shape, and a cylindrical shape. .
 フィラーの平均粒径は、熱伝導性により優れる放熱部材を容易に得ることができる等の点から、好ましくは0.1~500μm、より好ましくは1~200μmである。
 なお、本明細書における平均粒径は、レーザー回折・散乱法による粒度分布測定に基づくメジアン径である。また、前記平均粒径は、フィラーの形状が板状の場合、その長辺の長さの平均値のことをいい、繊維状や棒状の場合、その繊維長や棒の長さの平均値のことをいう。
The average particle size of the filler is preferably from 0.1 to 500 μm, more preferably from 1 to 200 μm, from the viewpoint that a heat radiating member excellent in thermal conductivity can be easily obtained.
In addition, the average particle diameter in this specification is a median diameter based on the particle size distribution measurement by a laser diffraction / scattering method. In addition, the average particle diameter refers to the average value of the length of the long side when the filler shape is a plate shape, and in the case of a fiber shape or a rod shape, the average value of the fiber length or the length of the rod. That means.
 本組成物中のフィラーの含有量は、高熱伝導性および高耐熱性にバランスよく優れる放熱部材を容易に得ることができる等の点から、好ましくは50~98重量%、より好ましくは60~97重量%であり、特に好ましくは70~95重量%である。
 フィラーの含有量が前記範囲にある本組成物は、樹脂等の有機成分にフィラーを添加する従来の組成物とは異なり、フィラー間に、カップリング剤、重合体、および反応性化合物等の有機成分が存在する、より具体的には、該有機成分がフィラー間をつなげる態様の組成物であるといえる。
 前記複合材A1、複合材B1、および複合材B2の使用量は、フィラーの含有量が前記範囲となる量であることが好ましい。
The content of the filler in the composition is preferably 50 to 98% by weight, more preferably 60 to 97, from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. % By weight, particularly preferably 70 to 95% by weight.
Unlike the conventional composition in which a filler is added to an organic component such as a resin, the present composition in which the filler content is in the above range is organic such as a coupling agent, a polymer, and a reactive compound between fillers. More specifically, it can be said that the composition has a component, and more specifically, the organic component connects the fillers.
The usage amount of the composite material A1, the composite material B1, and the composite material B2 is preferably such an amount that the filler content falls within the above range.
<カップリング剤>
 本組成物に用いるカップリング剤(カップリング剤AやB)は、少なくとも2つの反応性基を有し、フィラーと結合できる化合物である。また、該カップリング剤としては、ヒドロキシと反応することができる化合物であることが好ましい。
 カップリング剤AおよびBは、異なったカップリング剤でもよいが、文言の明確化のために、「A」や「B」等を付したにすぎないため、同一のカップリング剤であってもよい。
<Coupling agent>
The coupling agent (coupling agent A or B) used in the present composition is a compound having at least two reactive groups and capable of binding to a filler. The coupling agent is preferably a compound capable of reacting with hydroxy.
Coupling agents A and B may be different coupling agents, but for the sake of clarity, only “A”, “B”, etc. are attached, so that the same coupling agent may be used. Good.
 カップリング剤としては特に制限されず、シラン系カップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等の公知のカップリング剤を使用できるが、これらの中でも、シラン系カップリング剤が好ましい。 The coupling agent is not particularly limited, and known coupling agents such as a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent can be used. Among these, a silane coupling agent is used. preferable.
 本組成物に用いるカップリング剤は、フィラーと結合するため、該結合のできるアルコキシなどの加水分解性基を含むことが好ましい。
 また、本組成物に用いるカップリング剤は、ヒドロキシと反応することが好ましく、さらに、ヒドロキシと反応して、極性の高いアミド結合やウレタン結合を生じないことが好ましいため、オキシラニルまたはオキセタニル、特に、オキシラニルを有することが好ましい。
 本組成物に用いるカップリング剤は、より吸湿性の低い放熱部材を容易に得ることができる等の点から、アミノおよびアミドを有さないことが好ましい。
Since the coupling agent used in the present composition binds to the filler, it preferably contains a hydrolyzable group such as alkoxy capable of binding.
Further, the coupling agent used in the present composition preferably reacts with hydroxy, and further preferably does not react with hydroxy to form a highly polar amide bond or urethane bond, so oxiranyl or oxetanyl, particularly It is preferred to have oxiranyl.
The coupling agent used in the present composition preferably does not have amino and amide from the viewpoint that a heat radiating member having lower hygroscopicity can be easily obtained.
 オキシラニルまたはオキセタニルを有するカップリング剤としては、例えば、JNC(株)製の、サイラエース(商品名)S510、S530が挙げられる。 Examples of the coupling agent having oxiranyl or oxetanyl include Silaace (trade names) S510 and S530 manufactured by JNC Corporation.
 フィラーに対するカップリング剤の反応量は、主にフィラーの大きさや使用するカップリング剤の反応性等により変化するため、規定しにくい。
 フィラーにできるだけ多くのカップリング剤を結合させることが好ましく、フィラーが有する反応基の数に対し、カップリング剤が有する該反応基と反応する反応性基の数が、同数か少し多くなるようにカップリング剤を使用することが好ましい。
 フィラー100重量部に対するカップリング剤の結合量は、高熱伝導性および高耐熱性にバランスよく優れる放熱部材を容易に得ることができる等の点から、好ましくは1~30重量部、より好ましくは2~25重量部、さらに好ましくは3~20重量部である。
Since the reaction amount of the coupling agent with respect to the filler varies mainly depending on the size of the filler and the reactivity of the coupling agent to be used, it is difficult to define.
It is preferable to bind as many coupling agents as possible to the filler, so that the number of reactive groups reacting with the reactive group of the coupling agent is the same or slightly larger than the number of reactive groups of the filler. It is preferable to use a coupling agent.
The amount of coupling agent bonded to 100 parts by weight of the filler is preferably 1 to 30 parts by weight, more preferably 2 parts, from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. -25 parts by weight, more preferably 3-20 parts by weight.
<重合体>
 本組成物は、ヒドロキシを有する環を含む重合体を含む。このような重合体を用いることにより、高熱伝導性および高耐熱性にバランスよく優れる放熱部材を容易に得ることができる。
 前記ヒドロキシは、環に直接結合していてもよく、所定の結合基を介して結合していてもよいが、前記効果がより発揮され、特に熱伝導性に優れる放熱部材を容易に得ることができる等の点から、環に直接結合していることが好ましい。
 また、前記環としては、前記効果がより発揮され、特に耐熱性等に優れる放熱部材を容易に得ることができる等の点から、芳香環(複素芳香環を含む)であることが好ましく、前記重合体は、側鎖に、芳香環に結合したヒドロキシ(フェノール性のヒドロキシ)を有する重合体であることが特に好ましい。
 なお、本明細書における重合体は、繰り返し単位(例えば、式(1)におけるm個繰り返される構造)を2つ以上有する化合物のことをいう。
 本組成物には、1種の重合体を用いてもよく、2種以上の重合体を用いてもよい。
<Polymer>
The composition includes a polymer comprising a ring having a hydroxy. By using such a polymer, it is possible to easily obtain a heat radiating member excellent in balance between high thermal conductivity and high heat resistance.
The hydroxy may be directly bonded to the ring or may be bonded via a predetermined linking group, but the above effect is more exerted, and a heat radiating member having particularly excellent thermal conductivity can be easily obtained. From the viewpoint of being able to do so, it is preferable that it is directly bonded to the ring.
In addition, the ring is preferably an aromatic ring (including a heteroaromatic ring) from the viewpoint that the above-described effect is more exhibited and a heat dissipation member that is particularly excellent in heat resistance can be easily obtained. The polymer is particularly preferably a polymer having hydroxy (phenolic hydroxy) bonded to an aromatic ring in the side chain.
In addition, the polymer in this specification refers to the compound which has 2 or more of repeating units (for example, the structure repeated m pieces in Formula (1)).
In the present composition, one type of polymer may be used, or two or more types of polymers may be used.
 前記重合体としては、ヒドロキシを有する環を含めば特に制限されないが、高熱伝導性および高耐熱性によりバランスよく優れる放熱部材を容易に得ることができる等の点から、式(1)または(2)で表される構造を含む重合体であることが好ましい。
 前記重合体は、式(1)で表される構造と式(2)で表される構造の両方を含む重合体であってもよく、どちらか一方を含む重合体であってもよい。
The polymer is not particularly limited as long as it includes a ring having a hydroxy group. However, from the viewpoint of easily obtaining a heat radiating member excellent in balance due to high thermal conductivity and high heat resistance, the polymer (1) or (2 It is preferable that it is a polymer containing the structure represented by this.
The polymer may include a polymer including both the structure represented by Formula (1) and the structure represented by Formula (2), or may include a polymer including either one of them.
 熱伝導性および耐熱性により優れる放熱部材を容易に得ることができる等の点から、前記重合体における、式(1)および(2)で表される構造の含有量は、重合体100重量%に対し、好ましくは5~100重量%、より好ましくは10~100重量%である。 The content of the structure represented by the formulas (1) and (2) in the polymer is 100% by weight of the polymer in terms of easily obtaining a heat radiating member having better thermal conductivity and heat resistance. On the other hand, it is preferably 5 to 100% by weight, more preferably 10 to 100% by weight.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、mは、平均値で2~100であり、好ましくは平均値で4~80である。
 式(1)中、nは独立に、平均値で1以上であり、好ましくは1である。
 環Aに結合するヒドロキシの置換位置は特に制限されないが、例えば、nが1の場合、環Aの結合するCHに対するヒドロキシの置換位置は、オルト位またはパラ位が好ましく、パラ位がより好ましい。
In the formula (1), m is an average value of 2 to 100, and preferably an average value of 4 to 80.
In the formula (1), n is independently an average value of 1 or more, preferably 1.
The substitution position of hydroxy bonded to ring A is not particularly limited. For example, when n is 1, the hydroxy substitution position for CH bonded to ring A is preferably ortho or para, and more preferably para.
 前記「mの平均値」とは、重合体は、ある分布をもって存在する場合があるが、その場合のmに相当する部分の平均の値のことをいう。本明細書における同様の記載は、同様の意味を示す。
 「nは独立に」とは、mが2以上の場合、式(1)には、2つ以上のnが存在するが、この場合の2つ以上のnは、それぞれ同一でも異なっていてもよいことを意味する。本明細書における同様の記載は、同様の意味を示す。
 また、本明細書におけるある式において、同一の符号が2つ以上存在する場合、異なる式に同一の符号が2つ以上存在する場合、これらの符合で表される基は同一でも異なっていてもよい。
The “average value of m” refers to an average value of a portion corresponding to m in a case where the polymer may exist with a certain distribution. The same description in this specification shows the same meaning.
“N is independently” means that when m is 2 or more, there are two or more n in formula (1). In this case, two or more n may be the same or different. Means good. The same description in this specification shows the same meaning.
In addition, in a certain formula in this specification, when two or more identical codes exist, when two or more identical codes exist in different formulas, groups represented by these codes may be the same or different. Good.
 式(1)中、R1は独立に、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、または4,4’-(9-フルオレニリデン)ジフェニレンであり、
 炭素数1~10のアルキレンにおいて、少なくとも1つの水素は-CH3またはヒドロキシで置き換えられてもよく、
 シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、および4,4’-(9-フルオレニリデン)ジフェニレンにおいて、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ヒドロキシ、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
In the formula (1), R 1 is independently alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2 .2] oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene,
In alkylene having 1 to 10 carbon atoms, at least one hydrogen may be replaced by —CH 3 or hydroxy,
Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, bicyclo [3.1.0] hex In —3,6-diyl and 4,4 ′-(9-fluorenylidene) diphenylene, at least one —CH 2 — may be replaced by —O—, and at least one —CH═ is —N And at least one hydrogen may be replaced by hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons, and having 1 to 10 carbons In the alkyl or the halogenated alkyl having 1 to 10 carbon atoms, at least one —CH 2 — is substituted with —O—, —CO—, —COO—, or —OCO—. It may be replaced.
 前記「少なくとも1つの」という語は、「区別なく選択された少なくとも1つの」を意味するが、通常、この分野の常識に基づいて採り難い構造、例えば、酸素と酸素とが隣接した-O-O-は含まない方が好ましい。 The term “at least one” means “at least one selected without distinction”, but usually a structure that is difficult to adopt based on common sense in this field, for example, —O— in which oxygen and oxygen are adjacent to each other. It is preferable not to contain O-.
 柔軟性に優れる放熱部材を容易に得ることができる等の点から、前記R1は独立に、炭素数1~10のアルキレン、シクロヘキシレン、またはシクロヘキセニレンが好ましく、耐熱性と熱伝導性に優れる放熱部材を容易に得ることができる等の点から、前記R1は独立に、フェニレンまたはナフタレン-2,6-ジイルが好ましい。 R 1 is independently preferably an alkylene, cyclohexylene, or cyclohexenylene having 1 to 10 carbon atoms from the standpoint that a heat dissipation member having excellent flexibility can be easily obtained. R 1 is independently preferably phenylene or naphthalene-2,6-diyl from the standpoint that an excellent heat radiating member can be easily obtained.
 式(1)中、環Aは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、および9,9-ジフェニルフルオレンから選ばれる環から、少なくとも2つの水素を除いた基であり、
 これらの基において、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、該炭素数1~3のアルキルまたは炭素数1~3のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
 これらの中でも、より耐熱性に優れる放熱部材を容易に得ることができる等の点から、環Aは独立に、ベンゼンまたはナフタレンから、少なくとも2つの水素を除いた基であることが好ましく、ベンゼンから少なくとも2つの、好ましくは2つの水素を除いた基であることがより好ましい。
In formula (1), ring A is a group obtained by removing at least two hydrogens from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene,
In these groups, at least one —CH═ may be replaced by —N═, and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms. In the alkyl having 1 to 3 carbon atoms or the halogenated alkyl having 1 to 3 carbon atoms, at least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—. May be replaced.
Among these, the ring A is preferably independently a group in which at least two hydrogens are removed from benzene or naphthalene, from the viewpoint that a heat radiating member having higher heat resistance can be easily obtained. More preferably it is a group excluding at least two, preferably two hydrogens.
 式(1)で表される構造を含む重合体は従来公知の方法で合成することができるが、例えば、ビニルなどの重合性基と、ヒドロキシフェニルなどのヒドロキシを有する環とを有する化合物、具体的には、ビニルフェノール等を用いて合成することができる。 A polymer having a structure represented by the formula (1) can be synthesized by a conventionally known method. For example, a compound having a polymerizable group such as vinyl and a ring having hydroxy such as hydroxyphenyl, Specifically, it can be synthesized using vinylphenol or the like.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、mは、平均値で2~100であり、好ましくは平均値で4~80である。
 式(2)中、nは独立に、平均値で1以上であり、好ましくは1である。
In the formula (2), m is an average value of 2 to 100, and preferably an average value of 4 to 80.
In formula (2), n is independently 1 or more on an average value, preferably 1.
 環Bは独立に、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、および9,9-ジフェニルフルオレンから選ばれる環から、少なくとも3つの水素を除いた基であり、
 これらの基において、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、該炭素数1~3のアルキルまたは炭素数1~3のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
 これらの中でも、より耐熱性に優れる放熱部材を容易に得ることができる等の点から、環Bは独立に、ベンゼンまたはナフタレンから、少なくとも3つの水素を除いた基であることが好ましく、ベンゼンから少なくとも3つの、好ましくは3つの水素を除いた基であることがより好ましい。
Ring B is independently a group in which at least three hydrogens have been removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene,
In these groups, at least one —CH═ may be replaced by —N═, and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms. In the alkyl having 1 to 3 carbon atoms or the halogenated alkyl having 1 to 3 carbon atoms, at least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—. May be replaced.
Among these, the ring B is preferably a group obtained by removing at least three hydrogens from benzene or naphthalene independently from the viewpoint that a heat radiating member having more excellent heat resistance can be easily obtained. More preferred is a group excluding at least three, preferably three hydrogens.
 R2およびR4はそれぞれ独立に、単結合または炭素数1~5のアルキレンであり、
 該アルキレンにおいて、少なくとも1つの-CH2-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの水素は-CH3または-OHで置き換えられてもよい。
 アルキレンの炭素数を増やすと柔軟性に優れる放熱部材を得やすくなる一方、熱伝導性が低下しやすくなることから、R2およびR4はそれぞれ独立に、単結合、炭素数1~5のアルキレンを適切に組み合わせることが好ましい。
R 2 and R 4 are each independently a single bond or alkylene having 1 to 5 carbon atoms,
In the alkylene, at least one —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, or —OCO—, and at least one hydrogen is —CH 3 or — It may be replaced with OH.
Increasing the number of carbon atoms in the alkylene makes it easier to obtain a heat-dissipating member with excellent flexibility, while the thermal conductivity tends to decrease. Therefore, R 2 and R 4 are each independently a single bond or an alkylene having 1 to 5 carbon atoms. Are preferably combined appropriately.
 R3は独立に、単結合、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、1,1’-ビフェニル-4,4’-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、または4,4’-(9-フルオレニリデン)ジフェニレンであり、
 シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、1,1’-ビフェニル-4,4’ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、および4,4’-(9-フルオレニリデン)ジフェニレンにおいて、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ヒドロキシ、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
R 3 is independently a single bond, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene,
Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1, In 4-diyl, bicyclo [3.1.0] hex-3,6-diyl, and 4,4 ′-(9-fluorenylidene) diphenylene, at least one —CH 2 — is replaced by —O—. And at least one —CH═ may be replaced by —N═, and the at least one hydrogen is hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons. may be replaced, at least one -CH in halogenated alkyl alkyl or C 1 -C 10 carbon number 1-10 2 -, -O -, - CO , It may be replaced by -COO-, or -OCO-.
 得られる放熱部材の耐熱性および熱伝導性向上等の点から、R3は独立に、単結合、シクロヘキシレン、フェニレン、ナフタレン-2,6-ジイル、または1,1’-ビフェニル-4,4’ジイルであることが好ましく、単結合、フェニレン、またはナフタレン-2,6-ジイルがより好ましい。 From the standpoint of improving the heat resistance and thermal conductivity of the resulting heat dissipation member, R 3 is independently a single bond, cyclohexylene, phenylene, naphthalene-2,6-diyl, or 1,1′-biphenyl-4,4. 'Diyl is preferable, and a single bond, phenylene, or naphthalene-2,6-diyl is more preferable.
 式(2)で表される構造を含む重合体は従来公知の方法で合成することができるが、例えば、フェノールやクレゾールなどのヒドロキシを有する環式化合物と、ホルムアルデヒドなどとを反応させることで合成することができる。 A polymer containing a structure represented by the formula (2) can be synthesized by a conventionally known method. For example, it is synthesized by reacting a cyclic compound having a hydroxy such as phenol or cresol with formaldehyde. can do.
 前記重合体は、式(1)や(2)で表される構造の他に、ヒドロキシを有する環を含まないモノマー(重合性化合物)由来の構造を有していてもよい。
 前記ヒドロキシを有する環を含まないモノマーとしては、単官能の化合物でも、2官能以上の化合物でもよく、例えば、(メタ)アクリル酸アルキルエステルなどの(メタ)アクリル化合物、エチレンやプロピレン、スチレン、酢酸ビニルなどのビニル化合物が挙げられる。
 なお、前記ヒドロキシを有する環を含まないモノマーが含まないのは、ヒドロキシを有する環であり、該モノマーは、環に結合していないヒドロキシやヒドロキシを有さない環を含んでいてもよい。
In addition to the structures represented by the formulas (1) and (2), the polymer may have a structure derived from a monomer (polymerizable compound) that does not include a hydroxy-containing ring.
The monomer that does not contain a ring having hydroxy may be a monofunctional compound or a bifunctional or higher compound. For example, (meth) acrylic compounds such as (meth) acrylic acid alkyl esters, ethylene, propylene, styrene, acetic acid And vinyl compounds such as vinyl.
In addition, it is a ring which has a hydroxy that the monomer which does not contain the ring which has the said hydroxy does not contain, and this monomer may contain the ring which is not couple | bonded with the ring and does not have a hydroxy.
 前記重合体が、ヒドロキシを有する環を含まないモノマー由来の構造を含む場合、耐熱性により優れる放熱部材を容易に得ることができる等の点から、前記重合体における、ヒドロキシを有する環を含まないモノマー由来の構造の含有量は、重合体100重量%に対し、好ましくは1~95重量%、より好ましくは5~80重量%である。 When the polymer contains a structure derived from a monomer that does not contain a ring having hydroxy, it does not contain a ring having hydroxy in the polymer from the viewpoint of easily obtaining a heat dissipation member that is superior in heat resistance. The content of the monomer-derived structure is preferably 1 to 95% by weight, more preferably 5 to 80% by weight, based on 100% by weight of the polymer.
 ヒドロキシを有する環を含まないモノマー由来の構造を有する重合体は従来公知の方法で合成でき、例えば、ビニルフェノールなどの式(1)や(2)で表される構造を誘導する化合物を重合する際に、ヒドロキシを有する環を含まないモノマーを用いて重合してもよく、式(1)や(2)で表される構造を有する化合物を合成した後、該化合物と、ヒドロキシを有する環を含まないモノマーとを重合してもよい。 A polymer having a structure derived from a monomer that does not contain a ring having a hydroxy group can be synthesized by a conventionally known method, for example, a compound that induces a structure represented by the formula (1) or (2) such as vinylphenol is polymerized. In this case, polymerization may be performed using a monomer that does not contain a ring having hydroxy, and after synthesizing a compound having a structure represented by formula (1) or (2), the compound and a ring having hydroxy are formed. You may superpose | polymerize with the monomer which does not contain.
 前記重合体としては市販品を用いてもよく、式(1)で表される構造を有する重合体としては、ポリビニルフェノール樹脂(丸善石油化学(株)製のマルカリンカーシリーズ等)が挙げられ、式(2)で表される構造を有する重合体としては、従来公知の、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、レゾール樹脂、クレゾールノボラック樹脂等のフェノール樹脂等が挙げられる。 Commercially available products may be used as the polymer, and examples of the polymer having a structure represented by the formula (1) include polyvinylphenol resins (such as Maruka Linker series manufactured by Maruzen Petrochemical Co., Ltd.). Examples of the polymer having the structure represented by the formula (2) include conventionally known phenol resins such as phenol novolac resins, alkylphenol novolac resins, resol resins, and cresol novolac resins.
 高熱伝導性および高耐熱性にバランスよく優れる放熱部材を容易に得ることができる等の点から、本組成物中の前記重合体の含有量は、好ましくは0.1~49重量%、より好ましくは0.5~30重量%である。 The content of the polymer in the composition is preferably 0.1 to 49% by weight, more preferably from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. Is 0.5 to 30% by weight.
<反応性化合物>
 前記反応性化合物としては、前記カップリング剤と結合でき、複合材B2を形成できる重合性の化合物であれば特に制限されない。
 本組成物に用いる反応性化合物は、1種でもよく、2種以上でもよい。
<Reactive compound>
The reactive compound is not particularly limited as long as it is a polymerizable compound that can be combined with the coupling agent and can form the composite material B2.
1 type may be sufficient as the reactive compound used for this composition, and 2 or more types may be sufficient as it.
 複合材B2の原料として用いる反応性化合物は、熱伝導性により優れる放熱部材を容易に得ることができる等の点から、2官能以上の反応性化合物であることが好ましく、3官能以上または4官能以上であってもよい。 The reactive compound used as a raw material for the composite material B2 is preferably a bifunctional or higher functional compound from the viewpoint of easily obtaining a heat radiating member that is superior in thermal conductivity. It may be the above.
 反応性化合物は、直線的な結合を形成できるため、その主鎖の両端に官能基を有する化合物であることが好ましく、また、前記カップリング剤は、オキシラニルまたはオキセタニルを含むことが好ましいため、これらの基と容易に反応することができる等の点から、ヒドロキシを有する反応性化合物であることがより好ましい。 The reactive compound is preferably a compound having a functional group at both ends of the main chain because it can form a linear bond, and the coupling agent preferably contains oxiranyl or oxetanyl. From the standpoint of being able to easily react with the group, a reactive compound having hydroxy is more preferable.
 前記ヒドロキシを有する反応性化合物としては、式(3)または(4)で表される化合物(以下それぞれ、「化合物(3)」および「化合物(4)」ともいう。)が好ましい。
 化合物(3)は式(3)で表される化合物を意味し、式(3)で表される化合物の少なくとも1種を意味することもある。以下、他の式で表される化合物も同様の表記をする。
As the reactive compound having hydroxy, a compound represented by the formula (3) or (4) (hereinafter also referred to as “compound (3)” and “compound (4)”) is preferable.
The compound (3) means a compound represented by the formula (3), and may mean at least one compound represented by the formula (3). Hereinafter, compounds represented by other formulas have the same notation.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)中、R1およびR2はそれぞれ独立に、水素、ハロゲン、または炭素数1~3のアルキルである。 In the formula (3), R 1 and R 2 are each independently hydrogen, halogen, or alkyl having 1 to 3 carbon atoms.
 式(3)中、mは2~4の整数であり、nは1~3の整数であり、pは2~4の整数であり、qは1~3の整数であり、m+n=5であり、p+q=5である。 In the formula (3), m is an integer of 2 to 4, n is an integer of 1 to 3, p is an integer of 2 to 4, q is an integer of 1 to 3, and m + n = 5 Yes, p + q = 5.
 式(3)中、Aは、単結合、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ドデカヒドロフルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、ビアダマンタンジイル、フェナントレン-2,7-ジイル、9,10-ジヒドロフェナントレン-2,7-ジイル、またはテトラデカヒドロフェナントレン-2,7-ジイルであり、
 炭素数1~10のアルキレンにおいて、少なくとも1つの水素はハロゲンで置き換えられてもよく、
 シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ドデカヒドロフルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、ビアダマンタンジイル、フェナントレン-2,7-ジイル、9,10-ジヒドロフェナントレン-2,7-ジイル、またはテトラデカヒドロフェナントレン-2,7-ジイルにおいて、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
In the formula (3), A represents a single bond, alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2, 7-diyl, dodecahydrofluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′ -(9-fluorenylidene) diphenylene, adamantanediyl, biadamantanediyl, phenanthrene-2,7-diyl, 9,10-dihydrophenanthrene-2,7-diyl, or tetradecahydrophenanthrene-2,7-diyl;
In the alkylene having 1 to 10 carbon atoms, at least one hydrogen may be replaced with a halogen,
Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, dodecahydrofluorene-2,7-diyl, bicyclo [2.2. 2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, 4,4 '-(9-fluorenylidene) diphenylene, adamantanediyl, biadamantanediyl, phenanthrene-2,7 In -diyl, 9,10-dihydrophenanthrene-2,7-diyl, or tetradecahydrophenanthrene-2,7-diyl, at least one —CH 2 — may be replaced by —O— and at least 1 -CH = may be replaced by -N =, where at least one hydrogen is halogen, carbon The alkyl having 1 to 10 carbon atoms or the alkyl halide having 1 to 10 carbon atoms may be substituted, and at least one —CH 2 — in the alkyl having 1 to 10 carbon atoms or the halogenated alkyl having 1 to 10 carbon atoms may be substituted. May be replaced by —O—, —CO—, —COO—, or —OCO—.
 なお、アダマンタンジイルとは、例えばアダマンタン-1,2-ジイル、アダマンタン-1,3-ジイル等の、アダマンタンの任意の二個の環炭素原子からそれぞれ一個の水素原子を除去することにより生成される二価基をいう。同様に、ビアダマンタンジイルとは、ビアダマンタンの任意の二個の環炭素原子からそれぞれ一個の水素原子を除去することにより生成される二価基をいう。 Adamantanediyl is produced by removing one hydrogen atom from any two ring carbon atoms of adamantane such as adamantane-1,2-diyl, adamantane-1,3-diyl, and the like. Refers to a divalent group. Similarly, biadamantanediyl refers to a divalent group generated by removing one hydrogen atom from any two ring carbon atoms of biadamantane.
 所望の物性を有し、合成容易性および取り扱い性に優れる化合物となる等の点から、式(3)中のAは、単結合、炭素数1~10のアルキレン、フェニレン、または、少なくとも1つの水素がハロゲンもしくはメチルで置き換えられたフェニレンであることが好ましい。
 Aが芳香環を含む化合物を用いると、耐熱性や熱伝導性により優れる放熱部材を容易に得ることができる傾向にあり、Aがアルキレンを含むと、得られる化合物の低融点化により反応性を向上させることができる。
A in formula (3) is a single bond, alkylene having 1 to 10 carbon atoms, phenylene, or at least one compound because the compound has desired physical properties and is easy to synthesize and handle. Preference is given to phenylene in which hydrogen is replaced by halogen or methyl.
When a compound containing an aromatic ring is used as A, there is a tendency that a heat radiating member that is superior in heat resistance and thermal conductivity tends to be obtained. When A contains alkylene, reactivity is reduced by lowering the melting point of the obtained compound. Can be improved.
 式(3)中、Z1およびZ2はそれぞれ独立に、単結合または炭素数1~22のアルキレンであり、
 該アルキレンにおいて、少なくとも1つの-CH2-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよい。
In formula (3), Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 22 carbon atoms,
In the alkylene, at least one —CH 2 — may be replaced with —O—, —S—, —CO—, —COO—, or —OCO—, and at least one hydrogen is replaced with a halogen. Also good.
 所望の物性を有し、合成容易性および取り扱い性に優れる化合物となる等の点から、好ましいZ1およびZ2はそれぞれ独立に、単結合、-(CH2a-、-O-、-O(CH2a-、-(CH2aO-、-O(CH2aO-、-COO-、-OCO-、-CH2CH2-COO-、-OCO-CH2CH2-、-OCF2-、または-CF2O-であり、該aが1~20の整数である。
 Z1およびZ2がアルキレンや-O-などの結合を含むと、得られる化合物の低融点化により反応性を向上させることができる。
Desirable Z 1 and Z 2 are each independently a single bond, — (CH 2 ) a —, —O—, — from the viewpoint of having a desired physical property, being a compound that is easy to synthesize and easy to handle. O (CH 2 ) a —, — (CH 2 ) a O—, —O (CH 2 ) a O—, —COO—, —OCO—, —CH 2 CH 2 —COO—, —OCO—CH 2 CH 2 —, —OCF 2 —, or —CF 2 O—, and a is an integer of 1 to 20.
When Z 1 and Z 2 contain a bond such as alkylene or —O—, the reactivity can be improved by lowering the melting point of the resulting compound.
 特に好ましい化合物(3)の例として、化合物(3-1)~(3-11)が挙げられる。 Particularly preferred examples of compound (3) include compounds (3-1) to (3-11).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(3-1)~(3-11)におけるR1、R2、m、n、p、q、Z1、およびZ2はそれぞれ独立に、式(3)と同義であり、R3~R63はそれぞれ独立に、水素、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルである。ただし、式(3-1)における-(C(R3)(R4))m-は、炭素数1~10のアルキレンまたは炭素数1~10のハロゲン化アルキレンである。 R 1 , R 2 , m, n, p, q, Z 1 , and Z 2 in formulas (3-1) to (3-11) are each independently synonymous with formula (3), and R 3 to Each R 63 is independently hydrogen, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons. In the formula (3-1), — (C (R 3 ) (R 4 )) m — represents an alkylene having 1 to 10 carbon atoms or a halogenated alkylene having 1 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(4)中、xは2以上の整数である。 In the formula (4), x is an integer of 2 or more.
 式(4)中、環Cは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、9,9-ジフェニルフルオレン、アダマンタン、およびビアダマンタンから選ばれる環から、少なくとも2つの水素を除いた基であり、
 これら基において、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、該炭素数1~3のアルキルまたは炭素数1~3のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
In formula (4), ring C is a group in which at least two hydrogens have been removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, 9,9-diphenylfluorene, adamantane, and biadamantane. ,
In these groups, at least one —CH 2 — may be replaced with —O—, at least one —CH═ may be replaced with —N═, and at least one hydrogen may be halogen, carbon It may be substituted with an alkyl having 1 to 3 or an alkyl halide having 1 to 3 carbon atoms, and at least one —CH 2 — in the alkyl having 1 to 3 carbon atoms or the alkyl halide having 1 to 3 carbon atoms may be substituted. May be replaced by —O—, —CO—, —COO—, or —OCO—.
 所望の物性を有し、合成容易性および取り扱い性に優れる化合物となる等の点から、式(4)中の環Cは、ベンゼン、ナフタレン、9,9-ジフェニルフルオレン、またはアダマンタンから選ばれる環から、少なくとも2つの水素を除いた基であることが好ましい。 The ring C in the formula (4) is a ring selected from benzene, naphthalene, 9,9-diphenylfluorene, or adamantane from the viewpoint that the compound has desired physical properties and is easy to synthesize and handle. From the above, a group in which at least two hydrogen atoms are removed is preferable.
 特に好ましい化合物(4)の例として、化合物(4-1)~(4-10)が挙げられる。 Particularly preferred examples of the compound (4) include compounds (4-1) to (4-10).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(4-1)~(4-10)におけるxはそれぞれ独立に、式(4)と同義である。
 なお、例えば、前記式(4-7)では、ヒドロキシは右下の環の部分にしか記載していないが、ヒドロキシの位置はこの部分に限定されず、左下の環等に結合していてもよく、複数の環に結合していてもよく、任意である。式(4-2)~(4-6)および式(4-10)でも同様である。
In the formulas (4-1) to (4-10), each x is independently synonymous with the formula (4).
For example, in the formula (4-7), hydroxy is described only in the lower right ring portion, but the position of hydroxy is not limited to this portion, and may be bonded to the lower left ring or the like. It may be bonded to a plurality of rings and is optional. The same applies to formulas (4-2) to (4-6) and formula (4-10).
 前記ヒドロキシを有する反応性化合物としては、熱伝導性により優れる放熱部材を得ることができる等の点から、液晶性の反応性化合物を用いてもよい。
 該液晶性の反応性化合物としては、式(5)で表される液晶化合物が好ましい。化合物(5)は、液晶骨格と2つ以上のヒドロキシとを有し、高い重合反応性、広い液晶相温度範囲、良好な混和性などを有する。この化合物(5)は他の液晶性の化合物や重合性の化合物などと混合するとき、均一になりやすい。
 なお、「液晶性の化合物」は、ネマチック相やスメクチック相などの液晶相を発現する化合物のことをいう。
As the hydroxy-containing reactive compound, a liquid crystalline reactive compound may be used from the viewpoint that a heat radiating member having better thermal conductivity can be obtained.
As the liquid crystalline reactive compound, a liquid crystal compound represented by the formula (5) is preferable. The compound (5) has a liquid crystal skeleton and two or more hydroxy groups, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (5) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
The “liquid crystalline compound” refers to a compound that exhibits a liquid crystal phase such as a nematic phase or a smectic phase.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 化合物(5)の環D、W、およびYを適宜選択することによって、液晶相発現領域などの物性を任意に調整することができ、目的の物性を有する化合物を得ることができる。 By appropriately selecting the rings D, W and Y of the compound (5), the physical properties such as the liquid crystal phase expression region can be arbitrarily adjusted, and a compound having the desired physical properties can be obtained.
 式(5)中、sは0~4の整数であり、tは1以上の整数であり、uは1以上の整数である。 In the formula (5), s is an integer of 0 to 4, t is an integer of 1 or more, and u is an integer of 1 or more.
 式(5)中、Yはそれぞれ独立に、単結合または炭素数1~20のアルキレンであり、好ましくは炭素数1~10のアルキレンである。これらの炭素数1~20のアルキレンにおいて、ヒドロキシと結合していない少なくとも1つの-CH2-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよい。
 Yが直鎖状アルキレンである場合、液晶相の温度範囲が広く、かつ粘度が小さい化合物となる傾向にある。一方、Yが分岐状アルキレンである場合、他の液晶性の化合物との相溶性がよい化合物となる傾向にある。
In formula (5), each Y is independently a single bond or alkylene having 1 to 20 carbon atoms, preferably alkylene having 1 to 10 carbon atoms. In these alkylene groups having 1 to 20 carbon atoms, at least one —CH 2 — not bonded to hydroxy is replaced with —O—, —S—, —CO—, —COO—, or —OCO—. Alternatively, at least one hydrogen may be replaced with a halogen.
When Y is a linear alkylene, it tends to be a compound having a wide liquid crystal phase temperature range and a low viscosity. On the other hand, when Y is branched alkylene, it tends to be a compound having good compatibility with other liquid crystal compounds.
 式(5)中、環Dはそれぞれ独立に、シクロヘキサン、シクロヘキセン、ベンゼン、ナフタレン、テトラヒドロナフタレン、フルオレン、ビシクロ[2.2.2]オクタン、およびビシクロ[3.1.0]ヘキサンから選ばれる環から、少なくとも2つの水素を除いた基であり、
 これらの基において、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、シアノ、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキル(前記ハロゲン化アルキルにおけるアルキルを含む)において、少なくとも1つの-CH2-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよい。
In formula (5), each ring D is independently a ring selected from cyclohexane, cyclohexene, benzene, naphthalene, tetrahydronaphthalene, fluorene, bicyclo [2.2.2] octane, and bicyclo [3.1.0] hexane. From which at least two hydrogens are removed,
In these groups, at least one —CH 2 — may be replaced with —O—, at least one —CH═ may be replaced with —N═, and at least one hydrogen is cyano, It may be replaced by halogen, alkyl having 1 to 10 carbon atoms, or alkyl halide having 1 to 10 carbon atoms, and in the alkyl (including alkyl in the halogenated alkyl), at least one —CH 2 — is It may be replaced by —O—, —CO—, —COO—, —OCO—, —CH═CH—, or —C≡C—.
 環Dの少なくとも1つが1,4-フェニレンの場合、配向秩序パラメーター(orientational order parameter)および磁化異方性が大きい化合物となる傾向にある。
 環Dの少なくとも2つが1,4-フェニレンの場合、液晶相の温度範囲が広く、さらに透明点が高い化合物となる傾向にある。
 環Dの少なくとも1つが、1,4-フェニレン環上の少なくとも1つの水素をシアノ、ハロゲン、-CF3、または-OCF3で置換した基である場合、誘電率異方性が高い化合物となる傾向にある。
 また、環Dの少なくとも1つが1,4-シクロヘキシレンである場合、透明点が高く、かつ粘度が小さい化合物となる傾向にある。
When at least one of the rings D is 1,4-phenylene, it tends to be a compound having a large orientational order parameter and magnetization anisotropy.
When at least two of the rings D are 1,4-phenylene, the liquid crystal phase has a wide temperature range and tends to be a compound having a high clearing point.
When at least one of the rings D is a group in which at least one hydrogen on the 1,4-phenylene ring is substituted with cyano, halogen, —CF 3 , or —OCF 3 , the compound has a high dielectric anisotropy. There is a tendency.
Further, when at least one of the rings D is 1,4-cyclohexylene, it tends to be a compound having a high clearing point and a low viscosity.
 好ましい環Dとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイル等が挙げられる。 Preferred ring D includes 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl, Naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7-diyl, 9,9-dimethylfluorene-2, - diyl, 9-ethyl-2,7-diyl, 9-fluoro-2,7-diyl, 9,9-difluoro-2,7-diyl, and the like.
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。 The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
 より好ましい環Dとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン等である。特に好ましい環Dは、1,4-シクロへキシレンおよび1,4-フェニレンである。環Dがこのような環である化合物を用いた場合、直線的な構造となるため、熱伝導性に優れる放熱部材を容易に得ることができる。 More preferable ring D is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene. 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like. Particularly preferred rings D are 1,4-cyclohexylene and 1,4-phenylene. When a compound in which the ring D is such a ring is used, a linear structure is obtained, so that a heat radiating member having excellent thermal conductivity can be easily obtained.
 式(5)中、Wはそれぞれ独立に、単結合または炭素数1~22のアルキレンであり、
 該アルキレンにおいて、少なくとも1つの-CH2-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、-N(O)=N-、または-C≡C-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよい。
In formula (5), each W is independently a single bond or alkylene having 1 to 22 carbon atoms,
In the alkylene, at least one —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH═CH—, —CF═CF—, —CH═N—. , —N═CH—, —N═N—, —N (O) ═N—, or —C≡C—, and at least one hydrogen may be replaced with a halogen.
 Wが、単結合、-(CH22-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、-CH=CH-、-CF=CF-、または-(CH24-である場合、特に、単結合、-(CH22-、-CF2O-、-OCF2-、-CH=CH-、または-(CH24-である場合、粘度が小さい化合物となる傾向にある。
 Wが、-CH=CH-、-CH=N-、-N=CH-、-N=N-、または-CF=CF-である場合、液晶相の温度範囲が広い化合物となる傾向にあり、炭素数4~10程度のアルキレンの場合、化合物の融点が低下する傾向にある。
W is a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═CH—, —CF═CF—, or — In the case of (CH 2 ) 4 —, in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH═CH—, or — (CH 2 ) 4 —. In the case, it tends to be a compound having a low viscosity.
When W is —CH═CH—, —CH═N—, —N═CH—, —N═N—, or —CF═CF—, the liquid crystal phase tends to have a wide temperature range. In the case of alkylene having 4 to 10 carbon atoms, the melting point of the compound tends to decrease.
 好ましいWとしては、単結合、-(CH22-、-(CF22-、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、-CH=CH-、-CF=CF-、-C≡C-、-(CH24-、-(CH23O-、-O(CH23-、-(CH22COO-、-OCO(CH22-、-CH=CH-COO-、-OCO-CH=CH-等が挙げられる。 Preferred W is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, — OCF 2 —, —CH═CH—, —CF═CF—, —C≡C—, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — ( CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH═CH—COO—, —OCO—CH═CH— and the like.
 より好ましいWとしては、単結合、-(CH22-、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、-CH=CH-、-C≡C-等が挙げられる。
 特に好ましいWは、単結合、-(CH22-、-COO-、または-OCO-である。
More preferable W is a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═ CH—, —C≡C— and the like can be mentioned.
Particularly preferred W is a single bond, — (CH 2 ) 2 —, —COO—, or —OCO—.
 化合物(5)が3つ以下の環を有するときは粘度が低く、3つ以上の環を有するときは透明点が高い傾向にある。なお、本明細書においては、基本的に6員環および6員環を含む縮合環等を環とみなし、たとえば3員環、4員環、および5員環単独のものは環とみなさない。また、ナフタレン環やフルオレン環などの縮合環は1つの環とみなす。 When the compound (5) has 3 or less rings, the viscosity is low, and when it has 3 or more rings, the clearing point tends to be high. In the present specification, basically, a 6-membered ring and a condensed ring including a 6-membered ring are regarded as a ring, and for example, a 3-membered ring, a 4-membered ring, and a 5-membered ring alone are not regarded as a ring. A condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
 化合物(5)は、光学活性であってもよいし、光学的に不活性でもよい。化合物(5)が光学活性である場合、該化合物(5)は不斉炭素を有する場合と軸不斉を有する場合がある。不斉炭素の立体配置はRでもSでもよい。不斉炭素は環D、W、Yのいずれに位置していてもよい。不斉炭素を有すると、他の成分との相溶性に優れる化合物となる傾向にある。化合物(5)が軸不斉を有する場合、ねじれ誘起力が大きい化合物となる傾向にある。また、施光性はいずれでも構わない。 Compound (5) may be optically active or optically inactive. When the compound (5) is optically active, the compound (5) may have an asymmetric carbon or an axial asymmetry. The configuration of the asymmetric carbon may be R or S. The asymmetric carbon may be located in any of rings D, W, and Y. When it has asymmetric carbon, it tends to be a compound having excellent compatibility with other components. When the compound (5) has axial asymmetry, it tends to be a compound having a large twist-inducing force. In addition, the light application property may be any.
 化合物(5)におけるYおよび-環D-(W-環D)S-W-環D-のより好ましい組み合わせの具体例を以下に示す。 Specific examples of more preferable combinations of Y and -ring D- (W-ring D) S -W-ring D- in compound (5) are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
・化合物(3)~(5)の合成方法
 化合物(3)~(5)は、有機合成化学における公知の手法を組み合わせることにより合成できる。出発物質に目的の末端基、環、および結合基を導入する方法は、たとえば、ホーベン-ワイル(Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart)、オーガニック・シンセシーズ(Organic Syntheses, John Wily & Sons, Inc.)、オーガニック・リアクションズ(Organic Reactions, John Wily & Sons Inc.)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。
Synthesis method of compounds (3) to (5) Compounds (3) to (5) can be synthesized by combining known methods in organic synthetic chemistry. Methods for introducing the desired end groups, rings, and linking groups into the starting material include, for example, Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John Books such as Wily & Sons, Inc., Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis, Pergamon Press, New Experimental Chemistry Course (Maruzen) It is described in.
[反応性化合物の含有量]
 反応性化合物の使用量は、該化合物が結合する対象(例:複合材B2ではカップリング剤B)1モルに対し、1モルか少し多くなるように使用することが好ましい。
 本組成物中のカップリング剤および反応性化合物の含有量は、高熱伝導性および高耐熱性にバランスよく優れる放熱部材を容易に得ることができる等の点から、好ましくは1.1~50重量%、より好ましくは2~30重量%である。
[Reactive compound content]
It is preferable to use the reactive compound so that the amount of the reactive compound is 1 mol or slightly more than 1 mol of the target to which the compound is bonded (eg, coupling agent B in the composite material B2).
The content of the coupling agent and the reactive compound in the composition is preferably 1.1 to 50% by weight from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. %, More preferably 2 to 30% by weight.
<その他の成分>
 本組成物は、本発明の効果を損なわない範囲で、さらに、硬化促進剤、フィラーに結合していない有機化合物(ただし、ヒドロキシを有する環を含む重合体以外の化合物である。)、重合開始剤、溶媒、安定剤、有機充填剤等を含んでいてもよい。
 これらのその他の成分は、それぞれ1種を用いてもよく、2種以上を用いてもよい。
<Other ingredients>
This composition is an organic compound not bonded to a curing accelerator and filler (however, it is a compound other than a polymer containing a ring having a hydroxy), and polymerization initiation, as long as the effects of the present invention are not impaired. Agents, solvents, stabilizers, organic fillers and the like may be included.
Each of these other components may be used alone or in combination of two or more.
 また、本組成物には、必要に応じて、本発明の効果を損なわない範囲で、カップリング剤が結合していないフィラー、第1および第2のフィラーと異なる第3のフィラーにカップリング剤Cを結合させた複合材C1、カップリング剤Cの一端に第1および第2のフィラーと異なる第3のフィラーが結合し、他端に反応性化合物が結合した複合材C2等を用いてもよい。
 これらのフィラー、複合材C1、複合材C2は、それぞれ1種を用いてもよく、2種以上を用いてもよい。これらのフィラーおよび第3のフィラーとしては、前記第1や第2のフィラーとして挙げたフィラーと同様のフィラー等が挙げられる。
 複合材C1やC2を用いない場合、放熱部材の物性に異方性が生じる場合があるが、複合材C1やC2を用いることにより、フィラーの配向性が緩和し、前記異方性を低減しやすくなる傾向にある。
In addition, in the present composition, the coupling agent is added to a third filler different from the first filler and the second filler, which are not bound to the coupling agent, as long as the effects of the present invention are not impaired. Even if a composite material C1 in which C is bonded, a composite material C2 in which a third filler different from the first and second fillers is bonded to one end of the coupling agent C, and a reactive compound is bonded to the other end may be used. Good.
Each of these fillers, composite material C1, and composite material C2 may be used alone or in combination of two or more. Examples of the filler and the third filler include fillers similar to the fillers mentioned as the first and second fillers.
When composite materials C1 and C2 are not used, anisotropy may occur in the physical properties of the heat dissipation member. However, by using composite materials C1 and C2, the orientation of the filler is relaxed and the anisotropy is reduced. It tends to be easier.
[硬化促進剤]
 本組成物は、カップリング剤と重合体との反応、カップリング剤と反応性化合物との反応などを促進するため、具体的には、オキシラニルまたはオキセタニルとヒドロキシとの反応を促進するため、硬化促進剤を用いることが好ましい。
 このような硬化促進剤としては従来公知の化合物、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウム・トリメリテート、エポキシ-イミダゾールアダクト等のイミダゾール化合物またはその誘導体、トリフェニルホスフィン、テトラフェニルホスホニウム-テトラフェニルボレート、トリフェニルホスホニウム-トリフェニルボラン、ジフェニルホスフィニルハイドロキノン等のリン系化合物、1,8-ジアザ-ビシクロ[5.4.0]-ウンデセン-7、1,5-ジアザ-ビシクロ[4.3.0]-ノネン-5等の三級アミンまたはその三級アミン塩が挙げられる。
[Curing accelerator]
In order to promote the reaction between the coupling agent and the polymer, the reaction between the coupling agent and the reactive compound, and the like, specifically, the composition is cured to promote the reaction between oxiranyl or oxetanyl and hydroxy. It is preferable to use an accelerator.
Examples of such curing accelerators include conventionally known compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate. Imidazole compounds such as epoxy-imidazole adducts or derivatives thereof, phosphorus compounds such as triphenylphosphine, tetraphenylphosphonium-tetraphenylborate, triphenylphosphonium-triphenylborane, diphenylphosphinylhydroquinone, 1,8-diaza- And tertiary amines such as bicyclo [5.4.0] -undecene-7,1,5-diaza-bicyclo [4.3.0] -nonene-5 or tertiary amine salts thereof.
[フィラーに結合していない有機化合物]
 前記フィラーに結合していない有機化合物としては、重合性化合物、非重合性化合物、高分子化合物等が挙げられ、重合性化合物(以下「未結合重合性化合物」ともいう。)、非重合性の液晶性化合物、高分子化合物等が好ましい。
 なお、前記フィラーに結合していない有機化合物とは、本組成物に配合する際に、フィラーに結合していない有機成分のことをいい、放熱部材中では、フィラーに結合している場合がある。
 フィラーの粒径を大きくするにつれて、放熱部材中の空隙率が高くなる場合があるが、フィラーに結合していない有機化合物を用いることで、その空隙を減少させることができ、熱伝導性や水蒸気遮断性能などにより優れる放熱部材を容易に得ることができる傾向にある。
[Organic compounds not bound to filler]
Examples of the organic compound not bonded to the filler include a polymerizable compound, a non-polymerizable compound, a polymer compound, and the like. A polymerizable compound (hereinafter also referred to as “unbonded polymerizable compound”), a non-polymerizable compound. A liquid crystal compound, a polymer compound and the like are preferable.
The organic compound that is not bonded to the filler refers to an organic component that is not bonded to the filler when blended in the composition, and may be bonded to the filler in the heat dissipation member. .
As the particle size of the filler is increased, the void ratio in the heat dissipation member may increase. However, by using an organic compound that is not bonded to the filler, the void can be reduced, and thermal conductivity and water vapor can be reduced. There exists a tendency which can obtain easily the heat radiating member which is excellent by interruption | blocking performance.
 フィラーに結合していない有機化合物の使用量は、まず、該化合物を使用しないで放熱部材を作製し、得られた放熱部材に空隙が存在した場合、その空隙量を測定して、その空隙を埋められる量とすることが望ましい。 The amount of the organic compound not bonded to the filler is as follows. First, when a heat radiating member is prepared without using the compound, and there is a void in the obtained heat radiating member, the amount of the void is measured, It is desirable that the amount be filled.
・未結合重合性化合物
 前記未結合重合性化合物としては特に制限されず、前記複合材B2を形成する反応性化合物の欄で挙げた化合物と同様の化合物であってもよく、液晶性を有さない化合物でも、液晶性を有する化合物でもよい。該未結合重合性化合物は、単官能でもよく、2官能以上でもよい。
 前記未結合重合性化合物としては、本組成物の成形性および機械的強度を低下させない化合物が好ましく、該化合物としては、例えば、エポキシ樹脂が挙げられる。
 前記液晶性を有さない重合性化合物としては、ビニル誘導体、スチレン誘導体、(メタ)アクリル酸誘導体、ソルビン酸誘導体、フマル酸誘導体、イタコン酸誘導体等が挙げられる。
Unbonded polymerizable compound The unbonded polymerizable compound is not particularly limited, and may be the same compound as the compound listed in the column of the reactive compound forming the composite material B2, and has liquid crystallinity. Or a compound having liquid crystallinity. The unbonded polymerizable compound may be monofunctional or bifunctional or more.
The unbonded polymerizable compound is preferably a compound that does not reduce the moldability and mechanical strength of the composition, and examples of the compound include an epoxy resin.
Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, and itaconic acid derivatives.
・非重合性の液晶性化合物
 前記非重合性の液晶性化合物としては特に制限されないが、液晶性化合物のデータベースであるリクリスト(LiqCryst, LCI Publisher GmbH, Hamburg, Germany)などに記載されている化合物等が挙げられる。これらの中でも、放熱部材が使用される温度領域で、流動しないような特性を有する化合物が好ましい。
 前記非重合性の液晶性化合物を含有する組成物を重合することで、例えば、該液晶性化合物と、前記複合材B2を形成する反応性化合物の重合体との複合材料を得ることができる。この複合材料の一態様では、高分子分散型液晶のように、高分子網目中に非重合性の液晶性化合物が存在するようにできる。
・ Non-polymerizable liquid crystal compound The non-polymerizable liquid crystal compound is not particularly limited, but is a compound described in a list of liquid crystal compounds (LiqCryst, LCI Publisher GmbH, Hamburg, Germany), etc. Is mentioned. Among these, the compound which has the characteristic which does not flow in the temperature range where a heat radiating member is used is preferable.
By polymerizing the composition containing the non-polymerizable liquid crystal compound, for example, a composite material of the liquid crystal compound and a polymer of a reactive compound forming the composite material B2 can be obtained. In one embodiment of this composite material, a non-polymerizable liquid crystal compound can be present in the polymer network, such as a polymer-dispersed liquid crystal.
 前記非重合性の液晶性化合物を用いる場合には、本組成物を硬化させた後、生じた空隙に、等方相を示す温度領域で、非重合性の液晶性化合物を注入してもよく、非重合性の液晶性化合物を含む本組成物を重合してもよい。 In the case of using the non-polymerizable liquid crystal compound, after curing the composition, the non-polymerizable liquid crystal compound may be injected into the generated void in a temperature range showing an isotropic phase. The present composition containing a non-polymerizable liquid crystal compound may be polymerized.
・高分子化合物
 前記高分子化合物は、前記ヒドロキシを有する環を含む重合体以外の化合物であればよいが、本組成物の成形性および機械的強度を低下させない化合物が好ましい。この高分子化合物は、前記複合材と反応しない高分子化合物であることが好ましく、具体的には、ポリオレフィン系樹脂、ポリビニル系樹脂、ポリアミド系樹脂、ポリイタコン酸系樹脂等が挙げられる。
-High molecular compound Although the said high molecular compound should just be compounds other than the polymer containing the ring which has the said hydroxy, the compound which does not reduce the moldability and mechanical strength of this composition is preferable. The polymer compound is preferably a polymer compound that does not react with the composite material, and specific examples thereof include polyolefin resins, polyvinyl resins, polyamide resins, and polyitaconic acid resins.
[重合開始剤]
 前記重合開始剤は、前記未結合重合性化合物の種類等に応じて適宜選択すればよく、具体的には、光ラジカル重合開始剤、光カチオン重合開始剤、熱重合開始剤等が挙げられるが、熱重合開始剤が好ましい。
 熱重合開始剤としては、好ましくは、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド(DTBP)、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)等が挙げられる。
[Polymerization initiator]
The polymerization initiator may be appropriately selected according to the type of the unbonded polymerizable compound, and specific examples thereof include a photo radical polymerization initiator, a photo cationic polymerization initiator, and a thermal polymerization initiator. A thermal polymerization initiator is preferred.
The thermal polymerization initiator is preferably benzoyl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxypivalate, di-t-butyl peroxide (DTBP). ), T-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile (ACN) and the like.
[溶媒]
 本組成物を重合させる必要がある場合、該重合は溶媒中で行っても、無溶媒で行ってもよい。前者の場合や、本組成物を基板上等に塗布する場合には、本組成物は溶媒を含んでいてもよい。
 前記溶媒としては、好ましくは、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、プロピレングリコールメチルエーテルアセテート(PGMEA)等が挙げられる。
 溶媒の使用量は特に制限されず、重合効率、溶媒コスト、エネルギーコスト等を考慮して、個々のケースごとに決定すればよい。
[solvent]
When the composition needs to be polymerized, the polymerization may be performed in a solvent or without a solvent. In the former case or when the present composition is applied onto a substrate or the like, the present composition may contain a solvent.
The solvent is preferably benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, γ-butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, cyclohexane, methylcyclohexane, cyclopenta Non-cyclohexanone, propylene glycol methyl ether acetate (PGMEA), etc. are mentioned.
The amount of solvent used is not particularly limited, and may be determined for each individual case in consideration of polymerization efficiency, solvent cost, energy cost, and the like.
[安定剤]
 前記安定剤を用いることで、本組成物の取扱いがより容易になる傾向にある。
 前記安定剤としては、公知の安定剤を制限なく使用でき、例えば、ハイドロキノン、4-エトキシフェノール、3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)が挙げられる。
[Stabilizer]
By using the stabilizer, the composition tends to be easier to handle.
As the stabilizer, known stabilizers can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol, and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
≪組成物の製造方法≫
 本組成物の製造方法(以下「本方法」ともいう。)は、第1のフィラーとカップリング剤Aとを結合させて複合材A1を得る工程aと、工程aで得られた複合材A1、および、ヒドロキシを有する環を含む重合体を混合する工程c1とを含む。
≪Method for producing composition≫
The method for producing the present composition (hereinafter also referred to as “the present method”) includes a step a in which a first filler and a coupling agent A are combined to obtain a composite material A1, and a composite material A1 obtained in step a. And c1 of mixing a polymer containing a ring having hydroxy.
 また、本方法は、第1のフィラーとカップリング剤Aとを結合させて複合材A1を得る工程aと、
 第2のフィラーとカップリング剤Bとを結合させて複合材B1を得る工程b1、または、
 第2のフィラーとカップリング剤Bの一端とを結合させ、次いで該カップリング剤Bの他端を反応性化合物と結合させることで、もしくは、カップリング剤Bの一端と反応性化合物とを結合させ、次いで該カップリング剤Bの他端を第2のフィラーと結合させることで複合材B2を得る工程b2と、
 工程aで得られた複合材A1と、工程b1で得られた複合材B1または工程b2で得られた複合材B2と、ヒドロキシを有する環を含む重合体とを混合する工程c2と
を含んでもよい。
In addition, the method includes the step a of combining the first filler and the coupling agent A to obtain the composite material A1,
A step b1 of obtaining a composite material B1 by bonding the second filler and the coupling agent B, or
By binding the second filler and one end of the coupling agent B and then binding the other end of the coupling agent B to the reactive compound, or binding one end of the coupling agent B and the reactive compound And then b2 to obtain the composite material B2 by bonding the other end of the coupling agent B to the second filler,
Including the composite material A1 obtained in the step a, the composite material B1 obtained in the step b1 or the composite material B2 obtained in the step b2, and the step c2 of mixing a polymer containing a hydroxy-containing ring. Good.
・フィラーとカップリング剤とを結合させる工程
 前記フィラーとカップリング剤とを結合させる工程としては特に制限されず、公知の方法を用いることができる。この工程により、複合材A1やB1等を得ることができる。
-The process of combining a filler and a coupling agent It does not restrict | limit especially as a process of combining the said filler and a coupling agent, A well-known method can be used. By this step, the composite materials A1 and B1 can be obtained.
 前記フィラーとカップリング剤とを結合させる工程としては、以下の方法が好ましい。
 フィラーとカップリング剤とを溶媒の存在下で混合し、スターラー等を用いて撹拌した後、乾燥する。溶媒乾燥後に、真空乾燥機等を用いて、真空条件下等で保持する。必要により、前記保持した後に溶媒を加え、超音波処理および遠心分離等を行うことで、固形分に付着している(結合していない)カップリング剤を遊離除去する精製工程を行ってもよい。この精製工程は、複数回行ってもよい。さらにオーブン等を用いて精製後の複合材を乾燥させてもよい。
As the step of bonding the filler and the coupling agent, the following method is preferable.
The filler and the coupling agent are mixed in the presence of a solvent, stirred using a stirrer or the like, and then dried. After the solvent is dried, it is kept under a vacuum condition using a vacuum dryer or the like. If necessary, a purification step may be performed to release and remove the coupling agent adhering to solid content (not bound) by adding a solvent after the holding, sonication, centrifugation, etc. . This purification step may be performed a plurality of times. Further, the purified composite material may be dried using an oven or the like.
 前記溶媒としては特に制限されないが、カップリング剤を溶解可能な溶媒であることが好ましく、フィラーを分散可能な溶媒であることが好ましい。
 フィラーとカップリング剤とを混合、攪拌する時間としては特に制限されず、例えば、1分~24時間が挙げられる。
Although it does not restrict | limit especially as said solvent, It is preferable that it is a solvent which can melt | dissolve a coupling agent, and it is preferable that it is a solvent which can disperse | distribute a filler.
The time for mixing and stirring the filler and the coupling agent is not particularly limited, and examples thereof include 1 minute to 24 hours.
 前記乾燥条件(例:乾燥時間、乾燥温度、乾燥雰囲気)は、用いる溶媒が乾燥すれば特に制限されず、用いる溶媒に応じて適宜設定すればよい。
 前記真空条件下等で保持する際における、保持温度は、好ましくは20~250℃であり、保持時間は1分~24時間である。
The drying conditions (eg, drying time, drying temperature, drying atmosphere) are not particularly limited as long as the solvent to be used is dried, and may be appropriately set according to the solvent to be used.
The holding temperature at the time of holding under the vacuum condition is preferably 20 to 250 ° C., and the holding time is 1 minute to 24 hours.
・カップリング剤と反応性化合物とを結合させる工程
 前記カップリング剤(フィラーと結合したカップリング剤を含む)と反応性化合物とを結合させる工程としては特に制限されず、公知の方法を用いることができる。この工程において、フィラーと結合したカップリング剤を用いる場合には、複合材B2等を得ることができる。
The step of binding the coupling agent and the reactive compound The step of binding the coupling agent (including the coupling agent bound to the filler) and the reactive compound is not particularly limited, and a known method is used. Can do. In this step, when a coupling agent combined with a filler is used, a composite material B2 or the like can be obtained.
 前記カップリング剤と反応性化合物とを結合させる工程としては、以下の方法が好ましい。
 カップリング剤と反応性化合物とを、メノウ乳鉢やミキサー等を用いて混合した後、2軸ロール等を用いて混練する。その後、必要により、超音波処理および遠心分離等によって、分離精製(カップリング剤に結合していない反応性化合物を除去)する。
As the step of bonding the coupling agent and the reactive compound, the following method is preferable.
The coupling agent and the reactive compound are mixed using an agate mortar or a mixer and then kneaded using a biaxial roll or the like. Thereafter, if necessary, separation and purification (removal of the reactive compound not bound to the coupling agent) is performed by sonication, centrifugation, or the like.
・混合工程
 前記混合工程(工程c1やc2)としては特に制限されないが、例えば、以下の方法が挙げられる。
 工程c1およびc2では、得られる放熱部材中のフィラー量が前記範囲となるように量り取り、工程c2では、さらに、第1のフィラーと第2のフィラーとの混合比が下記範囲になるように量り取り、メノウ乳鉢等で混合する。その後、2軸ロール等を用いて混合する。
-Mixing process Although it does not restrict | limit especially as said mixing process (process c1 and c2), For example, the following method is mentioned.
In steps c1 and c2, the amount of filler in the obtained heat radiating member is weighed so as to be in the above range, and in step c2, the mixing ratio of the first filler and the second filler is further in the following range. Weigh out and mix with agate mortar. Then, it mixes using a biaxial roll etc.
 前記第1のフィラーと第2のフィラーの混合比は、所望の反応が十分に起こるように、各成分の反応点となる反応性の基の数に応じて決定すればよいが、具体的には、重量比で、好ましくは1:0.01~1:30、より好ましくは1:0.1~1:10である。 The mixing ratio of the first filler and the second filler may be determined according to the number of reactive groups serving as reaction points of each component so that a desired reaction occurs sufficiently. Is preferably in a weight ratio of 1: 0.01 to 1:30, more preferably 1: 0.1 to 1:10.
≪放熱部材≫
 本発明の一実施形態に係る放熱部材(以下「本放熱部材」ともいう。)は、本組成物を硬化させて得られる。
 本放熱部材は、高熱伝導性および高耐熱性にバランスよく優れ、化学的安定性、硬度、および機械的強度などに優れている。なお、前記機械的強度とは、ヤング率、引張強度、引裂き強度、曲げ強度、曲げ弾性率、衝撃強度などである。
 本放熱部材は、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱フィルム、放熱塗膜、放熱接着剤、放熱成形品などに適している。
≪Heat dissipation material≫
A heat radiating member according to an embodiment of the present invention (hereinafter also referred to as “the present heat radiating member”) is obtained by curing the present composition.
This heat radiating member is excellent in balance with high thermal conductivity and high heat resistance, and excellent in chemical stability, hardness, mechanical strength, and the like. The mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, bending elastic modulus, impact strength, and the like.
This heat radiating member is suitable for a heat radiating substrate, a heat radiating plate (planar heat sink), a heat radiating sheet, a heat radiating film, a heat radiating coating film, a heat radiating adhesive, a heat radiating molded product, and the like.
 本放熱部材の形状、大きさ、厚み等は特に制限されず、所望の用途に応じて適宜選択すればよい。
 本放熱部材の形状としては、シート、フィルム、薄膜などの板状体、所望の用途に応じた成形体(例:筐体)等が挙げられる。
 本放熱部材の厚みは2μm以上であり、好ましくは5μm~10cm、より好ましくは10μm~1cm、特に好ましくは20μm~1mmである。厚みは、用途に応じて適宜変更すればよい。
The shape, size, thickness and the like of the heat radiating member are not particularly limited, and may be appropriately selected according to a desired application.
Examples of the shape of the heat radiating member include a plate-like body such as a sheet, a film, and a thin film, and a molded body (eg, a housing) according to a desired application.
The thickness of the heat radiating member is 2 μm or more, preferably 5 μm to 10 cm, more preferably 10 μm to 1 cm, and particularly preferably 20 μm to 1 mm. What is necessary is just to change thickness suitably according to a use.
 本放熱部材の熱伝導性は、その厚み方向の熱伝導率により評価することができる。
 熱伝導性に優れ、放熱板などに好適に使用できる等の点から、本放熱部材の垂直方向の熱伝導率は、好ましくは2.2W/(m・K)以上、より好ましくは5W/(m・K)以上、特に好ましくは8W/(m・K)以上である。
 該熱伝導率は、具体的には実施例に記載の方法で測定できる。
The thermal conductivity of the heat dissipation member can be evaluated by the thermal conductivity in the thickness direction.
The thermal conductivity in the vertical direction of the heat radiating member is preferably 2.2 W / (m · K) or more, more preferably 5 W / (from the viewpoint that it has excellent thermal conductivity and can be suitably used for a heat radiating plate. m · K) or more, particularly preferably 8 W / (m · K) or more.
Specifically, the thermal conductivity can be measured by the method described in Examples.
 本放熱部材の耐熱性は、5%重量減少温度の測定により評価することができる。
 耐熱性に優れ、高パワー向け放熱部材への用途に好適に使用できる等の点から、本放熱部材の5%重量減少温度は、好ましくは280℃以上、より好ましくは300℃以上、特に好ましくは320℃以上である。
 該5%重量減少温度は、具体的には実施例に記載の方法で測定できる。
The heat resistance of the heat dissipating member can be evaluated by measuring a 5% weight loss temperature.
The 5% weight reduction temperature of the heat radiating member is preferably 280 ° C. or higher, more preferably 300 ° C. or higher, and particularly preferably, from the viewpoint that it has excellent heat resistance and can be suitably used for a heat radiating member for high power. 320 ° C. or higher.
The 5% weight loss temperature can be specifically measured by the method described in Examples.
 本発放熱部材の熱膨張率は、50~200℃の範囲での平面方向(膜厚方向と略垂直方向)における伸び率により評価することができる。
 熱膨張しにくく、発熱する金属基板へのダイアタッチメントなどに好適に使用できる等の点から、本放熱部材の熱膨張率は、好ましくは-20~50ppm/K、より好ましくは-5~20ppm/Kである。
 該熱膨張率は、具体的には実施例に記載の方法で測定できる。
The thermal expansion coefficient of the heat radiating member can be evaluated by the elongation ratio in the plane direction (approximately perpendicular to the film thickness direction) in the range of 50 to 200 ° C.
The thermal expansion coefficient of the heat dissipating member is preferably −20 to 50 ppm / K, more preferably −5 to 20 ppm / K from the viewpoint that it is difficult to thermally expand and can be suitably used for die attachment to a metal substrate that generates heat. K.
The coefficient of thermal expansion can be specifically measured by the method described in the examples.
 吸湿性が低く、パッケージ内の基板材料などに好適に使用できる等の点から、本放熱部材の吸湿率は、好ましくは1.5%以下である。
 該吸湿率は、具体的には実施例に記載の方法で測定できる。
The moisture absorption rate of the heat dissipating member is preferably 1.5% or less from the viewpoint that it has low hygroscopicity and can be suitably used as a substrate material in a package.
The moisture absorption rate can be specifically measured by the method described in Examples.
[放熱部材の製造方法]
 本放熱部材は、本組成物を硬化させて得ることができ、必要により、成形してもよい。
[Method of manufacturing heat dissipation member]
The heat radiating member can be obtained by curing the composition, and may be molded if necessary.
 前記硬化の方法としては特に制限されず、本組成物が硬化すれば特に制限されないが、熱硬化が好ましい。
 該硬化の際の温度としては、例えば室温~350℃、好ましくは室温~250℃、より好ましくは50~200℃であり、硬化時間は、例えば5秒~50時間、好ましくは1分~30時間、より好ましくは5分~20時間である。
 熱をかけて硬化した後は、応力ひずみなど抑制するために徐冷することが好ましい。また、加熱を2回以上行い、応力ひずみなどを緩和させてもよい。
The curing method is not particularly limited and is not particularly limited as long as the present composition is cured. Thermal curing is preferable.
The curing temperature is, for example, room temperature to 350 ° C., preferably room temperature to 250 ° C., more preferably 50 to 200 ° C., and the curing time is, for example, 5 seconds to 50 hours, preferably 1 minute to 30 hours. More preferably, it is 5 minutes to 20 hours.
After curing by applying heat, it is preferable to cool slowly to suppress stress strain and the like. Further, heating may be performed twice or more to relieve stress strain and the like.
 フィルム状の放熱部材を製造する方法としては、以下の方法が好ましい。
 本組成物を所定の板中に挟み、圧縮成形機を用いて加熱加圧し、圧縮成形により配向・硬化成形する。さらに、オーブン等を用いて後硬化を行う。
 前記加熱時の温度や後硬化の温度としては、前記硬化の際の温度と同様の温度が挙げられ、加圧時の圧力としては、基本的には高い方が好ましく、具体的には、好ましくは1~300MPa、より好ましくは10~300MPaである。
As a method for producing a film-like heat radiation member, the following method is preferable.
The composition is sandwiched between predetermined plates, heated and pressurized using a compression molding machine, and oriented / cured by compression molding. Further, post-curing is performed using an oven or the like.
Examples of the temperature at the time of heating and the temperature of post-curing include the same temperatures as those at the time of curing, and the pressure at the time of pressurization is basically preferably higher, specifically, Is 1 to 300 MPa, more preferably 10 to 300 MPa.
 フィルム状の放熱部材を製造する方法としては、前述の方法の他に、溶媒を含む本組成物を用いた以下の方法も好ましい。
 溶媒を含む本組成物を基板等に塗布した後、溶媒を除去してから光または熱により重合する。その後、適当な温度に加温して熱硬化により後処理を行う。
As a method for producing a film-like heat radiation member, in addition to the above-described method, the following method using the present composition containing a solvent is also preferable.
After this composition containing a solvent is applied to a substrate or the like, the solvent is removed, and then polymerization is performed by light or heat. Then, it heats to suitable temperature and performs a post-process by thermosetting.
 前記塗布の方法としては、例えば、スピンコート、ロールコート、カテンコート、フローコート、プリント、マイクログラビアコート、グラビアコート、ワイヤーバーコート、ディップコート、スプレーコート、メニスカスコートが挙げられる。 Examples of the coating method include spin coating, roll coating, caten coating, flow coating, printing, micro gravure coating, gravure coating, wire bar coating, dip coating, spray coating, and meniscus coating.
 溶媒の乾燥除去は、例えば、室温での風乾、ホットプレートや乾燥炉での乾燥、温風や熱風などの吹き付けにより行うことができる。
 溶媒除去の条件は特に限定されず、溶媒が概ね除去され、塗膜の流動性がなくなるまで乾燥すればよい。
The solvent can be removed by drying, for example, by air drying at room temperature, drying in a hot plate or a drying furnace, or blowing hot air or hot air.
The conditions for removing the solvent are not particularly limited, and it may be dried until the solvent is almost removed and the fluidity of the coating film is lost.
 前記基板としては、例えば、銅、アルミニウム、鉄などの金属基板;シリコン、窒化ケイ素、窒化ガリウム、酸化亜鉛などの無機半導体基板;アルカリガラス、ホウ珪酸ガラス、フリントガラスなどのガラス基板、アルミナ、窒化アルミニウムなどの無機絶縁基板;ポリイミド、ポリアミドイミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルホン、ポリスルホン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、セルロース、トリアセチルセルロースまたはその部分鹸化物、エポキシ樹脂、フェノール樹脂、ノルボルネン樹脂などの樹脂製基板が挙げられる。 Examples of the substrate include metal substrates such as copper, aluminum, and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride, and zinc oxide; glass substrates such as alkali glass, borosilicate glass, and flint glass; alumina, and nitride. Inorganic insulating substrates such as aluminum; polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene Naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, tria Chill cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and resin substrate such as a norbornene resin.
 前記樹脂製基板は、未延伸フィルムでも、一軸延伸フィルムでも、二軸延伸フィルムであってもよい。
 前記樹脂製基板は、事前に鹸化処理、コロナ処理、プラズマ処理などの表面処理を施してもよい。また、これらの樹脂製基板上には、本組成物に含まれ得る溶媒に侵されないような保護層を設けておいてもよい。保護層として用いられる材料としては、例えばポリビニルアルコールが挙げられる。さらに、保護層と基板の密着性を高めるためにアンカーコート層を設けておいてもよい。このようなアンカーコート層は保護層と基板の密着性を高める層であれば、無機系および有機系のいずれの材料層であってもよい。
The resin substrate may be an unstretched film, a uniaxially stretched film, or a biaxially stretched film.
The resin substrate may be subjected to surface treatment such as saponification treatment, corona treatment, or plasma treatment in advance. Moreover, you may provide the protective layer which is not attacked by the solvent which can be contained in this composition on these resin-made board | substrates. Examples of the material used as the protective layer include polyvinyl alcohol. Furthermore, an anchor coat layer may be provided in order to improve the adhesion between the protective layer and the substrate. As long as such an anchor coat layer is a layer that improves the adhesion between the protective layer and the substrate, it may be an inorganic or organic material layer.
≪電子機器≫
 本発明の一実施形態に係る電子機器は、本放熱部材と、発熱部を有する電子デバイスとを備え、本放熱部材が前記発熱部に接触するように前記電子デバイスに配置された電子機器である。
 このような電子機器によれば、高熱伝導性を有する本放熱部材により、電子デバイスに生じた熱を効率よく放熱することができる。
≪Electronic equipment≫
An electronic apparatus according to an embodiment of the present invention is an electronic apparatus that includes the heat dissipating member and an electronic device having a heat generating part, and is disposed in the electronic device so that the heat dissipating member contacts the heat generating part. .
According to such an electronic apparatus, heat generated in the electronic device can be efficiently radiated by the heat radiating member having high thermal conductivity.
 前記電子デバイスとしては、例えば、半導体素子が挙げられる。特に、半導体素子の中でも高電力のため、より効率的な放熱機構を必要とする絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)が好適な例として挙げられる。IGBTは半導体素子のひとつで、MOSFETをゲート部に組み込んだバイポーラトランジスタであり、電力制御の用途等で使用される。
 IGBTを備えた電子機器としては、無停電電源装置、交流電動機の可変電圧可変周波数制御装置、鉄道車両の制御装置、ハイブリッドカー、エレクトリックカーなどの電動輸送機器、IH調理器などが挙げられる。
Examples of the electronic device include a semiconductor element. In particular, an insulated gate bipolar transistor (IGBT) that requires a more efficient heat dissipation mechanism due to high power among semiconductor elements is a suitable example. An IGBT is one of semiconductor elements and is a bipolar transistor in which a MOSFET is incorporated in a gate portion, and is used for power control applications and the like.
Examples of the electronic device provided with the IGBT include an uninterruptible power supply, an AC motor variable voltage variable frequency control device, a railway vehicle control device, an electric transportation device such as a hybrid car and an electric car, and an IH cooker.
 以下、実施例を用いて本発明を詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。
 以下の実施例で用いた材料は次のとおりである。
Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the contents described in the following examples.
The materials used in the following examples are as follows.
<フィラー>
・「窒化ホウ素粒子」:h-BN粒子、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製、PolarTherm PTX-25(商品名)
<Filler>
・ "Boron nitride particles": h-BN particles, manufactured by Momentive Performance Materials Japan (same), PolarTherm PTX-25 (trade name)
<シランカップリング剤>
・「サイラエースS510」:商品名、3-グリシドキシプロピルトリメトキシシラン、JNC(株)製
・「サイラエースS320」:商品名、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、JNC(株)製
<Silane coupling agent>
“Syra Ace S510”: trade name, 3-glycidoxypropyltrimethoxysilane, manufactured by JNC Corporation “Syra Ace S320”: trade name, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, Made by JNC Corporation
<ヒドロキシを有する環を含む重合体>
・「マルカリンカーS-2P」:商品名、ポリパラビニルフェノール、丸善石油化学(株)製
・「マルカリンカーCMM」:商品名、4-ビニルフェノール/メチルメタクリレート共重合体、丸善石油化学(株)製
・「SP1010」:商品名、ノボラック型フェノール樹脂、旭有機材工業(株)製
<Polymer including ring having hydroxy>
"Marcalinker S-2P": trade name, polyparavinylphenol, manufactured by Maruzen Petrochemical Co., Ltd. "Marcalinker CMM": trade name, 4-vinylphenol / methyl methacrylate copolymer, Maruzen Petrochemical Co., Ltd. • “SP1010”: trade name, novolac type phenolic resin, manufactured by Asahi Organic Materials Co., Ltd.
<反応性化合物>
・「ビスフェノールA」:4,4’-(プロパン-2,2-ジイル)ジフェノール、和光純薬工業(株)製
<Reactive compound>
・ "Bisphenol A": 4,4 '-(propane-2,2-diyl) diphenol, manufactured by Wako Pure Chemical Industries, Ltd.
<ヒドロキシを有する環を含まない重合体>
・「jER807」:商品名、エポキシ樹脂、三菱ケミカル(株)製
・「jER828」:商品名、エポキシ樹脂、三菱ケミカル(株)製
<Polymer not containing ring having hydroxy>
"JER807": trade name, epoxy resin, manufactured by Mitsubishi Chemical Corporation "jER828": trade name, epoxy resin, manufactured by Mitsubishi Chemical Corporation
<硬化促進剤>
・「硬化促進剤」:2-エチル-4-メチルイミダゾール、和光純薬工業(株)製
<Curing accelerator>
・ "Curing accelerator": 2-ethyl-4-methylimidazole, manufactured by Wako Pure Chemical Industries, Ltd.
[合成例1]複合材A1の作製
 サイラエースS510 1.5gを純水150mLに加え、スターラーを用いて500rpmで15時間攪拌した。次いで、15時間攪拌後の溶液に窒化ホウ素粒子15gを投入し、スターラーを用いて500rpmで1時間攪拌し、得られた混合物を50℃で5時間乾燥し、さらに、80℃に設定した真空オーブンを用いて、真空条件下で5時間加熱処理を行った。
 得られた粒子を複合材A1とする。
[Synthesis Example 1] Production of Composite Material A1 1.5 g of Sailer Ace S510 was added to 150 mL of pure water, and stirred for 15 hours at 500 rpm using a stirrer. Next, 15 g of boron nitride particles were added to the solution after stirring for 15 hours, stirred at 500 rpm for 1 hour using a stirrer, the resulting mixture was dried at 50 ° C. for 5 hours, and further a vacuum oven set at 80 ° C. Was heat-treated for 5 hours under vacuum conditions.
The obtained particles are referred to as composite material A1.
[合成例2]複合材A2の作製
 窒化ホウ素粒子15gと、サイラエースS320 2.25gとをトルエン150mLに加え、スターラーを用いて500rpmで1時間攪拌した。得られた混合物を40℃で6時間乾燥し、さらに、120℃に設定した真空オーブンを用いて、真空条件下で5時間加熱処理を行った。
 得られた粒子を複合材A2とする。
[Synthesis Example 2] Production of Composite Material A2 15 g of boron nitride particles and 2.25 g of Silaace S320 were added to 150 mL of toluene, and the mixture was stirred at 500 rpm for 1 hour using a stirrer. The obtained mixture was dried at 40 ° C. for 6 hours, and further subjected to heat treatment under vacuum conditions for 5 hours using a vacuum oven set at 120 ° C.
Let the obtained particle | grains be composite material A2.
[合成例3]複合材Bの作製
 複合材A1 2gと、ビスフェノールA 3.96gと、硬化促進剤40mgとを量り取り、これらを2本ロール((株)井元製作所製、IMC-AE00型)を用いて160℃で10分間混合した。この混合の際の重量比は、複合材A1が有するオキシラニルに対するヒドロキシの個数が2倍以上となる量であり、かつ、2本ロール上で前記各成分を十分に練り合わせることができる量である。
[Synthesis Example 3] Preparation of composite material B 2 g of composite material A, 3.96 g of bisphenol A, and 40 mg of a curing accelerator were weighed and two rolls (IMC-AE00, manufactured by Imoto Seisakusho Co., Ltd.) For 10 minutes at 160 ° C. The weight ratio at the time of mixing is such an amount that the number of hydroxys relative to oxiranyl contained in the composite material A1 is twice or more, and is an amount capable of sufficiently kneading the respective components on two rolls. .
 得られた混合物をテトラヒドロフラン45mLに加え、十分攪拌した後、遠心分離機(日立工機(株)製、高速冷却遠心機CR22N形、4,000回転×10分×25℃)で不溶分を沈降させ、デカンテーションで未反応のビスフェノールAを含む溶液を取り除いた(以下「洗浄工程」ともいう。)。続いて、得られた沈降物に対し、テトラヒドロフラン45mLの代わりにアセトン45mLを用いた以外は前述の洗浄工程と同様の操作を行った。さらに、テトラヒドロフランとアセトンとを順に用いた前述の洗浄工程を繰り返した。
 一連の洗浄工程後の沈降物を乾燥させることで、複合材Bを得た。複合材Bは、窒化ホウ素粒子にサイラエースS510が結合し、該サイラエースS510にさらにビスフェノールAが結合した状態の粒子であった。
The resulting mixture was added to 45 mL of tetrahydrofuran, and after sufficient stirring, the insoluble matter was settled with a centrifuge (Hitachi Koki Co., Ltd., high-speed cooling centrifuge CR22N type, 4,000 rpm × 10 min × 25 ° C.). The solution containing unreacted bisphenol A was removed by decantation (hereinafter also referred to as “cleaning step”). Then, operation similar to the above-mentioned washing | cleaning process was performed with respect to the obtained sediment except having used 45 mL of acetone instead of 45 mL of tetrahydrofuran. Further, the above-described washing process using tetrahydrofuran and acetone in order was repeated.
The composite material B was obtained by drying the sediment after a series of washing processes. The composite B was particles in which Silaace S510 was bonded to the boron nitride particles, and bisphenol A was further bonded to the Silaace S510.
<複合材中の有機分の含有量>
 合成例1~3で得られた複合材を、熱重量・示差熱測定装置((株)リガク製、TG-8121)を用い、900℃まで加熱した。この際の加熱減少量を、合成例1~3で得られた複合材中の、窒化ホウ素粒子に結合している有機分(例:シランカップリング剤、反応性化合物)の量とした。結果を表1に示す。
<Content of organic component in composite material>
The composite materials obtained in Synthesis Examples 1 to 3 were heated to 900 ° C. using a thermogravimetric / differential heat measuring apparatus (TG-8121, manufactured by Rigaku Corporation). The amount of decrease in heating at this time was defined as the amount of organic components (eg, silane coupling agent, reactive compound) bonded to the boron nitride particles in the composite materials obtained in Synthesis Examples 1 to 3. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[実施例1]
 複合材A1 639mgと、マルカリンカーS-2P 61mgと、硬化促進剤10mgをアセトン2mLに溶かした溶液18μLとを混合することで、組成物を得た。得られた組成物を、得られる放熱部材の厚みが約600μmとなるように、2枚のステンレス製板の間に挟み、この2枚の板を170℃に設定した圧縮成形機((株)井元製作所製、IMC-19EC)を用いて30MPaまで加圧し、10分間加熱状態を続けることで、配向処理と前硬化を行った。窒化ホウ素粒子は板状粒子であるため、ステンレス板の間を組成物が広がる際に、該粒子の面方向とステンレス板表面とが平行になるように配向した。
 冷却後、2枚のステンレス製板から取り外した試料を、170℃に設定した真空オーブン(ヤマト科学(株)製、DP300)を用いて真空条件下で15時間後硬化を行い、放熱部材を得た。
[Example 1]
A composition was obtained by mixing 639 mg of the composite material A, 61 mg of Marcalinker S-2P, and 18 μL of a solution of 10 mg of the curing accelerator in 2 mL of acetone. A compression molding machine (Imoto Seisakusho Co., Ltd.) in which the obtained composition was sandwiched between two stainless steel plates so that the thickness of the resulting heat dissipation member was about 600 μm, and the two plates were set at 170 ° C. The pressure was increased to 30 MPa using IMC-19EC) and the heating state was continued for 10 minutes to perform alignment treatment and pre-curing. Since the boron nitride particles are plate-like particles, when the composition spreads between the stainless steel plates, the surface direction of the particles and the stainless steel plate surface were oriented in parallel.
After cooling, the sample removed from the two stainless steel plates was post-cured under vacuum conditions for 15 hours using a vacuum oven (manufactured by Yamato Scientific Co., Ltd., DP300) set at 170 ° C. to obtain a heat radiating member. It was.
[実施例2]
 複合材A1およびマルカリンカーS-2Pの使用量をそれぞれ、複合材A1 588mgおよびマルカリンカーS-2P 112mgに変更した以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Example 2]
A composition and a heat radiating member were produced in the same manner as in Example 1 except that the amounts of the composite material A1 and Marcalinker S-2P used were changed to 588 mg of the composite material A1 and 112 mg of Marcalinker S-2P, respectively.
[実施例3]
 マルカリンカーS-2Pの代わりに、マルカリンカーCMMを用いた以外は、実施例2と同様にして組成物と放熱部材を作製した。
[Example 3]
A composition and a heat radiating member were produced in the same manner as in Example 2 except that Marcalinker CMM was used instead of Marcalinker S-2P.
[実施例4]
 組成物の原料として、マルカリンカーS-2Pの代わりに、SP1010を用いた以外は実施例2と同様にして組成物を作製し、さらに、前硬化温度を130℃、後硬化温度を150℃とした以外は、実施例2と同様にして得られた組成物を硬化させて放熱部材を作製した。
[Example 4]
A composition was prepared in the same manner as in Example 2 except that SP1010 was used in place of Marcalinker S-2P as a raw material for the composition. Except for this, the composition obtained in the same manner as in Example 2 was cured to produce a heat dissipation member.
[実施例5]
 複合材A1 639mgおよびマルカリンカーS-2P 61mgの代わりに、複合材A1 439mg、複合材B 247mg、およびマルカリンカーS-2P 14mgを用いた以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Example 5]
The composition and heat dissipation member were the same as in Example 1 except that 439 mg of composite material A1, 247 mg of composite material B, and 14 mg of markalinker S-2P were used instead of 639 mg of composite material A1 and 61 mg of Marcalinker S-2P. Was made.
[実施例6]
 複合材A1、複合材B、およびマルカリンカーS-2Pの使用量をそれぞれ、複合材A1 528mg、複合材B 86mg、マルカリンカーS-2P 86mgに変更した以外は、実施例5と同様にして組成物と放熱部材を作製した。
[Example 6]
The composition was the same as in Example 5 except that the usage amounts of the composite material A1, composite material B, and Marcalinker S-2P were changed to 528 mg of composite material A1, 86 mg of composite material B, and 86 mg of Marcalinker S-2P, respectively. The thing and the heat radiating member were produced.
[実施例7]
 複合材A1 639mgおよびマルカリンカーS-2P 61mgの代わりに、複合材A1 596mg、マルカリンカーS-2P 47mg、およびjER807 57mgを用いた以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Example 7]
A composition and a heat dissipation member were produced in the same manner as in Example 1 except that 596 mg of composite material A1, 47 mg of marcalinker S-2P, and 57 mg of jER807 were used instead of 639 mg of composite material A and 61 mg of Marcalinker S-2P. did.
[比較例1]
 複合材A1 639mgおよびマルカリンカーS-2P 61mgの代わりに、窒化ホウ素粒子619mg、マルカリンカーS-2P 61mg、およびサイラエースS510 20mgを用いた以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Comparative Example 1]
A composition and a heat dissipation member were prepared in the same manner as in Example 1 except that 619 mg of boron nitride particles, 61 mg of Marcalinker S-2P, and 20 mg of Silaace S510 were used instead of 639 mg of Composite A1 and 61 mg of Marcalinker S-2P. Produced.
[比較例2]
 複合材A1 588mgおよびSP1010 112mgの代わりに、窒化ホウ素粒子569mg、SP1010 112mg、およびサイラエースS510 19mgを用いた以外は、実施例4と同様にして組成物と放熱部材を作製した。
[Comparative Example 2]
A composition and a heat radiating member were produced in the same manner as in Example 4 except that 589 mg of boron nitride particles, 112 mg of SP1010, and 19 mg of Silaace S510 were used instead of 588 mg of the composite material A1 and 112 mg of SP1010.
[比較例3]
 複合材A1 639mgおよびマルカリンカーS-2P 61mgの代わりに、窒化ホウ素粒子581mg、マルカリンカーS-2P 61mg、およびjER807 58mgを用いた以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Comparative Example 3]
A composition and a heat radiating member were prepared in the same manner as in Example 1 except that instead of the composite material A1 639 mg and Marcalinker S-2P 61 mg, boron nitride particles 581 mg, Marcalinker S-2P 61 mg, and jER807 58 mg were used. did.
[比較例4]
 複合材A1 639mgおよびマルカリンカーS-2P 61mgの代わりに、窒化ホウ素粒子577mg、マルカリンカーS-2P 47mg、jER807 57mg、およびサイラエースS510 19mgを用いた以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Comparative Example 4]
In the same manner as in Example 1, except that 639 mg of composite material A1 and 61 mg of Marcalinker S-2P were used, 577 mg of boron nitride particles, 47 mg of Marcalinker S-2P, 57 mg of jER807, and 19 mg of Silaace S510 were used. A heat radiating member was produced.
[比較例5]
 複合材A1 639mgおよびマルカリンカーS-2P 61mgの代わりに、窒化ホウ素粒子581mg、マルカリンカーS-2P 61mg、およびjER828 58mgを用いた以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Comparative Example 5]
A composition and a heat radiating member were produced in the same manner as in Example 1 except that boron nitride particles 581 mg, marcalinker S-2P 61 mg, and jER828 58 mg were used instead of composite material A1 639 mg and Marcalinker S-2P 61 mg. did.
[比較例6]
 組成物の原料を、複合材A2 588mgおよびjER828 112mgに変更した以外は実施例1と同様にして組成物を作製し、さらに、前硬化温度を150℃、後硬化温度を150℃とした以外は、実施例1と同様にして得られた組成物を硬化させて放熱部材を作製した。
[Comparative Example 6]
A composition was prepared in the same manner as in Example 1 except that the raw material of the composition was changed to 588 mg of composite material A2 and 112 mg of jER828, and the pre-curing temperature was 150 ° C. and the post-curing temperature was 150 ° C. The composition obtained in the same manner as in Example 1 was cured to produce a heat dissipation member.
[参考例1]
 組成物の原料を、複合材A1 329mgおよび複合材B 371mgに変更した以外は、実施例1と同様にして組成物と放熱部材を作製した。
[Reference Example 1]
A composition and a heat dissipation member were produced in the same manner as in Example 1 except that the raw material of the composition was changed to 329 mg of the composite material A1 and 371 mg of the composite material B.
<放熱部材中の有機分の含有量>
 放熱部材中の有機分の含有量は、複合材の代わりに、実施例および比較例で得られた放熱部材を用いた以外は、前記複合材中の有機分の含有量と同様にして測定した。結果を表2に示す。
<Content of organic component in heat dissipation member>
The organic content in the heat radiating member was measured in the same manner as the organic content in the composite material, except that the heat radiating members obtained in Examples and Comparative Examples were used instead of the composite material. . The results are shown in Table 2.
<5%重量減少温度>
 実施例および比較例で得られた放熱部材の5%重量減少温度は、前記有機分の含有量の測定と同じ装置を用い、放熱部材を900℃まで加熱した際の、加熱温度140~900℃での重量減少量を100重量%とし、140℃時点の放熱部材の重量から5重量%重量が減少した時の温度を測定した。結果を表2に示す。
<5% weight loss temperature>
The 5% weight loss temperature of the heat radiating members obtained in the examples and comparative examples is the same as the measurement of the organic content, and the heating temperature is 140 to 900 ° C. when the heat radiating member is heated to 900 ° C. The weight decrease amount at 100% was taken as 100% by weight, and the temperature when the weight decreased by 5% by weight from the weight of the heat radiating member at 140 ° C. was measured. The results are shown in Table 2.
<吸湿率>
 実施例および比較例で得られた放熱部材を、150℃に設定した真空オーブンを用いて真空条件下で2時間乾燥させた。この乾燥後の放熱部材の重量(W0g)を測定した。次いで、前記重量W0を測定後の放熱部材を、85℃、85RH%の恒温恒湿器(エスペック(株)製、LHL-113)中で42時間保持した後に取り出した際の重量(W1g)を測定し、次の式により放熱部材の吸湿率を算出した。結果を表2に示す。
  吸湿率(%)=(W1-W0)×100/W0
<Hygroscopic rate>
The heat radiating members obtained in Examples and Comparative Examples were dried for 2 hours under vacuum conditions using a vacuum oven set at 150 ° C. The weight (W 0 g) of the heat radiating member after drying was measured. Next, the weight (W 1 ) when the heat radiating member after measuring the weight W 0 was taken out after being held for 42 hours in a constant temperature and humidity chamber (manufactured by Espec Corp., LHL-113) at 85 ° C. and 85 RH%. g) was measured, and the moisture absorption rate of the heat radiating member was calculated by the following equation. The results are shown in Table 2.
Moisture absorption (%) = (W 1 −W 0 ) × 100 / W 0
<熱伝導率>
 熱伝導率は、予め放熱部材の比熱((株)リガク製、DSC型高感度示差走査熱量計Thermo Plus EVO2 DSC-8231で測定した)と、比重(新光電子(株)製、電子はかり式比重計DME-220により測定した)とを求めておき、その値と、(株)アイフェイズ製、ai-Phase Mobile 1u熱拡散率測定装置により求めた熱拡散率とを掛け合わせることで、放熱部材の厚み方向の熱伝導率を求めた。結果を表2に示す。
<Thermal conductivity>
The thermal conductivity was measured in advance by the specific heat of the heat radiating member (measured with a DSC type high-sensitivity differential scanning calorimeter Thermo Plus EVO2 DSC-8231, manufactured by Rigaku Co., Ltd.) and the specific gravity (manufactured by Shinko Denshi Co., Ltd. And the heat diffusivity calculated by the ai-Phase Mobile 1u thermal diffusivity measuring device manufactured by I-Phase Co., Ltd. The thermal conductivity in the thickness direction was determined. The results are shown in Table 2.
<熱膨張率>
 実施例および比較例で得られた放熱部材から、幅4mmの試験片を切り出し、SII(株)製、TMA-SS6100熱機械分析装置を用い、50℃から250℃まで昇温する過程での試験片の長さの変化を測定した。50℃における試験片の長さを基準としたときの試験片長さの変化の割合(ppm)から、50~200℃における熱膨張率(ppm/K)を求めた。なお、寸法変化の評価は、前記測定を2回繰り返した。具体的には、前記で得られた放熱部材を250℃まで加熱した(1回目)後、50℃まで冷却し、再度250℃まで加熱(2回目)した。50~200℃における熱膨張率の算出結果を表2に示す。また、各試験例で得られた放熱部材の50~250℃における熱膨張挙動(試験片長さの変化の割合の温度依存)をそれぞれ図1~14に示す。
<Coefficient of thermal expansion>
Tests in the process of increasing the temperature from 50 ° C. to 250 ° C. using a TMA-SS6100 thermomechanical analyzer manufactured by SII Co., Ltd. from a heat-dissipating member obtained in the examples and comparative examples. The change in strip length was measured. The coefficient of thermal expansion (ppm / K) at 50 to 200 ° C. was determined from the change rate (ppm) of the test piece length when the length of the test piece at 50 ° C. was used as a reference. In addition, the evaluation of a dimensional change repeated the said measurement twice. Specifically, the heat dissipation member obtained above was heated to 250 ° C. (first time), then cooled to 50 ° C., and heated again to 250 ° C. (second time). Table 2 shows the calculation results of the coefficient of thermal expansion at 50 to 200 ° C. In addition, the thermal expansion behavior (temperature dependence of the rate of change in the length of the test piece) of the heat radiation member obtained in each test example at 50 to 250 ° C. is shown in FIGS.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例1と比較例1とを比較すると、予めフィラーとカップリング剤とで複合材A1を作製した実施例1は、複合材を形成させていない比較例1に比べて、熱伝導性および耐熱性(5%重量減少温度)が向上した。実施例1ではフィラー同士が、カップリング剤、重合体を介して共有結合で結合することで、熱が伝わりやすく、また、耐熱性が向上したのに対して、比較例1ではカップリング剤、重合体を介した共有結合の形成が部分的なものにとどまったためと考えられる。同様に実施例4は、複合材を形成させていない比較例2に比べて熱伝導性と耐熱性が向上している。さらに実施例7は、カップリング剤を用いていない比較例3や、カップリング剤とフィラーの複合材を形成していない比較例4に比べて高い熱伝導率と耐熱性を有している。 When Example 1 and Comparative Example 1 are compared, Example 1 in which the composite material A1 is prepared using a filler and a coupling agent in advance is more heat conductive and heat resistant than Comparative Example 1 in which no composite material is formed. (5% weight loss temperature) improved. In Example 1, the fillers are covalently bonded via a coupling agent and a polymer, so that heat is easily transmitted and heat resistance is improved, whereas in Comparative Example 1, the coupling agent, This is probably because the formation of the covalent bond via the polymer is only partial. Similarly, Example 4 has improved thermal conductivity and heat resistance compared to Comparative Example 2 in which no composite material was formed. Furthermore, Example 7 has high heat conductivity and heat resistance compared with the comparative example 3 which does not use a coupling agent, and the comparative example 4 which does not form the composite material of a coupling agent and a filler.
 複合材A1、複合材B、およびマルカリンカーS-2Pを材料として用いた実施例5では、複合材A1および複合材Bのみを用いた参考例1に比べて耐熱性、低吸湿性、熱伝導性のいずれも優れている。マルカリンカーS-2Pの比率を増やした実施例6では、吸湿率が若干増大したものの、耐熱性、熱伝導性が実施例5よりも向上した。 In Example 5 using the composite material A1, composite material B, and Marcalinker S-2P as materials, heat resistance, low hygroscopicity, and heat conduction were compared to Reference Example 1 using only the composite material A1 and composite material B. Both sexes are excellent. In Example 6 in which the ratio of Marcalinker S-2P was increased, although the moisture absorption rate was slightly increased, the heat resistance and thermal conductivity were improved as compared with Example 5.
 さらに、実施例1~7が、いずれも315℃以上の5%重量減少温度と、8.5W/m・K以上の熱伝導率を示したのに対し、アミノ系のカップリング剤を用いた複合材A2とエポキシ系の重合体とを用いて作成した比較例6は、実施例に比べて耐熱性、吸湿率、および熱伝導率が劣る結果となった。実施例では、複合材を用いてフィラー同士を、カップリング剤、重合体を介して共有結合できると考えられるが、この際に、オキシラニルを有するカップリング剤と、ヒドロキシを有する環を含む重合体を用いることが、材料特性の向上に特に有効であると考えられる。 Furthermore, while Examples 1 to 7 all showed a 5% weight loss temperature of 315 ° C. or higher and a thermal conductivity of 8.5 W / m · K or higher, an amino coupling agent was used. Comparative Example 6 prepared using the composite material A2 and the epoxy-based polymer resulted in inferior heat resistance, moisture absorption, and thermal conductivity as compared with the Examples. In Examples, it is considered that fillers can be covalently bonded to each other through a coupling agent and a polymer using a composite material. At this time, a polymer containing a coupling agent having oxiranyl and a ring having hydroxy is used. Is considered to be particularly effective in improving material properties.
 表2および図1~7に示す通り、実施例1~7の熱膨張率は、負の熱膨張率から約10ppm/Kを示しており、他の部材との熱膨張率差が少なくなるよう、用途に応じて適切な熱膨張率の放熱部材を作製することができる。 As shown in Table 2 and FIGS. 1 to 7, the thermal expansion coefficients of Examples 1 to 7 are about 10 ppm / K from the negative thermal expansion coefficient, so that the difference in thermal expansion coefficient with other members is reduced. A heat radiating member having an appropriate coefficient of thermal expansion can be produced according to the application.
 以上の結果に鑑みると、本放熱部材は、高耐熱な熱伝導性材料であることがわかる。 In view of the above results, it can be seen that the heat radiating member is a heat-resistant material having high heat resistance.

Claims (16)

  1.  第1のフィラーにカップリング剤Aを結合させた複合材A1と、
     ヒドロキシを有する環を含む重合体と
    を含む、組成物。
    A composite material A1 in which a coupling agent A is bonded to a first filler;
    And a polymer comprising a ring having hydroxy.
  2.  第2のフィラーにカップリング剤Bを結合させた複合材B1、および、
     カップリング剤Bの一端に第2のフィラーが結合し、他端に反応性化合物が結合した複合材B2
    から選ばれる少なくとも一つをさらに含む、請求項1に記載の組成物。
    A composite material B1 in which the coupling agent B is bonded to the second filler, and
    Composite material B2 in which the second filler is bonded to one end of coupling agent B and the reactive compound is bonded to the other end
    The composition according to claim 1, further comprising at least one selected from:
  3.  前記重合体が、式(1)および(2)で表される構造の少なくとも1つを有する重合体である、請求項1または2に記載の組成物:
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、mは、平均値で2~100であり;
     nは独立に、平均値で1以上であり;
     R1は独立に、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、または4,4’-(9-フルオレニリデン)ジフェニレンであり、
     炭素数1~10のアルキレンにおいて、少なくとも1つの水素は-CH3またはヒドロキシで置き換えられてもよく、
     シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、および4,4’-(9-フルオレニリデン)ジフェニレンにおいて、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ヒドロキシ、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
     環Aは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、および9,9-ジフェニルフルオレンから選ばれる環から、少なくとも2つの水素を除いた基であり、
     これらの基において、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、該炭素数1~3のアルキルまたは炭素数1~3のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、mは、平均値で2~100であり;
     nは独立に、平均値で1以上であり、;
     環Bは独立に、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、および9,9-ジフェニルフルオレンから選ばれる環から、少なくとも3つの水素を除いた基であり、
     これらの基において、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、該炭素数1~3のアルキルまたは炭素数1~3のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
     R2およびR4はそれぞれ独立に、単結合または炭素数1~5のアルキレンであり、
     該アルキレンにおいて、少なくとも1つの-CH2-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの水素は-CH3または-OHで置き換えられてもよく;
     R3は独立に、単結合、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、1,1’-ビフェニル-4,4’-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、または4,4’-(9-フルオレニリデン)ジフェニレンであり、
     シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、1,1’-ビフェニル-4,4’ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、および4,4’-(9-フルオレニリデン)ジフェニレンにおいて、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ヒドロキシ、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルにおける少なくとも1つの-CH2-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
    The composition according to claim 1 or 2, wherein the polymer is a polymer having at least one of structures represented by formulas (1) and (2):
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), m is an average value of 2 to 100;
    n is independently an average value of 1 or more;
    R 1 is independently alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1 , 4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene,
    In alkylene having 1 to 10 carbon atoms, at least one hydrogen may be replaced by —CH 3 or hydroxy,
    Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, bicyclo [3.1.0] hex In —3,6-diyl and 4,4 ′-(9-fluorenylidene) diphenylene, at least one —CH 2 — may be replaced by —O—, and at least one —CH═ is —N And at least one hydrogen may be replaced by hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons, and having 1 to 10 carbons In the alkyl or the halogenated alkyl having 1 to 10 carbon atoms, at least one —CH 2 — is substituted with —O—, —CO—, —COO—, or —OCO—. May be replaced;
    Ring A is a group in which at least two hydrogens are removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene;
    In these groups, at least one —CH═ may be replaced by —N═, and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms. In the alkyl having 1 to 3 carbon atoms or the halogenated alkyl having 1 to 3 carbon atoms, at least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—. May be replaced by;
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), m is an average value of 2 to 100;
    n is independently an average value of 1 or more;
    Ring B is independently a group in which at least three hydrogens have been removed from a ring selected from benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, and 9,9-diphenylfluorene,
    In these groups, at least one —CH═ may be replaced by —N═, and at least one hydrogen is a halogen, an alkyl having 1 to 3 carbon atoms, or an alkyl halide having 1 to 3 carbon atoms. In the alkyl having 1 to 3 carbon atoms or the halogenated alkyl having 1 to 3 carbon atoms, at least one —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—. May be replaced by;
    R 2 and R 4 are each independently a single bond or alkylene having 1 to 5 carbon atoms,
    In the alkylene, at least one —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, or —OCO—, and at least one hydrogen is —CH 3 or — May be replaced by OH;
    R 3 is independently a single bond, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, or 4,4 ′-(9-fluorenylidene) diphenylene,
    Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, 1,1′-biphenyl-4,4′diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1, In 4-diyl, bicyclo [3.1.0] hex-3,6-diyl, and 4,4 ′-(9-fluorenylidene) diphenylene, at least one —CH 2 — is replaced by —O—. And at least one —CH═ may be replaced by —N═, and the at least one hydrogen is hydroxy, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons. may be replaced, at least one -CH in halogenated alkyl alkyl or C 1 -C 10 carbon number 1-10 2 -, -O -, - CO , It may be replaced by -COO-, or -OCO-.
  4.  前記重合体が、側鎖に、芳香環に結合したヒドロキシを有する重合体である、請求項1~3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the polymer is a polymer having hydroxy bonded to an aromatic ring in a side chain.
  5.  前記式(1)において、
     R1が独立に、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、またはナフタレン-2,6-ジイルであり、
     環Aが独立に、ベンゼンまたはナフタレンから、少なくとも2つの水素を除いた基である、
    請求項3に記載の組成物。
    In the formula (1),
    R 1 is independently alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, or naphthalene-2,6-diyl;
    Ring A is independently a group obtained by removing at least two hydrogens from benzene or naphthalene.
    The composition according to claim 3.
  6.  前記式(2)において、
     環Bが独立に、ベンゼンまたはナフタレンから、少なくとも3つの水素を除いた基であり、
     R3が独立に、単結合、シクロヘキシレン、フェニレン、ナフタレン-2,6-ジイル、または1,1’-ビフェニル-4,4’ジイルである、
    請求項3に記載の組成物。
    In the formula (2),
    Ring B is independently a group obtained by removing at least three hydrogens from benzene or naphthalene,
    R 3 is independently a single bond, cyclohexylene, phenylene, naphthalene-2,6-diyl, or 1,1′-biphenyl-4,4′diyl.
    The composition according to claim 3.
  7.  前記重合体は、(メタ)アクリル化合物およびビニル化合物から選ばれる少なくとも1種のヒドロキシを有する環を含まないモノマー由来の構造を含む、請求項1~6のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 6, wherein the polymer includes a structure derived from a monomer that does not include a ring having at least one hydroxy group selected from a (meth) acrylic compound and a vinyl compound.
  8.  前記フィラーは、酸化物、窒化物、炭化物、および炭素材料から選ばれる無機フィラーである、請求項1~7のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 7, wherein the filler is an inorganic filler selected from oxides, nitrides, carbides, and carbon materials.
  9.  前記フィラーは、アルミナ、シリカ、チタニア、ジルコニア、コーディエライト、窒化ホウ素、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、およびグラフェンから選ばれる少なくとも一つである、請求項1~8のいずれか1項に記載の組成物。 The filler is at least one selected from alumina, silica, titania, zirconia, cordierite, boron nitride, boron carbide, boron nitride carbon, graphite, carbon fiber, carbon nanotube, and graphene. The composition of any one of these.
  10.  前記カップリング剤が、オキシラニルまたはオキセタニルを含む、請求項1~9のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 9, wherein the coupling agent comprises oxiranyl or oxetanyl.
  11.  前記フィラーに結合していない有機化合物(ただし、ヒドロキシを有する環を含む重合体以外の化合物である。)を含む、請求項1~10のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 10, comprising an organic compound not bonded to the filler (however, it is a compound other than a polymer containing a ring having a hydroxy group).
  12.  放熱部材用である、請求項1~11のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 11, which is used for a heat dissipation member.
  13.  請求項1~12のいずれか1項に記載の組成物を硬化させて得られる、放熱部材。 A heat dissipating member obtained by curing the composition according to any one of claims 1 to 12.
  14.  請求項13に記載の放熱部材と、発熱部を有する電子デバイスとを備え、
     前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された、電子機器。
    A heat dissipating member according to claim 13 and an electronic device having a heat generating part,
    An electronic apparatus disposed in the electronic device such that the heat dissipation member is in contact with the heat generating portion.
  15.  第1のフィラーとカップリング剤Aとを結合させて複合材A1を得る工程aと、
     工程aで得られた複合材A1、および、ヒドロキシを有する環を含む重合体を混合する工程c1と
    を含む、組成物の製造方法。
    A step a in which the first filler and the coupling agent A are combined to obtain a composite material A1,
    A method for producing a composition, comprising: composite A1 obtained in step a; and step c1 in which a polymer containing a hydroxy-containing ring is mixed.
  16.  第1のフィラーとカップリング剤Aとを結合させて複合材A1を得る工程aと、
     第2のフィラーとカップリング剤Bとを結合させて複合材B1を得る工程b1、または、
     第2のフィラーとカップリング剤Bの一端とを結合させ、次いで該カップリング剤Bの他端を反応性化合物と結合させることで、もしくは、カップリング剤Bの一端と反応性化合物とを結合させ、次いで該カップリング剤Bの他端を第2のフィラーと結合させることで複合材B2を得る工程b2と、
     工程aで得られた複合材A1と、工程b1で得られた複合材B1または工程b2で得られた複合材B2と、ヒドロキシを有する環を含む重合体とを混合する工程c2と
    を含む、組成物の製造方法。
    A step a in which the first filler and the coupling agent A are combined to obtain a composite material A1,
    A step b1 of obtaining a composite material B1 by bonding the second filler and the coupling agent B, or
    By binding the second filler and one end of the coupling agent B and then binding the other end of the coupling agent B to the reactive compound, or binding one end of the coupling agent B and the reactive compound And then b2 to obtain the composite material B2 by bonding the other end of the coupling agent B to the second filler,
    Including the composite material A1 obtained in the step a, the composite material B1 obtained in the step b1 or the composite material B2 obtained in the step b2, and the step c2 of mixing a polymer containing a ring having a hydroxy group. A method for producing the composition.
PCT/JP2019/012493 2018-03-30 2019-03-25 Composition, heat dissipation member, electronic device and method for producing composition WO2019188973A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510070A JPWO2019188973A1 (en) 2018-03-30 2019-03-25 Compositions, heat dissipation members, electronic devices, and methods for manufacturing compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069219 2018-03-30
JP2018-069219 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188973A1 true WO2019188973A1 (en) 2019-10-03

Family

ID=68058158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012493 WO2019188973A1 (en) 2018-03-30 2019-03-25 Composition, heat dissipation member, electronic device and method for producing composition

Country Status (2)

Country Link
JP (1) JPWO2019188973A1 (en)
WO (1) WO2019188973A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785000A (en) * 2019-10-30 2020-02-11 江苏上达电子有限公司 Heat dissipation method for flexible circuit board
CN114196072A (en) * 2021-12-15 2022-03-18 北京化工大学 Preparation method of graphene/white carbon black hybrid filler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168621A (en) * 1990-10-31 1992-06-16 Hitachi Ltd Lubrication composition and electronic component using the same
JP2007182369A (en) * 2006-01-06 2007-07-19 General Electric Co <Ge> Boron nitride composition having enhanced function and composition made therewith
JP2012187546A (en) * 2011-03-11 2012-10-04 Toshiba Corp Manufacturing method of resin carrier for water treatment and resin carrier for water treatment
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
JP2016510819A (en) * 2013-02-27 2016-04-11 インダストリー−ユニバーシティーコーペレイション ファンデーション ハンヤン ユニバーシティー エリカ キャンパス Thermally conductive ceramic-polymer composite and method for producing the same
JP2016108498A (en) * 2014-12-09 2016-06-20 京セラケミカル株式会社 Electric conductive adhesive composition and semiconductor device
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168621A (en) * 1990-10-31 1992-06-16 Hitachi Ltd Lubrication composition and electronic component using the same
JP2007182369A (en) * 2006-01-06 2007-07-19 General Electric Co <Ge> Boron nitride composition having enhanced function and composition made therewith
JP2012187546A (en) * 2011-03-11 2012-10-04 Toshiba Corp Manufacturing method of resin carrier for water treatment and resin carrier for water treatment
JP2016510819A (en) * 2013-02-27 2016-04-11 インダストリー−ユニバーシティーコーペレイション ファンデーション ハンヤン ユニバーシティー エリカ キャンパス Thermally conductive ceramic-polymer composite and method for producing the same
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
JP2016108498A (en) * 2014-12-09 2016-06-20 京セラケミカル株式会社 Electric conductive adhesive composition and semiconductor device
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785000A (en) * 2019-10-30 2020-02-11 江苏上达电子有限公司 Heat dissipation method for flexible circuit board
CN114196072A (en) * 2021-12-15 2022-03-18 北京化工大学 Preparation method of graphene/white carbon black hybrid filler
CN114196072B (en) * 2021-12-15 2023-02-28 北京化工大学 Preparation method of graphene/white carbon black hybrid filler

Also Published As

Publication number Publication date
JPWO2019188973A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6831501B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member
JP2008266406A (en) Dispersant, boron nitride particle with dispersant supported on its surface, epoxy resin composition containing dispersant, and its preparation
WO2017150587A1 (en) Composition for low thermal expansion members, low thermal expansion member, electronic device, and method for producing low thermal expansion member
WO2017150588A1 (en) Composition for heat-dissipating member, heat-dissipating member, electronic instrument, method for producing composition for heat-dissipating member, and method for producing heat-dissipating member
WO2019188973A1 (en) Composition, heat dissipation member, electronic device and method for producing composition
WO2020045560A1 (en) Composition, cured product, laminated body, and electronic device
US20210187902A1 (en) Laminate, electronic device, and production method for laminate
JP2019172936A (en) Composition for heat radiation member, heat radiation member, and electronic device
JP6992654B2 (en) Laminated sheet, heat dissipation parts, light emitting device, light emitting device
WO2019194221A1 (en) Composition for heat dissipating member, visible light reflective heat dissipating member, light emitting device, light emitting apparatus
WO2018181839A1 (en) Laminated body, electronic apparatus, and method for manufacturing laminated body
JPWO2019049911A1 (en) Method for manufacturing composition for heat radiating member, heat radiating member, electronic device, heat radiating member
JPWO2019044646A1 (en) Composition for heat dissipation member, heat dissipation member, electronic device, method for producing heat dissipation member
TW201934653A (en) Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member
WO2018181838A1 (en) Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member
JP2019172937A (en) Composition for heat radiation member, heat radiation member, and electronic device
JP2021024989A (en) Heat radiation member composition, heat radiation member, electronic device
JP2021123607A (en) Composition for heat radiation members, heat radiation member, and electronic apparatus
JP2021195506A (en) Electronic component composition and electronic component material
JP2019137801A (en) Composition for heat radiation members, heat radiation member, electronic apparatus, and method for producing heat radiation member
JP2020122113A (en) Three-dimensional structure, method for manufacturing three-dimensional structure, and electronic component
JP2021024855A (en) Polymerizable compound, composition for electronic components, material for electronic components, and electronic apparatus
JP2022165552A (en) Epoxy composition, composition for electronic component, material for electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510070

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774874

Country of ref document: EP

Kind code of ref document: A1