WO2020045560A1 - Composition, cured product, laminated body, and electronic device - Google Patents

Composition, cured product, laminated body, and electronic device Download PDF

Info

Publication number
WO2020045560A1
WO2020045560A1 PCT/JP2019/033877 JP2019033877W WO2020045560A1 WO 2020045560 A1 WO2020045560 A1 WO 2020045560A1 JP 2019033877 W JP2019033877 W JP 2019033877W WO 2020045560 A1 WO2020045560 A1 WO 2020045560A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
liquid crystal
polymerizable
inorganic filler
composition
Prior art date
Application number
PCT/JP2019/033877
Other languages
French (fr)
Japanese (ja)
Inventor
研人 氏家
和宏 滝沢
國信 隆史
武 藤原
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Publication of WO2020045560A1 publication Critical patent/WO2020045560A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • One embodiment of the present invention relates to a composition, a cured product, a laminate, and an electronic device.
  • Patent Literature 1 discloses a heat dissipating member in which an organic material and an inorganic material are combined, wherein the inorganic materials are connected with a silane coupling agent and a polymerizable liquid crystal compound.
  • the heat dissipating member used in the chip package and various materials constituting it have been studied.
  • the heat dissipating member described in Patent Document 1 has room for improvement in terms of thermal conductivity and adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer.
  • An embodiment of the present invention provides a composition capable of forming a cured product having excellent heat conductivity and excellent adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer, and a use thereof.
  • the content of the inorganic filler is 150 to 4500 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound;
  • the content ratio of the polymerizable liquid crystal compound to the non-liquid crystal polymerizable compound is 20:80 to 95: 5; Composition.
  • At least one polymerizable compound selected from a bifunctional or higher functional polymerizable liquid crystal compound and a bifunctional or higher functional non-liquid crystalline polymerizable compound or at least a part thereof is cured.
  • R a1 is each independently a polymerizable group represented by the following formula (2-1) or (2-2);
  • any -CH 2 - is -O-, -CO-, -COO-, -OCO-.
  • -CH CH- or -C ⁇ C-;
  • Z is each independently a single bond or alkylene having 1 to 22 carbon atoms;
  • m1 is an integer of 1 to 6.
  • R b is each independently hydrogen, halogen, —CF 3 or alkyl having 1 to 5 carbons, and q is 0 or 1.
  • the inorganic filler is at least one selected from boron nitride, aluminum nitride, boron nitride carbon, boron carbide, graphite, carbon fiber, carbon nanotube, alumina, cordierite, zinc oxide, zirconium oxide, and titanium oxide.
  • the present composition a cured product having excellent heat conductivity and adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer can be obtained. It can be easily formed. Furthermore, the present composition can easily form a cured product having excellent chemical stability, hardness, mechanical strength, and the like. For this reason, the present composition is suitably used for, for example, a heat radiating substrate, a heat radiating plate (surface heat sink), a heat radiating sheet, a heat radiating coating, a heat radiating adhesive, a heat radiating insulating substrate with electrodes, a heat conductive electronic substrate, and the like. You.
  • FIG. 1 is a schematic diagram when a tensile test sample is prepared in an example.
  • FIG. 2 is a schematic cross-sectional schematic diagram when a tensile test using the tensile test sample obtained in FIG. 1 is performed.
  • the composition includes an inorganic filler, a bifunctional or higher functional polymerizable liquid crystal compound, a bifunctional or higher functional non-liquid crystalline polymerizable compound, and a curing agent capable of curing the polymerizable liquid crystal compound and the non-liquid crystalline polymerizable compound.
  • the content of the inorganic filler is 150 to 4500 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound, and the ratio of the content of the polymerizable liquid crystal compound to the content of the non-liquid crystal polymerizable compound (polymerization (Mass of non-liquid crystalline polymerizable compound): 20:80 to 95: 5.
  • the inorganic filler is not particularly restricted but includes, for example, nitrides, carbides, carbon materials, silicate compounds and metal oxides.
  • the inorganic filler one kind may be used, or two or more kinds having different kinds, particle diameters, shapes and the like may be used.
  • the inorganic filler for example, alumina, magnesia, beryllia, silica, titanium oxide, zirconium oxide, zinc oxide, iron oxide, ferrite, copper oxide, cerium oxide, yttrium oxide, tin oxide, holmium oxide, bismuth oxide, cobalt oxide, Metal oxides such as calcium oxide; silicate compounds such as mullite and cordierite; nitrides such as boron nitride, aluminum nitride, silicon nitride and boron nitride; carbides such as boron carbide and silicon carbide; diamond, graphite, Carbon materials such as carbon fiber, carbon nanotube, and graphene; hydroxides such as magnesium hydroxide and aluminum hydroxide; silicon, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium, tungsten, and molybdenum , Stainless and other metals; glass And the like; cloth made of carbon fibers or glass fibers; in
  • boron nitride, aluminum nitride, boron nitride carbon, boron carbide, graphite, carbon fiber, carbon nanotube, alumina, cordierite, etc. from the viewpoint that a composition having more excellent thermal conductivity can be easily obtained.
  • an insulating inorganic filler increases reliability such as a longer life.
  • a carbon material as a conductor or Although it is preferable not to use some oxides and the like which are semiconductors, a conductive inorganic filler may be used as long as the desired insulating property can be maintained.
  • h-BN hexagonal boron nitride
  • graphite graphite
  • h-BN hexagonal boron nitride
  • graphite graphite
  • h-BN has a low dielectric constant and a high insulating property. This is preferred when the composition is used for applications requiring insulation.
  • a plate-like filler such as h-BN or graphite because the plate-like structure can be oriented along a mold or the like during molding or curing.
  • the type, shape, size, etc. of the inorganic filler can be appropriately selected according to the purpose.
  • Examples of the shape of the inorganic filler include plate, sphere, amorphous, fibrous, rod, and tubular shapes.
  • the average particle size of the inorganic filler is preferably from 0.1 to 600 ⁇ m, more preferably from 1 to 200 ⁇ m, from the viewpoint that a heat radiation member having more excellent thermal conductivity can be easily obtained.
  • the average particle size in the present specification is a median size based on a particle size distribution measurement by a laser diffraction / scattering method.
  • the average particle size, when the shape of the filler is plate-like refers to the average value of the length of the long side, when the shape of a fiber or rod, the average value of the fiber length or the length of the rod. That means.
  • the bifunctional or higher functional polymerizable liquid crystal compound (hereinafter, also simply referred to as “polymerizable liquid crystal compound”) is not particularly limited, and may be a trifunctional or higher functional or tetrafunctional or higher compound.
  • the polymerizable liquid crystal compound a compound having two or more of the following Ra1 is preferable.
  • the polymerizable liquid crystal compound used in the present composition may be one type or two or more types.
  • the “liquid crystal compound” refers to a compound that exhibits a liquid crystal phase such as a nematic phase or a smectic phase.
  • the polymerizable liquid crystal compound When the polymerizable liquid crystal compound is a polycyclic compound, it tends to be a compound having high heat resistance, and when the linearity is high, there is little elongation or fluctuation due to heat between the inorganic fillers, and the phonon conduction of heat is efficiently performed. It is preferable because it can be transmitted. Compounds that are polycyclic and have high linearity often exhibit liquid crystallinity as a result, and liquid crystalline compounds are preferable because of their excellent thermal conductivity.
  • the compound (1) represented by the formula (1) is preferable in that the composition and the cured product can be easily obtained.
  • the compound (1) has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, etc., and becomes uniform when mixed with other liquid crystal compounds or polymerizable compounds.
  • the compound (1) means a compound represented by the formula (1), and may also mean at least one kind of the compound represented by the formula (1).
  • the compounds represented by other formulas have the same notation.
  • M1 is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
  • Terminal group R a1 R a1 is each independently a polymerizable group represented by the following formula (2-1) or (2-2). “R a1 is independently of each other” means that two R a1 of the compound (1) may be the same or different.
  • R a1 is independently of each other means that two R a1 of the compound (1) may be the same or different.
  • the groups represented by these symbols may be the same or different.
  • R b is each independently hydrogen, halogen, —CF 3 or alkyl having 1 to 5 carbons, and q is 0 or 1.
  • the alkyl having 1 to 5 carbon atoms in R b is preferably alkyl having 1 to 3 carbon atoms, and more preferably methyl.
  • R b is preferably hydrogen from the viewpoint of easy synthesis of the compound (1).
  • q is preferably 0.
  • Ring structure A A is independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7- Diyl, bicyclo [2.2.2] oct-1,4-diyl or bicyclo [3.1.0] hex-3,6-diyl,
  • any -CH 2 - may be replaced by -O-
  • any hydrogen may be halogen, cyano, carbon It may be replaced by an alkyl having 1 to 10 carbon atoms or an alkyl halide having 1 to 10 carbon atoms.
  • any -CH 2 -is -O-,- CO-, -COO-, -OCO-, -CH CH- or -C ⁇ C- may be substituted.
  • arbitrary means "at least one", but usually, in consideration of the stability of the compound, a structure that is difficult to adopt based on common sense in the art, for example, where oxygen and oxygen are adjacent to each other. It is preferable not to include -OO-.
  • the phrase “arbitrary hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons or alkyl halide having 1 to 10 carbons” is described, for example, in 1,4-phenylene. It means an embodiment in which at least one of the hydrogens at the 2,3,5,6-position is replaced by a substituent such as fluorine or methyl, and when the substituent is "an alkyl halide having 1 to 10 carbon atoms".
  • Embodiments include examples such as 2-fluoroethyl and 3-fluoro-5-chlorohexyl.
  • a 6-membered ring and a condensed ring containing the 6-membered ring are basically regarded as rings, and for example, a 3-membered ring, 4-membered ring and 5-membered ring alone are not regarded as rings.
  • a condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
  • the compound (1) When the compound (1) has at least one 1,4-phenylene, the compound tends to have a large orientational order parameter and a large magnetization anisotropy. When the compound (1) has at least two 1,4-phenylenes, the temperature range of the liquid crystal phase is wide, and the compound tends to have a higher clearing point. When the compound (1) has a group in which at least one hydrogen on the 1,4-phenylene ring is substituted with cyano, halogen, —CF 3 or —OCF 3 , the compound tends to have a high dielectric anisotropy. is there. When the compound (1) has at least two 1,4-cyclohexylenes, the compound tends to have a high clearing point and a low viscosity.
  • Preferred A is, for example, 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 2,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene , 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl , Naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methyl
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
  • More preferred A is, for example, 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene , 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, and 2,6-difluoro-1,4-phenylene.
  • Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
  • .Binding group Z Z is each independently a single bond or an alkylene having 1 to 22 carbon atoms, preferably a single bond or an alkylene having 1 to 10 carbon atoms,
  • Particularly preferred Z is a single bond,-(CH 2 ) 2 -,-(CH 2 ) 2 O-, -O (CH 2 ) 2- , -COO- or -OCO-.
  • Compound (1) may be optically active or optically inactive.
  • the compound (1) may have an asymmetric carbon or may have an axial asymmetry.
  • the configuration of the asymmetric carbon may be R or S.
  • the asymmetric carbon may be located at either R a1 or A.
  • it tends to be a compound having excellent compatibility with other components.
  • the compound (1) has axial asymmetry, the compound tends to have a large twist inducing force. Further, the light-irradiating property may be any.
  • Compound (1) can also be represented by the following formula (1-a) or (1-b).
  • Y is alkylene having 1 to 10 carbon atoms in which -CH 2- at one or both terminals is replaced by -O-.
  • m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
  • two Ps are preferably the same group, and two Ys are also preferably the same group, and both sides of-(AZ) m -are bilaterally symmetric. Is preferred.
  • “-ZY-” in the formula (1-b) has the same meaning as Z in the formula (1).
  • Examples of preferable compound (1) include the following compounds (a-1) to (g-7).
  • * indicates an asymmetric carbon
  • R a, P and Y are independently the same as R a, P and Y in the formula (1-a) and (1-b).
  • a is each independently an integer of 1 to 20.
  • X is a halogen, an alkyl having 1 to 10 carbons, or an alkyl fluoride having 1 to 10 carbons.
  • Compound (1) can be synthesized by combining known methods in synthetic organic chemistry. Methods for introducing desired end groups, ring structures and linking groups into starting materials are described in, for example, Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John. Wily & Sons, Inc.), Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis, Pergamon Press, New Laboratory Chemistry Course (Maruzen) It is described in. Further, JP-A-2006-265527 may be referred to.
  • the content of the polymerizable liquid crystal compound in the present composition is preferably 1 to 35% by mass, more preferably 2 to 30% by mass based on 100% by mass of the present composition.
  • the content of the polymerizable liquid crystal compound is in the above range, it is possible to easily form a cured product excellent in thermal conductivity and adhesion to an adherend such as a metal, a metal compound or a semiconductor layer in a well-balanced manner.
  • the curing agent is not particularly limited as long as the polymerizable liquid crystal compound and the non-liquid crystalline polymerizable compound can be cured.
  • acid anhydride-based curing agents for example, acid anhydride-based curing agents, amine-based curing agents, phenol-based curing agents, and mercaptan-based curing agents And imidazole.
  • the polymerizable liquid crystal compound can be easily cured, and a cured product excellent in thermal conductivity and adhesion to an adherend such as a metal, a metal compound or a semiconductor layer can be easily formed.
  • an amine-based curing agent is preferable.
  • the curing agent one type may be used, or two or more types may be used.
  • amine-based curing agent a commonly used compound can be used without any particular limitation, and a commercially available compound may be used. Among them, a bifunctional or higher polyfunctional curing agent is preferable from the viewpoint of curability, and a polyfunctional curing agent having a rigid skeleton is more preferable from the viewpoint of thermal conductivity.
  • diamines are preferable because the polymerizable liquid crystal compound can be cured without impairing the liquid crystallinity of the polymerizable liquid crystal compound.
  • amine curing agent examples include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, o-xylenediamine, m-xylenediamine, p-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, and diethylaminopropyl.
  • examples of the amine-based curing agent include a compound (2) represented by the following formula (2). JZ- (XZ) m1 -J (2)
  • J is each independently an amino group
  • m1 is an integer of 1 to 6.
  • X in the formula (2) is preferably the same group as A in the formula (1), and Z in the formula (2) is preferably the same group as Z in the formula (1).
  • M1 in the above is preferably an integer of 2 to 6, more preferably an integer of 2 to 4.
  • the compound (2) is more preferably a compound (2-1) represented by the following formula (2-1).
  • JZXZ 1 -XZJ (2-1) [J, X and Z in the formula (2-1) have the same meanings as J, X and Z in the formula (2), and Z 1 in the formula (2-1) is Synonymous with Z. ]
  • the compound (2-1) is preferably a compound in which Z is a single bond, a compound in which X is 1,4-phenylene, and a compound in which Z 1 is a group represented by — (CH 2 ) n —. preferable.
  • the compound in which n in Z 1 is an even number has a bilaterally symmetric structure and is hardly bent. Therefore, a composition and a cured product obtained using the compound tend to have higher thermal conductivity. Because it is, it is desirable.
  • the amount of the curing agent used is based on 1 mol of the functional group capable of reacting with the curing agent in the component (a) capable of reacting with the curing agent contained in the composition.
  • a mole of a functional group capable of reacting with the component (a) is preferably 0.6 to 1.8, more preferably 0.8 to 1.4.
  • the component (a) includes the polymerizable liquid crystal compound and the following non-liquid crystal polymerizable compound, and the component (b) includes a curing agent.
  • Non-liquid crystalline polymerizable compound contains a bifunctional or higher functional non-liquid crystalline polymerizable compound (hereinafter, also simply referred to as “non-liquid crystalline polymerizable compound”).
  • the non-liquid crystalline polymerizable compound is a compound other than the polymerizable liquid crystal compound, and has a polymerizable group but refers to a compound which does not exhibit a liquid crystal phase such as a nematic phase or a smectic phase by itself.
  • the non-liquid crystalline polymerizable compound may be a compound having three or more functions or four or more functions. One type of non-liquid crystalline polymerizable compound may be used, or two or more types may be used.
  • the non-liquid crystalline polymerizable compound is not particularly limited, for example, a compound having a group capable of reacting with a polymerizable group of the polymerizable liquid crystal compound or a compound having a group capable of reacting with a reactive group of the curing agent
  • a compound having a group capable of reacting with a reactive group of the curing agent is preferable, and a compound having R a is more preferable.
  • non-liquid crystalline polymerizable compound examples include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, itaconic acid derivatives, polyglycidyl ether of polyether, diglycidyl ether of bisphenol A, Epoxy compounds such as diglycidyl ether of bisphenol F and diglycidyl ether of biphenol are exemplified.
  • the non-liquid crystalline polymerizable compound may be synthesized by a known method in synthetic organic chemistry, or a commercially available product may be used.
  • the amount of the non-liquid crystalline polymerizable compound in the present composition is not particularly limited, but is preferably such that the ratio described in the column of the amount of the curing agent is used.
  • the content ratio of the polymerizable liquid crystal compound to the non-liquid crystal polymerizable compound is from 20:80 to 95: 5, preferably 20:80 to 95: 5.
  • the ratio is from 80 to 90:10, more preferably from 25:75 to 80:20.
  • the ratio of the content of the polymerizable liquid crystal compound to the content of the non-liquid crystalline polymerizable compound is within the above range, a cured product having excellent thermal conductivity and adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer can be easily obtained. Can be formed.
  • the composition preferably contains a coupling agent from the viewpoint that a cured product having more excellent thermal conductivity can be obtained.
  • a coupling agent may be added when the inorganic filler, the polymerizable liquid crystal compound, and the curing agent are mixed, but a cured product having more excellent thermal conductivity can be obtained.
  • at least a part of the coupling agent to be used is preferably used as the composite material A previously bonded to the inorganic filler.
  • the inorganic filler is bonded to one end of the coupling agent, and the coupling agent is used. It is also preferable to use in the form of a composite material B having a polymerizable compound bonded to the other end.
  • the polymerizable compound is the polymerizable liquid crystal compound or the non-liquid crystal polymerizable compound.
  • the coupling agent is not particularly limited, and known coupling agents such as a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent can be used. preferable. One type of coupling agent may be used, or two or more types may be used.
  • the coupling agent is a compound having at least two reactive groups, and includes a reactive group capable of binding to an inorganic filler and a reactive group capable of binding two or more coupling agents to each other, or a polymerizable compound.
  • a reactive group capable of binding to a functional group (eg, oxiranyl group) of the polymerizable compound Preferably has a reactive group capable of binding to a functional group (eg, oxiranyl group) of the polymerizable compound.
  • the reactive group examples include a hydrolyzable group such as an alkoxy group, an amino group, a ureido group, an oxiranyl group, an oxetanyl group, a carboxy group, an acid anhydride group, a mercapto group, an isocyanate group, an imidazole group, a vinyl group, And an ethylenically unsaturated bonding group such as a (meth) acryloyl group.
  • a hydrolyzable group such as an alkoxy group, an amino group, a ureido group, an oxiranyl group, an oxetanyl group, a carboxy group, an acid anhydride group, a mercapto group, an isocyanate group, an imidazole group, a vinyl group, and an ethylenically unsaturated bonding group such as a (meth) acryloyl group.
  • the combination of a reactive group capable of binding two or more types of coupling agents or a combination of a functional group of the polymerizable compound and a reactive group capable of binding to the functional group is not particularly limited.
  • an oxiranyl group may be used. Examples include amino groups, vinyl groups, (meth) acryloyl groups, carboxy groups or acid anhydride groups and amino groups, and imidazole groups and oxiranyl groups. Among these, a combination in which the structure after the reaction becomes a structure having high heat resistance is more preferable.
  • a coupling agent having an amino group examples include Silaace (trade name) S310, S320, S330, and S360 manufactured by JNC, and KBM-903 and KBE-903 manufactured by Shin-Etsu Chemical Co., Ltd. .
  • the amount of the coupling agent to be used is not particularly limited, but is preferably 0.1 to 10% by mass relative to 100% by mass of the present composition from the viewpoint that a cured product having more excellent thermal conductivity can be obtained. More preferably, it is 0.5 to 5% by mass.
  • the reaction amount of the coupling agent with respect to the inorganic filler mainly varies depending on the size of the inorganic filler, the reactivity of the coupling agent used, and the like. It is preferable to couple as many coupling agents as possible to the inorganic filler, and the number of reactive groups that react with the reactive groups of the coupling agent is equal to the number of reactive groups of the inorganic filler. It is preferable to use a coupling agent so as to increase the amount slightly.
  • the coupling amount of the coupling agent with respect to 100 parts by mass of the inorganic filler is preferably 0.1 part by mass or more, from the viewpoint that the composition and the cured product having excellent thermal stability and durability can be easily obtained. It is preferably from 0.3 to 50 parts by mass, particularly preferably from 0.5 to 25 parts by mass.
  • the composition includes an inorganic filler, a polymerizable liquid crystal compound, a curing agent, a non-liquid crystal polymerizable compound, and other components other than the coupling agent, such as a non-polymerizable compound, a polymerization initiator, a solvent, a stabilizer, and an adhesive.
  • An imparting agent and an organic filler may be included.
  • Each of these other components may be used alone or in combination of two or more.
  • the composition may include a non-polymerizable compound.
  • a non-polymerizable compound is not particularly limited as long as it is a compound that does not react with the inorganic filler, the polymerizable liquid crystal compound, the curing agent, the non-liquid crystal polymerizable compound, and the coupling agent, but does not decrease the film-forming property and the mechanical strength.
  • Compounds are preferred, and more preferably high molecular compounds.
  • the polymer compound include a polyolefin resin, a polyvinyl resin, a silicone resin, and a wax.
  • the non-polymerizable compound may be a liquid crystal compound having no polymerizable group.
  • non-polymerizable liquid crystal compounds are described in LiquiCryst, LCI Publisher GmbH, Hamburg, Germany, which is a database of liquid crystal compounds.
  • a composition containing a non-polymerizable liquid crystal compound is polymerized, for example, a composite material of a polymer of compound (1) and a non-polymerizable liquid crystal compound can be obtained.
  • a composite material includes an embodiment in which a non-polymerizable liquid crystal compound is present in a polymer network such as a polymer dispersed liquid crystal.
  • a liquid crystal compound having characteristics such that there is no fluidity in a temperature range in which a cured product obtained from the present composition is used is desirable.
  • the composition may include a polymerization initiator.
  • a polymerization initiator a photoradical polymerization initiator, a photocationic polymerization initiator, a thermal radical polymerization initiator, or the like may be used according to the components contained in the present composition and a desired polymerization method.
  • a thermal radical polymerization initiator is preferable since the inorganic filler tends to absorb ultraviolet rays.
  • Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropylperoxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide Oxide (DTBP), t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2'-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), and azobiscyclohexanecarbonitrile (ACN) Can benzoyl peroxide, diisopropylperoxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide Oxide (DTBP), t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,
  • the composition may include a solvent.
  • Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, ⁇ -butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide, cyclohexane, methylcyclohexane, cyclopentanone , Cyclohexanone, and propylene glycol methyl ether acetate (PGMEA).
  • the amount of the solvent used is not particularly limited, and may be determined for each individual case in consideration of polymerization efficiency, solvent cost, energy cost, and the like.
  • Stabilizers may be added to the composition to facilitate handling of the composition.
  • the stabilizer is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include an antioxidant, a copper damage inhibitor, a metal deactivator, an antioxidant, an antifoaming agent, an antistatic agent, and a weathering agent. No. As these stabilizers, known stabilizers can be used without limitation.
  • antioxidants include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
  • Japanese Patent Application Laid-Open No. 5-48265 discloses The addition of copper inhibitors or metal deactivators as mentioned is preferred.
  • the copper damage inhibitor (trade name) include Mark ZS-27 and Mark CDA-16 manufactured by ADEKA Corporation; SANKO-EPOCLEAN manufactured by Sanko Chemical Industry Co., Ltd .; and Irganox MD1024 manufactured by BASF Corporation. preferable.
  • the added amount of the copper harm inhibitor is preferably based on 100 parts by mass of the total amount of the organic component contained in the composition, from the viewpoint that the organic component in the portion in contact with the metal in the cured product can be prevented from deteriorating. Is 0.1 to 3 parts by mass.
  • the composition may include an organic filler, and examples of the organic filler include fibers made of polyvinyl formal, polyvinyl butyral, polyester, polyamide, polyimide, and the like.
  • the present composition can be prepared by mixing an inorganic filler, a polymerizable liquid crystal compound, a non-liquid crystal polymerizable compound, a curing agent, and other components used if necessary.
  • the mixing method at this time is not particularly limited, for example, weighed so that the mixing ratio of the inorganic filler and the polymerizable liquid crystal compound is in the above range, mixed in an agate mortar or the like, using a biaxial roll or the like A method of mixing is used.
  • the inorganic filler when preparing the present composition, use a composite material A in which an inorganic filler and a coupling agent are bonded in advance, or bond the inorganic filler to one end of the coupling agent in advance. It is preferable to use a composite material B in which a polymerizable compound is bonded to the other end of the coupling agent.
  • the inorganic filler and the coupling agent are mixed in the presence of a solvent, stirred using a stirrer or the like, and then dried. After the solvent is dried, it is kept under vacuum conditions or the like using a vacuum dryer or the like. If necessary, a solvent is added after the holding, a sonication treatment, a centrifugal separation, and the like are performed to thereby remove a coupling agent attached to the solid content (unbound). This purification step may be performed a plurality of times. Further, the purified composite material may be dried using an oven or the like.
  • the solvent is not particularly limited, but is preferably a solvent capable of dissolving the coupling agent, and is preferably a solvent capable of dispersing the inorganic filler.
  • the time for mixing and stirring the inorganic filler and the coupling agent is not particularly limited, and may be, for example, 1 minute to 24 hours.
  • the drying conditions are not particularly limited as long as the solvent used is dried, and may be appropriately set according to the solvent used.
  • the conditions for holding under vacuum conditions or the like are preferably, for example, conditions under which dehydration condensation is performed.
  • the holding temperature is preferably 20 to 150 ° C.
  • the holding time is 1 minute. ⁇ 24 hours.
  • the method for bonding the coupling agent and the polymerizable compound bonded to the inorganic filler is not particularly limited, and a known method can be used, but the following method is preferable.
  • the coupling agent combined with the inorganic filler and the polymerizable compound are mixed using an agate mortar or the like, and then kneaded using a biaxial roll or the like. Thereafter, if necessary, separation and purification (removal of the polymerizable compound not bound to the coupling agent) is performed by sonication and centrifugation.
  • the present composition contains an inorganic filler in advance and at least one polymerizable compound selected from a polymerizable liquid crystal compound and a non-liquid crystal polymerizable compound. It is preferable to use a composite material X coated with a compound or a cured product in which at least a part of the compound has been cured, and the inorganic filler is added in advance to a first polymerizable compound (polymerizable liquid crystal compound or non-liquid crystal polymerizable compound) or at least the same.
  • the second polymerizable compound (a polymerizable liquid crystal compound or a non-liquid crystalline polymerizable compound; however, the first polymerizable compound is used at the time of curing, molding, or the like using the composite material X partially covered with a cured product. That is, when a polymerizable liquid crystal compound is used as the first polymerizable compound, the second polymerizable compound is a non-liquid crystal polymerizable compound.) More preferably.
  • an inorganic filler alone may be used, but the composite material A may be used, or the composite material B may be used. .
  • a curing agent When producing such a composite material X, it is preferable to use a curing agent together with the first polymerizable compound.
  • coating includes not only the case where the entire surface of the inorganic filler is covered but also the case where a part of the surface of the inorganic filler is covered.
  • the method for coating the inorganic filler (composite material A or composite material B) with the polymerizable compound or a cured product in which at least a part thereof is cured is not particularly limited, and a known method can be used. preferable.
  • the inorganic filler, the first polymerizable compound, and the curing agent are stirred using a disperser or the like at a temperature of preferably 60 to 140 ° C, more preferably 70 to 125 ° C, for about 5 minutes to 1 hour.
  • the inorganic filler (composite material A or composite material B) can be covered with a cured product obtained by curing at least a part of the polymerizable compound.
  • the cured product according to one embodiment of the present invention is obtained by curing the present composition.
  • the curing may be performed in a solvent or without a solvent.
  • the composition containing the solvent may be applied to the substrate by, for example, a spin coating method, and then the solvent may be removed before curing.
  • the curing method may be appropriately selected depending on the components to be used, the desired application, and the like, and may be heat curing, light curing, or after heating to a suitable temperature after light curing. It may be cured.
  • the thermal curing is performed, for example, at a temperature of preferably 50 to 350 ° C., more preferably 60 to 300 ° C., and even more preferably 70 to 250 ° C., for 5 seconds to 10 hours, preferably 1 minute to 5 hours, more preferably Can be carried out by heating for about 5 minutes to 1 hour.
  • the curing may be performed in two or more stages, for example, after pre-curing by heating at a temperature of preferably 60 to 140 ° C., more preferably 70 to 125 ° C. for about 5 minutes to 1 hour.
  • a method of curing by the following compression molding may be used.
  • the light curing can be performed, for example, by irradiating light so that the integrated illuminance is preferably 10 to 2000 mJ / cm 2 , more preferably 50 to 500 mJ / cm 2 .
  • the laminate according to one embodiment of the present invention includes a layer of a cured product of the present composition (hereinafter, also simply referred to as a “cured product layer”) and a metal, metal compound, or semiconductor layer (hereinafter, simply referred to as a “metal-related layer”). ").).
  • the cured product layer contained in the laminate may be a single layer or two or more layers. Further, the number of metal-related layers contained in the laminate may be one, or two or more. When two or more cured product layers are included, these cured product layers may be the same or different. The same applies when two or more metal-related layers are included.
  • the laminate may include other conventionally known layers such as an adhesive layer, but the cured product layer has excellent adhesion with a metal-related layer, and thus has a cured product layer and a metal-related layer. It is preferable that other layers are not included between them.
  • the metal-related layer examples include metal layers made of copper, aluminum, nickel, gold, alloys of these metals, metal compound layers made of oxides, nitrides, and the like of these metals, silicon, GaAs, GaN, and SiC. And a semiconductor layer made of germanium oxide or the like, and specifically, a metal electrode, a semiconductor chip, or the like. Further, the metal-related layer may be a layer in which a plurality of metal-related layers are provided on a predetermined substrate (for example, a plurality of electrodes provided on a substrate).
  • the shape of the metal-related layer is not particularly limited, and examples thereof include a plate shape and a rod shape.
  • the thickness of the metal-related layer is also not particularly limited, and may be a thickness known as a metal-related layer to be laminated with the cured product layer, specifically, a metal electrode, a semiconductor chip, or the like, and preferably 0.1 ⁇ m to 10 mm. It is.
  • the laminate includes a joined body in which a metal-related layer, a cured product layer, and a metal-related layer are laminated in this order.
  • the method for producing the joined body is not particularly limited, but the composition is applied to one surface of one metal-related layer or two metal-related layers, and the metal-related layer, the cured product layer, Are preferably arranged so as to form a joined body laminated in this order, and compression-molded.
  • the temperature during compression molding is usually from room temperature to 350 ° C., preferably from room temperature to 300 ° C., more preferably from 50 ° C. to 250 ° C., and the time is usually from 5 seconds to 10 hours, preferably from 1 minute to 5 hours. And more preferably 5 minutes to 1 hour, and the pressure is usually 0.01 to 30 MPa, preferably 0.1 to 5 MPa.
  • the laminate and the joined body can be manufactured by heating at a relatively low temperature. After hardening in this way, it is preferable to gradually cool to suppress stress strain and the like. After cooling, reheating may be performed to alleviate strain and the like.
  • the thickness of the laminated body may be appropriately changed depending on the application, but in order to increase the thermal conductivity in the thickness direction of the laminated body, a thinner one is preferable. , Preferably 5 to 2000 ⁇ m, more preferably 10 to 1000 ⁇ m, and particularly preferably 15 to 500 ⁇ m.
  • the cured product and the cured product layer have high thermal conductivity, and the coefficient of thermal expansion takes a value from negative to positive depending on the type of organic material and inorganic filler used, the mixing ratio, curing conditions, etc., and the chemical stability.
  • the mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, flexural modulus, impact strength and the like.
  • the cured product and the laminate are useful for a heat dissipation substrate, a heat dissipation plate (a planar heat sink), a heat dissipation sheet, a heat dissipation film, a heat dissipation coating, a heat dissipation adhesive, a heat dissipation insulating substrate with electrodes, a heat conductive electronic substrate, and the like. It is.
  • An electronic device includes the cured product or the laminate, and an electronic device having a heat generating portion. It is preferable that the cured product or the laminate is disposed on the electronic device so as to contact the heat generating portion.
  • the term “contact” means that the cured product or the laminate may directly contact the heat-generating portion, or may contact via an adhesive layer or the like.
  • the cured product or the laminate may be any of a heat-radiating substrate, a heat-radiating plate (a planar heat sink), a heat-radiating sheet, a heat-radiating film, a heat-radiating coating, a heat-radiating adhesive, a heat-radiating insulating substrate with electrodes, and a heat-conductive electronic substrate. It may be.
  • the electronic device includes, for example, a semiconductor element. Since the cured product or the laminate contains a cured product obtained from the present composition, it has high heat resistance in addition to high thermal conductivity. For this reason, it is particularly effective when the electronic device includes a power semiconductor made of silicon, silicon carbide, gallium nitride, gallium oxide, diamond, or the like that requires a more efficient heat radiation mechanism for high power among semiconductor elements. It is. Examples of electronic devices equipped with these power semiconductors include a main conversion element of a high-power inverter, an uninterruptible power supply, a variable voltage variable frequency control device of an AC motor, a control device of a railway vehicle, a hybrid car, an electric car, and the like. Electric transport equipment and IH cookers are included.
  • YX4000H a compound represented by the formula (1-12), manufactured by Mitsubishi Chemical Corporation, (trade name) jER YX4000H -"JER828”: manufactured by Mitsubishi Chemical Corporation, (trade name) jER828 (polymerizable oxiranyl compound)
  • “Curing agent 1” a compound represented by the formula (1-13) (4,4'-ethylenedianiline), manufactured by Tokyo Chemical Industry Co., Ltd.
  • “Curing agent 2” a compound represented by the formula (1-14) (4,4'-diaminodiphenylmethane), manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 1 Put 7.2 g of PTX-25, 0.621 g of polymerizable liquid crystal, 1.534 g of YX4000H, and 0.625 g of curing agent 1 in a powder lab dispersion tester PWB type manufactured by Nippon Coke Industry Co., Ltd. While maintaining the temperature at 80 ° C., stirring was performed at 500 rotations for 10 minutes, then at 1000 rotations for 1 minute, then at 2,000 rotations for 1 minute, and further at 3000 rotations for 1 minute. Next, after the internal temperature became 60 ° C. or lower, the composition was taken out of the container.
  • ⁇ Measurement of thermal diffusivity and calculation of thermal conductivity> Using a sample for measuring thermal diffusivity, a multilayer sample is measured using an LFA467 HyperFlash thermal diffusivity device manufactured by NETZSCH Corporation, and heat including heat loss due to contact thermal resistance is measured using a multilayer sample analysis model (three layers). The diffusivity was calculated. In the multilayer sample analysis, the analysis was performed with the density of the cured product being 1.6 g / cm 3 and the specific heat being 1.0 J / g ⁇ K. The thermal conductivity of the cured product was calculated by multiplying the obtained thermal diffusivity by the density and the specific heat. Table 1 shows the results.
  • ⁇ Tensile test> A tensile test was performed as described below, and the tensile strength was confirmed. Using a tensile tester (manufactured by Tensilon, RTF-1310), the tensile test sample was pulled in the direction of the arrow in FIG. 2 at a speed of 1 mm / min, and the tensile strength (N) at break was measured. If it did not break, the detection limit (500N) or more was set. Table 1 shows the results. "E” in Table 1 indicates that the two aluminum plates were peeled off when the tensile test sample was fixed to the tensile test measuring instrument.
  • Examples 2-3 and Comparative Examples 1-3 A composition was prepared in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Table 1, and each sample was prepared from the composition and evaluated.
  • a predetermined amount of an inorganic filler By using a predetermined amount of an inorganic filler, a predetermined ratio of a bifunctional or higher functional polymerizable liquid crystal compound and a bifunctional or higher non-liquid crystalline polymerizable compound, and a curing agent, excellent adhesion to a metal, a metal compound or a semiconductor is obtained. Thus, a composition (cured product) having a high thermal conductivity could be obtained. On the other hand, when a bifunctional or higher functional polymerizable liquid crystal compound or a bifunctional or higher functional non-liquid crystalline polymerizable compound is not used, a composition having excellent adhesion to a metal, a metal compound or a semiconductor and having high thermal conductivity (Cured product) could not be obtained.

Abstract

Embodiments of the present invention pertain to a composition, a cured product, a laminated body, and an electronic device. The composition includes: an inorganic filler; a polymerizable liquid crystal compound having 2 or more functional groups; a polymerizable non-liquid crystal compound having 2 or more functional groups; and a curing agent that is capable of curing the polymerizable liquid crystal compound and the polymerizable non-liquid crystal compound. The inorganic filler content is 150-4500 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. The ratio of the contained amounts between the polymerizable liquid crystal compound and the polymerizable non-liquid crystal compound (mass of polymerizable liquid crystal compound: mass of polymerizable non-liquid crystal compound) is 20:80-95:5.

Description

組成物、硬化物、積層体および電子機器Composition, cured product, laminate and electronic device
 本発明の一実施形態は、組成物、硬化物、積層体および電子機器に関する。 の 一 One embodiment of the present invention relates to a composition, a cured product, a laminate, and an electronic device.
 近年、ハイブリッド自動車や電気自動車などの電力制御用の半導体素子や、高速コンピューター用のCPUなどにおいて、内部の半導体の温度が高くなり過ぎないように、チップ・パッケージ材料の高熱伝導化が望まれている。すなわち半導体チップから発生した熱を効果的に外部に放出させる能力が重要になっている。また、動作温度の上昇により、チップ・パッケージ内に使用されている材料間の熱膨張率の差により熱歪が発生し、配線の剥離、積層基板の層間剥離などによる寿命の低下が問題になっている。 In recent years, in semiconductor devices for power control such as hybrid vehicles and electric vehicles, CPUs for high-speed computers, and the like, it is desired to increase the heat conductivity of chip and package materials so that the temperature of the internal semiconductor does not become too high. I have. That is, the ability to effectively release the heat generated from the semiconductor chip to the outside has become important. In addition, a rise in operating temperature causes thermal distortion due to a difference in the coefficient of thermal expansion between materials used in the chip / package. ing.
 このような熱に関する問題を解決する方法としては、発熱部位に高熱伝導性材料(放熱部材)を接触させて熱を外部に導き、放熱する方法が挙げられる。
 特許文献1には、有機材料と無機材料とを複合化させた放熱部材であって、無機材料間をシランカップリング剤と重合性液晶化合物で繋いだ放熱部材が開示されている。
As a method for solving such a heat-related problem, there is a method in which a high heat conductive material (a heat radiating member) is brought into contact with a heat generating portion to guide heat to the outside and radiate the heat.
Patent Literature 1 discloses a heat dissipating member in which an organic material and an inorganic material are combined, wherein the inorganic materials are connected with a silane coupling agent and a polymerizable liquid crystal compound.
国際公開第2016/031888号International Publication No. WO 2016/031888
 前述のとおり、チップ・パッケージ内で使用される放熱部材とそれを構成する様々な材料が検討されてきた。しかしながら、例えば、特許文献1に記載の放熱部材は、熱伝導性や、金属、金属化合物または半導体層等の被着体との接着性の点で改良の余地があった。 と お り As mentioned above, the heat dissipating member used in the chip package and various materials constituting it have been studied. However, for example, the heat dissipating member described in Patent Document 1 has room for improvement in terms of thermal conductivity and adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer.
 本発明の一実施形態は、熱伝導性および金属、金属化合物または半導体層等の被着体との接着性に優れる硬化物を形成可能な組成物およびその用途を提供する。 An embodiment of the present invention provides a composition capable of forming a cured product having excellent heat conductivity and excellent adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer, and a use thereof.
 本発明の構成例は以下の通りである。なお、本発明は、以下の実施形態に制限されるものではない。 構成 The configuration example of the present invention is as follows. Note that the present invention is not limited to the following embodiments.
 [1] 無機フィラー、2官能以上の重合性液晶化合物、2官能以上の非液晶性重合性化合物、ならびに、前記重合性液晶化合物および前記非液晶性重合性化合物を硬化可能な硬化剤を含み、
 前記無機フィラーの含有量が、前記重合性液晶化合物100質量部に対し、150~4500質量部であり、
 前記重合性液晶化合物と前記非液晶性重合性化合物との含有量の比(重合性液晶化合物の質量:非液晶性重合性化合物の質量)が、20:80~95:5である、
組成物。
[1] An inorganic filler, a bifunctional or higher functional polymerizable liquid crystal compound, a bifunctional or higher functional non-liquid crystalline polymerizable compound, and a curing agent capable of curing the polymerizable liquid crystal compound and the non-liquid crystalline polymerizable compound,
The content of the inorganic filler is 150 to 4500 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound;
The content ratio of the polymerizable liquid crystal compound to the non-liquid crystal polymerizable compound (mass of the polymerizable liquid crystal compound: mass of the non-liquid crystal polymerizable compound) is 20:80 to 95: 5;
Composition.
 [2] 前記組成物が、前記無機フィラーが、2官能以上の重合性液晶化合物および2官能以上の非液晶性重合性化合物から選ばれる少なくとも1種の重合性化合物またはその少なくとも一部が硬化した硬化物で被覆された複合材Xを含む、[1]に記載の組成物。
 [3] 前記無機フィラーとカップリング剤とが結合した複合材Aを含む、[1]または[2]に記載の組成物。
 [4] カップリング剤の一端に前記無機フィラーが結合し、他端に重合性化合物が結合した複合材Bを含む、[1]~[3]のいずれかに記載の組成物。
[2] In the composition, at least one polymerizable compound selected from a bifunctional or higher functional polymerizable liquid crystal compound and a bifunctional or higher functional non-liquid crystalline polymerizable compound or at least a part thereof is cured. The composition according to [1], comprising a composite material X coated with a cured product.
[3] The composition according to [1] or [2], comprising a composite material A in which the inorganic filler and a coupling agent are bonded.
[4] The composition according to any one of [1] to [3], further including a composite material B in which the inorganic filler is bonded to one end of a coupling agent and a polymerizable compound is bonded to the other end.
 [5] 前記重合性液晶化合物が下記式(1)で表される化合物である、[1]~[4]のいずれかに記載の組成物。
 Ra1-Z-(A-Z)m1-Ra1  ・・・(1)
[式(1)中、Ra1はそれぞれ独立して、下記式(2-1)または(2-2)で表される重合性基であり;
 Aは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイルまたはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
 これらの環において、任意の-CH2-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、シアノ、炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキルにおいて、任意の-CH2-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-または-C≡C-で置き換えられてもよく;
 Zはそれぞれ独立して、単結合または炭素数1~22のアルキレンであり、
 該アルキレンにおいて、任意の-CH2-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、-N(O)=N-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;
 m1は、1~6の整数である。]
[5] The composition according to any one of [1] to [4], wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1).
R a1 -Z- (AZ) m1 -R a1 (1)
[In the formula (1), R a1 is each independently a polymerizable group represented by the following formula (2-1) or (2-2);
A is independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7- Diyl, bicyclo [2.2.2] oct-1,4-diyl or bicyclo [3.1.0] hex-3,6-diyl,
In these rings, any -CH 2 -may be replaced by -O-, any -CH = may be replaced by -N =, and any hydrogen may be halogen, cyano, carbon It may be replaced by an alkyl having 1 to 10 carbon atoms or an alkyl halide having 1 to 10 carbon atoms. In the alkyl, any -CH 2 -is -O-, -CO-, -COO-, -OCO-. , -CH = CH- or -C≡C-;
Z is each independently a single bond or alkylene having 1 to 22 carbon atoms;
In the alkylene, any —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH = CH—, —CF = CF—, —CH = N—, -N = CH-, -N = N-, -N (O) = N- or -C≡C-, and any hydrogen may be replaced by halogen;
m1 is an integer of 1 to 6. ]
Figure JPOXMLDOC01-appb-C000002
[式(2-1)~(2-2)中、Rbはそれぞれ独立して、水素、ハロゲン、-CF3または炭素数1~5のアルキルであり、qは0または1である。]
Figure JPOXMLDOC01-appb-C000002
[In the formulas (2-1) and (2-2), R b is each independently hydrogen, halogen, —CF 3 or alkyl having 1 to 5 carbons, and q is 0 or 1. ]
 [6] 前記式(1)中、
 Zが、単結合、-(CH2a-、-(CF2a-、-O(CH2a-、-(CH2aO-、-O(CH2aO-、-CH=CH-、-CF=CF-、-C≡C-、-COO-、-OCO-、-CH=CH-COO-、-OCO-CH=CH-、-CH2CH2-COO-、-OCO-CH2CH2-、-CH=N-、-N=CH-、-N=N-、-OCF2-または-CF2O-であり、
 該aがそれぞれ独立して1~20の整数である、
[5]に記載の組成物。
[6] In the above formula (1),
Z is a single bond, - (CH 2) a - , - (CF 2) a -, - O (CH 2) a -, - (CH 2) a O -, - O (CH 2) a O-, -CH = CH-, -CF = CF-, -C≡C-, -COO-, -OCO-, -CH = CH-COO-, -OCO-CH = CH-, -CH 2 CH 2 -COO- , -OCO-CH 2 CH 2- , -CH = N-, -N = CH-, -N = N-, -OCF 2 -or -CF 2 O-,
A is each independently an integer of 1 to 20;
The composition according to [5].
 [7] 前記無機フィラーが、窒化物、炭化物、炭素材料、ケイ酸塩化合物または金属酸化物である、[1]~[6]のいずれかに記載の組成物。
 [8] 前記無機フィラーが、窒化ホウ素、窒化アルミニウム、窒化ホウ素炭素、炭化ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、アルミナ、コーディエライト、酸化亜鉛、酸化ジルコニウムおよび酸化チタンから選ばれる少なくとも一つである、[1]~[7]のいずれかに記載の組成物。
[7] The composition according to any one of [1] to [6], wherein the inorganic filler is a nitride, a carbide, a carbon material, a silicate compound or a metal oxide.
[8] The inorganic filler is at least one selected from boron nitride, aluminum nitride, boron nitride carbon, boron carbide, graphite, carbon fiber, carbon nanotube, alumina, cordierite, zinc oxide, zirconium oxide, and titanium oxide. A composition according to any one of [1] to [7].
 [9] [1]~[8]のいずれかに記載の組成物の硬化物。
 [10] [1]~[8]のいずれかに記載の組成物の硬化物の層と、金属、金属化合物または半導体層との積層体。
 [11] 発熱部を有する電子デバイスと、
 [9]に記載の硬化物または[10]に記載の積層体とを含む、
電子機器。
[9] A cured product of the composition according to any one of [1] to [8].
[10] A laminate of a layer of the cured product of the composition according to any one of [1] to [8] and a metal, metal compound or semiconductor layer.
[11] an electronic device having a heat generating portion;
Including the cured product according to [9] or the laminate according to [10],
Electronics.
 本発明の一実施形態に係る組成物(以下「本組成物」ともいう。)によれば、熱伝導性および金属、金属化合物または半導体層等の被着体との接着性に優れる硬化物を容易に形成することができる。さらに、本組成物は、化学的安定性、硬度および機械的強度などに優れる硬化物を容易に形成することができる。このため、本組成物は、例えば、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱塗膜、放熱接着剤、電極付放熱性絶縁基板、熱伝導性電子基板などに好適に使用される。 According to the composition of one embodiment of the present invention (hereinafter, also referred to as “the present composition”), a cured product having excellent heat conductivity and adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer can be obtained. It can be easily formed. Furthermore, the present composition can easily form a cured product having excellent chemical stability, hardness, mechanical strength, and the like. For this reason, the present composition is suitably used for, for example, a heat radiating substrate, a heat radiating plate (surface heat sink), a heat radiating sheet, a heat radiating coating, a heat radiating adhesive, a heat radiating insulating substrate with electrodes, a heat conductive electronic substrate, and the like. You.
図1は、実施例における引張試験用試料を作成する際の概略模式図である。FIG. 1 is a schematic diagram when a tensile test sample is prepared in an example. 図2は、図1で得られた引張試験用試料を用いた引張試験を行う際の概略断面模式図である。FIG. 2 is a schematic cross-sectional schematic diagram when a tensile test using the tensile test sample obtained in FIG. 1 is performed.
≪組成物≫
 本組成物は、無機フィラー、2官能以上の重合性液晶化合物、2官能以上の非液晶性重合性化合物、ならびに、前記重合性液晶化合物および前記非液晶性重合性化合物を硬化可能な硬化剤を含み、前記無機フィラーの含有量が、前記重合性液晶化合物100質量部に対し、150~4500質量部であり、前記重合性液晶化合物と前記非液晶性重合性化合物との含有量の比(重合性液晶化合物の質量:非液晶性重合性化合物の質量)が、20:80~95:5である。
≪Composition≫
The composition includes an inorganic filler, a bifunctional or higher functional polymerizable liquid crystal compound, a bifunctional or higher functional non-liquid crystalline polymerizable compound, and a curing agent capable of curing the polymerizable liquid crystal compound and the non-liquid crystalline polymerizable compound. The content of the inorganic filler is 150 to 4500 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound, and the ratio of the content of the polymerizable liquid crystal compound to the content of the non-liquid crystal polymerizable compound (polymerization (Mass of non-liquid crystalline polymerizable compound): 20:80 to 95: 5.
<無機フィラー>
 無機フィラーとしては特に制限されないが、例えば、窒化物、炭化物、炭素材料、ケイ酸塩化合物、金属酸化物が挙げられる。
 無機フィラーとしては、1種を用いてもよく、種類や粒径、形状等が異なる2種以上を用いてもよい。
<Inorganic filler>
The inorganic filler is not particularly restricted but includes, for example, nitrides, carbides, carbon materials, silicate compounds and metal oxides.
As the inorganic filler, one kind may be used, or two or more kinds having different kinds, particle diameters, shapes and the like may be used.
 無機フィラーとしては、例えば、アルミナ、マグネシア、ベリリア、シリカ、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化鉄、フェライト、酸化銅、酸化セリウム、酸化イットリウム、酸化錫、酸化ホルミウム、酸化ビスマス、酸化コバルト、酸化カルシウムなどの金属酸化物;ムライト、コーディエライトなどのケイ酸塩化合物;窒化ホウ素、窒化アルミニウム、窒化珪素、窒化ホウ素炭素などの窒化物;炭化ホウ素、炭化珪素などの炭化物;ダイヤモンド、黒鉛、炭素繊維、カーボンナノチューブ、グラフェンなどの炭素材料;水酸化マグネシウム、水酸化アルミニウムなどの水酸化物;珪素、金、銀、銅、白金、鉄、錫、鉛、ニッケル、アルミニウム、マグネシウム、タングステン、モリブデン、ステンレスなどの金属;ガラス繊維などの無機繊維;炭素繊維やガラス繊維などからなるクロス;が挙げられる。 As the inorganic filler, for example, alumina, magnesia, beryllia, silica, titanium oxide, zirconium oxide, zinc oxide, iron oxide, ferrite, copper oxide, cerium oxide, yttrium oxide, tin oxide, holmium oxide, bismuth oxide, cobalt oxide, Metal oxides such as calcium oxide; silicate compounds such as mullite and cordierite; nitrides such as boron nitride, aluminum nitride, silicon nitride and boron nitride; carbides such as boron carbide and silicon carbide; diamond, graphite, Carbon materials such as carbon fiber, carbon nanotube, and graphene; hydroxides such as magnesium hydroxide and aluminum hydroxide; silicon, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium, tungsten, and molybdenum , Stainless and other metals; glass And the like; cloth made of carbon fibers or glass fibers; inorganic fibers such as Wei.
 これらの中でも、より熱伝導性に優れる組成物を容易に得ることができる等の点から、窒化ホウ素、窒化アルミニウム、窒化ホウ素炭素、炭化ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、アルミナ、コーディエライト、酸化亜鉛、酸化ジルコニウムおよび酸化チタンから選ばれる少なくとも一つであることがより好ましい。 Among them, boron nitride, aluminum nitride, boron nitride carbon, boron carbide, graphite, carbon fiber, carbon nanotube, alumina, cordierite, etc., from the viewpoint that a composition having more excellent thermal conductivity can be easily obtained. And at least one selected from zinc oxide, zirconium oxide and titanium oxide.
 本組成物を絶縁性が要求される用途に使用する場合には、絶縁性の無機フィラーを使用した方が長寿命化などの信頼性が高くなるため、この場合、導電体である炭素材料や、半導体である一部の酸化物等は使用しない方が好ましいが、所望の絶縁性を保てれば、導電性を有する無機フィラーを用いても構わない。 When the composition is used for applications requiring insulating properties, the use of an insulating inorganic filler increases reliability such as a longer life.In this case, a carbon material as a conductor or Although it is preferable not to use some oxides and the like which are semiconductors, a conductive inorganic filler may be used as long as the desired insulating property can be maintained.
 無機フィラーとしては、平面方向の熱伝導率が非常に高いため、六方晶系の窒化ホウ素(h-BN)および黒鉛が好ましく、特に、h-BNは、誘電率も低く、絶縁性も高いため、本組成物を絶縁性が要求される用途に使用する場合等において好ましい。また、例えば、h-BNや黒鉛等の板状のフィラーを用いると、成形や硬化の際に、板状構造を、例えば、金型等に沿って配向することができるため好ましい。 As the inorganic filler, hexagonal boron nitride (h-BN) and graphite are preferable because the thermal conductivity in the plane direction is very high. In particular, h-BN has a low dielectric constant and a high insulating property. This is preferred when the composition is used for applications requiring insulation. Further, for example, it is preferable to use a plate-like filler such as h-BN or graphite because the plate-like structure can be oriented along a mold or the like during molding or curing.
 無機フィラーの種類、形状、大きさ等は、目的に応じて適宜選択できるが、例えば、無機フィラーの形状としては、板状、球状、無定形、繊維状、棒状、筒状等が挙げられる。 種類 The type, shape, size, etc. of the inorganic filler can be appropriately selected according to the purpose. Examples of the shape of the inorganic filler include plate, sphere, amorphous, fibrous, rod, and tubular shapes.
 無機フィラーの平均粒径は、熱伝導性により優れる放熱部材を容易に得ることができる等の点から、好ましくは0.1~600μm、より好ましくは1~200μmである。該平均粒径が0.1μm以上であると熱伝導率がよく、200μm以下であると充填率を上げることができる。
 なお、本明細書における平均粒径は、レーザー回折・散乱法による粒度分布測定に基づくメジアン径である。また、前記平均粒径は、フィラーの形状が板状の場合、その長辺の長さの平均値のことをいい、繊維状や棒状の場合、その繊維長や棒の長さの平均値のことをいう。
The average particle size of the inorganic filler is preferably from 0.1 to 600 μm, more preferably from 1 to 200 μm, from the viewpoint that a heat radiation member having more excellent thermal conductivity can be easily obtained. When the average particle size is 0.1 μm or more, the thermal conductivity is good, and when the average particle size is 200 μm or less, the filling rate can be increased.
The average particle size in the present specification is a median size based on a particle size distribution measurement by a laser diffraction / scattering method. Further, the average particle size, when the shape of the filler is plate-like, refers to the average value of the length of the long side, when the shape of a fiber or rod, the average value of the fiber length or the length of the rod. That means.
 本組成物中の無機フィラーの含有量は、熱伝導性および金属、金属化合物または半導体層等の被着体との接着性に優れる硬化物を容易に形成することができる等の点から、重合性液晶化合物100質量部に対し、150~4500質量部であり、好ましくは200~3000質量部、より好ましくは300~2000質量部、特に好ましくは400~1400質量部である。 The content of the inorganic filler in the composition is controlled by polymerization from the viewpoint that a cured product having excellent thermal conductivity and excellent adhesion to an adherend such as a metal, a metal compound or a semiconductor layer can be easily formed. The amount is 150 to 4500 parts by mass, preferably 200 to 3000 parts by mass, more preferably 300 to 2,000 parts by mass, particularly preferably 400 to 1400 parts by mass with respect to 100 parts by mass of the liquid crystal compound.
<2官能以上の重合性液晶化合物>
 2官能以上の重合性液晶化合物(以下、単に「重合性液晶化合物」ともいう。)としては特に制限されず、3官能以上または4官能以上の化合物であってもよい。
 重合性液晶化合物としては、下記Ra1を2つ以上有する化合物が好ましい。
 本組成物に用いる重合性液晶化合物は、1種でもよく、2種以上でもよい。
 なお、「液晶化合物」は、ネマチック相やスメクチック相などの液晶相を発現する化合物のことをいう。
<Bifunctional or higher functional polymerizable liquid crystal compound>
The bifunctional or higher functional polymerizable liquid crystal compound (hereinafter, also simply referred to as “polymerizable liquid crystal compound”) is not particularly limited, and may be a trifunctional or higher functional or tetrafunctional or higher compound.
As the polymerizable liquid crystal compound, a compound having two or more of the following Ra1 is preferable.
The polymerizable liquid crystal compound used in the present composition may be one type or two or more types.
The “liquid crystal compound” refers to a compound that exhibits a liquid crystal phase such as a nematic phase or a smectic phase.
 重合性液晶化合物が多環の化合物であると、耐熱性が高い化合物になる傾向にあり、直線性が高いと、無機フィラー間の熱による伸びや揺らぎが少なく、さらに熱のフォノン伝導を効率よく伝えることができるため好ましい。多環の化合物であり、かつ、直線性が高い化合物は、結果として液晶性を発現することが多く、液晶性化合物は熱伝導に優れるため好ましい。 When the polymerizable liquid crystal compound is a polycyclic compound, it tends to be a compound having high heat resistance, and when the linearity is high, there is little elongation or fluctuation due to heat between the inorganic fillers, and the phonon conduction of heat is efficiently performed. It is preferable because it can be transmitted. Compounds that are polycyclic and have high linearity often exhibit liquid crystallinity as a result, and liquid crystalline compounds are preferable because of their excellent thermal conductivity.
 重合性液晶化合物としては、熱伝導性に優れ、放熱特性に優れる硬化物を容易に得ることができ、フィラーの量に影響を受けずに本組成物を硬化させることができ、耐熱性に優れる本組成物および硬化物を容易に得ることができる等の点から、式(1)で表される化合物(1)が好ましい。また、化合物(1)は、高い重合反応性、広い液晶相温度範囲、良好な混和性などを有し、さらに、他の液晶性の化合物や重合性の化合物などと混合するとき、均一になりやすい。
 化合物(1)は式(1)で表される化合物を意味し、式(1)で表される化合物の少なくとも1種を意味することもある。以下、他の式で表される化合物も同様の表記をする。
  Ra1-Z-(A-Z)m1-Ra1  ・・・(1)
As a polymerizable liquid crystal compound, a cured product having excellent heat conductivity and excellent heat dissipation properties can be easily obtained, and the present composition can be cured without being affected by the amount of filler, and has excellent heat resistance. The compound (1) represented by the formula (1) is preferable in that the composition and the cured product can be easily obtained. The compound (1) has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, etc., and becomes uniform when mixed with other liquid crystal compounds or polymerizable compounds. Cheap.
The compound (1) means a compound represented by the formula (1), and may also mean at least one kind of the compound represented by the formula (1). Hereinafter, the compounds represented by other formulas have the same notation.
R a1 -Z- (AZ) m1 -R a1 (1)
 化合物(1)の末端基Ra1、環構造Aおよび結合基Zの種類、数等を適宜選択することによって、液晶相発現領域などの物性を任意に調整することができ、目的の物性を有する化合物を得ることができる。
 なお、m1は1~6の整数、好ましくは2~6の整数、さらに好ましくは2~4の整数である。
By appropriately selecting the type, number, and the like of the terminal group R a1 , the ring structure A, and the bonding group Z of the compound (1), physical properties such as a liquid crystal phase expression region can be arbitrarily adjusted, and the desired physical properties are obtained. A compound can be obtained.
M1 is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
・末端基Ra1
 Ra1はそれぞれ独立して、下記式(2-1)または(2-2)で表される重合性基である。
 「Ra1はそれぞれ独立して」とは、化合物(1)が有する2つのRa1は同一でも異なっていてもよいことを意味する。本明細書におけるある式において、同一の符号が2つ以上存在する場合、繰り返し単位により同一の符号が2つ以上存在しうる場合(例えば、-(X)p-において、pが2のときに存在する2つのX)、または、異なる式に同一の符号が2つ以上存在する場合、これらの符合で表される基は同一でも異なっていてもよい。
・ Terminal group R a1
R a1 is each independently a polymerizable group represented by the following formula (2-1) or (2-2).
“R a1 is independently of each other” means that two R a1 of the compound (1) may be the same or different. In a certain formula in the present specification, when two or more identical symbols are present, when two or more identical symbols are present due to a repeating unit (for example, when p is 2 in- (X) p- , When two or more X) or two or more identical symbols are present in different formulas, the groups represented by these symbols may be the same or different.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(2-1)~(2-2)中、Rbはそれぞれ独立して、水素、ハロゲン、-CF3または炭素数1~5のアルキルであり、qは0または1である。
 Rbにおける炭素数1~5のアルキルとしては、炭素数1~3のアルキルが好ましく、メチルがより好ましい。
 Rbとしては、化合物(1)の合成の容易さ等の点から、水素であることが好ましい。
 qは、0が好ましい。
In the formulas (2-1) and (2-2), R b is each independently hydrogen, halogen, —CF 3 or alkyl having 1 to 5 carbons, and q is 0 or 1.
The alkyl having 1 to 5 carbon atoms in R b is preferably alkyl having 1 to 3 carbon atoms, and more preferably methyl.
R b is preferably hydrogen from the viewpoint of easy synthesis of the compound (1).
q is preferably 0.
・環構造A
 Aは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイルまたはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
 これらの環において、任意の-CH2-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、シアノ、炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキル(前記ハロゲン化アルキルにおけるアルキルを含む)において、任意の-CH2-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-または-C≡C-で置き換えられてもよい。
・ Ring structure A
A is independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7- Diyl, bicyclo [2.2.2] oct-1,4-diyl or bicyclo [3.1.0] hex-3,6-diyl,
In these rings, any -CH 2 -may be replaced by -O-, any -CH = may be replaced by -N =, and any hydrogen may be halogen, cyano, carbon It may be replaced by an alkyl having 1 to 10 carbon atoms or an alkyl halide having 1 to 10 carbon atoms. In the alkyl (including the alkyl in the halogenated alkyl), any -CH 2 -is -O-,- CO-, -COO-, -OCO-, -CH = CH- or -C≡C- may be substituted.
 前記「任意の」という語は、「少なくとも1つの」を意味するが、通常、化合物の安定性を考慮して、この分野の常識に基づいて採り難い構造、例えば、酸素と酸素とが隣接した-O-O-は含まない方が好ましい。
 また、環Aに関して「任意の水素は、ハロゲン、炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルで置き換えられてもよい」との文言は、例えば、1,4-フェニレンの2,3,5,6位の水素の少なくとも1つがフッ素やメチル等の置換基で置き換えられた場合の態様を意味し、また置換基が「炭素数1~10のハロゲン化アルキル」である場合の態様としては、2-フルオロエチルや3-フルオロ-5-クロロヘキシルのような例を包含する。
The term "arbitrary" means "at least one", but usually, in consideration of the stability of the compound, a structure that is difficult to adopt based on common sense in the art, for example, where oxygen and oxygen are adjacent to each other. It is preferable not to include -OO-.
Further, with respect to the ring A, the phrase “arbitrary hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons or alkyl halide having 1 to 10 carbons” is described, for example, in 1,4-phenylene. It means an embodiment in which at least one of the hydrogens at the 2,3,5,6-position is replaced by a substituent such as fluorine or methyl, and when the substituent is "an alkyl halide having 1 to 10 carbon atoms". Embodiments include examples such as 2-fluoroethyl and 3-fluoro-5-chlorohexyl.
 化合物(1)が、環を多く有するほど、より高温で軟化しにくくなる傾向にあるので、本組成物を放熱部材用などの材料として用いる場合には好ましいが、軟化温度が重合温度よりも高くなると成形が難しくなる傾向にあるので、目的に応じて両者のバランスをとることが好ましい。
 なお、本明細書においては、基本的に6員環および6員環を含む縮合環等を環とみなし、例えば3員環、4員環および5員環単独のものは環とみなさない。また、ナフタレン環やフルオレン環などの縮合環は1つの環とみなす。
As the compound (1) has more rings, it tends to be harder to soften at a higher temperature. Therefore, it is preferable to use the present composition as a material for a heat dissipating member, but the softening temperature is higher than the polymerization temperature. In such a case, molding tends to be difficult. Therefore, it is preferable to balance the two according to the purpose.
In the present specification, a 6-membered ring and a condensed ring containing the 6-membered ring are basically regarded as rings, and for example, a 3-membered ring, 4-membered ring and 5-membered ring alone are not regarded as rings. A condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
 化合物(1)が、1,4-フェニレンを少なくとも1つ有する場合、配向秩序パラメーター(orientational order parameter)および磁化異方性が大きい化合物となる傾向にある。
 化合物(1)が、1,4-フェニレンを少なくとも2つ有する場合、液晶相の温度範囲が広く、さらに透明点が高い化合物となる傾向にある。
 化合物(1)が、1,4-フェニレン環上の少なくとも1つの水素をシアノ、ハロゲン、-CF3または-OCF3で置換した基を有する場合、誘電率異方性が高い化合物となる傾向にある。
 また、化合物(1)が、1,4-シクロヘキシレンを少なくとも2つ有する場合、透明点が高く、かつ粘度が小さい化合物となる傾向にある。
When the compound (1) has at least one 1,4-phenylene, the compound tends to have a large orientational order parameter and a large magnetization anisotropy.
When the compound (1) has at least two 1,4-phenylenes, the temperature range of the liquid crystal phase is wide, and the compound tends to have a higher clearing point.
When the compound (1) has a group in which at least one hydrogen on the 1,4-phenylene ring is substituted with cyano, halogen, —CF 3 or —OCF 3 , the compound tends to have a high dielectric anisotropy. is there.
When the compound (1) has at least two 1,4-cyclohexylenes, the compound tends to have a high clearing point and a low viscosity.
 好ましいAとしては、例えば、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイルが挙げられる。 Preferred A is, for example, 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 2,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene , 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl , Naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7-diyl, 9,9-dimethylfluorene 2,7-diyl, 9-ethyl-2,7-diyl, 9-fluoro-2,7-diyl, 9,9-difluoro-2,7-diyl.
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。 The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
 より好ましいAは、例えば、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレンである。特に好ましいAは、1,4-シクロへキシレンおよび1,4-フェニレンである。 More preferred A is, for example, 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene , 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, and 2,6-difluoro-1,4-phenylene. Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
・結合基Z
 Zはそれぞれ独立して、単結合または炭素数1~22のアルキレンであり、好ましくは単結合または炭素数1~10のアルキレンであり、
 該アルキレンにおいて、任意の-CH2-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、-N(O)=N-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよい。
.Binding group Z
Z is each independently a single bond or an alkylene having 1 to 22 carbon atoms, preferably a single bond or an alkylene having 1 to 10 carbon atoms,
In the alkylene, any —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH = CH—, —CF = CF—, —CH = N—, -N = CH-, -N = N-, -N (O) = N- or -C≡C- may be substituted, and any hydrogen may be replaced by halogen.
 所望の物性を有し、合成および取り扱いに優れる化合物となる等の点から、好ましいZは、単結合、-(CH2a-、-(CF2a-、-O(CH2a-、-(CH2aO-、-O(CH2aO-、-CH=CH-、-CF=CF-、-C≡C-、-COO-、-OCO-、-CH=CH-COO-、-OCO-CH=CH-、-CH2CH2-COO-、-OCO-CH2CH2-、-CH=N-、-N=CH-、-N=N-、-OCF2-または-CF2O-であり、該aはそれぞれ独立して1~20の整数である。 Having desired physical properties, in terms of such a compound excellent in synthesis and handling, the preferred Z is a single bond, - (CH 2) a - , - (CF 2) a -, - O (CH 2) a -,-(CH 2 ) a O-, -O (CH 2 ) a O-, -CH = CH-, -CF = CF-, -C≡C-, -COO-, -OCO-, -CH = CH-COO-, -OCO-CH = CH-, -CH 2 CH 2 -COO-, -OCO-CH 2 CH 2- , -CH = N-, -N = CH-, -N = N-,- OCF 2 — or —CF 2 O—, and each a is independently an integer of 1 to 20.
 Zが、単結合、-(CH22-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、-CH=CH-、-CF=CF-または-(CH24-である場合、特に、単結合、-(CH22-、-CF2O-、-OCF2-、-CH=CH-または-(CH24-である場合、粘度が小さい化合物になる傾向にある。
 Zが、-CH=CH-、-CH=N-、-N=CH-、-N=N-または-CF=CF-である場合、液晶相の温度範囲が広い化合物になる傾向があり、炭素数4~10程度のアルキルの場合、化合物の融点が低下する傾向がある。
Z is a single bond,-(CH 2 ) 2- , -CH 2 O-, -OCH 2- , -CF 2 O-, -OCF 2- , -CH = CH-, -CF = CF- or-( CH 2 ) 4 —, especially a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH = CH— or — (CH 2 ) 4 — It tends to be a compound having a low viscosity.
When Z is -CH = CH-, -CH = N-, -N = CH-, -N = N- or -CF = CF-, the compound tends to have a wide temperature range of a liquid crystal phase, In the case of alkyl having about 4 to 10 carbon atoms, the melting point of the compound tends to decrease.
 より好ましいZとしては、単結合、-(CH22-、-(CF22-、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、-CH=CH-、-CF=CF-、-C≡C-、-(CH24-、-(CH22O-、-O(CH22-、-(CH23O-、-O(CH23-、-(CH22COO-、-OCO(CH22-、-CH=CH-COO-、-OCO-CH=CH-等が挙げられる。 More preferred Z is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH = CH—, —CF = CF—, —C≡C—, — (CH 2 ) 4 —, — (CH 2 ) 2 O—, —O (CH 2 ) 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH = CH—COO—, —OCO—CH = CH— And the like.
 さらに好ましいZとしては、例えば、単結合、-(CH22-、-COO-、-OCO-、-CH2O-、-OCH2-、-CF2O-、-(CH22O-、-O(CH22-、-OCF2-、-CH=CH-、-C≡C-が挙げられる。
 特に好ましいZは、単結合、-(CH22-、-(CH22O-、-O(CH22-、-COO-または-OCO-である。
More preferred Z is, for example, a single bond,-(CH 2 ) 2- , -COO-, -OCO-, -CH 2 O-, -OCH 2- , -CF 2 O-,-(CH 2 ) 2 O—, —O (CH 2 ) 2 —, —OCF 2 —, —CH = CH—, and —C≡C—.
Particularly preferred Z is a single bond,-(CH 2 ) 2 -,-(CH 2 ) 2 O-, -O (CH 2 ) 2- , -COO- or -OCO-.
 化合物(1)は、光学活性であってもよいし、光学的に不活性でもよい。化合物(1)が光学活性である場合、該化合物(1)は不斉炭素を有する場合と軸不斉を有する場合がある。不斉炭素の立体配置はRでもSでもよい。不斉炭素はRa1またはAのいずれに位置していてもよい。不斉炭素を有すると、他の成分との相容性に優れる化合物となる傾向にある。化合物(1)が軸不斉を有する場合、ねじれ誘起力が大きい化合物となる傾向にある。また、施光性はいずれでも構わない。 Compound (1) may be optically active or optically inactive. When the compound (1) is optically active, the compound (1) may have an asymmetric carbon or may have an axial asymmetry. The configuration of the asymmetric carbon may be R or S. The asymmetric carbon may be located at either R a1 or A. When it has an asymmetric carbon, it tends to be a compound having excellent compatibility with other components. When the compound (1) has axial asymmetry, the compound tends to have a large twist inducing force. Further, the light-irradiating property may be any.
 化合物(1)は、下記式(1-a)または(1-b)のように表すこともできる。
  P-Y-(A-Z)m-Ra     (1-a)
  P-Y-(A-Z)m-Y-P    (1-b)
Compound (1) can also be represented by the following formula (1-a) or (1-b).
PY- (AZ) m -R a (1-a)
PY- (AZ) m -YP (1-b)
 式(1-a)および(1-b)中、AおよびZはそれぞれ独立して、式(1)中のAおよびZと同義であり、-Raは独立して、式(1)中の-Z-Ra1と同義であり、Pは独立して、式(2-1)~(2-2)で表される重合性基であり、Yは独立して、単結合または炭素数1~22のアルキレン、好ましくは炭素数1~10のアルキレンであり、これらのアルキレンにおいて、任意の-CH2-は、-O-、-S-、-CO-、-COO-、-OCO-または-CH=CH-で置き換えられてもよい。特に好ましいYとしては、炭素数1~10のアルキレンの片末端もしくは両末端の-CH2-が-O-で置き換えられたアルキレンである。mは1~6の整数、好ましくは2~6の整数、さらに好ましくは2~4の整数である。
 式(1-b)において、2つのPは同一の基であることが好ましく、2つのYも同一の基であることが好ましく、-(A-Z)m-の両側は左右対称となることが好ましい。
 但し、式(1-b)における「-Z-Y-」は、この基が式(1)中のZと同義となる。
In the formulas (1-a) and (1-b), A and Z each independently have the same meaning as A and Z in the formula (1), and -Ra is independently a group represented by the formula (1) is synonymous with the -Z-R a1, P is independently a polymerizable group represented by the formula (2-1) ~ (2-2), Y are each independently a single bond or a carbon number Alkylene having 1 to 22 carbon atoms, preferably alkylene having 1 to 10 carbon atoms. In these alkylenes, any —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO— Or it may be replaced by -CH = CH-. Particularly preferred Y is alkylene having 1 to 10 carbon atoms in which -CH 2- at one or both terminals is replaced by -O-. m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
In the formula (1-b), two Ps are preferably the same group, and two Ys are also preferably the same group, and both sides of-(AZ) m -are bilaterally symmetric. Is preferred.
However, “-ZY-” in the formula (1-b) has the same meaning as Z in the formula (1).
  好ましい化合物(1)の例としては、以下に示す化合物(a-1)~(g-7)が挙げられる。なお、下記式中の*は不斉炭素を示し、置換位置を特定していない-(X)は、置換基Xの数が0~4個であることを示し、(f-6)~(f-7)、(f-13)~(f-14)におけるフルオレン-2,7-ジイルに結合した-(X)は、置換基Xの数が0または1個であることを示す。 Examples of preferable compound (1) include the following compounds (a-1) to (g-7). In the formulas below, * indicates an asymmetric carbon, and-(X), whose substitution position is not specified, indicates that the number of substituents X is 0-4, and (f-6)-( -(X) bonded to fluorene-2,7-diyl in (f-7) and (f-13) to (f-14) indicates that the number of substituents X is 0 or 1.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(a-1)~(g-7)において、Ra、PおよびYはそれぞれ独立に、式(1-a)および(1-b)におけるRa、PおよびYと同義である。 In the formula (a-1) ~ (g -7), R a, P and Y are independently the same as R a, P and Y in the formula (1-a) and (1-b).
 Z1はそれぞれ独立して、単結合、-(CH22-、-(CF22-、-(CH24-、-CH2O-、-OCH2-、-(CH22O-、-O(CH22-、-(CH23O-、-O(CH23-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CH22COO-、-OCO(CH22-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF2-または-CF2O-である。 Z 1 is each independently a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 O—, —O (CH 2 ) 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH = CH—, —CF = CF -, -CH = CHCOO-, -OCOCH = CH-,-(CH 2 ) 2 COO-, -OCO (CH 2 ) 2- , -C≡C-, -C≡C-COO-, -OCO-C ≡C-, -C≡C-CH = CH-, -CH = CH-C≡C-, -CH = N-, -N = CH-, -N = N-, -OCF 2 -or -CF 2 O-.
 Z2はそれぞれ独立して、-(CH22-、-(CF22-、-(CH24-、-CH2O-、-OCH2-、-(CH22O-、-O(CH22-、-(CH23O-、-O(CH23-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CH22COO-、-OCO(CH22-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF2-または-CF2O-である。 Z 2 is each independently — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 O -, -O (CH 2 ) 2 -,-(CH 2 ) 3 O-, -O (CH 2 ) 3- , -COO-, -OCO-, -CH = CH-, -CF = CF-,- CH = CHCOO-, -OCOCH = CH-,-(CH 2 ) 2 COO-, -OCO (CH 2 ) 2- , -C≡C-, -C≡C-COO-, -OCO-C≡C- , -C≡C-CH = CH-, -CH = CH-C≡C-, -CH = N-, -N = CH-, -N = N-, -OCF 2 -or -CF 2 O- is there.
 Z3はそれぞれ独立して、単結合、炭素数1~10のアルレン、-(CH2a-、-O(CH2aO-、-CH2O-、-OCH2-、-(CH22O-、-O(CH22-、-O(CH23-、-(CH23O-、-COO-、-OCO-、-CH=CH-、-CH=CHCOO-、-OCOCH=CH-、-(CH22COO-、-OCO(CH22-、-CF=CF-、-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF2-または-CF2O-である。ここで、aはそれぞれ独立して1~20の整数である。 Z 3 is each independently a single bond, an arylene having 1 to 10 carbon atoms, — (CH 2 ) a —, —O (CH 2 ) a O—, —CH 2 O—, —OCH 2 —, — ( CH 2 ) 2 O—, —O (CH 2 ) 2 —, —O (CH 2 ) 3 —, — (CH 2 ) 3 O—, —COO—, —OCO—, —CH = CH—, —CH = CHCOO-, -OCOCH = CH-,-(CH 2 ) 2 COO-, -OCO (CH 2 ) 2- , -CF = CF-, -C≡C-, -CH = N-, -N = CH —, —N = N—, —OCF 2 — or —CF 2 O—. Here, a is each independently an integer of 1 to 20.
 Xは、ハロゲン、炭素数1~10のアルキル、炭素数1~10のフッ化アルキルである。 X is a halogen, an alkyl having 1 to 10 carbons, or an alkyl fluoride having 1 to 10 carbons.
 式(1-a)および(1-b)におけるYおよび-(A-Z)m-のより好ましい組み合わせの具体例を以下に示す。 Specific examples of more preferable combinations of Y and-(AZ) m -in formulas (1-a) and (1-b) are shown below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
・化合物(1)の合成方法
 化合物(1)は、有機合成化学における公知の手法を組合せることにより合成できる。出発物質に目的の末端基、環構造および結合基を導入する方法は、例えば、ホーベン-ワイル(Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart)、オーガニック・シンセシーズ(Organic Syntheses, John Wily & Sons, Inc.)、オーガニック・リアクションズ(Organic Reactions, John Wily & Sons Inc.)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。また、特開2006-265527号公報を参照してもよい。
-Method for synthesizing compound (1) Compound (1) can be synthesized by combining known methods in synthetic organic chemistry. Methods for introducing desired end groups, ring structures and linking groups into starting materials are described in, for example, Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John. Wily & Sons, Inc.), Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis, Pergamon Press, New Laboratory Chemistry Course (Maruzen) It is described in. Further, JP-A-2006-265527 may be referred to.
・重合性液晶化合物の含有量
 本組成物中の重合性液晶化合物の含有量は、本組成物100質量%に対し、好ましくは1~35質量%、より好ましくは2~30質量%である。
 重合性液晶化合物の含有量が前記範囲にあると、熱伝導性および金属、金属化合物または半導体層等の被着体との接着性にバランスよく優れる硬化物を容易に形成することができる。
-Content of polymerizable liquid crystal compound The content of the polymerizable liquid crystal compound in the present composition is preferably 1 to 35% by mass, more preferably 2 to 30% by mass based on 100% by mass of the present composition.
When the content of the polymerizable liquid crystal compound is in the above range, it is possible to easily form a cured product excellent in thermal conductivity and adhesion to an adherend such as a metal, a metal compound or a semiconductor layer in a well-balanced manner.
<硬化剤>
 硬化剤としては、前記重合性液晶化合物および非液晶性重合性化合物を硬化可能であれば特に制限されないが、例えば、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤、イミダゾールが挙げられる。これらの中でも、前記重合性液晶化合物を容易に硬化でき、熱伝導性および金属、金属化合物または半導体層等の被着体との接着性にバランスよく優れる硬化物を容易に形成することができる等の点から、アミン系硬化剤が好ましい。
 硬化剤は、1種を用いてもよく、2種以上を用いてもよい。
<Curing agent>
The curing agent is not particularly limited as long as the polymerizable liquid crystal compound and the non-liquid crystalline polymerizable compound can be cured. For example, acid anhydride-based curing agents, amine-based curing agents, phenol-based curing agents, and mercaptan-based curing agents And imidazole. Among these, the polymerizable liquid crystal compound can be easily cured, and a cured product excellent in thermal conductivity and adhesion to an adherend such as a metal, a metal compound or a semiconductor layer can be easily formed. In this respect, an amine-based curing agent is preferable.
As the curing agent, one type may be used, or two or more types may be used.
 アミン系硬化剤としては、通常用いられている化合物を特に制限なく用いることができ、市販されているものを用いてもよい。中でも、硬化性の観点から、2官能以上の多官能硬化剤であることが好ましく、さらに、熱伝導性の観点から、剛直な骨格を有する多官能硬化剤であることがより好ましい。
 特にジアミンは、重合性液晶化合物の液晶性を阻害することなく重合性液晶化合物を硬化させることができるため好ましい。
As the amine-based curing agent, a commonly used compound can be used without any particular limitation, and a commercially available compound may be used. Among them, a bifunctional or higher polyfunctional curing agent is preferable from the viewpoint of curability, and a polyfunctional curing agent having a rigid skeleton is more preferable from the viewpoint of thermal conductivity.
In particular, diamines are preferable because the polymerizable liquid crystal compound can be cured without impairing the liquid crystallinity of the polymerizable liquid crystal compound.
 アミン系硬化剤の具体例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、o-キシレンジアミン、m-キシレンジアミン、p-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、3,9-ジプロパンアミン-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-1,2-ジフェニルエタン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、ポリシクロヘキシルポリアミン、N-アミノエチルピペラジンが挙げられる。 Specific examples of the amine curing agent include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, o-xylenediamine, m-xylenediamine, p-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, and diethylaminopropyl. Amine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, 3,9- Dipropanamine-2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4′-diaminodiphenylmethane, 4,4′-diamino-1,2-diphenylethane, o-phenylenediamine, -Phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 4,4'-diamino-3,3'-dimethoxybiphenyl, 4,4'-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene, polyoxypropylenediamine, polyoxypropylenetriamine, polycyclohexylpolyamine, and N-aminoethylpiperazine .
 また、アミン系硬化剤としては、下記式(2)で表される化合物(2)も挙げられる。
     J-Z-(X-Z)m1-J ・・・(2)
Further, examples of the amine-based curing agent include a compound (2) represented by the following formula (2).
JZ- (XZ) m1 -J (2)
 式(2)中、Jはそれぞれ独立して、アミノ基であり、
 Xは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、これらの環において、任意の-CH2-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキルにおいて、任意の-CH2-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく、
 Zは独立して、単結合または炭素数1~22のアルキレンであり、
 該アルキレンにおいて、任意の-CH2-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、-N(O)=N-または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;
 m1は、1~6の整数である。
In the formula (2), J is each independently an amino group,
X is independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7- Diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl; in these rings, any —CH 2 — is And any of —CH = may be replaced by —N =, and any hydrogen may be halogen, alkyl having 1 to 10 carbons, or halogen having 1 to 10 carbons. Wherein any -CH 2 -is -O-, -CO-, -COO-, -OCO-, -CH = CH-, or -C≡C-. May be replaced,
Z is independently a single bond or an alkylene having 1 to 22 carbon atoms;
In the alkylene, any —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH = CH—, —CF = CF—, —CH = N—, -N = CH-, -N = N-, -N (O) = N- or -C≡C-, and any hydrogen may be replaced by halogen;
m1 is an integer of 1 to 6.
 式(2)中のXは、式(1)中のAと同様の基が好ましく、式(2)中のZは、式(1)中のZと同様の基が好ましく、式(2)中のm1は、好ましくは2~6の整数、さらに好ましくは2~4の整数である。 X in the formula (2) is preferably the same group as A in the formula (1), and Z in the formula (2) is preferably the same group as Z in the formula (1). M1 in the above is preferably an integer of 2 to 6, more preferably an integer of 2 to 4.
 化合物(2)は、下記式(2-1)で表される化合物(2-1)がより好ましい。
     J-Z-X-Z1-X-Z-J ・・・(2-1)
[式(2-1)中のJ、XおよびZは、式(2)中のJ、XおよびZと同義であり、式(2-1)中のZ1は、式(2)中のZと同義である。]
The compound (2) is more preferably a compound (2-1) represented by the following formula (2-1).
JZXZ 1 -XZJ (2-1)
[J, X and Z in the formula (2-1) have the same meanings as J, X and Z in the formula (2), and Z 1 in the formula (2-1) is Synonymous with Z. ]
 化合物(2-1)は、Zが単結合である化合物が好ましく、Xが1,4-フェニレンである化合物が好ましく、Z1が-(CH2n-で表される基である化合物が好ましい。
 特に、該Z1におけるnが偶数である化合物は、構造が左右対称になり、屈曲しにくくなるので、該化合物を用いて得られる組成物および硬化物は、熱伝導性がより高くなる傾向にあるため好ましい。
The compound (2-1) is preferably a compound in which Z is a single bond, a compound in which X is 1,4-phenylene, and a compound in which Z 1 is a group represented by — (CH 2 ) n —. preferable.
In particular, the compound in which n in Z 1 is an even number has a bilaterally symmetric structure and is hardly bent. Therefore, a composition and a cured product obtained using the compound tend to have higher thermal conductivity. Because it is, it is desirable.
 硬化剤の使用量は、本組成物中に含まれる該硬化剤と反応し得る成分(a)中の該硬化剤と反応し得る官能基の量1モルに対する、本組成物中に含まれる前記成分(a)と反応し得る成分(b)中の前記成分(a)と反応し得る官能基のモル(例:-NH2を1つ含む化合物1モルを用いる場合、該官能基のモルは2モルである。)が、好ましくは0.6~1.8、より好ましくは0.8~1.4となるような量であることが望ましい。
 前記成分(a)としては、前記重合性液晶化合物や下記非液晶性重合性化合物等が挙げられ、前記成分(b)としては、硬化剤等が挙げられる。
The amount of the curing agent used is based on 1 mol of the functional group capable of reacting with the curing agent in the component (a) capable of reacting with the curing agent contained in the composition. In a component (b) capable of reacting with the component (a), a mole of a functional group capable of reacting with the component (a) (eg, when 1 mole of a compound containing one —NH 2 is used, the mole of the functional group is 2) is preferably 0.6 to 1.8, more preferably 0.8 to 1.4.
The component (a) includes the polymerizable liquid crystal compound and the following non-liquid crystal polymerizable compound, and the component (b) includes a curing agent.
<非液晶性重合性化合物>
 本組成物は、2官能以上の非液晶性重合性化合物(以下、単に「非液晶性重合性化合物」ともいう。)を含む。該非液晶性重合性化合物は、前記重合性液晶化合物以外の化合物であり、重合性基を有するが、単体でネマチック相やスメクチック相などの液晶相を発現しない化合物のことをいう。
 非液晶性重合性化合物は、3官能以上または4官能以上の化合物であってもよい。
 非液晶性重合性化合物は、1種を用いてもよく、2種以上を用いてもよい。
<Non-liquid crystalline polymerizable compound>
The present composition contains a bifunctional or higher functional non-liquid crystalline polymerizable compound (hereinafter, also simply referred to as “non-liquid crystalline polymerizable compound”). The non-liquid crystalline polymerizable compound is a compound other than the polymerizable liquid crystal compound, and has a polymerizable group but refers to a compound which does not exhibit a liquid crystal phase such as a nematic phase or a smectic phase by itself.
The non-liquid crystalline polymerizable compound may be a compound having three or more functions or four or more functions.
One type of non-liquid crystalline polymerizable compound may be used, or two or more types may be used.
 非液晶性重合性化合物としては特に制限されないが、例えば、前記重合性液晶化合物の有する重合性基と反応し得る基を有する化合物や、前記硬化剤の有する反応基と反応し得る基を有する化合物が挙げられるが、前記硬化剤の有する反応基と反応し得る基を有する化合物が好ましく、前記Raを有する化合物がより好ましい。 The non-liquid crystalline polymerizable compound is not particularly limited, for example, a compound having a group capable of reacting with a polymerizable group of the polymerizable liquid crystal compound or a compound having a group capable of reacting with a reactive group of the curing agent However, a compound having a group capable of reacting with a reactive group of the curing agent is preferable, and a compound having R a is more preferable.
 非液晶性重合性化合物としては、例えば、ビニル誘導体、スチレン誘導体、(メタ)アクリル酸誘導体、ソルビン酸誘導体、フマル酸誘導体、イタコン酸誘導体、ポリエーテルのジグリシジルエーテル、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビフェノールのジグリシジルエーテルなどのエポキシ化合物が挙げられる。
 これらの化合物において、任意の水素は、ハロゲン、シアノ、炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキルにおいて、任意の-CH2-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-または-C≡C-で置き換えられてもよい。
 非液晶性重合性化合物は、有機合成化学における公知の手法で合成して得てもよく、市販品を用いてもよい。
Examples of the non-liquid crystalline polymerizable compound include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, itaconic acid derivatives, polyglycidyl ether of polyether, diglycidyl ether of bisphenol A, Epoxy compounds such as diglycidyl ether of bisphenol F and diglycidyl ether of biphenol are exemplified.
In these compounds, any hydrogen may be replaced by halogen, cyano, alkyl having 1 to 10 carbons or alkyl halide having 1 to 10 carbons, wherein in the alkyl, any -CH 2 -is —O—, —CO—, —COO—, —OCO—, —CH = CH— or —C≡C— may be substituted.
The non-liquid crystalline polymerizable compound may be synthesized by a known method in synthetic organic chemistry, or a commercially available product may be used.
 本組成物中の非液晶性重合性化合物の使用量としては特に制限されないが、前記硬化剤の使用量の欄で記載した比となるような使用量であることが好ましい。
 重合性液晶化合物と非液晶性重合性化合物との含有量の比(重合性液晶化合物の質量:非液晶性重合性化合物の質量)は、20:80~95:5であり、好ましくは20:80~90:10、より好ましくは25:75~80:20である。
 重合性液晶化合物と非液晶性重合性化合物との含有量の比が前記範囲にあると、熱伝導性および金属、金属化合物または半導体層等の被着体との接着性に優れる硬化物を容易に形成することができる。
The amount of the non-liquid crystalline polymerizable compound in the present composition is not particularly limited, but is preferably such that the ratio described in the column of the amount of the curing agent is used.
The content ratio of the polymerizable liquid crystal compound to the non-liquid crystal polymerizable compound (mass of the polymerizable liquid crystal compound: mass of the non-liquid crystal polymerizable compound) is from 20:80 to 95: 5, preferably 20:80 to 95: 5. The ratio is from 80 to 90:10, more preferably from 25:75 to 80:20.
When the ratio of the content of the polymerizable liquid crystal compound to the content of the non-liquid crystalline polymerizable compound is within the above range, a cured product having excellent thermal conductivity and adhesion to an adherend such as a metal, a metal compound, or a semiconductor layer can be easily obtained. Can be formed.
<カップリング剤>
 本組成物は、より熱伝導性に優れる硬化物を得ることができる等の点から、カップリング剤を含むことが好ましい。
 このようにカップリング剤を用いる場合、無機フィラー、重合性液晶化合物および硬化剤を混合等する際にカップリング剤を添加してもよいが、より熱伝導性に優れる硬化物を得ることができる等の点から、用いるカップリング剤の少なくとも一部は、予め無機フィラーと結合させた複合材Aとして用いることが好ましく、この場合、カップリング剤の一端に無機フィラーが結合し、該カップリング剤の他端に重合性化合物が結合した複合材Bの形態で用いることも好ましい。
 該重合性化合物は、前記重合性液晶化合物または非液晶性重合性化合物である。
<Coupling agent>
The composition preferably contains a coupling agent from the viewpoint that a cured product having more excellent thermal conductivity can be obtained.
When a coupling agent is used as described above, a coupling agent may be added when the inorganic filler, the polymerizable liquid crystal compound, and the curing agent are mixed, but a cured product having more excellent thermal conductivity can be obtained. From the viewpoint of the above, at least a part of the coupling agent to be used is preferably used as the composite material A previously bonded to the inorganic filler. In this case, the inorganic filler is bonded to one end of the coupling agent, and the coupling agent is used. It is also preferable to use in the form of a composite material B having a polymerizable compound bonded to the other end.
The polymerizable compound is the polymerizable liquid crystal compound or the non-liquid crystal polymerizable compound.
 カップリング剤としては特に制限されず、シラン系カップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等の公知のカップリング剤を使用できるが、これらの中でも、シラン系カップリング剤が好ましい。
 カップリング剤は、1種を用いてもよく、2種以上を用いてもよい。
The coupling agent is not particularly limited, and known coupling agents such as a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent can be used. preferable.
One type of coupling agent may be used, or two or more types may be used.
 カップリング剤は、少なくとも2つの反応性基を有する化合物であり、無機フィラーと結合できる反応性基と、2種以上のカップリング剤同士を結合できる反応性基、または、重合性化合物、具体的には、重合性化合物が有する官能基(例:オキシラニル基)と結合できる反応性基を有することが好ましい。 The coupling agent is a compound having at least two reactive groups, and includes a reactive group capable of binding to an inorganic filler and a reactive group capable of binding two or more coupling agents to each other, or a polymerizable compound. Preferably has a reactive group capable of binding to a functional group (eg, oxiranyl group) of the polymerizable compound.
 前記反応性基としては、例えば、アルコキシ基などの加水分解性基、アミノ基、ウレイド基、オキシラニル基、オキセタニル基、カルボキシ基、酸無水物基、メルカプト基、イソシアネート基、イミダゾール基、ビニル基や(メタ)アクリロイル基などのエチレン性不飽和結合基が挙げられる。 Examples of the reactive group include a hydrolyzable group such as an alkoxy group, an amino group, a ureido group, an oxiranyl group, an oxetanyl group, a carboxy group, an acid anhydride group, a mercapto group, an isocyanate group, an imidazole group, a vinyl group, And an ethylenically unsaturated bonding group such as a (meth) acryloyl group.
 2種以上のカップリング剤同士を結合できる反応性基の組み合わせや、重合性化合物が有する官能基と該官能基と結合できる反応性基との組み合わせとしては特に制限されないが、例えば、オキシラニル基とアミノ基、ビニル基同士、(メタ)アクリロイル基同士、カルボキシ基または酸無水物基とアミノ基、イミダゾール基とオキシラニル基等の組合せが挙げられる。これらの中でも、反応後の構造が、耐熱性の高い構造となる組合せがより好ましい。 The combination of a reactive group capable of binding two or more types of coupling agents or a combination of a functional group of the polymerizable compound and a reactive group capable of binding to the functional group is not particularly limited. For example, an oxiranyl group may be used. Examples include amino groups, vinyl groups, (meth) acryloyl groups, carboxy groups or acid anhydride groups and amino groups, and imidazole groups and oxiranyl groups. Among these, a combination in which the structure after the reaction becomes a structure having high heat resistance is more preferable.
 重合性液晶化合物として、オキシラニル基またはオキセタニル基を有する化合物を用いる場合には、アミノ基を有するカップリング剤を用いることが好ましい。このようなカップリング剤としては、例えば、JNC(株)製の、サイラエース(商品名)S310、S320、S330、S360、信越化学工業(株)製の、KBM-903、KBE-903が挙げられる。 When a compound having an oxiranyl group or an oxetanyl group is used as the polymerizable liquid crystal compound, it is preferable to use a coupling agent having an amino group. Examples of such a coupling agent include Silaace (trade name) S310, S320, S330, and S360 manufactured by JNC, and KBM-903 and KBE-903 manufactured by Shin-Etsu Chemical Co., Ltd. .
 カップリング剤の使用量としては特に制限されないが、より熱伝導性に優れる硬化物を得ることができる等の点から、本組成物100質量%に対し、好ましくは0.1~10質量%、より好ましくは0.5~5質量%である。 The amount of the coupling agent to be used is not particularly limited, but is preferably 0.1 to 10% by mass relative to 100% by mass of the present composition from the viewpoint that a cured product having more excellent thermal conductivity can be obtained. More preferably, it is 0.5 to 5% by mass.
 前記複合材Aや複合材Bの形態でカップリング剤を用いる場合、無機フィラーに対するカップリング剤の反応量は、主に無機フィラーの大きさや使用するカップリング剤の反応性等により変化するため規定しにくいが、無機フィラーにできるだけ多くのカップリング剤を結合させることが好ましく、無機フィラーが有する反応基の数に対し、カップリング剤が有する該反応基と反応する反応性基の数が、同数か少し多くなるようにカップリング剤を使用することが好ましい。
 無機フィラー100質量部に対するカップリング剤の結合量は、熱安定性および耐久性に優れる本組成物および硬化物を容易に得ることができる等の点から、好ましくは0.1質量部以上、より好ましくは0.3~50質量部、特に好ましくは0.5~25質量部である。
When the coupling agent is used in the form of the composite material A or the composite material B, the reaction amount of the coupling agent with respect to the inorganic filler mainly varies depending on the size of the inorganic filler, the reactivity of the coupling agent used, and the like. It is preferable to couple as many coupling agents as possible to the inorganic filler, and the number of reactive groups that react with the reactive groups of the coupling agent is equal to the number of reactive groups of the inorganic filler. It is preferable to use a coupling agent so as to increase the amount slightly.
The coupling amount of the coupling agent with respect to 100 parts by mass of the inorganic filler is preferably 0.1 part by mass or more, from the viewpoint that the composition and the cured product having excellent thermal stability and durability can be easily obtained. It is preferably from 0.3 to 50 parts by mass, particularly preferably from 0.5 to 25 parts by mass.
<その他成分>
 本組成物は、無機フィラー、重合性液晶化合物、硬化剤、非液晶性重合性化合物およびカップリング剤以外のその他成分、例えば、非重合性の化合物、重合開始剤、溶媒、安定剤、粘着性付与剤、有機フィラーを含んでもよい。
 これらのその他成分はそれぞれ、1種を用いてもよいし、2種以上を用いてもよい。
<Other components>
The composition includes an inorganic filler, a polymerizable liquid crystal compound, a curing agent, a non-liquid crystal polymerizable compound, and other components other than the coupling agent, such as a non-polymerizable compound, a polymerization initiator, a solvent, a stabilizer, and an adhesive. An imparting agent and an organic filler may be included.
Each of these other components may be used alone or in combination of two or more.
[非重合性の化合物]
 本組成物は、非重合性の化合物を含んでもよい。このような化合物としては、無機フィラー、重合性液晶化合物、硬化剤、非液晶性重合性化合物およびカップリング剤と反応しない化合物であれば特に制限されないが、膜形成性および機械的強度を低下させない化合物が好ましく、高分子化合物であることがより好ましい。
 該高分子化合物は、例えば、ポリオレフィン系樹脂、ポリビニル系樹脂、シリコーン樹脂、ワックスが挙げられる。
[Non-polymerizable compound]
The composition may include a non-polymerizable compound. Such a compound is not particularly limited as long as it is a compound that does not react with the inorganic filler, the polymerizable liquid crystal compound, the curing agent, the non-liquid crystal polymerizable compound, and the coupling agent, but does not decrease the film-forming property and the mechanical strength. Compounds are preferred, and more preferably high molecular compounds.
Examples of the polymer compound include a polyolefin resin, a polyvinyl resin, a silicone resin, and a wax.
 非重合性の化合物は、重合性基を有さない液晶化合物であってもよい。このような非重合性の液晶化合物の例は、液晶化合物のデータベースであるリクリスト(LiqCryst, LCI Publisher GmbH, Hamburg, Germany)などに記載されている。
 非重合性の液晶化合物を含有する組成物を重合させると、例えば、化合物(1)の重合体と非重合性の液晶化合物との複合材(composite materials)を得ることができる。このような複合材の一態様としては、高分子分散型液晶のような高分子網目中に非重合性の液晶化合物が存在している態様が挙げられる。この場合、非重合性の液晶化合物としては、本組成物から得られる硬化物を使用する温度領域で流動性が無いような特性を持つ液晶性化合物が望ましい。
The non-polymerizable compound may be a liquid crystal compound having no polymerizable group. Examples of such non-polymerizable liquid crystal compounds are described in LiquiCryst, LCI Publisher GmbH, Hamburg, Germany, which is a database of liquid crystal compounds.
When a composition containing a non-polymerizable liquid crystal compound is polymerized, for example, a composite material of a polymer of compound (1) and a non-polymerizable liquid crystal compound can be obtained. One embodiment of such a composite material includes an embodiment in which a non-polymerizable liquid crystal compound is present in a polymer network such as a polymer dispersed liquid crystal. In this case, as the non-polymerizable liquid crystal compound, a liquid crystal compound having characteristics such that there is no fluidity in a temperature range in which a cured product obtained from the present composition is used is desirable.
[重合開始剤]
 本組成物は重合開始剤を含んでもよい。
 重合開始剤は、本組成物に含まれる成分や所望の重合方法に応じて、光ラジカル重合開始剤、光カチオン重合開始剤、熱ラジカル重合開始剤などを用いればよい。特に無機フィラーが紫外線を吸収しやすい傾向にあるので、熱ラジカル重合開始剤が好ましい。
 熱ラジカル重合用の好ましい開始剤としては、例えば、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド(DTBP)、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)が挙げられる。
[Polymerization initiator]
The composition may include a polymerization initiator.
As the polymerization initiator, a photoradical polymerization initiator, a photocationic polymerization initiator, a thermal radical polymerization initiator, or the like may be used according to the components contained in the present composition and a desired polymerization method. In particular, since the inorganic filler tends to absorb ultraviolet rays, a thermal radical polymerization initiator is preferable.
Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropylperoxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide Oxide (DTBP), t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2'-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), and azobiscyclohexanecarbonitrile (ACN) Can be
[溶媒]
 本組成物は溶媒を含んでもよい。
 好ましい溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、プロピレングリコールメチルエーテルアセテート(PGMEA)が挙げられる。
 溶媒の使用量は特に制限されず、重合効率、溶媒コスト、エネルギーコスト等を考慮して、個々のケースごとに決定すればよい。
[solvent]
The composition may include a solvent.
Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, γ-butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide, cyclohexane, methylcyclohexane, cyclopentanone , Cyclohexanone, and propylene glycol methyl ether acetate (PGMEA).
The amount of the solvent used is not particularly limited, and may be determined for each individual case in consideration of polymerization efficiency, solvent cost, energy cost, and the like.
[安定剤]
 本組成物には、該組成物の取扱いを容易にするために、安定剤を添加してもよい。
 安定剤としては、本発明の効果を損なわない限り特に制限されないが、例えば、酸化防止剤、銅害防止剤、金属不活性化剤、老化防止剤、消泡剤、帯電防止剤、耐候剤が挙げられる。これらの安定剤としては、公知の安定剤を制限なく使用できる。
[Stabilizer]
Stabilizers may be added to the composition to facilitate handling of the composition.
The stabilizer is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include an antioxidant, a copper damage inhibitor, a metal deactivator, an antioxidant, an antifoaming agent, an antistatic agent, and a weathering agent. No. As these stabilizers, known stabilizers can be used without limitation.
 酸化防止剤としては、例えば、ハイドロキノン、4-エトキシフェノールおよび3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)が挙げられる。 {Examples of antioxidants include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
 例えば、本組成物の硬化物を金属層等と接触させて用いる場合であって、該硬化物中の有機分が金属との接触により劣化し得る場合には、特開平5-48265号公報に挙げられるような銅害防止剤または金属不活性化剤の添加が好ましい。
 前記銅害防止剤(商品名)としては、例えば、(株)ADEKA製、Mark ZS-27、Mark CDA-16;三光化学工業(株)製、SANKO-EPOCLEAN;BASF社製、Irganox MD1024;が好ましい。
 前記銅害防止剤の添加量は、硬化物中の金属と接触する部分の有機分の劣化を防止できるなどの点から、本組成物に含まれる有機分の総量100質量部に対して、好ましくは0.1~3質量部である。
For example, when a cured product of the present composition is used in contact with a metal layer or the like and an organic component in the cured product can be degraded by contact with a metal, Japanese Patent Application Laid-Open No. 5-48265 discloses The addition of copper inhibitors or metal deactivators as mentioned is preferred.
Examples of the copper damage inhibitor (trade name) include Mark ZS-27 and Mark CDA-16 manufactured by ADEKA Corporation; SANKO-EPOCLEAN manufactured by Sanko Chemical Industry Co., Ltd .; and Irganox MD1024 manufactured by BASF Corporation. preferable.
The added amount of the copper harm inhibitor is preferably based on 100 parts by mass of the total amount of the organic component contained in the composition, from the viewpoint that the organic component in the portion in contact with the metal in the cured product can be prevented from deteriorating. Is 0.1 to 3 parts by mass.
[有機フィラー]
 本組成物は有機フィラーを含んでもよく、該有機フィラーとしては、例えば、ポリビニルホルマール、ポリビニルブチラール、ポリエステル、ポリアミド、ポリイミドなどからなる繊維が挙げられる。
[Organic filler]
The composition may include an organic filler, and examples of the organic filler include fibers made of polyvinyl formal, polyvinyl butyral, polyester, polyamide, polyimide, and the like.
<本組成物の調製方法>
 本組成物は、無機フィラー、重合性液晶化合物、非液晶性重合性化合物、硬化剤および必要により用いられるこれら以外のその他成分を混合することで調製できる。
 この際の混合方法としては特に制限されないが、例えば、無機フィラーと重合性液晶化合物との混合比が前記範囲になるように量り取り、メノウ乳鉢等で混合した後、2軸ロール等を用いて混合する方法が挙げられる。
<Preparation method of the present composition>
The present composition can be prepared by mixing an inorganic filler, a polymerizable liquid crystal compound, a non-liquid crystal polymerizable compound, a curing agent, and other components used if necessary.
The mixing method at this time is not particularly limited, for example, weighed so that the mixing ratio of the inorganic filler and the polymerizable liquid crystal compound is in the above range, mixed in an agate mortar or the like, using a biaxial roll or the like A method of mixing is used.
 前述の通り、本組成物を調製する際には、無機フィラーとして、予め無機フィラーとカップリング剤とを結合させた複合材Aを用いること、または、予めカップリング剤の一端に無機フィラーを結合させ、該カップリング剤の他端に重合性化合物を結合させた複合材Bを用いることが好ましい。 As described above, when preparing the present composition, as the inorganic filler, use a composite material A in which an inorganic filler and a coupling agent are bonded in advance, or bond the inorganic filler to one end of the coupling agent in advance. It is preferable to use a composite material B in which a polymerizable compound is bonded to the other end of the coupling agent.
 前記予め無機フィラーとカップリング剤とを結合させる方法としては、公知の方法を用いることができるが、以下の方法が好ましい。
 無機フィラーとカップリング剤とを溶媒の存在下で混合し、スターラー等を用いて撹拌した後、乾燥する。溶媒乾燥後に、真空乾燥機等を用いて、真空条件下等で保持する。必要により、前記保持した後に溶媒を加え、超音波処理および遠心分離等を行うことで、固形分に付着している(結合していない)カップリング剤を遊離除去する精製工程を行う。この精製工程は、複数回行ってもよい。さらにオーブン等を用いて精製後の複合材を乾燥させてもよい。
As a method for previously binding the inorganic filler and the coupling agent, a known method can be used, but the following method is preferable.
The inorganic filler and the coupling agent are mixed in the presence of a solvent, stirred using a stirrer or the like, and then dried. After the solvent is dried, it is kept under vacuum conditions or the like using a vacuum dryer or the like. If necessary, a solvent is added after the holding, a sonication treatment, a centrifugal separation, and the like are performed to thereby remove a coupling agent attached to the solid content (unbound). This purification step may be performed a plurality of times. Further, the purified composite material may be dried using an oven or the like.
 前記溶媒としては特に制限されないが、カップリング剤を溶解可能な溶媒であることが好ましく、無機フィラーを分散可能な溶媒であることが好ましい。
 無機フィラーとカップリング剤とを混合、攪拌する時間としては特に制限されず、例えば、1分~24時間が挙げられる。
The solvent is not particularly limited, but is preferably a solvent capable of dissolving the coupling agent, and is preferably a solvent capable of dispersing the inorganic filler.
The time for mixing and stirring the inorganic filler and the coupling agent is not particularly limited, and may be, for example, 1 minute to 24 hours.
 前記乾燥条件(例:乾燥時間、乾燥温度、乾燥雰囲気)は、用いる溶媒が乾燥すれば特に制限されず、用いる溶媒に応じて適宜設定すればよい。
 前記真空条件下等で保持する際における条件は、例えば、脱水縮合するような条件であることが好ましく、具体的には、保持温度は、好ましくは20~150℃であり、保持時間は1分~24時間である。
The drying conditions (eg, drying time, drying temperature, and drying atmosphere) are not particularly limited as long as the solvent used is dried, and may be appropriately set according to the solvent used.
The conditions for holding under vacuum conditions or the like are preferably, for example, conditions under which dehydration condensation is performed. Specifically, the holding temperature is preferably 20 to 150 ° C., and the holding time is 1 minute. ~ 24 hours.
 前記無機フィラーと結合したカップリング剤と重合性化合物とを結合させる方法としては特に制限されず、公知の方法を用いることができるが、以下の方法が好ましい。
 無機フィラーと結合したカップリング剤と重合性化合物とを、メノウ乳鉢等を用いて混合した後、2軸ロール等を用いて混練する。その後、必要により、超音波処理および遠心分離等によって、分離精製(カップリング剤に結合していない重合性化合物を除去)する。
The method for bonding the coupling agent and the polymerizable compound bonded to the inorganic filler is not particularly limited, and a known method can be used, but the following method is preferable.
The coupling agent combined with the inorganic filler and the polymerizable compound are mixed using an agate mortar or the like, and then kneaded using a biaxial roll or the like. Thereafter, if necessary, separation and purification (removal of the polymerizable compound not bound to the coupling agent) is performed by sonication and centrifugation.
 また、本組成物は、より熱伝導性に優れる硬化物を得ることができる等の点から、予め無機フィラーを、重合性液晶化合物および非液晶性重合性化合物から選ばれる少なくとも1種の重合性化合物またはその少なくとも一部が硬化した硬化物で被覆した複合材Xを用いることが好ましく、予め無機フィラーを、第1の重合性化合物(重合性液晶化合物または非液晶性重合性化合物)またはその少なくとも一部が硬化した硬化物で被覆した複合材Xを用い、硬化時や成形時等の際に第2の重合性化合物(重合性液晶化合物または非液晶性重合性化合物。但し、第1の重合性化合物以外である。つまり、第1の重合性化合物として重合性液晶化合物を用いる場合は、第2の重合性化合物は非液晶性重合性化合物である。)を添加して得られる組成物であることがより好ましい。
 このような複合材Xを作成する際には、前記無機フィラーとして、無機フィラー単独を使用してもよいが、前記複合材Aを使用してもよく、前記複合材Bを使用してもよい。また、このような複合材Xを作成する際には、第1の重合性化合物とともに、硬化剤を用いることが好ましい。
 なお、前記被覆とは、無機フィラー表面の全体が被覆されている場合のみならず、無機フィラー表面の一部が被覆されている場合も含む。
In addition, from the viewpoint that a cured product having more excellent thermal conductivity can be obtained, the present composition contains an inorganic filler in advance and at least one polymerizable compound selected from a polymerizable liquid crystal compound and a non-liquid crystal polymerizable compound. It is preferable to use a composite material X coated with a compound or a cured product in which at least a part of the compound has been cured, and the inorganic filler is added in advance to a first polymerizable compound (polymerizable liquid crystal compound or non-liquid crystal polymerizable compound) or at least the same. The second polymerizable compound (a polymerizable liquid crystal compound or a non-liquid crystalline polymerizable compound; however, the first polymerizable compound is used at the time of curing, molding, or the like using the composite material X partially covered with a cured product. That is, when a polymerizable liquid crystal compound is used as the first polymerizable compound, the second polymerizable compound is a non-liquid crystal polymerizable compound.) More preferably.
When producing such a composite material X, as the inorganic filler, an inorganic filler alone may be used, but the composite material A may be used, or the composite material B may be used. . When producing such a composite material X, it is preferable to use a curing agent together with the first polymerizable compound.
The term “coating” includes not only the case where the entire surface of the inorganic filler is covered but also the case where a part of the surface of the inorganic filler is covered.
 無機フィラー(複合材Aまたは複合材B)を重合性化合物またはその少なくとも一部が硬化した硬化物で被覆する方法としては特に制限されず、公知の方法を用いることができるが、以下の方法が好ましい。
 無機フィラーと第1の重合性化合物と硬化剤とを、分散機等を用いて、好ましくは60~140℃、より好ましくは70~125℃の温度下で、5分~1時間程度撹拌する。この方法によれば、無機フィラー(複合材Aまたは複合材B)を重合性化合物の少なくとも一部が硬化した硬化物で被覆することができる。
The method for coating the inorganic filler (composite material A or composite material B) with the polymerizable compound or a cured product in which at least a part thereof is cured is not particularly limited, and a known method can be used. preferable.
The inorganic filler, the first polymerizable compound, and the curing agent are stirred using a disperser or the like at a temperature of preferably 60 to 140 ° C, more preferably 70 to 125 ° C, for about 5 minutes to 1 hour. According to this method, the inorganic filler (composite material A or composite material B) can be covered with a cured product obtained by curing at least a part of the polymerizable compound.
≪硬化物≫
 本発明の一実施形態に係る硬化物は、本組成物を硬化させることで得られる。
 前記硬化は、溶媒中で行っても、無溶媒下で行ってもよい。また、溶媒を含有する組成物を基板上に、例えばスピンコート法などで塗布した後、溶媒を除去してから硬化を行ってもよい。
 前記硬化の方法は、用いる成分や所望の用途等に応じて適宜選択すればよく、熱硬化であってもよく、光硬化であってもよく、光硬化後に適当な温度に加温して熱硬化してもよい。
≪cured product≫
The cured product according to one embodiment of the present invention is obtained by curing the present composition.
The curing may be performed in a solvent or without a solvent. Alternatively, the composition containing the solvent may be applied to the substrate by, for example, a spin coating method, and then the solvent may be removed before curing.
The curing method may be appropriately selected depending on the components to be used, the desired application, and the like, and may be heat curing, light curing, or after heating to a suitable temperature after light curing. It may be cured.
 前記熱硬化は、例えば、好ましくは50~350℃、より好ましくは60~300℃、さらに好ましくは70~250℃の温度下で、5秒~10時間、好ましくは1分~5時間、より好ましくは5分~1時間程度加熱することで行うことができる。
 前記硬化は、2段階以上で行ってもよく、例えば、好ましくは60~140℃、より好ましくは70~125℃の温度下で、5分~1時間程度加熱することによる前硬化を行った後、例えば、下記圧縮成形などで硬化する方法でもよい。
The thermal curing is performed, for example, at a temperature of preferably 50 to 350 ° C., more preferably 60 to 300 ° C., and even more preferably 70 to 250 ° C., for 5 seconds to 10 hours, preferably 1 minute to 5 hours, more preferably Can be carried out by heating for about 5 minutes to 1 hour.
The curing may be performed in two or more stages, for example, after pre-curing by heating at a temperature of preferably 60 to 140 ° C., more preferably 70 to 125 ° C. for about 5 minutes to 1 hour. For example, a method of curing by the following compression molding may be used.
 前記光硬化は、例えば、積算照度が、好ましくは10~2000mJ/cm2、より好ましくは50~500mJ/cm2となるように光照射することで行うことができる。 The light curing can be performed, for example, by irradiating light so that the integrated illuminance is preferably 10 to 2000 mJ / cm 2 , more preferably 50 to 500 mJ / cm 2 .
≪積層体≫
 本発明の一実施形態に係る積層体は、本組成物の硬化物の層(以下単に、「硬化物層」ともいう。)と、金属、金属化合物または半導体層(以下単に、「金属関連層」ともいう。)との積層体である。
 該積層体に含まれる硬化物層は、1層であってもよく、2層以上であってもよい。また、該積層体に含まれる金属関連層も、1層であってもよく、2層以上であってもよい。
 硬化物層が2層以上含まれる場合には、これらの硬化物層は、同一でも異なっていてもよい。金属関連層が2層以上含まれる場合も同様である。
 前記積層体には、接着層等の従来公知の他の層が含まれていてもよいが、前記硬化物層は、金属関連層との接着性に優れるため、硬化物層と金属関連層との間には、他の層を含まないことが好ましい。
≪Laminate≫
The laminate according to one embodiment of the present invention includes a layer of a cured product of the present composition (hereinafter, also simply referred to as a “cured product layer”) and a metal, metal compound, or semiconductor layer (hereinafter, simply referred to as a “metal-related layer”). ").).
The cured product layer contained in the laminate may be a single layer or two or more layers. Further, the number of metal-related layers contained in the laminate may be one, or two or more.
When two or more cured product layers are included, these cured product layers may be the same or different. The same applies when two or more metal-related layers are included.
The laminate may include other conventionally known layers such as an adhesive layer, but the cured product layer has excellent adhesion with a metal-related layer, and thus has a cured product layer and a metal-related layer. It is preferable that other layers are not included between them.
 金属関連層としては、例えば、銅、アルミニウム、ニッケル、金、これらの金属の合金などからなる金属層、これらの金属の酸化物、窒化物などからなる金属化合物層、シリコン、GaAs、GaN、SiC、酸化ゲルマニウムなどからなる半導体層が挙げられ、具体的には、金属電極、半導体チップ等が挙げられる。
 また、金属関連層は、所定の基板上に複数の金属関連層が設けられた層(例えば、基板上に複数設けられた電極)であってもよい。
 金属関連層の形状としては特に制限されないが、例えば、板状、棒状が挙げられる。
 金属関連層の厚みも特に制限されず、硬化物層と積層したい金属関連層として、具体的には、金属電極や半導体チップ等として公知の厚みであればよいが、好ましくは0.1μm~10mmである。
Examples of the metal-related layer include metal layers made of copper, aluminum, nickel, gold, alloys of these metals, metal compound layers made of oxides, nitrides, and the like of these metals, silicon, GaAs, GaN, and SiC. And a semiconductor layer made of germanium oxide or the like, and specifically, a metal electrode, a semiconductor chip, or the like.
Further, the metal-related layer may be a layer in which a plurality of metal-related layers are provided on a predetermined substrate (for example, a plurality of electrodes provided on a substrate).
The shape of the metal-related layer is not particularly limited, and examples thereof include a plate shape and a rod shape.
The thickness of the metal-related layer is also not particularly limited, and may be a thickness known as a metal-related layer to be laminated with the cured product layer, specifically, a metal electrode, a semiconductor chip, or the like, and preferably 0.1 μm to 10 mm. It is.
 前記積層体は、金属関連層と、硬化物層と、金属関連層とがこの順で積層された接合体を含むことが好ましい。
 該接合体の製造方法は特に制限されないが、1つの金属関連層、または、2つの金属関連層の片面に、本組成物を塗布し、金属関連層と、硬化物層と、金属関連層とがこの順で積層された接合体となるよう配置して、圧縮成形する方法が好ましい。
It is preferable that the laminate includes a joined body in which a metal-related layer, a cured product layer, and a metal-related layer are laminated in this order.
The method for producing the joined body is not particularly limited, but the composition is applied to one surface of one metal-related layer or two metal-related layers, and the metal-related layer, the cured product layer, Are preferably arranged so as to form a joined body laminated in this order, and compression-molded.
 圧縮成形時の温度は、通常、室温~350℃、好ましくは室温~300℃、より好ましくは50℃~250℃であり、時間は、通常、5秒~10時間、好ましくは1分~5時間、より好ましくは5分~1時間であり、圧力は、通常、0.01~30MPa、好ましくは0.1~5MPaである。
 本組成物を用いると、比較的低い温度の加熱で前記積層体、前記接合体を製造することができる。
 このようにして硬化した後は、応力ひずみなど抑制するために徐冷することが好ましい。また、冷却した後、再加熱処理を行い、ひずみなどを緩和させてもよい。
The temperature during compression molding is usually from room temperature to 350 ° C., preferably from room temperature to 300 ° C., more preferably from 50 ° C. to 250 ° C., and the time is usually from 5 seconds to 10 hours, preferably from 1 minute to 5 hours. And more preferably 5 minutes to 1 hour, and the pressure is usually 0.01 to 30 MPa, preferably 0.1 to 5 MPa.
When the present composition is used, the laminate and the joined body can be manufactured by heating at a relatively low temperature.
After hardening in this way, it is preferable to gradually cool to suppress stress strain and the like. After cooling, reheating may be performed to alleviate strain and the like.
 前記積層体、特に前記接合体中の硬化物層の膜厚は、用途に応じて適宜変更すればよいが、該積層体の厚み方向の熱伝導率を高くするためには、薄い方が好ましく、好ましくは5~2000μm、より好ましくは10~1000μm、特に好ましくは15~500μmである。 The thickness of the laminated body, particularly the thickness of the cured product layer in the joined body may be appropriately changed depending on the application, but in order to increase the thermal conductivity in the thickness direction of the laminated body, a thinner one is preferable. , Preferably 5 to 2000 μm, more preferably 10 to 1000 μm, and particularly preferably 15 to 500 μm.
 前記硬化物および硬化物層は、高熱伝導性を有するとともに、使用する有機材料と無機フィラーの種類、配合比率、硬化条件等により、熱膨張率が負から正の値をとり、化学的安定性、硬度および機械的強度などに優れている。なお、前記機械的強度とは、ヤング率、引っ張り強度、引き裂き強度、曲げ強度、曲げ弾性率、衝撃強度などである。
 従って、前記硬化物および積層体は、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱フィルム、放熱塗膜、放熱接着剤、電極付放熱性絶縁基板、熱伝導性電子基板などに有用である。
The cured product and the cured product layer have high thermal conductivity, and the coefficient of thermal expansion takes a value from negative to positive depending on the type of organic material and inorganic filler used, the mixing ratio, curing conditions, etc., and the chemical stability. Excellent in hardness, mechanical strength, etc. Here, the mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, flexural modulus, impact strength and the like.
Therefore, the cured product and the laminate are useful for a heat dissipation substrate, a heat dissipation plate (a planar heat sink), a heat dissipation sheet, a heat dissipation film, a heat dissipation coating, a heat dissipation adhesive, a heat dissipation insulating substrate with electrodes, a heat conductive electronic substrate, and the like. It is.
≪電子機器≫
 本発明の一実施形態に係る電子機器は、前記硬化物または積層体と、発熱部を有する電子デバイスとを備える。該硬化物または積層体は、前記発熱部に接触するように電子デバイスに配置されることが好ましい。ここで接触するとは、前記硬化物または積層体と、前記発熱部とが直接接触してもよいし、接着層などを介して接触してもよい。
 前記硬化物または積層体の態様は、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱フィルム、放熱塗膜、放熱接着剤、電極付放熱性絶縁基板、熱伝導性電子基板などのいずれであってもよい。
≪Electronic equipment≫
An electronic device according to an embodiment of the present invention includes the cured product or the laminate, and an electronic device having a heat generating portion. It is preferable that the cured product or the laminate is disposed on the electronic device so as to contact the heat generating portion. Here, the term “contact” means that the cured product or the laminate may directly contact the heat-generating portion, or may contact via an adhesive layer or the like.
The cured product or the laminate may be any of a heat-radiating substrate, a heat-radiating plate (a planar heat sink), a heat-radiating sheet, a heat-radiating film, a heat-radiating coating, a heat-radiating adhesive, a heat-radiating insulating substrate with electrodes, and a heat-conductive electronic substrate. It may be.
 前記電子デバイスとしては、例えば、半導体素子が挙げられる。前記硬化物または積層体は、本組成物から得られる硬化物を含むため、高熱伝導性に加えて、高耐熱性を有する。このため、前記電子機器としては、半導体素子の中でも高電力のためより効率的な放熱機構を必要とするシリコン、炭化ケイ素、窒化ガリウム、酸化ガリウム、ダイヤモンドなどからなるパワー半導体を含む場合に特に有効である。これらのパワー半導体を備えた電子機器としては、例えば、大電力インバータの主変換素子、無停電電源装置、交流電動機の可変電圧可変周波数制御装置、鉄道車両の制御装置、ハイブリッドカー、エレクトリックカーなどの電動輸送機器、IH調理器が挙げられる。 半導体 The electronic device includes, for example, a semiconductor element. Since the cured product or the laminate contains a cured product obtained from the present composition, it has high heat resistance in addition to high thermal conductivity. For this reason, it is particularly effective when the electronic device includes a power semiconductor made of silicon, silicon carbide, gallium nitride, gallium oxide, diamond, or the like that requires a more efficient heat radiation mechanism for high power among semiconductor elements. It is. Examples of electronic devices equipped with these power semiconductors include a main conversion element of a high-power inverter, an uninterruptible power supply, a variable voltage variable frequency control device of an AC motor, a control device of a railway vehicle, a hybrid car, an electric car, and the like. Electric transport equipment and IH cookers are included.
 実施例を用いて本発明を詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されない。 本 The present invention will be described in detail with reference to examples. However, the present invention is not limited to the contents described in the following examples.
 下記実施例に用いた成分材料は次のとおりである。 成分 The component materials used in the following examples are as follows.
<無機フィラー>
・窒化ホウ素:h-BN粒子、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製、(商品名)PolarTherm PTX-25
<Inorganic filler>
-Boron nitride: h-BN particles, manufactured by Momentive Performance Materials Japan (go), (trade name) PolarTherm PTX-25
<2官能以上の重合性液晶化合物>
・「重合性液晶」:JNC(株)製、下記式(1-11)(重合性オキシラニル化合物)
Figure JPOXMLDOC01-appb-C000019
<Bifunctional or higher functional polymerizable liquid crystal compound>
-"Polymerizable liquid crystal": Formula (1-11) (polymerizable oxiranyl compound) manufactured by JNC Corporation
Figure JPOXMLDOC01-appb-C000019
<2官能以上の非液晶性重合性化合物>
・「YX4000H」:式(1-12)で表される化合物、三菱ケミカル(株)製、(商品名)jER YX4000H
Figure JPOXMLDOC01-appb-C000020
・「jER828」:三菱ケミカル(株)製、(商品名)jER828(重合性オキシラニル化合物)
<Bifunctional or more non-liquid crystalline polymerizable compound>
"YX4000H": a compound represented by the formula (1-12), manufactured by Mitsubishi Chemical Corporation, (trade name) jER YX4000H
Figure JPOXMLDOC01-appb-C000020
-"JER828": manufactured by Mitsubishi Chemical Corporation, (trade name) jER828 (polymerizable oxiranyl compound)
<硬化剤>
・「硬化剤1」:式(1-13)で表される化合物(4,4’-エチレンジアニリン)、東京化成工業(株)製
Figure JPOXMLDOC01-appb-C000021
・「硬化剤2」:式(1-14)で表される化合物(4,4’-ジアミノジフェニルメタン)、和光純薬工業(株)製
Figure JPOXMLDOC01-appb-C000022
<Curing agent>
"Curing agent 1": a compound represented by the formula (1-13) (4,4'-ethylenedianiline), manufactured by Tokyo Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-C000021
"Curing agent 2": a compound represented by the formula (1-14) (4,4'-diaminodiphenylmethane), manufactured by Wako Pure Chemical Industries, Ltd.
Figure JPOXMLDOC01-appb-C000022
<アルミ板>
・「アルミ板」:サイズ;1×1cmまたは4×4cm、いずれも厚み;400μm
<Aluminum plate>
・ "Aluminum plate": Size; 1 × 1 cm or 4 × 4 cm, both thickness: 400 μm
[実施例1]
 PTX-25 7.2g、重合性液晶 0.621g、YX4000H 1.534g、硬化剤1 0.625gを、日本コークス工業(株)製パウダーラボ分散試験機PWB型の容器に入れ、容器内温を80℃に保った状態で、500回転で10分、次いで1000回転で1分、その後2000回転で1分、さらに3000回転で1分攪拌した。次いで、内温が60℃以下になった後、容器から組成物を取り出した。
[Example 1]
Put 7.2 g of PTX-25, 0.621 g of polymerizable liquid crystal, 1.534 g of YX4000H, and 0.625 g of curing agent 1 in a powder lab dispersion tester PWB type manufactured by Nippon Coke Industry Co., Ltd. While maintaining the temperature at 80 ° C., stirring was performed at 500 rotations for 10 minutes, then at 1000 rotations for 1 minute, then at 2,000 rotations for 1 minute, and further at 3000 rotations for 1 minute. Next, after the internal temperature became 60 ° C. or lower, the composition was taken out of the container.
・熱拡散率測定用試料の作製
 アルミ板(1×1cm、厚み400μm)を2枚用意し、その間に前記で得られた組成物を0.01g量り取って挟み込み、160℃に設定した圧縮成形機((株)井元製作所製IMC-19EC)を用いて3MPaまで加圧した。45分間加熱状態を維持した後、冷却し、次いで放圧し、熱拡散率測定用試料を取り出した。
Preparation of a sample for measuring thermal diffusivity Two aluminum plates (1 × 1 cm, thickness 400 μm) were prepared, 0.01 g of the composition obtained above was weighed and sandwiched therebetween, and compression molding was performed at 160 ° C. The pressure was increased to 3 MPa using a machine (IMC-19EC manufactured by Imoto Machinery Co., Ltd.). After maintaining the heating state for 45 minutes, the sample was cooled and then released, and a sample for measuring thermal diffusivity was taken out.
<熱拡散率の測定と熱伝導率の算出>
 熱拡散率測定用試料を用いて、NETZSCH(株)製、LFA467 HyperFlash熱拡散率装置により多層試料測定を行い、多層試料解析モデル(3層)を用いて接触熱抵抗による熱損失を含んだ熱拡散率を算出した。多層試料解析では、硬化物の密度を1.6g/cm3、比熱を1.0J/g・Kとして解析を行った。得られた熱拡散率に密度および比熱を乗算することで、硬化物の熱伝導率を算出した。結果を表1に示す。
<Measurement of thermal diffusivity and calculation of thermal conductivity>
Using a sample for measuring thermal diffusivity, a multilayer sample is measured using an LFA467 HyperFlash thermal diffusivity device manufactured by NETZSCH Corporation, and heat including heat loss due to contact thermal resistance is measured using a multilayer sample analysis model (three layers). The diffusivity was calculated. In the multilayer sample analysis, the analysis was performed with the density of the cured product being 1.6 g / cm 3 and the specific heat being 1.0 J / g · K. The thermal conductivity of the cured product was calculated by multiplying the obtained thermal diffusivity by the density and the specific heat. Table 1 shows the results.
・引張試験用試料の作成
 アルミ板(4×4cm、厚み400μm)を2枚用意し、その間に前記で得られた組成物を0.01g量り取って、図1に示すように、アルミ板の半面(2cm×4cm)に載せ、載せていない部分同士が重ならない様に挟み込み、160℃に設定した圧縮成形機((株)東洋精機製作所製、mini test press-10型小型加熱プレス)を用いて2MPaまで加圧した。45分間加熱状態を維持した後、冷却し、次いで放圧し、引張試験用試料を取り出した。
Preparation of Tensile Test Sample Two aluminum plates (4 × 4 cm, thickness 400 μm) were prepared. In the meantime, 0.01 g of the composition obtained above was weighed, and as shown in FIG. Place it on one side (2 cm x 4 cm), sandwich it so that the parts that are not placed overlap each other, and use a compression molding machine (mini test press-10 small heating press manufactured by Toyo Seiki Seisaku-sho, Ltd.) set at 160 ° C. To 2 MPa. After maintaining the heating state for 45 minutes, the sample was cooled and then released, and a tensile test sample was taken out.
<引張試験>
 以下のとおり、引張試験を行い、引張強度を確認した。
 引張試験測定機(Tensilon製、RTF-1310)を用いて、引張試験用試料を図2の矢印の方向に1mm/minの速度で引っ張り、破断した時の張力(N)を測定した。破断しない場合は、検出限界(500N)以上とした。結果を表1に示す。なお、表1中の「E」は、引張試験測定機に引張試験用試料を固定した際に、2枚のアルミ板が剥離したことを示す。
<Tensile test>
A tensile test was performed as described below, and the tensile strength was confirmed.
Using a tensile tester (manufactured by Tensilon, RTF-1310), the tensile test sample was pulled in the direction of the arrow in FIG. 2 at a speed of 1 mm / min, and the tensile strength (N) at break was measured. If it did not break, the detection limit (500N) or more was set. Table 1 shows the results. "E" in Table 1 indicates that the two aluminum plates were peeled off when the tensile test sample was fixed to the tensile test measuring instrument.
[実施例2~3および比較例1~3]
 各成分の種類および使用量を表1に示すように変更した以外は実施例1と同様にして、組成物を作製し、該組成物から各試料を作製して評価を行った。
[Examples 2-3 and Comparative Examples 1-3]
A composition was prepared in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Table 1, and each sample was prepared from the composition and evaluated.
[比較例4]
 PTX-25 8.0gと、重合性液晶 1.554gと、硬化剤1 0.446gとをポリ袋の中に入れて、よく振った後、組成物を袋から取り出した。
 得られた組成物を用いた以外は実施例1と同様にして、評価を行った。
[Comparative Example 4]
8.0 g of PTX-25, 1.554 g of polymerizable liquid crystal, and 0.446 g of curing agent 1 were placed in a plastic bag, shaken well, and then the composition was taken out of the bag.
Evaluation was performed in the same manner as in Example 1 except that the obtained composition was used.
[比較例5]
 比較例4において、各成分種類および使用量を表1に示すように変更した以外は比較例4と同様にして、評価を行った。
[Comparative Example 5]
Evaluation was performed in the same manner as in Comparative Example 4 except that the types of components and the amounts used were changed as shown in Table 1.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 所定量の無機フィラー、所定割合の2官能以上の重合性液晶化合物と2官能以上の非液晶性重合性化合物、および、硬化剤を用いることで、金属、金属化合物または半導体との接着性に優れ、熱伝導率が高い組成物(硬化物)を得ることができた。
 一方、2官能以上の重合性液晶化合物や2官能以上の非液晶性重合性化合物を用いない場合には、金属、金属化合物または半導体との接着性に優れ、かつ、熱伝導率が高い組成物(硬化物)を得ることはできなかった。
By using a predetermined amount of an inorganic filler, a predetermined ratio of a bifunctional or higher functional polymerizable liquid crystal compound and a bifunctional or higher non-liquid crystalline polymerizable compound, and a curing agent, excellent adhesion to a metal, a metal compound or a semiconductor is obtained. Thus, a composition (cured product) having a high thermal conductivity could be obtained.
On the other hand, when a bifunctional or higher functional polymerizable liquid crystal compound or a bifunctional or higher functional non-liquid crystalline polymerizable compound is not used, a composition having excellent adhesion to a metal, a metal compound or a semiconductor and having high thermal conductivity (Cured product) could not be obtained.
41  アルミ板
42  組成物(硬化物)
43  アルミ板
41 Aluminum plate 42 Composition (cured product)
43 aluminum plate

Claims (11)

  1.  無機フィラー、2官能以上の重合性液晶化合物、2官能以上の非液晶性重合性化合物、ならびに、前記重合性液晶化合物および前記非液晶性重合性化合物を硬化可能な硬化剤を含み、
     前記無機フィラーの含有量が、前記重合性液晶化合物100質量部に対し、150~4500質量部であり、
     前記重合性液晶化合物と前記非液晶性重合性化合物との含有量の比(重合性液晶化合物の質量:非液晶性重合性化合物の質量)が、20:80~95:5である、
    組成物。
    Inorganic filler, a bifunctional or higher functional polymerizable liquid crystal compound, a bifunctional or higher functional non-liquid crystalline polymerizable compound, and a curing agent capable of curing the polymerizable liquid crystal compound and the non-liquid crystalline polymerizable compound,
    The content of the inorganic filler is 150 to 4500 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound;
    The content ratio of the polymerizable liquid crystal compound to the non-liquid crystal polymerizable compound (mass of the polymerizable liquid crystal compound: mass of the non-liquid crystal polymerizable compound) is 20:80 to 95: 5;
    Composition.
  2.  前記組成物が、前記無機フィラーが、2官能以上の重合性液晶化合物および2官能以上の非液晶性重合性化合物から選ばれる少なくとも1種の重合性化合物またはその少なくとも一部が硬化した硬化物で被覆された複合材Xを含む、請求項1に記載の組成物。 The composition is a cured product in which the inorganic filler is at least one polymerizable compound selected from a bifunctional or higher functional polymerizable liquid crystal compound and a bifunctional or higher functional non-liquid crystalline polymerizable compound or at least a part thereof. The composition of claim 1, comprising a coated composite X.
  3.  前記無機フィラーとカップリング剤とが結合した複合材Aを含む、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, further comprising a composite material A in which the inorganic filler and the coupling agent are bonded.
  4.  カップリング剤の一端に前記無機フィラーが結合し、他端に重合性化合物が結合した複合材Bを含む、請求項1~3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the composition comprises a composite material B in which the inorganic filler is bonded to one end of the coupling agent and the polymerizable compound is bonded to the other end.
  5.  前記重合性液晶化合物が下記式(1)で表される化合物である、請求項1~4のいずれか1項に記載の組成物。
     Ra1-Z-(A-Z)m1-Ra1  ・・・(1)
    [式(1)中、Ra1はそれぞれ独立して、下記式(2-1)または(2-2)で表される重合性基であり;
     Aは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイルまたはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
     これらの環において、少なくとも1つの-CH2-は、-O-で置き換えられてもよく、少なくとも1つの-CH=は、-N=で置き換えられてもよく、少なくとも1つの水素は、ハロゲン、シアノ、炭素数1~10のアルキルまたは炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキルにおいて、少なくとも1つの-CH2-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-または-C≡C-で置き換えられてもよく;
     Zはそれぞれ独立して、単結合または炭素数1~22のアルキレンであり、
     該アルキレンにおいて、少なくとも1つの-CH2-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、-N(O)=N-または-C≡C-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよく;
     m1は、1~6の整数である。]
    Figure JPOXMLDOC01-appb-C000001
    [式(2-1)~(2-2)中、Rbはそれぞれ独立して、水素、ハロゲン、-CF3または炭素数1~5のアルキルであり、qは0または1である。]
    5. The composition according to claim 1, wherein the polymerizable liquid crystal compound is a compound represented by the following formula (1).
    R a1 -Z- (AZ) m1 -R a1 (1)
    [In the formula (1), R a1 is each independently a polymerizable group represented by the following formula (2-1) or (2-2);
    A is independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7- Diyl, bicyclo [2.2.2] oct-1,4-diyl or bicyclo [3.1.0] hex-3,6-diyl,
    In these rings, at least one -CH 2 -may be replaced by -O-, at least one -CH = may be replaced by -N =, and at least one hydrogen is a halogen, Cyano, alkyl having 1 to 10 carbons or alkyl halide having 1 to 10 carbons, wherein at least one —CH 2 — is —O—, —CO—, —COO— , —OCO—, —CH = CH— or —C≡C—;
    Z is each independently a single bond or alkylene having 1 to 22 carbon atoms;
    In the alkylene, at least one —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH = CH—, —CF = CF—, —CH = N—. , -N = CH-, -N = N-, -N (O) = N- or -C≡C-, and at least one hydrogen may be replaced by halogen;
    m1 is an integer of 1 to 6. ]
    Figure JPOXMLDOC01-appb-C000001
    [In the formulas (2-1) and (2-2), R b is each independently hydrogen, halogen, —CF 3 or alkyl having 1 to 5 carbons, and q is 0 or 1. ]
  6.  前記式(1)中、
     Zが、単結合、-(CH2a-、-(CF2a-、-O(CH2a-、-(CH2aO-、-O(CH2aO-、-CH=CH-、-CF=CF-、-C≡C-、-COO-、-OCO-、-CH=CH-COO-、-OCO-CH=CH-、-CH2CH2-COO-、-OCO-CH2CH2-、-CH=N-、-N=CH-、-N=N-、-OCF2-または-CF2O-であり、
     該aがそれぞれ独立して1~20の整数である、
    請求項5に記載の組成物。
    In the above formula (1),
    Z is a single bond, - (CH 2) a - , - (CF 2) a -, - O (CH 2) a -, - (CH 2) a O -, - O (CH 2) a O-, -CH = CH-, -CF = CF-, -C≡C-, -COO-, -OCO-, -CH = CH-COO-, -OCO-CH = CH-, -CH 2 CH 2 -COO- , -OCO-CH 2 CH 2- , -CH = N-, -N = CH-, -N = N-, -OCF 2 -or -CF 2 O-,
    A is each independently an integer of 1 to 20;
    A composition according to claim 5.
  7.  前記無機フィラーが、窒化物、炭化物、炭素材料、ケイ酸塩化合物または金属酸化物である、請求項1~6のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 6, wherein the inorganic filler is a nitride, a carbide, a carbon material, a silicate compound or a metal oxide.
  8.  前記無機フィラーが、窒化ホウ素、窒化アルミニウム、窒化ホウ素炭素、炭化ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、アルミナ、コーディエライト、酸化亜鉛、酸化ジルコニウムおよび酸化チタンから選ばれる少なくとも一つである、請求項1~7のいずれか1項に記載の組成物。 The inorganic filler is at least one selected from boron nitride, aluminum nitride, boron nitride carbon, boron carbide, graphite, carbon fiber, carbon nanotube, alumina, cordierite, zinc oxide, zirconium oxide and titanium oxide. Item 8. The composition according to any one of items 1 to 7.
  9.  請求項1~8のいずれか1項に記載の組成物の硬化物。 A cured product of the composition according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の組成物の硬化物の層と、金属、金属化合物または半導体層との積層体。 A laminate comprising a layer of a cured product of the composition according to any one of claims 1 to 8 and a metal, metal compound or semiconductor layer.
  11.  発熱部を有する電子デバイスと、
     請求項9に記載の硬化物または請求項10に記載の積層体とを含む、
    電子機器。
    An electronic device having a heating unit;
    And a cured product according to claim 9 or a laminate according to claim 10.
    Electronics.
PCT/JP2019/033877 2018-08-31 2019-08-29 Composition, cured product, laminated body, and electronic device WO2020045560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163503 2018-08-31
JP2018-163503 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045560A1 true WO2020045560A1 (en) 2020-03-05

Family

ID=69643145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033877 WO2020045560A1 (en) 2018-08-31 2019-08-29 Composition, cured product, laminated body, and electronic device

Country Status (2)

Country Link
TW (1) TW202020004A (en)
WO (1) WO2020045560A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092063A1 (en) * 2020-10-30 2022-05-05 Jnc株式会社 Composition for forming low dielectric constant resin, low dielectric member, and electronic device using same
WO2022206509A1 (en) * 2021-03-31 2022-10-06 华为技术有限公司 Thermally-conductive material and fabrication method therefor, prepreg, laminate, and circuit board
WO2023128067A1 (en) * 2021-12-30 2023-07-06 솔루스첨단소재 주식회사 Epoxy resin composition that is stable at high temperatures, and encapsulant comprising same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323162A (en) * 1998-03-19 1999-11-26 Hitachi Ltd Insulation composition
JP2006265527A (en) * 2005-02-25 2006-10-05 Chisso Corp Heat-releasing member and method for producing the same
JP2010047728A (en) * 2008-08-25 2010-03-04 Nippon Steel Chem Co Ltd Epoxy resin composition and molding
JP2013006893A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
WO2015141797A1 (en) * 2014-03-20 2015-09-24 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device.
WO2015170744A1 (en) * 2014-05-09 2015-11-12 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, and electronic device
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
WO2017209210A1 (en) * 2016-06-02 2017-12-07 日立化成株式会社 Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate
JP2018002809A (en) * 2016-06-29 2018-01-11 日立化成株式会社 Epoxy resin composition, molding material precursor, and molding material
WO2018070534A1 (en) * 2016-10-14 2018-04-19 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured object, and composite material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323162A (en) * 1998-03-19 1999-11-26 Hitachi Ltd Insulation composition
JP2006265527A (en) * 2005-02-25 2006-10-05 Chisso Corp Heat-releasing member and method for producing the same
JP2010047728A (en) * 2008-08-25 2010-03-04 Nippon Steel Chem Co Ltd Epoxy resin composition and molding
JP2013006893A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
WO2015141797A1 (en) * 2014-03-20 2015-09-24 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device.
WO2015170744A1 (en) * 2014-05-09 2015-11-12 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, and electronic device
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
WO2017209210A1 (en) * 2016-06-02 2017-12-07 日立化成株式会社 Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate
JP2018002809A (en) * 2016-06-29 2018-01-11 日立化成株式会社 Epoxy resin composition, molding material precursor, and molding material
WO2018070534A1 (en) * 2016-10-14 2018-04-19 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured object, and composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092063A1 (en) * 2020-10-30 2022-05-05 Jnc株式会社 Composition for forming low dielectric constant resin, low dielectric member, and electronic device using same
WO2022206509A1 (en) * 2021-03-31 2022-10-06 华为技术有限公司 Thermally-conductive material and fabrication method therefor, prepreg, laminate, and circuit board
WO2023128067A1 (en) * 2021-12-30 2023-07-06 솔루스첨단소재 주식회사 Epoxy resin composition that is stable at high temperatures, and encapsulant comprising same

Also Published As

Publication number Publication date
TW202020004A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
JP6831501B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member
TWI658091B (en) Heat dissipation member, electronic device
JP6959488B2 (en) Method for manufacturing composition for low thermal expansion member, low thermal expansion member, electronic device, low thermal expansion member
WO2020045560A1 (en) Composition, cured product, laminated body, and electronic device
JP6902192B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member composition, method for manufacturing heat-dissipating member
JPWO2019117156A1 (en) Manufacturing method of heat dissipation sheet, heat dissipation sheet, substrate, power semiconductor module
JP2019172936A (en) Composition for heat radiation member, heat radiation member, and electronic device
JP2019177688A (en) Laminated sheet, heat dissipation component, light-emitting device, and light-emitting apparatus
WO2019188973A1 (en) Composition, heat dissipation member, electronic device and method for producing composition
JP7070554B2 (en) Laminates, electronic devices, manufacturing methods for laminates
WO2017150586A1 (en) Laminate, electronic device, and production method for laminate
WO2019139057A1 (en) Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member
WO2018181838A1 (en) Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member
JPWO2019049911A1 (en) Method for manufacturing composition for heat radiating member, heat radiating member, electronic device, heat radiating member
JP2019172937A (en) Composition for heat radiation member, heat radiation member, and electronic device
JP2020122113A (en) Three-dimensional structure, method for manufacturing three-dimensional structure, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP