WO2017145413A1 - Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured object, metal foil with resin, and metallic substrate - Google Patents

Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured object, metal foil with resin, and metallic substrate Download PDF

Info

Publication number
WO2017145413A1
WO2017145413A1 PCT/JP2016/074882 JP2016074882W WO2017145413A1 WO 2017145413 A1 WO2017145413 A1 WO 2017145413A1 JP 2016074882 W JP2016074882 W JP 2016074882W WO 2017145413 A1 WO2017145413 A1 WO 2017145413A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
epoxy resin
resin composition
following general
group
Prior art date
Application number
PCT/JP2016/074882
Other languages
French (fr)
Japanese (ja)
Inventor
一也 木口
智雄 西山
片木 秀行
竹澤 由高
良洋 天野
田中 賢治
陶 晴昭
慎一 小杉
優香 吉田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to TW106106064A priority Critical patent/TW201800470A/en
Publication of WO2017145413A1 publication Critical patent/WO2017145413A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition, a resin sheet, a B stage sheet, a C stage sheet, a cured product, a metal foil with resin, and a metal substrate.
  • thermosetting resin examples include a cured product of a thermosetting resin from the viewpoints of insulation and heat resistance.
  • thermal conductivity of cured products of thermosetting resins is generally low and is one of the major factors that hinder heat dissipation, development of cured products of thermosetting resins with high thermal conductivity is desired. ing.
  • thermosetting resin having high thermal conductivity As a cured product of a thermosetting resin having high thermal conductivity, a cured product of an epoxy resin composition having a mesogen skeleton in a molecular structure has been proposed (for example, see Patent Document 1). Moreover, an epoxy resin having a specific structure has been proposed as a thermosetting resin having high thermal conductivity and a low softening point (melting point) (see, for example, Patent Document 2).
  • Patent Documents 3 and 4 As an example of a resin composition containing a plurality of resins, an example in which an epoxy compound having a specific mesogen skeleton in the molecular structure and another epoxy resin are mixed is disclosed (for example, see Patent Documents 3 and 4).
  • Patent Documents 3 and 4 the curing temperature range at the time of producing a cured resin is wider than that of an epoxy compound having a specific mesogen skeleton in the molecular structure, and the production of a cured resin having high thermal conductivity is possible. It has been reported that it will be easier.
  • an insulating composition in which a liquid crystalline polymer and a thermosetting resin exist in a phase-separated state has been proposed (see, for example, Patent Document 5).
  • an epoxy resin having a mesogen skeleton in the molecular structure generally has higher crystallinity as the thermal conductivity is higher.
  • a resin composition containing an epoxy resin having a mesogen skeleton in the molecular structure is provided. There are cases where the handling property such as flexibility of the resin composition is inferior in the B-stage state.
  • the present invention has been made in view of the above-mentioned conventional problems, and is an epoxy resin composition excellent in handling properties in the B-stage state and the thermal conductivity of the cured product, and a resin sheet, B-stage sheet, and C using the same. It is an object to provide a stage sheet, a cured product, a metal foil with resin, and a metal substrate.
  • the filler includes a nitride filler
  • the epoxy resin includes a multimeric compound having at least one selected from the group consisting of a structural unit represented by the following general formula (IA) and a structural unit represented by the following general formula (IB):
  • the multimeric compound includes a dimeric compound containing two structural units represented by the following general formula (II) in one molecule, An epoxy resin composition in which the proportion of the dimer compound in the total epoxy resin is 15% by mass to 28% by mass.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 5 each independently represents 1 to 8 carbon atoms. Represents an alkyl group.
  • n represents an integer of 0 to 4.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the dimer compound is represented by a compound represented by the following general formula (II-A), a compound represented by the following general formula (II-B), and the following general formula (II-C). Including at least one selected from the group consisting of compounds, Total of the compound represented by the following general formula (II-A), the compound represented by the following general formula (II-B) and the compound represented by the following general formula (II-C) in the whole epoxy resin.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 5 each independently represents a carbon atom.
  • n represents an integer of 0 to 4.
  • the structural unit represented by the general formula (IA) is a structural unit represented by the following general formula (IA ′), and the structural unit represented by the general formula (IB) is represented by the following general formula (IB)
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 5 each independently represents a carbon number of 1 Represents an alkyl group of ⁇ 8.
  • n represents an integer of 0 to 4.
  • the dimer compound is a compound represented by the following general formula (II-A ′), a compound represented by the following general formula (II-B ′), and the following general formula (II-C ′). Including at least one selected from the group consisting of the represented compounds, The compound represented by the following general formula (II-A ′), the compound represented by the following general formula (II-B ′) and the following general formula (II-C ′) in the whole epoxy resin.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 5 each independently Represents an alkyl group having 1 to 8 carbon atoms.
  • n represents an integer of 0 to 4.
  • the epoxy resin includes an epoxy resin monomer represented by the following general formula (I ′′), and a ratio of the epoxy resin monomer in the entire epoxy resin is 57% by mass to 80% by mass.
  • the epoxy resin composition according to any one of ⁇ 1> to ⁇ 4>.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the curing agent includes a novolak resin including a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2).
  • a novolak resin including a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2).
  • ⁇ 1>- ⁇ 5> The epoxy resin composition according to any one of ⁇ 5>.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group
  • R 22 , R 23 , R 25 and R 26 Each independently represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • m21 and m22 each independently represents an integer of 0 to 2
  • n21 and n22 each independently represents an integer of 1 to 7.
  • the curing agent includes a novolak resin including a compound having a structure represented by at least one selected from the group consisting of the following general formula (III-1) to the following general formula (III-4).
  • the epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>.
  • n31 to n34 each independently represent a positive integer.
  • Ar 31 to Ar 34 each independently represents one of a group represented by the following general formula (III-a) and a group represented by the following general formula (III-b). ]
  • R 31 and R 34 each independently represent a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • ⁇ 10> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 9>, wherein a ratio of the nitride filler in the filler is 10% by volume to 100% by volume.
  • ⁇ 14> A cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 15> a metal foil, and a semi-cured resin composition layer including a semi-cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 10> disposed on the metal foil.
  • Metal foil with resin a semi-cured resin composition layer including a semi-cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 10> disposed on the metal foil.
  • a metal support a cured resin composition layer comprising a cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 10> disposed on the metal support, and the curing
  • a metal substrate comprising: a metal foil disposed on the resin composition layer.
  • an epoxy resin composition excellent in handling property in a B-stage state and thermal conductivity of a cured product and a resin sheet, a B-stage sheet, a C-stage sheet, a cured product, a metal foil with resin, A metal substrate can be provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the epoxy resin composition of the present disclosure contains an epoxy resin, a curing agent, and a filler, the filler includes a nitride filler, and the epoxy resin includes a structural unit represented by the following general formula (IA) and A multimer compound having at least one selected from the group consisting of structural units represented by general formula (IB), wherein the multimer compound is represented by the following general formula (II) in one molecule
  • the ratio of the dimer compound, which includes the dimer compound containing two units and occupies the entire epoxy resin is 15% by mass to 28% by mass.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 5 each independently represents one having 1 to 8 carbon atoms.
  • An alkyl group is shown.
  • n represents an integer of 0 to 4.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the epoxy resin composition of the present disclosure is excellent in the handling property in the B-stage state and the thermal conductivity of the cured product. Moreover, the resin sheet, B-stage sheet, and resin-attached metal foil using the epoxy resin composition of the present disclosure are excellent in handling properties. Furthermore, the C stage sheet, cured product, and metal substrate using the epoxy resin composition of the present disclosure are excellent in thermal conductivity.
  • each component contained in the epoxy resin composition of the present disclosure will be described in detail.
  • the epoxy resin used in the present disclosure includes a multimeric compound having at least one selected from the group consisting of a structural unit represented by the general formula (IA) and a structural unit represented by the general formula (IB),
  • the multimeric compound includes a dimeric compound containing two structural units represented by the general formula (II) in one molecule, and the proportion of the dimeric compound in the entire epoxy resin is 15% by mass to 28% by mass. %.
  • the “multimeric compound” in the present disclosure refers to a compound containing two or more structural units represented by the general formula (II) in one molecule.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and are a hydrogen atom or an alkyl group having 1 to 2 carbon atoms. Are preferable, a hydrogen atom or a methyl group is more preferable, and a hydrogen atom is further preferable. Further, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and still more preferably all 4 are hydrogen atoms. . When any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms. Specific examples of R 1 to R 4 in the general formula (II) are the same as those in the general formula (IA) and the general formula (IB), and preferred ranges thereof are also the same.
  • R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and preferably a methyl group. More preferred.
  • n represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and 0. Is more preferable. That is, the benzene ring denoted by R 5 in the general formula (IA) and the general formula (IB) preferably has 2 to 4 hydrogen atoms, and may have 3 or 4 hydrogen atoms. More preferably, it has four hydrogen atoms.
  • the number of structural units represented by the general formula (II) contained in the multimeric compound is arbitrary and is not particularly limited.
  • the average value is preferably 5 or less, more preferably 3 or less. .
  • the structural unit represented by the general formula (IA) is selected from the group consisting of the structural unit represented by the following general formula (IA ′) and the structural unit represented by the following general formula (IA ′′)
  • the structural unit represented by the general formula (IB) is composed of a structural unit represented by the following general formula (IB ′) and a structural unit represented by the following general formula (IB ′′).
  • the structural unit represented by the general formula (IA) is a structural unit represented by the following general formula (IA ′), and is represented by the general formula (IB).
  • the structural unit is more preferably a structural unit represented by the following general formula (IB ′).
  • R 1 to R 5 and n include general formula (IA) and general formula It is the same as in formula (IB), and its preferred range is also the same.
  • the epoxy resin used in the present disclosure includes a dimer compound containing two structural units represented by the general formula (II) in one molecule.
  • Specific examples of the dimer compound containing two structural units represented by the general formula (II) in one molecule include compounds represented by the following general formula (II-A), the following general formula (II-B) ) And at least one selected from the group consisting of compounds represented by the following general formula (II-C).
  • the dimer compound when it contains at least one selected from the group consisting of the structural unit represented by the general formula (IA ′) and the structural unit represented by the general formula (IB ′), Selected from the group consisting of a compound represented by the general formula (II-A ′), a compound represented by the following general formula (II-B ′), and a compound represented by the following general formula (II-C ′) There is at least one kind.
  • R 1 to R 5 and n in the general formula (II-A ′), the general formula (II-B ′) and the following general formula (II-C ′) include the general formula (IA) and the general formula ( It is the same as IB), and its preferable range is also the same.
  • dimer compound examples include at least one selected from the group consisting of a structural unit represented by the general formula (IA ′′) and a structural unit represented by the general formula (IB ′′). And a compound represented by the following general formula (II-A ′′), a compound represented by the following general formula (II-B ′′), and a compound represented by the following general formula (II-C ′′) At least one selected from the group consisting of:
  • R 1 to R 5 and n in the general formula (II-A ′′), the general formula (II-B ′′) and the following general formula (II-C ′′) include the general formula (IA) and It is the same as that of general formula (IB), and its preferable range is also the same.
  • dimer compound examples include a compound represented by the general formula (II-A ′), a compound represented by the general formula (II-B ′), and a general formula (II-C ′). It is preferably at least one selected from the group consisting of compounds represented by
  • the structure of these dimer compounds is an epoxy resin monomer represented by the following general formula (I ′′) used in the epoxy resin synthesis and a divalent phenol having two hydroxyl groups as substituents on one benzene ring.
  • the molecular weight of the structure estimated to be obtained from the reaction of the compound with the molecular weight of the target compound determined by liquid chromatography using a liquid chromatograph equipped with a UV spectrum detector and a mass spectrum detector. Can be determined. Liquid chromatography is performed using LaChrom II C18 manufactured by Hitachi, Ltd. as the analytical column, tetrahydrofuran as the eluent, and a flow rate of 1.0 ml / min.
  • the UV spectrum detector detects the absorbance at a wavelength of 280 nm. In the mass spectrum detector, the ionization voltage is detected as 2700V. Details of the epoxy resin synthesis method and evaluation will be described later.
  • the proportion of the dimer compound in the entire epoxy resin is 15% by mass to 28% by mass. This ratio can be calculated
  • RPLC Reversed Phase Liquid Chromatography
  • the proportion of the dimer compound is less than 15% by mass, the crystallinity of the epoxy resin does not decrease, and the handling properties such as flexibility when the epoxy resin composition is in the B stage state tend to decrease. Moreover, when the ratio of a dimer compound exceeds 28 mass%, the crosslinking density of hardened
  • the proportion of the dimer compound is preferably 20% by mass to 27% by mass, and more preferably 22% by mass to 25% by mass.
  • the epoxy resin may include an epoxy resin monomer represented by the following general formula (I ′′).
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Specific examples of R 1 to R 4 in the general formula (I ′′) are the same as those in the general formula (IA) and the general formula (IB), and preferred ranges thereof are also the same.
  • the proportion of the epoxy resin monomer represented by the general formula (I ′′) in the entire epoxy resin is preferably 57% by mass to 80% by mass. If the ratio of the epoxy resin monomer is 57% by mass or more, this means that there are not too many reactants of the epoxy resin monomer represented by the general formula (I ′′) and the divalent phenol compound. For this reason, the crosslink density of the cured product is unlikely to decrease, and as a result, the thermal conductivity and Tg of the cured product tend not to decrease. On the other hand, if the ratio of the epoxy resin monomer is 80% by mass or less, this means that the reaction product of the epoxy resin monomer represented by the general formula (I ′′) and the divalent phenol compound is not too small. This means that handling properties such as flexibility when the epoxy resin composition is in a B-stage state are unlikely to decrease, or the crosslinking density of the cured product tends not to decrease.
  • the proportion of the epoxy resin monomer represented by the general formula (I ′′) in the entire epoxy resin is more preferably 59% by mass to 74% by mass, and further preferably 62% by mass to 70% by mass. .
  • the epoxy resin used in the present disclosure may contain other epoxy resin components in addition to the multimeric compound and the epoxy resin monomer represented by the general formula (I ′′).
  • the proportion of the other epoxy resin component in the entire epoxy resin is preferably less than 15% by mass, more preferably 10% by mass or less, further preferably 8% by mass or less, and substantially the other It is particularly preferable that the epoxy resin component is not included.
  • the flow rate is 1.0 ml / min.
  • the absorbance at a wavelength of 280 nm is detected, the total area of all detected peaks is defined as 100, the ratio of the area of each corresponding peak is determined, and the value is the content of each compound in the entire epoxy resin. [Mass%].
  • the epoxy equivalent of the epoxy resin is measured by a perchloric acid titration method.
  • the epoxy equivalent is preferably 245 g / eq to 300 g / eq, and preferably 250 g / eq to 290 g / eq from the viewpoint of achieving both the handling property when the epoxy resin composition is in the B-stage state and the thermal conductivity of the cured product. More preferably, it is 260 g / eq to 280 g / eq. If the epoxy equivalent of the epoxy resin is 245 g / eq or more, the crystallinity of the epoxy resin does not become too high, and the handling property when the epoxy resin composition is in the B-stage state tends to be difficult to deteriorate. On the other hand, if the epoxy equivalent of the epoxy resin is 300 g / eq or less, the crosslink density of the epoxy resin is unlikely to decrease, and the thermal conductivity of the cured product tends to increase.
  • the number average molecular weight (Mn) in the gel permeation chromatography (GPC) measurement of the epoxy resin is 400 from the viewpoint of achieving both handling properties and thermal conductivity of the cured product when the epoxy resin composition is in the B-stage state. Is preferably from 800 to 800, more preferably from 450 to 750, and even more preferably from 500 to 700. If the Mn of the epoxy resin is 400 or more, the crystallinity of the epoxy resin does not become too high, so that the handling property when the epoxy resin composition is in the B stage state tends to be difficult to decrease. If Mn of an epoxy resin is 800 or less, since the crosslinking density of an epoxy resin is hard to fall, it exists in the tendency for the heat conductivity of hardened
  • GPC measurement in this specification uses Tosoh Corporation G2000HXL and 3000HXL as analytical GPC columns, tetrahydrofuran as a mobile phase, a sample concentration of 0.2% by mass, and a flow rate of 1.0 ml / min. Measure.
  • a calibration curve is prepared using a polystyrene standard sample, and Mn is calculated as a polystyrene equivalent value.
  • An epoxy resin containing a multimeric compound is composed of an epoxy resin monomer represented by the general formula (I ′′), a divalent phenol compound having two hydroxyl groups as substituents on one benzene ring, and a curing catalyst described later. It can be synthesized by dissolving in and stirring with heating. The synthesis is also possible by a method in which the epoxy resin monomer is melted and reacted without using a solvent, but it may be necessary to raise the temperature to a temperature at which the epoxy resin monomer melts. For this reason, the synthesis method using a synthetic solvent is preferable from the viewpoint of safety.
  • the epoxy resin monomer represented by the general formula (I ′′) and a divalent phenol compound having two hydroxyl groups as substituents on one benzene ring are heated to a temperature necessary for the reaction.
  • Any solvent that can be used is not particularly limited. Specific examples include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone and the like.
  • the amount of the synthetic solvent is such that the epoxy resin monomer represented by the general formula (I ′′), the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring, and the curing catalyst can be dissolved at the reaction temperature. That's it.
  • solubility varies depending on the type of raw material before reaction, the type of solvent, etc., if the charged solid content concentration is 20% by mass to 60% by mass, the viscosity of the resin solution after synthesis tends to be in a preferable range.
  • Examples of the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring include catechol, resorcinol, hydroquinone, and derivatives thereof.
  • Examples of the derivatives include compounds in which a benzene ring is substituted with an alkyl group having 1 to 8 carbon atoms.
  • resorcinol and hydroquinone are preferably used from the viewpoint of improving the thermal conductivity of the cured product, and hydroquinone is more preferably used. Since hydroquinone has a structure in which two hydroxyl groups are substituted so as to have a para-position, a multimeric compound obtained by reacting with an epoxy resin monomer tends to have a linear structure. For this reason, it is considered that the stacking property of the molecule is high and it is easy to form a higher order structure.
  • These dihydric phenol compounds may be used individually by 1 type, and may use 2 or more types together.
  • the type of the curing catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like.
  • Specific examples of the curing catalyst include imidazole compounds, organic phosphorus compounds, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more.
  • an organic phosphine compound an organic phosphine compound containing maleic anhydride, a quinone compound (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, etc.), diazophenylmethane, phenol A compound having intramolecular polarization formed by adding a compound having a ⁇ bond such as a resin; and an organic phosphine compound and an organic boron compound (tetraphenylborate, tetra-p-tolylborate, tetra-n-butylborate, etc.) It is a quinone compound (1,4-benzoquinone, 2,
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples thereof include alkyl diaryl phosphine.
  • the amount of the curing catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, with respect to the total mass of the epoxy resin monomer represented by the general formula (I ′′) and the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring, The content is preferably 0.1% by mass to 1.5% by mass, and more preferably 0.2% by mass to 1% by mass.
  • the epoxy resin containing a multimeric compound can be synthesized using a glass flask if it is a small scale, and using a stainless steel synthesis pot if it is a large scale.
  • a specific synthesis method is as follows, for example. First, the epoxy resin monomer represented by the general formula (I ′′) is charged into a flask or a synthesis kettle, a synthesis solvent is added, and the mixture is heated to a reaction temperature with an oil bath or a heating medium to dissolve the epoxy resin monomer. A dihydric phenol compound having two hydroxyl groups as substituents in one benzene ring is added thereto, and after confirming that the compound is dissolved in the synthesis solvent, a curing catalyst is added to start the reaction.
  • an epoxy resin solution containing a multimeric compound can be obtained.
  • the synthesis solvent is distilled off under reduced pressure under a heating condition in a flask or a synthesis kettle, an epoxy resin containing a multimeric compound is obtained as a solid at room temperature (25 ° C.).
  • the reaction temperature is not limited as long as the reaction between the epoxy group and the phenolic hydroxyl group proceeds in the presence of the curing catalyst, and is preferably in the range of, for example, 100 ° C. to 180 ° C., preferably 100 ° C. to 150 ° C. A range is more preferable.
  • the reaction temperature By setting the reaction temperature to 100 ° C. or higher, the time until the reaction is completed tends to be shortened. On the other hand, the possibility of gelation tends to be reduced by setting the reaction temperature to 180 ° C. or lower.
  • the ratio between the epoxy resin monomer represented by the general formula (I ′′) and the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring is It can be synthesized by changing. Specifically, the number of equivalents (Ep) of the epoxy group of the epoxy resin monomer represented by the general formula (I ′′) and the phenol of a dihydric phenol compound having two hydroxyl groups as substituents on one benzene ring The ratio (Ep / Ph) to the equivalent number (Ph) of the functional hydroxyl group can be synthesized in the range of 100/100 to 100/1.
  • Ep / Ph is preferably in the range of 100/20 to 100/5. More preferably, it is in the range of ⁇ 100 / 10.
  • Ep / Ph is preferably in the range of 100/5 or less, it is possible to suppress a decrease in cross-linking point density and to increase the heat resistance and thermal conductivity of the cured product.
  • Ep / Ph is 100/20 or more, the crystallinity of the resulting multimeric compound is lowered, and handling properties when the epoxy resin composition is in the B-stage state can be improved.
  • the multimeric compound and the epoxy resin represented by the general formula (I ′′) have a mesogenic group in the molecular structure.
  • Patent Document 1 describes that a cured product of an epoxy resin having a mesogenic group in the molecular structure is excellent in thermal conductivity. Further, in WO2013 / 065159, high thermal conductivity and high Tg can be realized by combining a novolak resin in which a divalent phenol compound is novolaked with an epoxy resin monomer represented by the general formula (I ''). It is described.
  • the mesogenic group refers to a functional group that facilitates the expression of crystallinity or liquid crystallinity by the action of intermolecular interaction.
  • a functional group that facilitates the expression of crystallinity or liquid crystallinity by the action of intermolecular interaction.
  • Specific examples thereof include a biphenyl group, a phenylbenzoate group, an azobenzene group, a stilbene group, and derivatives thereof.
  • the epoxy resin monomer represented by the general formula (I ′′) forms a higher-order structure having higher ordering with a filler as a center, and when the thermal conductivity of the cured product is greatly improved, WO2013 / 065159 It is described in the gazette. This is also true for epoxy resins containing multimeric compounds. This is thought to be because a cured product of an epoxy resin having a higher order structure formed by the presence of a filler becomes an efficient heat conduction path, and high heat conductivity is obtained.
  • the higher order structure means a structure including a higher order structure in which constituent elements are arranged to form a micro ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase.
  • the presence or absence of such a higher order structure can be easily determined by observation with a polarizing microscope. In other words, in the observation in the crossed Nicols state, it can be determined by seeing interference fringes due to depolarization.
  • This higher order structure usually exists in an island shape in the cured product to form a domain structure, and one of the islands corresponds to one higher order structure.
  • the constituent elements of this higher order structure are generally formed by covalent bonds.
  • a cured product (thickness: 0.1 to 20 ⁇ m) of a composition obtained by adding 5 volume% to 10 volume% of a filler such as boron nitride filler to a mixture of an epoxy resin, a curing agent, and a curing catalyst is prepared. Observation is performed using a polarizing microscope (for example, BX51 manufactured by Olympus Corporation) in a state where the obtained cured product is sandwiched between slide glasses (thickness: about 1 mm). In the area where the filler is present, an interference pattern is observed around the filler, but in the area where the filler is not present, no interference pattern is observed. This shows that the cured product of the epoxy resin forms a higher order structure with the filler as the center.
  • a polarizing microscope for example, BX51 manufactured by Olympus Corporation
  • the observation is preferably performed in a state in which the analyzer is rotated by 60 ° with respect to the polarizer, not in the crossed Nicols state.
  • a region where no interference pattern is observed that is, a region where the cured product does not form a higher order structure
  • the region where the interference pattern is not observed is not a dark field, and can be distinguished from the filler portion.
  • an epoxy resin monomer having a mesogenic group in the molecular structure is generally easily crystallized, and the melting temperature tends to be higher than that of a general-purpose epoxy resin monomer.
  • the epoxy resin monomer represented by the general formula (I ′′) also corresponds to this.
  • crystallization can be suppressed by partially polymerizing such an epoxy resin monomer to obtain a multimeric compound.
  • handling properties when the epoxy resin composition is in the B-stage state are improved.
  • the epoxy resin monomer represented by the general formula (I ′′) and a divalent phenol compound having two hydroxyl groups as substituents on one benzene ring are reacted to produce a multimeric compound. By doing so, the above-mentioned effect can be easily obtained.
  • High-order structures with high regularity derived from the mesogenic skeleton include nematic structures and smectic structures.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period.
  • the direction of the period of the layer structure is uniform inside the structure having the same period of the smectic structure. That is, the order of molecules is higher in the smectic structure than in the nematic structure.
  • the smectic structure has a higher thermal conductivity than the nematic structure. That is, the order of the molecule is higher in the smectic structure than in the nematic structure, and the thermal conductivity of the cured product is higher in the case of showing the smectic structure. It is considered that the epoxy resin composition can exhibit high thermal conductivity by reacting with a curing agent to form a smectic structure.
  • Whether or not a smectic structure is formed using the epoxy resin composition can be determined by the following method.
  • X-ray diffraction measurement is performed using an X-ray analyzer (for example, manufactured by Rigaku Corporation) using a CuK ⁇ 1 line and a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ in the range of 0.5 ° to 30 °.
  • a diffraction peak exists in the range of 2 ⁇ of 1 ° to 10 °, it is determined that the periodic structure includes a smectic structure. Note that in the case of a highly ordered high-order structure derived from a mesogenic structure, a diffraction peak appears in the range of 2 ⁇ of 1 ° to 30 °.
  • the epoxy resin composition of the present disclosure contains a curing agent.
  • curing agent is not specifically limited, A conventionally well-known hardening
  • a novolak resin obtained by novolacizing a divalent phenol compound (hereinafter sometimes referred to as “specific novolak resin”) is preferable.
  • divalent phenol compound examples include catechol, resorcinol, hydroquinone, 1,2-naphthalenediol, 1,3-naphthalenediol, and the like.
  • a novolak resin obtained by novolacizing a divalent phenol compound refers to a novolac resin in which these divalent phenol compounds are linked by a methylene chain.
  • the specific novolac resin preferably contains a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2).
  • R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group, and aralkyl group represented by R 21 or R 24 may have a substituent.
  • the substituent for the alkyl group include an aryl group, a hydroxyl group, and a halogen atom.
  • the substituent for the aryl group and the aralkyl group include an alkyl group, an aryl group, a hydroxyl group, and a halogen atom.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group, and is an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 13 carbon atoms.
  • An alkyl group having 1 to 6 carbon atoms is more preferable.
  • m21 and m22 each independently represents an integer of 0-2. If m21 is 2, two R 21 may be the same or different and when m22 is 2, two R 24 may be different even in the same.
  • m21 and m22 are preferably each independently 0 or 1, and more preferably 0.
  • N21 and n22 each independently represents an integer of 1 to 7, and represents the content of the structural unit represented by the general formula (II-1) or the structural unit represented by the general formula (II-2). .
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group represented by R 22 , R 23 , R 25 or R 26 may have a substituent.
  • the substituent for the alkyl group include an aryl group, a hydroxyl group, and a halogen atom.
  • substituent for the aryl group and the aralkyl group include an alkyl group, an aryl group, a hydroxyl group, and a halogen atom.
  • R 22 , R 23 , R 25 and R 26 are preferably a hydrogen atom, an alkyl group or an aryl group from the viewpoints of storage stability of the epoxy resin composition and thermal conductivity of the cured product,
  • the alkyl group having 1 to 4 carbon atoms or the aryl group having 6 to 12 carbon atoms is more preferable, and a hydrogen atom is further preferable.
  • at least one of R 22 and R 23 or at least one of R 25 and R 26 is also preferably an aryl group, and is an aryl group having 6 to 12 carbon atoms. Is more preferable.
  • the aryl group may include a hetero atom in the aromatic group, and is preferably a heteroaryl group in which the total number of hetero atoms and carbon is 6 to 12.
  • the specific novolac resin may contain one kind of compound having the structural unit represented by the general formula (II-1) or the structural unit represented by the general formula (II-2), or two or more kinds thereof. May be included.
  • the specific novolac resin preferably contains at least a compound having a structural unit represented by the general formula (II-1) from the viewpoint of thermal conductivity of the cured product, and is represented by the general formula (II-1), More preferably, at least a compound having a structural unit derived from is included.
  • the compound having the structural unit represented by the general formula (II-1) may further include at least one kind of partial structure derived from a phenol compound other than resorcinol.
  • the phenol compound other than resorcinol in the compound having the structural unit represented by the general formula (II-1) include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-tri Examples thereof include hydroxybenzene and 1,3,5-trihydroxybenzene.
  • the compound having the structural unit represented by the general formula (II-1) may contain one type of partial structure derived from these phenol compounds or a combination of two or more types.
  • the compound represented by the general formula (II-2) and having a structural unit derived from catechol may contain at least one kind of partial structure derived from a phenol compound other than catechol.
  • the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the aromatic ring portion of the phenol compound.
  • the position where the hydrogen atom is removed is not particularly limited.
  • the partial structure derived from a phenol compound other than resorcinol includes the heat conductivity of the cured product, the adhesiveness and the storage stability of the epoxy resin composition. From the viewpoint, at least one selected from the group consisting of phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene A partial structure derived from is preferable, and a partial structure derived from at least one selected from catechol and hydroquinone is more preferable.
  • the content ratio of the partial structure derived from resorcinol is not particularly limited.
  • the content ratio of the partial structure derived from resorcinol to the total mass of the compound having the structural unit represented by the general formula (II-1) is preferably 55% by mass or more.
  • Tg and linear expansion coefficient it is more preferably 60% by mass or more, further preferably 80% by mass or more, and from the viewpoint of thermal conductivity of the cured product, it is particularly preferably 90% by mass or more. preferable.
  • the specific novolak resin preferably contains a compound having a structure represented by at least one selected from the group consisting of the following general formula (III-1) to the following general formula (III-4).
  • n31 to n34 each independently represent a positive integer.
  • Ar 31 to Ar 34 each independently represents one of a group represented by the following general formula (III-a) and a group represented by the following general formula (III-b).
  • R 31 and R 34 each independently represent a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the specific novolak resin having a structure represented by at least one selected from the group consisting of the general formula (III-1) to the general formula (III-4) is a method for producing a divalent phenol compound, which will be described later. Can be generated as a secondary.
  • the structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) may be included as the main chain skeleton of the specific novolak resin, It may be included as part of the chain. Further, each structural unit constituting the structure represented by any one of the general formulas (III-1) to (III-4) may be included randomly or regularly. It may be included in a block shape. Further, in the general formulas (III-1) to (III-4), the substitution position of the hydroxyl group is not particularly limited as long as it is on the aromatic ring.
  • a plurality of Ar 31 to Ar 34 may all be the same atomic group or include two or more types of atomic groups. Also good. Ar 31 to Ar 34 each independently represents one of a group represented by the general formula (III-a) and a group represented by the general formula (III-b).
  • R 31 and R 34 in general formula (III-a) and general formula (III-b) are each independently a hydrogen atom or a hydroxyl group, and are preferably a hydroxyl group from the viewpoint of thermal conductivity of the cured product. Further, the substitution positions of R 31 and R 34 are not particularly limited.
  • R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms in R 32 and R 33 include methyl group, ethyl group, n-propyl group, n-butyl group, isopropyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, A heptyl group, an octyl group, etc. are mentioned.
  • substitution positions of R 32 and R 33 in the general formula (III-a) are not particularly limited.
  • Ar 31 to Ar 34 are each independently a group derived from dihydroxybenzene (ie, a general group from the viewpoint of achieving excellent thermal conductivity of the cured product)
  • R 31 is a hydroxyl group
  • R 32 and R 33 are hydrogen atoms
  • R 34 is a hydroxyl group. It is preferably at least one kind selected from the group
  • group derived from dihydroxybenzene means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited.
  • group derived from dihydroxynaphthalene has the same meaning.
  • Ar 31 to Ar 34 are preferably groups independently derived from dihydroxybenzene, and 1,2-dihydroxy More preferably, it is at least one selected from the group consisting of a group derived from benzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol).
  • Ar 31 to Ar 34 preferably include at least a group derived from resorcinol.
  • the structural unit represented by n31 to n34 preferably contains at least a partial structure derived from resorcinol.
  • the content of the partial structure derived from resorcinol is represented by at least one of general formula (III-1) to general formula (III-4) It is preferably 55% by mass or more in the total mass of the compound having a structure, more preferably 60% by mass or more, further preferably 80% by mass or more, and particularly preferably 90% by mass or more. preferable.
  • (m + n) is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less from the viewpoint of handling properties when the epoxy resin composition is in the B-stage state.
  • the lower limit of (m + n) is not particularly limited.
  • n is n31
  • m is m31
  • n is n32
  • m is m32
  • n is n33
  • m is m33
  • n n34
  • the specific novolac resin having a structure represented by at least one selected from the group consisting of the general formula (III-1) to the general formula (III-4) is particularly a dihydroxybenzene in which Ar 31 to Ar 34 are substituted or unsubstituted. , And at least one kind of substituted or unsubstituted dihydroxynaphthalene, it is easy to synthesize and compared to a novolak resin or the like obtained by simply novolacizing these, and a novolak resin having a low softening point tends to be obtained. . Therefore, there is an advantage that the production and handling of an epoxy resin composition containing such a novolak resin as a curing agent is also facilitated.
  • Whether the novolak resin has a partial structure represented by at least one of general formulas (III-1) to (III-4) is determined by field desorption ionization mass spectrometry (FD-MS). ) To determine whether the fragment component contains a component corresponding to a partial structure represented by at least one of the general formulas (III-1) to (III-4).
  • the molecular weight of the specific novolac resin is not particularly limited. From the viewpoint of handling properties when the epoxy resin composition is in a B-stage state, the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and further preferably 350 to 1500. preferable.
  • the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500. These Mn and Mw are measured by a normal method using GPC.
  • the hydroxyl equivalent of the specific novolak resin is not particularly limited. From the viewpoint of the crosslinking density involved in the heat resistance of the cured product, the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and 55 g / eq. More preferably, it is ⁇ 120 g / eq.
  • the curing agent may contain a monomer that is a phenol compound constituting the specific novolac resin.
  • a monomer content ratio (henceforth "monomer content ratio") of the monomer which is a phenol compound which comprises specific novolak resin in a hardening
  • the monomer content in the curing agent is preferably 10% by mass to 50% by mass, and 15% by mass to 45% by mass. It is more preferable that the content be 20% by mass to 40% by mass.
  • the monomer content is 50% by mass or less, the amount of monomers that do not contribute to crosslinking during the curing reaction is reduced and the number of crosslinked high molecular weight substances is increased, so that a higher-density higher-order structure is formed and the cured product is formed.
  • the thermal conductivity of is improved.
  • molding because it is 10 mass% or more, it exists in the tendency for adhesiveness with a filler to improve more and to achieve the more excellent thermal conductivity and heat resistance of hardened
  • the content of the curing agent in the epoxy resin composition is not particularly limited.
  • the ratio of the number of equivalents of active hydrogen of the phenolic hydroxyl group in the curing agent (number of equivalents of phenolic hydroxyl group) to the number of equivalents of epoxy group of the epoxy resin (number of equivalents of phenolic hydroxyl group / number of equivalents of epoxy group) is 0.5. Is preferably ⁇ 2, more preferably 0.8 ⁇ 1.2.
  • the epoxy resin composition may further contain a curing catalyst as necessary.
  • a curing catalyst By including a curing catalyst, the epoxy resin composition can be sufficiently cured.
  • the type and content of the curing catalyst are not particularly limited, and an appropriate type and content can be selected from the viewpoint of reaction rate, reaction temperature, storage property, and the like. Specific examples include imidazole compounds, organophosphorus compounds, tertiary amines, quaternary ammonium salts, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of heat resistance of the cured product, at least one selected from the group consisting of an organic phosphine compound and a complex of an organic phosphine compound and an organic boron compound is preferable.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples thereof include alkyl diaryl phosphine.
  • an organic phosphine compound and an organic boron compound include tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, tetrabutylphosphonium tetraphenylborate, and tetraphenylphosphonium butyltriphenyl.
  • examples thereof include borate, butyltriphenylphosphonium tetraphenylborate, and methyltributylphosphonium tetraphenylborate.
  • One curing catalyst may be used alone, or two or more curing catalysts may be used in combination.
  • a method for efficiently producing a B stage sheet, a C stage sheet, and a cured product which will be described later, there is a method in which two types of curing catalysts having different reaction start temperatures and reaction rates between an epoxy resin and a curing agent are used.
  • the mixing ratio can be determined without particular limitation depending on the characteristics required for the B stage sheet, the C stage sheet, and the cured product.
  • the content of the curing catalyst is 0.5% by mass to 1.5% by mass of the total mass of the epoxy resin and the curing agent. It is preferably 0.5% by mass to 1% by mass, more preferably 0.6% by mass to 1% by mass.
  • the epoxy resin composition of the present disclosure contains a filler.
  • the filler includes at least a nitride filler from the viewpoint of thermal conductivity.
  • the material for the nitride filler include boron nitride, silicon nitride, and aluminum nitride.
  • the material for the nitride filler is preferably at least one of boron nitride and aluminum nitride from the viewpoint of thermal conductivity.
  • the material of the nitride filler is more preferably boron nitride from the viewpoint of insulation.
  • nitride filler is contained in the epoxy resin composition or a semi-cured product or a cured product thereof can be confirmed by, for example, energy dispersive X-ray analysis (EDX).
  • EDX energy dispersive X-ray analysis
  • SEM scanning electron microscope
  • EDX it is also possible to confirm the distribution state of the nitride filler in the cross section of the epoxy resin composition or a semi-cured product or a cured product thereof.
  • the crystal form of boron nitride may be any of hexagonal, cubic and rhombohedral, and the particle size is easy Hexagonal crystal is preferable. Two or more types of boron nitride having different crystal forms may be used in combination.
  • the nitride filler is preferably pulverized or agglomerated.
  • the particle shape of the nitride filler include round shapes, spherical shapes, and flake shapes.
  • the nitride filler may be aggregated particles in which these particles are aggregated.
  • the ratio of the major axis to the minor axis is a round shape or a spherical shape of 3 or less, more preferably a round shape having an aspect ratio of 2 or less.
  • the aspect ratio of the particles means a value obtained by imaging particles using an electron microscope or the like, measuring the major axis and minor axis of each particle, and calculating the arithmetic average of the ratio of the major axis to the minor axis. .
  • the major axis of the particle refers to the length of the circumscribed rectangle of the particle
  • the minor axis of the particle refers to the width of the circumscribed rectangle of the particle.
  • the term “spherical particles” means that the aspect ratio is 1.5 or less.
  • agglomerated hexagonal boron nitride particles are preferable. Since the agglomerated hexagonal boron nitride particles have many gaps, the particles are easily crushed and deformed by applying pressure to the particles. Therefore, even if the filler content is lowered in consideration of the applicability of the varnish of the epoxy resin composition, the substantial filler content can be increased by compressing the epoxy resin composition with a press after application. It becomes possible. From the viewpoint of easy formation of a heat conduction path by contact between fillers having high thermal conductivity, the particle shape of the filler is more rounded or flake shaped than the spherical shape, and the number of particle contact points increases.
  • spherical particles are preferable from the viewpoint of filler filling property, thixotropic property of the epoxy resin composition and viscosity.
  • nitride fillers having different particle shapes may be used alone or in combination of two or more.
  • other fillers other than the nitride filler may be used in combination in order to fill the gaps in the nitride filler.
  • the other filler material is not particularly limited as long as it is an inorganic compound having an insulating property.
  • an inorganic compound having “insulating properties” means that the volume resistivity of the inorganic compound is 10 12 ⁇ cm or more.
  • Other filler materials preferably have high thermal conductivity. Specific examples of other filler materials include beryllium oxide, aluminum oxide (alumina), magnesium oxide, silicon oxide, talc, mica, aluminum hydroxide, barium sulfate, and the like. Among these, aluminum oxide and magnesium oxide are preferable from the viewpoint of thermal conductivity.
  • volume average particle diameter (D50) of a nitride filler there is no restriction
  • the thickness is more preferably 20 ⁇ m to 100 ⁇ m from the viewpoint of thixotropic properties, and further preferably 20 ⁇ m to 60 ⁇ m from the viewpoint of insulation.
  • the filler may exhibit a particle size distribution having a single peak or may exhibit a particle size distribution having two or more peaks.
  • a filler showing a particle size distribution having two or more peaks is preferable, and a filler showing a particle size distribution having three or more peaks is more preferable.
  • the filler When the filler exhibits a particle size distribution having three peaks, the first peak present in the range of 0.1 ⁇ m to 0.8 ⁇ m, the second peak present in the range of 1 ⁇ m to 8 ⁇ m, and 20 ⁇ m to 60 ⁇ m It is preferable to have a third peak existing in the range of.
  • the first filler having an average particle size of 0.1 ⁇ m to 0.8 ⁇ m as small particle size particles, It is preferable to use a second filler having an average particle diameter of 1 ⁇ m to 8 ⁇ m as the medium particle diameter and a third filler having an average particle diameter of 20 ⁇ m to 60 ⁇ m as the large particle diameter.
  • the filler filling rate tends to be further improved, and the thermal conductivity tends to be further improved.
  • the average particle diameter of the third filler is preferably 30 ⁇ m to 50 ⁇ m, and the average particle diameter of the second filler is 1/15 to 1/1 / of the average particle diameter of the third filler.
  • the average particle diameter of the first filler is preferably 1/10 to 1/4 of the average particle diameter of the second filler.
  • the particle size distribution of the filler refers to a volume cumulative particle size distribution measured using a laser diffraction method. Moreover, the average particle diameter of a filler says the particle diameter from which volume cumulative particle size distribution measured using a laser diffraction method will be 50%.
  • the particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, LS13 manufactured by Beckman Coulter, Inc.).
  • the filler dispersion for measurement can be obtained by introducing a filler into a 0.1% by mass sodium metaphosphate aqueous solution, ultrasonically dispersing the filler, and adjusting the concentration to an appropriate light amount in terms of device sensitivity. From the measured volume cumulative particle size distribution, it is determined whether the filler exhibits a particle size distribution having a single peak or a particle size distribution having two or more peaks.
  • the nitride filler is preferably used as the third filler.
  • the first filler and the second filler may be nitride fillers or other fillers.
  • the material of the first filler and the second filler may be at least one of aluminum nitride and aluminum oxide from the viewpoint of thermal conductivity and thixotropic modification of the varnish when the epoxy resin composition is used in the varnish state. preferable.
  • the content of the filler in the epoxy resin composition is preferably 50% by volume to 90% by volume from the viewpoint of moldability, and more preferably 60% by volume to 85% by volume from the viewpoint of thermal conductivity.
  • it is more preferably 65% by volume to 78% by volume.
  • the proportion of the nitride filler in the filler is preferably 10% by volume to 100% by volume from the viewpoint of insulating properties, and the thixotropic properties of the varnish when the epoxy resin composition is used in the varnish state. From the viewpoint, it is more preferably 20% by volume to 90% by volume, and further preferably 30% by volume to 85% by volume from the viewpoint of thermal conductivity. Further, the proportion of the nitride filler in the filler is preferably 50% by volume to 95% by volume in other embodiments, more preferably 60% by volume to 95% by volume from the viewpoint of filling properties. From the viewpoint of thermal conductivity, it is more preferably 65% by volume to 92% by volume.
  • the volume-based content rate of the filler in an epoxy resin composition is measured as follows. First, the mass (Wc) of the epoxy resin composition at 25 ° C. is measured, and the epoxy resin composition is heated in air at 400 ° C. for 2 hours and then at 700 ° C. for 3 hours to decompose and burn the resin component. Then, the mass (Wf) of the remaining filler at 25 ° C. is measured. Next, the density (df) of the filler at 25 ° C. is obtained using an electronic hydrometer or a specific gravity bottle. Next, the density (dc) of the epoxy resin composition at 25 ° C. is measured by the same method.
  • the volume (Vc) of the epoxy resin composition and the volume (Vf) of the remaining filler are obtained, and the volume of the remaining filler is divided by the volume of the epoxy resin composition as shown in (Formula 1).
  • the volume ratio (Vr) is obtained.
  • Vc Volume of the epoxy resin composition (cm 3 )
  • Wc mass of epoxy resin composition
  • dc Density of epoxy resin composition (g / cm 3 )
  • Vf Volume of filler (cm 3 )
  • Wf Mass of filler
  • df density of the filler (g / cm 3 )
  • Vr Volume ratio of filler (%)
  • the content based on the mass of the filler is not particularly limited. Specifically, when the epoxy resin composition is 100 parts by mass, the filler content is preferably 1 part by mass to 99 parts by mass, and more preferably 50 parts by mass to 97 parts by mass. More preferably, it is 70 to 95 parts by mass. When the filler content is within the above range, higher thermal conductivity can be achieved.
  • the epoxy resin composition may contain other components in addition to the above components, if necessary.
  • examples of other components include a solvent, an elastomer, a silane coupling agent, a dispersant, and an anti-settling agent.
  • the epoxy resin composition may contain at least one kind of solvent.
  • the solvent is not particularly limited as long as it does not inhibit the curing reaction of the epoxy resin composition, and a commonly used organic solvent can be appropriately selected and used. Specific examples of the solvent include methyl ethyl ketone, cyclohexanone, ethyl lactate and the like.
  • the content of the solvent contained in the epoxy resin composition is preferably 10% by mass to 40% by mass, and more preferably 10% by mass to 35% by mass. More preferably, the content is 15% by mass to 30% by mass.
  • the epoxy resin composition preferably contains at least one silane coupling agent.
  • the silane coupling agent By including the silane coupling agent, the thermal conductivity and the insulation reliability tend to be further improved. This can be considered, for example, because the silane coupling agent plays a role of forming a covalent bond between the filler surface and the resin surrounding the filler (corresponding to a binder agent).
  • silane coupling agent may be used. Silane coupling with functional groups such as epoxy groups, amino groups, mercapto groups, ureido groups, hydroxyl groups, etc., considering compatibility with epoxy resins or curing agents and reduction of heat conduction loss at the interface between resin and filler It is preferable to use an agent.
  • the content of the silane coupling agent in the epoxy resin composition is not particularly limited.
  • the content is preferably 0.01% by mass to 0.1% by mass in the solid content of the epoxy resin composition.
  • the silane coupling agent only needs to be contained in the epoxy resin composition, and may be present in a state where the surface of the filler is coated or may be present alone in the epoxy resin composition.
  • the method for adding the silane coupling agent to the epoxy resin composition is not particularly limited. Specifically, the integral method added when mixing other materials such as epoxy resin, curing agent, filler, etc., after mixing a certain amount of silane coupling agent with a small amount of epoxy resin, There are a master batch method of mixing with a material, a pretreatment method of mixing a filler and a silane coupling agent before mixing with another material such as an epoxy resin, and treating the surface of the filler with the silane coupling agent in advance.
  • the pretreatment method includes a dry method in which an undiluted solution or solution of a silane coupling agent is dispersed together with a filler by high-speed stirring, and the filler is slurried with a dilute solution of the silane coupling agent.
  • a wet method or the like in which the filler surface is treated with a silane coupling agent by being immersed.
  • the adhesion amount of silicon atoms derived from the silane coupling agent per specific surface area of the filler is preferably 5.0 ⁇ 10 ⁇ 6 mol / m 2 to 10.0 ⁇ 10 ⁇ 6 mol / m 2 . More preferably, it is 5 ⁇ 10 ⁇ 6 mol / m 2 to 9.5 ⁇ 10 ⁇ 6 mol / m 2 , and 6.0 ⁇ 10 ⁇ 6 mol / m 2 to 9.0 ⁇ 10 ⁇ 6 mol / m. 2 is more preferable.
  • the measuring method of the adhesion amount of the silicon atom derived from the silane coupling agent per specific surface area of the filler is as follows.
  • the BET method is mainly applied as a method for measuring the specific surface area of the filler.
  • the BET method is a gas adsorption method in which inert gas molecules such as nitrogen (N 2 ), argon (Ar), and krypton (Kr) are adsorbed on solid particles, and the specific surface area of the solid particles is measured from the amount of adsorbed gas molecules. Is the law.
  • the specific surface area can be measured using a specific surface area pore distribution measuring apparatus (for example, SA3100, manufactured by Beckman Coulter, Inc.).
  • the silicon atom derived from the silane coupling agent present on the surface of the filler can be quantitatively measured by 29 Si CP / MAS (Cross Polarization) / (Magic Angle Spinning) solid-state NMR (Nuclear Magnetic Resonance). Since this CP / MAS solid-state NMR (for example, JNM-ECA700 manufactured by JEOL Ltd.) has high resolution, even when the filler contains silica, the silicon atom derived from silica as the filler and the silicon derived from the silane coupling agent It is possible to distinguish atoms. In the case where silica is not contained in the filler, silicon atoms derived from the silane coupling agent can be quantified also by a fluorescent X-ray analyzer (for example, Supermini 200 manufactured by Rigaku Corporation).
  • a fluorescent X-ray analyzer for example, Supermini 200 manufactured by Rigaku Corporation.
  • the viscosity of the epoxy resin composition at 25 ° C. is preferably 0.5 Pa ⁇ s to 5 Pa ⁇ s, and preferably 0.5 Pa ⁇ s to 4 Pa ⁇ s. More preferably, it is 1 Pa ⁇ s to 3 Pa ⁇ s.
  • the viscosity at 25 ° C. of the epoxy resin composition was measured at a temperature of 25 ° C. at a shear rate of 5.0 s ⁇ 1 using a rotary shear viscometer equipped with a cone plate (diameter 40 mm, cone angle 0 °). Value. Further, the variation index at 25 ° C.
  • the variation index of the epoxy resin composition was (viscosity at a shear rate of 0.5 s ⁇ 1 ) / (5.0 s ⁇ ) when the viscosity of the composition kept at 25 ° C. was measured using a rheometer. (Viscosity at a shear rate of 1 ). Specifically, the “thickening index” is measured as a shear viscosity at a temperature of 25 ° C. using a rotary shear viscometer equipped with a cone plate (diameter 40 mm, cone angle 0 °).
  • the resin sheet of this indication has a resin composition layer containing the epoxy resin composition of this indication.
  • the resin composition layer may be one layer or two or more layers.
  • the resin sheet of the present disclosure may further include a release film on the resin composition layer as necessary.
  • the resin sheet is, for example, a varnish-like epoxy resin composition (hereinafter also referred to as “resin varnish”) prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone to the epoxy resin composition, and a release film such as a PET film. It can manufacture by drying after giving on top.
  • the resin varnish can be applied by a known method. Specific examples include methods such as comma coating, die coating, lip coating, and gravure coating. As a method for applying a resin varnish for forming a resin composition layer with a predetermined thickness, a comma coating method for passing an object to be coated between gaps, a die coating method for applying a resin varnish with a flow rate adjusted from a nozzle, etc. Apply. For example, when the thickness of the resin composition layer before drying is 50 ⁇ m to 500 ⁇ m, it is preferable to use a comma coating method.
  • the drying method is not particularly limited as long as at least a part of the organic solvent contained in the resin varnish can be removed, and can be appropriately selected from commonly used drying methods.
  • the density of the resin sheet is not particularly limited, and is usually 3.0 g / cm 3 to 3.4 g / cm 3 . Considering compatibility between flexibility and thermal conductivity, the density of the resin sheet is preferably 3.0 g / cm 3 to 3.3 g / cm 3 , and preferably 3.1 g / cm 3 to 3.3 g / cm 3 . More preferably.
  • the density of a resin sheet can be adjusted with the compounding quantity of a filler, for example.
  • the density of the resin sheet refers to the density of the resin composition layer, and when the resin sheet has two or more resin composition layers, it refers to the average value of the densities of all the resin composition layers.
  • the release film when the release film is contained in the resin sheet, it means the density of the resin composition layer excluding the release film.
  • the resin sheet has a first resin composition layer containing an epoxy resin composition and a second resin composition layer containing an epoxy resin composition laminated on the first resin composition layer.
  • the resin sheet is preferably a laminate of a first resin composition layer formed from an epoxy resin composition and a second resin composition layer formed from an epoxy resin composition.
  • the epoxy resin compositions forming the first resin composition layer and the second resin composition layer may have the same composition or different compositions. It is preferable that the epoxy resin composition which forms a 1st resin composition layer and a 2nd resin composition layer is the same composition from a heat conductive viewpoint.
  • the resin sheet is a laminate
  • the first resin composition layer and the second resin composition layer formed from the epoxy resin composition are overlaid. With such a configuration, the withstand voltage tends to be further improved.
  • the probability of occurrence of pinholes or voids in the resin sheet manufacturing method is not high, but by overlapping two resin composition layers, the probability of overlap of thin portions becomes the square, and the number of pinholes or voids is zero. It will approach. Since the dielectric breakdown occurs at a place where the insulation is weakest, it can be considered that the effect of further improving the withstand voltage can be obtained by overlapping the two resin composition layers. Furthermore, it can be considered that by overlapping the two resin composition layers, the contact probability between the fillers is improved, and the effect of improving the thermal conductivity is also produced.
  • the method for producing a resin sheet includes a step of obtaining a laminate by stacking a second resin composition layer formed from an epoxy resin composition on a first resin composition layer formed from an epoxy resin composition, It is preferable to include a step of subjecting the obtained laminate to a heat and pressure treatment. With such a manufacturing method, the withstand voltage tends to be further improved.
  • the thickness of the resin sheet can be appropriately selected according to the purpose.
  • the thickness of the resin composition layer can be 50 ⁇ m to 350 ⁇ m, and is preferably 60 ⁇ m to 300 ⁇ m from the viewpoint of thermal conductivity, electrical insulation, and sheet flexibility.
  • the B stage sheet of the present disclosure has a semi-cured resin composition layer including a semi-cured product of the epoxy resin composition of the present disclosure.
  • a B stage sheet can be manufactured with a manufacturing method including a process of heat-treating a resin sheet to a B stage state, for example. By being formed by heat-treating the resin sheet, it is excellent in thermal conductivity and excellent in flexibility and usable time as a B stage sheet.
  • the provisions of JIS K6900: 1994 are referred to.
  • the viscosity of the B-stage sheet is 10 4 Pa ⁇ s to 10 5 Pa ⁇ s at room temperature (25 ° C.), whereas the viscosity is 10 2 Pa ⁇ s to 10 3 Pa ⁇ s at 100 ° C. Is preferably reduced. Moreover, the cured resin composition layer to be described later does not melt even by heating.
  • the viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
  • the resin composition layer of the resin sheet has hardly any curing reaction, the resin composition layer has flexibility, but is not flexible as a sheet, and the sheet is not self-supporting in a state where a support such as a PET film is removed. , Handling may be difficult. Therefore, the resin composition layer is preferably B-staged by heat treatment described below.
  • the conditions for heat-treating the resin sheet are not particularly limited as long as the resin composition layer can be semi-cured to the B stage state, and can be appropriately selected according to the configuration of the epoxy resin composition.
  • a heat treatment method selected from a hot vacuum press, a hot roll laminate, or the like is preferable for the purpose of eliminating voids in the resin composition layer generated when the epoxy resin composition is applied.
  • the resin composition layer can be semi-cured into a B-stage state by heat-pressing at a heating temperature of 80 ° C. to 180 ° C. for 1 second to 3 minutes under reduced pressure (eg, 1 kPa).
  • the press pressure can be set to 5 MPa to 20 MPa.
  • the thickness of the B stage sheet can be appropriately selected according to the purpose, and can be, for example, 50 ⁇ m to 350 ⁇ m, and is 60 ⁇ m to 300 ⁇ m from the viewpoint of thermal conductivity, electrical insulation, and sheet flexibility. It is preferable.
  • seat can also be produced by heat-pressing in the state which laminated
  • the C stage sheet of the present disclosure has a cured resin composition layer including a cured product of the epoxy resin composition of the present disclosure.
  • the C stage sheet can be manufactured, for example, by a manufacturing method including a step of heat-treating a resin sheet or a B stage sheet to a C stage state.
  • the conditions for heat-treating the resin sheet or the B-stage sheet are not particularly limited as long as the resin composition layer or the semi-cured resin composition layer can be cured to the C-stage state, and appropriately according to the configuration of the epoxy resin composition. You can choose. From the viewpoint of suppressing the generation of voids in the C stage sheet and improving the voltage resistance of the C stage sheet, a heat treatment method such as a thermal vacuum press is preferable for the heat treatment.
  • the resin composition layer or the semi-cured resin composition layer is cured in a C-stage state by heat pressing at a heating temperature of 150 ° C. to 220 ° C. for 1 minute to 30 minutes and 1 MPa to 20 MPa. Can do.
  • the thickness of the C stage sheet can be appropriately selected according to the purpose, and can be, for example, 50 ⁇ m to 350 ⁇ m, and is 60 ⁇ m to 300 ⁇ m from the viewpoint of thermal conductivity, electrical insulation, and sheet flexibility. It is preferable.
  • seat can also be produced by heat-pressing in the state which laminated
  • the C stage sheet preferably has a diffraction peak in the range of diffraction angle 2 ⁇ of 1 ° to 10 ° by X-ray diffraction using CuK ⁇ 1 line.
  • the C stage sheet having such a diffraction peak has a highly ordered smectic structure among higher order structures, and tends to be excellent in thermal conductivity.
  • the cured product of the present disclosure is a cured product of the epoxy resin composition of the present disclosure.
  • curing an epoxy resin composition The method used normally can be selected suitably.
  • cured material of an epoxy resin composition is obtained by heat-processing an epoxy resin composition.
  • limiting in particular as a method of heat-processing an epoxy resin composition there is no restriction
  • the temperature range of heat processing can be suitably selected according to the kind of epoxy resin and hardening
  • limiting in particular as time of heat processing According to the shape of cured
  • the cured product preferably has a diffraction peak in the range of diffraction angle 2 ⁇ of 1 ° to 10 ° by X-ray diffraction using CuK ⁇ 1 line.
  • the cured product having such a diffraction peak has a highly ordered smectic structure among higher order structures, and tends to be excellent in thermal conductivity.
  • the metal foil with a resin of the present disclosure includes a metal foil and a semi-cured resin composition layer including a semi-cured product of the epoxy resin composition of the present disclosure disposed on the metal foil.
  • the metal foil with resin of the present disclosure is excellent in thermal conductivity and electrical insulation.
  • the semi-cured resin composition layer is obtained by heat-treating the epoxy resin composition so as to be in a B stage state.
  • the metal foil examples include gold foil, copper foil, and aluminum foil, and copper foil is generally used.
  • the thickness of the metal foil is not particularly limited as long as it is 1 ⁇ m to 35 ⁇ m. In addition, it exists in the tendency which the flexibility of metal foil with a resin improves more by using metal foil of 20 micrometers or less.
  • nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as an intermediate layer, and a copper layer of 0.5 ⁇ m to 15 ⁇ m is provided on one side of the intermediate layer.
  • a composite foil having a three-layer structure in which a copper layer of 10 ⁇ m to 300 ⁇ m is provided on the other surface of the intermediate layer, or a composite foil having a two-layer structure in which an aluminum foil and a copper foil are combined can be used.
  • the metal foil with resin is formed by, for example, forming a resin composition layer (resin sheet) by applying an epoxy resin composition (preferably a resin varnish) on the metal foil and drying it, and then heat-treating the resin composition layer. It can be manufactured by setting the material layer to the B-stage state.
  • the method for forming the resin composition layer is as described above.
  • the production conditions for the resin-attached metal foil are not particularly limited.
  • the resin composition layer after drying it is preferable that 80% by mass or more of the organic solvent used for the resin varnish is volatilized.
  • the drying temperature is about 80 ° C. to 180 ° C., and the drying time can be appropriately selected in consideration of the gelation time of the resin varnish, and is not particularly limited.
  • the coating amount of the resin varnish is preferably applied so that the thickness of the resin composition layer after drying is 50 ⁇ m to 350 ⁇ m, and more preferably 60 ⁇ m to 300 ⁇ m.
  • the resin composition layer after drying is in a B-stage state by heat treatment.
  • the conditions for heat treatment of the resin composition layer are the same as the heat treatment conditions for the B-stage sheet.
  • the metal substrate of the present disclosure is disposed on the metal support, a cured resin composition layer including a cured product of the epoxy resin composition of the present disclosure disposed on the metal support, and the cured resin composition layer.
  • a metal foil By disposing a cured resin composition layer containing a cured product of the epoxy resin composition of the present disclosure between the metal support and the metal foil, adhesion, thermal conductivity, and electrical insulation are improved.
  • the material, thickness, etc. of the metal support are appropriately selected according to the purpose. Specifically, a metal such as aluminum or iron can be used and the thickness can be set to 0.5 mm to 5 mm.
  • the metal foil disposed on the cured resin composition layer is synonymous with the metal foil in the resin-attached metal foil, and the preferred embodiment is also the same.
  • the metal substrate of this indication can be manufactured as follows, for example.
  • the epoxy resin composition is applied in the same manner as in the case of a metal foil with a resin and dried to form a resin composition layer, and the metal foil is further arranged on the resin composition layer
  • a metal substrate can be manufactured by heating and pressurizing this and hardening
  • a metal foil with resin is laminated on a metal support so that the semi-cured resin composition layer faces the metal support, and then this is heated and pressurized to cure the semi-cured resin composition layer. It can also be manufactured.
  • Resin B to Resin F A part of the resin A represented by the above structure was reacted with a predetermined amount of hydroquinone (manufactured by Wako Pure Chemical Industries, Ltd., hydroxyl equivalent: 55 g / eq), and prepolymerized compounds were used as Resin B to Resin F. .
  • the ratio (Ep / Ph) between the number of equivalents of epoxy group (Ep) of resin A and the number of equivalents of phenolic hydroxyl group derived from hydroquinone (Ph) was set as follows.
  • Resin D 100/13
  • Resin E 100/15
  • Resin F 100/19
  • Ep / Ph was 100/8 (resin B), 100/10 (resin C), 100/13 (resin D), 100/15.
  • Hydroquinone was added so as to be (resin E) and 100/19 (resin F), and 0.5 g of triphenylphosphine was further added, and heating was continued at an oil bath temperature of 120 ° C. After heating for 5 hours, propylene glycol monomethyl ether was distilled off under reduced pressure from the reaction solution, and the residue was cooled to room temperature (25 ° C.), whereby resin B to resin in which a part of the epoxy resin monomer was prepolymerized F was obtained.
  • the molecular weight of the structure estimated to be obtained from the reaction between resin A and hydroquinone is collated with the molecular weight of the target compound determined by liquid chromatography performed using a liquid chromatograph equipped with UV and mass spectrum detectors.
  • the compounds having the following structures were contained in Resin B to Resin F.
  • liquid chromatography was performed using LaChrom II C18 manufactured by Hitachi, Ltd. as the analytical column, tetrahydrofuran as the eluent, and a flow rate of 1.0 ml / min.
  • absorbance at a wavelength of 280 nm was detected.
  • a compound having the following structure had a peak at a position of 17.4 minutes, and resin A had a peak at a position of 14.9 minutes.
  • the mass spectrum detector detected an ionization voltage of 2700 V, and the molecular weight of the compound having the following structure was 959 with one proton added.
  • the epoxy equivalents of Resin B to Resin F were measured by the perchloric acid titration method.
  • the contents of the compound having the above structure and the unreacted resin A contained in the resins B to F were measured by reverse phase chromatography (RPLC).
  • RPLC reverse phase chromatography
  • Mightysil RP-18 manufactured by Kanto Chemical Co., Inc. was used as the RPLC column for analysis.
  • the measurement was carried out while changing continuously (35 minutes from the start).
  • the flow rate was 1.0 ml / min.
  • Table 1 shows the content ratios of the compound having the above structure (dimer compound) and the unreacted resin A contained in the resin B to the resin F.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC column for analysis trade names: G2000HXL and G3000HXL manufactured by Tosoh Corporation were used.
  • a calibration curve was prepared using a polystyrene standard sample, and Mn and Mw were calculated using polystyrene conversion values.
  • the hydroxyl equivalent was measured as follows.
  • the hydroxyl equivalent was measured by acetyl chloride-potassium hydroxide titration method.
  • the determination of the titration end point was performed by potentiometric titration instead of the coloring method using an indicator because the solution color was dark.
  • the hydroxyl group of the measurement resin was acetylated with acetyl chloride in a pyridine solution, the excess reagent was decomposed with water, and the produced acetic acid was titrated with a potassium hydroxide / methanol solution to measure the hydroxyl group equivalent. .
  • the obtained CRN is a mixture of compounds having a partial structure represented by at least one of the above general formulas (III-1) to (III-4), and Ar is represented by the general formula (III-a)
  • R 31 is a hydroxyl group and R 32 and R 33 are hydrogen atoms, a group derived from 1,2-dihydroxybenzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol)
  • It was a novolak resin hydroxyl equivalent: 62 g / eq, number average molecular weight: 422, weight average molecular weight: 564) containing 35% by mass of a monomer component (resorcinol) as a diluent.
  • TPP Triphenylphosphine [Wako Pure Chemical Industries, Ltd., trade name]
  • KBM-573 3-phenylaminopropyltrimethoxysilane [silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd., trade name]
  • the copper foil of the cured product of the epoxy resin composition with copper foil obtained above was removed by etching to obtain a C stage sheet.
  • the obtained C stage sheet was cut into a 10 mm square and used as a sample.
  • the 2 [Theta] is 0.5 ° ⁇ 30 ° manufactured by Rigaku Corporation X-ray analyzer in the range of, 2 [Theta] is 1
  • the presence or absence of a smectic structure was confirmed by the presence or absence of a diffraction peak in the range of 10 ° to 10 °.
  • the copper foil of the cured product of the epoxy resin composition with copper foil obtained above is etched while leaving the entire surface on one side and leaving a circular pattern with a diameter of 20 mm on the other side.
  • a cured product of the epoxy resin composition (C stage sheet with electrode) was obtained.
  • the C stage sheet with an electrode is sandwiched between cylindrical electrodes having a diameter of 10 mm, and the boosting speed is 500 V / s, AC 60 Hz, cut.
  • the dielectric breakdown voltage was measured in an off-current of 10 mA, 25 ° C. and in Fluorinert.
  • the copper foil of the cured product of the epoxy resin composition with copper foil obtained above was removed by etching to obtain a C stage sheet.
  • the obtained C stage sheet was cut out to 30 mm ⁇ 5 mm, and using a tensile vibration test jig with a dynamic viscoelasticity measuring apparatus (RSA II manufactured by TA Instruments Co., Ltd.), frequency: 10 Hz, heating rate: 5 ° C./min. Under these conditions, dynamic viscoelasticity was measured in the temperature range of 40 ° C. to 300 ° C. to determine the glass transition temperature.
  • RSA II dynamic viscoelasticity measuring apparatus
  • the average thickness of the C stage sheet was obtained as an arithmetic average value by measuring the thickness of 9 points using a micrometer (Mitutoyo Corporation, Micrometer IP65).
  • Table 2 shows the composition of each epoxy resin composition
  • Table 3 shows the evaluation results.
  • the B stage sheet having flexibility and excellent handling properties is obtained by using an epoxy resin in which the proportion of the dimer compound is 15% by mass to 28% by mass. Obtained.
  • cured material (C stage sheet) of the epoxy resin composition with copper foil formed the smectic structure, and it turned out that it is compatible with high thermal conductivity and dielectric breakdown voltage.
  • the copper foil bonding pressures of Comparative Example 3 and Examples 1 to 5 and Comparative Examples 4 and 6 having the same filler composition are compared, fluidity is improved by using Resin B to Resin F. It was found that the pressure for attaching the copper foil can be reduced.

Abstract

An epoxy resin composition which comprises an epoxy resin, a hardener, and a filler, wherein the filler comprises a nitride filler and the epoxy resin comprises one or more polymer compounds each having at least one structural unit selected from the group consisting of structural units represented by general formula (IA) and structural units represented by general formula (IB), the polymer compounds including a dimer compound having, in the molecule, two structural units represented by general formula (II), the dimer compound accounting for 15-28 mass% of the whole epoxy resin.

Description

エポキシ樹脂組成物、樹脂シート、Bステージシート、Cステージシート、硬化物、樹脂付金属箔及び金属基板Epoxy resin composition, resin sheet, B stage sheet, C stage sheet, cured product, metal foil with resin, and metal substrate
 本発明は、エポキシ樹脂組成物、樹脂シート、Bステージシート、Cステージシート、硬化物、樹脂付金属箔及び金属基板に関する。 The present invention relates to an epoxy resin composition, a resin sheet, a B stage sheet, a C stage sheet, a cured product, a metal foil with resin, and a metal substrate.
 近年、電子機器及び電気機器の小型化に伴って発熱量が増大したため、その熱をいかに放散させるかが重要な課題となっている。これらの機器に広く用いられている絶縁材料としては、絶縁性、耐熱性等の観点から、熱硬化性樹脂の硬化物が挙げられる。しかし、一般的に熱硬化性樹脂の硬化物の熱伝導率は低く、熱放散を妨げる大きな要因の一つとなっているため、高熱伝導性を有する熱硬化性樹脂の硬化物の開発が望まれている。 In recent years, the amount of heat generated has increased with the miniaturization of electronic and electrical equipment, and so how to dissipate that heat has become an important issue. Examples of the insulating material widely used in these devices include a cured product of a thermosetting resin from the viewpoints of insulation and heat resistance. However, since the thermal conductivity of cured products of thermosetting resins is generally low and is one of the major factors that hinder heat dissipation, development of cured products of thermosetting resins with high thermal conductivity is desired. ing.
 高熱伝導性を有する熱硬化性樹脂の硬化物として、分子構造中にメソゲン骨格を有するエポキシ樹脂組成物の硬化物が提案されている(例えば、特許文献1参照)。また、高熱伝導性を有し、軟化点(融点)の低い熱硬化性樹脂として、特定の構造を有するエポキシ樹脂が提案されている(例えば、特許文献2参照)。 As a cured product of a thermosetting resin having high thermal conductivity, a cured product of an epoxy resin composition having a mesogen skeleton in a molecular structure has been proposed (for example, see Patent Document 1). Moreover, an epoxy resin having a specific structure has been proposed as a thermosetting resin having high thermal conductivity and a low softening point (melting point) (see, for example, Patent Document 2).
 複数の樹脂を含む樹脂組成物の一例として、分子構造中に特定のメソゲン骨格を有するエポキシ化合物とその他のエポキシ樹脂とを混合する例が開示されている(例えば、特許文献3及び4参照)。特許文献3及び4では、樹脂硬化物を製造する際の硬化温度範囲が分子構造中に特定のメソゲン骨格を有するエポキシ化合物単体の場合よりも広くなり、高熱伝導性を有する樹脂硬化物の製造が容易になることが報告されている。さらには、液晶性ポリマーと熱硬化性樹脂とが相分離した状態で存在している絶縁組成物が提案されている(例えば、特許文献5参照)。 As an example of a resin composition containing a plurality of resins, an example in which an epoxy compound having a specific mesogen skeleton in the molecular structure and another epoxy resin are mixed is disclosed (for example, see Patent Documents 3 and 4). In Patent Documents 3 and 4, the curing temperature range at the time of producing a cured resin is wider than that of an epoxy compound having a specific mesogen skeleton in the molecular structure, and the production of a cured resin having high thermal conductivity is possible. It has been reported that it will be easier. Furthermore, an insulating composition in which a liquid crystalline polymer and a thermosetting resin exist in a phase-separated state has been proposed (see, for example, Patent Document 5).
特許第4118691号公報Japanese Patent No. 4118691 特開2007-332196号公報JP 2007-332196 A 特開2008-239679号公報JP 2008-239679 A 特開2008-266594号公報JP 2008-266594 A 特開2010-18679号公報JP 2010-18679 A
 しかしながら、分子構造中にメソゲン骨格を有するエポキシ樹脂は、高熱伝導性であればあるほど結晶性も高くなることが一般的であり、分子構造中にメソゲン骨格を有するエポキシ樹脂を含む樹脂組成物がBステージ状態である場合の、樹脂組成物の柔軟性等のハンドリング性に劣る場合がある。 However, an epoxy resin having a mesogen skeleton in the molecular structure generally has higher crystallinity as the thermal conductivity is higher. A resin composition containing an epoxy resin having a mesogen skeleton in the molecular structure is provided. There are cases where the handling property such as flexibility of the resin composition is inferior in the B-stage state.
 本発明は上記従来の問題点に鑑みてなされたものであり、Bステージ状態でのハンドリング性及び硬化物の熱伝導性に優れるエポキシ樹脂組成物並びにこれを用いた樹脂シート、Bステージシート、Cステージシート、硬化物、樹脂付金属箔及び金属基板を提供することを課題とする。 The present invention has been made in view of the above-mentioned conventional problems, and is an epoxy resin composition excellent in handling properties in the B-stage state and the thermal conductivity of the cured product, and a resin sheet, B-stage sheet, and C using the same. It is an object to provide a stage sheet, a cured product, a metal foil with resin, and a metal substrate.
 前記課題を解決するための具体的手段は以下の通りである
<1> エポキシ樹脂と硬化剤とフィラーとを含有し、
 前記フィラーは、窒化物フィラーを含み、
 前記エポキシ樹脂は、下記一般式(IA)で表される構造単位及び下記一般式(IB)で表される構造単位からなる群より選択される少なくとも一つを有する多量体化合物を含み、
 前記多量体化合物が、1分子中に下記一般式(II)で表される構造単位を2つ含む二量体化合物を含み、
 前記エポキシ樹脂全体に占める、前記二量体化合物の割合が、15質量%~28質量%であるエポキシ樹脂組成物。
Specific means for solving the above problems are as follows: <1> containing an epoxy resin, a curing agent, and a filler;
The filler includes a nitride filler,
The epoxy resin includes a multimeric compound having at least one selected from the group consisting of a structural unit represented by the following general formula (IA) and a structural unit represented by the following general formula (IB):
The multimeric compound includes a dimeric compound containing two structural units represented by the following general formula (II) in one molecule,
An epoxy resin composition in which the proportion of the dimer compound in the total epoxy resin is 15% by mass to 28% by mass.
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
[一般式(IA)及び一般式(IB)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。] [In General Formula (IA) and General Formula (IB), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently represents 1 to 8 carbon atoms. Represents an alkyl group. n represents an integer of 0 to 4. ]
Figure JPOXMLDOC01-appb-C000014

 
Figure JPOXMLDOC01-appb-C000014

 
[一般式(II)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。] [In general formula (II), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
<2> 前記二量体化合物が、下記一般式(II-A)で表される化合物、下記一般式(II-B)で表される化合物及び下記一般式(II-C)で表される化合物からなる群より選択される少なくとも一種類を含み、
 前記エポキシ樹脂全体に占める、下記一般式(II-A)で表される化合物、下記一般式(II-B)で表される化合物及び下記一般式(II-C)で表される化合物の合計の割合が、15質量%~28質量%である、<1>に記載のエポキシ樹脂組成物。
<2> The dimer compound is represented by a compound represented by the following general formula (II-A), a compound represented by the following general formula (II-B), and the following general formula (II-C). Including at least one selected from the group consisting of compounds,
Total of the compound represented by the following general formula (II-A), the compound represented by the following general formula (II-B) and the compound represented by the following general formula (II-C) in the whole epoxy resin The epoxy resin composition according to <1>, wherein the ratio of is from 15% by mass to 28% by mass.
Figure JPOXMLDOC01-appb-C000015

 
Figure JPOXMLDOC01-appb-C000015

 
[一般式(II-A)~一般式(II-C)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。] [In the general formulas (II-A) to (II-C), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently represents a carbon atom. Represents an alkyl group of formula 1-8. n represents an integer of 0 to 4. ]
<3> 前記一般式(IA)で表される構造単位が下記一般式(IA’)で表される構造単位であり、前記一般式(IB)で表される構造単位が下記一般式(IB’)で表される構造単位である、<1>に記載のエポキシ樹脂組成物。 <3> The structural unit represented by the general formula (IA) is a structural unit represented by the following general formula (IA ′), and the structural unit represented by the general formula (IB) is represented by the following general formula (IB) The epoxy resin composition according to <1>, which is a structural unit represented by ').
Figure JPOXMLDOC01-appb-C000016

 
Figure JPOXMLDOC01-appb-C000016

 
[一般式(IA’)及び一般式(IB’)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。] [In general formula (IA ′) and general formula (IB ′), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently represents a carbon number of 1 Represents an alkyl group of ˜8. n represents an integer of 0 to 4. ]
<4> 前記二量体化合物が、下記一般式(II-A’)で表される化合物、下記一般式(II-B’)で表される化合物及び下記一般式(II-C’)で表される化合物からなる群より選択される少なくとも一種類を含み、
 前記エポキシ樹脂全体に占める、下記一般式(II-A’)で表される化合物、下記一般式(II-B’)で表される化合物及び下記一般式(II-C’)で表される化合物の合計の割合が、15質量%~28質量%である<3>に記載のエポキシ樹脂組成物。
<4> The dimer compound is a compound represented by the following general formula (II-A ′), a compound represented by the following general formula (II-B ′), and the following general formula (II-C ′). Including at least one selected from the group consisting of the represented compounds,
The compound represented by the following general formula (II-A ′), the compound represented by the following general formula (II-B ′) and the following general formula (II-C ′) in the whole epoxy resin The epoxy resin composition according to <3>, wherein the total proportion of the compounds is 15% by mass to 28% by mass.
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
[一般式(II-A’)~一般式(II-C’)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。] [In general formula (II-A ′) to general formula (II-C ′), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently Represents an alkyl group having 1 to 8 carbon atoms. n represents an integer of 0 to 4. ]
<5> 前記エポキシ樹脂は、下記一般式(I’’)で表されるエポキシ樹脂モノマーを含み、前記エポキシ樹脂全体に占める前記エポキシ樹脂モノマーの割合が、57質量%~80質量%である、<1>~<4>のいずれか1項に記載のエポキシ樹脂組成物。 <5> The epoxy resin includes an epoxy resin monomer represented by the following general formula (I ″), and a ratio of the epoxy resin monomer in the entire epoxy resin is 57% by mass to 80% by mass. The epoxy resin composition according to any one of <1> to <4>.
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000018

 
[一般式(I’’)中、R~Rはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を示す。] [In the general formula (I ″), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
<6> 前記硬化剤は、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも一つで表される構造単位を有する化合物を含むノボラック樹脂を含む、<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物。 <6> The curing agent includes a novolak resin including a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2). <1>-<5> The epoxy resin composition according to any one of <5>.
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000019

 
[一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立にアルキル基、アリール基、又はアラルキル基を示し、R22、R23、R25及びR26はそれぞれ独立に水素原子、アルキル基、アリール基又はアラルキル基を示す。m21及びm22はそれぞれ独立に0~2の整数を示し、n21及びn22はそれぞれ独立に1~7の整数を示す。] [In General Formula (II-1) and General Formula (II-2), R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group, and R 22 , R 23 , R 25 and R 26 Each independently represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. m21 and m22 each independently represents an integer of 0 to 2, and n21 and n22 each independently represents an integer of 1 to 7. ]
<7> 前記硬化剤は、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも一つで表される構造を有する化合物を含むノボラック樹脂を含む、<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物。 <7> The curing agent includes a novolak resin including a compound having a structure represented by at least one selected from the group consisting of the following general formula (III-1) to the following general formula (III-4). The epoxy resin composition according to any one of <1> to <5>.

 

 
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000023

 
Figure JPOXMLDOC01-appb-C000023

 
[一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に正の整数を示す。Ar31~Ar34はそれぞれ独立に下記一般式(III-a)で表される基及び下記一般式(III-b)で表される基のいずれか一つを示す。] [In the general formulas (III-1) to (III-4), m31 to m34 and n31 to n34 each independently represent a positive integer. Ar 31 to Ar 34 each independently represents one of a group represented by the following general formula (III-a) and a group represented by the following general formula (III-b). ]
Figure JPOXMLDOC01-appb-C000024

 
 
Figure JPOXMLDOC01-appb-C000024

 
 
[一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に水素原子又は水酸基を示す。R32及びR33はそれぞれ独立に水素原子又は炭素数1~8のアルキル基を示す。] [In General Formula (III-a) and General Formula (III-b), R 31 and R 34 each independently represent a hydrogen atom or a hydroxyl group. R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
<8> 前記硬化剤は、前記ノボラック樹脂を構成するフェノール化合物であるモノマーの含有比率が10質量%~50質量%である、<6>又は<7>に記載のエポキシ樹脂組成物。 <8> The epoxy resin composition according to <6> or <7>, wherein the curing agent has a content ratio of a monomer that is a phenol compound constituting the novolak resin of 10% by mass to 50% by mass.
<9> 前記フィラーの含有率が、50体積%~90体積%である、<1>~<8>のいずれか1項に記載のエポキシ樹脂組成物。 <9> The epoxy resin composition according to any one of <1> to <8>, wherein the content of the filler is 50% by volume to 90% by volume.
<10> 前記フィラーに占める前記窒化物フィラーの割合が、10体積%~100体積%である、<1>~<9>のいずれか1項に記載のエポキシ樹脂組成物。 <10> The epoxy resin composition according to any one of <1> to <9>, wherein a ratio of the nitride filler in the filler is 10% by volume to 100% by volume.
<11> <1>~<10>のいずれか1項に記載のエポキシ樹脂組成物を含む樹脂組成物層を有する、樹脂シート。 <11> A resin sheet having a resin composition layer containing the epoxy resin composition according to any one of <1> to <10>.
<12> <1>~<10>のいずれか1項に記載のエポキシ樹脂組成物の半硬化物を含む半硬化樹脂組成物層を有する、Bステージシート。 <12> A B-stage sheet having a semi-cured resin composition layer containing a semi-cured product of the epoxy resin composition according to any one of <1> to <10>.
<13> <1>~<10>のいずれか1項に記載のエポキシ樹脂組成物の硬化物を含む硬化樹脂組成物層を有する、Cステージシート。 <13> A C stage sheet having a cured resin composition layer containing a cured product of the epoxy resin composition according to any one of <1> to <10>.
<14> <1>~<10>のいずれか1項に記載のエポキシ樹脂組成物の硬化物。 <14> A cured product of the epoxy resin composition according to any one of <1> to <10>.
<15> 金属箔と、前記金属箔上に配置された<1>~<10>のいずれか1項に記載のエポキシ樹脂組成物の半硬化物を含む半硬化樹脂組成物層と、を備える樹脂付金属箔。 <15> a metal foil, and a semi-cured resin composition layer including a semi-cured product of the epoxy resin composition according to any one of <1> to <10> disposed on the metal foil. Metal foil with resin.
<16> 金属支持体と、前記金属支持体上に配置された<1>~<10>のいずれか1項に記載のエポキシ樹脂組成物の硬化物を含む硬化樹脂組成物層と、前記硬化樹脂組成物層上に配置された金属箔と、を備える金属基板。 <16> A metal support, a cured resin composition layer comprising a cured product of the epoxy resin composition according to any one of <1> to <10> disposed on the metal support, and the curing A metal substrate comprising: a metal foil disposed on the resin composition layer.
 本発明によれば、Bステージ状態でのハンドリング性及び硬化物の熱伝導性に優れるエポキシ樹脂組成物並びにこれを用いた樹脂シート、Bステージシート、Cステージシート、硬化物、樹脂付金属箔及び金属基板を提供することができる。 According to the present invention, an epoxy resin composition excellent in handling property in a B-stage state and thermal conductivity of a cured product, and a resin sheet, a B-stage sheet, a C-stage sheet, a cured product, a metal foil with resin, A metal substrate can be provided.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present specification, the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
In the present specification, the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
[エポキシ樹脂組成物]
 本開示のエポキシ樹脂組成物は、エポキシ樹脂と硬化剤とフィラーとを含有し、前記フィラーは、窒化物フィラーを含み、前記エポキシ樹脂は、下記一般式(IA)で表される構造単位及び下記一般式(IB)で表される構造単位からなる群より選択される少なくとも一つを有する多量体化合物を含み、前記多量体化合物が、1分子中に下記一般式(II)で表される構造単位を2つ含む二量体化合物を含み、前記エポキシ樹脂全体に占める、前記二量体化合物の割合が、15質量%~28質量%である。
[Epoxy resin composition]
The epoxy resin composition of the present disclosure contains an epoxy resin, a curing agent, and a filler, the filler includes a nitride filler, and the epoxy resin includes a structural unit represented by the following general formula (IA) and A multimer compound having at least one selected from the group consisting of structural units represented by general formula (IB), wherein the multimer compound is represented by the following general formula (II) in one molecule The ratio of the dimer compound, which includes the dimer compound containing two units and occupies the entire epoxy resin, is 15% by mass to 28% by mass.
Figure JPOXMLDOC01-appb-C000025

 
Figure JPOXMLDOC01-appb-C000025

 
 一般式(IA)及び一般式(IB)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。 In general formula (IA) and general formula (IB), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently represents one having 1 to 8 carbon atoms. An alkyl group is shown. n represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000026

 
Figure JPOXMLDOC01-appb-C000026

 
 一般式(II)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。 In general formula (II), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
 本開示のエポキシ樹脂組成物はBステージ状態でのハンドリング性及び硬化物の熱伝導性に優れる。また、本開示のエポキシ樹脂組成物を用いた樹脂シート、Bステージシート及び樹脂付金属箔は、ハンドリング性に優れる。さらに、本開示のエポキシ樹脂組成物を用いたCステージシート、硬化物及び金属基板は熱伝導性に優れる。
 以下、本開示のエポキシ樹脂組成物に含有される各成分について詳細に説明する。
The epoxy resin composition of the present disclosure is excellent in the handling property in the B-stage state and the thermal conductivity of the cured product. Moreover, the resin sheet, B-stage sheet, and resin-attached metal foil using the epoxy resin composition of the present disclosure are excellent in handling properties. Furthermore, the C stage sheet, cured product, and metal substrate using the epoxy resin composition of the present disclosure are excellent in thermal conductivity.
Hereinafter, each component contained in the epoxy resin composition of the present disclosure will be described in detail.
-エポキシ樹脂-
 本開示で用いられるエポキシ樹脂は、一般式(IA)で表される構造単位及び一般式(IB)で表される構造単位からなる群より選択される少なくとも一つを有する多量体化合物を含み、多量体化合物が、1分子中に一般式(II)で表される構造単位を2つ含む二量体化合物を含み、エポキシ樹脂全体に占める、二量体化合物の割合が15質量%~28質量%とされたものである。
 なお、本開示における「多量体化合物」とは、1分子中に一般式(II)で表される構造単位を2つ以上含む化合物をいう。
-Epoxy resin-
The epoxy resin used in the present disclosure includes a multimeric compound having at least one selected from the group consisting of a structural unit represented by the general formula (IA) and a structural unit represented by the general formula (IB), The multimeric compound includes a dimeric compound containing two structural units represented by the general formula (II) in one molecule, and the proportion of the dimeric compound in the entire epoxy resin is 15% by mass to 28% by mass. %.
In addition, the “multimeric compound” in the present disclosure refers to a compound containing two or more structural units represented by the general formula (II) in one molecule.
 一般式(IA)及び一般式(IB)中、R~Rはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を示し、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。
 さらにR~Rの内の二個~四個が水素原子であることが好ましく、三個又は四個が水素原子であることがより好ましく、四個全てが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基の場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 なお、一般式(II)におけるR~Rの具体例は、一般式(IA)及び一般式(IB)と同様であり、その好ましい範囲も同様である。
In general formula (IA) and general formula (IB), R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and are a hydrogen atom or an alkyl group having 1 to 2 carbon atoms. Are preferable, a hydrogen atom or a methyl group is more preferable, and a hydrogen atom is further preferable.
Further, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and still more preferably all 4 are hydrogen atoms. . When any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
Specific examples of R 1 to R 4 in the general formula (II) are the same as those in the general formula (IA) and the general formula (IB), and preferred ranges thereof are also the same.
 一般式(IA)及び一般式(IB)中、Rはそれぞれ独立に炭素数1~8のアルキル基を示し、炭素数1~3のアルキル基であることが好ましく、メチル基であることがより好ましい。
 一般式(IA)及び一般式(IB)中、nは0~4の整数を示し、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。つまり、一般式(IA)及び一般式(IB)においてRを付されたベンゼン環は、二個~四個の水素原子を有することが好ましく、三個又は四個の水素原子を有することがより好ましく、四個の水素原子を有することがさらに好ましい。
In general formula (IA) and general formula (IB), R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and preferably a methyl group. More preferred.
In the general formulas (IA) and (IB), n represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and 0. Is more preferable. That is, the benzene ring denoted by R 5 in the general formula (IA) and the general formula (IB) preferably has 2 to 4 hydrogen atoms, and may have 3 or 4 hydrogen atoms. More preferably, it has four hydrogen atoms.
 多量体化合物に含まれる一般式(II)で表される構造単位の数は任意であり特に限定されるものではなく、平均値として5以下であることが好ましく、3以下であることがより好ましい。 The number of structural units represented by the general formula (II) contained in the multimeric compound is arbitrary and is not particularly limited. The average value is preferably 5 or less, more preferably 3 or less. .
 本開示においては、一般式(IA)で表される構造単位が下記一般式(IA’)で表される構造単位及び下記一般式(IA’’)で表される構造単位からなる群より選択される少なくとも一つであり、一般式(IB)で表される構造単位が下記一般式(IB’)で表される構造単位及び下記一般式(IB’’)で表される構造単位からなる群より選択される少なくとも一つであることが好ましく、一般式(IA)で表される構造単位が下記一般式(IA’)で表される構造単位であり、一般式(IB)で表される構造単位が下記一般式(IB’)で表される構造単位であることがより好ましい。 In the present disclosure, the structural unit represented by the general formula (IA) is selected from the group consisting of the structural unit represented by the following general formula (IA ′) and the structural unit represented by the following general formula (IA ″) The structural unit represented by the general formula (IB) is composed of a structural unit represented by the following general formula (IB ′) and a structural unit represented by the following general formula (IB ″). Preferably, the structural unit represented by the general formula (IA) is a structural unit represented by the following general formula (IA ′), and is represented by the general formula (IB). The structural unit is more preferably a structural unit represented by the following general formula (IB ′).
Figure JPOXMLDOC01-appb-C000027

 
Figure JPOXMLDOC01-appb-C000027

 
Figure JPOXMLDOC01-appb-C000028

 
Figure JPOXMLDOC01-appb-C000028

 
 一般式(IA’)、一般式(IB’)、一般式(IA’’)及び一般式(IB’’)中、R~R及びnの具体例は、一般式(IA)及び一般式(IB)と同様であり、その好ましい範囲も同様である。 In general formula (IA ′), general formula (IB ′), general formula (IA ″), and general formula (IB ″), specific examples of R 1 to R 5 and n include general formula (IA) and general formula It is the same as in formula (IB), and its preferred range is also the same.
 本開示で用いられるエポキシ樹脂は、1分子中に一般式(II)で表される構造単位を2つ含む二量体化合物を含む。
 1分子中に一般式(II)で表される構造単位を2つ含む二量体化合物の具体例としては、下記一般式(II-A)で表される化合物、下記一般式(II-B)で表される化合物及び下記一般式(II-C)で表される化合物からなる群より選択される少なくとも一種類が挙げられる。
The epoxy resin used in the present disclosure includes a dimer compound containing two structural units represented by the general formula (II) in one molecule.
Specific examples of the dimer compound containing two structural units represented by the general formula (II) in one molecule include compounds represented by the following general formula (II-A), the following general formula (II-B) ) And at least one selected from the group consisting of compounds represented by the following general formula (II-C).
Figure JPOXMLDOC01-appb-C000029

 
Figure JPOXMLDOC01-appb-C000029

 
 一般式(II-A)、一般式(II-B)及び一般式(II-C)中、R~R及びnの具体例は、一般式(IA)及び一般式(IB)と同様であり、その好ましい範囲も同様である。 In general formula (II-A), general formula (II-B) and general formula (II-C), specific examples of R 1 to R 5 and n are the same as those in general formula (IA) and general formula (IB). The preferred range is also the same.
 二量体化合物の具体例としては、一般式(IA’)で表される構造単位及び一般式(IB’)で表される構造単位からなる群より選択される少なくとも一つを含む場合、下記一般式(II-A’)で表される化合物、下記一般式(II-B’)で表される化合物及び下記一般式(II-C’)で表される化合物からなる群より選択される少なくとも一種類が挙げられる。 As a specific example of the dimer compound, when it contains at least one selected from the group consisting of the structural unit represented by the general formula (IA ′) and the structural unit represented by the general formula (IB ′), Selected from the group consisting of a compound represented by the general formula (II-A ′), a compound represented by the following general formula (II-B ′), and a compound represented by the following general formula (II-C ′) There is at least one kind.
Figure JPOXMLDOC01-appb-C000030

 
Figure JPOXMLDOC01-appb-C000030

 
 一般式(II-A’)、一般式(II-B’)及び下記一般式(II-C’)中、R~R及びnの具体例は、一般式(IA)及び一般式(IB)と同様であり、その好ましい範囲も同様である。 Specific examples of R 1 to R 5 and n in the general formula (II-A ′), the general formula (II-B ′) and the following general formula (II-C ′) include the general formula (IA) and the general formula ( It is the same as IB), and its preferable range is also the same.
 また、二量体化合物の具体例としては、一般式(IA’’)で表される構造単位及び一般式(IB’’)で表される構造単位からなる群より選択される少なくとも一つを含む場合、下記一般式(II-A’’)で表される化合物、下記一般式(II-B’’)で表される化合物及び下記一般式(II-C’’)で表される化合物からなる群より選択される少なくとも一種類が挙げられる。 Specific examples of the dimer compound include at least one selected from the group consisting of a structural unit represented by the general formula (IA ″) and a structural unit represented by the general formula (IB ″). And a compound represented by the following general formula (II-A ″), a compound represented by the following general formula (II-B ″), and a compound represented by the following general formula (II-C ″) At least one selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000031

 
Figure JPOXMLDOC01-appb-C000031

 
 一般式(II-A’’)、一般式(II-B’’)及び下記一般式(II-C’’)中、R~R及びnの具体例は、一般式(IA)及び一般式(IB)と同様であり、その好ましい範囲も同様である。 Specific examples of R 1 to R 5 and n in the general formula (II-A ″), the general formula (II-B ″) and the following general formula (II-C ″) include the general formula (IA) and It is the same as that of general formula (IB), and its preferable range is also the same.
 本開示においては、二量体化合物の具体例としては、一般式(II-A’)で表される化合物、一般式(II-B’)で表される化合物及び一般式(II-C’)で表される化合物からなる群より選択される少なくとも一種類であることが好ましい。 In the present disclosure, specific examples of the dimer compound include a compound represented by the general formula (II-A ′), a compound represented by the general formula (II-B ′), and a general formula (II-C ′). It is preferably at least one selected from the group consisting of compounds represented by
 これら二量体化合物の構造は、エポキシ樹脂合成時に使用した後述の一般式(I’’)で表されるエポキシ樹脂モノマーと、一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物と、の反応より得られると推定される構造の分子量と、UVスペクトル検出器及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで決定することができる。
 液体クロマトグラフィーは、分析用カラムに株式会社日立製作所製LaChrom II C18を使用し、溶離液にはテトラヒドロフランを用い、流速を1.0ml/minとして行う。UVスペクトル検出器では、280nmの波長における吸光度を検出する。また、マススペクトル検出器では、イオン化電圧を2700Vとして検出する。
 なお、エポキシ樹脂の合成方法及び評価についての詳細は後述する。
The structure of these dimer compounds is an epoxy resin monomer represented by the following general formula (I ″) used in the epoxy resin synthesis and a divalent phenol having two hydroxyl groups as substituents on one benzene ring. Compare the molecular weight of the structure estimated to be obtained from the reaction of the compound with the molecular weight of the target compound determined by liquid chromatography using a liquid chromatograph equipped with a UV spectrum detector and a mass spectrum detector. Can be determined.
Liquid chromatography is performed using LaChrom II C18 manufactured by Hitachi, Ltd. as the analytical column, tetrahydrofuran as the eluent, and a flow rate of 1.0 ml / min. The UV spectrum detector detects the absorbance at a wavelength of 280 nm. In the mass spectrum detector, the ionization voltage is detected as 2700V.
Details of the epoxy resin synthesis method and evaluation will be described later.
 本開示において、エポキシ樹脂全体に占める、二量体化合物の割合は、15質量%~28質量%である。この割合は後述の逆相クロマトグラフィー(Reversed Phase Liquid Chromatography、RPLC)測定によって求めることができる。 In the present disclosure, the proportion of the dimer compound in the entire epoxy resin is 15% by mass to 28% by mass. This ratio can be calculated | required by the below-mentioned reverse phase chromatography (Reversed Phase Liquid Chromatography, RPLC) measurement.
 二量体化合物の割合が15質量%未満ではエポキシ樹脂の結晶性が低下せず、エポキシ樹脂組成物がBステージ状態である場合の柔軟性等のハンドリング性が低下してしまう傾向にある。また、二量体化合物の割合が28質量%を超えると硬化物の架橋密度が低下し、結果として硬化物の熱伝導率及びガラス転移温度(Tg)が低下する傾向にある。
 二量体化合物の割合は、20質量%~27質量%であることが好ましく、22質量%~25質量%であることがより好ましい。
When the proportion of the dimer compound is less than 15% by mass, the crystallinity of the epoxy resin does not decrease, and the handling properties such as flexibility when the epoxy resin composition is in the B stage state tend to decrease. Moreover, when the ratio of a dimer compound exceeds 28 mass%, the crosslinking density of hardened | cured material will fall, As a result, it exists in the tendency for the thermal conductivity and glass transition temperature (Tg) of hardened | cured material to fall.
The proportion of the dimer compound is preferably 20% by mass to 27% by mass, and more preferably 22% by mass to 25% by mass.
 また、エポキシ樹脂は、下記一般式(I’’)で表されるエポキシ樹脂モノマーを含んでもよい。 In addition, the epoxy resin may include an epoxy resin monomer represented by the following general formula (I ″).
Figure JPOXMLDOC01-appb-C000032

 
Figure JPOXMLDOC01-appb-C000032

 
 一般式(I’’)中、R~Rはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を示す。
 なお、一般式(I’’)におけるR~Rの具体例は、一般式(IA)及び一般式(IB)と同様であり、その好ましい範囲も同様である。
In general formula (I ″), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
Specific examples of R 1 to R 4 in the general formula (I ″) are the same as those in the general formula (IA) and the general formula (IB), and preferred ranges thereof are also the same.
 エポキシ樹脂全体に占める一般式(I’’)で表されるエポキシ樹脂モノマーの割合は、57質量%~80質量%であることが好ましい。
 エポキシ樹脂モノマーの割合が57質量%以上であれば、これは言い換えれば一般式(I’’)で表されるエポキシ樹脂モノマーと2価のフェノール化合物との反応物が多すぎないことを意味するため、硬化物の架橋密度が低下しにくく、結果として硬化物の熱伝導率及びTgが低下しにくい傾向にある。一方、エポキシ樹脂モノマーの割合が80質量%以下であれば、これは言い換えれば一般式(I’’)で表されるエポキシ樹脂モノマーと2価のフェノール化合物との反応物が少なすぎないことを意味するため、エポキシ樹脂組成物がBステージ状態である場合の柔軟性等のハンドリング性が低下しにくいか、又は硬化物の架橋密度が低下しにくい傾向にある。
The proportion of the epoxy resin monomer represented by the general formula (I ″) in the entire epoxy resin is preferably 57% by mass to 80% by mass.
If the ratio of the epoxy resin monomer is 57% by mass or more, this means that there are not too many reactants of the epoxy resin monomer represented by the general formula (I ″) and the divalent phenol compound. For this reason, the crosslink density of the cured product is unlikely to decrease, and as a result, the thermal conductivity and Tg of the cured product tend not to decrease. On the other hand, if the ratio of the epoxy resin monomer is 80% by mass or less, this means that the reaction product of the epoxy resin monomer represented by the general formula (I ″) and the divalent phenol compound is not too small. This means that handling properties such as flexibility when the epoxy resin composition is in a B-stage state are unlikely to decrease, or the crosslinking density of the cured product tends not to decrease.
 エポキシ樹脂全体に占める一般式(I’’)で表されるエポキシ樹脂モノマーの割合は、59質量%~74質量%であることがより好ましく、62質量%~70質量%であることがさらに好ましい。 The proportion of the epoxy resin monomer represented by the general formula (I ″) in the entire epoxy resin is more preferably 59% by mass to 74% by mass, and further preferably 62% by mass to 70% by mass. .
 本開示で用いられるエポキシ樹脂は、多量体化合物及び一般式(I’’)で表されるエポキシ樹脂モノマーに加え、その他のエポキシ樹脂成分を含んでいてもよい。エポキシ樹脂全体に占めるその他のエポキシ樹脂成分の割合は、15質量%未満であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることがさらに好ましく、実質的にその他のエポキシ樹脂成分を含まないことが特に好ましい。 The epoxy resin used in the present disclosure may contain other epoxy resin components in addition to the multimeric compound and the epoxy resin monomer represented by the general formula (I ″). The proportion of the other epoxy resin component in the entire epoxy resin is preferably less than 15% by mass, more preferably 10% by mass or less, further preferably 8% by mass or less, and substantially the other It is particularly preferable that the epoxy resin component is not included.
 本明細書におけるRPLC測定は、分析用RPLCカラムに関東化学株式会社製Mightysil RP-18を使用し、グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/水=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)に連続的に変化させて行う。また、流速を1.0ml/minとする。本明細書では、280nmの波長における吸光度を検出し、検出された全てのピークの総面積を100とし、それぞれ該当するピークにおける面積の比率を求め、その値をエポキシ樹脂全体における各化合物の含有率[質量%]とする。 The RPLC measurement in the present specification uses Mightysil RP-18 manufactured by Kanto Chemical Co., Inc., an analytical RPLC column, and the gradient method is used, and the mixing ratio (volume basis) of the eluent is acetonitrile / tetrahydrofuran / water = 20 / 5/75 to acetonitrile / tetrahydrofuran = 80/20 (20 minutes from the start) and then acetonitrile / tetrahydrofuran = 50/50 (35 minutes from the start). The flow rate is 1.0 ml / min. In this specification, the absorbance at a wavelength of 280 nm is detected, the total area of all detected peaks is defined as 100, the ratio of the area of each corresponding peak is determined, and the value is the content of each compound in the entire epoxy resin. [Mass%].
 また、エポキシ樹脂のエポキシ当量は、過塩素酸滴定法により測定される。
 エポキシ当量は、エポキシ樹脂組成物がBステージ状態である場合のハンドリング性及び硬化物の熱伝導性を両立する観点から245g/eq~300g/eqであることが好ましく、250g/eq~290g/eqであることがより好ましく、260g/eq~280g/eqであることがさらに好ましい。エポキシ樹脂のエポキシ当量が245g/eq以上であればエポキシ樹脂の結晶性が高くなりすぎないためエポキシ樹脂組成物がBステージ状態である場合のハンドリング性が低下しにくい傾向にある。一方、エポキシ樹脂のエポキシ当量が300g/eq以下であれば、エポキシ樹脂の架橋密度が低下しにくいため、硬化物の熱伝導率が高くなる傾向にある。
The epoxy equivalent of the epoxy resin is measured by a perchloric acid titration method.
The epoxy equivalent is preferably 245 g / eq to 300 g / eq, and preferably 250 g / eq to 290 g / eq from the viewpoint of achieving both the handling property when the epoxy resin composition is in the B-stage state and the thermal conductivity of the cured product. More preferably, it is 260 g / eq to 280 g / eq. If the epoxy equivalent of the epoxy resin is 245 g / eq or more, the crystallinity of the epoxy resin does not become too high, and the handling property when the epoxy resin composition is in the B-stage state tends to be difficult to deteriorate. On the other hand, if the epoxy equivalent of the epoxy resin is 300 g / eq or less, the crosslink density of the epoxy resin is unlikely to decrease, and the thermal conductivity of the cured product tends to increase.
 また、エポキシ樹脂のゲルパーミエーションクロマトグラフィー(GPC)測定における数平均分子量(Mn)は、エポキシ樹脂組成物がBステージ状態である場合のハンドリング性及び硬化物の熱伝導率を両立する観点から400~800であることが好ましく、450~750であることがより好ましく、500~700であることがさらに好ましい。エポキシ樹脂のMnが400以上であれば、エポキシ樹脂の結晶性が高くなりすぎないためエポキシ樹脂組成物がBステージ状態である場合のハンドリング性が低下しにくい傾向にある。エポキシ樹脂のMnが800以下であれば、エポキシ樹脂の架橋密度が低下しにくいため、硬化物の熱伝導率が高くなる傾向にある。 In addition, the number average molecular weight (Mn) in the gel permeation chromatography (GPC) measurement of the epoxy resin is 400 from the viewpoint of achieving both handling properties and thermal conductivity of the cured product when the epoxy resin composition is in the B-stage state. Is preferably from 800 to 800, more preferably from 450 to 750, and even more preferably from 500 to 700. If the Mn of the epoxy resin is 400 or more, the crystallinity of the epoxy resin does not become too high, so that the handling property when the epoxy resin composition is in the B stage state tends to be difficult to decrease. If Mn of an epoxy resin is 800 or less, since the crosslinking density of an epoxy resin is hard to fall, it exists in the tendency for the heat conductivity of hardened | cured material to become high.
 本明細書におけるGPC測定は、分析用GPCカラムに東ソー株式会社製G2000HXL及び3000HXLを使用し、移動相にはテトラヒドロフランを用い、試料濃度を0.2質量%とし、流速を1.0ml/minとして測定を行う。ポリスチレン標準サンプルを用いて検量線を作成し、ポリスチレン換算値でMnを計算する。 GPC measurement in this specification uses Tosoh Corporation G2000HXL and 3000HXL as analytical GPC columns, tetrahydrofuran as a mobile phase, a sample concentration of 0.2% by mass, and a flow rate of 1.0 ml / min. Measure. A calibration curve is prepared using a polystyrene standard sample, and Mn is calculated as a polystyrene equivalent value.
 多量体化合物を含むエポキシ樹脂は、一般式(I’’)で表されるエポキシ樹脂モノマー、一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物及び後述の硬化触媒を合成溶媒中に溶解し、加熱しながら撹拌して合成することができる。溶媒を使用せずにエポキシ樹脂モノマーを溶融して反応させる手法でも合成は可能であるが、エポキシ樹脂モノマーが溶融する温度まで高温にしなければならないことがある。このため、安全性の観点から合成溶媒を使用した合成法が好ましい。 An epoxy resin containing a multimeric compound is composed of an epoxy resin monomer represented by the general formula (I ″), a divalent phenol compound having two hydroxyl groups as substituents on one benzene ring, and a curing catalyst described later. It can be synthesized by dissolving in and stirring with heating. The synthesis is also possible by a method in which the epoxy resin monomer is melted and reacted without using a solvent, but it may be necessary to raise the temperature to a temperature at which the epoxy resin monomer melts. For this reason, the synthesis method using a synthetic solvent is preferable from the viewpoint of safety.
 合成溶媒としては、一般式(I’’)で表されるエポキシ樹脂モノマーと一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物とが反応するために必要な温度に加温できる溶媒であれば、特に制限されない。
 具体例としては、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン等が挙げられる。
As a synthetic solvent, the epoxy resin monomer represented by the general formula (I ″) and a divalent phenol compound having two hydroxyl groups as substituents on one benzene ring are heated to a temperature necessary for the reaction. Any solvent that can be used is not particularly limited.
Specific examples include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone and the like.
 合成溶媒の量は、一般式(I’’)で表されるエポキシ樹脂モノマー、一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物及び硬化触媒を、反応温度において溶解できる量以上とする。反応前の原料の種類、溶媒の種類等によって溶解性が異なるものの、仕込み固形分濃度を20質量%~60質量%とすれば、合成後の樹脂溶液粘度として好ましい範囲となる傾向にある。 The amount of the synthetic solvent is such that the epoxy resin monomer represented by the general formula (I ″), the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring, and the curing catalyst can be dissolved at the reaction temperature. That's it. Although the solubility varies depending on the type of raw material before reaction, the type of solvent, etc., if the charged solid content concentration is 20% by mass to 60% by mass, the viscosity of the resin solution after synthesis tends to be in a preferable range.
 一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物としては、カテコール、レゾルシノール、ヒドロキノン、これらの誘導体等が挙げられる。誘導体としては、ベンゼン環に炭素数1~8のアルキル基等が置換した化合物が挙げられる。これらの2価フェノール化合物の中でも、レゾルシノール及びヒドロキノンを用いることが硬化物の熱伝導率を向上させる観点から好ましく、ヒドロキノンを用いることがより好ましい。ヒドロキノンは2つの水酸基がパラ位の位置関係となるように置換されている構造であるため、エポキシ樹脂モノマーと反応させて得られる多量体化合物は直線構造となりやすい。このため、分子のスタッキング性が高く、高次構造を形成し易いと考えられる。
 これらの2価フェノール化合物は、一種類単独で用いてもよく、二種類以上を併用してもよい。
Examples of the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring include catechol, resorcinol, hydroquinone, and derivatives thereof. Examples of the derivatives include compounds in which a benzene ring is substituted with an alkyl group having 1 to 8 carbon atoms. Among these dihydric phenol compounds, resorcinol and hydroquinone are preferably used from the viewpoint of improving the thermal conductivity of the cured product, and hydroquinone is more preferably used. Since hydroquinone has a structure in which two hydroxyl groups are substituted so as to have a para-position, a multimeric compound obtained by reacting with an epoxy resin monomer tends to have a linear structure. For this reason, it is considered that the stacking property of the molecule is high and it is easy to form a higher order structure.
These dihydric phenol compounds may be used individually by 1 type, and may use 2 or more types together.
 上記硬化触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択することができる。硬化触媒の具体例としては、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。これらは一種類単独で用いてもよく、二種類以上を併用してもよい。中でも、硬化物の耐熱性の観点から有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、キノン化合物(1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等)、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物;及び有機ホスフィン化合物と有機ボロン化合物(テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等)との錯体;からなる群より選択される少なくとも一つであることが好ましい。 The type of the curing catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like. Specific examples of the curing catalyst include imidazole compounds, organic phosphorus compounds, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more. Among them, from the viewpoint of heat resistance of the cured product, an organic phosphine compound; an organic phosphine compound containing maleic anhydride, a quinone compound (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, etc.), diazophenylmethane, phenol A compound having intramolecular polarization formed by adding a compound having a π bond such as a resin; and an organic phosphine compound and an organic boron compound (tetraphenylborate, tetra-p-tolylborate, tetra-n-butylborate, etc.) It is preferably at least one selected from the group consisting of: a complex.
 有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。 Specific examples of the organic phosphine compound include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl). Phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples thereof include alkyl diaryl phosphine.
 硬化触媒の量は特に制限されない。反応速度及び貯蔵安定性の観点から、一般式(I’’)で表されるエポキシ樹脂モノマーと一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物との合計質量に対し、0.1質量%~1.5質量%であることが好ましく、0.2質量%~1質量%であることがより好ましい。 The amount of the curing catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, with respect to the total mass of the epoxy resin monomer represented by the general formula (I ″) and the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring, The content is preferably 0.1% by mass to 1.5% by mass, and more preferably 0.2% by mass to 1% by mass.
 多量体化合物を含むエポキシ樹脂は、少量スケールであればガラス製のフラスコを使用し、大量スケールであればステンレス製の合成釜を使用して合成できる。具体的な合成方法は、例えば以下の通りである。
 まず、一般式(I’’)で表されるエポキシ樹脂モノマーをフラスコ又は合成釜に投入し、合成溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、エポキシ樹脂モノマーを溶解する。そこに一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物を投入し、合成溶媒中に溶解したことを確認した後に硬化触媒を投入し、反応を開始する。所定時間の後に反応溶液を取り出せば多量体化合物を含むエポキシ樹脂溶液が得られる。また、フラスコ内又は合成釜内において、加温条件のもと減圧下で合成溶媒を留去したものを取り出せば多量体化合物を含むエポキシ樹脂が室温(25℃)下で固体として得られる。
The epoxy resin containing a multimeric compound can be synthesized using a glass flask if it is a small scale, and using a stainless steel synthesis pot if it is a large scale. A specific synthesis method is as follows, for example.
First, the epoxy resin monomer represented by the general formula (I ″) is charged into a flask or a synthesis kettle, a synthesis solvent is added, and the mixture is heated to a reaction temperature with an oil bath or a heating medium to dissolve the epoxy resin monomer. A dihydric phenol compound having two hydroxyl groups as substituents in one benzene ring is added thereto, and after confirming that the compound is dissolved in the synthesis solvent, a curing catalyst is added to start the reaction. If the reaction solution is taken out after a predetermined time, an epoxy resin solution containing a multimeric compound can be obtained. In addition, if the synthesis solvent is distilled off under reduced pressure under a heating condition in a flask or a synthesis kettle, an epoxy resin containing a multimeric compound is obtained as a solid at room temperature (25 ° C.).
 反応温度は、硬化触媒の存在下でエポキシ基とフェノール性水酸基との反応が進行する温度であれば制限されず、例えば100℃~180℃の範囲であることが好ましく、100℃~150℃の範囲であることがより好ましい。反応温度を100℃以上とすることで反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることでゲル化する可能性を低減できる傾向にある。 The reaction temperature is not limited as long as the reaction between the epoxy group and the phenolic hydroxyl group proceeds in the presence of the curing catalyst, and is preferably in the range of, for example, 100 ° C. to 180 ° C., preferably 100 ° C. to 150 ° C. A range is more preferable. By setting the reaction temperature to 100 ° C. or higher, the time until the reaction is completed tends to be shortened. On the other hand, the possibility of gelation tends to be reduced by setting the reaction temperature to 180 ° C. or lower.
 多量体化合物を含むエポキシ樹脂の合成において、一般式(I’’)で表されるエポキシ樹脂モノマーと、一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物と、の比率を変更して合成することができる。具体的には、一般式(I’’)で表されるエポキシ樹脂モノマーのエポキシ基の当量数(Ep)と、一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物のフェノール性水酸基の当量数(Ph)との比率(Ep/Ph)を、100/100~100/1の範囲として合成することが可能である。エポキシ樹脂組成物がBステージ状態である場合のハンドリング性並びに硬化物の耐熱性及び熱伝導率の観点から、Ep/Phは100/20~100/5の範囲であることが好ましく、100/18~100/10の範囲であることがより好ましい。Ep/Phを100/5以下とすることで架橋点密度の低下を抑え、硬化物の耐熱性及び熱伝導率を高めることができる。一方、Ep/Phを100/20以上とすることで、得られる多量体化合物の結晶性が低くなり、エポキシ樹脂組成物がBステージ状態である場合のハンドリング性を高めることができる。 In the synthesis of an epoxy resin containing a multimeric compound, the ratio between the epoxy resin monomer represented by the general formula (I ″) and the divalent phenol compound having two hydroxyl groups as substituents on one benzene ring is It can be synthesized by changing. Specifically, the number of equivalents (Ep) of the epoxy group of the epoxy resin monomer represented by the general formula (I ″) and the phenol of a dihydric phenol compound having two hydroxyl groups as substituents on one benzene ring The ratio (Ep / Ph) to the equivalent number (Ph) of the functional hydroxyl group can be synthesized in the range of 100/100 to 100/1. From the viewpoint of handling properties when the epoxy resin composition is in a B-stage state, and heat resistance and thermal conductivity of the cured product, Ep / Ph is preferably in the range of 100/20 to 100/5. More preferably, it is in the range of ˜100 / 10. By setting Ep / Ph to be 100/5 or less, it is possible to suppress a decrease in cross-linking point density and to increase the heat resistance and thermal conductivity of the cured product. On the other hand, by setting Ep / Ph to 100/20 or more, the crystallinity of the resulting multimeric compound is lowered, and handling properties when the epoxy resin composition is in the B-stage state can be improved.
 また、多量体化合物及び一般式(I’’)で表されるエポキシ樹脂は、分子構造中にメソゲン基を有している。分子構造中にメソゲン基を有するエポキシ樹脂の硬化物が熱伝導性に優れることは特許文献1に記載されている。また、WO2013/065159号公報に、一般式(I’’)で表されるエポキシ樹脂モノマーに2価のフェノール化合物をノボラック化したノボラック樹脂を組み合わせることで、高い熱伝導率と高いTgを実現できると記載されている。 Further, the multimeric compound and the epoxy resin represented by the general formula (I ″) have a mesogenic group in the molecular structure. Patent Document 1 describes that a cured product of an epoxy resin having a mesogenic group in the molecular structure is excellent in thermal conductivity. Further, in WO2013 / 065159, high thermal conductivity and high Tg can be realized by combining a novolak resin in which a divalent phenol compound is novolaked with an epoxy resin monomer represented by the general formula (I ''). It is described.
 ここで、メソゲン基とは、分子間相互作用の働きにより結晶性又は液晶性を発現し易くするような官能基のことを指す。具体的には、ビフェニル基、フェニルベンゾエート基、アゾベンゼン基、スチルベン基、それらの誘導体等が挙げられる。 Here, the mesogenic group refers to a functional group that facilitates the expression of crystallinity or liquid crystallinity by the action of intermolecular interaction. Specific examples thereof include a biphenyl group, a phenylbenzoate group, an azobenzene group, a stilbene group, and derivatives thereof.
 さらに、一般式(I’’)で表されるエポキシ樹脂モノマーは、フィラーを中心としてより高い秩序性を有する高次構造を形成し、硬化物の熱伝導性が飛躍的に向上するとWO2013/065159号公報に記載されている。このことは多量体化合物を含むエポキシ樹脂にも当てはまる。これは、フィラーが存在することで高次構造を形成したエポキシ樹脂の硬化物が、効率的な熱伝導パスとなり、高熱伝導率が得られるためと考えられている。 Furthermore, the epoxy resin monomer represented by the general formula (I ″) forms a higher-order structure having higher ordering with a filler as a center, and when the thermal conductivity of the cured product is greatly improved, WO2013 / 065159 It is described in the gazette. This is also true for epoxy resins containing multimeric compounds. This is thought to be because a cured product of an epoxy resin having a higher order structure formed by the presence of a filler becomes an efficient heat conduction path, and high heat conductivity is obtained.
 ここで、高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば、結晶相及び液晶相が相当する。このような高次構造体の存在の有無は、偏光顕微鏡観察によって容易に判断することが可能である。即ち、クロスニコル状態での観察において、偏光解消による干渉縞が見られることで判別可能である。
 この高次構造体は、通常硬化物中に島状に存在して、ドメイン構造を形成しており、その島の一つが一つの高次構造体に対応する。この高次構造体の構成要素自体は一般には共有結合により形成されている。
Here, the higher order structure means a structure including a higher order structure in which constituent elements are arranged to form a micro ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase. The presence or absence of such a higher order structure can be easily determined by observation with a polarizing microscope. In other words, in the observation in the crossed Nicols state, it can be determined by seeing interference fringes due to depolarization.
This higher order structure usually exists in an island shape in the cured product to form a domain structure, and one of the islands corresponds to one higher order structure. The constituent elements of this higher order structure are generally formed by covalent bonds.
 なお、フィラーを含む硬化物における高次構造の形成は、以下のようにして確認することができる。
 エポキシ樹脂と硬化剤と硬化触媒との混合物に窒化ホウ素フィラー等のフィラーを5体積%~10体積%添加して得られる組成物の硬化物(厚さ:0.1~20μm)を調製する。得られた硬化物をスライドガラス(厚さ:約1mm)に挟んだ状態で偏光顕微鏡(例えば、オリンパス株式会社製BX51)を用いて観察を行う。フィラーが存在する領域ではフィラーを中心として干渉模様が観察されるが、フィラーが存在しない領域では干渉模様は観察されない。このことより、フィラーを中心として、エポキシ樹脂の硬化物が高次構造を形成していることが分かる。
In addition, formation of the higher order structure in the hardened | cured material containing a filler can be confirmed as follows.
A cured product (thickness: 0.1 to 20 μm) of a composition obtained by adding 5 volume% to 10 volume% of a filler such as boron nitride filler to a mixture of an epoxy resin, a curing agent, and a curing catalyst is prepared. Observation is performed using a polarizing microscope (for example, BX51 manufactured by Olympus Corporation) in a state where the obtained cured product is sandwiched between slide glasses (thickness: about 1 mm). In the area where the filler is present, an interference pattern is observed around the filler, but in the area where the filler is not present, no interference pattern is observed. This shows that the cured product of the epoxy resin forms a higher order structure with the filler as the center.
 なお、観察はクロスニコル状態ではなく、偏光子に対して検光子を60°回転させた状態で行うことが好ましい。クロスニコル状態で観察すると、干渉模様が観察されない領域(つまり、硬化物が高次構造を形成していない領域)が暗視野となり、フィラー部分と区別がつかなくなってしまう。しかし、偏光子に対して検光子を60°回転させることで干渉模様が観察されない領域は暗視野ではなくなり、フィラー部分との区別をつけることができる。 Note that the observation is preferably performed in a state in which the analyzer is rotated by 60 ° with respect to the polarizer, not in the crossed Nicols state. When observed in a crossed Nicol state, a region where no interference pattern is observed (that is, a region where the cured product does not form a higher order structure) becomes a dark field and cannot be distinguished from the filler portion. However, by rotating the analyzer by 60 ° with respect to the polarizer, the region where the interference pattern is not observed is not a dark field, and can be distinguished from the filler portion.
 ただし、分子構造中にメソゲン基を有するエポキシ樹脂モノマーは一般的に結晶化し易く、溶融温度が汎用のエポキシ樹脂モノマーと比較して高い傾向にある。なお、一般式(I’’)で表されるエポキシ樹脂モノマーもこれに該当する。しかし、そのようなエポキシ樹脂モノマーを一部重合させて多量体化合物とすることで結晶化を抑制できる。その結果、エポキシ樹脂組成物がBステージ状態である場合のハンドリング性が向上する。
 具体的には、前述の通り、一般式(I’’)で表されるエポキシ樹脂モノマーと一つのベンゼン環に二個の水酸基を置換基として有する2価フェノール化合物とを反応させて多量体化合物とすることで、上記効果が得られやすい。
However, an epoxy resin monomer having a mesogenic group in the molecular structure is generally easily crystallized, and the melting temperature tends to be higher than that of a general-purpose epoxy resin monomer. The epoxy resin monomer represented by the general formula (I ″) also corresponds to this. However, crystallization can be suppressed by partially polymerizing such an epoxy resin monomer to obtain a multimeric compound. As a result, handling properties when the epoxy resin composition is in the B-stage state are improved.
Specifically, as described above, the epoxy resin monomer represented by the general formula (I ″) and a divalent phenol compound having two hydroxyl groups as substituents on one benzene ring are reacted to produce a multimeric compound. By doing so, the above-mentioned effect can be easily obtained.
 メソゲン骨格に由来する規則性の高い高次構造には、ネマチック構造、スメクチック構造等がある。ネマチック構造は分子長軸が一様な方向に向いており、配向秩序のみを持つ液晶構造である。これに対して、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、一定周期の層構造を有する液晶構造である。また、スメクチック構造の同一の周期の構造内部では、層構造の周期の方向が一様である。すなわち、分子の秩序性は、ネマチック構造よりもスメクチック構造の方が高い。秩序性の高い高次構造が硬化物中に形成されると、熱伝導の媒体であるフォノンが散乱するのを抑制することができる。このため、ネマチック構造よりもスメクチック構造の方が、熱伝導率が高くなる。
 すなわち、分子の秩序性はネマチック構造よりもスメクチック構造の方が高く、硬化物の熱伝導性もスメクチック構造を示す場合の方が高くなる。エポキシ樹脂組成物は、硬化剤と反応して、スメクチック構造を形成することで、高い熱伝導率を発揮できると考えられる。
High-order structures with high regularity derived from the mesogenic skeleton include nematic structures and smectic structures. The nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order. On the other hand, the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period. In addition, the direction of the period of the layer structure is uniform inside the structure having the same period of the smectic structure. That is, the order of molecules is higher in the smectic structure than in the nematic structure. When a highly ordered higher-order structure is formed in the cured product, it is possible to suppress scattering of phonons that are heat conductive media. For this reason, the smectic structure has a higher thermal conductivity than the nematic structure.
That is, the order of the molecule is higher in the smectic structure than in the nematic structure, and the thermal conductivity of the cured product is higher in the case of showing the smectic structure. It is considered that the epoxy resin composition can exhibit high thermal conductivity by reacting with a curing agent to form a smectic structure.
 エポキシ樹脂組成物を用いてスメクチック構造が形成されているか否かは、下記の方法により判断することができる。
 CuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5°~30°の範囲で、X線解析装置(例えば、株式会社リガク製)を用いてX線回折測定を行う。2θが1°~10°の範囲に回折ピークが存在する場合には、周期構造がスメクチック構造を含んでいると判断される。なお、メソゲン構造に由来する規則性の高い高次構造を有する場合には、2θが1°~30°の範囲に回折ピークが現れる。
Whether or not a smectic structure is formed using the epoxy resin composition can be determined by the following method.
X-ray diffraction measurement is performed using an X-ray analyzer (for example, manufactured by Rigaku Corporation) using a CuK α 1 line and a tube voltage of 40 kV, a tube current of 20 mA, and 2θ in the range of 0.5 ° to 30 °. When a diffraction peak exists in the range of 2θ of 1 ° to 10 °, it is determined that the periodic structure includes a smectic structure. Note that in the case of a highly ordered high-order structure derived from a mesogenic structure, a diffraction peak appears in the range of 2θ of 1 ° to 30 °.
-硬化剤-
 本開示のエポキシ樹脂組成物は、硬化剤を含有する。硬化剤の種類は特に限定されず、従来から公知の硬化剤を用いることができる。本開示においては、2価のフェノール化合物をノボラック化したノボラック樹脂(以下、「特定ノボラック樹脂」と称する場合がある)であることが好ましい。
-Curing agent-
The epoxy resin composition of the present disclosure contains a curing agent. The kind of hardening | curing agent is not specifically limited, A conventionally well-known hardening | curing agent can be used. In the present disclosure, a novolak resin obtained by novolacizing a divalent phenol compound (hereinafter sometimes referred to as “specific novolak resin”) is preferable.
 2価のフェノール化合物としては、カテコール、レゾルシノール、ヒドロキノン、1,2-ナフタレンジオール、1,3-ナフタレンジオール等が挙げられる。2価のフェノール化合物をノボラック化したノボラック樹脂とは、これら2価のフェノール化合物をメチレン鎖で連結したノボラック樹脂を示す。2価のフェノール化合物を用いることで硬化物の熱伝導性が向上し、これら化合物をノボラック化することでさらに硬化物の耐熱性が向上する。 Examples of the divalent phenol compound include catechol, resorcinol, hydroquinone, 1,2-naphthalenediol, 1,3-naphthalenediol, and the like. A novolak resin obtained by novolacizing a divalent phenol compound refers to a novolac resin in which these divalent phenol compounds are linked by a methylene chain. By using a divalent phenol compound, the thermal conductivity of the cured product is improved, and by making these compounds novolak, the heat resistance of the cured product is further improved.
 特定ノボラック樹脂は、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも一つで表される構造単位を有する化合物を含むことが好ましい。 The specific novolac resin preferably contains a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2).
Figure JPOXMLDOC01-appb-C000033

 
Figure JPOXMLDOC01-appb-C000033

 
 一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立にアルキル基、アリール基、又はアラルキル基を示す。R21又はR24で表されるアルキル基、アリール基、及びアラルキル基は、置換基を有していてもよい。アルキル基の置換基としては、アリール基、水酸基、ハロゲン原子等を挙げることができる。アリール基、及びアラルキル基の置換基としては、アルキル基、アリール基、水酸基、ハロゲン原子等を挙げることができる。 In general formula (II-1) and general formula (II-2), R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group. The alkyl group, aryl group, and aralkyl group represented by R 21 or R 24 may have a substituent. Examples of the substituent for the alkyl group include an aryl group, a hydroxyl group, and a halogen atom. Examples of the substituent for the aryl group and the aralkyl group include an alkyl group, an aryl group, a hydroxyl group, and a halogen atom.
 R21及びR24はそれぞれ独立にアルキル基、アリール基、又はアラルキル基を示し、炭素数1~6のアルキル基、炭素数6~12のアリール基、又は炭素数7~13のアラルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。 R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group, and is an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 13 carbon atoms. An alkyl group having 1 to 6 carbon atoms is more preferable.
 m21及びm22はそれぞれ独立に0~2の整数を示す。m21が2の場合、2つのR21は同一であっても異なっていてもよく、m22が2の場合、2つのR24は同一であっても異なっていてもよい。本開示において、m21及びm22はそれぞれ独立に0又は1であることが好ましく、0であることがより好ましい。
 また、n21及びn22はそれぞれ独立に1~7の整数を示し、一般式(II-1)で表される構造単位又は一般式(II-2)で表される構造単位の含有数をそれぞれ示す。
m21 and m22 each independently represents an integer of 0-2. If m21 is 2, two R 21 may be the same or different and when m22 is 2, two R 24 may be different even in the same. In the present disclosure, m21 and m22 are preferably each independently 0 or 1, and more preferably 0.
N21 and n22 each independently represents an integer of 1 to 7, and represents the content of the structural unit represented by the general formula (II-1) or the structural unit represented by the general formula (II-2). .
 一般式(II-1)及び一般式(II-2)中、R22、R23、R25及びR26はそれぞれ独立に水素原子、アルキル基、アリール基又はアラルキル基を示す。R22、R23、R25又はR26で表されるアルキル基、アリール基及びアラルキル基は、置換基を有していてもよい。アルキル基の置換基としては、アリール基、水酸基、ハロゲン原子等を挙げることができる。アリール基及びアラルキル基の置換基としては、アルキル基、アリール基、水酸基、ハロゲン原子等を挙げることができる。 In general formula (II-1) and general formula (II-2), R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. The alkyl group, aryl group and aralkyl group represented by R 22 , R 23 , R 25 or R 26 may have a substituent. Examples of the substituent for the alkyl group include an aryl group, a hydroxyl group, and a halogen atom. Examples of the substituent for the aryl group and the aralkyl group include an alkyl group, an aryl group, a hydroxyl group, and a halogen atom.
 R22、R23、R25及びR26としては、エポキシ樹脂組成物の保存安定性と硬化物の熱伝導性の観点から、水素原子、アルキル基、又はアリール基であることが好ましく、水素原子、炭素数1~4のアルキル基又は炭素数6~12のアリール基であることがより好ましく、水素原子であることがさらに好ましい。
 さらに、硬化物の耐熱性の観点から、R22及びR23の少なくとも一方、又はR25及びR26の少なくとも一方はアリール基であることもまた好ましく、炭素数6~12のアリール基であることがより好ましい。
 なお、上記アリール基は芳香族基にヘテロ原子を含んでいてもよく、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
R 22 , R 23 , R 25 and R 26 are preferably a hydrogen atom, an alkyl group or an aryl group from the viewpoints of storage stability of the epoxy resin composition and thermal conductivity of the cured product, The alkyl group having 1 to 4 carbon atoms or the aryl group having 6 to 12 carbon atoms is more preferable, and a hydrogen atom is further preferable.
Furthermore, from the viewpoint of heat resistance of the cured product, at least one of R 22 and R 23 or at least one of R 25 and R 26 is also preferably an aryl group, and is an aryl group having 6 to 12 carbon atoms. Is more preferable.
The aryl group may include a hetero atom in the aromatic group, and is preferably a heteroaryl group in which the total number of hetero atoms and carbon is 6 to 12.
 特定ノボラック樹脂は、一般式(II-1)で表される構造単位又は一般式(II-2)で表される構造単位を有する化合物を一種類単独で含んでいてもよいし、二種類以上を含んでいてもよい。特定ノボラック樹脂は、硬化物の熱伝導性の観点から、一般式(II-1)で表される構造単位を有する化合物を少なくとも含むことが好ましく、一般式(II-1)で表され、レゾルシノールに由来する構造単位を有する化合物を少なくとも含むことがより好ましい。 The specific novolac resin may contain one kind of compound having the structural unit represented by the general formula (II-1) or the structural unit represented by the general formula (II-2), or two or more kinds thereof. May be included. The specific novolac resin preferably contains at least a compound having a structural unit represented by the general formula (II-1) from the viewpoint of thermal conductivity of the cured product, and is represented by the general formula (II-1), More preferably, at least a compound having a structural unit derived from is included.
 一般式(II-1)で表される構造単位を有する化合物が、レゾルシノールに由来する構造単位を有する場合、レゾルシノール以外のフェノール化合物に由来する部分構造の少なくとも一種類をさらに含んでいてもよい。一般式(II-1)で表される構造単位を有する化合物におけるレゾルシノール以外のフェノール化合物としては、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等が挙げられる。一般式(II-1)で表される構造単位を有する化合物は、これらのフェノール化合物に由来する部分構造を一種類単独でも、二種類以上を組み合わせて含んでいてもよい。
 また、一般式(II-2)で表され、カテコールに由来する構造単位を有する化合物においても、カテコール以外のフェノール化合物に由来する部分構造の少なくとも一種類を含んでいてもよい。
When the compound having the structural unit represented by the general formula (II-1) has a structural unit derived from resorcinol, it may further include at least one kind of partial structure derived from a phenol compound other than resorcinol. Examples of the phenol compound other than resorcinol in the compound having the structural unit represented by the general formula (II-1) include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-tri Examples thereof include hydroxybenzene and 1,3,5-trihydroxybenzene. The compound having the structural unit represented by the general formula (II-1) may contain one type of partial structure derived from these phenol compounds or a combination of two or more types.
Further, the compound represented by the general formula (II-2) and having a structural unit derived from catechol may contain at least one kind of partial structure derived from a phenol compound other than catechol.
 ここで、フェノール化合物に由来する部分構造とは、フェノール化合物の芳香環部分から一個又は二個の水素原子を取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に限定されない。 Here, the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the aromatic ring portion of the phenol compound. The position where the hydrogen atom is removed is not particularly limited.
 一般式(II-1)で表される構造単位を有する化合物において、レゾルシノール以外のフェノール化合物に由来する部分構造としては、硬化物の熱伝導性並びにエポキシ樹脂組成物の接着性及び保存安定性の観点から、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンからなる群より選択される少なくとも一種類に由来する部分構造であることが好ましく、カテコール及びヒドロキノンから選択される少なくとも一種類に由来する部分構造であることがより好ましい。 In the compound having the structural unit represented by the general formula (II-1), the partial structure derived from a phenol compound other than resorcinol includes the heat conductivity of the cured product, the adhesiveness and the storage stability of the epoxy resin composition. From the viewpoint, at least one selected from the group consisting of phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene A partial structure derived from is preferable, and a partial structure derived from at least one selected from catechol and hydroquinone is more preferable.
 また、一般式(II-1)で表される構造単位を有する化合物がレゾルシノールに由来する構造単位を含む場合、レゾルシノールに由来する部分構造の含有比率については特に制限はない。弾性率の観点から、一般式(II-1)で表される構造単位を有する化合物の全質量に対するレゾルシノールに由来する部分構造の含有比率は、55質量%以上であることが好ましく、硬化物のTgと線膨張率の観点から、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、硬化物の熱伝導性の観点から、90質量%以上であることが特に好ましい。 In addition, when the compound having the structural unit represented by the general formula (II-1) includes a structural unit derived from resorcinol, the content ratio of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of the elastic modulus, the content ratio of the partial structure derived from resorcinol to the total mass of the compound having the structural unit represented by the general formula (II-1) is preferably 55% by mass or more. From the viewpoint of Tg and linear expansion coefficient, it is more preferably 60% by mass or more, further preferably 80% by mass or more, and from the viewpoint of thermal conductivity of the cured product, it is particularly preferably 90% by mass or more. preferable.
 さらに、特定ノボラック樹脂は、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも一つで表される構造を有する化合物を含むことも好ましい。 Furthermore, the specific novolak resin preferably contains a compound having a structure represented by at least one selected from the group consisting of the following general formula (III-1) to the following general formula (III-4).
Figure JPOXMLDOC01-appb-C000034

 
Figure JPOXMLDOC01-appb-C000034

 
Figure JPOXMLDOC01-appb-C000035

 
Figure JPOXMLDOC01-appb-C000035

 
Figure JPOXMLDOC01-appb-C000036

 
Figure JPOXMLDOC01-appb-C000036

 
Figure JPOXMLDOC01-appb-C000037

 
Figure JPOXMLDOC01-appb-C000037

 
 一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に正の整数を示す。Ar31~Ar34はそれぞれ独立に下記一般式(III-a)で表される基及び下記一般式(III-b)で表される基のいずれか一つを示す。 In the general formulas (III-1) to (III-4), m31 to m34 and n31 to n34 each independently represent a positive integer. Ar 31 to Ar 34 each independently represents one of a group represented by the following general formula (III-a) and a group represented by the following general formula (III-b).
Figure JPOXMLDOC01-appb-C000038

 
Figure JPOXMLDOC01-appb-C000038

 
 一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に水素原子又は水酸基を示す。R32及びR33はそれぞれ独立に水素原子又は炭素数1~8のアルキル基を示す。 In general formula (III-a) and general formula (III-b), R 31 and R 34 each independently represent a hydrogen atom or a hydroxyl group. R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも一つで表される構造を有する特定ノボラック樹脂は、2価のフェノール化合物をノボラック化する後述の製造方法によって、副次的に生成可能なものである。 The specific novolak resin having a structure represented by at least one selected from the group consisting of the general formula (III-1) to the general formula (III-4) is a method for producing a divalent phenol compound, which will be described later. Can be generated as a secondary.
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも一つで表される構造は、特定ノボラック樹脂の主鎖骨格として含まれていてもよく、また、側鎖の一部として含まれていてもよい。さらに、一般式(III-1)~一般式(III-4)のいずれか一つで表される構造を構成するそれぞれの構造単位は、ランダムに含まれていてもよいし、規則的に含まれていてもよいし、ブロック状に含まれていてもよい。
 また、一般式(III-1)~一般式(III-4)において、水酸基の置換位置は芳香環上であれば特に制限されない。
The structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) may be included as the main chain skeleton of the specific novolak resin, It may be included as part of the chain. Further, each structural unit constituting the structure represented by any one of the general formulas (III-1) to (III-4) may be included randomly or regularly. It may be included in a block shape.
Further, in the general formulas (III-1) to (III-4), the substitution position of the hydroxyl group is not particularly limited as long as it is on the aromatic ring.
 一般式(III-1)~一般式(III-4)のそれぞれについて、複数存在するAr31~Ar34はすべて同一の原子団であってもよいし、二種類以上の原子団を含んでいてもよい。なお、Ar31~Ar34はそれぞれ独立に一般式(III-a)で表される基及び一般式(III-b)で表される基のいずれか一つを示す。 For each of the general formulas (III-1) to (III-4), a plurality of Ar 31 to Ar 34 may all be the same atomic group or include two or more types of atomic groups. Also good. Ar 31 to Ar 34 each independently represents one of a group represented by the general formula (III-a) and a group represented by the general formula (III-b).
 一般式(III-a)及び一般式(III-b)におけるR31及びR34はそれぞれ独立に水素原子又は水酸基であり、硬化物の熱伝導性の観点から水酸基であることが好ましい。また、R31及びR34の置換位置は特に制限されない。 R 31 and R 34 in general formula (III-a) and general formula (III-b) are each independently a hydrogen atom or a hydroxyl group, and are preferably a hydroxyl group from the viewpoint of thermal conductivity of the cured product. Further, the substitution positions of R 31 and R 34 are not particularly limited.
 また、一般式(III-a)におけるR32及びR33はそれぞれ独立に水素原子又は炭素数1~8のアルキル基を示す。R32及びR33における炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。また、一般式(III-a)におけるR32及びR33の置換位置は特に制限されない。 In the general formula (III-a), R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms in R 32 and R 33 include methyl group, ethyl group, n-propyl group, n-butyl group, isopropyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, A heptyl group, an octyl group, etc. are mentioned. Further, the substitution positions of R 32 and R 33 in the general formula (III-a) are not particularly limited.
 一般式(III-1)~一般式(III-4)におけるAr31~Ar34はそれぞれ独立に、硬化物の優れた熱伝導性を達成する観点から、ジヒドロキシベンゼンに由来する基(すなわち、一般式(III-a)においてR31が水酸基であって、R32及びR33が水素原子である基)、及びジヒドロキシナフタレンに由来する基(すなわち、一般式(III-b)においてR34が水酸基である基)から選ばれる少なくとも一種類であることが好ましい。 In the general formulas (III-1) to (III-4), Ar 31 to Ar 34 are each independently a group derived from dihydroxybenzene (ie, a general group from the viewpoint of achieving excellent thermal conductivity of the cured product) In the formula (III-a), R 31 is a hydroxyl group, and R 32 and R 33 are hydrogen atoms), and a group derived from dihydroxynaphthalene (that is, in the general formula (III-b), R 34 is a hydroxyl group. It is preferably at least one kind selected from the group
 ここで「ジヒドロキシベンゼンに由来する基」とは、ジヒドロキシベンゼンの芳香環部分から2つの水素原子を取り除いて構成される2価の基を意味し、水素原子が取り除かれる位置は特に制限されない。また、「ジヒドロキシナフタレンに由来する基」等についても同様の意味である。 Here, the “group derived from dihydroxybenzene” means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited. In addition, “group derived from dihydroxynaphthalene” has the same meaning.
 また、エポキシ樹脂組成物の生産性及びBステージ状態である場合のハンドリング性の観点からは、Ar31~Ar34はそれぞれ独立にジヒドロキシベンゼンに由来する基であることが好ましく、1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基からなる群より選ばれる少なくとも一種類であることがより好ましい。硬化物の熱伝導性を特に高める観点から、Ar31~Ar34はレゾルシノールに由来する基を少なくとも含むことが好ましい。
 また、硬化物の熱伝導性を特に高める観点から、含有数がn31~n34で表される構造単位は、レゾルシノールに由来する部分構造を少なくとも含んでいることが好ましい。
From the viewpoint of productivity of the epoxy resin composition and handling properties in the B-stage state, Ar 31 to Ar 34 are preferably groups independently derived from dihydroxybenzene, and 1,2-dihydroxy More preferably, it is at least one selected from the group consisting of a group derived from benzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol). From the viewpoint of particularly improving the thermal conductivity of the cured product, Ar 31 to Ar 34 preferably include at least a group derived from resorcinol.
From the viewpoint of particularly improving the thermal conductivity of the cured product, the structural unit represented by n31 to n34 preferably contains at least a partial structure derived from resorcinol.
 特定ノボラック樹脂がレゾルシノールに由来する部分構造を含む場合、レゾルシノールに由来する部分構造の含有率は、一般式(III-1)~一般式(III-4)のうちの少なくとも一つで表される構造を有する化合物の総質量中において55質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。 When the specific novolac resin includes a partial structure derived from resorcinol, the content of the partial structure derived from resorcinol is represented by at least one of general formula (III-1) to general formula (III-4) It is preferably 55% by mass or more in the total mass of the compound having a structure, more preferably 60% by mass or more, further preferably 80% by mass or more, and particularly preferably 90% by mass or more. preferable.
 一般式(III-1)~一般式(III-4)におけるm31~m34及びn31~n34についてはそれぞれ、エポキシ樹脂組成物がBステージ状態である場合のハンドリング性の観点から、m/n=1/5~20/1であることが好ましく、5/1~20/1であることがより好ましく、10/1~20/1であることがさらに好ましい。また、(m+n)は、エポキシ樹脂組成物がBステージ状態である場合のハンドリング性の観点から20以下であることが好ましく、15以下であることがより好ましく、10以下であることがさらに好ましい。なお、(m+n)の下限値は特に制限されない。ここでnがn31の場合、mはm31であり、nがn32の場合、mはm32であり、nがn33の場合、mはm33であり、nがn34の場合、mはm34である。 M31 to m34 and n31 to n34 in the general formulas (III-1) to (III-4) are each m / n = 1 from the viewpoint of handling properties when the epoxy resin composition is in a B-stage state. / 5 to 20/1 is preferable, 5/1 to 20/1 is more preferable, and 10/1 to 20/1 is still more preferable. In addition, (m + n) is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less from the viewpoint of handling properties when the epoxy resin composition is in the B-stage state. In addition, the lower limit of (m + n) is not particularly limited. Here, when n is n31, m is m31, when n is n32, m is m32, when n is n33, m is m33, and when n is n34, m is m34.
 一般式(III-1)~一般式(III-4)からなる群より選ばれる少なくとも一つで表される構造を有する特定ノボラック樹脂は、特にAr31~Ar34が置換又は非置換のジヒドロキシベンゼン、及び置換又は非置換のジヒドロキシナフタレンの少なくとも一種類である場合、これらを単純にノボラック化したノボラック樹脂等と比較してその合成が容易であり、軟化点の低いノボラック樹脂が得られる傾向にある。よって、このようなノボラック樹脂を硬化剤として含むエポキシ樹脂組成物の製造及び取り扱いも、容易になるという利点がある。
 なお、ノボラック樹脂が一般式(III-1)~一般式(III-4)のうちの少なくとも一つで表される部分構造を有するか否かは、電界脱離イオン化質量分析法(FD-MS)によってそのフラグメント成分として一般式(III-1)~一般式(III-4)のうちの少なくとも一つで表される部分構造に相当する成分が含まれるか否かによって判断することができる。
The specific novolac resin having a structure represented by at least one selected from the group consisting of the general formula (III-1) to the general formula (III-4) is particularly a dihydroxybenzene in which Ar 31 to Ar 34 are substituted or unsubstituted. , And at least one kind of substituted or unsubstituted dihydroxynaphthalene, it is easy to synthesize and compared to a novolak resin or the like obtained by simply novolacizing these, and a novolak resin having a low softening point tends to be obtained. . Therefore, there is an advantage that the production and handling of an epoxy resin composition containing such a novolak resin as a curing agent is also facilitated.
Whether the novolak resin has a partial structure represented by at least one of general formulas (III-1) to (III-4) is determined by field desorption ionization mass spectrometry (FD-MS). ) To determine whether the fragment component contains a component corresponding to a partial structure represented by at least one of the general formulas (III-1) to (III-4).
 特定ノボラック樹脂の分子量は特に制限されない。エポキシ樹脂組成物がBステージ状態である場合のハンドリング性の観点から、数平均分子量(Mn)として2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることがさらに好ましい。また、重量平均分子量(Mw)としては2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることがさらに好ましい。
 これらMn及びMwは、GPCを用いた通常の方法により測定される。
The molecular weight of the specific novolac resin is not particularly limited. From the viewpoint of handling properties when the epoxy resin composition is in a B-stage state, the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and further preferably 350 to 1500. preferable. The weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500.
These Mn and Mw are measured by a normal method using GPC.
 特定ノボラック樹脂の水酸基当量は特に制限されない。硬化物の耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることがさらに好ましい。 The hydroxyl equivalent of the specific novolak resin is not particularly limited. From the viewpoint of the crosslinking density involved in the heat resistance of the cured product, the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and 55 g / eq. More preferably, it is ˜120 g / eq.
 硬化剤は、特定ノボラック樹脂を構成するフェノール化合物であるモノマーを含んでいてもよい。硬化剤における特定ノボラック樹脂を構成するフェノール化合物であるモノマーの含有比率(以下、「モノマー含有比率」ともいう)としては特に制限はない。硬化物の熱伝導性及び耐熱性並びにエポキシ樹脂組成物の成形性の観点から、硬化剤におけるモノマー含有比率は10質量%~50質量%であることが好ましく、15質量%~45質量%であることがより好ましく、20質量%~40質量%であることがさらに好ましい。 The curing agent may contain a monomer that is a phenol compound constituting the specific novolac resin. There is no restriction | limiting in particular as content ratio (henceforth "monomer content ratio") of the monomer which is a phenol compound which comprises specific novolak resin in a hardening | curing agent. From the viewpoint of thermal conductivity and heat resistance of the cured product and moldability of the epoxy resin composition, the monomer content in the curing agent is preferably 10% by mass to 50% by mass, and 15% by mass to 45% by mass. It is more preferable that the content be 20% by mass to 40% by mass.
 モノマー含有比率が50質量%以下であることで、硬化反応の際に架橋に寄与しないモノマーが少なくなり、架橋する高分子量体が多くなるため、より高密度な高次構造が形成され、硬化物の熱伝導性が向上する傾向にある。また、10質量%以上であることで、成形の際に流動し易いため、フィラーとの密着性がより向上し、硬化物のより優れた熱伝導性と耐熱性が達成できる傾向にある。 When the monomer content is 50% by mass or less, the amount of monomers that do not contribute to crosslinking during the curing reaction is reduced and the number of crosslinked high molecular weight substances is increased, so that a higher-density higher-order structure is formed and the cured product is formed. There is a tendency for the thermal conductivity of to improve. Moreover, since it is easy to flow at the time of shaping | molding because it is 10 mass% or more, it exists in the tendency for adhesiveness with a filler to improve more and to achieve the more excellent thermal conductivity and heat resistance of hardened | cured material.
 エポキシ樹脂組成物中の硬化剤の含有量は特に制限されない。硬化剤におけるフェノール性水酸基の活性水素の当量数(フェノール性水酸基の当量数)とエポキシ樹脂のエポキシ基の当量数との比(フェノール性水酸基の当量数/エポキシ基の当量数)が0.5~2となることが好ましく、0.8~1.2となることがより好ましい。 The content of the curing agent in the epoxy resin composition is not particularly limited. The ratio of the number of equivalents of active hydrogen of the phenolic hydroxyl group in the curing agent (number of equivalents of phenolic hydroxyl group) to the number of equivalents of epoxy group of the epoxy resin (number of equivalents of phenolic hydroxyl group / number of equivalents of epoxy group) is 0.5. Is preferably ˜2, more preferably 0.8˜1.2.
 また、エポキシ樹脂組成物は、必要に応じて硬化触媒をさらに含んでいてもよい。硬化触媒を含むことでさらに十分にエポキシ樹脂組成物を硬化させることができる。硬化触媒の種類及び含有率は特に限定されず、反応速度、反応温度、保管性等の観点から、適切な種類及び含有率を選択することができる。具体例としては、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。これらは一種類単独でも、二種類以上を併用してもよい。
 中でも、硬化物の耐熱性の観点から、有機ホスフィン化合物、及び有機ホスフィン化合物と有機ボロン化合物との錯体からなる群より選択される少なくとも一つであることが好ましい。
Moreover, the epoxy resin composition may further contain a curing catalyst as necessary. By including a curing catalyst, the epoxy resin composition can be sufficiently cured. The type and content of the curing catalyst are not particularly limited, and an appropriate type and content can be selected from the viewpoint of reaction rate, reaction temperature, storage property, and the like. Specific examples include imidazole compounds, organophosphorus compounds, tertiary amines, quaternary ammonium salts, and the like. These may be used alone or in combination of two or more.
Among these, from the viewpoint of heat resistance of the cured product, at least one selected from the group consisting of an organic phosphine compound and a complex of an organic phosphine compound and an organic boron compound is preferable.
 有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。 Specific examples of the organic phosphine compound include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl). Phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples thereof include alkyl diaryl phosphine.
 また、有機ホスフィン化合物と有機ボロン化合物との錯体としては、具体的には、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ-p-トリルボレート、テトラブチルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムブチルトリフェニルボレート、ブチルトリフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムテトラフェニルボレート等が挙げられる。 Specific examples of the complex of an organic phosphine compound and an organic boron compound include tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, tetrabutylphosphonium tetraphenylborate, and tetraphenylphosphonium butyltriphenyl. Examples thereof include borate, butyltriphenylphosphonium tetraphenylborate, and methyltributylphosphonium tetraphenylborate.
 硬化触媒は一種類単独でも二種類以上を併用して用いてもよい。後述のBステージシート、Cステージシート及び硬化物を効率よく作製する手法として、エポキシ樹脂と硬化剤との反応開始温度及び反応速度が異なる二種類の硬化触媒を混合して用いる方法が挙げられる。 One curing catalyst may be used alone, or two or more curing catalysts may be used in combination. As a method for efficiently producing a B stage sheet, a C stage sheet, and a cured product, which will be described later, there is a method in which two types of curing catalysts having different reaction start temperatures and reaction rates between an epoxy resin and a curing agent are used.
 硬化触媒の二種類以上を併用して用いる場合、混合割合はBステージシート、Cステージシート及び硬化物に求める特性によって、特に制限されることなく決めることができる。 When two or more types of curing catalysts are used in combination, the mixing ratio can be determined without particular limitation depending on the characteristics required for the B stage sheet, the C stage sheet, and the cured product.
 エポキシ樹脂組成物が硬化触媒を含む場合、エポキシ樹脂組成物の成形性の観点から、硬化触媒の含有率はエポキシ樹脂と硬化剤の合計質量の0.5質量%~1.5質量%であることが好ましく、0.5質量%~1質量%であることがより好ましく、0.6質量%~1質量%であることがさらに好ましい。 When the epoxy resin composition contains a curing catalyst, from the viewpoint of moldability of the epoxy resin composition, the content of the curing catalyst is 0.5% by mass to 1.5% by mass of the total mass of the epoxy resin and the curing agent. It is preferably 0.5% by mass to 1% by mass, more preferably 0.6% by mass to 1% by mass.
-フィラー-
 本開示のエポキシ樹脂組成物は、フィラーを含有する。フィラーは、熱伝導率の観点から、少なくとも窒化物フィラーを含む。窒化物フィラーの材質としては、例えば、窒化ホウ素、窒化ケイ素及び窒化アルミニウムが挙げられる。窒化物フィラーの材質としては、熱伝導率の観点から、窒化ホウ素及び窒化アルミニウムの少なくとも一方であることが好ましい。窒化物フィラーの材質としては、絶縁性の観点から、窒化ホウ素であることがより好ましい。
-Filler-
The epoxy resin composition of the present disclosure contains a filler. The filler includes at least a nitride filler from the viewpoint of thermal conductivity. Examples of the material for the nitride filler include boron nitride, silicon nitride, and aluminum nitride. The material for the nitride filler is preferably at least one of boron nitride and aluminum nitride from the viewpoint of thermal conductivity. The material of the nitride filler is more preferably boron nitride from the viewpoint of insulation.
 なお、エポキシ樹脂組成物又はその半硬化物若しくは硬化物中に窒化物フィラーが含有されているか否かは、例えばエネルギー分散型X線分析法(EDX)によって確認することができる。特に、走査型電子顕微鏡(SEM)とEDXとを組み合わせることで、エポキシ樹脂組成物又はその半硬化物若しくは硬化物の断面の窒化物フィラーの分布状態を確認することも可能である。 Note that whether or not the nitride filler is contained in the epoxy resin composition or a semi-cured product or a cured product thereof can be confirmed by, for example, energy dispersive X-ray analysis (EDX). In particular, by combining a scanning electron microscope (SEM) and EDX, it is also possible to confirm the distribution state of the nitride filler in the cross section of the epoxy resin composition or a semi-cured product or a cured product thereof.
 窒化物フィラーの材質として窒化ホウ素が用いられる場合、窒化ホウ素の結晶形は、六方晶(hexagonal)、立方晶(cubic)及び菱面体晶(rhombohedral)のいずれであってもよく、粒子径を容易に制御できることから六方晶が好ましい。また、結晶形の異なる窒化ホウ素の二種類以上を併用してもよい。 When boron nitride is used as the material of the nitride filler, the crystal form of boron nitride may be any of hexagonal, cubic and rhombohedral, and the particle size is easy Hexagonal crystal is preferable. Two or more types of boron nitride having different crystal forms may be used in combination.
 熱伝導率及びエポキシ樹脂組成物をワニスの状態で使用する際のワニスの粘度の観点から、窒化物フィラーは、粉砕加工又は凝集加工したものであることが好ましい。窒化物フィラーの粒子形状としては、丸み状、球形、りん片状等の形状が挙げられる。また、窒化物フィラーは、これらの粒子が凝集した凝集粒子であってもよい。窒化物フィラーの充填性を高くする観点から、粒子の長径と短径との比(アスペクト比)が3以下の丸み状又は球形であることが好ましく、より好ましくはアスペクト比が2以下の丸み状又は球形であり、球形がさらに好ましい。
 なお、粒子のアスペクト比は、電子顕微鏡等を用いて粒子を画像化し、粒子1つ1つの長径及び短径を測定し、長径と短径との比の算術平均にて得られる値を意味する。本開示において、粒子の長径とは、粒子の外接長方形の長さをいい、粒子の短径とは、粒子の外接長方形の幅をいう。
 また、粒子が球形であるとは、アスペクト比が1.5以下であることをいう。
From the viewpoint of thermal conductivity and viscosity of the varnish when the epoxy resin composition is used in the varnish state, the nitride filler is preferably pulverized or agglomerated. Examples of the particle shape of the nitride filler include round shapes, spherical shapes, and flake shapes. The nitride filler may be aggregated particles in which these particles are aggregated. From the viewpoint of enhancing the filling property of the nitride filler, it is preferable that the ratio of the major axis to the minor axis (aspect ratio) is a round shape or a spherical shape of 3 or less, more preferably a round shape having an aspect ratio of 2 or less. Or it is a spherical shape, and a spherical shape is more preferable.
The aspect ratio of the particles means a value obtained by imaging particles using an electron microscope or the like, measuring the major axis and minor axis of each particle, and calculating the arithmetic average of the ratio of the major axis to the minor axis. . In the present disclosure, the major axis of the particle refers to the length of the circumscribed rectangle of the particle, and the minor axis of the particle refers to the width of the circumscribed rectangle of the particle.
Further, the term “spherical particles” means that the aspect ratio is 1.5 or less.
 なかでも、凝集加工した六方晶窒化ホウ素粒子が好ましい。凝集加工した六方晶窒化ホウ素粒子は隙間を多く有するため、粒子に圧力をかけることで粒子が潰れて変形しやすい。そのため、エポキシ樹脂組成物のワニスの塗布性を考慮してフィラーの含有率を低くしても、塗布後にプレス等でエポキシ樹脂組成物を圧縮することで実質的なフィラーの含有率を高めることが可能になる。熱伝導率が高いフィラー同士の接触による熱伝導パスの形成のし易さという観点から見ると、フィラーの粒子形状は球形よりも丸み状又はりん片状の方が、粒子の接触点が多くなり好ましいと考えられるが、フィラーの充填性並びにエポキシ樹脂組成物の揺変性及び粘度の兼ね合いから、球形の粒子が好ましい。
 本開示においては、粒子形状の異なる窒化物フィラーを、一種類単独で用いても二種類以上を併用してもよい。
Among these, agglomerated hexagonal boron nitride particles are preferable. Since the agglomerated hexagonal boron nitride particles have many gaps, the particles are easily crushed and deformed by applying pressure to the particles. Therefore, even if the filler content is lowered in consideration of the applicability of the varnish of the epoxy resin composition, the substantial filler content can be increased by compressing the epoxy resin composition with a press after application. It becomes possible. From the viewpoint of easy formation of a heat conduction path by contact between fillers having high thermal conductivity, the particle shape of the filler is more rounded or flake shaped than the spherical shape, and the number of particle contact points increases. Although considered to be preferable, spherical particles are preferable from the viewpoint of filler filling property, thixotropic property of the epoxy resin composition and viscosity.
In the present disclosure, nitride fillers having different particle shapes may be used alone or in combination of two or more.
 また、フィラーの充填性を鑑みて、窒化物フィラーの隙間を充填するために窒化物フィラー以外のその他のフィラーを併用してもよい。その他のフィラーの材質としては、絶縁性を有する無機化合物であれば特に制限はない。本開示において無機化合物が「絶縁性を有する」とは、無機化合物の体積抵抗率が1012Ωcm以上であることをいう。
 その他のフィラーの材質としては、高い熱伝導率を有するものであることが好ましい。その他のフィラーの材質の具体例としては、酸化ベリリウム、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化ケイ素、タルク、マイカ、水酸化アルミニウム、硫酸バリウム等を挙げることができる。中でも、熱伝導率の観点から、酸化アルミニウム及び酸化マグネシウムが好ましい。
In view of filler filling properties, other fillers other than the nitride filler may be used in combination in order to fill the gaps in the nitride filler. The other filler material is not particularly limited as long as it is an inorganic compound having an insulating property. In the present disclosure, an inorganic compound having “insulating properties” means that the volume resistivity of the inorganic compound is 10 12 Ωcm or more.
Other filler materials preferably have high thermal conductivity. Specific examples of other filler materials include beryllium oxide, aluminum oxide (alumina), magnesium oxide, silicon oxide, talc, mica, aluminum hydroxide, barium sulfate, and the like. Among these, aluminum oxide and magnesium oxide are preferable from the viewpoint of thermal conductivity.
 窒化物フィラーの体積平均粒子径(D50)としては特に制限はなく、成形性の観点から、100μm以下であることが好ましく、熱伝導性及びエポキシ樹脂組成物をワニスの状態で使用する際のワニスの揺変性の観点から20μm~100μmであることがより好ましく、絶縁性の観点から20μm~60μmであることがさらに好ましい。 There is no restriction | limiting in particular as volume average particle diameter (D50) of a nitride filler, and it is preferable that it is 100 micrometers or less from a viewpoint of a moldability, and varnish at the time of using heat conductivity and an epoxy resin composition in a varnish state The thickness is more preferably 20 μm to 100 μm from the viewpoint of thixotropic properties, and further preferably 20 μm to 60 μm from the viewpoint of insulation.
 フィラーは、単一ピークを有する粒径分布を示すものであっても、2以上のピークを有する粒径分布を示すものであってもよい。本開示においては、充填率の観点から、2以上のピークを有する粒径分布を示すフィラーであることが好ましく、3以上のピークを有する粒径分布を示すフィラーであることがより好ましい。 The filler may exhibit a particle size distribution having a single peak or may exhibit a particle size distribution having two or more peaks. In the present disclosure, from the viewpoint of the filling rate, a filler showing a particle size distribution having two or more peaks is preferable, and a filler showing a particle size distribution having three or more peaks is more preferable.
 フィラーが、3つのピークを有する粒径分布を示す場合、0.1μm~0.8μmの範囲に存在する第一のピークと、1μm~8μmの範囲に存在する第二のピークと、20μm~60μmの範囲に存在する第三のピークとを有することが好ましい。フィラーが前述の第一、第二及び第三のピークを有する粒径分布を有するようにするには、小粒径粒子として0.1μm~0.8μmの平均粒子径を示す第一のフィラーと、中粒径粒子として1μm~8μmの平均粒子径を示す第二のフィラーと、大粒径粒子として20μm~60μmの平均粒子径を示す第三のフィラーとを併用することが好ましい。
 フィラーが前述の第一、第二及び第三のピークを有する粒径分布を有することで、フィラーの充填率がより向上し、熱伝導率がより向上する傾向にある。フィラーの充填性の観点から、第三のフィラーの平均粒子径は30μm~50μmであることが好ましく、第二のフィラーの平均粒子径は第三のフィラーの平均粒子径の1/15~1/4であることが好ましく、第一のフィラーの平均粒子径は第二のフィラーの平均粒子径の1/10~1/4であることが好ましい。
When the filler exhibits a particle size distribution having three peaks, the first peak present in the range of 0.1 μm to 0.8 μm, the second peak present in the range of 1 μm to 8 μm, and 20 μm to 60 μm It is preferable to have a third peak existing in the range of. In order for the filler to have a particle size distribution having the first, second and third peaks, the first filler having an average particle size of 0.1 μm to 0.8 μm as small particle size particles, It is preferable to use a second filler having an average particle diameter of 1 μm to 8 μm as the medium particle diameter and a third filler having an average particle diameter of 20 μm to 60 μm as the large particle diameter.
When the filler has a particle size distribution having the first, second and third peaks described above, the filler filling rate tends to be further improved, and the thermal conductivity tends to be further improved. From the viewpoint of filler filling properties, the average particle diameter of the third filler is preferably 30 μm to 50 μm, and the average particle diameter of the second filler is 1/15 to 1/1 / of the average particle diameter of the third filler. The average particle diameter of the first filler is preferably 1/10 to 1/4 of the average particle diameter of the second filler.
 フィラーの粒度分布は、レーザー回折法を用いて測定される体積累積粒度分布をいう。また、フィラーの平均粒子径は、レーザー回折法を用いて測定される体積累積粒度分布が50%となる粒子径をいう。
 レーザー回折法を用いた粒度分布測定は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、LS13)を用いて行なうことができる。測定用のフィラー分散液は、フィラーを0.1質量%のメタリン酸ナトリウム水溶液に投入し、超音波分散させ、装置の感度上適切な光量となる濃度に調製することで得られる。
 測定された体積累積粒度分布から、フィラーが、単一ピークを有する粒径分布を示すものであるか、又は2以上のピークを有する粒径分布を示すものであるかが判断される。
The particle size distribution of the filler refers to a volume cumulative particle size distribution measured using a laser diffraction method. Moreover, the average particle diameter of a filler says the particle diameter from which volume cumulative particle size distribution measured using a laser diffraction method will be 50%.
The particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, LS13 manufactured by Beckman Coulter, Inc.). The filler dispersion for measurement can be obtained by introducing a filler into a 0.1% by mass sodium metaphosphate aqueous solution, ultrasonically dispersing the filler, and adjusting the concentration to an appropriate light amount in terms of device sensitivity.
From the measured volume cumulative particle size distribution, it is determined whether the filler exhibits a particle size distribution having a single peak or a particle size distribution having two or more peaks.
 フィラーが第一のフィラー、第二のフィラー及び第三のフィラーを含む場合、窒化物フィラーは、第三のフィラーとして用いることが好ましい。第一のフィラー及び第二のフィラーは、窒化物フィラーであっても、その他のフィラーであってもよい。第一のフィラー及び第二のフィラーの材質は、熱伝導率及びエポキシ樹脂組成物をワニスの状態で使用する際のワニスの揺変性の観点から、窒化アルミニウム及び酸化アルミニウムの少なくとも一方であることが好ましい。 When the filler includes the first filler, the second filler, and the third filler, the nitride filler is preferably used as the third filler. The first filler and the second filler may be nitride fillers or other fillers. The material of the first filler and the second filler may be at least one of aluminum nitride and aluminum oxide from the viewpoint of thermal conductivity and thixotropic modification of the varnish when the epoxy resin composition is used in the varnish state. preferable.
 エポキシ樹脂組成物中のフィラーの含有率は、成形性の観点から、50体積%~90体積%であることが好ましく、熱伝導性の観点から、60体積%~85体積%であることがより好ましく、エポキシ樹脂組成物をワニスの状態で使用する際のワニスの揺変性の観点から、65体積%~78体積%であることがさらに好ましい。体積基準でのフィラーの含有率が上記範囲内にあると、硬化前は柔軟性を有し、硬化後においては熱伝導性に優れる絶縁性の樹脂硬化物を形成することができる傾向にある。 The content of the filler in the epoxy resin composition is preferably 50% by volume to 90% by volume from the viewpoint of moldability, and more preferably 60% by volume to 85% by volume from the viewpoint of thermal conductivity. Preferably, from the viewpoint of thixotropy of the varnish when the epoxy resin composition is used in the varnish state, it is more preferably 65% by volume to 78% by volume. When the content of the filler on the volume basis is within the above range, there is a tendency to form an insulating resin cured product having flexibility before curing and excellent in thermal conductivity after curing.
 フィラーに占める窒化物フィラーの割合は、ある態様では、絶縁性の観点から10体積%~100体積%であることが好ましく、エポキシ樹脂組成物をワニスの状態で使用する際のワニスの揺変性の観点から、20体積%~90体積%であることがより好ましく、熱伝導率の観点から30体積%~85体積%であることがさらに好ましい。
 また、フィラーに占める窒化物フィラーの割合は、その他の態様では、50体積%~95体積%であることが好ましく、充填性の観点から、60体積%~95体積%であることがより好ましく、熱伝導性の観点から、65体積%~92体積%であることがさらに好ましい。
In some embodiments, the proportion of the nitride filler in the filler is preferably 10% by volume to 100% by volume from the viewpoint of insulating properties, and the thixotropic properties of the varnish when the epoxy resin composition is used in the varnish state. From the viewpoint, it is more preferably 20% by volume to 90% by volume, and further preferably 30% by volume to 85% by volume from the viewpoint of thermal conductivity.
Further, the proportion of the nitride filler in the filler is preferably 50% by volume to 95% by volume in other embodiments, more preferably 60% by volume to 95% by volume from the viewpoint of filling properties. From the viewpoint of thermal conductivity, it is more preferably 65% by volume to 92% by volume.
 なお、エポキシ樹脂組成物中におけるフィラーの体積基準の含有率は、以下のようにして測定される。
 まず、25℃におけるエポキシ樹脂組成物の質量(Wc)を測定し、そのエポキシ樹脂組成物を、空気中、400℃で2時間、次いで700℃で3時間加熱し、樹脂分を分解及び燃焼して除去した後、25℃における残存したフィラーの質量(Wf)を測定する。次いで、電子比重計又は比重瓶を用いて、25℃におけるフィラーの密度(df)を求める。次いで、同様の方法で25℃におけるエポキシ樹脂組成物の密度(dc)を測定する。次いで、エポキシ樹脂組成物の体積(Vc)及び残存したフィラーの体積(Vf)を求め、(式1)に示すように残存したフィラーの体積をエポキシ樹脂組成物の体積で除すことで、フィラーの体積比率(Vr)を求める。
In addition, the volume-based content rate of the filler in an epoxy resin composition is measured as follows.
First, the mass (Wc) of the epoxy resin composition at 25 ° C. is measured, and the epoxy resin composition is heated in air at 400 ° C. for 2 hours and then at 700 ° C. for 3 hours to decompose and burn the resin component. Then, the mass (Wf) of the remaining filler at 25 ° C. is measured. Next, the density (df) of the filler at 25 ° C. is obtained using an electronic hydrometer or a specific gravity bottle. Next, the density (dc) of the epoxy resin composition at 25 ° C. is measured by the same method. Next, the volume (Vc) of the epoxy resin composition and the volume (Vf) of the remaining filler are obtained, and the volume of the remaining filler is divided by the volume of the epoxy resin composition as shown in (Formula 1). The volume ratio (Vr) is obtained.
(式1)
  Vc=Wc/dc
  Vf=Wf/df
  Vr(%)=(Vf/Vc)×100
(Formula 1)
Vc = Wc / dc
Vf = Wf / df
Vr (%) = (Vf / Vc) × 100
Vc:エポキシ樹脂組成物の体積(cm
Wc:エポキシ樹脂組成物の質量(g)
dc:エポキシ樹脂組成物の密度(g/cm
Vf:フィラーの体積(cm
Wf:フィラーの質量(g)
df:フィラーの密度(g/cm
Vr:フィラーの体積比率(%)
Vc: Volume of the epoxy resin composition (cm 3 )
Wc: mass of epoxy resin composition (g)
dc: Density of epoxy resin composition (g / cm 3 )
Vf: Volume of filler (cm 3 )
Wf: Mass of filler (g)
df: density of the filler (g / cm 3 )
Vr: Volume ratio of filler (%)
 また、フィラーの質量基準の含有量としては特に限定されない。具体的には、エポキシ樹脂組成物を100質量部としたときに、フィラーの含有量は、1質量部~99質量部であることが好ましく、50質量部~97質量部であることがより好ましく、70質量部~95質量部であることがさらに好ましい。フィラーの含有量が上記範囲内であることにより、より高い熱伝導率を達成することができる。 Further, the content based on the mass of the filler is not particularly limited. Specifically, when the epoxy resin composition is 100 parts by mass, the filler content is preferably 1 part by mass to 99 parts by mass, and more preferably 50 parts by mass to 97 parts by mass. More preferably, it is 70 to 95 parts by mass. When the filler content is within the above range, higher thermal conductivity can be achieved.
-その他の成分-
 エポキシ樹脂組成物は、必要に応じて、上記成分に加えてその他の成分を含んでいてもよい。その他の成分としては、例えば、溶剤、エラストマ、シランカップリング剤、分散剤及び沈降防止剤を挙げることができる。
-Other ingredients-
The epoxy resin composition may contain other components in addition to the above components, if necessary. Examples of other components include a solvent, an elastomer, a silane coupling agent, a dispersant, and an anti-settling agent.
 エポキシ樹脂組成物は、溶剤の少なくとも一種類を含有してもよい。溶剤としては、エポキシ樹脂組成物の硬化反応を阻害しないものであれば特に制限はなく、通常用いられる有機溶剤を適宜選択して用いることができる。溶剤の具体例としては、メチルエチルケトン、シクロヘキサノン、乳酸エチル等を挙げることができる。エポキシ樹脂組成物が溶剤を含有する場合、エポキシ樹脂組成物に含まれる溶剤の含有率は、10質量%~40質量%であることが好ましく、10質量%~35質量%であることがより好ましく、15質量%~30質量%であることがさらに好ましい。 The epoxy resin composition may contain at least one kind of solvent. The solvent is not particularly limited as long as it does not inhibit the curing reaction of the epoxy resin composition, and a commonly used organic solvent can be appropriately selected and used. Specific examples of the solvent include methyl ethyl ketone, cyclohexanone, ethyl lactate and the like. When the epoxy resin composition contains a solvent, the content of the solvent contained in the epoxy resin composition is preferably 10% by mass to 40% by mass, and more preferably 10% by mass to 35% by mass. More preferably, the content is 15% by mass to 30% by mass.
 エポキシ樹脂組成物は、シランカップリング剤の少なくとも一種類を含むことが好ましい。シランカップリング剤を含むことで、熱伝導率及び絶縁信頼性がより向上する傾向にある。これは例えば、シランカップリング剤がフィラーの表面とその周りを取り囲む樹脂の間で共有結合を形成する役割(バインダ剤に相当)を果たすためと考えることができる。 The epoxy resin composition preferably contains at least one silane coupling agent. By including the silane coupling agent, the thermal conductivity and the insulation reliability tend to be further improved. This can be considered, for example, because the silane coupling agent plays a role of forming a covalent bond between the filler surface and the resin surrounding the filler (corresponding to a binder agent).
 シランカップリング剤としては、市販のものを使用してもよい。エポキシ樹脂又は硬化剤との相溶性、樹脂とフィラーとの界面での熱伝導ロスの低減等を考慮すると、エポキシ基、アミノ基、メルカプト基、ウレイド基、水酸基等の官能基を有するシランカップリング剤を用いることが好適である。 A commercially available silane coupling agent may be used. Silane coupling with functional groups such as epoxy groups, amino groups, mercapto groups, ureido groups, hydroxyl groups, etc., considering compatibility with epoxy resins or curing agents and reduction of heat conduction loss at the interface between resin and filler It is preferable to use an agent.
 具体的には、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン及び3-ウレイドプロピルトリエトキシシランを挙げることができる。また、SC-6000KS2(日立化成テクノサービス株式会社製)に代表されるシランカップリング剤オリゴマ等も挙げられる。
 これらシランカップリング剤は一種類単独で用いてもよく、二種類以上を併用してもよい。
Specifically, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3 Mention may be made of aminopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane and 3-ureidopropyltriethoxysilane. Also included are silane coupling agent oligomers represented by SC-6000KS2 (manufactured by Hitachi Chemical Techno Service Co., Ltd.).
These silane coupling agents may be used alone or in combination of two or more.
 エポキシ樹脂組成物がシランカップリング剤を含有する場合、エポキシ樹脂組成物におけるシランカップリング剤の含有率は特に制限されない。例えば、エポキシ樹脂組成物の固形分中において0.01質量%~0.1質量%であることが好ましい。 When the epoxy resin composition contains a silane coupling agent, the content of the silane coupling agent in the epoxy resin composition is not particularly limited. For example, the content is preferably 0.01% by mass to 0.1% by mass in the solid content of the epoxy resin composition.
 シランカップリング剤は、エポキシ樹脂組成物中に含有されていればよく、フィラーの表面を被覆した状態で存在していても、エポキシ樹脂組成物中に単独で存在していてもよい。 The silane coupling agent only needs to be contained in the epoxy resin composition, and may be present in a state where the surface of the filler is coated or may be present alone in the epoxy resin composition.
 シランカップリング剤をエポキシ樹脂組成物へ添加する方法としては、特に制限はない。具体的には、エポキシ樹脂、硬化剤、フィラー等の他の材料を混合する際に添加するインテグラル法、少量のエポキシ樹脂に一定量のシランカップリング剤を混合した後、フィラー等の他の材料と混合するマスターバッチ法、エポキシ樹脂等の他の材料と混合する前にフィラーとシランカップリング剤とを混合し、予めフィラーの表面にシランカップリング剤を処理する前処理法などがある。また、前処理法にはシランカップリング剤の原液又は溶液をフィラーとともに高速撹拌により分散させて処理する乾式法、シランカップリング剤の希薄溶液でフィラーをスラリー化したり、フィラーをシランカップリング剤に浸漬したりすることで、フィラー表面にシランカップリング剤処理を施す湿式法等がある。 The method for adding the silane coupling agent to the epoxy resin composition is not particularly limited. Specifically, the integral method added when mixing other materials such as epoxy resin, curing agent, filler, etc., after mixing a certain amount of silane coupling agent with a small amount of epoxy resin, There are a master batch method of mixing with a material, a pretreatment method of mixing a filler and a silane coupling agent before mixing with another material such as an epoxy resin, and treating the surface of the filler with the silane coupling agent in advance. In addition, the pretreatment method includes a dry method in which an undiluted solution or solution of a silane coupling agent is dispersed together with a filler by high-speed stirring, and the filler is slurried with a dilute solution of the silane coupling agent. There is a wet method or the like in which the filler surface is treated with a silane coupling agent by being immersed.
 フィラーの比表面積あたりのシランカップリング剤由来のケイ素原子の付着量は、5.0×10-6mol/m~10.0×10-6mol/mであることが好ましく、5.5×10-6mol/m~9.5×10-6mol/mであることがより好ましく、6.0×10-6mol/m~9.0×10-6mol/mであることがさらに好ましい。 The adhesion amount of silicon atoms derived from the silane coupling agent per specific surface area of the filler is preferably 5.0 × 10 −6 mol / m 2 to 10.0 × 10 −6 mol / m 2 . More preferably, it is 5 × 10 −6 mol / m 2 to 9.5 × 10 −6 mol / m 2 , and 6.0 × 10 −6 mol / m 2 to 9.0 × 10 −6 mol / m. 2 is more preferable.
 フィラーの比表面積あたりの、シランカップリング剤由来のケイ素原子の付着量の測定方法は、以下の通りである。
 まず、フィラーの比表面積の測定法としては主にBET法が適用される。BET法とは、窒素(N)、アルゴン(Ar)、クリプトン(Kr)等の不活性気体分子を固体粒子に吸着させ、吸着した気体分子の量から固体粒子の比表面積を測定する気体吸着法である。比表面積の測定は、比表面積細孔分布測定装置(例えば、ベックマン・コールター製、SA3100)を用いて行うことができる。
The measuring method of the adhesion amount of the silicon atom derived from the silane coupling agent per specific surface area of the filler is as follows.
First, the BET method is mainly applied as a method for measuring the specific surface area of the filler. The BET method is a gas adsorption method in which inert gas molecules such as nitrogen (N 2 ), argon (Ar), and krypton (Kr) are adsorbed on solid particles, and the specific surface area of the solid particles is measured from the amount of adsorbed gas molecules. Is the law. The specific surface area can be measured using a specific surface area pore distribution measuring apparatus (for example, SA3100, manufactured by Beckman Coulter, Inc.).
 さらに、フィラーの表面に存在するシランカップリング剤由来のケイ素原子は、29Si CP/MAS(Cross Polarization)/(Magic Angle Spinning)固体NMR(Nuclear Magnetic Resonance)により定量測定が可能である。このCP/MAS固体NMR(例えば、日本電子株式会社製、JNM-ECA700)は高い分解能を有するため、フィラーにシリカを含む場合でも、フィラーとしてのシリカ由来のケイ素原子とシランカップリング剤由来のケイ素原子を区別することが可能である。
 また、フィラー中にシリカを含まない場合においては、蛍光X線分析装置(例えば、株式会社リガク製、Supermini200)によってもシランカップリング剤由来のケイ素原子を定量することができる。
Furthermore, the silicon atom derived from the silane coupling agent present on the surface of the filler can be quantitatively measured by 29 Si CP / MAS (Cross Polarization) / (Magic Angle Spinning) solid-state NMR (Nuclear Magnetic Resonance). Since this CP / MAS solid-state NMR (for example, JNM-ECA700 manufactured by JEOL Ltd.) has high resolution, even when the filler contains silica, the silicon atom derived from silica as the filler and the silicon derived from the silane coupling agent It is possible to distinguish atoms.
In the case where silica is not contained in the filler, silicon atoms derived from the silane coupling agent can be quantified also by a fluorescent X-ray analyzer (for example, Supermini 200 manufactured by Rigaku Corporation).
 上述のようにして得られたフィラーの比表面積と、フィラーの表面に存在するシランカップリング剤由来のケイ素原子の量とに基づき、フィラーの比表面積あたりのシランカップリング剤由来のケイ素原子の付着量が算出される。 Based on the specific surface area of the filler obtained as described above and the amount of silicon atoms derived from the silane coupling agent present on the surface of the filler, adhesion of silicon atoms derived from the silane coupling agent per specific surface area of the filler A quantity is calculated.
-エポキシ樹脂組成物の物性-
 エポキシ樹脂組成物が溶剤を含有する場合、エポキシ樹脂組成物の25℃における粘度は、0.5Pa・s~5Pa・sであることが好ましく、0.5Pa・s~4Pa・sであることがより好ましく、1Pa・s~3Pa・sであることがさらに好ましい。エポキシ樹脂組成物の25℃における粘度は、コーンプレート(直径40mm、コーン角0°)を装着した回転式のせん断粘度計を用いて、5.0s-1のせん断速度で温度25℃で測定される値をいう。
 また、エポキシ樹脂組成物の25℃における揺変指数は、3~15であることが好ましく、3.5~10であることがより好ましく、4~7であることがさらに好ましい。
 エポキシ樹脂組成物の揺変指数は、25℃に保たれた組成物について、レオメーターを用いて粘度を測定したときの(0.5s-1のせん断速度での粘度)/(5.0s-1のせん断速度での粘度)の値とする。詳細には、「揺変指数」は、せん断粘度として、コーンプレート(直径40mm、コーン角0°)を装着した回転式のせん断粘度計を用いて、温度25℃で測定される。
-Physical properties of epoxy resin composition-
When the epoxy resin composition contains a solvent, the viscosity of the epoxy resin composition at 25 ° C. is preferably 0.5 Pa · s to 5 Pa · s, and preferably 0.5 Pa · s to 4 Pa · s. More preferably, it is 1 Pa · s to 3 Pa · s. The viscosity at 25 ° C. of the epoxy resin composition was measured at a temperature of 25 ° C. at a shear rate of 5.0 s −1 using a rotary shear viscometer equipped with a cone plate (diameter 40 mm, cone angle 0 °). Value.
Further, the variation index at 25 ° C. of the epoxy resin composition is preferably 3 to 15, more preferably 3.5 to 10, and further preferably 4 to 7.
The variation index of the epoxy resin composition was (viscosity at a shear rate of 0.5 s −1 ) / (5.0 s ) when the viscosity of the composition kept at 25 ° C. was measured using a rheometer. (Viscosity at a shear rate of 1 ). Specifically, the “thickening index” is measured as a shear viscosity at a temperature of 25 ° C. using a rotary shear viscometer equipped with a cone plate (diameter 40 mm, cone angle 0 °).
[樹脂シート]
 本開示の樹脂シートは、本開示のエポキシ樹脂組成物を含む樹脂組成物層を有する。樹脂組成物層は1層であっても2層以上であってもよい。本開示の樹脂シートは、必要に応じて樹脂組成物層上に離型フィルムをさらに含んで構成されてもよい。
 樹脂シートは、例えば、メチルエチルケトン、シクロヘキサノン等の有機溶剤をエポキシ樹脂組成物に添加して調製されるワニス状のエポキシ樹脂組成物(以下、「樹脂ワニス」ともいう)をPETフィルム等の離型フィルム上に付与後、乾燥することで製造することができる。
[Resin sheet]
The resin sheet of this indication has a resin composition layer containing the epoxy resin composition of this indication. The resin composition layer may be one layer or two or more layers. The resin sheet of the present disclosure may further include a release film on the resin composition layer as necessary.
The resin sheet is, for example, a varnish-like epoxy resin composition (hereinafter also referred to as “resin varnish”) prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone to the epoxy resin composition, and a release film such as a PET film. It can manufacture by drying after giving on top.
 樹脂ワニスの付与は公知の方法により実施することができる。具体的には、コンマコート、ダイコート、リップコート、グラビアコート等の方法が挙げられる。所定の厚みに樹脂組成物層を形成するための樹脂ワニスの付与方法としては、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調節した樹脂ワニスを塗布するダイコート法等を適用する。例えば、乾燥前の樹脂組成物層の厚みが50μm~500μmである場合は、コンマコート法を用いることが好ましい。 The resin varnish can be applied by a known method. Specific examples include methods such as comma coating, die coating, lip coating, and gravure coating. As a method for applying a resin varnish for forming a resin composition layer with a predetermined thickness, a comma coating method for passing an object to be coated between gaps, a die coating method for applying a resin varnish with a flow rate adjusted from a nozzle, etc. Apply. For example, when the thickness of the resin composition layer before drying is 50 μm to 500 μm, it is preferable to use a comma coating method.
 乾燥方法は、樹脂ワニス中に含まれる有機溶剤の少なくとも一部を除去できれば特に制限されず、通常用いられる乾燥方法から適宜選択することができる。 The drying method is not particularly limited as long as at least a part of the organic solvent contained in the resin varnish can be removed, and can be appropriately selected from commonly used drying methods.
 樹脂シートの密度は特に制限されず、通常、3.0g/cm~3.4g/cmとされる。柔軟性と熱伝導率の両立を考慮すると、樹脂シートの密度は3.0g/cm~3.3g/cmであることが好ましく、3.1g/cm~3.3g/cmであることがより好ましい。樹脂シートの密度は、例えば、フィラーの配合量で調整することができる。
 本開示において、樹脂シートの密度は、樹脂組成物層の密度をいい、樹脂シートが2層以上の樹脂組成物層を有する場合、全ての樹脂組成物層の密度の平均値をいう。また、樹脂シートに離型フィルムが含まれている場合、離型フィルムを除いた樹脂組成物層の密度をいう。
The density of the resin sheet is not particularly limited, and is usually 3.0 g / cm 3 to 3.4 g / cm 3 . Considering compatibility between flexibility and thermal conductivity, the density of the resin sheet is preferably 3.0 g / cm 3 to 3.3 g / cm 3 , and preferably 3.1 g / cm 3 to 3.3 g / cm 3 . More preferably. The density of a resin sheet can be adjusted with the compounding quantity of a filler, for example.
In the present disclosure, the density of the resin sheet refers to the density of the resin composition layer, and when the resin sheet has two or more resin composition layers, it refers to the average value of the densities of all the resin composition layers. Moreover, when the release film is contained in the resin sheet, it means the density of the resin composition layer excluding the release film.
 樹脂シートは、エポキシ樹脂組成物を含む第1の樹脂組成物層と、第1の樹脂組成物層上に積層されているエポキシ樹脂組成物を含む第2の樹脂組成物層と、を有することが好ましい。例えば、樹脂シートは、エポキシ樹脂組成物から形成される第1の樹脂組成物層と、エポキシ樹脂組成物から形成される第2の樹脂組成物層との積層体であることが好ましい。これにより絶縁耐圧をより向上させることができる。第1の樹脂組成物層及び第2の樹脂組成物層を形成するエポキシ樹脂組成物は、同一の組成であっても互いに異なる組成を有していてもよい。第1の樹脂組成物層及び第2の樹脂組成物層を形成するエポキシ樹脂組成物は、熱伝導性の観点から、同一の組成であることが好ましい。 The resin sheet has a first resin composition layer containing an epoxy resin composition and a second resin composition layer containing an epoxy resin composition laminated on the first resin composition layer. Is preferred. For example, the resin sheet is preferably a laminate of a first resin composition layer formed from an epoxy resin composition and a second resin composition layer formed from an epoxy resin composition. Thereby, the withstand voltage can be further improved. The epoxy resin compositions forming the first resin composition layer and the second resin composition layer may have the same composition or different compositions. It is preferable that the epoxy resin composition which forms a 1st resin composition layer and a 2nd resin composition layer is the same composition from a heat conductive viewpoint.
 樹脂シートが積層体である場合、エポキシ樹脂組成物から形成される第1の樹脂組成物層と第2の樹脂組成物層とを重ね合わせて製造されることが好ましい。かかる構成であることにより、絶縁耐圧がより向上する傾向にある。 In the case where the resin sheet is a laminate, it is preferable that the first resin composition layer and the second resin composition layer formed from the epoxy resin composition are overlaid. With such a configuration, the withstand voltage tends to be further improved.
 これは例えば以下のように考えることができる。すなわち、2つの樹脂組成物層を重ねることで、一方の樹脂組成物層中に存在しうる厚みの薄くなる箇所(ピンホール又はボイド)がもう一方の樹脂組成物層により補填されることになる。これにより、最小絶縁厚みを大きくすることができ、絶縁耐圧がより向上すると考えることができる。樹脂シートの製造方法におけるピンホール又はボイドの発生確率は高くはないが、2つの樹脂組成物層を重ねることで薄い部分の重なり合う確率はその2乗になり、ピンホール又はボイドの個数はゼロに近づくことになる。絶縁破壊は最も絶縁的に弱い箇所で起こることから、2つの樹脂組成物層を重ねることにより絶縁耐圧がより向上する効果が得られると考えることができる。さらに、2つの樹脂組成物層を重ねることにより、フィラー同士の接触確率も向上し、熱伝導性の向上効果も生じると考えることができる。 This can be considered as follows, for example. That is, by overlapping two resin composition layers, a thinned portion (pinhole or void) that can exist in one resin composition layer is compensated by the other resin composition layer. . Thereby, it can be considered that the minimum insulation thickness can be increased and the withstand voltage is further improved. The probability of occurrence of pinholes or voids in the resin sheet manufacturing method is not high, but by overlapping two resin composition layers, the probability of overlap of thin portions becomes the square, and the number of pinholes or voids is zero. It will approach. Since the dielectric breakdown occurs at a place where the insulation is weakest, it can be considered that the effect of further improving the withstand voltage can be obtained by overlapping the two resin composition layers. Furthermore, it can be considered that by overlapping the two resin composition layers, the contact probability between the fillers is improved, and the effect of improving the thermal conductivity is also produced.
 樹脂シートの製造方法は、エポキシ樹脂組成物から形成される第1の樹脂組成物層上に、エポキシ樹脂組成物から形成される第2の樹脂組成物層を重ねて積層体を得る工程と、得られた積層体を加熱加圧処理する工程とを含むことが好ましい。かかる製造方法であることにより、絶縁耐圧がより向上する傾向にある。 The method for producing a resin sheet includes a step of obtaining a laminate by stacking a second resin composition layer formed from an epoxy resin composition on a first resin composition layer formed from an epoxy resin composition, It is preferable to include a step of subjecting the obtained laminate to a heat and pressure treatment. With such a manufacturing method, the withstand voltage tends to be further improved.
 樹脂シートの厚みは、目的に応じて適宜選択することができる。例えば樹脂組成物層の厚みとして50μm~350μmとすることができ、熱伝導率、電気絶縁性及びシート可とう性の観点から、60μm~300μmであることが好ましい。 The thickness of the resin sheet can be appropriately selected according to the purpose. For example, the thickness of the resin composition layer can be 50 μm to 350 μm, and is preferably 60 μm to 300 μm from the viewpoint of thermal conductivity, electrical insulation, and sheet flexibility.
[Bステージシート]
 本開示のBステージシートは、本開示のエポキシ樹脂組成物の半硬化物を含む半硬化樹脂組成物層を有する。
 Bステージシートは、例えば、樹脂シートをBステージ状態まで加熱処理する工程を含む製造方法で製造できる。
 樹脂シートを加熱処理して形成されることで、熱伝導性に優れ、Bステージシートとしての可とう性及び可使時間に優れる。
 なお、Bステージ及び後述するCステージについては、JIS K6900:1994の規定を参照するものとする。
 Bステージシートとしては、その粘度が常温(25℃)においては10Pa・s~10Pa・sであるのに対して、100℃で10Pa・s~10Pa・sに粘度が低下するものであることが好ましい。また、後述する硬化樹脂組成物層は加温によっても溶融することはない。尚、上記粘度は、動的粘弾性測定(周波数1Hz、荷重40g、昇温速度3℃/分)によって測定される。
[B stage sheet]
The B stage sheet of the present disclosure has a semi-cured resin composition layer including a semi-cured product of the epoxy resin composition of the present disclosure.
A B stage sheet can be manufactured with a manufacturing method including a process of heat-treating a resin sheet to a B stage state, for example.
By being formed by heat-treating the resin sheet, it is excellent in thermal conductivity and excellent in flexibility and usable time as a B stage sheet.
For the B stage and the C stage described later, the provisions of JIS K6900: 1994 are referred to.
The viscosity of the B-stage sheet is 10 4 Pa · s to 10 5 Pa · s at room temperature (25 ° C.), whereas the viscosity is 10 2 Pa · s to 10 3 Pa · s at 100 ° C. Is preferably reduced. Moreover, the cured resin composition layer to be described later does not melt even by heating. The viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
 樹脂シートの樹脂組成物層は硬化反応がほとんど進行していないため、可とう性を有するものの、シートとしての柔軟性に乏しく、PETフィルム等の支持体を除去した状態ではシートの自立性に乏しく、取り扱いが困難な場合がある。そこで後述する加熱処理により樹脂組成物層をBステージ化することが好ましい。
 樹脂シートを加熱処理する条件は、樹脂組成物層をBステージ状態にまで半硬化することができれば特に制限されず、エポキシ樹脂組成物の構成に応じて適宜選択することができる。加熱処理には、エポキシ樹脂組成物を付与する際に生じた樹脂組成物層中の空隙(ボイド)を消滅させる目的から、熱真空プレス、熱ロールラミネート等から選択される加熱処理方法が好ましい。これにより平坦なBステージシートを効率よく製造することができる。
 具体的には例えば、加熱温度80℃~180℃で、1秒~3分間、減圧下(例えば、1kPa)で加熱プレス処理することで樹脂組成物層をBステージ状態に半硬化することができる。また、プレスの圧力は、5MPa~20MPaとすることができる。
Since the resin composition layer of the resin sheet has hardly any curing reaction, the resin composition layer has flexibility, but is not flexible as a sheet, and the sheet is not self-supporting in a state where a support such as a PET film is removed. , Handling may be difficult. Therefore, the resin composition layer is preferably B-staged by heat treatment described below.
The conditions for heat-treating the resin sheet are not particularly limited as long as the resin composition layer can be semi-cured to the B stage state, and can be appropriately selected according to the configuration of the epoxy resin composition. For the heat treatment, a heat treatment method selected from a hot vacuum press, a hot roll laminate, or the like is preferable for the purpose of eliminating voids in the resin composition layer generated when the epoxy resin composition is applied. Thereby, a flat B stage sheet | seat can be manufactured efficiently.
Specifically, for example, the resin composition layer can be semi-cured into a B-stage state by heat-pressing at a heating temperature of 80 ° C. to 180 ° C. for 1 second to 3 minutes under reduced pressure (eg, 1 kPa). . The press pressure can be set to 5 MPa to 20 MPa.
 Bステージシートの厚みは、目的に応じて適宜選択することができ、例えば、50μm~350μmとすることができ、熱伝導率、電気絶縁性及びシート可とう性の観点から、60μm~300μmであることが好ましい。また、2層以上の樹脂シートを積層した状態で熱プレスすることによりBステージシートを作製することもできる。 The thickness of the B stage sheet can be appropriately selected according to the purpose, and can be, for example, 50 μm to 350 μm, and is 60 μm to 300 μm from the viewpoint of thermal conductivity, electrical insulation, and sheet flexibility. It is preferable. Moreover, a B stage sheet | seat can also be produced by heat-pressing in the state which laminated | stacked the resin sheet of 2 or more layers.
[Cステージシート]
 本開示のCステージシートは、本開示のエポキシ樹脂組成物の硬化物を含む硬化樹脂組成物層を有する。
 Cステージシートは、例えば、樹脂シート又はBステージシートをCステージ状態まで加熱処理する工程を含む製造方法で製造できる。
 樹脂シート又はBステージシートを加熱処理する条件は、樹脂組成物層又は半硬化樹脂組成物層をCステージ状態にまで硬化することができれば特に制限されず、エポキシ樹脂組成物の構成に応じて適宜選択することができる。加熱処理には、Cステージシート中のボイドの発生を抑制し、Cステージシートの耐電圧性を向上させる観点から、熱真空プレス等の加熱処理方法が好ましい。これにより平坦なCステージシートを効率よく製造することができる。
 具体的には例えば、加熱温度150℃~220℃で、1分間~30分間、1MPa~20MPaで加熱プレス処理することで樹脂組成物層又は半硬化樹脂組成物層をCステージ状態に硬化することができる。
[C stage sheet]
The C stage sheet of the present disclosure has a cured resin composition layer including a cured product of the epoxy resin composition of the present disclosure.
The C stage sheet can be manufactured, for example, by a manufacturing method including a step of heat-treating a resin sheet or a B stage sheet to a C stage state.
The conditions for heat-treating the resin sheet or the B-stage sheet are not particularly limited as long as the resin composition layer or the semi-cured resin composition layer can be cured to the C-stage state, and appropriately according to the configuration of the epoxy resin composition. You can choose. From the viewpoint of suppressing the generation of voids in the C stage sheet and improving the voltage resistance of the C stage sheet, a heat treatment method such as a thermal vacuum press is preferable for the heat treatment. Thereby, a flat C stage sheet can be manufactured efficiently.
Specifically, for example, the resin composition layer or the semi-cured resin composition layer is cured in a C-stage state by heat pressing at a heating temperature of 150 ° C. to 220 ° C. for 1 minute to 30 minutes and 1 MPa to 20 MPa. Can do.
 Cステージシートの厚みは、目的に応じて適宜選択することができ、例えば、50μm~350μmとすることができ、熱伝導率、電気絶縁性及びシート可とう性の観点から、60μm~300μmであることが好ましい。また、2層以上の樹脂シート又はBステージシートを積層した状態で熱プレスすることによりCステージシートを作製することもできる。 The thickness of the C stage sheet can be appropriately selected according to the purpose, and can be, for example, 50 μm to 350 μm, and is 60 μm to 300 μm from the viewpoint of thermal conductivity, electrical insulation, and sheet flexibility. It is preferable. Moreover, a C stage sheet | seat can also be produced by heat-pressing in the state which laminated | stacked the resin sheet or B stage sheet | seat of two or more layers.
 Cステージシートは、CuKα1線を用いたX線回折法により、回折角2θが1°~10°の範囲に回折ピークの存在することが好ましい。このような回折ピークを有するCステージシートには、高次構造の中でも特に秩序性の高いスメクチック構造が形成されており、熱伝導性に優れる傾向にある。 The C stage sheet preferably has a diffraction peak in the range of diffraction angle 2θ of 1 ° to 10 ° by X-ray diffraction using CuK α1 line. The C stage sheet having such a diffraction peak has a highly ordered smectic structure among higher order structures, and tends to be excellent in thermal conductivity.
[硬化物]
 本開示の硬化物は、本開示のエポキシ樹脂組成物の硬化物である。エポキシ樹脂組成物を硬化する方法としては、特に制限はなく、通常用いられる方法を適宜選択することができる。例えば、エポキシ樹脂組成物を加熱処理することでエポキシ樹脂組成物の硬化物が得られる。
 エポキシ樹脂組成物を加熱処理する方法としては特に制限はなく、また加熱条件についても特に制限はない。加熱処理の温度範囲は、エポキシ樹脂組成物を構成するエポキシ樹脂及び硬化剤の種類に応じて適宜選択することができる。また、加熱処理の時間としては、特に制限はなく、硬化物の形状、厚み等に応じて適宜選択される。
[Cured product]
The cured product of the present disclosure is a cured product of the epoxy resin composition of the present disclosure. There is no restriction | limiting in particular as a method of hardening | curing an epoxy resin composition, The method used normally can be selected suitably. For example, the hardened | cured material of an epoxy resin composition is obtained by heat-processing an epoxy resin composition.
There is no restriction | limiting in particular as a method of heat-processing an epoxy resin composition, and there is no restriction | limiting in particular also about heating conditions. The temperature range of heat processing can be suitably selected according to the kind of epoxy resin and hardening | curing agent which comprise an epoxy resin composition. Moreover, there is no restriction | limiting in particular as time of heat processing, According to the shape of cured | curing material, thickness, etc., it selects suitably.
 硬化物は、CuKα1線を用いたX線回折法により、回折角2θが1°~10°の範囲に回折ピークの存在することが好ましい。このような回折ピークを有する硬化物には、高次構造の中でも特に秩序性の高いスメクチック構造が形成されており、熱伝導性に優れる傾向にある。 The cured product preferably has a diffraction peak in the range of diffraction angle 2θ of 1 ° to 10 ° by X-ray diffraction using CuK α1 line. The cured product having such a diffraction peak has a highly ordered smectic structure among higher order structures, and tends to be excellent in thermal conductivity.
[樹脂付金属箔]
 本開示の樹脂付金属箔は、金属箔と、前記金属箔上に配置された本開示のエポキシ樹脂組成物の半硬化物を含む半硬化樹脂組成物層と、を備える。本開示のエポキシ樹脂組成物の半硬化物を含む半硬化樹脂組成物層を有することで、本開示の樹脂付金属箔は、熱伝導率及び電気絶縁性に優れる。
 半硬化樹脂組成物層はエポキシ樹脂組成物をBステージ状態になるように加熱処理して得られるものである。
[Metal foil with resin]
The metal foil with a resin of the present disclosure includes a metal foil and a semi-cured resin composition layer including a semi-cured product of the epoxy resin composition of the present disclosure disposed on the metal foil. By having the semi-cured resin composition layer containing the semi-cured product of the epoxy resin composition of the present disclosure, the metal foil with resin of the present disclosure is excellent in thermal conductivity and electrical insulation.
The semi-cured resin composition layer is obtained by heat-treating the epoxy resin composition so as to be in a B stage state.
 金属箔としては、金箔、銅箔、アルミニウム箔等が挙げられ、一般的には銅箔が用いられる。
 金属箔の厚みとしては、1μm~35μmであれば特に制限されない。なお、20μm以下の金属箔を用いることで、樹脂付金属箔の可とう性がより向上する傾向にある。
 金属箔として、ニッケル、ニッケル-リン合金、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等を中間層とし、中間層の一方の面に0.5μm~15μmの銅層を設け、中間層の他方の面に10μm~300μmの銅層を設けた3層構造の複合箔、又はアルミニウム箔と銅箔とを複合した2層構造の複合箔を用いることもできる。
Examples of the metal foil include gold foil, copper foil, and aluminum foil, and copper foil is generally used.
The thickness of the metal foil is not particularly limited as long as it is 1 μm to 35 μm. In addition, it exists in the tendency which the flexibility of metal foil with a resin improves more by using metal foil of 20 micrometers or less.
As the metal foil, nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as an intermediate layer, and a copper layer of 0.5 μm to 15 μm is provided on one side of the intermediate layer. Alternatively, a composite foil having a three-layer structure in which a copper layer of 10 μm to 300 μm is provided on the other surface of the intermediate layer, or a composite foil having a two-layer structure in which an aluminum foil and a copper foil are combined can be used.
 樹脂付金属箔は、例えば、エポキシ樹脂組成物(好ましくは、樹脂ワニス)を金属箔上に塗布し乾燥することにより樹脂組成物層(樹脂シート)を形成し、これを加熱処理して樹脂組成物層をBステージ状態とすることで製造することができる。樹脂組成物層の形成方法は既述の通りである。 The metal foil with resin is formed by, for example, forming a resin composition layer (resin sheet) by applying an epoxy resin composition (preferably a resin varnish) on the metal foil and drying it, and then heat-treating the resin composition layer. It can be manufactured by setting the material layer to the B-stage state. The method for forming the resin composition layer is as described above.
 樹脂付金属箔の製造条件は特に制限されるものではない。乾燥後の樹脂組成物層において、樹脂ワニスに使用した有機溶剤が80質量%以上揮発していることが好ましい。乾燥温度は80℃~180℃程度であり、乾燥時間は樹脂ワニスのゲル化時間との兼ね合いで適宜選択することができ、特に制限はない。樹脂ワニスの塗布量は、乾燥後の樹脂組成物層の厚みが50μm~350μmとなるように塗布することが好ましく、60μm~300μmとなることがより好ましい。
 乾燥後の樹脂組成物層は、加熱処理されることでBステージ状態になる。樹脂組成物層を加熱処理する条件は、Bステージシートにおける加熱処理条件と同様である。
The production conditions for the resin-attached metal foil are not particularly limited. In the resin composition layer after drying, it is preferable that 80% by mass or more of the organic solvent used for the resin varnish is volatilized. The drying temperature is about 80 ° C. to 180 ° C., and the drying time can be appropriately selected in consideration of the gelation time of the resin varnish, and is not particularly limited. The coating amount of the resin varnish is preferably applied so that the thickness of the resin composition layer after drying is 50 μm to 350 μm, and more preferably 60 μm to 300 μm.
The resin composition layer after drying is in a B-stage state by heat treatment. The conditions for heat treatment of the resin composition layer are the same as the heat treatment conditions for the B-stage sheet.
[金属基板]
 本開示の金属基板は、金属支持体と、前記金属支持体上に配置された本開示のエポキシ樹脂組成物の硬化物を含む硬化樹脂組成物層と、前記硬化樹脂組成物層上に配置された金属箔と、を備える。
 金属支持体と金属箔との間に本開示のエポキシ樹脂組成物の硬化物を含む硬化樹脂組成物層を配置することで、接着性、熱伝導率及び電気絶縁性が向上する。
[Metal substrate]
The metal substrate of the present disclosure is disposed on the metal support, a cured resin composition layer including a cured product of the epoxy resin composition of the present disclosure disposed on the metal support, and the cured resin composition layer. A metal foil.
By disposing a cured resin composition layer containing a cured product of the epoxy resin composition of the present disclosure between the metal support and the metal foil, adhesion, thermal conductivity, and electrical insulation are improved.
 金属支持体は、目的に応じてその素材、厚み等が適宜選択される。具体的には、アルミニウム、鉄等の金属を用い、厚みを0.5mm~5mmとすることができる。 The material, thickness, etc. of the metal support are appropriately selected according to the purpose. Specifically, a metal such as aluminum or iron can be used and the thickness can be set to 0.5 mm to 5 mm.
 また硬化樹脂組成物層上に配置される金属箔は、樹脂付金属箔における金属箔と同義であり、好ましい態様も同様である。 The metal foil disposed on the cured resin composition layer is synonymous with the metal foil in the resin-attached metal foil, and the preferred embodiment is also the same.
 本開示の金属基板は、例えば以下のようにして製造することができる。
 アルミニウム等の金属支持体上に、エポキシ樹脂組成物を樹脂付金属箔等の場合と同様に付与して乾燥することで樹脂組成物層を形成し、さらに樹脂組成物層上に金属箔を配置し、これを加熱及び加圧処理して、樹脂組成物層を硬化することで金属基板を製造することができる。また、金属支持体上に、樹脂付金属箔を半硬化樹脂組成物層が金属支持体に対向するように張り合わせた後、これを加熱及び加圧処理して、半硬化樹脂組成物層を硬化することで製造することもできる。
The metal substrate of this indication can be manufactured as follows, for example.
On the metal support such as aluminum, the epoxy resin composition is applied in the same manner as in the case of a metal foil with a resin and dried to form a resin composition layer, and the metal foil is further arranged on the resin composition layer And a metal substrate can be manufactured by heating and pressurizing this and hardening | curing a resin composition layer. In addition, a metal foil with resin is laminated on a metal support so that the semi-cured resin composition layer faces the metal support, and then this is heated and pressurized to cure the semi-cured resin composition layer. It can also be manufactured.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 以下にエポキシ樹脂組成物の作製に用いた材料とその略号を示す。
(エポキシ樹脂)
 ・樹脂A[4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、エポキシ当量:212g/eq、特開2011-74366号公報に記載の方法により製造したもの]
The material used for preparation of an epoxy resin composition and its abbreviation are shown below.
(Epoxy resin)
Resin A [4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) benzoate, epoxy equivalent: 212 g / eq, described in JP 2011-74366 A Manufactured by the method]
Figure JPOXMLDOC01-appb-C000039

 
Figure JPOXMLDOC01-appb-C000039

 
・樹脂B~樹脂F
 上記構造で表される樹脂Aの一部を所定量のヒドロキノン(和光純薬工業株式会社製、水酸基当量:55g/eq)と反応させ、プレポリマー化した化合物を樹脂B~樹脂Fとして用いた。
 樹脂Aのエポキシ基の当量数(Ep)とヒドロキノン由来のフェノール性水酸基の当量数(Ph)との比率(Ep/Ph)は、各々下記の比率とした。
樹脂B:100/8
樹脂C:100/10
樹脂D:100/13
樹脂E:100/15
樹脂F:100/19
・ Resin B to Resin F
A part of the resin A represented by the above structure was reacted with a predetermined amount of hydroquinone (manufactured by Wako Pure Chemical Industries, Ltd., hydroxyl equivalent: 55 g / eq), and prepolymerized compounds were used as Resin B to Resin F. .
The ratio (Ep / Ph) between the number of equivalents of epoxy group (Ep) of resin A and the number of equivalents of phenolic hydroxyl group derived from hydroquinone (Ph) was set as follows.
Resin B: 100/8
Resin C: 100/10
Resin D: 100/13
Resin E: 100/15
Resin F: 100/19
<樹脂B~樹脂Fの合成(プレポリマー化)>
 500mLの三口フラスコに、エポキシ樹脂モノマーを50g(0.118mol)量り取り、そこにプロピレングリコールモノメチルエーテルを80g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように撹拌羽を取り付けた。この三口フラスコを120℃のオイルバスに浸漬し、撹拌を開始した。エポキシ樹脂モノマーが溶解し、透明な溶液になったことを確認した後、Ep/Phが100/8(樹脂B)、100/10(樹脂C)、100/13(樹脂D)、100/15(樹脂E)及び100/19(樹脂F)となるようにヒドロキノンを添加し、さらにトリフェニルホスフィンを0.5g添加し、120℃のオイルバス温度で加熱を継続した。5時間加熱を継続した後に、反応溶液からプロピレングリコールモノメチルエーテルを減圧留去し、残渣を室温(25℃)まで冷却することにより、エポキシ樹脂モノマーの一部がプレポリマー化された樹脂B~樹脂Fを得た。
<Synthesis of Resin B to Resin F (Prepolymerization)>
In a 500 mL three-necked flask, 50 g (0.118 mol) of the epoxy resin monomer was weighed, and 80 g of propylene glycol monomethyl ether was added thereto. A cooling tube and a nitrogen introducing tube were installed in the three-necked flask, and a stirring blade was attached so as to be immersed in the solvent. This three-necked flask was immersed in a 120 ° C. oil bath, and stirring was started. After confirming that the epoxy resin monomer was dissolved and became a transparent solution, Ep / Ph was 100/8 (resin B), 100/10 (resin C), 100/13 (resin D), 100/15. Hydroquinone was added so as to be (resin E) and 100/19 (resin F), and 0.5 g of triphenylphosphine was further added, and heating was continued at an oil bath temperature of 120 ° C. After heating for 5 hours, propylene glycol monomethyl ether was distilled off under reduced pressure from the reaction solution, and the residue was cooled to room temperature (25 ° C.), whereby resin B to resin in which a part of the epoxy resin monomer was prepolymerized F was obtained.
 樹脂Aとヒドロキノンとの反応より得られると推定される構造の分子量と、UV及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで、下記構造の化合物(二量体化合物)の少なくとも一つが樹脂B~樹脂Fに含まれていることを確認した。
 具体的には、液体クロマトグラフィーは、分析用カラムに株式会社日立製作所製LaChrom II C18を使用し、溶離液にはテトラヒドロフランを用い、流速を1.0ml/minとして行った。UVスペクトル検出器では、280nmの波長における吸光度を検出し、このとき、下記構造の化合物はいずれも17.4分の位置に、また、樹脂Aは14.9分の位置にピークが見られた。また、マススペクトル検出器ではイオン化電圧を2700Vとして検出し、下記構造の化合物の分子量はいずれもプロトンが一つ付加した状態で959であった。
The molecular weight of the structure estimated to be obtained from the reaction between resin A and hydroquinone is collated with the molecular weight of the target compound determined by liquid chromatography performed using a liquid chromatograph equipped with UV and mass spectrum detectors. Thus, it was confirmed that at least one of the compounds having the following structures (dimer compounds) was contained in Resin B to Resin F.
Specifically, liquid chromatography was performed using LaChrom II C18 manufactured by Hitachi, Ltd. as the analytical column, tetrahydrofuran as the eluent, and a flow rate of 1.0 ml / min. In the UV spectrum detector, absorbance at a wavelength of 280 nm was detected. At this time, a compound having the following structure had a peak at a position of 17.4 minutes, and resin A had a peak at a position of 14.9 minutes. . The mass spectrum detector detected an ionization voltage of 2700 V, and the molecular weight of the compound having the following structure was 959 with one proton added.
Figure JPOXMLDOC01-appb-C000040

 
Figure JPOXMLDOC01-appb-C000040

 
 樹脂の固形分量は加熱減量法により測定した。具体的には、試料をアルミ製カップに1.0g~1.1g量り取り、180℃の温度に設定した乾燥機内に30分間放置した後の計測量と加熱前の計測量とに基づき、次式により算出した。
固形分量(%)=(30分間放置した後の計測量/加熱前の計測量)×100
The solid content of the resin was measured by the heat loss method. Specifically, 1.0 g to 1.1 g of a sample is weighed in an aluminum cup, and the amount measured after being left for 30 minutes in a dryer set at a temperature of 180 ° C. and the amount measured before heating are as follows. Calculated by the formula.
Solid content (%) = (Measured amount after standing for 30 minutes / Measured amount before heating) × 100
 樹脂B~樹脂Fのエポキシ当量は過塩素酸滴定法により測定した。 The epoxy equivalents of Resin B to Resin F were measured by the perchloric acid titration method.
 樹脂B~樹脂Fに含まれる、上記構造の化合物及び未反応の樹脂Aの含有率は逆相クロマトグラフィー(RPLC)によって測定した。分析用RPLCカラムは関東化学株式会社製Mightysil RP-18を使用した。グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/水=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)に連続的に変化させて測定を行った。流速は1.0ml/minとした。280nmの波長における吸光度を検出し、検出された全てのピークの総面積を100とし、それぞれ該当するピークにおける面積の比率を求め、その値をエポキシ樹脂全体における各化合物の含有率[質量%]とした。
 表1に樹脂B~樹脂Fに含まれる上記構造の化合物(二量体化合物)及び未反応の樹脂Aの含有比率を示す。
The contents of the compound having the above structure and the unreacted resin A contained in the resins B to F were measured by reverse phase chromatography (RPLC). Mightysil RP-18 manufactured by Kanto Chemical Co., Inc. was used as the RPLC column for analysis. Using a gradient method, the mixing ratio (volume basis) of the eluent was changed from acetonitrile / tetrahydrofuran / water = 20/5/75 to acetonitrile / tetrahydrofuran = 80/20 (20 minutes from the start) to acetonitrile / tetrahydrofuran = 50/50. The measurement was carried out while changing continuously (35 minutes from the start). The flow rate was 1.0 ml / min. Absorbance at a wavelength of 280 nm was detected, the total area of all detected peaks was taken as 100, the ratio of the area of each corresponding peak was determined, and the value was calculated as the content [% by mass] of each compound in the entire epoxy resin. did.
Table 1 shows the content ratios of the compound having the above structure (dimer compound) and the unreacted resin A contained in the resin B to the resin F.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
(フィラー)
 ・AA-18[アルミナ粒子、住友化学株式会社製、D50:18μm]
 ・AA-3[アルミナ粒子、住友化学株式会社製、D50:3μm]
 ・AA-04[アルミナ粒子、住友化学株式会社製、D50:0.40μm]
 ・HP-40[窒化ホウ素粒子、水島合金鉄株式会社製、D50:40μm、粒子形状(アスペクト比):りん片状の凝集体(1.5)、結晶形:六方晶]
 ・FAN-f30[窒化アルミニウム粒子、古河電子株式会社製、D50:30μm、粒子形状(アスペクト比):球状(1.1)]
 ・FAN-f50[窒化アルミニウム粒子、古河電子株式会社製、D50:50μm、粒子形状(アスペクト比):球状(1.1)]
(Filler)
AA-18 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 18 μm]
AA-3 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 3 μm]
AA-04 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 0.40 μm]
HP-40 [boron nitride particles, manufactured by Mizushima Alloy Iron Co., Ltd., D50: 40 μm, particle shape (aspect ratio): flake-like aggregate (1.5), crystal form: hexagonal crystal]
FAN-f30 [aluminum nitride particles, manufactured by Furukawa Electronics Co., Ltd., D50: 30 μm, particle shape (aspect ratio): spherical shape (1.1)]
FAN-f50 [Aluminum nitride particles, manufactured by Furukawa Electronics Co., Ltd., D50: 50 μm, particle shape (aspect ratio): spherical shape (1.1)]
(硬化剤)
 ・CRN[カテコールレゾルシノールノボラック樹脂(質量基準の仕込み比:カテコール/レゾルシノール=5/95)、シクロヘキサノン50質量%含有]
(Curing agent)
CRN [catechol resorcinol novolak resin (mass-based charge ratio: catechol / resorcinol = 5/95), containing 50% by mass of cyclohexanone]
<CRNの合成方法>
 撹拌機、冷却器及び温度計を備えた3Lのセパラブルフラスコに、レゾルシノール627g、カテコール33g、37質量%ホルムアルデヒド316.2g、シュウ酸15g及び水300gを加え、オイルバスで加温しながら100℃に昇温した。104℃前後で還流し、還流温度で4時間反応を続けた。その後、水を留去しながらフラスコ内の温度を170℃に昇温した。170℃を保持しながら8時間反応を続けた。反応後、減圧下20分間濃縮を行い、系内の水等を除去し、目的であるカテコールレゾルシノールノボラック樹脂CRNを得た。
 また、得られたCRNについて、FD-MS(電界脱離イオン化質量分析法)により構造を確認したところ、上記一般式(III-1)~(III-4)で表される部分構造すべての存在が確認できた。
<Synthesis method of CRN>
To a 3 L separable flask equipped with a stirrer, a condenser and a thermometer, 627 g of resorcinol, 33 g of catechol, 316.2 g of 37% by mass formaldehyde, 15 g of oxalic acid and 300 g of water were added, and the mixture was heated at 100 ° C. while heating in an oil bath. The temperature was raised to. The mixture was refluxed at around 104 ° C., and the reaction was continued at the reflux temperature for 4 hours. Thereafter, the temperature in the flask was raised to 170 ° C. while distilling off water. The reaction was continued for 8 hours while maintaining 170 ° C. After the reaction, concentration was performed under reduced pressure for 20 minutes to remove water and the like in the system, and the target catechol resorcinol novolak resin CRN was obtained.
Further, when the structure of the obtained CRN was confirmed by FD-MS (field desorption ionization mass spectrometry), the presence of all the partial structures represented by the above general formulas (III-1) to (III-4) Was confirmed.
 なお、上記反応条件では、上記一般式(III-1)で表される部分構造を有する化合物が最初に生成し、これがさらに脱水反応することで上記一般式(III-2)~(III-4)のうちの少なくとも1つで表される部分構造を有する化合物が生成すると考えられる。 Note that, under the above reaction conditions, a compound having a partial structure represented by the above general formula (III-1) is formed first, and this is further subjected to a dehydration reaction, whereby the above general formulas (III-2) to (III-4) are formed. It is considered that a compound having a partial structure represented by at least one of
 得られたCRNについて、Mn(数平均分子量)及びMw(重量平均分子量)の測定を次のようにして行った。
 Mn及びMwの測定は、株式会社日立製作所製の高速液体クロマトグラフィ、商品名:L6000、及び株式会社島津製作所製のデータ解析装置、商品名:C-R4Aを用いて行った。分析用GPCカラムは東ソー株式会社製、商品名:G2000HXL及びG3000HXLを使用した。試料濃度は0.2質量%とし、移動相にはテトラヒドロフランを用い、流速1.0mL/minで測定を行った。ポリスチレン標準サンプルを用いて検量線を作成し、それを用いてポリスチレン換算値でMn及びMwを計算した。
About the obtained CRN, Mn (number average molecular weight) and Mw (weight average molecular weight) were measured as follows.
Measurement of Mn and Mw was performed using a high performance liquid chromatography manufactured by Hitachi, Ltd., trade name: L6000, and a data analysis device, trade name: C-R4A, manufactured by Shimadzu Corporation. As the GPC column for analysis, trade names: G2000HXL and G3000HXL manufactured by Tosoh Corporation were used. The sample concentration was 0.2% by mass, tetrahydrofuran was used as the mobile phase, and the measurement was performed at a flow rate of 1.0 mL / min. A calibration curve was prepared using a polystyrene standard sample, and Mn and Mw were calculated using polystyrene conversion values.
 得られたCRNについて、水酸基当量の測定を次のようにして行った。
 水酸基当量は、塩化アセチル-水酸化カリウム滴定法により測定した。なお、滴定終点の判断は溶液の色が暗色のため、指示薬による呈色法ではなく、電位差滴定によって行った。具体的には、測定樹脂の水酸基をピリジン溶液中塩化アセチルでアセチル化した後に、過剰の試薬を水で分解し、生成した酢酸を水酸化カリウム/メタノール溶液で滴定して、水酸基当量を測定した。
With respect to the obtained CRN, the hydroxyl equivalent was measured as follows.
The hydroxyl equivalent was measured by acetyl chloride-potassium hydroxide titration method. The determination of the titration end point was performed by potentiometric titration instead of the coloring method using an indicator because the solution color was dark. Specifically, the hydroxyl group of the measurement resin was acetylated with acetyl chloride in a pyridine solution, the excess reagent was decomposed with water, and the produced acetic acid was titrated with a potassium hydroxide / methanol solution to measure the hydroxyl group equivalent. .
 得られたCRNは、上記一般式(III-1)~(III-4)のうちの少なくとも1つで表される部分構造を有する化合物の混合物であり、Arが、一般式(III-a)においてR31が水酸基であり、R32及びR33が水素原子である1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基であり、低分子希釈剤として単量体成分(レゾルシノール)を35質量%含むノボラック樹脂(水酸基当量:62g/eq、数平均分子量:422、重量平均分子量:564)であった。 The obtained CRN is a mixture of compounds having a partial structure represented by at least one of the above general formulas (III-1) to (III-4), and Ar is represented by the general formula (III-a) In which R 31 is a hydroxyl group and R 32 and R 33 are hydrogen atoms, a group derived from 1,2-dihydroxybenzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol), It was a novolak resin (hydroxyl equivalent: 62 g / eq, number average molecular weight: 422, weight average molecular weight: 564) containing 35% by mass of a monomer component (resorcinol) as a diluent.
(硬化促進剤)
 ・TPP:トリフェニルホスフィン[和光純薬工業株式会社製、商品名]
(Curing accelerator)
・ TPP: Triphenylphosphine [Wako Pure Chemical Industries, Ltd., trade name]
(添加剤)
 ・KBM-573:3-フェニルアミノプロピルトリメトキシシラン[シランカップリング剤、信越化学工業株式会社製、商品名]
(Additive)
KBM-573: 3-phenylaminopropyltrimethoxysilane [silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd., trade name]
(溶剤)
 ・CHN:シクロヘキサノン
(solvent)
CHN: cyclohexanone
(支持体)
 ・PETフィルム[帝人・デュポン株式会社製、商品名:A53、厚さ50μm]
 ・銅箔[古河電気工業株式会社製、厚さ:105μm、GTSグレード]
(Support)
PET film [manufactured by Teijin DuPont, trade name: A53, thickness 50 μm]
Copper foil [Furukawa Electric Co., Ltd., thickness: 105 μm, GTS grade]
<ワニス状のエポキシ樹脂組成物の作製>
 表2に記載の比率でエポキシ樹脂、硬化剤、硬化促進剤、溶剤、フィラー及び添加剤を混合し、ワニス状のエポキシ樹脂組成物を得た。
<Preparation of varnish-like epoxy resin composition>
An epoxy resin, a curing agent, a curing accelerator, a solvent, a filler and an additive were mixed at a ratio shown in Table 2 to obtain a varnish-like epoxy resin composition.
<Bステージシートの作製>
 ワニス状のエポキシ樹脂組成物を、アプリケーターを用いてPETフィルム上に塗布した後、120℃で10分間乾燥させた。その後、表3に記載の条件(Bステージ化)で真空プレスにて真空熱圧着を行い、Bステージシートを得た。
<Preparation of B stage sheet>
The varnish-like epoxy resin composition was applied on a PET film using an applicator and then dried at 120 ° C. for 10 minutes. Thereafter, vacuum thermocompression bonding was performed by a vacuum press under the conditions shown in Table 3 (B stage formation) to obtain a B stage sheet.
<銅箔付エポキシ樹脂組成物の硬化物の作製>
 上記で得られたBステージシートのPETフィルムを剥がした後、2枚の銅箔で、銅箔のマット面がそれぞれ半硬化樹脂組成物層に対向するようにして挟み、表3に記載の条件(銅箔貼り付け)で真空プレスにて真空熱圧着した。その後、大気圧条件下、150℃で2時間、210℃で4時間加熱し、銅箔付エポキシ樹脂組成物の硬化物を得た。
<Production of cured product of epoxy resin composition with copper foil>
After peeling off the PET film of the B-stage sheet obtained above, the two copper foils are sandwiched so that the mat surface of the copper foil faces the semi-cured resin composition layer, and the conditions described in Table 3 (Copper foil pasting) was vacuum thermocompression-bonded with a vacuum press. Then, it heated at 150 degreeC for 2 hours and 210 degreeC for 4 hours under atmospheric pressure conditions, and obtained the hardened | cured material of the epoxy resin composition with copper foil.
<評価>
<熱伝導率の測定>
 上記で得られた銅箔付エポキシ樹脂組成物の硬化物の銅箔をエッチングして取り除き、シート状のエポキシ樹脂組成物の硬化物(Cステージシート)を得た。得られたCステージシートを10mm角の正方形に切断してこれを試料とした。試料をグラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製の商品名:LFA447 nanoflash)にて熱拡散率を評価した。この値と、アルキメデス法で測定した密度と、DSC(示差走査熱量測定装置;Perkin Elmer社製の商品名:DSC Pyris1)にて測定した比熱との積から、Cステージシートの厚さ方向の熱伝導率を求めた。
<Evaluation>
<Measurement of thermal conductivity>
The copper foil of the cured product of the epoxy resin composition with copper foil obtained above was removed by etching to obtain a cured product (C stage sheet) of the sheet-like epoxy resin composition. The obtained C stage sheet was cut into a 10 mm square and used as a sample. After the sample was blackened with graphite spray, the thermal diffusivity was evaluated by a xenon flash method (trade name: LFA447 nanoflash, manufactured by NETZSCH). From the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (Differential Scanning Calorimeter; trade name: DSC Pyris 1 manufactured by Perkin Elmer), the heat in the thickness direction of the C stage sheet The conductivity was determined.
(スメクチック構造形成の確認)
 上記で得られた銅箔付エポキシ樹脂組成物の硬化物の銅箔をエッチングして取り除き、Cステージシートを得た。得られたCステージシートを10mm角の正方形に切り出してこれを試料とした。試料についてCuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5°~30°の範囲で株式会社リガク製X線解析装置を用いてX線回折測定を行い、2θが1°~10°の範囲における回折ピークの有無により、スメクチック構造形成の有無を確認した。
(Confirmation of smectic structure formation)
The copper foil of the cured product of the epoxy resin composition with copper foil obtained above was removed by etching to obtain a C stage sheet. The obtained C stage sheet was cut into a 10 mm square and used as a sample. Using Cu K alpha 1 line for samples, subjected to X-ray diffraction measurement using a tube voltage 40 kV, tube current 20 mA, the 2 [Theta] is 0.5 ° ~ 30 ° manufactured by Rigaku Corporation X-ray analyzer in the range of, 2 [Theta] is 1 The presence or absence of a smectic structure was confirmed by the presence or absence of a diffraction peak in the range of 10 ° to 10 °.
(融点測定)
 上記で得られたBステージシートについて、示差走査熱量測定装置DSC7(パーキンエルマ製)を用い、25℃~350℃までの温度範囲において、10℃/分の昇温速度の条件で示差走査熱量測定を行い、得られた結果より、相転移に伴うエネルギー変化(吸熱反応)が起こる温度を融点とした。なお、サンプルホルダーに用いたパンはアルミニウム製とした。
(Melting point measurement)
Using the differential scanning calorimeter DSC7 (manufactured by PerkinElmer) for the B-stage sheet obtained above, differential scanning calorimetry is performed at a temperature rising rate of 10 ° C./min in the temperature range from 25 ° C. to 350 ° C. From the results obtained, the temperature at which the energy change (endothermic reaction) accompanying the phase transition occurs was defined as the melting point. The pan used for the sample holder was made of aluminum.
(柔軟性測定)
 上記で得られたワニス状のエポキシ樹脂組成物を、アプリケーターを用いてPETフィルム上に塗布した後、120℃で10分間乾燥し、得られた樹脂シートを150mm×50mmに切り出し、直径40mmの筒状物に巻きつけ可能か否かにより、柔軟性を確認した。巻き付け可能な場合を「可」と、巻き付け不可能な場合を「不可」とした。
(Flexibility measurement)
The varnish-like epoxy resin composition obtained above was applied on a PET film using an applicator, and then dried at 120 ° C. for 10 minutes. The obtained resin sheet was cut out to 150 mm × 50 mm, and a cylinder having a diameter of 40 mm The flexibility was confirmed depending on whether or not it could be wound around the object. The case where winding was possible was set as “possible”, and the case where winding was impossible was set as “impossible”.
(絶縁破壊電圧)
 上記で得られた銅箔付エポキシ樹脂組成物の硬化物の銅箔を、一方の面では全面を残し、もう一方の面では直径20mmの円形パターンを残してエッチングし、電極付きのシート状のエポキシ樹脂組成物の硬化物(電極付きCステージシート)を得た。得られた電極付きCステージシートについて絶縁破壊試験装置(SOKEN社製 絶縁材料試験システム)を用いて、電極付きCステージシートを直径10mmの円筒電極ではさみ、昇圧速度500V/s、交流 60Hz、カットオフ電流10mA、25℃、フロリナート中にて絶縁破壊電圧を測定した。
(Dielectric breakdown voltage)
The copper foil of the cured product of the epoxy resin composition with copper foil obtained above is etched while leaving the entire surface on one side and leaving a circular pattern with a diameter of 20 mm on the other side. A cured product of the epoxy resin composition (C stage sheet with electrode) was obtained. About the obtained C stage sheet with an electrode, using a dielectric breakdown test apparatus (insulating material test system manufactured by SOKEN), the C stage sheet with an electrode is sandwiched between cylindrical electrodes having a diameter of 10 mm, and the boosting speed is 500 V / s, AC 60 Hz, cut. The dielectric breakdown voltage was measured in an off-current of 10 mA, 25 ° C. and in Fluorinert.
(ガラス転移温度)
 上記で得られた銅箔付エポキシ樹脂組成物の硬化物の銅箔をエッチングして取り除き、Cステージシートを得た。得られたCステージシートを30mm×5mmに切り出し、動的粘弾性測定装置(TAインスツルメント社製RSA II)にて引張振動試験冶具を用い、周波数:10Hz、昇温速度:5℃/分の条件で、40℃~300℃の温度範囲で動的粘弾性を測定し、ガラス転移温度を求めた。
(Glass-transition temperature)
The copper foil of the cured product of the epoxy resin composition with copper foil obtained above was removed by etching to obtain a C stage sheet. The obtained C stage sheet was cut out to 30 mm × 5 mm, and using a tensile vibration test jig with a dynamic viscoelasticity measuring apparatus (RSA II manufactured by TA Instruments Co., Ltd.), frequency: 10 Hz, heating rate: 5 ° C./min. Under these conditions, dynamic viscoelasticity was measured in the temperature range of 40 ° C. to 300 ° C. to determine the glass transition temperature.
(シート厚み)
 Cステージシートの平均厚みは、マイクロメーター(株式会社ミツトヨ、マイクロメーター IP65)を用いて、9点の厚みを測定し、その算術平均値として求めた。
(Sheet thickness)
The average thickness of the C stage sheet was obtained as an arithmetic average value by measuring the thickness of 9 points using a micrometer (Mitutoyo Corporation, Micrometer IP65).
 以下、表2に各エポキシ樹脂組成物の組成を、表3に評価結果を示す。
Figure JPOXMLDOC01-appb-T000042
Table 2 shows the composition of each epoxy resin composition, and Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表3に示されるように、実施例1~7は、二量体化合物の割合が15質量%~28質量%であるエポキシ樹脂を用いることで、柔軟性がありハンドリング性に優れるBステージシートが得られた。また、銅箔付きエポキシ樹脂組成物の硬化物(Cステージシート)はスメクチック構造を形成しており、高い熱伝導率と絶縁破壊電圧を両立することが分かった。
 また、同じフィラー組成である比較例3と実施例1~5及び比較例4と実施例6の銅箔貼り付け圧力を比較すると、樹脂B~樹脂Fを使用することで、流動性が向上し、銅箔貼り付け圧力を低減できることが分かった。
As shown in Table 3, in Examples 1 to 7, the B stage sheet having flexibility and excellent handling properties is obtained by using an epoxy resin in which the proportion of the dimer compound is 15% by mass to 28% by mass. Obtained. Moreover, the hardened | cured material (C stage sheet) of the epoxy resin composition with copper foil formed the smectic structure, and it turned out that it is compatible with high thermal conductivity and dielectric breakdown voltage.
Further, when the copper foil bonding pressures of Comparative Example 3 and Examples 1 to 5 and Comparative Examples 4 and 6 having the same filler composition are compared, fluidity is improved by using Resin B to Resin F. It was found that the pressure for attaching the copper foil can be reduced.
 尚、2016年2月25日に出願された日本国特許出願2016-034886号及び2016年6月22日に出願された日本国特許出願2016-123978号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2016-034886 filed on February 25, 2016 and Japanese Patent Application No. 2016-123978 filed on June 22, 2016 are hereby incorporated by reference in their entirety. Captured in the book.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (16)

  1.  エポキシ樹脂と硬化剤とフィラーとを含有し、
     前記フィラーは、窒化物フィラーを含み、
     前記エポキシ樹脂は、下記一般式(IA)で表される構造単位及び下記一般式(IB)で表される構造単位からなる群より選択される少なくとも一つを有する多量体化合物を含み、
     前記多量体化合物が、1分子中に下記一般式(II)で表される構造単位を2つ含む二量体化合物を含み、
     前記エポキシ樹脂全体に占める、前記二量体化合物の割合が、15質量%~28質量%であるエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     
    [一般式(IA)及び一般式(IB)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。]
    Figure JPOXMLDOC01-appb-C000002

     
    [一般式(II)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
    Contains epoxy resin, curing agent and filler,
    The filler includes a nitride filler,
    The epoxy resin includes a multimeric compound having at least one selected from the group consisting of a structural unit represented by the following general formula (IA) and a structural unit represented by the following general formula (IB):
    The multimeric compound includes a dimeric compound containing two structural units represented by the following general formula (II) in one molecule,
    An epoxy resin composition in which the proportion of the dimer compound in the total epoxy resin is 15% by mass to 28% by mass.
    Figure JPOXMLDOC01-appb-C000001


    [In General Formula (IA) and General Formula (IB), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently represents 1 to 8 carbon atoms. Represents an alkyl group. n represents an integer of 0 to 4. ]
    Figure JPOXMLDOC01-appb-C000002


    [In general formula (II), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
  2.  前記二量体化合物が、下記一般式(II-A)で表される化合物、下記一般式(II-B)で表される化合物及び下記一般式(II-C)で表される化合物からなる群より選択される少なくとも一種類を含み、
     前記エポキシ樹脂全体に占める、下記一般式(II-A)で表される化合物、下記一般式(II-B)で表される化合物及び下記一般式(II-C)で表される化合物の合計の割合が、15質量%~28質量%である、請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

     
    [一般式(II-A)~一般式(II-C)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。]
    The dimer compound comprises a compound represented by the following general formula (II-A), a compound represented by the following general formula (II-B), and a compound represented by the following general formula (II-C). Including at least one selected from the group,
    Total of the compound represented by the following general formula (II-A), the compound represented by the following general formula (II-B) and the compound represented by the following general formula (II-C) in the whole epoxy resin The epoxy resin composition according to claim 1, wherein the ratio of is from 15% by mass to 28% by mass.
    Figure JPOXMLDOC01-appb-C000003


    [In the general formulas (II-A) to (II-C), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently represents a carbon atom. Represents an alkyl group of formula 1-8. n represents an integer of 0 to 4. ]
  3.  前記一般式(IA)で表される構造単位が下記一般式(IA’)で表される構造単位であり、前記一般式(IB)で表される構造単位が下記一般式(IB’)で表される構造単位である、請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004

     
    [一般式(IA’)及び一般式(IB’)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。]
    The structural unit represented by the general formula (IA) is a structural unit represented by the following general formula (IA ′), and the structural unit represented by the general formula (IB) is represented by the following general formula (IB ′). The epoxy resin composition according to claim 1, which is a structural unit represented.
    Figure JPOXMLDOC01-appb-C000004


    [In general formula (IA ′) and general formula (IB ′), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently represents a carbon number of 1 Represents an alkyl group of ˜8. n represents an integer of 0 to 4. ]
  4.  前記二量体化合物が、下記一般式(II-A’)で表される化合物、下記一般式(II-B’)で表される化合物及び下記一般式(II-C’)で表される化合物からなる群より選択される少なくとも一種類を含み、
     前記エポキシ樹脂全体に占める、下記一般式(II-A’)で表される化合物、下記一般式(II-B’)で表される化合物及び下記一般式(II-C’)で表される化合物の合計の割合が、15質量%~28質量%である請求項3に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005

     
    [一般式(II-A’)~一般式(II-C’)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。]
    The dimer compound is represented by the following general formula (II-A ′), the following general formula (II-B ′), and the following general formula (II-C ′). Including at least one selected from the group consisting of compounds,
    The compound represented by the following general formula (II-A ′), the compound represented by the following general formula (II-B ′) and the following general formula (II-C ′) in the whole epoxy resin The epoxy resin composition according to claim 3, wherein a total ratio of the compounds is 15% by mass to 28% by mass.
    Figure JPOXMLDOC01-appb-C000005


    [In general formula (II-A ′) to general formula (II-C ′), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 each independently Represents an alkyl group having 1 to 8 carbon atoms. n represents an integer of 0 to 4. ]
  5.  前記エポキシ樹脂は、下記一般式(I’’)で表されるエポキシ樹脂モノマーを含み、前記エポキシ樹脂全体に占める前記エポキシ樹脂モノマーの割合が、57質量%~80質量%である、請求項1~請求項4のいずれか1項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006

     
    [一般式(I’’)中、R~Rはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を示す。]
    2. The epoxy resin includes an epoxy resin monomer represented by the following general formula (I ″), and a ratio of the epoxy resin monomer in the entire epoxy resin is 57% by mass to 80% by mass. The epoxy resin composition according to any one of claims 4 to 4.
    Figure JPOXMLDOC01-appb-C000006


    [In the general formula (I ″), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
  6.  前記硬化剤は、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも一つで表される構造単位を有する化合物を含むノボラック樹脂を含む、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007

     
    [一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立にアルキル基、アリール基、又はアラルキル基を示し、R22、R23、R25及びR26はそれぞれ独立に水素原子、アルキル基、アリール基又はアラルキル基を示す。m21及びm22はそれぞれ独立に0~2の整数を示し、n21及びn22はそれぞれ独立に1~7の整数を示す。]
    The curing agent includes a novolak resin including a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2). The epoxy resin composition according to any one of claims 1 to 5.
    Figure JPOXMLDOC01-appb-C000007


    [In General Formula (II-1) and General Formula (II-2), R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group, and R 22 , R 23 , R 25 and R 26 Each independently represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. m21 and m22 each independently represents an integer of 0 to 2, and n21 and n22 each independently represents an integer of 1 to 7. ]
  7.  前記硬化剤は、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも一つで表される構造を有する化合物を含むノボラック樹脂を含む、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008

     
    Figure JPOXMLDOC01-appb-C000009

     
    Figure JPOXMLDOC01-appb-C000010

     
    Figure JPOXMLDOC01-appb-C000011

     
    [一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に正の整数を示す。Ar31~Ar34はそれぞれ独立に下記一般式(III-a)で表される基及び下記一般式(III-b)で表される基のいずれか一つを示す。]
    Figure JPOXMLDOC01-appb-C000012

     
     
    [一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に水素原子又は水酸基を示す。R32及びR33はそれぞれ独立に水素原子又は炭素数1~8のアルキル基を示す。]
    2. The curing agent includes a novolak resin including a compound having a structure represented by at least one selected from the group consisting of the following general formula (III-1) to general formula (III-4): The epoxy resin composition according to any one of claims 5 to 6.
    Figure JPOXMLDOC01-appb-C000008


    Figure JPOXMLDOC01-appb-C000009


    Figure JPOXMLDOC01-appb-C000010


    Figure JPOXMLDOC01-appb-C000011


    [In the general formulas (III-1) to (III-4), m31 to m34 and n31 to n34 each independently represent a positive integer. Ar 31 to Ar 34 each independently represents one of a group represented by the following general formula (III-a) and a group represented by the following general formula (III-b). ]
    Figure JPOXMLDOC01-appb-C000012



    [In General Formula (III-a) and General Formula (III-b), R 31 and R 34 each independently represent a hydrogen atom or a hydroxyl group. R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
  8.  前記硬化剤は、前記ノボラック樹脂を構成するフェノール化合物であるモノマーの含有比率が10質量%~50質量%である、請求項6又は請求項7に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 6 or 7, wherein the curing agent has a content ratio of a monomer that is a phenol compound constituting the novolak resin of 10% by mass to 50% by mass.
  9.  前記フィラーの含有率が、50体積%~90体積%である、請求項1~請求項8のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 8, wherein a content of the filler is 50% by volume to 90% by volume.
  10.  前記フィラーに占める前記窒化物フィラーの割合が、10体積%~100体積%である、請求項1~請求項9のいずれか1項に記載のエポキシ樹脂組成物。 10. The epoxy resin composition according to claim 1, wherein a proportion of the nitride filler in the filler is 10% by volume to 100% by volume.
  11.  請求項1~請求項10のいずれか1項に記載のエポキシ樹脂組成物を含む樹脂組成物層を有する、樹脂シート。 A resin sheet having a resin composition layer containing the epoxy resin composition according to any one of claims 1 to 10.
  12.  請求項1~請求項10のいずれか1項に記載のエポキシ樹脂組成物の半硬化物を含む半硬化樹脂組成物層を有する、Bステージシート。 A B-stage sheet having a semi-cured resin composition layer containing a semi-cured product of the epoxy resin composition according to any one of claims 1 to 10.
  13.  請求項1~請求項10のいずれか1項に記載のエポキシ樹脂組成物の硬化物を含む硬化樹脂組成物層を有する、Cステージシート。 A C stage sheet having a cured resin composition layer containing a cured product of the epoxy resin composition according to any one of claims 1 to 10.
  14.  請求項1~請求項10のいずれか1項に記載のエポキシ樹脂組成物の硬化物。 A cured product of the epoxy resin composition according to any one of claims 1 to 10.
  15.  金属箔と、前記金属箔上に配置された請求項1~請求項10のいずれか1項に記載のエポキシ樹脂組成物の半硬化物を含む半硬化樹脂組成物層と、を備える樹脂付金属箔。 A metal with resin comprising: a metal foil; and a semi-cured resin composition layer comprising a semi-cured product of the epoxy resin composition according to any one of claims 1 to 10 disposed on the metal foil. Foil.
  16.  金属支持体と、前記金属支持体上に配置された請求項1~請求項10のいずれか1項に記載のエポキシ樹脂組成物の硬化物を含む硬化樹脂組成物層と、前記硬化樹脂組成物層上に配置された金属箔と、を備える金属基板。 A cured resin composition layer comprising a metal support, a cured product of the epoxy resin composition according to any one of claims 1 to 10 disposed on the metal support, and the cured resin composition A metal substrate comprising: a metal foil disposed on the layer.
PCT/JP2016/074882 2016-02-25 2016-08-25 Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured object, metal foil with resin, and metallic substrate WO2017145413A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106106064A TW201800470A (en) 2016-02-25 2017-02-23 Epoxy resin composition, resin sheet, B-stage sheet, C-stage sheet, cured product, metal foil with resin, and metal substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016034886 2016-02-25
JP2016-034886 2016-02-25
JP2016-123978 2016-06-22
JP2016123978 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017145413A1 true WO2017145413A1 (en) 2017-08-31

Family

ID=59686060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074882 WO2017145413A1 (en) 2016-02-25 2016-08-25 Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured object, metal foil with resin, and metallic substrate

Country Status (2)

Country Link
TW (1) TW201800470A (en)
WO (1) WO2017145413A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019064089A (en) * 2017-09-29 2019-04-25 日立化成株式会社 Epoxy resin sheet, method for producing epoxy resin sheet, and method for producing insulator and method for producing electrical device
WO2019160143A1 (en) * 2018-02-19 2019-08-22 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JP2019172936A (en) * 2018-03-29 2019-10-10 Jnc株式会社 Composition for heat radiation member, heat radiation member, and electronic device
JP2020041048A (en) * 2018-09-10 2020-03-19 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
WO2020194601A1 (en) * 2019-03-27 2020-10-01 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
US20200369935A1 (en) * 2018-01-04 2020-11-26 Lg Innotek Co., Ltd. Heat-radiating substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226550A (en) * 2001-01-31 2002-08-14 Hitachi Ltd Epoxy resin composition and electroconductive paste
WO2002094905A1 (en) * 2001-05-18 2002-11-28 Hitachi, Ltd. Cured thermosetting resin product
JP2004010762A (en) * 2002-06-07 2004-01-15 Hitachi Ltd Epoxy resin, epoxy resin composition, cured epoxy resin, and their production processes
JP2004161909A (en) * 2002-11-14 2004-06-10 Hitachi Ltd Preparation process of epoxy resin
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
JP2013234313A (en) * 2011-11-02 2013-11-21 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured product and cured product thereof, and resin sheet, prepreg, laminate, metal substrate, printed wiring board and power semiconductor device each using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226550A (en) * 2001-01-31 2002-08-14 Hitachi Ltd Epoxy resin composition and electroconductive paste
WO2002094905A1 (en) * 2001-05-18 2002-11-28 Hitachi, Ltd. Cured thermosetting resin product
JP2004010762A (en) * 2002-06-07 2004-01-15 Hitachi Ltd Epoxy resin, epoxy resin composition, cured epoxy resin, and their production processes
JP2004161909A (en) * 2002-11-14 2004-06-10 Hitachi Ltd Preparation process of epoxy resin
JP2013234313A (en) * 2011-11-02 2013-11-21 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured product and cured product thereof, and resin sheet, prepreg, laminate, metal substrate, printed wiring board and power semiconductor device each using the same
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019064089A (en) * 2017-09-29 2019-04-25 日立化成株式会社 Epoxy resin sheet, method for producing epoxy resin sheet, and method for producing insulator and method for producing electrical device
JP7124288B2 (en) 2017-09-29 2022-08-24 昭和電工マテリアルズ株式会社 Epoxy resin sheet, method for manufacturing epoxy resin sheet, method for manufacturing insulator, and method for manufacturing electrical equipment
US20200369935A1 (en) * 2018-01-04 2020-11-26 Lg Innotek Co., Ltd. Heat-radiating substrate
WO2019160143A1 (en) * 2018-02-19 2019-08-22 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JPWO2019160143A1 (en) * 2018-02-19 2020-12-03 昭和電工マテリアルズ株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
TWI805693B (en) * 2018-02-19 2023-06-21 日商力森諾科股份有限公司 Epoxy resin, epoxy resin composition, cured epoxy resin and composite material
JP2019172936A (en) * 2018-03-29 2019-10-10 Jnc株式会社 Composition for heat radiation member, heat radiation member, and electronic device
JP2020041048A (en) * 2018-09-10 2020-03-19 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
JP7243092B2 (en) 2018-09-10 2023-03-22 株式会社レゾナック Epoxy resins, epoxy resin compositions, cured epoxy resins and composite materials
WO2020194601A1 (en) * 2019-03-27 2020-10-01 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JPWO2020194601A1 (en) * 2019-03-27 2020-10-01
JP7294404B2 (en) 2019-03-27 2023-06-20 株式会社レゾナック Epoxy resins, epoxy resin compositions, cured epoxy resins and composite materials

Also Published As

Publication number Publication date
TW201800470A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
JP6102082B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
JP6311820B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, wiring board, method for producing semi-cured epoxy resin composition, and method for producing cured epoxy resin composition
TWI616334B (en) Resin composition, resin sheet, prepreg, laminate, metal substrate, printed wiring board and power semiconductor device
JP6988091B2 (en) Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate, and power semiconductor device
JP6680351B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, molded product and molded cured product
WO2017145413A1 (en) Epoxy resin composition, resin sheet, b-stage sheet, c-stage sheet, cured object, metal foil with resin, and metallic substrate
WO2013065159A1 (en) Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed circuit board using same
WO2016098709A1 (en) Epoxy resin composition, resin sheet, prepreg, laminate, process for producing epoxy resin composition, and cured object
JP2016155985A (en) Epoxy resin composition, semi-cured epoxy resin composition and cured epoxy resin composition, and resin sheet, prepreg, laminate sheet, metal substrate, wiring board and power semiconductor device, using these
TW201831329A (en) Method of producing laminate
WO2016121758A1 (en) Epoxy resin composition, semi-cured epoxy resin composition, resin sheet and prepreg
JP7115538B2 (en) Epoxy resin, epoxy resin composition, resin sheet, B-stage sheet, C-stage sheet, cured product, metal foil with resin, metal substrate, and power semiconductor device
WO2017209210A1 (en) Epoxy resin composition, b-stage sheet, cured epoxy resin composition, resin sheet, metal foil with resin, and metallic substrate
KR20190003788A (en) RESIN COMPOSITION AND METHOD FOR PRODUCING LAMINATE
JP6891581B2 (en) Epoxy resin composition, resin sheet, B stage sheet, C stage sheet, cured product, metal foil with resin and metal substrate
JP7124288B2 (en) Epoxy resin sheet, method for manufacturing epoxy resin sheet, method for manufacturing insulator, and method for manufacturing electrical equipment
JP2019151754A (en) Resin composition film, resin sheet, b stage sheet, c stage sheet, metal foil with resin, metal substrate and power semiconductor device
TW201631019A (en) Epoxy resin molding material, molded product and cured molded product
JP2018030929A (en) Epoxy resin composition, resin sheet, b stage sheet, cured product, c stage sheet, metal foil with resin, and metal substrate
TW201925260A (en) Resin composition and method of producing laminate
TW201922909A (en) Thick copper circuit having protective material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891570

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP