WO2017209210A1 - Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate - Google Patents

Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate Download PDF

Info

Publication number
WO2017209210A1
WO2017209210A1 PCT/JP2017/020343 JP2017020343W WO2017209210A1 WO 2017209210 A1 WO2017209210 A1 WO 2017209210A1 JP 2017020343 W JP2017020343 W JP 2017020343W WO 2017209210 A1 WO2017209210 A1 WO 2017209210A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
epoxy
general formula
mass
Prior art date
Application number
PCT/JP2017/020343
Other languages
French (fr)
Japanese (ja)
Inventor
一也 木口
慎吾 田中
智雄 西山
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2017209210A1 publication Critical patent/WO2017209210A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Definitions

  • the present invention relates to an epoxy resin composition, a B stage sheet, a cured epoxy resin composition, a resin sheet, a metal foil with resin, and a metal substrate.
  • thermosetting resin cured products are widely used from the viewpoints of insulation, heat resistance, and the like.
  • thermosetting resin cured product having high thermal conductivity is desired.
  • thermosetting resin cured product having high thermal conductivity a cured product of an epoxy resin composition having a mesogen skeleton in a molecular structure has been proposed (for example, see Patent Document 1).
  • thermosetting resin having high thermal conductivity and a low softening point (melting point) biphenol is reacted with a mixed epoxy resin composed of glycidylated 4,4'-dihydroxybiphenylmethane and glycidylated biphenol.
  • the modified epoxy resin obtained by this is proposed (for example, refer patent document 2).
  • Epoxy compounds with a mesogenic skeleton have a narrow temperature range for liquid crystals, and when they are cured and mixed at a temperature lower than the curing temperature, only those cured at a certain limited temperature range exhibit liquid crystallinity. It is known that it is difficult to easily obtain an epoxy resin cured product exhibiting the following.
  • a resin composition having a wide range of curing temperature when producing a cured resin and capable of easily producing a cured resin having high thermal conductivity a plurality of epoxy compounds having a specific mesogen skeleton in the molecular structure are included. Resin compositions have been reported (see, for example, Patent Documents 3 and 4).
  • an epoxy resin having a mesogen skeleton in the molecular structure generally has a higher melting point as it has higher thermal conductivity, and there are cases where workability such as molding conditions becomes severe.
  • the epoxy resin has a high melting point, a high temperature is required for melting the epoxy resin, and thus the thermosetting temperature becomes high.
  • the reaction rate between the epoxy resin and the curing agent increases. Therefore, the reaction with the curing agent is likely to be started before the high melting point epoxy resin is sufficiently melted.
  • the resin compositions of Patent Literature 3 and Patent Literature 4 have a high thermosetting temperature, and are cured before the orientation of the mesogen skeleton is aligned, so that the thermal conductivity inherent in the epoxy resin may not be sufficiently exhibited. Further, the thermosetting resin of Patent Document 2 is not easy to synthesize, and development of a new epoxy resin that achieves both low melting point and improved thermal conductivity is desired.
  • an epoxy resin composition capable of both lowering the melting point and improving the thermal conductivity after curing, and a B stage sheet, a cured epoxy resin composition, a resin sheet, and a resin using the epoxy resin composition
  • a metal foil and a metal substrate Provided is a metal foil and a metal substrate.
  • ⁇ 1> Contains two or more epoxy compounds having a mesogenic skeleton, a curing agent, and an inorganic filler, 2 or more types of epoxy compounds which have the said mesogen skeleton are mutually compatible,
  • the epoxy resin composition which can form a smectic structure by reacting with the said hardening
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the curing agent includes a novolak resin having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2) ⁇ 1>
  • the epoxy resin composition according to any one of to ⁇ 3>.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group or an aralkyl group.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • m21 and m22 each independently represents an integer of 0-2.
  • n21 and n22 each independently represents an integer of 1 to 7.
  • the curing agent includes a novolak resin having a partial structure represented by at least one selected from the group consisting of the following general formula (III-1) to general formula (III-4) ⁇ 1>
  • the epoxy resin composition according to any one of to ⁇ 3>.
  • n31 to n34 each independently represent a positive integer.
  • Ar 31 to Ar 34 each independently represents any of the groups represented by the following general formula (III-a) or the following general formula (III-b).
  • R 31 and R 34 each independently represents a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the curing agent contains a monomer which is a phenol compound constituting the novolak resin, and the content of the monomer is 5% by mass to 80% by mass in the curing agent ⁇ 1> to ⁇ 5>
  • the epoxy resin composition according to any one of the above.
  • ⁇ 7> The epoxy resin according to any one of ⁇ 1> to ⁇ 6>, wherein the inorganic filler includes at least one selected from the group consisting of boron nitride, alumina, magnesium oxide, silica, and aluminum nitride. Composition.
  • a B stage sheet which is a sheet-like semi-cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 8>.
  • a cured epoxy resin composition which is a cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 8>.
  • a resin sheet which is a sheet-like formed body of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 8>.
  • a resin foil comprising a metal foil and a semi-cured epoxy resin composition layer derived from the epoxy resin composition according to any one of ⁇ 1> to ⁇ 8> disposed on the metal foil.
  • Metal foil
  • a metal support a cured epoxy resin composition layer derived from the epoxy resin composition according to any one of ⁇ 1> to ⁇ 8> disposed on the metal support, and the cured epoxy A metal substrate comprising, in this order, a metal foil disposed on the resin composition layer.
  • an epoxy resin composition capable of both lowering the melting point and improving the thermal conductivity after curing, and a B stage sheet, a cured epoxy resin composition, a resin sheet, and a resin using the epoxy resin composition
  • An attached metal foil and a metal substrate can be provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of particles corresponding to each component may be included.
  • the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” includes a case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. It is.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the number of structural units indicates an integer value for a single molecule but a rational number that is an average value as an aggregate of a plurality of types of molecules.
  • a resin sheet obtained by further heating and pressing a resin sheet obtained by drying an epoxy resin composition layer formed from an epoxy resin composition may be referred to as a B stage sheet.
  • B stage refer to the specifications in JIS K6900: 1994.
  • the epoxy resin composition of this embodiment contains two or more epoxy compounds having a mesogenic skeleton, a curing agent, and an inorganic filler, and the two or more epoxy compounds having the mesogenic skeleton are compatible with each other. It is possible to form a smectic structure by reacting with the curing agent. With this configuration, the epoxy resin composition of the present embodiment can achieve both a low melting point and an improvement in thermal conductivity after curing. The reason is not clear, but is presumed as follows.
  • the epoxy resin composition contains two or more kinds of epoxy compounds having a mesogen skeleton, and these are compatible with each other to form a smectic structure, thereby lowering the melting point of the epoxy resin composition before curing, and high heat after curing. It is thought that conductivity can be exhibited.
  • the epoxy resin composition may further contain other components in addition to the above components. Hereinafter, each component of the epoxy resin composition will be described in detail.
  • the epoxy resin composition contains two or more types of epoxy compounds having a mesogenic skeleton, and the epoxy compounds having a mesogenic skeleton are compatible with each other.
  • the melting point of a mixture of epoxy compounds having two or more mesogenic skeletons compatible with each other (hereinafter also referred to as “epoxy mixture”) has the highest melting point among the epoxy compounds having a mesogenic skeleton constituting the epoxy mixture. There is a phenomenon in which the melting point is lower than the melting point of the epoxy compound having a mesogenic skeleton. Therefore, it becomes possible to exhibit the low melting point of the epoxy resin composition.
  • the thermal conductivity when the epoxy resin composition is made into a semi-cured product or a cured product is based on the thermal conductivity when the simple substance of an epoxy compound having a mesogen skeleton constituting the epoxy mixture is made into a semi-cured product or a cured product. Can also be increased.
  • the epoxy mixture contains an epoxy compound having three or more kinds of mesogen skeletons, it is sufficient that the epoxy mixture composed of the epoxy compounds having all mesogen skeletons constituting the epoxy mixture is compatible as a whole. Any two kinds of epoxy compounds having a mesogenic skeleton selected from epoxy compounds having a skeleton may not be compatible with each other.
  • two or more types of epoxy compounds mean two or more types of epoxy compounds having different molecular structures. However, two or more types of epoxy compounds having a stereoisomer (optical isomer, geometric isomer, etc.) relationship do not fall under “two or more types of epoxy compounds” and are regarded as the same type of epoxy compound.
  • the epoxy compound according to the present embodiment may be an epoxy monomer or an epoxy resin, and is preferably an epoxy monomer from the viewpoint of higher-order structure formation (high thermal conductivity).
  • the epoxy mixture may be a combination of an epoxy monomer and an epoxy monomer, a combination of an epoxy monomer and an epoxy resin, or a combination of an epoxy resin and an epoxy resin. From the viewpoint of formability of a higher order structure (high thermal conductivity). A combination of an epoxy monomer and an epoxy monomer is preferable.
  • the “mesogen skeleton” refers to a molecular structure that may exhibit liquid crystallinity. Specific examples include a biphenyl skeleton, a phenylbenzoate skeleton, an azobenzene skeleton, a stilbene skeleton, and derivatives thereof.
  • An epoxy resin composition containing an epoxy compound having a mesogenic skeleton tends to form a higher order structure upon curing, and tends to achieve higher thermal conductivity when a cured product is produced.
  • the higher order structure is a state in which the constituent elements are arranged microscopically, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether or not such a higher-order structure exists can be easily determined by observation with a polarizing microscope. That is, when an interference pattern due to depolarization is observed in the observation in the crossed Nicol state, it can be determined that a higher order structure exists.
  • the higher order structure usually exists in an island shape in the resin, and forms a domain structure. Each island forming the domain structure is called a higher-order structure.
  • the structural units constituting the higher order structure are generally bonded by a covalent bond.
  • High-order structures with high regularity derived from the mesogenic skeleton include nematic structures and smectic structures.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period.
  • the direction of the period of the layer structure is uniform inside the structure having the same period of the smectic structure. That is, the order of molecules is higher in the smectic structure than in the nematic structure.
  • the smectic structure has a higher thermal conductivity than the nematic structure. That is, the order of the molecule is higher in the smectic structure than in the nematic structure, and the thermal conductivity of the cured product is higher in the case of showing the smectic structure. Since the epoxy resin composition can form a smectic structure by reacting with a curing agent, it is considered that a high thermal conductivity can be exhibited.
  • Whether or not a smectic structure can be formed using the epoxy resin composition can be determined by the following method.
  • X-ray diffraction measurement is performed using an X-ray analyzer (for example, manufactured by Rigaku Corporation) using a CuK ⁇ 1 line and a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ in the range of 0.5 ° to 30 °.
  • a diffraction peak exists in the range of 2 ⁇ of 1 ° to 10 °, it is determined that the periodic structure includes a smectic structure. Note that in the case of a highly ordered high-order structure derived from a mesogenic structure, a diffraction peak appears in the range of 2 ⁇ of 1 ° to 30 °.
  • compatible means that a phase separation state derived from an epoxy compound having a mesogen skeleton is not observed after the epoxy mixture is melted and naturally cooled, or each mesogen skeleton is included in the epoxy mixture. This means that even when the epoxy compound is phase-separated, the phase separation state is not observed when the epoxy resin composition is semi-cured or cured.
  • Whether or not epoxy compounds having a mesogenic skeleton are compatible with each other can be determined as follows. For example, the epoxy mixture is melted by heating above the temperature at which the epoxy mixture transitions to an isotropic phase, and then the molten epoxy mixture is allowed to cool naturally, and an optical microscope image (magnification: 100 times) is observed. It can be judged by observing whether or not the epoxy compound having each mesogenic skeleton contained is phase-separated. Moreover, it is set as an epoxy resin composition using this epoxy mixture, The temperature when forming a semi-hardened
  • the curing temperature can be appropriately selected according to the epoxy resin composition.
  • the curing temperature is preferably 100 ° C. or higher, more preferably 100 ° C. to 250 ° C., and still more preferably 120 ° C. to 210 ° C.
  • whether or not the epoxy compounds having a mesogenic skeleton are compatible with each other is to observe a semi-cured product or a cured product derived from the epoxy mixture using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a cross section of a semi-cured product or a cured product derived from an epoxy mixture is cut with, for example, a diamond cutter, and then polished with abrasive paper and slurry, and the state of the cross section is, for example, 2000 times magnification using an SEM. Observe at.
  • the state of phase separation can be clearly observed.
  • the melting point of an epoxy mixture comprising an epoxy compound having a compatible mesogenic skeleton is higher than the melting point of an epoxy compound having a mesogenic skeleton having the highest melting point among the epoxy compounds having a mesogenic skeleton constituting the epoxy mixture.
  • the phenomenon that becomes lower is also seen.
  • the melting point here refers to a temperature at which an epoxy compound undergoes a phase transition from a liquid crystal phase to an isotropic phase in an epoxy compound having a liquid crystal phase.
  • an epoxy compound that does not have a liquid crystal phase it indicates the temperature at which the substance changes its state from a solid (crystalline phase) to a liquid (isotropic phase).
  • the liquid crystal phase is one of the phases located between the crystalline state (crystalline phase) and the liquid state (isotropic phase).
  • the presence or absence of a liquid crystal phase can be determined by a method of observing a change in the state of a substance in the process of raising the temperature from room temperature (for example, 25 ° C.) using a polarizing microscope. In the observation in the crossed Nicols state, interference fringes due to depolarization are seen in the crystal phase and the liquid crystal phase, and the isotropic phase appears in the dark field. The transition from the crystal phase to the liquid crystal phase can be confirmed by the presence or absence of fluidity. In other words, the expression of the liquid crystal phase means that the liquid crystal phase has a fluidity and has a temperature region where interference fringes due to depolarization are observed.
  • the epoxy compound or the epoxy mixture having a mesogenic skeleton has fluidity and has a temperature range in which interference fringes due to depolarization are observed in observation in a crossed Nicol state, It is judged that the epoxy compound or epoxy mixture having a skeleton has a liquid crystal phase.
  • the width of the temperature region in which the epoxy mixture exhibits a liquid crystal phase is preferably 10 ° C or higher, more preferably 20 ° C or higher, and further preferably 40 ° C or higher.
  • the temperature region is 10 ° C. or higher, high thermal conductivity of the cured product tends to be achieved. Furthermore, the wider the temperature region, the easier it is to obtain a cured product having a higher thermal conductivity, which is preferable.
  • the melting point of the epoxy compound or epoxy mixture having a mesogenic skeleton is differentially measured using a differential scanning calorimeter (DSC) in the temperature range of 25 ° C. to 350 ° C. under the condition of a temperature increase rate of 10 ° C./min. Scanning calorimetry is performed and measured as the temperature at which an energy change (endothermic reaction) occurs with the phase transition. From the viewpoint of workability and reactivity, the melting point of the epoxy compound or epoxy mixture having a mesogenic skeleton is preferably 120 ° C. or lower.
  • the epoxy compounds having a mesogenic skeleton are compatible with each other, that is, in a semi-cured product or a cured product derived from an epoxy mixture, the epoxy compounds having a mesogenic skeleton are not in phase separation from each other. Even in the case where an epoxy resin composition is formed by adding a curing agent, an inorganic filler, etc. to an epoxy compound having epoxide, the epoxy compounds having a mesogen skeleton are phase-separated from each other in the semi-cured or cured product of the epoxy resin composition. There is a tendency to be in a state without.
  • Two or more types of epoxy compounds having a mesogen skeleton contained in the epoxy resin composition are compatible with each other and are not particularly limited as long as they can form a smectic structure by reacting with a curing agent described later. It can be suitably selected from epoxy compounds having a mesogenic skeleton. Examples of such an epoxy compound having a mesogenic skeleton include an epoxy compound having a mesogenic skeleton and two glycidyl groups in one molecule.
  • Examples of the epoxy compound having a mesogenic skeleton and having two glycidyl groups in one molecule include a biphenyl type epoxy compound and a tricyclic type epoxy compound.
  • Biphenyl type epoxy compounds include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethyl.
  • Examples include epoxy compounds mainly composed of biphenyl, and epoxy compounds obtained by reacting epichlorohydrin with 4,4′-biphenol or 4,4 ′-(3,3 ′, 5,5′-tetramethyl) biphenol. It is done.
  • an epoxy compound having a mesogenic skeleton and having two glycidyl groups in one molecule is high when cured as an epoxy compound alone. It is preferable that the following structure can be formed, and it is more preferable that a smectic structure can be formed.
  • examples of such an epoxy compound include a compound represented by the following general formula (I) (hereinafter also referred to as “specific epoxy compound”).
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and all 4 are further hydrogen atoms. preferable.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the two or more epoxy compounds having a mesogenic skeleton preferably include at least one specific epoxy compound, more preferably include two or more specific epoxy compounds, and constitute an epoxy mixture. It is particularly preferable that all epoxy compounds having a mesogenic skeleton are specific epoxy compounds.
  • the epoxy resin composition is different from the specific epoxy compound in addition to the specific epoxy compound and has an mesogenic skeleton that is compatible with the specific epoxy compound (hereinafter, “ It may also be referred to as “another epoxy compound having a mesogenic skeleton”.
  • an epoxy compound having a mesogenic skeleton it is preferable that a nematic structure can be formed when cured by using one epoxy compound alone.
  • Examples of such an epoxy compound include a biphenyl type epoxy compound. From the viewpoint of material availability, cost, and thermal conductivity, a biphenyl type epoxy compound is preferable.
  • biphenyl type epoxy compound examples include 4,4′-bis (2,3-epoxypropoxy) biphenyl.
  • product names such as “YX4000”, “YL6121H” (Mitsubishi Chemical Corporation), “NC-3000”, “NC-3100” (Nippon Kayaku Co., Ltd.) And those commercially available.
  • “YL6121H” manufactured by Mitsubishi Chemical Corporation
  • Other epoxy compounds having a mesogenic skeleton may be used alone or in combination of two or more.
  • the epoxy equivalent number ratio is preferably in the range of 5: 5 to 9.5: 0.5 (specific epoxy compound: other epoxy compound having a mesogenic skeleton), A range of 6: 4 to 9: 1 is more preferable, and a range of 7: 3 to 9: 1 is still more preferable.
  • the epoxy resin composition is further referred to as another epoxy compound having no mesogenic skeleton (hereinafter referred to as “non-mesogenic epoxy compound”). .) May be included.
  • non-mesogenic epoxy compounds include bisphenol type epoxy compounds and triphenylmethane type epoxy compounds. From the viewpoint of availability and cost, a bisphenol-type epoxy compound is preferable.
  • Examples of the bisphenol type epoxy compound include a bisphenol A type epoxy compound and a bisphenol F type epoxy compound.
  • the bisphenol type epoxy compound is commercially available under the product names such as “ZX1059”, “VSLV-80XY” (manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd.), “828EL” (manufactured by Mitsubishi Chemical Corporation), etc. Is mentioned.
  • the triphenylmethane type epoxy compound is not particularly limited as long as it is an epoxy compound made from a compound having a triphenylmethane skeleton, and “1032H60” (Mitsubishi Chemical Corporation), “EPPN-502H” (Nipponization) And those marketed under product names such as Yakuhin Co., Ltd.).
  • the content of the non-mesogenic epoxy compound in the epoxy mixture is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and 1% by mass or less. It is particularly preferred.
  • the content of the specific epoxy compound in the epoxy mixture is not particularly limited as long as it can form a smectic structure by the reaction of the epoxy mixture and the curing agent described later, and can be appropriately selected.
  • the content of the epoxy compound having a mesogen skeleton is preferably 5% by mass or more, more preferably 10% by mass to 100% by mass with respect to the total mass of the epoxy mixture, More preferably, it is 100 mass%.
  • the total content of the epoxy compound having a mesogen skeleton in the epoxy resin composition is not particularly limited. From the viewpoint of thermosetting and thermal conductivity, the total content of the epoxy compound having a mesogenic skeleton is preferably 3% by mass to 10% by mass with respect to the total mass of the epoxy resin composition, and 5% by mass to More preferably, it is 10 mass%.
  • the epoxy resin composition contains a curing agent.
  • the curing agent is not particularly limited as long as it is a compound capable of undergoing a curing reaction with an epoxy compound having a mesogenic skeleton, and a commonly used curing agent can be appropriately selected and used.
  • Specific examples of the curing agent include acid anhydride curing agents, amine curing agents, phenol curing agents, polyaddition curing agents such as mercaptan curing agents, and catalytic curing agents such as imidazole. These curing agents may be used alone or in combination of two or more.
  • the amine curing agent those usually used as a curing agent for epoxy compounds can be used without particular limitation, and commercially available ones may be used.
  • the amine curing agent is preferably a polyfunctional curing agent having two or more functional groups, and from the viewpoint of thermal conductivity, is a polyfunctional curing agent having a rigid skeleton. It is more preferable.
  • bifunctional amine curing agent examples include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 4,4′-diamino-3,3.
  • Examples include '-dimethoxybiphenyl, 4,4'-diaminophenyl benzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene and the like.
  • At least one selected from the group consisting of 4,4′-diaminodiphenylmethane and 1,5-diaminonaphthalene is preferable, and 1,5-diaminonaphthalene is more preferable. preferable.
  • phenol and a novolac phenol resin can be used.
  • phenolic curing agents include monofunctional compounds such as phenol, o-cresol, m-cresol, and p-cresol; bifunctional compounds such as catechol, resorcinol, and hydroquinone; 1,2,3-trihydroxybenzene, 1 , 2,4-trihydroxybenzene, 1,3,5-trihydroxybenzene and the like trifunctional compounds.
  • the curing agent a phenol novolac resin obtained by connecting these phenolic curing agents with a methylene chain or the like to form a novolak can be used.
  • the phenol novolak resin include resins obtained by novolacizing one phenol compound such as cresol novolak resin, catechol novolak resin, resorcinol novolak resin, hydroquinone novolak resin; catechol resorcinol novolak resin, resorcinol hydroquinone novolak resin, etc. Examples thereof include resins obtained by novolacizing two or more phenol compounds.
  • the phenol novolak resin When a phenol novolac resin is used as the phenolic curing agent, the phenol novolak resin has a structural unit represented by at least one selected from the group consisting of the following general formulas (II-1) and (II-2) It is preferable to include a novolac resin.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group or an aralkyl group.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • m21 and m22 each independently represents an integer of 0-2.
  • n21 and n22 each independently represents an integer of 1 to 7.
  • the alkyl group may be linear, branched or cyclic.
  • the aryl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
  • the alkylene group in the aralkyl group may be any of a chain, a branched chain, and a cyclic group.
  • the aryl group in the aralkyl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group. These alkyl group, aryl group, and aralkyl group may further have a substituent. Examples of the substituent include an alkyl group (except when R 21 and R 24 are alkyl groups), an aromatic group, a halogen atom, and a hydroxyl group.
  • m21 and m22 each independently represents an integer of 0 to 2, and when m21 or m22 is 2, two R 21 or R 24 may be the same or different.
  • m21 and m22 are each independently preferably 0 or 1, and more preferably 0.
  • n21 and n22 are the number of structural units represented by the general formulas (II-1) and (II-2) contained in the phenol novolac resin, and each independently represents an integer of 1 to 7.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group represented by R 22 , R 23 , R 25 and R 26 may further have a substituent. Examples of the substituent include an alkyl group (provided that R 22 , R 23 , R 25 and R 26 are alkyl groups), an aryl group, a halogen atom, a hydroxyl group and the like.
  • R 22 , R 23 , R 25 and R 26 are each independently a hydrogen atom, an alkyl group, from the viewpoint of storage stability and thermal conductivity, Alternatively, it is preferably an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and further preferably a hydrogen atom. Furthermore, from the viewpoint of heat resistance, at least one of R 22 and R 23 is preferably an aryl group, more preferably an aryl group having 6 to 12 carbon atoms.
  • R 25 and R 26 is preferably an aryl group, and more preferably an aryl group having 6 to 12 carbon atoms.
  • the aryl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
  • the phenolic curing agent may contain one type of compound having the structural unit represented by the general formula (II-1) or the general formula (II-2), or may contain two or more types. Preferably, it contains at least one compound having a structural unit derived from resorcinol represented by the general formula (II-1).
  • the compound having the structural unit represented by the general formula (II-1) may further include at least one partial structure derived from a phenol compound other than resorcinol.
  • examples of the partial structure derived from a phenol compound other than resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxy. Examples thereof include partial structures derived from benzene and 1,3,5-trihydroxybenzene. The partial structures derived from these may be contained singly or in combination of two or more.
  • the compound having the structural unit represented by the general formula (II-2) may contain at least one partial structure derived from a phenol compound other than catechol.
  • examples of the partial structure derived from a phenol compound other than catechol include, for example, phenol, cresol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxy Examples thereof include partial structures derived from benzene and 1,3,5-trihydroxybenzene. The partial structures derived from these may be contained singly or in combination of two or more.
  • the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound.
  • the position where the hydrogen atom is removed is not particularly limited.
  • the content of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of the elastic modulus, the content of the partial structure derived from resorcinol is preferably 55% by mass or more based on the total mass of the compound having the structural unit represented by the general formula (II-1), and the glass transition temperature ( From the viewpoint of Tg) and the linear expansion coefficient, it is more preferably 80% by mass or more, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • the phenol novolac resin preferably includes a novolak resin having a partial structure represented by at least one selected from the group consisting of the following general formulas (III-1) to (III-4).
  • n31 to n34 each independently represent a positive integer and represent the number of each structural unit contained.
  • Ar 31 to Ar 34 each independently represents any of the groups represented by the following general formula (III-a) or the following general formula (III-b).
  • R 31 and R 34 each independently represents a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • a curing agent having a partial structure represented by at least one of general formula (III-1) to general formula (III-4) is produced as a by-product by a production method described later in which a divalent phenol compound is novolaked. It can be generated.
  • the partial structures represented by the general formulas (III-1) to (III-4) may be included as the main chain skeleton of the compound or may be included as a part of the side chain. Furthermore, each structural unit constituting the partial structure represented by any one of the general formulas (III-1) to (III-4) may be included randomly or regularly. It may be included or may be included in a block shape. Further, in the general formulas (III-1) to (III-4), the substitution position of the hydroxyl group is not particularly limited as long as it is on the aromatic ring.
  • a plurality of Ar 31 to Ar 34 may all be the same atomic group or contain two or more atomic groups. Also good. Ar 31 to Ar 34 each independently represent a group represented by any one of general formula (III-a) and general formula (III-b).
  • R 31 and R 34 in formulas (III-a) and (III-b) are each independently a hydrogen atom or a hydroxyl group, but are preferably a hydroxyl group from the viewpoint of thermal conductivity. Further, the substitution positions of R 31 and R 34 are not particularly limited.
  • R 32 and R 33 in general formula (III-a) and general formula (III-b) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms in R 32 and R 33 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, hexyl. Groups, heptyl groups, and octyl groups.
  • substitution positions of R 32 and R 33 in general formula (III-a) and general formula (III-b) are not particularly limited.
  • Ar 31 to Ar 34 in the general formula (III-a) and the general formula (III-b) are groups derived from dihydroxybenzene (in the general formula (III-a), from the viewpoint of achieving higher thermal conductivity.
  • One type is preferable.
  • group derived from dihydroxybenzene means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited. Further, the “group derived from dihydroxynaphthalene” has the same meaning.
  • Ar 31 to Ar 34 are more preferably each independently a group derived from dihydroxybenzene, and 1,2-dihydroxybenzene (catechol) More preferably, it is at least one selected from the group consisting of a group derived from the above and a group derived from 1,3-dihydroxybenzene (resorcinol).
  • Ar 31 to Ar 34 preferably include at least a group derived from resorcinol from the viewpoint of particularly improving thermal conductivity.
  • the structural unit represented by n31 to n34 preferably contains a group derived from resorcinol.
  • the compound having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) includes a structural unit derived from resorcinol, it is derived from resorcinol
  • the content of the structural unit containing a group is 55% by mass in the whole compound having a structure represented by at least one of general formulas (III-1) to (III-4) from the viewpoint of elastic modulus.
  • % From the viewpoint of Tg and linear expansion coefficient, more preferably 80% by mass or more, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • the total value of mx and nx is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less from the viewpoint of fluidity.
  • the lower limit of the total value of m and n is not particularly limited.
  • Mx and nx represent the number of structural units and indicate how much the corresponding structural unit is added in the molecule. Therefore, an integer value is shown for a single molecule. Note that mx and nx in (mx / nx) and (mx + nx) indicate rational numbers that are average values in the case of an assembly of a plurality of types of molecules.
  • Phenol novolac resins having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) are particularly those in which Ar 31 to Ar 34 are substituted or unsubstituted.
  • the synthesis is easy and a curing agent having a low melting point can be obtained as compared with a novolak phenol resin or the like. There is a tendency. Therefore, by including such a phenol resin as a curing agent, there are advantages such as easy manufacture and handling of the epoxy resin composition.
  • Whether or not the phenol novolac resin has a partial structure represented by any of the general formulas (III-1) to (III-4) is determined by field desorption ionization mass spectrometry (FD-MS).
  • the fragment component can be determined by whether or not a component corresponding to the partial structure represented by any one of the general formulas (III-1) to (III-4) is included.
  • the molecular weight of the phenol novolac resin having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited.
  • the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and even more preferably 350 to 1500.
  • the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500.
  • Mn and Mw are measured by a usual method using GPC (gel permeation chromatography).
  • the hydroxyl equivalent of the phenol novolac resin having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited.
  • the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and 55 g / eq to 120 g / eq. More preferably, it is eq.
  • the hydroxyl equivalent refers to a value measured in accordance with JIS K0070: 1992.
  • the phenol novolac resin may contain a monomer that is a phenol compound constituting the phenol novolac resin.
  • the content of the monomer that is a phenol compound constituting the phenol novolac resin (hereinafter also referred to as “monomer content”) is not particularly limited. From the viewpoint of thermal conductivity and moldability, the monomer content in the cured product is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and more preferably 20% by mass to More preferably, it is 50 mass%.
  • the monomer content is 80% by mass or less, the amount of monomers that do not contribute to crosslinking decreases during the curing reaction, and the high molecular weight material that contributes to crosslinking occupies a large amount. It is formed and the thermal conductivity tends to be improved.
  • the monomer content is 5% by mass or more, since it is easy to flow during molding, the adhesion with the inorganic filler is further improved, and more excellent thermal conductivity and heat resistance tend to be achieved. It is in.
  • the content of the curing agent in the epoxy resin composition is not particularly limited.
  • the curing agent is an amine curing agent
  • the number of equivalents of epoxy groups is preferably 0.5 to 2.0, and more preferably 0.8 to 1.2.
  • the ratio of the number of equivalents of the phenolic hydroxyl group of the phenolic curing agent (the number of equivalents of the phenolic hydroxyl group) to the number of equivalents of the epoxy group of the epoxy compound (of the phenolic hydroxyl group) is preferably 0.5 to 2.0, and more preferably 0.8 to 1.2.
  • the kind and content of the curing accelerator are not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, and storage property.
  • Specific examples include imidazole compounds, tertiary amine compounds, organic phosphine compounds, complexes of organic phosphine compounds and organic boron compounds, and the like.
  • it is preferably at least one selected from the group consisting of an organic phosphine compound and a complex of an organic phosphine compound and an organic boron compound.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine And alkyldiarylphosphine.
  • an organic phosphine compound and an organic boron compound include tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetra-p-tolylborate, tetrabutylphosphonium / tetraphenylborate, and tetraphenylphosphonium.
  • One of these curing accelerators may be used alone, or two or more thereof may be used in combination.
  • the mixing ratio should be determined without any particular restrictions depending on the characteristics (for example, how much flexibility is required) required for the semi-cured epoxy resin composition. Can do.
  • the content of the curing accelerator in the epoxy resin composition is not particularly limited.
  • the content of the curing accelerator is preferably 0.5% by mass to 1.5% by mass of the total mass of the epoxy compound and the curing agent, and 0.5% by mass to 1% by mass. More preferably, the content is 0.6% by mass to 1% by mass.
  • the epoxy resin composition contains at least one inorganic filler.
  • the epoxy resin composition can achieve high thermal conductivity.
  • the inorganic filler may be non-conductive or conductive. By using a non-conductive inorganic filler, the risk of lowering the insulation tends to be reduced. Moreover, it exists in the tendency for thermal conductivity to improve more by using a conductive inorganic filler.
  • non-conductive inorganic filler examples include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silica (silicon oxide), aluminum hydroxide, and barium sulfate.
  • the conductive inorganic filler examples include gold, silver, nickel, and copper.
  • the inorganic filler is preferably at least one selected from the group consisting of aluminum oxide (alumina), boron nitride, magnesium oxide, aluminum nitride, and silica (silicon oxide). More preferably, it is at least one selected from the group consisting of boron nitride and aluminum oxide (alumina).
  • These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic filler having a small particle diameter is packed in the voids of the inorganic filler having a large particle diameter, thereby filling the inorganic filler more densely than using only the inorganic filler having a single particle diameter. It becomes possible to exhibit higher thermal conductivity.
  • aluminum oxide when aluminum oxide is used as the inorganic filler, aluminum oxide having a volume average particle diameter of 16 ⁇ m to 20 ⁇ m is oxidized in the inorganic filler by 60 volume% to 75 volume% and volume average particle diameter of 2 ⁇ m to 4 ⁇ m.
  • the volume average particle diameter (D50) of the inorganic filler can be measured using a laser diffraction method.
  • the inorganic filler in the epoxy resin composition is extracted and measured using a laser diffraction / scattering particle size distribution analyzer (for example, trade name: LS230, manufactured by Beckman Coulter, Inc.).
  • LS230 laser diffraction / scattering particle size distribution analyzer
  • the inorganic filler component is extracted from the epoxy resin composition and sufficiently dispersed with an ultrasonic disperser, etc., and the weight cumulative particle size distribution curve of this dispersion liquid Measure.
  • the volume average particle diameter (D50) refers to the particle diameter at which accumulation is 50% from the small diameter side in the volume cumulative distribution curve obtained from the above measurement.
  • the content of the inorganic filler in the epoxy resin composition is not particularly limited. Among them, from the viewpoint of thermal conductivity, the content of the inorganic filler is preferably more than 50% by volume, more than 70% by volume, more than 70% by volume, with respect to 100% by volume of the total solid content of the epoxy resin composition. More preferably, it is not more than volume%. When the content of the inorganic filler exceeds 50% by volume, higher thermal conductivity can be achieved. On the other hand, when the content of the inorganic filler is 90% by volume or less, the flexibility of the epoxy resin composition and the insulating property tend to be suppressed.
  • the epoxy resin composition may contain at least one silane coupling agent.
  • the silane coupling agent has a role of forming a covalent bond between the surface of the inorganic filler and the surrounding resin (equivalent to a binder agent), an improvement in thermal conductivity, and prevents moisture penetration. It is considered possible to improve the performance.
  • the type of silane coupling agent is not particularly limited, and a commercially available product may be used.
  • the terminal is an epoxy group, an amino group. It is preferable to use a silane coupling agent having a mercapto group, a ureido group and a hydroxyl group.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane.
  • silane coupling agent oligomers manufactured by Hitachi Chemical Techno Service Co., Ltd. represented by trade name: SC-6000KS2. These silane coupling agents may be used alone or in combination of two or more.
  • the epoxy resin composition may contain other components in addition to the above components, if necessary.
  • examples of other components include a solvent, an elastomer, a dispersant, and an anti-settling agent.
  • the solvent is not particularly limited as long as it does not inhibit the curing reaction of the epoxy resin composition, and a commonly used organic solvent can be appropriately selected and used.
  • the resin sheet of this embodiment is a sheet-like formed body of an epoxy resin composition.
  • the resin sheet is provided on a support with a varnish-like epoxy resin composition (hereinafter also referred to as “resin varnish”) prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone to the epoxy resin composition.
  • resin varnish a varnish-like epoxy resin composition
  • the support include a release film such as a PET (polyethylene terephthalate) film.
  • the application of the resin varnish can be performed by a known method. Specifically, it can be performed by a method such as comma coating, die coating, lip coating, or gravure coating.
  • a method for forming an epoxy resin composition layer having a predetermined thickness include a comma coating method in which an object to be coated is passed between gaps, and a die coating method in which a resin varnish whose flow rate is adjusted from a nozzle is applied.
  • a comma coating method in which an object to be coated is passed between gaps
  • a die coating method in which a resin varnish whose flow rate is adjusted from a nozzle is applied.
  • the thickness of the resin layer (epoxy resin composition layer) before drying is 50 ⁇ m to 500 ⁇ m, it is preferable to use a comma coating method.
  • the drying method is not particularly limited as long as at least a part of the organic solvent contained in the resin varnish can be removed, and can be appropriately selected from commonly used drying methods according to the organic solvent contained in the resin varnish. In general, a heat treatment method at about 80 ° C. to 150 ° C. can be mentioned.
  • the density of the resin sheet is not particularly limited, for example, be a 3g / cm 2 ⁇ 3.4g / cm 2. In consideration of the compatibility between the flexibility and the thermal conductivity of the resin sheet, 3 g / cm 2 to 3.3 g / cm 2 is preferable, and 3.1 g / cm 2 to 3.3 g / cm 2 is more preferable.
  • the density of the resin sheet can be adjusted by, for example, the inorganic filler content.
  • the thickness of the resin sheet is not particularly limited and can be appropriately selected according to the purpose.
  • the thickness of the resin sheet can be 50 ⁇ m to 350 ⁇ m, and is preferably 60 ⁇ m to 300 ⁇ m from the viewpoints of thermal conductivity, electrical insulation, and sheet flexibility.
  • Resin sheet (epoxy resin composition layer) hardly undergoes curing reaction. For this reason, although it has flexibility, its flexibility as a sheet is poor. Therefore, in a state where a support such as a PET film is removed, the sheet self-supporting property is poor and handling may be difficult. Therefore, the resin sheet is preferably one obtained by semi-curing an epoxy resin composition constituting the resin sheet.
  • the resin sheet is preferably a B stage sheet that is further heat-treated until the epoxy resin composition layer is in a semi-cured state (B stage state).
  • the B stage sheet of this embodiment is a sheet-like semi-cured product of an epoxy resin composition.
  • the B stage sheet can be manufactured, for example, by a manufacturing method including a step of heat-treating the resin sheet to the B stage state. By forming the resin sheet by heat treatment, it is excellent in thermal conductivity and electrical insulation, and excellent in flexibility and pot life as a B stage sheet.
  • the B stage sheet of this embodiment is an epoxy having a viscosity of 10 4 Pa ⁇ s to 10 5 Pa ⁇ s at room temperature (25 ° C.) and 10 2 Pa ⁇ s to 10 3 Pa ⁇ s at 100 ° C. It means a resin sheet formed from a resin composition. Further, the cured epoxy resin composition layer is not melted by heating. The viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
  • the conditions for heat-treating the resin sheet are not particularly limited as long as the epoxy resin composition layer can be semi-cured to the B stage state, and can be appropriately selected according to the configuration of the epoxy resin composition.
  • the heat treatment is preferably performed by a method selected from hot vacuum press, hot roll laminating and the like for the purpose of reducing voids in the resin layer generated when the resin varnish is applied.
  • seat with a flat surface can be manufactured efficiently.
  • the epoxy resin composition is heated and pressurized under reduced pressure (for example, 1 kPa) at a temperature of 80 ° C. to 130 ° C. for 1 second to 30 seconds and a press pressure of 1 MPa to 30 MPa. It can be semi-cured to the B stage state.
  • the thickness of the B stage sheet can be appropriately selected according to the purpose.
  • the thickness may be 50 ⁇ m to 350 ⁇ m, and is preferably 60 ⁇ m to 300 ⁇ m from the viewpoints of thermal conductivity, electrical insulation, and flexibility.
  • the resin sheet which has an epoxy resin composition layer can also be produced by heat-pressing, laminating
  • the semi-cured epoxy resin composition of the present embodiment is a semi-cured product of the epoxy resin composition.
  • the semi-cured epoxy resin composition is derived from the epoxy resin composition, and is obtained by semi-curing the epoxy resin composition.
  • the semi-cured epoxy resin composition of the present embodiment is a semi-cured product of an epoxy resin composition in which the resin component melts when heated to 80 ° C. to 120 ° C. and the viscosity decreases to 10 Pa ⁇ s to 10 4 Pa ⁇ s. means. Further, in the cured epoxy resin composition described later, the resin component does not melt by heating.
  • the viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
  • the semi-curing treatment can be performed, for example, by a method of heating the epoxy resin composition at a temperature of 50 ° C. to 180 ° C. for 1 minute to 30 minutes.
  • the cured epoxy resin composition of the present embodiment is a cured product of the epoxy resin composition.
  • the cured epoxy resin composition of the present embodiment is derived from the epoxy resin composition, and is obtained by curing the epoxy resin composition.
  • the cured epoxy resin composition of this embodiment is excellent in thermal conductivity, which can be considered, for example, because an epoxy compound having a mesogenic group in the molecule contained in the epoxy resin composition forms a smectic structure. .
  • the cured epoxy resin composition can be obtained by curing an uncured epoxy resin composition or a semi-cured epoxy resin composition.
  • the method of the curing treatment can be appropriately selected according to the configuration of the epoxy resin composition, the purpose of the cured epoxy resin composition, and the like, and is preferably a heating and pressure treatment.
  • a cured epoxy resin composition can be obtained by heating an uncured or semi-cured epoxy resin composition at 100 ° C. to 250 ° C. for 1 hour to 10 hours, preferably 130 ° C. to 230 ° C. for 1 hour to 8 hours. can get.
  • the metal foil with resin of this embodiment includes a metal foil and a semi-cured resin composition layer derived from an epoxy resin composition disposed on the metal foil.
  • the semi-cured resin composition layer can be obtained by heat-treating the epoxy resin composition until it reaches a B stage state.
  • metal foil Gold foil, copper foil, aluminum foil etc. are mentioned, Generally copper foil is used.
  • the thickness of the metal foil is, for example, 1 ⁇ m to 35 ⁇ m, and is preferably 20 ⁇ m or less from the viewpoint of flexibility.
  • the metal foil is a three-layer composite foil in which nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers and copper layers are provided on both sides.
  • a composite foil having a three-layer structure in which metal layers are provided on both surfaces or a composite foil having a two-layer structure in which aluminum and copper foil are combined can be used.
  • the thickness of one copper layer is 0.5 ⁇ m to 15 ⁇ m and the thickness of the other copper layer is 10 ⁇ m to 300 ⁇ m. .
  • the resin-attached metal foil forms, for example, a resin layer (resin sheet) by applying and drying an epoxy resin composition (preferably a resin varnish) on the metal foil, and heat-treating this to a B-stage state.
  • a resin layer resin sheet
  • an epoxy resin composition preferably a resin varnish
  • the method for forming the resin layer is as described above.
  • the production conditions of the metal foil with resin are not particularly limited, and it is preferable that 80% by mass or more of the organic solvent used in the resin varnish is volatilized in the resin sheet after drying.
  • the drying temperature is not particularly limited and is preferably about 80 to 180 ° C.
  • the drying time can be appropriately selected in consideration of the gelation time of the resin varnish.
  • the application amount of the resin varnish is preferably applied so that the thickness of the resin layer after drying is 50 ⁇ m to 350 ⁇ m, and more preferably 60 ⁇ m to 300 ⁇ m.
  • the dried resin sheet is further heat-treated to be in a B stage state.
  • the conditions for heat-treating the resin composition are the same as those for the B-stage sheet.
  • the metal substrate of the present embodiment includes a metal support, a cured epoxy resin composition layer derived from the epoxy resin composition disposed on the metal support, and a metal foil disposed on the cured epoxy resin composition layer. Are provided in this order.
  • the epoxy resin composition layer including the epoxy resin composition disposed between the metal support and the metal foil is formed by heat treatment so as to be in a cured state, adhesiveness, thermal conductivity, and Excellent electrical insulation.
  • the material and thickness of the metal support can be appropriately selected according to the purpose. Specifically, a metal such as aluminum or iron can be used and the thickness can be set to 0.5 mm to 5 mm.
  • the metal foil disposed on the cured resin composition layer is synonymous with the metal foil in the resin-attached metal foil, and the preferred embodiment is also the same.
  • the metal substrate of the present embodiment can be manufactured as follows, for example. On a metal support such as aluminum, an epoxy resin composition is applied and dried in the same manner as described above to form a resin layer. Further, a metal foil is disposed on the resin layer, and this is heated and pressurized. And it can manufacture by hardening
  • Mn and Mw weight average molecular weight were measured as follows. Mn and Mw were measured using a high performance liquid chromatography (manufactured by Hitachi, Ltd., trade name: L6000) and a data analyzer (manufactured by Shimadzu Corporation, trade name: C-R4A). As analytical GPC columns, G2000HXL and G3000HXL (trade names) manufactured by Tosoh Corporation were used. The sample concentration was 0.2% by mass, tetrahydrofuran was used as the mobile phase, and the measurement was performed at a flow rate of 1.0 mL / min. A calibration curve was prepared using a polystyrene standard sample, and Mn and Mw were calculated using polystyrene conversion values.
  • the hydroxyl equivalent was measured as follows.
  • the hydroxyl equivalent was measured by acetyl chloride-potassium hydroxide titration method.
  • the determination of the titration end point was performed by potentiometric titration instead of the coloring method using an indicator because the solution color was dark.
  • the hydroxyl group of the measurement resin is acetylated in a pyridine solution, the excess reagent is decomposed with water, and the resulting acetic acid is titrated with a potassium hydroxide / methanol solution.
  • the obtained CRN is a mixture of compounds having a partial structure represented by at least one of the general formulas (III-1) to (III-4), and Ar is represented by the general formula (III-a )
  • R 31 is a hydroxyl group
  • R 32 and R 33 are hydrogen atoms, a group derived from 1,2-dihydroxybenzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol)
  • TPP Triphenylphosphine [Wako Pure Chemical Industries, Ltd., trade name]
  • KBM-573 3-phenylaminopropyltrimethoxysilane [silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd., trade name]
  • Example 1 Preparation of epoxy resin composition> As an epoxy compound having a mesogenic skeleton, resin A and YL6121H were mixed so that the epoxy equivalent was 9: 1, whereby an epoxy mixture 1 was obtained. When the compatibility was confirmed by the method described later, the epoxy mixture 1 was compatible at 140 ° C., which is the curing temperature of the epoxy resin composition.
  • An epoxy resin varnish 1 was obtained as an epoxy resin composition containing a solvent.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • an epoxy compound (resins A and YL6121H) and a curing agent The density of the mixture with CRN was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • the epoxy resin varnish 1 is applied on a PET film using an applicator so that the thickness after drying is 200 ⁇ m, and then dried at room temperature (20 ° C. to 30 ° C.) for 5 minutes and further at 130 ° C. for 5 minutes. It was. Then, hot pressurization (press temperature: 150 ° C., degree of vacuum: 1 kPa, press pressure: 15 MPa, pressurization time: 1 minute) was performed by a vacuum press to obtain a B-stage epoxy resin composition.
  • the copper foil of the cured epoxy resin composition with copper foil 1 obtained above was removed by etching to obtain a sheet-like cured epoxy resin composition (cured resin sheet).
  • the obtained resin sheet cured product was cut into 10 mm length and 10 mm width to obtain a sample.
  • the thermal diffusivity was evaluated by a xenon flash method (trade name: LFA447 nanoflash, manufactured by NETZSCH). From the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (Differential Scanning Calorimeter; product name: DSC Pyris 1 manufactured by Perkin Elmer), the thickness of the cured resin sheet is determined. The thermal conductivity was determined. The results are shown in Table 1.
  • the copper foil of the cured epoxy resin composition with copper foil 1 obtained above was removed by etching to obtain a sheet-like cured epoxy resin composition (cured resin sheet).
  • the obtained resin sheet cured product was cut into 10 mm length and 10 mm width to obtain a sample.
  • the sample was subjected to X-ray diffraction measurement (using an X-ray diffractometer manufactured by Rigaku Corporation) with a tube voltage of 40 kV, a tube current of 20 mA, and a range of 2 ⁇ of 0.5 to 30 ° using a CuK ⁇ 1 wire. Smectic structure formation was confirmed by the presence or absence of a diffraction peak in the range of ⁇ 10 °.
  • Example 2 ⁇ Preparation of epoxy resin composition> As an epoxy compound having a mesogenic skeleton, resin A and YL6121H were mixed so that the epoxy equivalent was 8: 2, and an epoxy mixture 2 was obtained. When the compatibility was confirmed by the method described above, the epoxy mixture 2 had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
  • Epoxy resin varnish 2 was obtained as a composition.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • an epoxy compound (resins A and YL6121H) and a curing agent The density of the mixture with CRN was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • B-stage epoxy resin composition 2 and cured epoxy resin composition 2 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 2 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
  • Example 3 ⁇ Preparation of epoxy resin composition> As an epoxy compound having a mesogen skeleton, the resin A and the resin B were mixed so that the epoxy equivalent was 9: 1 to obtain an epoxy mixture 3. When compatibility was confirmed by the above-described method, the epoxy mixture 3 had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • the epoxy compound (resin A and resin B) and curing agent When the density of the mixture with (CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated, it was 72% by volume.
  • B-stage epoxy resin composition 3 and cured epoxy resin composition 3 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 3 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
  • Example 4 Preparation of epoxy resin composition> As an epoxy compound having a mesogenic skeleton, the resin A and the resin B were mixed so that the epoxy equivalent was 7: 3 to obtain an epoxy mixture 4. When the compatibility was confirmed by the method described above, the epoxy mixture 4 was compatible at 140 ° C., which is the curing temperature of the epoxy resin composition.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • the epoxy compound (resin A and resin B) and curing agent When the density of the mixture with (CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated, it was 72% by volume.
  • a B-stage epoxy resin composition 4 and a cured epoxy resin composition 4 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 4 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • an epoxy compound (resins A and YL6121H) and a curing agent The density of the mixture with CRN was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • a B-stage epoxy resin composition 5 and a cured epoxy resin composition 5 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 5 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • “-” means that the component is not added and the mixing ratio is not calculated.
  • Epoxy resin varnish 6 was obtained as a composition.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • an epoxy compound (resins A and YL6121H) and a curing agent The density of the mixture with CRN was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • B-stage epoxy resin composition 6 and cured epoxy resin composition 6 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 6 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • Epoxy resin varnish 7 was obtained as a composition.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • an epoxy compound (resins A and YL6121H) and a curing agent The density of the mixture with CRN was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • B-stage epoxy resin composition 7 and cured epoxy resin composition 7 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 7 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • an epoxy compound (resins A and 828EL) and a curing agent The density of the mixture with CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • B-stage epoxy resin composition 8 and cured epoxy resin composition 8 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 8 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • the epoxy compound (resin A) and curing agent (CRN) The density of the mixture was calculated as 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • B-stage epoxy resin composition 9 and cured epoxy resin composition 9 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 9 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • the epoxy compound (resin A) and curing agent (CRN) The density of the mixture was calculated as 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • a B-stage epoxy resin composition 10 and a cured epoxy resin composition 10 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 10 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • an epoxy compound (YL6121H) and a curing agent (CRN) The density of the mixture was 1.20 g / cm 3
  • the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
  • a B-stage epoxy resin composition 11 and a cured epoxy resin composition 11 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 11 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • the thermal conductivity is highest in Comparative Example 5 using only the resin A.
  • the resin A and YL6121H were used together as the epoxy compound, the resin A and the resin B were used together, and the resin A and the 828EL were used together, they were compatible with each other.
  • the melting point was lower by 10 ° C. or more than when Resin A was used alone.
  • the epoxy resin composition that is compatible with each other and has a smectic structure has higher thermal conductivity than an epoxy resin composition that does not have a smectic structure. From this, it can be seen that the thermal conductivity varies greatly depending on the presence or absence of the smectic structure. As described above, an epoxy resin composition having a low melting point and a high thermal conductivity can be obtained.

Abstract

An epoxy resin composition which comprises two or more epoxy compounds each having a mesogen skeleton, a hardener, and an inorganic filler and in which the two or more epoxy compounds each having a mesogen skeleton are compatible with each other and can form a smectic structure upon reaction with the hardener.

Description

エポキシ樹脂組成物、Bステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板Epoxy resin composition, B stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metal substrate
 本発明はエポキシ樹脂組成物、Bステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板に関する。 The present invention relates to an epoxy resin composition, a B stage sheet, a cured epoxy resin composition, a resin sheet, a metal foil with resin, and a metal substrate.
 近年、電子及び電気機器の小型化に伴い発熱量が増大傾向にあることから、絶縁材料においていかにその熱を放散させるかが重要な課題となっている。これらの機器に用いられている絶縁材料としては、絶縁性、耐熱性等の観点から、熱硬化性樹脂硬化物が広く使われている。しかし、一般的に熱硬化性樹脂硬化物の熱伝導率は低く、熱放散を妨げている大きな要因となっていることから、高熱伝導性を有する熱硬化性樹脂硬化物が望まれている。 In recent years, the amount of heat generation tends to increase with the miniaturization of electronic and electrical equipment, so how to dissipate that heat in an insulating material has become an important issue. As insulating materials used in these devices, thermosetting resin cured products are widely used from the viewpoints of insulation, heat resistance, and the like. However, since the heat conductivity of a thermosetting resin cured product is generally low and is a major factor that hinders heat dissipation, a thermosetting resin cured product having high thermal conductivity is desired.
 高熱伝導性を有する熱硬化性樹脂硬化物として、分子構造中にメソゲン骨格を有するエポキシ樹脂組成物の硬化物が提案されている(例えば、特許文献1参照)。また、高熱伝導性を有し、軟化点(融点)の低い熱硬化性樹脂として、4,4’-ジヒドロキシビフェニルメタンのグリシジル化物とビフェノールのグリシジル化物からなる混合エポキシ樹脂に対し、ビフェノールを反応させることで得られる変性エポキシ樹脂が提案されている(例えば、特許文献2参照)。 As a thermosetting resin cured product having high thermal conductivity, a cured product of an epoxy resin composition having a mesogen skeleton in a molecular structure has been proposed (for example, see Patent Document 1). In addition, as a thermosetting resin having high thermal conductivity and a low softening point (melting point), biphenol is reacted with a mixed epoxy resin composed of glycidylated 4,4'-dihydroxybiphenylmethane and glycidylated biphenol. The modified epoxy resin obtained by this is proposed (for example, refer patent document 2).
 メソゲン骨格を有するエポキシ化合物は液晶を示す温度領域が狭く、硬化温度以下で溶融混合して硬化させる場合、ある特定の限られた温度範囲のみで硬化したものしか液晶性を示さないため、液晶性を示すエポキシ樹脂硬化物を容易に得るのは困難であることが知られている。樹脂硬化物を製造する際の硬化温度の範囲が広く、高熱伝導性を有する樹脂硬化物を容易に製造可能な樹脂組成物として、分子構造中に特定のメソゲン骨格を有する複数のエポキシ化合物を含む樹脂組成物が報告されている(例えば、特許文献3及び4参照)。
 更には、液晶性ポリマーと熱硬化性樹脂とが相分離した状態で存在している絶縁組成物が提案されている(例えば、特許文献5参照)。絶縁組成物中、液晶性ポリマーが高熱伝導性に関与し、熱硬化性樹脂が銅等の金属との密着性に関与していると報告されている。
Epoxy compounds with a mesogenic skeleton have a narrow temperature range for liquid crystals, and when they are cured and mixed at a temperature lower than the curing temperature, only those cured at a certain limited temperature range exhibit liquid crystallinity. It is known that it is difficult to easily obtain an epoxy resin cured product exhibiting the following. As a resin composition having a wide range of curing temperature when producing a cured resin and capable of easily producing a cured resin having high thermal conductivity, a plurality of epoxy compounds having a specific mesogen skeleton in the molecular structure are included. Resin compositions have been reported (see, for example, Patent Documents 3 and 4).
Furthermore, an insulating composition in which a liquid crystalline polymer and a thermosetting resin exist in a phase-separated state has been proposed (see, for example, Patent Document 5). In insulating compositions, it has been reported that liquid crystalline polymers are involved in high thermal conductivity, and thermosetting resins are involved in adhesion to metals such as copper.
特許第4118691号公報Japanese Patent No. 4118691 特開2007-332196号公報JP 2007-332196 A 特開2008-239679号公報JP 2008-239679 A 特開2008-266594号公報JP 2008-266594 A 特開2010-18679号公報JP 2010-18679 A
 しかしながら、分子構造中にメソゲン骨格を有するエポキシ樹脂は、高熱伝導性であるほど融点も高くなることが一般的であり、成形条件等の作業性が厳しくなる場合がある。特にエポキシ樹脂が高融点であると、エポキシ樹脂の溶融に高温を要するため、熱硬化温度が高くなる。溶融させるために温度を高くすると、エポキシ樹脂と硬化剤との反応速度が速くなる。そのため、高融点のエポキシ樹脂は十分に溶融する前に、硬化剤との反応が開始されやすい。したがって、特許文献3及び特許文献4の樹脂組成物は熱硬化温度が高く、メソゲン骨格の配向が揃う前に硬化してしまい、エポキシ樹脂本来の持つ熱伝導性を十分に発揮できない場合もある。
 また、特許文献2の熱硬化性樹脂は、合成が容易ではなく、低融点化と熱伝導性の向上とを両立させた新たなエポキシ樹脂の開発が望まれている。
However, an epoxy resin having a mesogen skeleton in the molecular structure generally has a higher melting point as it has higher thermal conductivity, and there are cases where workability such as molding conditions becomes severe. In particular, when the epoxy resin has a high melting point, a high temperature is required for melting the epoxy resin, and thus the thermosetting temperature becomes high. When the temperature is increased for melting, the reaction rate between the epoxy resin and the curing agent increases. Therefore, the reaction with the curing agent is likely to be started before the high melting point epoxy resin is sufficiently melted. Therefore, the resin compositions of Patent Literature 3 and Patent Literature 4 have a high thermosetting temperature, and are cured before the orientation of the mesogen skeleton is aligned, so that the thermal conductivity inherent in the epoxy resin may not be sufficiently exhibited.
Further, the thermosetting resin of Patent Document 2 is not easy to synthesize, and development of a new epoxy resin that achieves both low melting point and improved thermal conductivity is desired.
 本発明によれば、低融点化及び硬化後の熱伝導性の向上の両立が可能なエポキシ樹脂組成物、並びにこのエポキシ樹脂組成物を用いるBステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板を提供する。 According to the present invention, an epoxy resin composition capable of both lowering the melting point and improving the thermal conductivity after curing, and a B stage sheet, a cured epoxy resin composition, a resin sheet, and a resin using the epoxy resin composition Provided is a metal foil and a metal substrate.
 上記課題を提供するための具体的な手段には、以下の実施態様が含まれる。 The specific means for providing the above-mentioned problems include the following embodiments.
<1> メソゲン骨格を有する2種以上のエポキシ化合物と、硬化剤と、無機充填材と、を含有し、
 前記メソゲン骨格を有する2種以上のエポキシ化合物は、互いに相溶可能であり、前記硬化剤と反応することによりスメクチック構造を形成可能である、エポキシ樹脂組成物。
<1> Contains two or more epoxy compounds having a mesogenic skeleton, a curing agent, and an inorganic filler,
2 or more types of epoxy compounds which have the said mesogen skeleton are mutually compatible, The epoxy resin composition which can form a smectic structure by reacting with the said hardening | curing agent.
<2> 前記メソゲン骨格を有する2種以上のエポキシ化合物は、下記一般式(I)で表される化合物の少なくとも1種を含む<1>に記載のエポキシ樹脂組成物。 <2> The epoxy resin composition according to <1>, wherein the two or more epoxy compounds having the mesogenic skeleton include at least one compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。 In general formula (I), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
<3> 前記硬化剤は、フェノールノボラック樹脂を含む<1>又は<2>に記載のエポキシ樹脂組成物。 <3> The epoxy resin composition according to <1> or <2>, wherein the curing agent includes a phenol novolac resin.
<4> 前記硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有するノボラック樹脂を含む<1>~<3>のいずれか1項に記載のエポキシ樹脂組成物。 <4> The curing agent includes a novolak resin having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2) <1> The epoxy resin composition according to any one of to <3>.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を示す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を示す。m21及びm22はそれぞれ独立に0~2の整数を示す。n21及びn22はそれぞれ独立に1~7の整数を示す。 In general formula (II-1) and general formula (II-2), R 21 and R 24 each independently represents an alkyl group, an aryl group or an aralkyl group. R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. m21 and m22 each independently represents an integer of 0-2. n21 and n22 each independently represents an integer of 1 to 7.
<5> 前記硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するノボラック樹脂を含む<1>~<3>のいずれか1項に記載のエポキシ樹脂組成物。 <5> The curing agent includes a novolak resin having a partial structure represented by at least one selected from the group consisting of the following general formula (III-1) to general formula (III-4) <1> The epoxy resin composition according to any one of to <3>.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に、正の整数を示す。Ar31~Ar34はそれぞれ独立に、下記一般式(III-a)又は下記一般式(III-b)で表される基のいずれかを示す。 In the general formulas (III-1) to (III-4), m31 to m34 and n31 to n34 each independently represent a positive integer. Ar 31 to Ar 34 each independently represents any of the groups represented by the following general formula (III-a) or the following general formula (III-b).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を示す。R32及びR33はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を示す。 In general formula (III-a) and general formula (III-b), R 31 and R 34 each independently represents a hydrogen atom or a hydroxyl group. R 32 and R 33 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
<6> 前記硬化剤は、前記ノボラック樹脂を構成するフェノール化合物であるモノマーを含有し、前記モノマーの含有率が、前記硬化剤中5質量%~80質量%である<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物。 <6> The curing agent contains a monomer which is a phenol compound constituting the novolak resin, and the content of the monomer is 5% by mass to 80% by mass in the curing agent <1> to <5> The epoxy resin composition according to any one of the above.
<7> 前記無機充填材は、窒化ホウ素、アルミナ、酸化マグネシウム、シリカ及び窒化アルミニウムからなる群より選択される少なくとも1種を含む<1>~<6>のいずれか1項に記載のエポキシ樹脂組成物。 <7> The epoxy resin according to any one of <1> to <6>, wherein the inorganic filler includes at least one selected from the group consisting of boron nitride, alumina, magnesium oxide, silica, and aluminum nitride. Composition.
<8> 前記無機充填材の含有率が、固形分中において50体積%を超える<1>~<7>のいずれか1項に記載のエポキシ樹脂組成物。 <8> The epoxy resin composition according to any one of <1> to <7>, wherein the content of the inorganic filler exceeds 50% by volume in the solid content.
<9> <1>~<8>のいずれか1項に記載のエポキシ樹脂組成物のシート状の半硬化物であるBステージシート。 <9> A B stage sheet which is a sheet-like semi-cured product of the epoxy resin composition according to any one of <1> to <8>.
<10> <1>~<8>のいずれか1項に記載のエポキシ樹脂組成物の硬化物である硬化エポキシ樹脂組成物。 <10> A cured epoxy resin composition, which is a cured product of the epoxy resin composition according to any one of <1> to <8>.
<11> <1>~<8>のいずれか1項に記載のエポキシ樹脂組成物のシート状形成体である樹脂シート。 <11> A resin sheet which is a sheet-like formed body of the epoxy resin composition according to any one of <1> to <8>.
<12> 金属箔と、前記金属箔上に配置された<1>~<8>のいずれか1項に記載のエポキシ樹脂組成物に由来する半硬化エポキシ樹脂組成物層と、を備える樹脂付金属箔。 <12> A resin foil comprising a metal foil and a semi-cured epoxy resin composition layer derived from the epoxy resin composition according to any one of <1> to <8> disposed on the metal foil. Metal foil.
<13> 金属支持体と、前記金属支持体上に配置された<1>~<8>のいずれか1項に記載のエポキシ樹脂組成物に由来する硬化エポキシ樹脂組成物層と、前記硬化エポキシ樹脂組成物層上に配置された金属箔と、をこの順に備える金属基板。 <13> A metal support, a cured epoxy resin composition layer derived from the epoxy resin composition according to any one of <1> to <8> disposed on the metal support, and the cured epoxy A metal substrate comprising, in this order, a metal foil disposed on the resin composition layer.
 本発明によれば、低融点化及び硬化後の熱伝導性の向上の両立が可能なエポキシ樹脂組成物、並びにこのエポキシ樹脂組成物を用いるBステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板を提供することができる。 According to the present invention, an epoxy resin composition capable of both lowering the melting point and improving the thermal conductivity after curing, and a B stage sheet, a cured epoxy resin composition, a resin sheet, and a resin using the epoxy resin composition An attached metal foil and a metal substrate can be provided.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」の語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
In the present disclosure, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. .
In the present disclosure, numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, each component may contain a plurality of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of particles corresponding to each component may be included. When a plurality of particles corresponding to each component are present in the composition, the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term “layer” includes a case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. It is.
In the present disclosure, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
 構造単位数は、単一の分子については整数値を示すが、複数種の分子の集合体としては平均値である有理数を示す。 The number of structural units indicates an integer value for a single molecule but a rational number that is an average value as an aggregate of a plurality of types of molecules.
 エポキシ樹脂組成物から形成されたエポキシ樹脂組成物層を乾燥して得られる樹脂シートを更に加熱加圧処理して得られる樹脂シートをBステージシートと称する場合がある。
 なお、Bステージについては、JIS K6900:1994に規定を参照するものとする。
A resin sheet obtained by further heating and pressing a resin sheet obtained by drying an epoxy resin composition layer formed from an epoxy resin composition may be referred to as a B stage sheet.
For the B stage, refer to the specifications in JIS K6900: 1994.
<エポキシ樹脂組成物>
 本実施形態のエポキシ樹脂組成物は、メソゲン骨格を有する2種以上のエポキシ化合物と、硬化剤と、無機充填材とを含有し、前記メソゲン骨格を有する2種以上のエポキシ化合物は互いに相溶可能であり、前記硬化剤と反応することによりスメクチック構造を形成可能なものである。
 本実施形態のエポキシ樹脂組成物は、かかる構成により、低融点化と、硬化後の熱伝導性の向上との両立が可能となる。その理由は明らかではないが、次のように推測される。エポキシ樹脂組成物はメソゲン骨格を有する2種以上のエポキシ化合物を含み、これらが互いに相溶し、スメクチック構造を形成することで、硬化前のエポキシ樹脂組成物の融点を低下させ、硬化後に高い熱伝導性を発揮することができると考えられる。エポキシ樹脂組成物は、上記成分の他に、更にその他の成分を含んでいてもよい。
 以下、エポキシ樹脂組成物の各成分について詳細に説明する。
<Epoxy resin composition>
The epoxy resin composition of this embodiment contains two or more epoxy compounds having a mesogenic skeleton, a curing agent, and an inorganic filler, and the two or more epoxy compounds having the mesogenic skeleton are compatible with each other. It is possible to form a smectic structure by reacting with the curing agent.
With this configuration, the epoxy resin composition of the present embodiment can achieve both a low melting point and an improvement in thermal conductivity after curing. The reason is not clear, but is presumed as follows. The epoxy resin composition contains two or more kinds of epoxy compounds having a mesogen skeleton, and these are compatible with each other to form a smectic structure, thereby lowering the melting point of the epoxy resin composition before curing, and high heat after curing. It is thought that conductivity can be exhibited. The epoxy resin composition may further contain other components in addition to the above components.
Hereinafter, each component of the epoxy resin composition will be described in detail.
[エポキシ化合物]
 エポキシ樹脂組成物はメソゲン骨格を有する2種以上のエポキシ化合物を含み、メソゲン骨格を有するエポキシ化合物は互いに相溶可能である。互いに相溶可能な2種以上のメソゲン骨格を有するエポキシ化合物の混合物(以下、「エポキシ混合物」ともいう。)の融点は、エポキシ混合物を構成するメソゲン骨格を有するエポキシ化合物のうち、最も融点が高いメソゲン骨格を有するエポキシ化合物の融点よりも低くなる現象が見られる。したがって、エポキシ樹脂組成物の低融点化を発揮することが可能となる。
 また、エポキシ樹脂組成物を半硬化物又は硬化物にしたときの熱伝導率は、エポキシ混合物を構成するメソゲン骨格を有するエポキシ化合物の単体を半硬化物又は硬化物にしたときの熱伝導率よりも高くすることが可能となる。
 エポキシ混合物が3種以上のメソゲン骨格を有するエポキシ化合物を含む場合、エポキシ混合物を構成する全てのメソゲン骨格を有するエポキシ化合物からなるエポキシ混合物が全体として相溶可能であればよく、3種以上のメソゲン骨格を有するエポキシ化合物から選択される任意の2種のメソゲン骨格を有するエポキシ化合物が互いに相溶可能でなくともよい。
 本開示において「2種以上のエポキシ化合物」とは、分子構造が異なる2種以上のエポキシ化合物を意味する。但し、立体異性体(光学異性体、幾何異性体等)の関係にある2種以上のエポキシ化合物は、「2種以上のエポキシ化合物」に該当せず、同一種類のエポキシ化合物とみなす。
 本実施形態に係るエポキシ化合物はエポキシモノマーであっても、エポキシ樹脂であってもよく、高次構造の形成性(高熱伝導性)の観点から、エポキシモノマーであることが好ましい。エポキシ混合物は、エポキシモノマーとエポキシモノマーとの組み合わせ、エポキシモノマーとエポキシ樹脂との組み合わせ又はエポキシ樹脂とエポキシ樹脂との組み合わせであってもよく、高次構造の形成性(高熱伝導性)の観点から、エポキシモノマーとエポキシモノマーとの組み合わせであることが好ましい。
[Epoxy compound]
The epoxy resin composition contains two or more types of epoxy compounds having a mesogenic skeleton, and the epoxy compounds having a mesogenic skeleton are compatible with each other. The melting point of a mixture of epoxy compounds having two or more mesogenic skeletons compatible with each other (hereinafter also referred to as “epoxy mixture”) has the highest melting point among the epoxy compounds having a mesogenic skeleton constituting the epoxy mixture. There is a phenomenon in which the melting point is lower than the melting point of the epoxy compound having a mesogenic skeleton. Therefore, it becomes possible to exhibit the low melting point of the epoxy resin composition.
In addition, the thermal conductivity when the epoxy resin composition is made into a semi-cured product or a cured product is based on the thermal conductivity when the simple substance of an epoxy compound having a mesogen skeleton constituting the epoxy mixture is made into a semi-cured product or a cured product. Can also be increased.
When the epoxy mixture contains an epoxy compound having three or more kinds of mesogen skeletons, it is sufficient that the epoxy mixture composed of the epoxy compounds having all mesogen skeletons constituting the epoxy mixture is compatible as a whole. Any two kinds of epoxy compounds having a mesogenic skeleton selected from epoxy compounds having a skeleton may not be compatible with each other.
In the present disclosure, “two or more types of epoxy compounds” mean two or more types of epoxy compounds having different molecular structures. However, two or more types of epoxy compounds having a stereoisomer (optical isomer, geometric isomer, etc.) relationship do not fall under “two or more types of epoxy compounds” and are regarded as the same type of epoxy compound.
The epoxy compound according to the present embodiment may be an epoxy monomer or an epoxy resin, and is preferably an epoxy monomer from the viewpoint of higher-order structure formation (high thermal conductivity). The epoxy mixture may be a combination of an epoxy monomer and an epoxy monomer, a combination of an epoxy monomer and an epoxy resin, or a combination of an epoxy resin and an epoxy resin. From the viewpoint of formability of a higher order structure (high thermal conductivity). A combination of an epoxy monomer and an epoxy monomer is preferable.
 本開示において「メソゲン骨格」とは、液晶性を発現する可能性のある分子構造を示す。具体的には、ビフェニル骨格、フェニルベンゾエート骨格、アゾベンゼン骨格、スチルベン骨格、これらの誘導体等が挙げられる。メソゲン骨格を有するエポキシ化合物を含むエポキシ樹脂組成物は、硬化時に高次構造を形成し易く、硬化物を作製した場合に、より高い熱伝導率を達成できる傾向にある。 In the present disclosure, the “mesogen skeleton” refers to a molecular structure that may exhibit liquid crystallinity. Specific examples include a biphenyl skeleton, a phenylbenzoate skeleton, an azobenzene skeleton, a stilbene skeleton, and derivatives thereof. An epoxy resin composition containing an epoxy compound having a mesogenic skeleton tends to form a higher order structure upon curing, and tends to achieve higher thermal conductivity when a cured product is produced.
 ここで、高次構造とは、その構成要素がミクロに配列している状態のことであり、例えば、結晶相及び液晶相が相当する。このような高次構造が存在しているか否かは、偏光顕微鏡での観察によって容易に判断することが可能である。すなわち、クロスニコル状態での観察において、偏光解消による干渉模様が見られる場合は高次構造が存在していると判断できる。
 高次構造は、通常では樹脂中に島状に存在しており、ドメイン構造を形成している。そして、ドメイン構造を形成している島のそれぞれを高次構造体という。高次構造体を構成する構造単位同士は、一般的には共有結合で結合されている。
Here, the higher order structure is a state in which the constituent elements are arranged microscopically, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether or not such a higher-order structure exists can be easily determined by observation with a polarizing microscope. That is, when an interference pattern due to depolarization is observed in the observation in the crossed Nicol state, it can be determined that a higher order structure exists.
The higher order structure usually exists in an island shape in the resin, and forms a domain structure. Each island forming the domain structure is called a higher-order structure. The structural units constituting the higher order structure are generally bonded by a covalent bond.
 メソゲン骨格に由来する規則性の高い高次構造には、ネマチック構造、スメクチック構造等がある。ネマチック構造は分子長軸が一様な方向に向いており、配向秩序のみを持つ液晶構造である。これに対して、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、一定周期の層構造を有する液晶構造である。また、スメクチック構造の同一の周期の構造内部では、層構造の周期の方向が一様である。すなわち、分子の秩序性は、ネマチック構造よりもスメクチック構造の方が高い。秩序性の高い高次構造が半硬化物又は硬化物中に形成されると、熱伝導の媒体であるフォノンが散乱するのを抑制することができる。このため、ネマチック構造よりもスメクチック構造の方が、熱伝導率が高くなる。
 すなわち、分子の秩序性はネマチック構造よりもスメクチック構造の方が高く、硬化物の熱伝導性もスメクチック構造を示す場合の方が高くなる。エポキシ樹脂組成物は、硬化剤と反応して、スメクチック構造を形成できるので、高い熱伝導率を発揮できると考えられる。
High-order structures with high regularity derived from the mesogenic skeleton include nematic structures and smectic structures. The nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order. On the other hand, the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period. In addition, the direction of the period of the layer structure is uniform inside the structure having the same period of the smectic structure. That is, the order of molecules is higher in the smectic structure than in the nematic structure. When a highly ordered higher-order structure is formed in a semi-cured product or a cured product, it is possible to suppress scattering of phonons that are heat conductive media. For this reason, the smectic structure has a higher thermal conductivity than the nematic structure.
That is, the order of the molecule is higher in the smectic structure than in the nematic structure, and the thermal conductivity of the cured product is higher in the case of showing the smectic structure. Since the epoxy resin composition can form a smectic structure by reacting with a curing agent, it is considered that a high thermal conductivity can be exhibited.
 エポキシ樹脂組成物を用いてスメクチック構造の形成が可能であるか否かは、下記の方法により判断することができる。
 CuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5°~30°の範囲で、X線解析装置(例えば、株式会社リガク製)を用いてX線回折測定を行う。2θが1°~10°の範囲に回折ピークが存在する場合には、周期構造がスメクチック構造を含んでいると判断される。なお、メソゲン構造に由来する規則性の高い高次構造を有する場合には、2θが1°~30°の範囲に回折ピークが現れる。
Whether or not a smectic structure can be formed using the epoxy resin composition can be determined by the following method.
X-ray diffraction measurement is performed using an X-ray analyzer (for example, manufactured by Rigaku Corporation) using a CuK α 1 line and a tube voltage of 40 kV, a tube current of 20 mA, and 2θ in the range of 0.5 ° to 30 °. When a diffraction peak exists in the range of 2θ of 1 ° to 10 °, it is determined that the periodic structure includes a smectic structure. Note that in the case of a highly ordered high-order structure derived from a mesogenic structure, a diffraction peak appears in the range of 2θ of 1 ° to 30 °.
 本開示において「相溶可能」とは、エポキシ混合物を溶融させて自然冷却した後に、メソゲン骨格を有するエポキシ化合物に由来する相分離状態が観察されないことか、又は、エポキシ混合物において各メソゲン骨格を有するエポキシ化合物が相分離していても、エポキシ樹脂組成物の半硬化物又は硬化物としたときに、相分離状態が観察されないことを意味する。 In the present disclosure, “compatible” means that a phase separation state derived from an epoxy compound having a mesogen skeleton is not observed after the epoxy mixture is melted and naturally cooled, or each mesogen skeleton is included in the epoxy mixture. This means that even when the epoxy compound is phase-separated, the phase separation state is not observed when the epoxy resin composition is semi-cured or cured.
 メソゲン骨格を有するエポキシ化合物が互いに相溶可能であるか否かは、次のように判断することができる。例えば、エポキシ混合物を、エポキシ混合物が等方相に転移する温度以上に熱して溶融させ、次いで、溶融したエポキシ混合物を自然冷却させ、光学顕微鏡像(倍率:100倍)を観察し、エポキシ混合物に含まれる各メソゲン骨格を有するエポキシ化合物が相分離しているか否かを観察することで判断できる。また、このエポキシ混合物を用いてエポキシ樹脂組成物とし、半硬化物又は硬化物を形成する際の温度、すなわち、硬化温度における、エポキシ樹脂組成物の半硬化物又は硬化物の光学顕微鏡像(倍率:100倍)を観察し、エポキシ樹脂組成物に含まれる各メソゲン骨格を有するエポキシ化合物が相分離しているか否かを観察することで判断できる。 Whether or not epoxy compounds having a mesogenic skeleton are compatible with each other can be determined as follows. For example, the epoxy mixture is melted by heating above the temperature at which the epoxy mixture transitions to an isotropic phase, and then the molten epoxy mixture is allowed to cool naturally, and an optical microscope image (magnification: 100 times) is observed. It can be judged by observing whether or not the epoxy compound having each mesogenic skeleton contained is phase-separated. Moreover, it is set as an epoxy resin composition using this epoxy mixture, The temperature when forming a semi-hardened | cured material or hardened | cured material, ie, the optical microscope image (magnification of the semi-hardened material or hardened | cured material of an epoxy resin composition in hardening temperature. : 100 times), and it can be determined by observing whether or not the epoxy compound having each mesogen skeleton contained in the epoxy resin composition is phase-separated.
 硬化温度は、エポキシ樹脂組成物に応じて適宜選択することができる。硬化温度としては、100℃以上であることが好ましく、100℃~250℃であることがより好ましく、120℃~210℃であることが更に好ましい。 The curing temperature can be appropriately selected according to the epoxy resin composition. The curing temperature is preferably 100 ° C. or higher, more preferably 100 ° C. to 250 ° C., and still more preferably 120 ° C. to 210 ° C.
 上記方法の他に、メソゲン骨格を有するエポキシ化合物が互いに相溶可能であるか否かは、エポキシ混合物に由来する半硬化物又は硬化物を、走査型電子顕微鏡(SEM)を用いて観察することによって調べることができる。エポキシ混合物に由来する半硬化物又は硬化物の断面を、例えば、ダイヤモンドカッターで切り出した後、研磨紙及びスラリーを用いて研磨し、その断面の状態を、SEMを用いて例えば、2000倍の倍率で観察する。相分離する組み合わせのエポキシ化合物からなるエポキシ混合物に由来する半硬化物又は硬化物である場合、相分離している様子が明確に観察できる。 In addition to the above method, whether or not the epoxy compounds having a mesogenic skeleton are compatible with each other is to observe a semi-cured product or a cured product derived from the epoxy mixture using a scanning electron microscope (SEM). Can be examined. A cross section of a semi-cured product or a cured product derived from an epoxy mixture is cut with, for example, a diamond cutter, and then polished with abrasive paper and slurry, and the state of the cross section is, for example, 2000 times magnification using an SEM. Observe at. In the case of a semi-cured product or a cured product derived from an epoxy mixture comprising a combination of epoxy compounds that undergo phase separation, the state of phase separation can be clearly observed.
 また、相溶可能な組み合わせのメソゲン骨格を有するエポキシ化合物からなるエポキシ混合物の融点は、エポキシ混合物を構成するメソゲン骨格を有するエポキシ化合物の中で、最も融点が高いメソゲン骨格を有するエポキシ化合物の融点よりも低くなる現象が見られる。ここでいう融点とは、液晶相を有するエポキシ化合物では、エポキシ化合物が液晶相から等方相へと相転移するときの温度を指す。また、液晶相を有さないエポキシ化合物では、物質が固体(結晶相)から液体(等方相)へと状態変化するときの温度を指す。
 液晶相とは、結晶状態(結晶相)と液体状態(等方相)との中間に位置する相のひとつであり、分子の配向方向は何らかの秩序は保っているものの、3次元的な位置の秩序を失った状態を指す。
In addition, the melting point of an epoxy mixture comprising an epoxy compound having a compatible mesogenic skeleton is higher than the melting point of an epoxy compound having a mesogenic skeleton having the highest melting point among the epoxy compounds having a mesogenic skeleton constituting the epoxy mixture. The phenomenon that becomes lower is also seen. The melting point here refers to a temperature at which an epoxy compound undergoes a phase transition from a liquid crystal phase to an isotropic phase in an epoxy compound having a liquid crystal phase. In the case of an epoxy compound that does not have a liquid crystal phase, it indicates the temperature at which the substance changes its state from a solid (crystalline phase) to a liquid (isotropic phase).
The liquid crystal phase is one of the phases located between the crystalline state (crystalline phase) and the liquid state (isotropic phase). Although the molecular orientation direction maintains some order, it is in a three-dimensional position. It refers to the state that lost order.
 液晶相の有無は、室温(例えば、25℃)から昇温させていく過程における物質の状態変化を、偏光顕微鏡を用いて観察する方法によって判別できる。クロスニコル状態での観察において、結晶相及び液晶相は、偏光解消による干渉縞が見られ、等方相は暗視野に見える。また、結晶相から液晶相への転移は、流動性の有無により確認できる。つまり、液晶相を発現するとは、流動性を有し、かつ偏光解消による干渉縞が観察される温度領域を有していることである。
 すなわち、クロスニコル状態での観察において、メソゲン骨格を有するエポキシ化合物又はエポキシ混合物が流動性を有し、かつ偏光解消による干渉縞が観察される温度領域を持っていることが確認されれば、メソゲン骨格を有するエポキシ化合物又はエポキシ混合物は液晶相を有すると判断する。
The presence or absence of a liquid crystal phase can be determined by a method of observing a change in the state of a substance in the process of raising the temperature from room temperature (for example, 25 ° C.) using a polarizing microscope. In the observation in the crossed Nicols state, interference fringes due to depolarization are seen in the crystal phase and the liquid crystal phase, and the isotropic phase appears in the dark field. The transition from the crystal phase to the liquid crystal phase can be confirmed by the presence or absence of fluidity. In other words, the expression of the liquid crystal phase means that the liquid crystal phase has a fluidity and has a temperature region where interference fringes due to depolarization are observed.
That is, if it is confirmed that the epoxy compound or the epoxy mixture having a mesogenic skeleton has fluidity and has a temperature range in which interference fringes due to depolarization are observed in observation in a crossed Nicol state, It is judged that the epoxy compound or epoxy mixture having a skeleton has a liquid crystal phase.
 エポキシ混合物が液晶相を示す温度領域の幅は、10℃以上であることが好ましく、20℃以上であることがより好ましく、40℃以上であることが更に好ましい。温度領域が10℃以上であると、硬化物の高い熱伝導率を達成できる傾向にある。更に、温度領域の幅は広ければ広いほど、より高熱伝導率を有する硬化物が得られ易く好ましい。 The width of the temperature region in which the epoxy mixture exhibits a liquid crystal phase is preferably 10 ° C or higher, more preferably 20 ° C or higher, and further preferably 40 ° C or higher. When the temperature region is 10 ° C. or higher, high thermal conductivity of the cured product tends to be achieved. Furthermore, the wider the temperature region, the easier it is to obtain a cured product having a higher thermal conductivity, which is preferable.
 また、メソゲン骨格を有するエポキシ化合物又はエポキシ混合物の融点は、示差走査熱量測定装置(DSC)を用いて、25℃~350℃までの温度範囲を、10℃/分の昇温速度の条件で示差走査熱量測定を行い、相転移に伴うエネルギー変化(吸熱反応)が起こる温度として測定される。作業性及び反応性の観点から、メソゲン骨格を有するエポキシ化合物又はエポキシ混合物の融点が120℃以下であることが好ましい。 The melting point of the epoxy compound or epoxy mixture having a mesogenic skeleton is differentially measured using a differential scanning calorimeter (DSC) in the temperature range of 25 ° C. to 350 ° C. under the condition of a temperature increase rate of 10 ° C./min. Scanning calorimetry is performed and measured as the temperature at which an energy change (endothermic reaction) occurs with the phase transition. From the viewpoint of workability and reactivity, the melting point of the epoxy compound or epoxy mixture having a mesogenic skeleton is preferably 120 ° C. or lower.
 メソゲン骨格を有するエポキシ化合物が互いに相溶可能であること、すなわち、エポキシ混合物に由来する半硬化物又は硬化物において、メソゲン骨格を有するエポキシ化合物が互いに相分離していない状態であると、メソゲン骨格を有するエポキシ化合物に硬化剤、無機充填材等を加えてエポキシ樹脂組成物を構成した場合でも、エポキシ樹脂組成物の半硬化物又は硬化物において、メソゲン骨格を有するエポキシ化合物が互いに相分離していない状態となる傾向にある。 When the epoxy compounds having a mesogenic skeleton are compatible with each other, that is, in a semi-cured product or a cured product derived from an epoxy mixture, the epoxy compounds having a mesogenic skeleton are not in phase separation from each other. Even in the case where an epoxy resin composition is formed by adding a curing agent, an inorganic filler, etc. to an epoxy compound having epoxide, the epoxy compounds having a mesogen skeleton are phase-separated from each other in the semi-cured or cured product of the epoxy resin composition. There is a tendency to be in a state without.
 エポキシ樹脂組成物に含まれるメソゲン骨格を有する2種以上のエポキシ化合物は、互いに相溶可能であり、後述する硬化剤と反応することによりスメクチック構造を形成可能であれば特に制限はなく、通常用いられるメソゲン骨格を有するエポキシ化合物から適宜選択することができる。
 このようなメソゲン骨格を有するエポキシ化合物としては、例えば、メソゲン骨格を有し、かつ、1分子内に2個のグリシジル基を有するエポキシ化合物が挙げられる。
Two or more types of epoxy compounds having a mesogen skeleton contained in the epoxy resin composition are compatible with each other and are not particularly limited as long as they can form a smectic structure by reacting with a curing agent described later. It can be suitably selected from epoxy compounds having a mesogenic skeleton.
Examples of such an epoxy compound having a mesogenic skeleton include an epoxy compound having a mesogenic skeleton and two glycidyl groups in one molecule.
 メソゲン骨格を有し、かつ、1分子内に2個のグリシジル基を有するエポキシ化合物としては、例えば、ビフェニル型エポキシ化合物、及び3環型エポキシ化合物が挙げられる。 Examples of the epoxy compound having a mesogenic skeleton and having two glycidyl groups in one molecule include a biphenyl type epoxy compound and a tricyclic type epoxy compound.
 ビフェニル型エポキシ化合物としては、4,4’-ビス(2,3-エポキシプロポキシ)ビフェニル又は4,4’-ビス(2,3-エポキシプロポキシ)-3,3’,5,5’-テトラメチルビフェニルを主成分とするエポキシ化合物、エピクロルヒドリンと4,4’-ビフェノール又は4,4’-(3,3’,5,5’-テトラメチル)ビフェノールとを反応させて得られるエポキシ化合物等が挙げられる。 Biphenyl type epoxy compounds include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethyl. Examples include epoxy compounds mainly composed of biphenyl, and epoxy compounds obtained by reacting epichlorohydrin with 4,4′-biphenol or 4,4 ′-(3,3 ′, 5,5′-tetramethyl) biphenol. It is done.
 3環型エポキシ化合物としては、ターフェニル骨格を有するエポキシ化合物、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート等が挙げられる。 Examples of the tricyclic epoxy compounds include epoxy compounds having a terphenyl skeleton, 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1- (3-Methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -benzene, 4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2, 3-epoxypropoxy) benzoate and the like.
 より高い熱伝導率を達成する観点から、メソゲン骨格を有し、かつ、1分子内に2個のグリシジル基を有するエポキシ化合物としては、エポキシ化合物として1種単独で用いて硬化したときに、高次構造を形成可能であることが好ましく、スメクチック構造を形成可能であることがより好ましい。このようなエポキシ化合物としては、下記一般式(I)で表される化合物(以下、「特定エポキシ化合物」ともいう。)を挙げることができる。エポキシ樹脂組成物が特定エポキシ化合物を含むことにより、より高い熱伝導率を達成することが可能となる。 From the viewpoint of achieving higher thermal conductivity, an epoxy compound having a mesogenic skeleton and having two glycidyl groups in one molecule is high when cured as an epoxy compound alone. It is preferable that the following structure can be formed, and it is more preferable that a smectic structure can be formed. Examples of such an epoxy compound include a compound represented by the following general formula (I) (hereinafter also referred to as “specific epoxy compound”). When an epoxy resin composition contains a specific epoxy compound, it becomes possible to achieve a higher thermal conductivity.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1又は2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることが更に好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることが更に好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。 In general formula (I), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom. In addition, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and all 4 are further hydrogen atoms. preferable. When any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
 なお、特定エポキシ化合物の好ましい例は、例えば、特開2011-74366号公報に記載されている。具体的に、特定エポキシ化合物としては、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートからなる群より選択される少なくとも1種の化合物が好ましい。 A preferable example of the specific epoxy compound is described in, for example, JP-A-2011-74366. Specifically, specific epoxy compounds include 4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) benzoate and 4- {4- (2,3-epoxy Propoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) -3-methylbenzoate is preferred at least one compound selected from the group consisting of.
 高熱伝導率の観点から、メソゲン骨格を有する2種以上のエポキシ化合物は、特定エポキシ化合物の少なくとも1種を含むことがより好ましく、特定エポキシ化合物を2種以上含むことが更に好ましく、エポキシ混合物を構成する全てのメソゲン骨格を有するエポキシ化合物が特定エポキシ化合物であることが特に好ましい。 From the viewpoint of high thermal conductivity, the two or more epoxy compounds having a mesogenic skeleton preferably include at least one specific epoxy compound, more preferably include two or more specific epoxy compounds, and constitute an epoxy mixture. It is particularly preferable that all epoxy compounds having a mesogenic skeleton are specific epoxy compounds.
 エポキシ樹脂組成物は、低融点化及び熱伝導率性の観点から、特定エポキシ化合物に加え、特定エポキシ化合物と異なり、かつ、特定エポキシ化合物と相溶可能なメソゲン骨格を有するエポキシ化合物(以下、「メソゲン骨格を有する他のエポキシ化合物」ともいう。)を含んでいてもよい。
 メソゲン骨格を有する他のエポキシ化合物としては、エポキシ化合物として1種単独で用いて硬化したときに、ネマチック構造を形成可能であることが好ましい。このようなエポキシ化合物としては、ビフェニル型エポキシ化合物等が挙げられ、材料の入手性、コスト及び熱伝導率の観点からは、ビフェニル型エポキシ化合物であることが好ましい。
From the viewpoint of lowering the melting point and thermal conductivity, the epoxy resin composition is different from the specific epoxy compound in addition to the specific epoxy compound and has an mesogenic skeleton that is compatible with the specific epoxy compound (hereinafter, “ It may also be referred to as “another epoxy compound having a mesogenic skeleton”.
As another epoxy compound having a mesogenic skeleton, it is preferable that a nematic structure can be formed when cured by using one epoxy compound alone. Examples of such an epoxy compound include a biphenyl type epoxy compound. From the viewpoint of material availability, cost, and thermal conductivity, a biphenyl type epoxy compound is preferable.
 ビフェニル型エポキシ化合物としては、4,4’-ビス(2,3-エポキシプロポキシ)ビフェニル等が挙げられる。
 上記ビフェニル型エポキシ化合物としては、「YX4000」、「YL6121H」(以上、三菱化学株式会社製)、「NC-3000」、「NC-3100」(以上、日本化薬株式会社製)等の製品名により市販されているものが挙げられる。
 市販されているものの中では、低融点化及び熱伝導率性の向上の観点から「YL6121H」(三菱化学株式会社製)がより好ましい。メソゲン骨格を有する他のエポキシ化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the biphenyl type epoxy compound include 4,4′-bis (2,3-epoxypropoxy) biphenyl.
As the biphenyl type epoxy compound, product names such as “YX4000”, “YL6121H” (Mitsubishi Chemical Corporation), “NC-3000”, “NC-3100” (Nippon Kayaku Co., Ltd.) And those commercially available.
Among those commercially available, “YL6121H” (manufactured by Mitsubishi Chemical Corporation) is more preferable from the viewpoint of lowering the melting point and improving the thermal conductivity. Other epoxy compounds having a mesogenic skeleton may be used alone or in combination of two or more.
 エポキシ混合物が、特定エポキシ化合物と、メソゲン骨格を有する他のエポキシ化合物と、を含む場合、特定エポキシ化合物と、メソゲン骨格を有する他のエポキシ化合物と、の混合比率としては、低融点化及び熱伝導率性の向上の両立を図る観点から、エポキシ当量数比で、5:5~9.5:0.5(特定エポキシ化合物:メソゲン骨格を有する他のエポキシ化合物)の範囲であることが好ましく、6:4~9:1の範囲であることがより好ましく、7:3~9:1の範囲であることが更に好ましい。 When the epoxy mixture contains a specific epoxy compound and another epoxy compound having a mesogen skeleton, the mixing ratio of the specific epoxy compound and another epoxy compound having a mesogen skeleton is low melting point and heat conduction From the standpoint of improving efficiency, the epoxy equivalent number ratio is preferably in the range of 5: 5 to 9.5: 0.5 (specific epoxy compound: other epoxy compound having a mesogenic skeleton), A range of 6: 4 to 9: 1 is more preferable, and a range of 7: 3 to 9: 1 is still more preferable.
 エポキシ樹脂組成物は、エポキシ混合物と後述の硬化剤とが反応して、スメクチック構造を形成可能であれば、更に、メソゲン骨格を有さない他のエポキシ化合物(以下、「非メソゲンエポキシ化合物」という。)を含んでいてもよい。非メソゲンエポキシ化合物としては、ビスフェノール型エポキシ化合物、トリフェニルメタン型エポキシ化合物等が挙げられる。入手性及びコストの観点からは、ビスフェノール型エポキシ化合物であることが好ましい。 As long as the epoxy resin composition can form a smectic structure by the reaction of the epoxy mixture and the curing agent described later, the epoxy resin composition is further referred to as another epoxy compound having no mesogenic skeleton (hereinafter referred to as “non-mesogenic epoxy compound”). .) May be included. Examples of non-mesogenic epoxy compounds include bisphenol type epoxy compounds and triphenylmethane type epoxy compounds. From the viewpoint of availability and cost, a bisphenol-type epoxy compound is preferable.
 ビスフェノール型エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物等が挙げられる。
 上記ビスフェノール型エポキシ化合物としては、「ZX1059」、「VSLV-80XY」(以上、新日鉄住友化学株式会社製)、「828EL」(以上、三菱化学株式会社製)等の製品名により市販されているものが挙げられる。
 上記トリフェニルメタン型エポキシ化合物としては、トリフェニルメタン骨格を持つ化合物を原料とするエポキシ化合物であれば特に制限はなく、「1032H60」(三菱化学株式会社製)、「EPPN-502H」(日本化薬株式会社製)等の製品名により市販されているものが挙げられる。
Examples of the bisphenol type epoxy compound include a bisphenol A type epoxy compound and a bisphenol F type epoxy compound.
The bisphenol type epoxy compound is commercially available under the product names such as “ZX1059”, “VSLV-80XY” (manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd.), “828EL” (manufactured by Mitsubishi Chemical Corporation), etc. Is mentioned.
The triphenylmethane type epoxy compound is not particularly limited as long as it is an epoxy compound made from a compound having a triphenylmethane skeleton, and “1032H60” (Mitsubishi Chemical Corporation), “EPPN-502H” (Nipponization) And those marketed under product names such as Yakuhin Co., Ltd.).
 エポキシ混合物中の非メソゲンエポキシ化合物の含有率は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。 The content of the non-mesogenic epoxy compound in the epoxy mixture is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and 1% by mass or less. It is particularly preferred.
 エポキシ混合物中の特定エポキシ化合物の含有率は、エポキシ混合物と後述の硬化剤とが反応して、スメクチック構造を形成可能であれば特に制限はなく、適宜選択することができる。低融点化の観点より、メソゲン骨格を有するエポキシ化合物の含有率は、エポキシ混合物の全質量に対して5質量%以上であることが好ましく、10質量%~100質量%であることがより好ましく、100質量%であることが更に好ましい。 The content of the specific epoxy compound in the epoxy mixture is not particularly limited as long as it can form a smectic structure by the reaction of the epoxy mixture and the curing agent described later, and can be appropriately selected. From the viewpoint of lowering the melting point, the content of the epoxy compound having a mesogen skeleton is preferably 5% by mass or more, more preferably 10% by mass to 100% by mass with respect to the total mass of the epoxy mixture, More preferably, it is 100 mass%.
 エポキシ樹脂組成物中のメソゲン骨格を有するエポキシ化合物の総含有率は、特に制限はない。熱硬化性及び熱伝導率の観点から、メソゲン骨格を有するエポキシ化合物の総含有率は、エポキシ樹脂組成物の全質量に対して3質量%~10質量%であることが好ましく、5質量%~10質量%であることがより好ましい。 The total content of the epoxy compound having a mesogen skeleton in the epoxy resin composition is not particularly limited. From the viewpoint of thermosetting and thermal conductivity, the total content of the epoxy compound having a mesogenic skeleton is preferably 3% by mass to 10% by mass with respect to the total mass of the epoxy resin composition, and 5% by mass to More preferably, it is 10 mass%.
[硬化剤]
 エポキシ樹脂組成物は、硬化剤を含有する。硬化剤は、メソゲン骨格を有するエポキシ化合物と硬化反応が可能な化合物であれば特に制限されず、通常用いられる硬化剤を適宜選択して用いることができる。硬化剤の具体例としては、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、イミダゾール等の触媒型硬化剤などが挙げられる。これらの硬化剤は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 中でも耐熱性の観点から、硬化剤としては、アミン系硬化剤及びフェノール系硬化剤からなる群より選択される少なくとも1種を用いることが好ましく、更に、保存安定性の観点から、フェノール系硬化剤の少なくとも1種を用いることがより好ましい。
[Curing agent]
The epoxy resin composition contains a curing agent. The curing agent is not particularly limited as long as it is a compound capable of undergoing a curing reaction with an epoxy compound having a mesogenic skeleton, and a commonly used curing agent can be appropriately selected and used. Specific examples of the curing agent include acid anhydride curing agents, amine curing agents, phenol curing agents, polyaddition curing agents such as mercaptan curing agents, and catalytic curing agents such as imidazole. These curing agents may be used alone or in combination of two or more.
Among these, from the viewpoint of heat resistance, it is preferable to use at least one selected from the group consisting of amine-based curing agents and phenol-based curing agents, and from the viewpoint of storage stability, phenol-based curing agents. More preferably, at least one of the above is used.
 アミン系硬化剤としては、エポキシ化合物の硬化剤として通常用いられるものを特に制限なく用いることができ、市販されているものを用いてもよい。中でも硬化性の観点から、アミン系硬化剤としては、2以上の官能基を有する多官能硬化剤であることが好ましく、更に熱伝導性の観点から、剛直な骨格を有する多官能硬化剤であることがより好ましい。 As the amine curing agent, those usually used as a curing agent for epoxy compounds can be used without particular limitation, and commercially available ones may be used. Among these, from the viewpoint of curability, the amine curing agent is preferably a polyfunctional curing agent having two or more functional groups, and from the viewpoint of thermal conductivity, is a polyfunctional curing agent having a rigid skeleton. It is more preferable.
 2官能のアミン系硬化剤としては、具体的には、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン等が挙げられる。
 中でも、熱伝導率の観点から、4,4’-ジアミノジフェニルメタン及び1,5-ジアミノナフタレンからなる群より選択される少なくとも1種であることが好ましく、1,5-ジアミノナフタレンであることがより好ましい。
Specific examples of the bifunctional amine curing agent include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 4,4′-diamino-3,3. Examples include '-dimethoxybiphenyl, 4,4'-diaminophenyl benzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene and the like.
Among these, from the viewpoint of thermal conductivity, at least one selected from the group consisting of 4,4′-diaminodiphenylmethane and 1,5-diaminonaphthalene is preferable, and 1,5-diaminonaphthalene is more preferable. preferable.
 フェノール系硬化剤としては、エポキシ化合物の硬化剤として通常用いられるものを特に制限なく用いることができ、市販されているものを用いてもよい。例えば、フェノール及びそれらをノボラック化したフェノール樹脂を用いることができる。
 フェノール系硬化剤としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能の化合物;カテコール、レゾルシノール、ハイドロキノン等の2官能の化合物;1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能の化合物などが挙げられる。また、硬化剤としては、これらフェノール系硬化剤をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂を用いることができる。
As a phenol type hardening | curing agent, what is normally used as a hardening | curing agent of an epoxy compound can be especially used without a restriction | limiting, You may use what is marketed. For example, phenol and a novolac phenol resin can be used.
Examples of phenolic curing agents include monofunctional compounds such as phenol, o-cresol, m-cresol, and p-cresol; bifunctional compounds such as catechol, resorcinol, and hydroquinone; 1,2,3-trihydroxybenzene, 1 , 2,4-trihydroxybenzene, 1,3,5-trihydroxybenzene and the like trifunctional compounds. As the curing agent, a phenol novolac resin obtained by connecting these phenolic curing agents with a methylene chain or the like to form a novolak can be used.
 フェノールノボラック樹脂としては、具体例には、クレゾールノボラック樹脂、カテコールノボラック樹脂、レゾルシノールノボラック樹脂、ヒドロキノンノボラック樹脂等の1種のフェノール化合物をノボラック化した樹脂;カテコールレゾルシノールノボラック樹脂、レゾルシノールヒドロキノンノボラック樹脂等の2種又はそれ以上のフェノール化合物をノボラック化した樹脂などが挙げられる。 Specific examples of the phenol novolak resin include resins obtained by novolacizing one phenol compound such as cresol novolak resin, catechol novolak resin, resorcinol novolak resin, hydroquinone novolak resin; catechol resorcinol novolak resin, resorcinol hydroquinone novolak resin, etc. Examples thereof include resins obtained by novolacizing two or more phenol compounds.
 フェノール系硬化剤としてフェノールノボラック樹脂が用いられる場合、フェノールノボラック樹脂は、下記一般式(II-1)及び(II-2)からなる群より選択される少なくとも1つで表される構造単位を有するノボラック樹脂を含むことが好ましい。 When a phenol novolac resin is used as the phenolic curing agent, the phenol novolak resin has a structural unit represented by at least one selected from the group consisting of the following general formulas (II-1) and (II-2) It is preferable to include a novolac resin.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を示す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を示す。m21及びm22はそれぞれ独立に0~2の整数を示す。n21及びn22はそれぞれ独立に1~7の整数を示す。 In general formula (II-1) and general formula (II-2), R 21 and R 24 each independently represents an alkyl group, an aryl group or an aralkyl group. R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. m21 and m22 each independently represents an integer of 0-2. n21 and n22 each independently represents an integer of 1 to 7.
 アルキル基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。
 アリール基は、芳香族環にヘテロ原子を含む構造であってもよい。この場合、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
 アラルキル基におけるアルキレン基は、鎖状、分岐鎖状、及び環状のいずれであってもよい。アラルキル基におけるアリール基は、芳香族環にヘテロ原子を含む構造であってもよい。この場合、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
The alkyl group may be linear, branched or cyclic.
The aryl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
The alkylene group in the aralkyl group may be any of a chain, a branched chain, and a cyclic group. The aryl group in the aralkyl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
 一般式(II-1)及び一般式(II-2)において、R21及びR24はそれぞれ独立に、アルキル基、アリール基、又はアラルキル基を表す。これらアルキル基、アリール基、及びアラルキル基は、更に置換基を有していてもよい。置換基としては、アルキル基(但し、R21及びR24が、アルキル基の場合を除く)、芳香族基、ハロゲン原子、水酸基等を挙げることができる。
 m21及びm22はそれぞれ独立に、0~2の整数を表し、m21又はm22が2の場合、2つのR21又はR24は同一であっても異なっていてもよい。m21及びm22は、それぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。
 n21及びn22はフェノールノボラック樹脂に含まれる一般式(II-1)及び(II-2)で表される構造単位の数であり、それぞれ独立に、1~7の整数を表す。
In general formula (II-1) and general formula (II-2), R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group. These alkyl group, aryl group, and aralkyl group may further have a substituent. Examples of the substituent include an alkyl group (except when R 21 and R 24 are alkyl groups), an aromatic group, a halogen atom, and a hydroxyl group.
m21 and m22 each independently represents an integer of 0 to 2, and when m21 or m22 is 2, two R 21 or R 24 may be the same or different. m21 and m22 are each independently preferably 0 or 1, and more preferably 0.
n21 and n22 are the number of structural units represented by the general formulas (II-1) and (II-2) contained in the phenol novolac resin, and each independently represents an integer of 1 to 7.
 一般式(II-1)及び一般式(II-2)において、R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表す。R22、R23、R25及びR26で表されるアルキル基、アリール基、及びアラルキル基は、更に置換基を有していてもよい。置換基としては、アルキル基(但し、R22、R23、R25及びR26が、アルキル基の場合を除く)、アリール基、ハロゲン原子、水酸基等を挙げることができる。 In general formula (II-1) and general formula (II-2), R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. The alkyl group, aryl group and aralkyl group represented by R 22 , R 23 , R 25 and R 26 may further have a substituent. Examples of the substituent include an alkyl group (provided that R 22 , R 23 , R 25 and R 26 are alkyl groups), an aryl group, a halogen atom, a hydroxyl group and the like.
 一般式(II-1)及び一般式(II-2)におけるR22、R23、R25及びR26は、保存安定性と熱伝導性の観点から、それぞれ独立に、水素原子、アルキル基、又はアリール基であることが好ましく、水素原子、炭素数1~4であるアルキル基又は炭素数6~12であるアリール基であることがより好ましく、水素原子であることが更に好ましい。
 更に、耐熱性の観点から、R22及びR23の少なくとも一方はアリール基であることが好ましく、炭素数6~12であるアリール基であることがより好ましい。また、R25及びR26の少なくとも一方は、同様にアリール基であることが好ましく、炭素数6~12であるアリール基であることがより好ましい。
 なお、上記アリール基は芳香族環にヘテロ原子を含む構造であってもよい。この場合、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
In formulas (II-1) and (II-2), R 22 , R 23 , R 25 and R 26 are each independently a hydrogen atom, an alkyl group, from the viewpoint of storage stability and thermal conductivity, Alternatively, it is preferably an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and further preferably a hydrogen atom.
Furthermore, from the viewpoint of heat resistance, at least one of R 22 and R 23 is preferably an aryl group, more preferably an aryl group having 6 to 12 carbon atoms. Similarly, at least one of R 25 and R 26 is preferably an aryl group, and more preferably an aryl group having 6 to 12 carbon atoms.
The aryl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
 フェノール系硬化剤は、一般式(II-1)又は一般式(II-2)で表される構造単位を有する化合物を1種単独で含んでもよく、2種以上を含んでいてもよい。好ましくは、一般式(II-1)で表されるレゾルシノールに由来する構造単位を有する化合物の少なくとも1種を含む場合である。 The phenolic curing agent may contain one type of compound having the structural unit represented by the general formula (II-1) or the general formula (II-2), or may contain two or more types. Preferably, it contains at least one compound having a structural unit derived from resorcinol represented by the general formula (II-1).
 一般式(II-1)で表される構造単位を有する化合物は、レゾルシノール以外のフェノール化合物に由来する部分構造の少なくとも1種を更に含んでいてもよい。一般式(II-1)において、レゾルシノール以外のフェノール化合物に由来する部分構造としては、例えば、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び1,3,5-トリヒドロキシベンゼンに由来する部分構造が挙げられる。これらに由来する部分構造は、1種単独でも、2種以上を組み合わせて含んでいてもよい。
 また、一般式(II-2)で表される構造単位を有する化合物は、カテコール以外のフェノール化合物に由来する部分構造の少なくとも1種を含んでいてもよい。一般式(II-2)において、カテコール以外のフェノール化合物に由来する部分構造としては、例えば、フェノール、クレゾール、レゾルシノール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び1,3,5-トリヒドロキシベンゼンに由来する部分構造が挙げられる。これらに由来する部分構造は、1種単独でも、2種以上を組み合わせて含んでいてもよい。
The compound having the structural unit represented by the general formula (II-1) may further include at least one partial structure derived from a phenol compound other than resorcinol. In the general formula (II-1), examples of the partial structure derived from a phenol compound other than resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxy. Examples thereof include partial structures derived from benzene and 1,3,5-trihydroxybenzene. The partial structures derived from these may be contained singly or in combination of two or more.
Further, the compound having the structural unit represented by the general formula (II-2) may contain at least one partial structure derived from a phenol compound other than catechol. In the general formula (II-2), examples of the partial structure derived from a phenol compound other than catechol include, for example, phenol, cresol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxy Examples thereof include partial structures derived from benzene and 1,3,5-trihydroxybenzene. The partial structures derived from these may be contained singly or in combination of two or more.
 ここで、フェノール化合物に由来する部分構造とは、フェノール化合物のベンゼン環部分から1個又は2個の水素原子を取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に制限されない。 Here, the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound. The position where the hydrogen atom is removed is not particularly limited.
 また、一般式(II-1)で表される構造単位を有する化合物において、レゾルシノールに由来する部分構造の含有率については特に制限されない。弾性率の観点から、一般式(II-1)で表される構造単位を有する化合物の全質量に対するレゾルシノールに由来する部分構造の含有率が55質量%以上であることが好ましく、ガラス転移温度(Tg)と線膨張率の観点から、80質量%以上であることがより好ましく、熱伝導性の観点から、90質量%以上であることが更に好ましい。 In the compound having the structural unit represented by the general formula (II-1), the content of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of the elastic modulus, the content of the partial structure derived from resorcinol is preferably 55% by mass or more based on the total mass of the compound having the structural unit represented by the general formula (II-1), and the glass transition temperature ( From the viewpoint of Tg) and the linear expansion coefficient, it is more preferably 80% by mass or more, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
 更に、フェノールノボラック樹脂は、下記一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するノボラック樹脂を含むことが好ましい。 Furthermore, the phenol novolac resin preferably includes a novolak resin having a partial structure represented by at least one selected from the group consisting of the following general formulas (III-1) to (III-4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020

 
Figure JPOXMLDOC01-appb-C000020

 
 一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34は、それぞれ独立に、正の整数を示し、それぞれの構造単位が含有される数を示す。また、Ar31~Ar34は、それぞれ独立に、下記一般式(III-a)又は下記一般式(III-b)で表される基のいずれかを示す。 In the general formulas (III-1) to (III-4), m31 to m34 and n31 to n34 each independently represent a positive integer and represent the number of each structural unit contained. Ar 31 to Ar 34 each independently represents any of the groups represented by the following general formula (III-a) or the following general formula (III-b).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を示す。R32及びR33は、それぞれ独立に、水素原子又は炭素数1~8のアルキル基を示す。 In general formula (III-a) and general formula (III-b), R 31 and R 34 each independently represents a hydrogen atom or a hydroxyl group. R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
 一般式(III-1)~一般式(III-4)のうち少なくとも1つで表される部分構造を有する硬化剤は、2価のフェノール化合物をノボラック化する後述の製造方法によって副生成的に生成可能なものである。 A curing agent having a partial structure represented by at least one of general formula (III-1) to general formula (III-4) is produced as a by-product by a production method described later in which a divalent phenol compound is novolaked. It can be generated.
 一般式(III-1)~一般式(III-4)で表される部分構造は、化合物の主鎖骨格として含まれていてもよく、又は側鎖の一部として含まれていてもよい。更に、一般式(III-1)~一般式(III-4)のいずれか1つで表される部分構造を構成するそれぞれの構成単位は、ランダムに含まれていてもよいし、規則的に含まれていてもよいし、ブロック状に含まれていてもよい。また、一般式(III-1)~一般式(III-4)において、水酸基の置換位置は芳香族環上であれば特に制限されない。 The partial structures represented by the general formulas (III-1) to (III-4) may be included as the main chain skeleton of the compound or may be included as a part of the side chain. Furthermore, each structural unit constituting the partial structure represented by any one of the general formulas (III-1) to (III-4) may be included randomly or regularly. It may be included or may be included in a block shape. Further, in the general formulas (III-1) to (III-4), the substitution position of the hydroxyl group is not particularly limited as long as it is on the aromatic ring.
 一般式(III-1)~一般式(III-4)のそれぞれについて、複数存在するAr31~Ar34は全て同一の原子団であってもよいし、2種以上の原子団を含んでいてもよい。なお、Ar31~Ar34は、それぞれ独立に、一般式(III-a)及び一般式(III-b)のいずれか1つで表される基を表す。 For each of the general formulas (III-1) to (III-4), a plurality of Ar 31 to Ar 34 may all be the same atomic group or contain two or more atomic groups. Also good. Ar 31 to Ar 34 each independently represent a group represented by any one of general formula (III-a) and general formula (III-b).
 一般式(III-a)及び一般式(III-b)におけるR31及びR34はそれぞれ独立に、水素原子又は水酸基であるが、熱伝導性の観点から水酸基であることが好ましい。また、R31及びR34の置換位置は特に制限されない。 R 31 and R 34 in formulas (III-a) and (III-b) are each independently a hydrogen atom or a hydroxyl group, but are preferably a hydroxyl group from the viewpoint of thermal conductivity. Further, the substitution positions of R 31 and R 34 are not particularly limited.
 一般式(III-a)及び一般式(III-b)におけるR32及びR33はそれぞれ独立に、水素原子又は炭素数1~8であるアルキル基を示す。R32及びR33における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、及びオクチル基が挙げられる。また、一般式(III-a)及び一般式(III-b)におけるR32及びR33の置換位置は特に制限されない。 R 32 and R 33 in general formula (III-a) and general formula (III-b) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms in R 32 and R 33 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, hexyl. Groups, heptyl groups, and octyl groups. In addition, the substitution positions of R 32 and R 33 in general formula (III-a) and general formula (III-b) are not particularly limited.
 一般式(III-a)及び一般式(III-b)におけるAr31~Ar34は、より優れた熱伝導性を達成する観点から、ジヒドロキシベンゼンに由来する基(一般式(III-a)においてR31が水酸基であって、R32及びR33が水素原子である基)、及びジヒドロキシナフタレンに由来する基(一般式(III-b)においてR34が水酸基である基)から選択される少なくとも1種であることが好ましい。 Ar 31 to Ar 34 in the general formula (III-a) and the general formula (III-b) are groups derived from dihydroxybenzene (in the general formula (III-a), from the viewpoint of achieving higher thermal conductivity. A group in which R 31 is a hydroxyl group and R 32 and R 33 are hydrogen atoms) and a group derived from dihydroxynaphthalene (a group in which R 34 is a hydroxyl group in formula (III-b)). One type is preferable.
 ここで、「ジヒドロキシベンゼンに由来する基」とは、ジヒドロキシベンゼンの芳香環部分から水素原子を2つ取り除いて構成される2価の基を意味し、水素原子が取り除かれる位置は特に制限されない。また、「ジヒドロキシナフタレンに由来する基」についても同様の意味である。 Here, the “group derived from dihydroxybenzene” means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited. Further, the “group derived from dihydroxynaphthalene” has the same meaning.
 また、エポキシ樹脂組成物の生産性及び流動性の観点からは、Ar31~Ar34は、それぞれ独立に、ジヒドロキシベンゼンに由来する基であることがより好ましく、1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基からなる群より選択される少なくとも1種であることが更に好ましい。特に、熱伝導性を特に高める観点から、Ar31~Ar34は、少なくともレゾルシノールに由来する基を含むことが好ましい。また、熱伝導性を特に高める観点から、n31~n34で表される構造単位は、レゾルシノールに由来する基を含んでいることが好ましい。 Further, from the viewpoint of productivity and fluidity of the epoxy resin composition, Ar 31 to Ar 34 are more preferably each independently a group derived from dihydroxybenzene, and 1,2-dihydroxybenzene (catechol) More preferably, it is at least one selected from the group consisting of a group derived from the above and a group derived from 1,3-dihydroxybenzene (resorcinol). In particular, Ar 31 to Ar 34 preferably include at least a group derived from resorcinol from the viewpoint of particularly improving thermal conductivity. Further, from the viewpoint of particularly improving thermal conductivity, the structural unit represented by n31 to n34 preferably contains a group derived from resorcinol.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有する化合物が、レゾルシノールに由来する構造単位を含む場合、レゾルシノールに由来する基を含む構造単位の含有率は、弾性率の観点から、一般式(III-1)~一般式(III-4)のうち少なくとも1つで表される構造を有する化合物全質中において55質量%以上であることが好ましく、Tg及び線膨張率の観点から、80質量%以上であることがより好ましく、熱伝導性の観点から、90質量%以上であることが更に好ましい。 When the compound having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) includes a structural unit derived from resorcinol, it is derived from resorcinol The content of the structural unit containing a group is 55% by mass in the whole compound having a structure represented by at least one of general formulas (III-1) to (III-4) from the viewpoint of elastic modulus. % From the viewpoint of Tg and linear expansion coefficient, more preferably 80% by mass or more, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
 一般式(III-1)~一般式(III-4)におけるmx及びnx(xは31、32、33又は34のいずれかの同一の値)の比は、流動性の観点から、mx/nx=20/1~1/5であることが好ましく、20/1~5/1であることがより好ましく、20/1~10/1であることが更に好ましい。また、mx及びnxの合計値は、流動性の観点から20以下であることが好ましく、15以下であることがより好ましく、10以下であることが更に好ましい。なお、m及びnの合計値の下限値は特に制限されない。 In the general formulas (III-1) to (III-4), the ratio of mx and nx (x is the same value of any one of 31, 32, 33, or 34) is mx / nx from the viewpoint of fluidity. = 20/1 to 1/5 is preferable, 20/1 to 5/1 is more preferable, and 20/1 to 10/1 is still more preferable. Further, the total value of mx and nx is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less from the viewpoint of fluidity. In addition, the lower limit of the total value of m and n is not particularly limited.
 mx及びnxは構造単位数を表し、対応する構造単位が、分子中にどの程度付加されているかを示すものである。したがって、単一の分子については整数値を示す。なお、(mx/nx)及び(mx+nx)におけるmx及びnxは、複数種の分子の集合体の場合には、平均値である有理数を示す。 Mx and nx represent the number of structural units and indicate how much the corresponding structural unit is added in the molecule. Therefore, an integer value is shown for a single molecule. Note that mx and nx in (mx / nx) and (mx + nx) indicate rational numbers that are average values in the case of an assembly of a plurality of types of molecules.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するフェノールノボラック樹脂は、特にAr31~Ar34が置換又は非置換のジヒドロキシベンゼン及び置換又は非置換のジヒドロキシナフタレンの少なくともいずれか1種である場合、これらを単純にノボラック化したフェノール樹脂等と比較して、その合成が容易であり、融点の低い硬化剤が得られる傾向にある。したがって、このようなフェノール樹脂を硬化剤として含むことで、エポキシ樹脂組成物の製造及び取り扱いも容易になる等の利点がある。
 なお、フェノールノボラック樹脂が一般式(III-1)~一般式(III-4)のいずれかで表される部分構造を有するか否かは、電界脱離イオン化質量分析法(FD-MS)によって、そのフラグメント成分として、一般式(III-1)~一般式(III-4)のいずれかで表される部分構造に相当する成分が含まれるか否かによって判断することができる。
Phenol novolac resins having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) are particularly those in which Ar 31 to Ar 34 are substituted or unsubstituted. In the case of at least one of dihydroxybenzene and substituted or unsubstituted dihydroxynaphthalene, the synthesis is easy and a curing agent having a low melting point can be obtained as compared with a novolak phenol resin or the like. There is a tendency. Therefore, by including such a phenol resin as a curing agent, there are advantages such as easy manufacture and handling of the epoxy resin composition.
Whether or not the phenol novolac resin has a partial structure represented by any of the general formulas (III-1) to (III-4) is determined by field desorption ionization mass spectrometry (FD-MS). The fragment component can be determined by whether or not a component corresponding to the partial structure represented by any one of the general formulas (III-1) to (III-4) is included.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するフェノールノボラック樹脂の分子量は特に制限されない。流動性の観点から、数平均分子量(Mn)としては2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることが更に好ましい。また、重量平均分子量(Mw)としては2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることが更に好ましい。Mn及びMwは、GPC(ゲルパーミエーションクロマトグラフィ)を用いた通常の方法により測定される。 The molecular weight of the phenol novolac resin having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited. From the viewpoint of fluidity, the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and even more preferably 350 to 1500. Further, the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500. Mn and Mw are measured by a usual method using GPC (gel permeation chromatography).
 一般式(III-1)~一般式(III-4)からなる群より選択されるうち少なくとも1つで表される部分構造を有するフェノールノボラック樹脂の水酸基当量は特に制限されない。耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることが更に好ましい。なお、本開示において、水酸基当量は、JIS K0070:1992に準拠して測定された値をいう。 The hydroxyl equivalent of the phenol novolac resin having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is not particularly limited. From the viewpoint of the crosslinking density involved in the heat resistance, the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and 55 g / eq to 120 g / eq. More preferably, it is eq. In the present disclosure, the hydroxyl equivalent refers to a value measured in accordance with JIS K0070: 1992.
 フェノールノボラック樹脂は、フェノールノボラック樹脂を構成するフェノール化合物であるモノマーを含んでいてもよい。フェノールノボラック樹脂を構成するフェノール化合物であるモノマーの含有率(以下、「モノマー含有率」ともいう。)としては特に制限されない。熱伝導性及び成形性の観点から、硬化物中のモノマー含有率は、5質量%~80質量%であることが好ましく、15質量%~60質量%であることがより好ましく、20質量%~50質量%であることが更に好ましい。 The phenol novolac resin may contain a monomer that is a phenol compound constituting the phenol novolac resin. The content of the monomer that is a phenol compound constituting the phenol novolac resin (hereinafter also referred to as “monomer content”) is not particularly limited. From the viewpoint of thermal conductivity and moldability, the monomer content in the cured product is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and more preferably 20% by mass to More preferably, it is 50 mass%.
 モノマー含有率が80質量%以下であると、硬化反応の際に架橋に寄与しないモノマーが少なくなり、架橋に寄与する高分子量体が多くを占めることになるため、より高密度な高次構造が形成され、熱伝導率が向上する傾向にある。また、モノマー含有率が5質量%以上であることで、成形の際に流動し易いため、無機充填材との密着性がより向上し、より優れた熱伝導性と耐熱性が達成される傾向にある。 When the monomer content is 80% by mass or less, the amount of monomers that do not contribute to crosslinking decreases during the curing reaction, and the high molecular weight material that contributes to crosslinking occupies a large amount. It is formed and the thermal conductivity tends to be improved. In addition, since the monomer content is 5% by mass or more, since it is easy to flow during molding, the adhesion with the inorganic filler is further improved, and more excellent thermal conductivity and heat resistance tend to be achieved. It is in.
 エポキシ樹脂組成物中の硬化剤の含有量は特に制限されない。例えば、硬化剤がアミン系硬化剤の場合は、アミン系硬化剤の活性水素の当量数(アミン基の当量数)と、エポキシ化合物のエポキシ基の当量数との比(アミン基の当量数/エポキシ基の当量数)が0.5~2.0となることが好ましく、0.8~1.2となることがより好ましい。また、硬化剤がフェノール系硬化剤の場合は、フェノール系硬化剤のフェノール性水酸基の当量数(フェノール性水酸基の当量数)と、エポキシ化合物のエポキシ基の当量数との比(フェノール性水酸基の当量数/エポキシ基の当量数)が0.5~2.0となることが好ましく、0.8~1.2となることがより好ましい。 The content of the curing agent in the epoxy resin composition is not particularly limited. For example, when the curing agent is an amine curing agent, the ratio of the number of active hydrogen equivalents of the amine curing agent (equivalent number of amine groups) to the number of epoxy group equivalents of the epoxy compound (equivalent number of amine groups / The number of equivalents of epoxy groups is preferably 0.5 to 2.0, and more preferably 0.8 to 1.2. When the curing agent is a phenolic curing agent, the ratio of the number of equivalents of the phenolic hydroxyl group of the phenolic curing agent (the number of equivalents of the phenolic hydroxyl group) to the number of equivalents of the epoxy group of the epoxy compound (of the phenolic hydroxyl group) (Equivalent number / Equivalent number of epoxy group) is preferably 0.5 to 2.0, and more preferably 0.8 to 1.2.
(硬化促進剤)
 エポキシ樹脂組成物においてフェノール系硬化剤を用いる場合、必要に応じて硬化促進剤を併用してもよい。硬化促進剤を併用することで、更に十分に硬化させることができる。硬化促進剤の種類及び含有量は特に制限されず、反応速度、反応温度及び保管性の観点から、適切なものを選択することができる。
(Curing accelerator)
When using a phenol type hardening | curing agent in an epoxy resin composition, you may use a hardening accelerator together as needed. By using a curing accelerator in combination, it can be further sufficiently cured. The kind and content of the curing accelerator are not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, and storage property.
 具体的には、イミダゾール化合物、第3級アミン化合物、有機ホスフィン化合物、有機ホスフィン化合物と有機ボロン化合物との錯体等が挙げられる。中でも、耐熱性の観点から、有機ホスフィン化合物、及び有機ホスフィン化合物と有機ボロン化合物との錯体からなる群より選択される少なくとも1つであることが好ましい。 Specific examples include imidazole compounds, tertiary amine compounds, organic phosphine compounds, complexes of organic phosphine compounds and organic boron compounds, and the like. Among these, from the viewpoint of heat resistance, it is preferably at least one selected from the group consisting of an organic phosphine compound and a complex of an organic phosphine compound and an organic boron compound.
 有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。 Specific examples of the organic phosphine compound include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl). ) Phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine And alkyldiarylphosphine.
 また、有機ホスフィン化合物と有機ボロン化合物との錯体としては、具体的には、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ-p-トリルボレート、テトラブチルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・n-ブチルトリフェニルボレート、ブチルトリフェニルホスホニウム・テトラフェニルボレート、メチルトリブチルホスホニウム・テトラフェニルボレート等が挙げられる。
 これら硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the complex of an organic phosphine compound and an organic boron compound include tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetra-p-tolylborate, tetrabutylphosphonium / tetraphenylborate, and tetraphenylphosphonium. -N-butyltriphenylborate, butyltriphenylphosphonium / tetraphenylborate, methyltributylphosphonium / tetraphenylborate and the like.
One of these curing accelerators may be used alone, or two or more thereof may be used in combination.
 硬化促進剤の2種以上を組み合わせて用いる場合、混合割合は半硬化エポキシ樹脂組成物に求める特性(例えば、どの程度の柔軟性を必要とするか)に応じて特に制限されることなく決めることができる。 When using two or more types of curing accelerators in combination, the mixing ratio should be determined without any particular restrictions depending on the characteristics (for example, how much flexibility is required) required for the semi-cured epoxy resin composition. Can do.
 エポキシ樹脂組成物が硬化促進剤を含む場合、エポキシ樹脂組成物中の硬化促進剤の含有率は特に制限されない。成形性の観点からは、硬化促進剤の含有率は、エポキシ化合物と硬化剤の合計質量の0.5質量%~1.5質量%であることが好ましく、0.5質量%~1質量%であることがより好ましく、0.6質量%~1質量%であることが更に好ましい。 When the epoxy resin composition contains a curing accelerator, the content of the curing accelerator in the epoxy resin composition is not particularly limited. From the viewpoint of moldability, the content of the curing accelerator is preferably 0.5% by mass to 1.5% by mass of the total mass of the epoxy compound and the curing agent, and 0.5% by mass to 1% by mass. More preferably, the content is 0.6% by mass to 1% by mass.
(無機充填材)
 エポキシ樹脂組成物は無機充填材の少なくとも1種を含む。無機充填材を含むことにより、エポキシ樹脂組成物は、高い熱伝導率を達成することができる。
 無機充填材は非導電性であっても、導電性であってもよい。非導電性の無機充填材を使用することによって絶縁性を低下するリスクが低下する傾向にある。また導電性の無機充填材を使用することによって熱伝導性がより向上する傾向にある。
(Inorganic filler)
The epoxy resin composition contains at least one inorganic filler. By including the inorganic filler, the epoxy resin composition can achieve high thermal conductivity.
The inorganic filler may be non-conductive or conductive. By using a non-conductive inorganic filler, the risk of lowering the insulation tends to be reduced. Moreover, it exists in the tendency for thermal conductivity to improve more by using a conductive inorganic filler.
 非導電性の無機充填材として具体的には、酸化アルミニウム(アルミナ)、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、シリカ(酸化ケイ素)、水酸化アルミニウム、硫酸バリウム等が挙げられる。また導電性の無機充填材としては、金、銀、ニッケル、銅等が挙げられる。中でも熱伝導率の観点から、無機充填材としては、酸化アルミニウム(アルミナ)、窒化ホウ素、酸化マグネシウム、窒化アルミニウム及びシリカ(酸化ケイ素)からなる群より選択される少なくとも1種であることが好ましく、窒化ホウ素及び酸化アルミニウム(アルミナ)からなる群より選択される少なくとも1種であることがより好ましい。
 これら無機充填材は、1種を単独で用いてもよく、2種以上を組み合わせて用いることができる。
Specific examples of the non-conductive inorganic filler include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silica (silicon oxide), aluminum hydroxide, and barium sulfate. Examples of the conductive inorganic filler include gold, silver, nickel, and copper. Among these, from the viewpoint of thermal conductivity, the inorganic filler is preferably at least one selected from the group consisting of aluminum oxide (alumina), boron nitride, magnesium oxide, aluminum nitride, and silica (silicon oxide). More preferably, it is at least one selected from the group consisting of boron nitride and aluminum oxide (alumina).
These inorganic fillers may be used alone or in combination of two or more.
 無機充填材は、2種以上の互いに体積平均粒子径の異なるものを混合して用いることが好ましい。これにより大粒子径の無機充填材の空隙に小粒子径の無機充填材がパッキングされることによって、単一粒子径の無機充填材のみを使用するよりも無機充填剤が密に充填されるため、より高熱伝導率を発揮することが可能となる。
 具体的には、無機充填材として酸化アルミニウムを使用する場合、無機充填材中に、体積平均粒子径16μm~20μmの酸化アルミニウムを60体積%~75体積%、体積平均粒子径2μm~4μmの酸化アルミニウムを10体積%~20体積%及び体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを10体積%~20体積%の範囲の割合で混合することによって、より最密充填化が可能となる。
 更に、無機充填材として窒化ホウ素及び酸化アルミニウムを併用する場合、無機充填材中に、体積平均粒子径20μm~100μmの窒化ホウ素を60体積%~90体積%、体積平均粒子径2μm~4μmの酸化アルミニウムを5体積%~20体積%及び体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを5体積%~20体積%の範囲の割合で混合することによって、より高熱伝導化が可能となる。無機充填材の体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて通常の条件で測定される。
It is preferable to use a mixture of two or more inorganic fillers having different volume average particle diameters. As a result, the inorganic filler having a small particle diameter is packed in the voids of the inorganic filler having a large particle diameter, thereby filling the inorganic filler more densely than using only the inorganic filler having a single particle diameter. It becomes possible to exhibit higher thermal conductivity.
Specifically, when aluminum oxide is used as the inorganic filler, aluminum oxide having a volume average particle diameter of 16 μm to 20 μm is oxidized in the inorganic filler by 60 volume% to 75 volume% and volume average particle diameter of 2 μm to 4 μm. By mixing aluminum oxide having a volume average particle size of 0.3 μm to 0.5 μm in a ratio of 10 vol% to 20 vol%, it is possible to achieve closer packing. Become.
Further, when boron nitride and aluminum oxide are used in combination as the inorganic filler, boron nitride having a volume average particle diameter of 20 μm to 100 μm in the inorganic filler is oxidized by 60 volume% to 90 volume% and volume average particle diameter of 2 μm to 4 μm. Higher thermal conductivity can be achieved by mixing aluminum oxide having a volume average particle size of 0.3 μm to 0.5 μm in a range of 5% by volume to 20% by volume with 5% to 20% by volume of aluminum. . The volume average particle diameter of the inorganic filler is measured under normal conditions using a laser diffraction particle size distribution measuring apparatus.
 無機充填材の体積平均粒子径(D50)は、レーザー回折法を用いて測定することができる。例えば、エポキシ樹脂組成物中の無機充填剤を抽出し、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、商品名:LS230)を用いて測定する。具体的には、有機溶剤、硝酸、王水等を用い、エポキシ樹脂組成物中から無機充填剤成分を抽出し、超音波分散機等で十分に分散し、この分散液の重量累積粒度分布曲線を測定する。
 体積平均粒子径(D50)は、上記測定より得られた体積累積分布曲線において、小径側から累積が50%となる粒子径をいう。
The volume average particle diameter (D50) of the inorganic filler can be measured using a laser diffraction method. For example, the inorganic filler in the epoxy resin composition is extracted and measured using a laser diffraction / scattering particle size distribution analyzer (for example, trade name: LS230, manufactured by Beckman Coulter, Inc.). Specifically, using an organic solvent, nitric acid, aqua regia, etc., the inorganic filler component is extracted from the epoxy resin composition and sufficiently dispersed with an ultrasonic disperser, etc., and the weight cumulative particle size distribution curve of this dispersion liquid Measure.
The volume average particle diameter (D50) refers to the particle diameter at which accumulation is 50% from the small diameter side in the volume cumulative distribution curve obtained from the above measurement.
 エポキシ樹脂組成物中の無機充填材の含有率は特に制限されない。中でも熱伝導性の観点から、無機充填材の含有率は、エポキシ樹脂組成物の全固形分の全体積100体積%に対して、50体積%を超えることが好ましく、70体積%を超え、90体積%以下であることがより好ましい。
 無機充填剤の含有率が50体積%を超えるであると、より高い熱伝導率を達成することが可能となる。一方、無機充填剤の含有率が90体積%以下であると、エポキシ樹脂組成物の柔軟性の低下、及び絶縁性の低下を抑制する傾向にある。
The content of the inorganic filler in the epoxy resin composition is not particularly limited. Among them, from the viewpoint of thermal conductivity, the content of the inorganic filler is preferably more than 50% by volume, more than 70% by volume, more than 70% by volume, with respect to 100% by volume of the total solid content of the epoxy resin composition. More preferably, it is not more than volume%.
When the content of the inorganic filler exceeds 50% by volume, higher thermal conductivity can be achieved. On the other hand, when the content of the inorganic filler is 90% by volume or less, the flexibility of the epoxy resin composition and the insulating property tend to be suppressed.
(シランカップリング剤)
 エポキシ樹脂組成物は、シランカップリング剤の少なくとも1種を含んでいてもよい。シランカップリング剤は、無機充填材の表面とその周りを取り囲む樹脂との間で共有結合を形成する役割(バインダ剤に相当)、熱伝導率の向上、及び水分の侵入を妨げることによって絶縁信頼性を向上させる働きを果たすことが可能と考えられる。
(Silane coupling agent)
The epoxy resin composition may contain at least one silane coupling agent. The silane coupling agent has a role of forming a covalent bond between the surface of the inorganic filler and the surrounding resin (equivalent to a binder agent), an improvement in thermal conductivity, and prevents moisture penetration. It is considered possible to improve the performance.
 シランカップリング剤の種類としては特に限定されず、市販されているものを用いてもよい。メソゲン骨格を有するエポキシ化合物と硬化剤との相溶性、及び樹脂層と無機充填材との界面での熱伝導欠損を低減することを考慮すると、本実施形態においては、末端にエポキシ基、アミノ基、メルカプト基、ウレイド基及び水酸基を有するシランカップリング剤を用いることが好適である。 The type of silane coupling agent is not particularly limited, and a commercially available product may be used. In consideration of reducing the compatibility between the epoxy compound having a mesogenic skeleton and the curing agent, and reducing heat conduction defects at the interface between the resin layer and the inorganic filler, in this embodiment, the terminal is an epoxy group, an amino group. It is preferable to use a silane coupling agent having a mercapto group, a ureido group and a hydroxyl group.
 シランカップリング剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシランなどを挙げられる。また、商品名:SC-6000KS2に代表されるシランカップリング剤オリゴマ(日立化成テクノサービス株式会社製)等も挙げられる。これらシランカップリング剤は1種単独で用いても、2種以上を組み合わせてもよい。 Specific examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxy Examples thereof include silane, 3-aminopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-ureidopropyltriethoxysilane. Also included are silane coupling agent oligomers (manufactured by Hitachi Chemical Techno Service Co., Ltd.) represented by trade name: SC-6000KS2. These silane coupling agents may be used alone or in combination of two or more.
(その他の成分)
 エポキシ樹脂組成物は、必要に応じて、上記成分に加えてその他の成分を含んでいてもよい。その他の成分としては、例えば、溶剤、エラストマ、分散剤、及び沈降防止剤を挙げることができる。
 溶剤としては、エポキシ樹脂組成物の硬化反応を阻害しないものであれば特に制限はなく、通常用いられる有機溶剤を適宜選択して用いることができる。
(Other ingredients)
The epoxy resin composition may contain other components in addition to the above components, if necessary. Examples of other components include a solvent, an elastomer, a dispersant, and an anti-settling agent.
The solvent is not particularly limited as long as it does not inhibit the curing reaction of the epoxy resin composition, and a commonly used organic solvent can be appropriately selected and used.
[樹脂シート]
 本実施形態の樹脂シートは、エポキシ樹脂組成物のシート状形成体である。樹脂シートは、支持体上に、エポキシ樹脂組成物にメチルエチルケトン、シクロヘキサノン等の有機溶剤を添加して調製したワニス状のエポキシ樹脂組成物(以下、「樹脂ワニス」ともいう。)を、付与して樹脂層(エポキシ樹脂組成物層)を形成した後、樹脂層から有機溶剤の少なくとも一部を乾燥により除去することで製造できる。支持体としては、例えば、PET(ポリエチレンテレフタレート)フィルム等の離型フィルムが挙げられる。
[Resin sheet]
The resin sheet of this embodiment is a sheet-like formed body of an epoxy resin composition. The resin sheet is provided on a support with a varnish-like epoxy resin composition (hereinafter also referred to as “resin varnish”) prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone to the epoxy resin composition. After the resin layer (epoxy resin composition layer) is formed, it can be produced by removing at least part of the organic solvent from the resin layer by drying. Examples of the support include a release film such as a PET (polyethylene terephthalate) film.
 樹脂ワニスの付与は、公知の方法により実施することができる。具体的には、コンマコート、ダイコート、リップコート、グラビアコート等の方法により行うことができる。所定の厚さのエポキシ樹脂組成物層を形成する方法としては、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調節した樹脂ワニスを塗布するダイコート法等が挙げられる。例えば、乾燥前の樹脂層(エポキシ樹脂組成物層)の厚さが50μm~500μmである場合は、コンマコート法を用いることが好ましい。 The application of the resin varnish can be performed by a known method. Specifically, it can be performed by a method such as comma coating, die coating, lip coating, or gravure coating. Examples of a method for forming an epoxy resin composition layer having a predetermined thickness include a comma coating method in which an object to be coated is passed between gaps, and a die coating method in which a resin varnish whose flow rate is adjusted from a nozzle is applied. For example, when the thickness of the resin layer (epoxy resin composition layer) before drying is 50 μm to 500 μm, it is preferable to use a comma coating method.
 乾燥方法は、樹脂ワニスに含まれる有機溶剤の少なくとも一部を除去できれば特に制限されず、通常用いられる乾燥方法から、樹脂ワニスに含まれる有機溶剤に応じて適宜選択することができる。一般には、80℃~150℃程度で熱処理する方法が挙げられる。 The drying method is not particularly limited as long as at least a part of the organic solvent contained in the resin varnish can be removed, and can be appropriately selected from commonly used drying methods according to the organic solvent contained in the resin varnish. In general, a heat treatment method at about 80 ° C. to 150 ° C. can be mentioned.
 樹脂シートの密度は特に制限されず、例えば、3g/cm~3.4g/cmとすることができる。樹脂シートの柔軟性と熱伝導率との両立を考慮すると、3g/cm~3.3g/cmが好ましく、3.1g/cm~3.3g/cmがより好ましい。
 樹脂シートの密度は、例えば、無機充填材配合量で調整することができる。
The density of the resin sheet is not particularly limited, for example, be a 3g / cm 2 ~ 3.4g / cm 2. In consideration of the compatibility between the flexibility and the thermal conductivity of the resin sheet, 3 g / cm 2 to 3.3 g / cm 2 is preferable, and 3.1 g / cm 2 to 3.3 g / cm 2 is more preferable.
The density of the resin sheet can be adjusted by, for example, the inorganic filler content.
 樹脂シートの厚さは特に制限されず、目的に応じて適宜選択することができる。例えば、樹脂シートの厚さは、50μm~350μmとすることができ、熱伝導率、電気絶縁性及びシート可とう性の観点から、60μm~300μmであることが好ましい。 The thickness of the resin sheet is not particularly limited and can be appropriately selected according to the purpose. For example, the thickness of the resin sheet can be 50 μm to 350 μm, and is preferably 60 μm to 300 μm from the viewpoints of thermal conductivity, electrical insulation, and sheet flexibility.
 樹脂シート(エポキシ樹脂組成物層)は、硬化反応がほとんど進行していない。このため、可とう性を有するものの、シートとしての柔軟性に乏しい。したがって、PETフィルム等の支持体を除去した状態ではシート自立性に乏しく、取り扱いが困難な場合がある。そこで、樹脂シートは、これを構成するエポキシ樹脂組成物を半硬化処理したものであることが好ましい。樹脂シートはエポキシ樹脂組成物層が半硬化状態(Bステージ状態)になるまで、更に熱処理されてなるBステージシートであることが好ましい。 Resin sheet (epoxy resin composition layer) hardly undergoes curing reaction. For this reason, although it has flexibility, its flexibility as a sheet is poor. Therefore, in a state where a support such as a PET film is removed, the sheet self-supporting property is poor and handling may be difficult. Therefore, the resin sheet is preferably one obtained by semi-curing an epoxy resin composition constituting the resin sheet. The resin sheet is preferably a B stage sheet that is further heat-treated until the epoxy resin composition layer is in a semi-cured state (B stage state).
[Bステージシート]
 本実施形態のBステージシートは、エポキシ樹脂組成物のシート状の半硬化物である。
 Bステージシートは、例えば、樹脂シートをBステージ状態まで熱処理する工程を含む製造方法で製造できる。樹脂シートを熱処理して形成することで、熱伝導率及び電気絶縁性に優れ、Bステージシートとしての可とう性及び可使時間に優れる。
 本実施形態のBステージシートとは、粘度が常温(25℃)においては10Pa・s~10Pa・sであり、100℃で10Pa・s~10Pa・sであるエポキシ樹脂組成物から形成される樹脂シートを意味する。また、硬化後のエポキシ樹脂組成物層は加温によっても溶融することはない。なお、上記粘度は、動的粘弾性測定(周波数1Hz、荷重40g、昇温速度3℃/分)によって測定される。
[B stage sheet]
The B stage sheet of this embodiment is a sheet-like semi-cured product of an epoxy resin composition.
The B stage sheet can be manufactured, for example, by a manufacturing method including a step of heat-treating the resin sheet to the B stage state. By forming the resin sheet by heat treatment, it is excellent in thermal conductivity and electrical insulation, and excellent in flexibility and pot life as a B stage sheet.
The B stage sheet of this embodiment is an epoxy having a viscosity of 10 4 Pa · s to 10 5 Pa · s at room temperature (25 ° C.) and 10 2 Pa · s to 10 3 Pa · s at 100 ° C. It means a resin sheet formed from a resin composition. Further, the cured epoxy resin composition layer is not melted by heating. The viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
 樹脂シートを熱処理する条件は、エポキシ樹脂組成物層をBステージ状態にまで半硬化することができれば特に制限されず、エポキシ樹脂組成物の構成に応じて適宜選択することができる。熱処理は、樹脂ワニスを塗工する際に生じた樹脂層中の空隙(ボイド)を減らす目的から、熱真空プレス、熱ロールラミネート等から選択される方法により行うことが好ましい。これにより、表面が平坦なBステージシートを効率よく製造することができる。
 具体的には、例えば、減圧下(例えば、1kPa)、温度80℃~130℃で、1秒間~30秒間、1MPa~30MPaのプレス圧力で加熱及び加圧処理することで、エポキシ樹脂組成物をBステージ状態に半硬化させることができる。
The conditions for heat-treating the resin sheet are not particularly limited as long as the epoxy resin composition layer can be semi-cured to the B stage state, and can be appropriately selected according to the configuration of the epoxy resin composition. The heat treatment is preferably performed by a method selected from hot vacuum press, hot roll laminating and the like for the purpose of reducing voids in the resin layer generated when the resin varnish is applied. Thereby, the B stage sheet | seat with a flat surface can be manufactured efficiently.
Specifically, for example, the epoxy resin composition is heated and pressurized under reduced pressure (for example, 1 kPa) at a temperature of 80 ° C. to 130 ° C. for 1 second to 30 seconds and a press pressure of 1 MPa to 30 MPa. It can be semi-cured to the B stage state.
 Bステージシートの厚さは、目的に応じて適宜選択することができる。例えば、50μm~350μmとすることができ、熱伝導率、電気絶縁性及び可とう性の観点から、60μm~300μmであることが好ましい。また、2層以上の樹脂シートを積層しながら熱プレスすることによりエポキシ樹脂組成物層を有する樹脂シート作製することもできる。 The thickness of the B stage sheet can be appropriately selected according to the purpose. For example, the thickness may be 50 μm to 350 μm, and is preferably 60 μm to 300 μm from the viewpoints of thermal conductivity, electrical insulation, and flexibility. Moreover, the resin sheet which has an epoxy resin composition layer can also be produced by heat-pressing, laminating | stacking two or more resin sheets.
<半硬化エポキシ樹脂組成物>
 本実施形態の半硬化エポキシ樹脂組成物は、エポキシ樹脂組成物の半硬化物である。半硬化エポキシ樹脂組成物は、エポキシ樹脂組成物に由来するものであり、エポキシ樹脂組成物を半硬化処理して得られる。
<Semi-cured epoxy resin composition>
The semi-cured epoxy resin composition of the present embodiment is a semi-cured product of the epoxy resin composition. The semi-cured epoxy resin composition is derived from the epoxy resin composition, and is obtained by semi-curing the epoxy resin composition.
 本実施形態の半硬化エポキシ樹脂組成物とは、80℃~120℃に加熱すると樹脂成分が溶融し、粘度が10Pa・s~10Pa・sまで低下するエポキシ樹脂組成物の半硬化物を意味する。また、後述の硬化エポキシ樹脂組成物は加温によって樹脂成分が溶融することはない。なお、上記粘度は、動的粘弾性測定(周波数1Hz、荷重40g、昇温速度3℃/分)によって測定される。
 半硬化処理は、例えば、エポキシ樹脂組成物を温度50℃~180℃で1分~30分間加熱する方法により行うことができる。
The semi-cured epoxy resin composition of the present embodiment is a semi-cured product of an epoxy resin composition in which the resin component melts when heated to 80 ° C. to 120 ° C. and the viscosity decreases to 10 Pa · s to 10 4 Pa · s. means. Further, in the cured epoxy resin composition described later, the resin component does not melt by heating. The viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
The semi-curing treatment can be performed, for example, by a method of heating the epoxy resin composition at a temperature of 50 ° C. to 180 ° C. for 1 minute to 30 minutes.
[硬化エポキシ樹脂組成物]
 本実施形態の硬化エポキシ樹脂組成物は、エポキシ樹脂組成物の硬化物である。本実施形態の硬化エポキシ樹脂組成物は、エポキシ樹脂組成物に由来するものであり、エポキシ樹脂組成物を硬化処理して得られる。本実施形態の硬化エポキシ樹脂組成物は熱伝導性に優れ、これは例えば、エポキシ樹脂組成物に含まれる分子内にメソゲン基を有するエポキシ化合物がスメクチック構造を形成しているためと考えることができる。
[Curing epoxy resin composition]
The cured epoxy resin composition of the present embodiment is a cured product of the epoxy resin composition. The cured epoxy resin composition of the present embodiment is derived from the epoxy resin composition, and is obtained by curing the epoxy resin composition. The cured epoxy resin composition of this embodiment is excellent in thermal conductivity, which can be considered, for example, because an epoxy compound having a mesogenic group in the molecule contained in the epoxy resin composition forms a smectic structure. .
 硬化エポキシ樹脂組成物は、未硬化状態のエポキシ樹脂組成物又は半硬化エポキシ樹脂組成物を硬化処理して得ることができる。硬化処理の方法は、エポキシ樹脂組成物の構成及び硬化エポキシ樹脂組成物の目的等に応じて適宜選択することができ、加熱及び加圧処理であることが好ましい。
 例えば、未硬化状態又は半硬化状態のエポキシ樹脂組成物を100℃~250℃で1時間~10時間、好ましくは130℃~230℃で1時間~8時間加熱することで硬化エポキシ樹脂組成物が得られる。
The cured epoxy resin composition can be obtained by curing an uncured epoxy resin composition or a semi-cured epoxy resin composition. The method of the curing treatment can be appropriately selected according to the configuration of the epoxy resin composition, the purpose of the cured epoxy resin composition, and the like, and is preferably a heating and pressure treatment.
For example, a cured epoxy resin composition can be obtained by heating an uncured or semi-cured epoxy resin composition at 100 ° C. to 250 ° C. for 1 hour to 10 hours, preferably 130 ° C. to 230 ° C. for 1 hour to 8 hours. can get.
[樹脂付金属箔]
 本実施形態の樹脂付金属箔は、金属箔と、金属箔上に配置されたエポキシ樹脂組成物に由来する半硬化樹脂組成物層とを備える。エポキシ樹脂組成物に由来する半硬化樹脂組成物層を有することで、熱伝導率、電気絶縁性に優れる。半硬化樹脂組成物層は、エポキシ樹脂組成物をBステージ状態になるまで熱処理して得ることができる。
[Metal foil with resin]
The metal foil with resin of this embodiment includes a metal foil and a semi-cured resin composition layer derived from an epoxy resin composition disposed on the metal foil. By having the semi-cured resin composition layer derived from the epoxy resin composition, it is excellent in thermal conductivity and electrical insulation. The semi-cured resin composition layer can be obtained by heat-treating the epoxy resin composition until it reaches a B stage state.
 金属箔としては、特に制限されず、金箔、銅箔、アルミニウム箔等が挙げられ、一般的には銅箔が用いられる。
 金属箔の厚さとしては、例えば、1μm~35μmが挙げられ、可とう性の観点から、20μm以下であることが好ましい。
 また、金属箔としては、ニッケル、ニッケル-リン、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等を中間層とし、この両面に銅層を設けた3層構造の複合箔の両面に金属層を設けた3層構造の複合箔又はアルミニウムと銅箔とを複合した2層構造の複合箔を用いることができる。上記中間層の両面に銅層を設けた3層構造の複合箔では、一方の銅層の厚さを0.5μm~15μmとし、他方の銅層の厚さを10μm~300μmとすることが好ましい。
It does not restrict | limit especially as metal foil, Gold foil, copper foil, aluminum foil etc. are mentioned, Generally copper foil is used.
The thickness of the metal foil is, for example, 1 μm to 35 μm, and is preferably 20 μm or less from the viewpoint of flexibility.
The metal foil is a three-layer composite foil in which nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers and copper layers are provided on both sides. A composite foil having a three-layer structure in which metal layers are provided on both surfaces or a composite foil having a two-layer structure in which aluminum and copper foil are combined can be used. In the composite foil having a three-layer structure in which the copper layer is provided on both surfaces of the intermediate layer, it is preferable that the thickness of one copper layer is 0.5 μm to 15 μm and the thickness of the other copper layer is 10 μm to 300 μm. .
 樹脂付金属箔は、例えば、エポキシ樹脂組成物(好ましくは、樹脂ワニス)を金属箔上に付与及び乾燥することにより樹脂層(樹脂シート)を形成し、これを熱処理してBステージ状態とすることで製造することができる。樹脂層の形成方法は既述の通りである。 The resin-attached metal foil forms, for example, a resin layer (resin sheet) by applying and drying an epoxy resin composition (preferably a resin varnish) on the metal foil, and heat-treating this to a B-stage state. Can be manufactured. The method for forming the resin layer is as described above.
 樹脂付金属箔の製造条件は特に制限はなく、乾燥後の樹脂シートにおいて、樹脂ワニスに使用した有機溶剤が80質量%以上揮発していることが好ましい。乾燥温度としては、特に制限はなく、80℃~180℃程度が好ましい。乾燥時間としては、樹脂ワニスのゲル化時間との兼ね合いで適宜選択することができる。樹脂ワニスの付与量は、乾燥後の樹脂層の厚さが50μm~350μmとなるように付与することが好ましく、60μm~300μmとなることがより好ましい。
 乾燥後の樹脂シートは、更に熱処理されることでBステージ状態になる。樹脂組成物を熱処理する条件はBステージシートにおける熱処理条件と同様である。
The production conditions of the metal foil with resin are not particularly limited, and it is preferable that 80% by mass or more of the organic solvent used in the resin varnish is volatilized in the resin sheet after drying. The drying temperature is not particularly limited and is preferably about 80 to 180 ° C. The drying time can be appropriately selected in consideration of the gelation time of the resin varnish. The application amount of the resin varnish is preferably applied so that the thickness of the resin layer after drying is 50 μm to 350 μm, and more preferably 60 μm to 300 μm.
The dried resin sheet is further heat-treated to be in a B stage state. The conditions for heat-treating the resin composition are the same as those for the B-stage sheet.
[金属基板]
 本実施形態の金属基板は、金属支持体と、金属支持体上に配置されたエポキシ樹脂組成物に由来する硬化エポキシ樹脂組成物層と、硬化エポキシ樹脂組成物層上に配置された金属箔と、をこの順に備える。金属支持体と金属箔との間に配置されたエポキシ樹脂組成物を含むエポキシ樹脂組成物層が、硬化状態になるように熱処理して形成されたものであると、接着性、熱伝導率及び電気絶縁性に優れる。
[Metal substrate]
The metal substrate of the present embodiment includes a metal support, a cured epoxy resin composition layer derived from the epoxy resin composition disposed on the metal support, and a metal foil disposed on the cured epoxy resin composition layer. Are provided in this order. When the epoxy resin composition layer including the epoxy resin composition disposed between the metal support and the metal foil is formed by heat treatment so as to be in a cured state, adhesiveness, thermal conductivity, and Excellent electrical insulation.
 金属支持体は目的に応じて、その素材及び厚さ等は適宜選択することができる。具体的には、アルミニウム、鉄等の金属を用い、厚さを0.5mm~5mmとすることができる。 The material and thickness of the metal support can be appropriately selected according to the purpose. Specifically, a metal such as aluminum or iron can be used and the thickness can be set to 0.5 mm to 5 mm.
 硬化樹脂組成物層上に配置される金属箔は、樹脂付金属箔における金属箔と同義であり、好ましい態様も同様である。 The metal foil disposed on the cured resin composition layer is synonymous with the metal foil in the resin-attached metal foil, and the preferred embodiment is also the same.
 本実施形態の金属基板は、例えば、以下のようにして製造することができる。アルミニウム等の金属支持体上に、エポキシ樹脂組成物を上記と同様にして付与及び乾燥することで樹脂層を形成し、更に樹脂層上に金属箔を配置して、これを加熱及び加圧処理して、樹脂層を硬化することで製造することができる。また、金属支持体上に、樹脂付金属箔を樹脂層が金属支持体に対向するように張り合わせた後、これを加熱及び加圧処理して、樹脂層を硬化することで製造することもできる。 The metal substrate of the present embodiment can be manufactured as follows, for example. On a metal support such as aluminum, an epoxy resin composition is applied and dried in the same manner as described above to form a resin layer. Further, a metal foil is disposed on the resin layer, and this is heated and pressurized. And it can manufacture by hardening | curing a resin layer. In addition, after the resin-coated metal foil is laminated on the metal support so that the resin layer faces the metal support, the resin layer can be heated and pressurized to cure the resin layer. .
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 以下にエポキシ樹脂組成物の作製に用いた材料とその略号を示す。
(メソゲン骨格を有するエポキシ化合物A(樹脂A))
 ・[4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、エポキシ当量:212g/eq、特開2011-74366号公報に記載の方法により製造]
The material used for preparation of an epoxy resin composition and its abbreviation are shown below.
(Epoxy compound A (resin A) having a mesogenic skeleton)
[4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) benzoate, epoxy equivalent: 212 g / eq, by the method described in JP 2011-74366 A Manufacturing]
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(メソゲン骨格を有するエポキシ化合物B(樹脂B))
 ・[4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)-3-メチルベンゾエート、エポキシ当量:219g/eq、特開2011-74366号公報に記載の方法により製造]
(Epoxy compound B having mesogenic skeleton (resin B))
[4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) -3-methylbenzoate, epoxy equivalent: 219 g / eq, disclosed in JP 2011-74366 A Manufactured by the described method]
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(メソゲン骨格を有する他のエポキシ化合物)
 ・YL6121H[ビフェニル型エポキシ化合物、三菱化学株式会社製、エポキシ当量:172g/eq]
(Other epoxy compounds having a mesogenic skeleton)
YL6121H [Biphenyl type epoxy compound, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 172 g / eq]
(メソゲン骨格を有さないエポキシ化合物)
 ・828EL[液状ビスフェノールA型エポキシ化合物、三菱化学株式会社製、エポキシ当量:186g/eq]
(Epoxy compound without mesogenic skeleton)
828EL [liquid bisphenol A type epoxy compound, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / eq]
(無機充填材)
 ・AA-3[アルミナ粒子、住友化学株式会社製、D50:3μm]
 ・AA-04[アルミナ粒子、住友化学株式会社製、D50:0.40μm]
 ・HP-40[窒化ホウ素粒子、水島合金鉄株式会社製、D50:40μm]
(Inorganic filler)
AA-3 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 3 μm]
AA-04 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 0.40 μm]
HP-40 [boron nitride particles, manufactured by Mizushima Alloy Iron Co., Ltd., D50: 40 μm]
(硬化剤)
 ・CRN[カテコールレゾルシノールノボラック(質量基準の仕込み比:カテコール/レゾルシノール=5/95)樹脂、シクロヘキサノン50質量%含有]
(Curing agent)
CRN [catechol resorcinol novolak (mass-based charge ratio: catechol / resorcinol = 5/95) resin, containing 50% by mass of cyclohexanone]
<CRNの合成方法>
 撹拌機、冷却器及び温度計を備えた3Lのセパラブルフラスコに、レゾルシノール627g、カテコール33g、37質量%ホルムアルデヒド水溶液316.2g、シュウ酸15g、水300gを入れ、オイルバスで加温しながら100℃に昇温した。104℃前後で還流し、還流温度で4時間反応を続けた。その後、水を留去しながらフラスコ内の温度を170℃に昇温した。170℃を保持しながら8時間反応を続けた。反応後、減圧下20分間濃縮を行い、系内の水等を除去し、目的であるフェノールノボラック樹脂CRNを得た。
 また、得られたCRNについて、FD-MS(電界脱離イオン化質量分析法)により構造を確認したところ、一般式(III-1)~一般式(III-4)で表される部分構造すべての存在が確認できた。
<Synthesis method of CRN>
A 3 L separable flask equipped with a stirrer, a cooler and a thermometer was charged with 627 g of resorcinol, 33 g of catechol, 316.2 g of a 37 mass% formaldehyde aqueous solution, 15 g of oxalic acid, and 300 g of water, and heated while heating in an oil bath. The temperature was raised to ° C. The mixture was refluxed at around 104 ° C., and the reaction was continued at the reflux temperature for 4 hours. Thereafter, the temperature in the flask was raised to 170 ° C. while distilling off water. The reaction was continued for 8 hours while maintaining 170 ° C. After the reaction, concentration was performed under reduced pressure for 20 minutes to remove water and the like in the system to obtain the target phenol novolac resin CRN.
Further, when the structure of the obtained CRN was confirmed by FD-MS (field desorption ionization mass spectrometry), all the partial structures represented by the general formulas (III-1) to (III-4) were confirmed. Existence was confirmed.
 なお、上記反応条件では、一般式(III-1)で表される部分構造を有する化合物が最初に生成し、これが更に脱水反応することで一般式(III-2)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有する化合物が生成すると考えられる。 Note that, under the above reaction conditions, a compound having a partial structure represented by the general formula (III-1) is formed first, and this is further subjected to a dehydration reaction, whereby the general formulas (III-2) to (III-4) It is considered that a compound having a partial structure represented by at least one of
 得られたCRNについて、Mn(数平均分子量)及びMw(重量平均分子量)の測定を次のようにして行った。
 Mn及びMwの測定は、高速液体クロマトグラフィ(株式会社日立製作所製、商品名:L6000)及びデータ解析装置(株式会社島津製作所製、商品名:C-R4A)を用いて行った。分析用GPCカラムは東ソー株式会社製のG2000HXL及びG3000HXL(以上、商品名)を使用した。試料濃度は0.2質量%、移動相にはテトラヒドロフランを用い、流速1.0mL/minで測定を行った。ポリスチレン標準サンプルを用いて検量線を作成し、それを用いてポリスチレン換算値でMn及びMwを計算した。
About the obtained CRN, Mn (number average molecular weight) and Mw (weight average molecular weight) were measured as follows.
Mn and Mw were measured using a high performance liquid chromatography (manufactured by Hitachi, Ltd., trade name: L6000) and a data analyzer (manufactured by Shimadzu Corporation, trade name: C-R4A). As analytical GPC columns, G2000HXL and G3000HXL (trade names) manufactured by Tosoh Corporation were used. The sample concentration was 0.2% by mass, tetrahydrofuran was used as the mobile phase, and the measurement was performed at a flow rate of 1.0 mL / min. A calibration curve was prepared using a polystyrene standard sample, and Mn and Mw were calculated using polystyrene conversion values.
 得られたCRNについて、水酸基当量の測定を次のようにして行った。
 水酸基当量は、塩化アセチル-水酸化カリウム滴定法により測定した。なお、滴定終点の判断は溶液の色が暗色のため、指示薬による呈色法ではなく、電位差滴定によって行った。具体的には、測定樹脂の水酸基をピリジン溶液中塩化アセチル化した後に、過剰の試薬を水で分解し、生成した酢酸を水酸化カリウム/メタノール溶液で滴定したものである。
With respect to the obtained CRN, the hydroxyl equivalent was measured as follows.
The hydroxyl equivalent was measured by acetyl chloride-potassium hydroxide titration method. The determination of the titration end point was performed by potentiometric titration instead of the coloring method using an indicator because the solution color was dark. Specifically, the hydroxyl group of the measurement resin is acetylated in a pyridine solution, the excess reagent is decomposed with water, and the resulting acetic acid is titrated with a potassium hydroxide / methanol solution.
 得られたCRNは、一般式(III-1)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有する化合物の混合物であり、Arが、一般式(III-a)においてR31が水酸基であり、R32及びR33が水素原子である1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基であり、低分子希釈剤として単量体成分(レゾルシノール)を35質量%含む硬化剤(水酸基当量62g/eq、数平均分子量422、重量平均分子量564)を含むノボラック樹脂であった。 The obtained CRN is a mixture of compounds having a partial structure represented by at least one of the general formulas (III-1) to (III-4), and Ar is represented by the general formula (III-a ) In which R 31 is a hydroxyl group, and R 32 and R 33 are hydrogen atoms, a group derived from 1,2-dihydroxybenzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol), It was a novolak resin containing a curing agent (hydroxyl equivalent 62 g / eq, number average molecular weight 422, weight average molecular weight 564) containing 35% by mass of a monomer component (resorcinol) as a molecular diluent.
(硬化促進剤)
 ・TPP:トリフェニルホスフィン[和光純薬工業株式会社製、商品名]
(Curing accelerator)
・ TPP: Triphenylphosphine [Wako Pure Chemical Industries, Ltd., trade name]
(添加剤)
 ・KBM-573:3-フェニルアミノプロピルトリメトキシシラン[シランカップリング剤、信越化学工業株式会社製、商品名]
(Additive)
KBM-573: 3-phenylaminopropyltrimethoxysilane [silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd., trade name]
(溶剤)
 ・CHN:シクロヘキサノン
(solvent)
CHN: cyclohexanone
(支持体)
 ・PETフィルム[帝人デュポンフィルム株式会社製、商品名:A53、厚さ50μm]
 ・銅箔[古河電気工業式会社製、厚さ:105μm、GTSグレード]
(Support)
PET film [manufactured by Teijin DuPont Films, trade name: A53, thickness 50 μm]
Copper foil [Furukawa Electric Co., Ltd., thickness: 105 μm, GTS grade]
(実施例1)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として、樹脂AとYL6121Hとをエポキシ当量が9:1となるように混合してエポキシ混合物1を得た。後述の方法により相溶性を確認したところ、エポキシ混合物1は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
Example 1
<Preparation of epoxy resin composition>
As an epoxy compound having a mesogenic skeleton, resin A and YL6121H were mixed so that the epoxy equivalent was 9: 1, whereby an epoxy mixture 1 was obtained. When the compatibility was confirmed by the method described later, the epoxy mixture 1 was compatible at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物1を8.94質量%と、硬化剤としてCRNを5.13質量%と、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%と、AA-3を9.81質量%と、AA-04を9.81質量%と、添加剤としてKBM-573を0.06質量%と、溶剤としてCHNを22.76質量%と、を混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス1を得た。 8.94% by mass of epoxy mixture 1, 5.13% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, 9.81% by mass of AA-3, 9.81% by mass of AA-04, 0.06% by mass of KBM-573 as an additive, and 22.76% by mass of CHN as a solvent were mixed. An epoxy resin varnish 1 was obtained as an epoxy resin composition containing a solvent.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及びYL6121H)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and an epoxy compound (resins A and YL6121H) and a curing agent ( The density of the mixture with CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニス1を、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に付与した後、常温(20℃~30℃)で5分、更に130℃で5分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:15MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
<Preparation of B Stage Epoxy Resin Composition>
The epoxy resin varnish 1 is applied on a PET film using an applicator so that the thickness after drying is 200 μm, and then dried at room temperature (20 ° C. to 30 ° C.) for 5 minutes and further at 130 ° C. for 5 minutes. It was. Then, hot pressurization (press temperature: 150 ° C., degree of vacuum: 1 kPa, press pressure: 15 MPa, pressurization time: 1 minute) was performed by a vacuum press to obtain a B-stage epoxy resin composition.
<銅箔付硬化エポキシ樹脂組成物の作製>
 上記で得られたBステージのエポキシ樹脂組成物のPETフィルムを剥がした後、2枚の銅箔で、銅箔のマット面がそれぞれ半硬化エポキシ樹脂組成物に対向するようにして挟み、真空プレスにて真空熱圧着(プレス温度:180℃、真空度:1kPa、プレス圧:15MPa、加圧時間:6分)した。その後、大気圧条件下、150℃で2時間、210℃で4時間加熱し、銅箔付硬化エポキシ樹脂組成物1を得た。
<Preparation of cured epoxy resin composition with copper foil>
The PET film of the B-stage epoxy resin composition obtained above was peeled off, and then sandwiched between two copper foils so that the mat surface of the copper foil faces the semi-cured epoxy resin composition, respectively. And vacuum thermocompression bonding (press temperature: 180 ° C., degree of vacuum: 1 kPa, press pressure: 15 MPa, pressurization time: 6 minutes). Then, it heated at 150 degreeC for 2 hours and 210 degreeC for 4 hours under atmospheric pressure conditions, and the cured epoxy resin composition 1 with a copper foil was obtained.
<評価>
 上記で得られたエポキシ混合物1及び硬化エポキシ樹脂組成物1について、以下のような評価を行なった。評価結果を表1に示す。
<Evaluation>
The following evaluation was performed about the epoxy mixture 1 and the cured epoxy resin composition 1 obtained above. The evaluation results are shown in Table 1.
(熱伝導率の測定)
 上記で得られた銅箔付硬化エポキシ樹脂組成物1の銅箔をエッチングして取り除き、シート状の硬化エポキシ樹脂組成物(樹脂シート硬化物)を得た。得られた樹脂シート硬化物を縦10mm、横10mmに切って試料を得た。試料をグラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製の商品名:LFA447 nanoflash)にて熱拡散率を評価した。この値と、アルキメデス法で測定した密度と、DSC(示差走査熱量測定装置;Perkin Elmer社製の商品名:DSC Pyris1)にて測定した比熱との積から、樹脂シート硬化物の厚さ方向の熱伝導率を求めた。結果を表1に示した。
(Measurement of thermal conductivity)
The copper foil of the cured epoxy resin composition with copper foil 1 obtained above was removed by etching to obtain a sheet-like cured epoxy resin composition (cured resin sheet). The obtained resin sheet cured product was cut into 10 mm length and 10 mm width to obtain a sample. After the sample was blackened with graphite spray, the thermal diffusivity was evaluated by a xenon flash method (trade name: LFA447 nanoflash, manufactured by NETZSCH). From the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (Differential Scanning Calorimeter; product name: DSC Pyris 1 manufactured by Perkin Elmer), the thickness of the cured resin sheet is determined. The thermal conductivity was determined. The results are shown in Table 1.
(スメクチック構造形成の確認)
 上記で得られた銅箔付硬化エポキシ樹脂組成物1の銅箔をエッチングして取り除き、シート状の硬化エポキシ樹脂組成物(樹脂シート硬化物)を得た。得られた樹脂シート硬化物を縦10mm、横10mmに切って試料を得た。試料をCuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5~30°の範囲でX線回折測定(株式会社リガク製X線回折装置を使用)を行い、2θが1~10°の範囲での回折ピークの有無により、スメクチック構造形成を確認した。
(Confirmation of smectic structure formation)
The copper foil of the cured epoxy resin composition with copper foil 1 obtained above was removed by etching to obtain a sheet-like cured epoxy resin composition (cured resin sheet). The obtained resin sheet cured product was cut into 10 mm length and 10 mm width to obtain a sample. The sample was subjected to X-ray diffraction measurement (using an X-ray diffractometer manufactured by Rigaku Corporation) with a tube voltage of 40 kV, a tube current of 20 mA, and a range of 2θ of 0.5 to 30 ° using a CuK α1 wire. Smectic structure formation was confirmed by the presence or absence of a diffraction peak in the range of ˜10 °.
(液晶相の確認)
 上記で得られたエポキシ混合物1を加熱しながら、加熱中のエポキシ混合物1の状態変化を、偏光顕微鏡(オリンパス株式会社製、BS51)を用いてクロスニコル状態で観察(倍率:100倍)した。
 偏光解消による干渉縞を示したままで流動性を帯びた状態となる結晶相から液晶相への転移が、120℃で観察された。また、更に加熱を続けたところ、暗視野に変化する液晶相から等方相への転移が、170℃で観察された。
 上記で得られたエポキシ混合物1は、120℃~170℃で液晶相を示した。
(Confirmation of liquid crystal phase)
While heating the epoxy mixture 1 obtained above, the state change of the epoxy mixture 1 during heating was observed in a crossed Nicol state (magnification: 100 times) using a polarizing microscope (BS 51, manufactured by Olympus Corporation).
A transition from a crystal phase to a liquid crystal phase, which was in a fluid state while showing interference fringes due to depolarization, was observed at 120 ° C. Further, when the heating was further continued, a transition from a liquid crystal phase to an isotropic phase changing to a dark field was observed at 170 ° C.
The epoxy mixture 1 obtained above showed a liquid crystal phase at 120 ° C. to 170 ° C.
(融点測定)
 上記で得られたエポキシ混合物1について、示差走査熱量測定装置DSC7(パーキンエルマ製)を用いて測定した。測定温度範囲25℃~350℃、昇温速度10℃/分、流量20±5ml/minの窒素雰囲気下の条件で、アルミニウム製のパンに密閉した3mg~5mgの試料の示差走査熱量測定を行い、相転移に伴うエネルギー変化が起こる温度(吸熱反応ピークの温度)を融点(相転移温度)とした。
(Melting point measurement)
About the epoxy mixture 1 obtained above, it measured using the differential scanning calorimeter DSC7 (made by Perkin Elma). Differential scanning calorimetry of 3 mg to 5 mg samples sealed in an aluminum pan is performed under the conditions of a nitrogen atmosphere with a measurement temperature range of 25 ° C. to 350 ° C., a heating rate of 10 ° C./min, and a flow rate of 20 ± 5 ml / min. The temperature at which the energy change associated with the phase transition occurs (the temperature of the endothermic reaction peak) was defined as the melting point (phase transition temperature).
(相溶性)
 上記で得られたエポキシ混合物1について、等方相転移温度以上に加熱して溶融させた。その後、自然冷却しながら、エポキシ樹脂組成物の硬化温度である140℃における硬化物の状態を顕微鏡(オリンパス株式会社製、BS51)で観察(倍率:100倍)した。エポキシ混合物1の相分離は観察されなかった。
 すなわち、上記で得られたエポキシ混合物1は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
(Compatibility)
About the epoxy mixture 1 obtained above, it was heated to the isotropic phase transition temperature or higher and melted. Thereafter, the state of the cured product at 140 ° C., which is the curing temperature of the epoxy resin composition, was observed with a microscope (BS 51, manufactured by Olympus Corporation) while naturally cooling (magnification: 100 times). No phase separation of epoxy mixture 1 was observed.
That is, the epoxy mixture 1 obtained above had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
(実施例2)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として、樹脂AとYL6121Hとをエポキシ当量が8:2となるように混合してエポキシ混合物2を得た。既述の方法により相溶性を確認したところ、エポキシ混合物2は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
(Example 2)
<Preparation of epoxy resin composition>
As an epoxy compound having a mesogenic skeleton, resin A and YL6121H were mixed so that the epoxy equivalent was 8: 2, and an epoxy mixture 2 was obtained. When the compatibility was confirmed by the method described above, the epoxy mixture 2 had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物2を8.90質量%、硬化剤としてCRNを5.21質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.72質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス2を得た。 8.90% by mass of epoxy mixture 2, 5.21% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, AA-3 Resin containing 9.81% by weight, 9.81% by weight of AA-04, 0.06% by weight of KBM-573 as additive, and 22.72% by weight of CHN as solvent. Epoxy resin varnish 2 was obtained as a composition.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及びYL6121H)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and an epoxy compound (resins A and YL6121H) and a curing agent ( The density of the mixture with CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス2を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物2及び硬化エポキシ樹脂組成物2を作製し、上記と同様にして評価した。その結果を表1に示した。 B-stage epoxy resin composition 2 and cured epoxy resin composition 2 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 2 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
(実施例3)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として、樹脂Aと樹脂Bとをエポキシ当量が9:1となるように混合してエポキシ混合物3を得た。既述の方法により相溶性を確認したところ、エポキシ混合物3は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
(Example 3)
<Preparation of epoxy resin composition>
As an epoxy compound having a mesogen skeleton, the resin A and the resin B were mixed so that the epoxy equivalent was 9: 1 to obtain an epoxy mixture 3. When compatibility was confirmed by the above-described method, the epoxy mixture 3 had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物3を8.98質量%、硬化剤としてCRNを5.05質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.80質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス3を得た。 8.98% by mass of epoxy mixture 3, 5.05% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, AA-3 9.81% by mass of AA-04, 9.81% by mass of AA-04, 0.06% by mass of KBM-573 as an additive, and 22.80% by mass of CHN as a solvent, and an epoxy resin containing a solvent An epoxy resin varnish 3 was obtained as a composition.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及び樹脂B)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and the epoxy compound (resin A and resin B) and curing agent When the density of the mixture with (CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated, it was 72% by volume.
 上記で得られたエポキシ樹脂ワニス3を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物3及び硬化エポキシ樹脂組成物3を作製し、上記と同様にして評価した。その結果を表1に示した。 B-stage epoxy resin composition 3 and cured epoxy resin composition 3 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 3 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
(実施例4)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として、樹脂Aと樹脂Bとをエポキシ当量が7:3となるように混合してエポキシ混合物4を得た。既述の方法により相溶性を確認したところ、エポキシ混合物4は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
Example 4
<Preparation of epoxy resin composition>
As an epoxy compound having a mesogenic skeleton, the resin A and the resin B were mixed so that the epoxy equivalent was 7: 3 to obtain an epoxy mixture 4. When the compatibility was confirmed by the method described above, the epoxy mixture 4 was compatible at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物4を8.98質量%、硬化剤としてCRNを5.05質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.80質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス4を得た。 8.98% by mass of epoxy mixture 4, 5.05% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, AA-3 9.81% by mass of AA-04, 9.81% by mass of AA-04, 0.06% by mass of KBM-573 as an additive, and 22.80% by mass of CHN as a solvent, and an epoxy resin containing a solvent Epoxy resin varnish 4 was obtained as a composition.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及び樹脂B)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and the epoxy compound (resin A and resin B) and curing agent When the density of the mixture with (CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated, it was 72% by volume.
 上記で得られたエポキシ樹脂ワニス4を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物4及び硬化エポキシ樹脂組成物4を作製し、上記と同様にして評価した。その結果を表1に示した。 A B-stage epoxy resin composition 4 and a cured epoxy resin composition 4 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 4 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
(比較例1)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として、樹脂AとYL6121Hとをエポキシ当量が7:3となるように混合してエポキシ混合物5を得た。既述の方法により相溶性を確認したところ、エポキシ混合物5は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
(Comparative Example 1)
<Preparation of epoxy resin composition>
As an epoxy compound having a mesogenic skeleton, resin A and YL6121H were mixed so that the epoxy equivalent was 7: 3, whereby an epoxy mixture 5 was obtained. When the compatibility was confirmed by the method described above, the epoxy mixture 5 had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物5を8.85質量%、硬化剤としてCRNを5.30質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.68質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス5を得た。 8.85% by mass of epoxy mixture 5, 5.30% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, AA-3 9.81% by mass of AA-04, 9.81% by mass of AA-04, 0.06% by mass of KBM-573 as an additive, and 22.68% by mass of CHN as a solvent, and an epoxy resin containing a solvent An epoxy resin varnish 5 was obtained as a composition.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及びYL6121H)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and an epoxy compound (resins A and YL6121H) and a curing agent ( The density of the mixture with CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス5を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物5及び硬化エポキシ樹脂組成物5を作製し、上記と同様にして評価した。その結果を表2に示した。なお、表2中の「-」は、当該成分を添加していないこと、及び混合比率を算出していないことを意味する。 A B-stage epoxy resin composition 5 and a cured epoxy resin composition 5 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 5 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2. In Table 2, “-” means that the component is not added and the mixing ratio is not calculated.
(比較例2)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として、樹脂AとYL6121Hとをエポキシ当量が6:4となるように混合してエポキシ混合物6を得た。既述の方法により相溶性を確認したところ、エポキシ混合物6は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
(Comparative Example 2)
<Preparation of epoxy resin composition>
As an epoxy compound having a mesogenic skeleton, resin A and YL6121H were mixed so that the epoxy equivalent was 6: 4, whereby an epoxy mixture 6 was obtained. When the compatibility was confirmed by the method described above, the epoxy mixture 6 was compatible at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物6を8.81質量%と、硬化剤としてCRNを5.39質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、溶剤としてCHNを22.63質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス6を得た。 8.81% by mass of epoxy mixture 6, 5.39% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, AA- 3 is 9.81% by mass, AA-04 is 9.81% by mass, KBM-573 is added as an additive, 0.06% by mass, CHN as a solvent is mixed with 22.63% by mass, and an epoxy resin containing a solvent is mixed. Epoxy resin varnish 6 was obtained as a composition.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及びYL6121H)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and an epoxy compound (resins A and YL6121H) and a curing agent ( The density of the mixture with CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス6を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物6及び硬化エポキシ樹脂組成物6を作製し、上記と同様にして評価した。その結果を表2に示した。 B-stage epoxy resin composition 6 and cured epoxy resin composition 6 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 6 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
(比較例3)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として、樹脂AとYL6121Hとをエポキシ当量が5:5となるように混合してエポキシ混合物7を得た。既述の方法により相溶性を確認したところ、エポキシ混合物7は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
(Comparative Example 3)
<Preparation of epoxy resin composition>
As an epoxy compound having a mesogenic skeleton, resin A and YL6121H were mixed so that the epoxy equivalent was 5: 5 to obtain an epoxy mixture 7. When the compatibility was confirmed by the method described above, the epoxy mixture 7 had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物7を8.76質量%、硬化剤としてCRNを5.49質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.58質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス7を得た。 8.76% by mass of epoxy mixture 7, 5.49% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, AA-3 Resin containing 9.81% by weight, 9.81% by weight of AA-04, 0.06% by weight of KBM-573 as an additive, and 22.58% by weight of CHN as a solvent. Epoxy resin varnish 7 was obtained as a composition.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及びYL6121H)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and an epoxy compound (resins A and YL6121H) and a curing agent ( The density of the mixture with CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス7を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物7及び硬化エポキシ樹脂組成物7を作製し、上記と同様にして評価した。その結果を表2に示した。 B-stage epoxy resin composition 7 and cured epoxy resin composition 7 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 7 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
(比較例4)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として樹脂Aと、メソゲン骨格を有さないエポキシ化合物として828ELと、をエポキシ当量が9:1となるように混合してエポキシ混合物8を得た。既述の方法により相溶性を確認したところ、エポキシ混合物8は、エポキシ樹脂組成物の硬化温度である140℃において相溶性を有していた。
(Comparative Example 4)
<Preparation of epoxy resin composition>
Resin A as an epoxy compound having a mesogen skeleton and 828EL as an epoxy compound not having a mesogen skeleton were mixed so that an epoxy equivalent was 9: 1 to obtain an epoxy mixture 8. When the compatibility was confirmed by the method described above, the epoxy mixture 8 had compatibility at 140 ° C., which is the curing temperature of the epoxy resin composition.
 エポキシ混合物8を8.96質量%、硬化剤としてCRNを5.10質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.77質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス8を得た。 8.96% by mass of epoxy mixture 8, 5.10% by mass of CRN as a curing agent, 0.09% by mass of TPP as a curing accelerator, 43.40% by mass of HP-40 as an inorganic filler, AA-3 9.81% by mass of AA-04, 9.81% by mass of AA-04, 0.06% by mass of KBM-573 as an additive, and 22.77% by mass of CHN as a solvent, and an epoxy resin containing a solvent Epoxy resin varnish 8 was obtained as a composition.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A及び828EL)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and an epoxy compound (resins A and 828EL) and a curing agent ( The density of the mixture with CRN) was 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス8を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物8及び硬化エポキシ樹脂組成物8を作製し、上記と同様にして評価した。その結果を表2に示した。 B-stage epoxy resin composition 8 and cured epoxy resin composition 8 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 8 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
(比較例5)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として樹脂Aを8.99質量%、硬化剤としてCRNを5.04質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.80質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス9を得た。
(Comparative Example 5)
<Preparation of epoxy resin composition>
Resin A is 8.99% by mass as an epoxy compound having a mesogenic skeleton, CRN is 5.04% by mass as a curing agent, TPP is 0.09% by mass as a curing accelerator, and HP-40 is 43.40 as an inorganic filler. % By weight, 9.81% by weight of AA-3, 9.81% by weight of AA-04, 0.06% by weight of KBM-573 as an additive, and 22.80% by weight of CHN as a solvent. An epoxy resin varnish 9 was obtained as an epoxy resin composition containing a solvent.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and the epoxy compound (resin A) and curing agent (CRN) The density of the mixture was calculated as 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス9を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物9及び硬化エポキシ樹脂組成物9を作製し、上記と同様にして評価した。その結果を表2に示した。 B-stage epoxy resin composition 9 and cured epoxy resin composition 9 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 9 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
(比較例6)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有するエポキシ化合物として樹脂Bを8.97質量%、硬化剤としてCRNを5.08質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.78質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス10を得た。
(Comparative Example 6)
<Preparation of epoxy resin composition>
Resin B is 8.97% by mass as an epoxy compound having a mesogenic skeleton, CRN is 5.08% by mass as a curing agent, TPP is 0.09% by mass as a curing accelerator, and HP-40 is 43.40 as an inorganic filler. % By weight, 9.81% by weight of AA-3, 9.81% by weight of AA-04, 0.06% by weight of KBM-573 as an additive, and 22.78% by weight of CHN as a solvent. An epoxy resin varnish 10 was obtained as an epoxy resin composition containing a solvent.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(樹脂A)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and the epoxy compound (resin A) and curing agent (CRN) The density of the mixture was calculated as 1.20 g / cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス10を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物10及び硬化エポキシ樹脂組成物10を作製し、上記と同様にして評価した。その結果を表2に示した。 A B-stage epoxy resin composition 10 and a cured epoxy resin composition 10 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 10 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
(比較例7)
<エポキシ樹脂組成物の作製>
 メソゲン骨格を有する他のエポキシ化合物としてYL6121Hを8.50質量%、硬化剤としてCRNを6.02質量%、硬化促進剤としてTPPを0.09質量%、無機充填材としてHP-40を43.40質量%、AA-3を9.81質量%、AA-04を9.81質量%、添加剤としてKBM-573を0.06質量%、及び溶剤としてCHNを22.31質量%を混合して、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニス11を得た。
(Comparative Example 7)
<Preparation of epoxy resin composition>
As another epoxy compound having a mesogenic skeleton, YL6121H is 8.50 mass%, CRN is 6.02 mass% as a curing agent, TPP is 0.09 mass% as a curing accelerator, and HP-40 is 43.3% as an inorganic filler. 40% by mass, 9.81% by mass of AA-3, 9.81% by mass of AA-04, 0.06% by mass of KBM-573 as an additive, and 22.31% by mass of CHN as a solvent were mixed. Thus, an epoxy resin varnish 11 was obtained as an epoxy resin composition containing a solvent.
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ化合物(YL6121H)と硬化剤(CRN)との混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、72体積%であった。 The density of boron nitride (HP-40) is 2.20 g / cm 3 , the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3 , and an epoxy compound (YL6121H) and a curing agent (CRN) The density of the mixture was 1.20 g / cm 3 , and the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 72% by volume.
 上記で得られたエポキシ樹脂ワニス11を用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物11及び硬化エポキシ樹脂組成物11を作製し、上記と同様にして評価した。その結果を表2に示した。 A B-stage epoxy resin composition 11 and a cured epoxy resin composition 11 were prepared in the same manner as in Example 1 except that the epoxy resin varnish 11 obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000024

 
Figure JPOXMLDOC01-appb-T000024

 
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1及び表2に示されるように、熱伝導率は樹脂Aのみを使用した比較例5が最も高い。エポキシ化合物として、樹脂AとYL6121Hとを併用した場合、樹脂Aと樹脂Bとを併用した場合、及び樹脂Aと828ELを併用した場合には、互いに相溶していた。また、樹脂A及びYL6121H、若しくは樹脂A及び樹脂Bを併用した場合には、樹脂Aを単独使用した場合と比較して、融点が10℃以上低くなった。
 互いに相溶し、かつ、スメクチック構造を形成しているエポキシ樹脂組成物は、スメクチック構造を形成していないエポキシ樹脂組成物に比べ、熱伝導率が高くなった。これより、スメクチック構造の有無により熱伝導率が大きく異なることが分かる。
 以上より、低融点であり、かつ、高熱伝導率であるエポキシ樹脂組成物を得ることができる。
As shown in Tables 1 and 2, the thermal conductivity is highest in Comparative Example 5 using only the resin A. When the resin A and YL6121H were used together as the epoxy compound, the resin A and the resin B were used together, and the resin A and the 828EL were used together, they were compatible with each other. Moreover, when Resin A and YL6121H, or Resin A and Resin B were used in combination, the melting point was lower by 10 ° C. or more than when Resin A was used alone.
The epoxy resin composition that is compatible with each other and has a smectic structure has higher thermal conductivity than an epoxy resin composition that does not have a smectic structure. From this, it can be seen that the thermal conductivity varies greatly depending on the presence or absence of the smectic structure.
As described above, an epoxy resin composition having a low melting point and a high thermal conductivity can be obtained.
 日本国特許出願2016-111371号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。 The entire disclosure of Japanese Patent Application No. 2016-111371 is incorporated herein by reference. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (13)

  1.  メソゲン骨格を有する2種以上のエポキシ化合物と、硬化剤と、無機充填材と、を含有し、
     前記メソゲン骨格を有する2種以上のエポキシ化合物は、互いに相溶可能であり、前記硬化剤と反応することによりスメクチック構造を形成可能である、エポキシ樹脂組成物。
    Containing two or more epoxy compounds having a mesogenic skeleton, a curing agent, and an inorganic filler,
    2 or more types of epoxy compounds which have the said mesogen skeleton are mutually compatible, The epoxy resin composition which can form a smectic structure by reacting with the said hardening | curing agent.
  2.  前記メソゲン骨格を有する2種以上のエポキシ化合物は、下記一般式(I)で表される化合物の少なくとも1種を含む請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    [一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
    2. The epoxy resin composition according to claim 1, wherein the two or more epoxy compounds having a mesogenic skeleton include at least one compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001

    [In general formula (I), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
  3.  前記硬化剤は、フェノールノボラック樹脂を含む請求項1又は請求項2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the curing agent contains a phenol novolac resin.
  4.  前記硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有するノボラック樹脂を含む請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    [一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を示す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を示す。m21及びm22はそれぞれ独立に0~2の整数を示す。n21及びn22はそれぞれ独立に1~7の整数を示す。]
    The hardener contains a novolak resin having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2). 4. The epoxy resin composition according to any one of 3 above.
    Figure JPOXMLDOC01-appb-C000002

    [In General Formula (II-1) and General Formula (II-2), R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group. R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. m21 and m22 each independently represents an integer of 0-2. n21 and n22 each independently represents an integer of 1 to 7. ]
  5.  前記硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有するノボラック樹脂を含む請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

     
     
    [一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に、正の整数を示す。Ar31~Ar34はそれぞれ独立に、下記一般式(III-a)又は下記一般式(III-b)で表される基のいずれかを示す。]
    Figure JPOXMLDOC01-appb-C000007

    [一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を示す。R32及びR33はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を示す。]
    The hardener contains a novolak resin having a partial structure represented by at least one selected from the group consisting of the following general formulas (III-1) to (III-4): 4. The epoxy resin composition according to any one of 3 above.
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006



    [In the general formulas (III-1) to (III-4), m31 to m34 and n31 to n34 each independently represent a positive integer. Ar 31 to Ar 34 each independently represents any of the groups represented by the following general formula (III-a) or the following general formula (III-b). ]
    Figure JPOXMLDOC01-appb-C000007

    [In General Formula (III-a) and General Formula (III-b), R 31 and R 34 each independently represent a hydrogen atom or a hydroxyl group. R 32 and R 33 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
  6.  前記硬化剤は、前記ノボラック樹脂を構成するフェノール化合物であるモノマーを含有し、前記モノマーの含有率が、前記硬化剤中5質量%~80質量%である請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物。 6. The curing agent according to claim 1, wherein the curing agent contains a monomer that is a phenol compound constituting the novolak resin, and the content of the monomer is 5% by mass to 80% by mass in the curing agent. 2. The epoxy resin composition according to item 1.
  7.  前記無機充填材は、窒化ホウ素、アルミナ、酸化マグネシウム、シリカ及び窒化アルミニウムからなる群より選択される少なくとも1種を含む請求項1~請求項6のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, wherein the inorganic filler includes at least one selected from the group consisting of boron nitride, alumina, magnesium oxide, silica, and aluminum nitride.
  8.  前記無機充填材の含有率が、固形分中において50体積%を超える請求項1~請求項7のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, wherein a content of the inorganic filler exceeds 50% by volume in a solid content.
  9.  請求項1~請求項8のいずれか1項に記載のエポキシ樹脂組成物のシート状の半硬化物であるBステージシート。 A B stage sheet which is a sheet-like semi-cured product of the epoxy resin composition according to any one of claims 1 to 8.
  10.  請求項1~請求項8のいずれか1項に記載のエポキシ樹脂組成物の硬化物である硬化エポキシ樹脂組成物。 A cured epoxy resin composition, which is a cured product of the epoxy resin composition according to any one of claims 1 to 8.
  11.  請求項1~請求項8のいずれか1項に記載のエポキシ樹脂組成物のシート状形成体である樹脂シート。 A resin sheet which is a sheet-like formed body of the epoxy resin composition according to any one of claims 1 to 8.
  12.  金属箔と、前記金属箔上に配置された請求項1~請求項8のいずれか1項に記載のエポキシ樹脂組成物に由来する半硬化エポキシ樹脂組成物層と、を備える樹脂付金属箔。 A metal foil with a resin, comprising: a metal foil; and a semi-cured epoxy resin composition layer derived from the epoxy resin composition according to any one of claims 1 to 8 disposed on the metal foil.
  13.  金属支持体と、前記金属支持体上に配置された請求項1~請求項8のいずれか1項に記載のエポキシ樹脂組成物に由来する硬化エポキシ樹脂組成物層と、前記硬化エポキシ樹脂組成物層上に配置された金属箔と、をこの順に備える金属基板。 A cured epoxy resin composition layer derived from the epoxy resin composition according to any one of claims 1 to 8, disposed on the metal support, and the cured epoxy resin composition A metal substrate comprising a metal foil disposed on the layer in this order.
PCT/JP2017/020343 2016-06-02 2017-05-31 Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate WO2017209210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111371 2016-06-02
JP2016111371 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017209210A1 true WO2017209210A1 (en) 2017-12-07

Family

ID=60478811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020343 WO2017209210A1 (en) 2016-06-02 2017-05-31 Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate

Country Status (2)

Country Link
TW (1) TW201815865A (en)
WO (1) WO2017209210A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168556A1 (en) * 2017-03-15 2018-09-20 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2020045560A1 (en) * 2018-08-31 2020-03-05 Jnc株式会社 Composition, cured product, laminated body, and electronic device
CN113993947A (en) * 2019-06-21 2022-01-28 住友电木株式会社 Thermosetting resin composition, resin sheet, and metal base plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239679A (en) * 2007-03-26 2008-10-09 Sumitomo Chemical Co Ltd Epoxy resin composition
JP2008266594A (en) * 2007-03-26 2008-11-06 Sumitomo Chemical Co Ltd Epoxy resin composition
JP2009215390A (en) * 2008-03-10 2009-09-24 Shin Kobe Electric Mach Co Ltd Method for manufacturing laminate
JP2012149191A (en) * 2011-01-20 2012-08-09 Hitachi Chemical Co Ltd Thermoplastic resin composition, and semi-cured material and cured material thereof
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
WO2015141797A1 (en) * 2014-03-20 2015-09-24 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device.
WO2016093248A1 (en) * 2014-12-08 2016-06-16 日立化成株式会社 Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate and power semiconductor device
WO2016104788A1 (en) * 2014-12-26 2016-06-30 日立化成株式会社 Epoxy resin molding material, molded article, molded cured article, and method for manufacturing molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239679A (en) * 2007-03-26 2008-10-09 Sumitomo Chemical Co Ltd Epoxy resin composition
JP2008266594A (en) * 2007-03-26 2008-11-06 Sumitomo Chemical Co Ltd Epoxy resin composition
JP2009215390A (en) * 2008-03-10 2009-09-24 Shin Kobe Electric Mach Co Ltd Method for manufacturing laminate
JP2012149191A (en) * 2011-01-20 2012-08-09 Hitachi Chemical Co Ltd Thermoplastic resin composition, and semi-cured material and cured material thereof
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
WO2015141797A1 (en) * 2014-03-20 2015-09-24 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing same, semiconductor device, and led device.
WO2016093248A1 (en) * 2014-12-08 2016-06-16 日立化成株式会社 Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate and power semiconductor device
WO2016104788A1 (en) * 2014-12-26 2016-06-30 日立化成株式会社 Epoxy resin molding material, molded article, molded cured article, and method for manufacturing molded article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUNSUKE TAKENAKA ET AL.: "Saikin no Tenbo 2 New Liquid Crystalline Materials (Smectic", OYO BUTSURI, vol. 54, no. 2, 5 February 1985 (1985-02-05), pages 143 - 147 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168556A1 (en) * 2017-03-15 2018-09-20 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
US11466119B2 (en) 2017-03-15 2022-10-11 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2020045560A1 (en) * 2018-08-31 2020-03-05 Jnc株式会社 Composition, cured product, laminated body, and electronic device
CN113993947A (en) * 2019-06-21 2022-01-28 住友电木株式会社 Thermosetting resin composition, resin sheet, and metal base plate

Also Published As

Publication number Publication date
TW201815865A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP7201029B2 (en) Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate, and power semiconductor device
JP6102082B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
TWI462947B (en) B stage sheet, metal foil with resin, metal substrate, and led substrate
WO2017209208A1 (en) Production method for laminate
WO2017145413A1 (en) Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured object, metal foil with resin, and metallic substrate
US10851200B2 (en) Resin composition and method of producing laminate
WO2017209210A1 (en) Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate
JP7115538B2 (en) Epoxy resin, epoxy resin composition, resin sheet, B-stage sheet, C-stage sheet, cured product, metal foil with resin, metal substrate, and power semiconductor device
JPWO2016121758A1 (en) Epoxy resin composition, semi-cured epoxy resin composition, resin sheet and prepreg
JP7114940B2 (en) Method for producing resin composition film, method for producing resin sheet, method for producing B-stage sheet, method for producing C-stage sheet, method for producing resin-coated metal foil, and method for producing metal substrate
US11535700B2 (en) Epoxy polymer, epoxy resin, epoxy resin composition, resin sheet, b-stage sheet, cured product, c-stage sheet, metal foil with resin, metal substrate and method for manufacturing
JP2018030929A (en) Epoxy resin composition, resin sheet, b stage sheet, cured product, c stage sheet, metal foil with resin, and metal substrate
WO2019106835A1 (en) Resin composition and method for producing laminate
WO2017209209A1 (en) Production method for laminate
JP2019147932A (en) Resin composition, resin sheet, b stage sheet, c stage sheet, metal foil with resin, metal substrate and power semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP