WO2019139057A1 - Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member - Google Patents

Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member Download PDF

Info

Publication number
WO2019139057A1
WO2019139057A1 PCT/JP2019/000426 JP2019000426W WO2019139057A1 WO 2019139057 A1 WO2019139057 A1 WO 2019139057A1 JP 2019000426 W JP2019000426 W JP 2019000426W WO 2019139057 A1 WO2019139057 A1 WO 2019139057A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
silane coupling
composition
diyl
coupling agent
Prior art date
Application number
PCT/JP2019/000426
Other languages
French (fr)
Japanese (ja)
Inventor
研人 氏家
武 藤原
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2019564722A priority Critical patent/JP7566467B2/en
Publication of WO2019139057A1 publication Critical patent/WO2019139057A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds

Definitions

  • the present invention relates to a composition for a heat dissipating member, a heat dissipating member using the same, and an electronic device.
  • the present invention relates to a composition for a heat dissipating member which can dissipate heat by efficiently conducting and transmitting heat generated inside the electronic device, and a heat dissipating member using the composition, and an electronic device using the composition.
  • Patent Document 1 discloses a heat dissipation member in which an organic material and an inorganic material are compounded, and the heat dissipation member in which inorganic materials are connected by a silane coupling agent and a polymerizable liquid crystal compound (paragraph 0007). .
  • a silane coupling agent and a polymerizable liquid crystal compound (paragraph 0007).
  • this heat dissipation member since the reactive site of this heat dissipation member is only at the tip end of the polymerizable liquid crystal compound bonded to the silane coupling agent and at the tip end of the silane coupling agent, the silane coupling agent and the polymerizable liquid crystal compound are linked. In order to achieve this, it has been necessary to bring the distance between the fillers close to each other by applying high pressure until the sum of the chain length of the silane coupling agent and the chain length of the polymerizable liquid crystal compound. Moreover, also when using as a high thermal conductivity adhesive, it was necessary to make a filler, a filler, a filler, and a to-be-adhered body contact
  • Patent Document 2 discloses a die bonding paste filled with silver particles as a highly thermally conductive adhesive used in the chip package.
  • Patent Document 3 discloses a paste of an adhesive containing solder particles.
  • the silver particles are sintered by heating a paste-like silver particle composition comprising non-spherical silver particles subjected to surface treatment and a volatile dispersion medium at 100 ° C. or more and 400 ° C. or less.
  • a method of making solid silver is disclosed.
  • the paste-like silver particle composition described in Patent Document 4 requires a coating and drying step, adhesion becomes insufficient due to the generation of spots during solvent drying and the generation of voids during sintering. There was a problem that.
  • these high thermal conductivity die bonding pastes use metal particles, they have a high electrical conductivity, and there is also a problem that a separate insulation process is required for the portions requiring insulation.
  • the heat dissipating member used in the chip package and various materials constituting it have been considered.
  • Patent Document 1 between the inorganic filler and between the inorganic filler and the adherend, one molecule or two molecules of the silane coupling agent and a bifunctional or higher polymerizable liquid crystal compound are bonded. Therefore, as shown in FIG. 1, the bonding area is small, and the bonding strength as a whole can not be increased, and a heat dissipating member which is electrically insulating and has excellent thermal conductivity and adhesiveness with layers made of other materials is obtained. Absent. In addition, a simpler method of manufacturing the heat dissipating member has not been obtained.
  • the present invention provides a heat dissipation member excellent in electrical insulation and adhesiveness, which is a composite material of an organic material and an inorganic material, and further, the heat dissipation member can be more easily obtained in a small number of steps. It is an object of the present invention to provide a method for producing a heat sink component composition that can be produced.
  • a polymerizable compound and a polymerizable liquid crystal compound are further added to the composition for a heat dissipation member containing an organic material and an inorganic material to lengthen the bondable distance, whereby the organic material and the inorganic material are complexed.
  • this composite layer may be referred to as an organic-inorganic hybrid adhesion layer.
  • the present invention has been accomplished by finding that a heat-radiating member having excellent adhesion between metal / metal, metal / semiconductor, metal / resin and the like and having extremely high thermal conductivity can be obtained.
  • the composition for a heat dissipation member according to the first aspect of the present invention is, as shown in FIG. 3, a first inorganic filler 11 combined with one end of a first silane coupling agent 21, a second silane coupling agent
  • the second inorganic filler 12 bonded to one end of the second 22, the third inorganic filler 13 bonded to one end of the third silane coupling agent 23, the first bifunctional or higher polymerizable compound 31, and the second 2
  • the ratio of the total amount of the first inorganic filler 11, the second inorganic filler 12, and the third inorganic filler 13 is 300 to 600 parts by weight.
  • the “one end” may be the edge or the end of the shape of the molecule, and may or may not be the long side of the molecule.
  • a composition for heat dissipating member which can be bonded to the substrate layer such as metal or ceramic material is obtained.
  • a laminate capable of directly propagating phonon which is a main element of heat conduction, between the organic-inorganic hybrid adhesive layer and the substrate layer is produced. can do.
  • the laminate can be used as a heat dissipation member and has extremely high thermal conductivity not only in the horizontal direction but also in the thickness direction.
  • the laminate is also excellent in the adhesiveness between the organic-inorganic hybrid adhesive layer and the substrate layer.
  • phonon refers to lattice vibration of atoms in a solid.
  • composition for heat dissipation member according to the second aspect of the present invention is the composition for heat dissipation member according to the first aspect of the present invention, wherein the first inorganic filler and the second inorganic filler respectively
  • the other end of the bound silane coupling agent is bound by at least one selected from the first bifunctional or higher polymerizable compound and the second bifunctional or higher polymerizable compound.
  • the inorganic fillers can be bonded to each other via the silane coupling agent / the polymerizable compound having two or more functions / silane coupling agent to form a laminate.
  • phonons which are the main elements of heat conduction, can be directly propagated between the inorganic fillers, and between the inorganic fillers and the adherend such as the substrate layer. Furthermore, the adhesion between the organic-inorganic hybrid adhesive layer and the adherend layer is also excellent due to the increase in bonding.
  • composition for heat dissipation member according to the third aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the first bifunctional or higher polymerizable compound or The second bifunctional or higher polymerizable compound includes at least two selected from the group consisting of polymerizable liquid crystal compounds represented by the following formula (1-1) and the following formula (1-2).
  • an inorganic filler having a functional group such as an epoxy group on the particle surface and a substrate layer such as a metal layer are bonded via a silane coupling agent and a polymerizable liquid crystal compound.
  • phonon which is a main element of heat conduction in the insulating substance, can be directly propagated between the organic-inorganic hybrid adhesive layer and the adherend such as the substrate layer, and the organic-inorganic hybrid adhesive layer and It has excellent thermal conductivity between bonded bodies.
  • the bond between the organic-inorganic hybrid adhesive layer and the adherend such as the substrate layer is increased, and the interlayer adhesion is also excellent.
  • the inorganic filler has a bond via the silane coupling agent / the polymerizable compound having two or more functional groups / silane coupling agent. Therefore, phonon, which is a main component of heat conduction, can be directly propagated between the inorganic fillers, and the organic-inorganic hybrid adhesive layer can have extremely high thermal conductivity not only in the horizontal direction but also in the thickness direction.
  • composition for heat dissipation member according to the fifth aspect of the present invention is the composition for heat dissipation member according to the third aspect or the fourth aspect of the present invention, wherein in the formula (1-1), Ra is And each independently a polymerizable group represented by any one of the following formulas (2-1) to (2-4).
  • R b is hydrogen, halogen, —CF 3 , alkyl having 1 to 5 carbon atoms, and q is 0 or 1.
  • R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene -2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
  • any —CH 2 — may be replaced by —O—
  • a composition for a heat dissipation member according to a sixth aspect of the present invention is a composition for a heat dissipation member according to any one of the first to fifth aspects of the present invention, which comprises a nitride, a carbon material, and a silicified salt.
  • the second inorganic filler is a metal oxide
  • the third inorganic filler is the same as the first inorganic filler.
  • the heat dissipation member can contain a more preferable compound as an inorganic filler, and at the same time, can increase the degree of polymerization of the polymerizable compound.
  • the composition for heat dissipation member according to the seventh aspect of the present invention is the composition for heat dissipation member according to the sixth aspect of the present invention, wherein the first inorganic filler is boron nitride, aluminum nitride, boron carbide, At least one selected from boron nitride carbon, graphite, carbon fiber, carbon nanotube, alumina, and cordierite, and the second inorganic filler is alumina, metal nitride, zinc oxide, zirconium oxide, and titanium oxide Or at least one selected from According to this structure, a heat dissipating member having a high thermal conductivity and a low thermal expansion coefficient can be obtained.
  • the first inorganic filler is boron nitride, aluminum nitride, boron carbide, At least one selected from boron nitride carbon, graphite, carbon fiber, carbon nanotube, alumina, and cordierite
  • the second inorganic filler is
  • the composition for heat dissipation member according to the eighth aspect of the present invention is the composition for heat dissipation member according to any one of the first aspect to the seventh aspect of the present invention, wherein the first inorganic filler
  • the modification rate of the silane coupling agent is 0.1% by weight or more. According to this structure, the density of the composition for heat dissipation member can be increased, and the mechanical strength can be improved.
  • the composition for a heat dissipation member according to a ninth aspect of the present invention is the composition for a heat dissipation member according to any one of the first to eighth aspects of the present invention, wherein the first inorganic filler And a polymerizable compound not bound to the second inorganic filler.
  • the heat dissipating member obtained by directly connecting and curing the first and second inorganic fillers, as the particle diameter of the filler is increased in order to improve the thermal conductivity of the heat dissipating member, the heat dissipating member is damaged. Thus, the porosity is increased.
  • By filling the void with a polymerizable compound or a polymer compound that is not bonded it is possible to improve the thermal conductivity, the water vapor blocking performance, and the like of the heat dissipation member.
  • the composition for a heat dissipation member according to the tenth aspect of the present invention comprises the substrate and the cured product of the composition for a heat dissipation member according to any one of the first to ninth aspects of the present invention.
  • the heat dissipation member has a bond between the inorganic fillers, and this bond does not cause molecular vibration or phase change as in ordinary resins, so that the thermal expansion has high linearity and further high thermal conductivity.
  • An electronic device includes the heat dissipation member according to the tenth aspect of the present invention and an electronic device having a heat generating portion, and the heat dissipating member is in contact with the heat generating portion. It is an electronic device disposed in an electronic device. According to this structure, the heat dissipation member has high heat resistance and can control the thermal expansion coefficient to a high temperature, so that the thermal distortion that may occur in the electronic device can be suppressed.
  • a method of producing a composition for a heat dissipation member Bonding the first inorganic filler and one end of the first silane coupling agent; Bonding the second inorganic filler and one end of the second silane coupling agent; Bonding the third inorganic filler and one end of the third silane coupling agent; A first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, and a third bonded to one end of a third silane coupling Adding an inorganic filler of And a step of combining the other end of each of the silane coupling agents with a bifunctional or higher functional polymerizable compound.
  • this structure it is possible to manufacture a heat dissipating member in which the inorganic fillers are bound to each other by the silane coupling agent and the bifunctional or higher polymerizable compound.
  • the composition for heat dissipation member of the present invention can be a laminate with a substrate layer such as a metal layer or a ceramic layer by curing, and has extremely high thermal conductivity and leakage of the composition for heat dissipation member. Because it is small, it has excellent adhesion between substrate layers. In addition, it has excellent properties such as chemical stability, hardness, and mechanical strength.
  • the laminate of the present invention is suitable, for example, for a heat dissipating substrate, a heat dissipating plate (planar heat sink), a heat dissipating sheet, a heat dissipating coating, a heat dissipating adhesive, a heat dissipating insulating substrate with electrodes, a heat conductive electronic substrate, and the like.
  • the method for producing a laminate of the present invention can produce a laminate of an organic / inorganic hybrid adhesive layer and a substrate layer of metal, ceramic or the like more easily with few steps.
  • FIG. 6 is a conceptual view showing that the inorganic filler 10 bonded to one end of the first coupling agent 21 is bonded to the substrate 1 via the first bifunctional or higher polymerizable compound 31.
  • the inorganic filler 10 bonded to one end of the second coupling agent 22 has a first bifunctional or higher polymerizable compound 31 and a second bifunctional or higher polymerizable compound 32 and a first bifunctional or higher polymerizable compound.
  • FIG. 6 is a conceptual view showing that it is bonded to a substrate 1 via a compound 31.
  • the first inorganic filler 11 bonded to one end of the first coupling agent 21 and the second inorganic filler 12 bonded to one end of the second silane coupling agent 22 by curing of the composition for heat dissipation member Are bonded via the first bifunctional or higher polymerizable compound 31 and / or the second bifunctional or higher polymerizable compound 32, and the second inorganic filler 12 and the substrate 1 are bonded to the second silane cup
  • the first inorganic filler 11 bonded to one end of the first silane coupling agent 21 and the third silane cup are shown to indicate that they are bonded via the first bifunctional or higher polymerizable compound 31.
  • Liquid crystal compound and “liquid crystal compound” are compounds that express a liquid crystal phase such as a nematic phase or a smectic phase.
  • Phrases such as “Any —CH 2 — in alkyl may be replaced by —O— or the like” or “Any —CH 2 CH 2 — may be replaced by —CH CH— or the like”
  • the phrase “optional hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons” in relation to ring A is, for example, 2 of 1,4-phenylene It means an embodiment where at least one of hydrogens at 3, 3, 5 and 6 is replaced with a substituent such as fluorine or methyl, and when the substituent is “halogenated alkyl having 1 to 10 carbon atoms”
  • Embodiments include examples such as 2-fluoroethyl and 3-fluoro-5-chlorohexyl.
  • the “compound (1-1)” means a polymerizable liquid crystal compound represented by the following formula (1-1) described later, and at least one of the compounds represented by the following formula (1-1) It also means something.
  • the “composition for heat dissipation member” means a composition containing at least one compound selected from the compound (1-1) or other polymerizable compounds. When one compound (1-1) has a plurality of A, any two A may be the same or different. When a plurality of compounds (1-1) have A, any two A may be the same or different. This rule also applies to other symbols such as Ra and Z, groups and the like.
  • composition for heat dissipation member includes a first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, and a third silane coupling A second inorganic compound having a third inorganic filler bonded to one end, a first bifunctional or higher polymerizable compound, and a second bifunctional or higher polymerizable compound, and the first bifunctional or higher polymerizable compound and the second
  • the ratio of the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 300 to 600 parts by weight with respect to 100 parts by weight of the total amount of the bifunctional or higher functional polymerizable compound.
  • the composition for heat dissipation members may include a combination of inorganic fillers capable of forming bonds between inorganic fillers.
  • inorganic fillers capable of forming bonds between inorganic fillers.
  • one end of a second silane coupling agent combined with a first inorganic filler bonded to one end of a first silane coupling agent and a first and / or second bifunctional or higher polymerizable compound.
  • a second inorganic filler bonded to a third inorganic filler bonded to a third silane coupling agent, a first bifunctional or higher polymerizable compound, and a second bifunctional or higher polymerizable compound When it contains, when the composition for thermal radiation members is hardened, inorganic fillers can be combined via a silane coupling agent and a bifunctional or higher polymerizable compound.
  • boron nitride When particles of boron nitride (h-BN) are used as the inorganic filler, when boron nitride is treated with a silane coupling agent, boron nitride has less reactive groups in the plane of the particles due to its crystal structure, so Many silane coupling agents are bonded.
  • the boron nitride treated with a silane coupling agent can be combined with a bifunctional or higher functional polymerizable compound.
  • the other end of the silane coupling agent 21 of boron nitride 11 treated with the first silane coupling agent and the other end of the polymerizable compound 22 of boron nitride 21 treated with silane coupling are bifunctional or more
  • boron nitrides can be bonded to each other.
  • bonding will increase more than boron nitride, and its use improves adhesion.
  • the cured product is extremely effective. It is possible to produce a highly heat dissipating member having high thermal conductivity and high adhesiveness. It is important in the present invention to realize such a bond between the first inorganic filler and the second inorganic filler, and the silane coupling agent 22 and the first bifunctional or higher polymerizable compound 31 are preliminarily obtained. May be bonded using organic synthesis techniques, and then the second silane coupling agent 22 may be bonded to the second inorganic filler 12. By achieving the bond between the first inorganic filler and the third inorganic filler, the adhesion to the substrate is further enhanced, and it becomes possible to produce a heat dissipation member having high thermal conductivity.
  • the polymerizable liquid crystal compound is preferably a liquid crystal compound represented by the following formula (1-1), which has a liquid crystal skeleton and a polymerizable group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, etc. Have.
  • This compound (1-1) tends to be uniform when mixed with other liquid crystalline compounds, polymerizable compounds, and the like.
  • R a -Z- (A-Z) m -R a (1-1) m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
  • Physical properties such as the liquid crystal phase expression region can be arbitrarily adjusted by appropriately selecting the terminal group R a , the ring structure A and the bonding group Z of the compound (1-1).
  • the effects of the types of the terminal group R a , the ring structure A and the bonding group Z on the physical properties of the compound (1-1), and preferred examples thereof are described below.
  • Terminal group R a may be each independently a functional group capable of binding to the functional group at the other end of the first silane coupling agent and the other end of the second silane coupling agent. Examples thereof include, but are not limited to, a polymerizable group represented by any of the following formulas (2-1) to (2-4), cyclohexene oxide, phthalic anhydride, or succinic anhydride.
  • R b is hydrogen, halogen, —CF 3 , or an alkyl having 1 to 5 carbon atoms, and q is 0 or 1.
  • R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, With tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl
  • any -CH 2 - may be replaced by -O-
  • any hydrogen may be halogen, carbon, It may be replaced with alkyl of 1 to 10 or alkyl of 1 to 10 carbons, and in the alkyl
  • R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl, Naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis.
  • the latter is not illustrated because 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene and the like.
  • R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like.
  • Particularly preferred R c is 1,4-cyclohexylene and 1,4-phenylene.
  • oxiranyl and amino for example, oxiranyl and amino, oxetanyl and amino, vinyl to vinyl, methacryloxy to each other, carboxy or carboxylic anhydride residue and amine
  • examples include, but are not limited to, combinations of imidazole and oxiranyl, and imidazole and oxetanyl. A combination with high heat resistance is more preferable.
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis.
  • the latter is not illustrated because 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene and the like.
  • A More preferable examples of A are each independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1 And 4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like.
  • Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
  • the temperature range of the liquid crystal phase is wide.
  • the bonding group Z is alkyl having about 4 to 10 carbon atoms, the melting point is lowered.
  • Particularly preferable Z is each independently a single bond,-(CH 2 ) 2- , -COO- or -OCO-.
  • a fused ring or the like basically comprising a 6-membered ring and a 6-membered ring is regarded as a ring, and a 3-membered ring, a 4-membered ring or a 5-membered ring alone is not regarded as a ring.
  • a fused ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
  • the compound (1-1) may be optically active or optically inactive.
  • the compound (1-1) may have asymmetric carbon or axial asymmetry.
  • the configuration of the asymmetric carbon may be R or S.
  • the asymmetric carbon may be located at either Ra or A, and if it has an asymmetric carbon, the compatibility of the compound (1-1) is good.
  • the compound (1-1) has axial asymmetry, the twist induction force is large.
  • the light distribution may be any. As described above, by appropriately selecting the types of the terminal group R a , the ring structure A and the bonding group Z, and the number of rings, a compound having the desired physical properties can be obtained.
  • the compound (1-1) can also be represented as the following formula (1-a) or (1-b).
  • P-Y- (A-Z) m- R a (1-a)
  • Y is alkylene in which —CH 2 — at one end or both ends of alkylene having 1 to 10 carbon atoms is replaced by —O—.
  • m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
  • R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1.
  • Preferred examples of the compound (1-1) include compounds (a-1) to (a-10) and (b-1) to (b-16) and (c-1) to (c-16) shown below. ), (D-1) to (d-15), (e-1) to (e-15), (f-1) to (f-14), (g-1) to (g-20) It can be mentioned.
  • * represents an asymmetric carbon.
  • R a , P and Y are as defined in the above formulas (1-a) and (1-b).
  • a is an integer of 1 to 20.
  • X is a substituent of any hydrogen being halogen, alkyl, 1,4-phenylene which may be substituted with alkyl fluoride, or fluorene-2,7-diyl, and represents halogen, alkyl, or alkyl fluoride.
  • a more preferred embodiment of the compound (1-1) is described. More preferable compound (1-1) can be represented by the following formula (1-c) or (1-d). P 1 -Y- (A-Z) m -R a (1-c) P 1 -Y- (A-Z) m -Y-P 1 (1-d)
  • A, Y, Z, R a and m are as defined above, and P 1 represents a polymerizable group represented by any one of the following formulas (2-1) to (2-4) .
  • two P 1 represent the same polymerizable groups (2-1) to (2-4)
  • two Y represent the same group, and two Y were symmetrical.
  • the compounds (1-1) and (1-2) can be synthesized by combining known methods in organic synthesis chemistry. For example, Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John, can be used to introduce the desired end groups, ring structures and linking groups into the starting materials. Articles such as Wily & Sons, Inc., Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis (Pergamon Press), New Experimental Chemistry Course (Maruzen), etc. It is described in. Further, reference may be made to JP-A-2006-265527.
  • J-X n- J (1-2)
  • J is independently the formula (1-1) is a functional group capable of binding a functional group at the other end of
  • X n are each independently 1, 4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.
  • any —CH 2 — may be replaced by —O—
  • n is an integer of 1 to 6.
  • the bifunctional or higher polymerizable compound is a polycycle
  • the heat resistance is high, and if the linearity is high, the elongation and fluctuation due to the heat between the inorganic fillers are small, and furthermore, the phonon conduction of heat can be efficiently transmitted.
  • the linearity is high in a polycycle
  • the liquid crystallinity is often expressed as a result, so that it can be said that the heat conduction is improved in the case of the liquid crystallinity.
  • the polymerizable compound having two or more functional groups may be a polymerizable compound which does not exhibit liquid crystallinity other than the polymerizable liquid crystal compound represented by the above formula (1-1).
  • the above polymerizable compounds can be synthesized by combining known methods in organic synthetic chemistry.
  • the polymerizable compound having two or more functional groups used in the present invention has a functional group having two or more functional groups to form a bond with a silane coupling agent, and includes a case where it is trifunctional or more and tetrafunctional or more. Furthermore, as a bifunctional or higher polymerizable compound, it is preferable to have a functional group at both ends of the long side because a linear bond can be formed.
  • Examples of the first inorganic filler, the second inorganic filler, and the third inorganic filler include nitrides, carbides, carbon materials, metal oxides, silicate minerals, etc.
  • the third inorganic filler is a nitride, a carbide, a carbon material, a metal oxide, a silicate mineral, and the second inorganic filler is a metal oxide.
  • the first inorganic filler, the second inorganic filler, and the third inorganic filler may be the same or different.
  • the first inorganic filler and the third inorganic filler boron nitride, boron carbide, carbon nitride boron, graphite, carbon fibers, carbon nanotubes can be mentioned as inorganic fillers having high thermal conductivity.
  • alumina, silica, magnesium oxide, zinc oxide, iron oxide, ferrite, mullite, cordierite, silicon nitride, and silicon carbide can be mentioned.
  • examples of the second inorganic filler include alumina, metal nitride, zinc oxide, zirconium oxide, and titanium oxide as inorganic fillers having high thermal conductivity.
  • the first, second and third inorganic fillers may be mixed.
  • the first, second, and third inorganic fillers have a functional group capable of binding to the organic functional group of the silane coupling agent on the particle surface, and the modification amount thereof is 0. 0 to the weight of the inorganic filler. It may be 1% by weight or more, preferably 0.3 to 50% by weight, and more preferably 0.5 to 25% by weight.
  • the use of an insulating inorganic filler results in higher reliability such as longer life, so carbon materials that are conductors and some oxides that are semiconductors are used. It is preferable not to use a thing etc.
  • the first and third inorganic fillers are more preferably boron nitride, aluminum nitride, silicon nitride, silicon carbide, graphite, carbon fibers, carbon nanotubes.
  • hexagonal boron nitride (h-BN) and graphite are preferable.
  • Boron nitride and graphite are preferable because they have a very high thermal conductivity in the planar direction and boron nitride has a low dielectric constant and high insulation.
  • it is preferable to use plate-like crystal boron nitride because the plate-like structure is easily oriented along the mold due to the flow or pressure of the raw material at the time of molding and curing.
  • the structure of the bifunctional or higher polymerizable compound have a shape and a length capable of efficiently directly bonding between these inorganic fillers.
  • the type, shape, size, addition amount, etc. of the inorganic filler can be appropriately selected according to the purpose.
  • cured material of the composition for thermal radiation members requires insulation, as long as desired insulation is maintained, it may be an inorganic filler which has conductivity.
  • the shape of the inorganic filler include plate-like, spherical, amorphous, fibrous, rod-like and cylindrical.
  • the average particle size of the first, second and third inorganic fillers is preferably 0.1 to 600 ⁇ m. More preferably, it is 1 to 200 ⁇ m. A thermal conductivity is good in it being 0.1 micrometer or more, and a filling factor can be raised as it is 200 micrometers or less.
  • the average particle diameter is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle diameter by a wet method using analysis based on the franhofer diffraction theory and Mie's scattering theory, the diameter at which the large side and the small side become equivalent (volume based) As the median diameter.
  • the ratio of the inorganic filler to the silane coupling agent and the polymerizable compound depends on the amount of the silane coupling agent to be combined with the inorganic filler used.
  • Compounds used as the first, second and third inorganic fillers (for example, boron nitride) bind as many silane coupling agents as possible to the reactive groups, and bind organic compounds equal in number or slightly more to the number of reactive groups It is preferable to The reaction amount of the silane coupling agent to the inorganic filler mainly changes depending on the size of the inorganic filler and the reactivity of the silane coupling agent used.
  • the area ratio of the side surfaces of the inorganic filler decreases, so the amount of modification is small. It is desirable to react as much of the silane coupling agent as possible, but it is preferable to balance as smaller particles result in lower thermal conductivity of the product.
  • silane coupling agent As the silane coupling agent, a silane coupling agent having a functional group to which two or more silane coupling agents can bind, or a functional group capable of binding to a functional group of a bifunctional or higher polymerizable compound, or a third one Those having a functional group capable of binding to the functional group possessed by the inorganic filler are preferred.
  • the functional group on the other side to be bound is an oxiranyl or an acid anhydride residue, etc., it is preferable to react with the functional group, and therefore, one having an amine reactive group at the end is preferable.
  • Thyraace (registered trademark) S310, S320, S330, S360, manufactured by JNC Co., Ltd., and KBM-903, KBE-903, etc., manufactured by Shin-Etsu Chemical Co., Ltd.
  • a silane coupling agent having an oxiranyl or the like at the end is preferred.
  • Thyra Ace registered trademark S510, S530, etc. may be mentioned.
  • Examples of combinations of functional groups that form a bond between the silane coupling agent and the other side include combinations of oxiranyl with amino, vinyl with each other, methacryloxy with each other, carboxy or carboxylic anhydride residue with amine, imidazole with oxiranyl, etc. Although it can mention, it is not restricted to these. It may be a combination of functional groups capable of forming a bond between the silane coupling agent and the other side. A combination with high heat resistance is more preferable.
  • the first silane coupling agent and the second silane coupling agent may be the same or different.
  • the composition for heat dissipation member may further contain an organic compound (for example, a polymerizable compound or a polymer compound) not bound to the first inorganic filler and the second inorganic filler, that is, not contributing to the binding. , And may contain a polymerization initiator, a solvent, and the like.
  • an organic compound for example, a polymerizable compound or a polymer compound
  • a polymerization initiator for example, a polymer compound not bound to the first inorganic filler and the second inorganic filler, that is, not contributing to the binding.
  • a polymerization initiator for example, a polymerization initiator, a solvent, and the like.
  • the composition for heat dissipation members may contain a polymerizable compound (in this case, not necessarily bifunctional or more) which is not bonded to the inorganic filler as a component.
  • a polymerizable compound a compound which does not prevent the heat curing of the composition for heat dissipation member and does not evaporate or bleed out by heating is preferable.
  • the polymerizable compounds are classified into compounds having no liquid crystallinity and compounds having liquid crystallinity. Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives and itaconic acid derivatives.
  • the content it is desirable to first prepare a composition for a heat-dissipation member which does not contain a polymerizable compound which is not bonded, measure its porosity, and add an amount of the polymerizable compound capable of filling the voids.
  • the composition for heat dissipation member may have a polymer compound not bound to the inorganic filler as a component.
  • a polymer compound which does not reduce film formability and mechanical strength is preferable.
  • the polymer compound may be an inorganic filler, a silane coupling agent, and a polymer compound which does not react with the polymerizable compound.
  • the polymerizable compound is oxiranyl and the silane coupling agent has amino
  • a polyolefin compound Resin, polyvinyl resin, silicone resin, wax etc. are mentioned.
  • the composition for heat dissipation member may have a liquid crystal compound having no polymerizable group as a component.
  • non-polymerizable liquid crystalline compounds are described in Liquist (LiqCryst, LCI Publisher GmbH, Hamburg, Germany), which is a database of liquid crystalline compounds, and the like.
  • composite materials of the polymer of compound (1-1) and the liquid crystal compound can be obtained by polymerizing the composition containing the non-polymerizable liquid crystal compound.
  • a non-polymerizable liquid crystal compound is present in a polymer network such as a polymer dispersed liquid crystal.
  • the inorganic filler may be compounded by a method of injecting into the voids in a temperature range showing an isotropic phase, or the amount of the liquid crystal compound calculated to fill the voids in the inorganic filler in advance. After mixing, the inorganic fillers may be polymerized.
  • the composition for heat dissipation member may have a polymerization initiator as a component.
  • a polymerization initiator for example, a photo radical polymerization initiator, a photo cationic polymerization initiator, a thermal radical polymerization initiator or the like may be used depending on the constituent elements of the composition and the polymerization method.
  • a thermal radical polymerization initiator is preferred because the inorganic filler absorbs ultraviolet light.
  • Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide Oxides (DTBPO), t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2'-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile (ACN), etc. It can be mentioned.
  • the composition for heat dissipation members may contain a solvent.
  • the polymerization may be carried out in a solvent or without solvent.
  • the composition containing a solvent may be coated on a substrate by, for example, spin coating, and then the solvent may be removed and then photopolymerization may be performed. Alternatively, after photocuring, post-treatment may be performed by heating to a suitable temperature and heat curing.
  • Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, ⁇ -butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide, cyclohexane, methylcyclohexane, cyclopentanone , Cyclohexanone, PGMEA and the like.
  • the above solvents may be used singly or in combination of two or more. There is no point in limiting the use ratio of the solvent at the time of polymerization, and it may be determined for each case in consideration of the polymerization efficiency, solvent cost, energy cost and the like.
  • a stabilizer may be added to the composition for heat dissipation member in order to facilitate handling.
  • the stabilizer is not particularly limited as long as the effects of the present invention are not impaired, and may be an antioxidant, a curing agent, a copper inhibitor, a metal deactivator, a tackifier, an antiaging agent, an antifoamer, Antistatic agents, weathering agents and the like can be mentioned.
  • Antioxidants include, for example, hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
  • the addition of a copper inhibitor or a metal deactivator as mentioned in JP-A-5-48265 is preferable.
  • said copper damage inhibitor brand name
  • the addition amount of the copper inhibitor is preferably 0.1 parts by weight to 100 parts by weight in total of the resin contained in the adhesive layer, from the viewpoint of preventing deterioration of the resin of the part in contact with the metal of the adhesive layer. It is up to 3 parts by weight.
  • an additive such as an oxide
  • an additive may be added to adjust the viscosity and color of the composition for heat dissipation member.
  • fine powders of titanium oxide for making white, carbon black for making black, and fine powder of silica for adjusting viscosity can be mentioned.
  • additives may be added to further increase the mechanical strength.
  • inorganic fibers or cloths such as glass fibers, carbon fibers, carbon nanotubes or the like, or as polymer additives, fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, polyimide and the like can be mentioned.
  • the substrate layer forms a bond with an inorganic filler via a silane coupling agent and a bifunctional or higher functional polymerizable compound as shown in FIG. 3 to form a laminate with an organic-inorganic hybrid adhesive layer.
  • the substrate layer can include, for example, copper, aluminum, nickel, gold, an alloy, or a ceramic.
  • a bond between the organic-inorganic hybrid adhesive layer and the substrate layer is formed between the metal layer located on the outermost surface of the substrate layer and the organic-inorganic hybrid adhesive layer.
  • the metal layer may be a metal that can be a plating material.
  • the thickness according to a use can be used. A thicker one is preferable because of its excellent heat dissipation.
  • the substrate layer may be any shape or material capable of applying the composition for heat dissipation member and forming a laminate with the organic-inorganic hybrid adhesion layer formed by curing the composition for heat dissipation member.
  • a shape plate shape, rod shape, etc. can be mentioned.
  • the metal layer may be a single metal electrode, or may be a metal electrode in a state in which one metal electrode is divided into a plurality. That is, the metal layer may be a layer composed of a plurality of metal electrodes.
  • the laminate of the present application can also be used as an electronic substrate (printed substrate) having thermal conductivity, heat dissipation, and insulation.
  • the method for producing the composition for heat dissipation member, and the method for producing a laminate from the composition and the substrate layer will be specifically described using the composition for heat dissipation member as an example.
  • (1) Conducting silane coupling treatment The first inorganic filler is subjected to silane coupling treatment with a first silane coupling agent to bond one end of the first silane coupling agent to the first inorganic filler.
  • a well-known method can be used for a silane coupling process.
  • the second and third inorganic fillers can be subjected to the silane coupling treatment with the second and third silane coupling agents.
  • the inorganic filler and the silane coupling agent are added to the solvent.
  • the second inorganic filler was subjected to a silane coupling treatment with a second silane coupling agent (or was subjected to a silane coupling treatment with a first silane coupling agent)
  • the first inorganic filler may be used as a second inorganic filler), and the other terminal of the second silane coupling agent is further bonded to a first bifunctional or higher polymerizable compound.
  • the polymeric compound more than a 2nd functional using an agate mortar etc.
  • the bonding ratio with the third inorganic filler is such that the bonding group forming the bond between the first inorganic filler and the second inorganic filler is respectively amine: epoxy
  • the weight of only the inorganic filler is, for example, 1 by weight ratio It is preferably 0.1 to 1:30, more preferably 1: 3 to 1:20. More preferably, it is 1: 4 to 1:10.
  • the mixing ratio is determined by the number of terminal bonding groups that form a bond between the first inorganic filler and the second inorganic filler, and for example, a primary amine can react with two oxiranyl, so The amount may be relatively small, and the oxiranyl side may be open, and it is preferable to use a larger amount calculated from the epoxy equivalent.
  • the temperature during compression molding is in the range of room temperature to 350 ° C., preferably room temperature to 300 ° C., more preferably 50 ° C. to 250 ° C., and the time is 5 seconds to 10 hours, preferably 1 minute to 5 hours, Preferably, it is in the range of 5 minutes to 1 hour.
  • After curing it is preferable to gradually cool in order to suppress stress distortion and the like. Further, reheating treatment may be performed to reduce distortion and the like.
  • the formation of the organic-inorganic hybrid adhesive layer and the bonding of the organic-inorganic hybrid adhesive layer and the substrate layer (metal layer) can be performed by thermocompression bonding at a relatively low temperature.
  • the thickness of the organic-inorganic hybrid adhesive layer is preferably thin in order to improve the thermal conductivity in the vertical direction. Preferably, it is 30 ⁇ m to 2000 ⁇ m, more preferably 30 ⁇ m to 1000 ⁇ m. More preferably, it is 30 ⁇ m to 500 ⁇ m.
  • the film thickness of the organic-inorganic hybrid adhesive layer and the substrate layer (metal layer) may be appropriately changed depending on the application.
  • the heat radiating member of this invention is a laminated body which has the organic-inorganic hybrid adhesion layer and substrate layer (metal layer) which are the hardened
  • the cured product of the composition for heat dissipation member has high thermal conductivity and has a negative to positive thermal expansion coefficient depending on the type of organic material and inorganic material used, the compounding ratio, curing conditions, etc., and is chemically stable. Superior in hardness, hardness and mechanical strength.
  • the mechanical strength includes Young's modulus, tensile strength, tear strength, flexural strength, flexural modulus, impact strength and the like.
  • the heat dissipation member of the present invention is useful for a heat dissipation plate, a heat dissipation sheet, a heat dissipation film, a heat dissipation adhesive, a heat dissipation molded product, and the like. Furthermore, it can also be used as an electronic substrate (printed substrate) having thermal conductivity, heat dissipation, and insulation.
  • the electronic device of the present invention includes the heat dissipation member of the present invention and an electronic device having a heat generating portion.
  • the heat dissipation member is disposed in the electronic device so as to contact the heat generating portion.
  • the mode of the heat dissipating member may be any of a heat dissipating electronic substrate, a heat dissipating plate, a heat dissipating sheet, a heat dissipating film, a heat dissipating adhesive, a heat dissipating molded product, and the like.
  • a semiconductor element can be mentioned as an electronic device.
  • the heat radiating member of the present invention has high heat resistance and high insulation in addition to high thermal conductivity.
  • the semiconductor device is particularly effective for power semiconductors such as silicon carbide, silicon nitride, gallium nitride, gallium oxide and diamond, which require a more efficient heat dissipation mechanism because of high power.
  • Electronic devices equipped with these power semiconductors include main conversion elements of large power inverters, uninterruptible power supplies, variable voltage variable frequency controllers for AC motors, controllers for railway vehicles, electric vehicles such as hybrid cars and electric cars, etc. Equipment, IH cooker, etc. can be mentioned.
  • the component materials used in the examples of the present invention are as follows.
  • the copper plate was used as a DCB substrate, and the aluminum plate was used as a DBA substrate.
  • Example 1 -Modified filler preparation process 10 g of boron nitride particles (Polaritive Performance Materials Japan (combined) made by PolarTherm PTX-25) as the first inorganic filler, and as the first silane coupling agent, manufactured by JNC Co., Ltd. 1 g of Silaace (registered trademark) S320 was added to 100 mL of toluene, and the mixture was stirred at 500 rpm for 1 hour using a stirrer, and the resulting mixture was dried at 40 ° C. for 4 hours. Furthermore, it heat-processed under vacuum conditions for 5 hours using the vacuum dryer set to 120 degreeC after solvent drying.
  • Silaace registered trademark
  • the resulting particles are the first inorganic filler bonded to one end of the first silane coupling agent, and this is referred to as the modified filler X.
  • the modified filler X In the same manner, using alumina particles (Nippon Light Metal Co., Ltd. Nippon Light Metal LS-210B) in place of the above PTX-25, the obtained particles are bonded to one end of the second silane coupling agent.
  • the inorganic filler of No. 2 is referred to as modified filler Y.
  • 2.5 g of a silane coupling agent JNC Co., Ltd.
  • Sila Ace (registered trademark) S510) is added to 125 g of pure water and stirred at 500 rpm for 15 hours using a stirrer did.
  • 12.5 g of boron nitride particles (Polaritive Performance Japan Co., Ltd. PolarTherm PTX-25) is added to the solution, and stirred at 500 rpm for 1 hour using a stirrer, and the obtained mixture is heated at 60 ° C. 4 Dried for hours. After drying, heat treatment was performed for 5 hours under vacuum conditions using a vacuum oven set at 80 ° C.
  • the resulting particles are the third inorganic filler bonded to one end of the third silane coupling agent, and this is referred to as the modified filler Z.
  • the boron nitride particles are plate-like particles, so the boron nitride particles and the aluminum plate are oriented so as to be parallel to each other. Further, the amount of the composition for heat dissipation member was adjusted so that the thickness of the laminate of the layer of aluminum plate / composition for heat dissipation member / aluminum plate was about 1 mm. The obtained laminate was used as a heat dissipation member (1).
  • the amount of the composition for heat dissipation member was adjusted such that the thickness of the laminate of the layer of the composition for copper foil / the composition for heat dissipation member / copper foil was about 300 ⁇ m.
  • the obtained laminate was used as a heat dissipation member (2).
  • Example 2 instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 1 except for the above.
  • Example 3 Nichigane LS-243 was used as a second inorganic filler instead of Nichigane LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
  • Example 4 instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 3 except for the above.
  • Example 5 Nichigane LS-711C was used as a second inorganic filler instead of Nichigane LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
  • Example 6 instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Except for this, preparation and evaluation were performed in the same manner as in Example 5.
  • Example 7 Nikkei random V325F was used as a second inorganic filler in place of the light weight LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
  • Example 8 instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 7 except for the above.
  • Example 9 Polyhedral alumina CT50 was used in place of the light-light LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
  • Example 10 instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 9 except for the above.
  • Example 11 DAW-20 was used in place of light duty LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
  • Example 12 instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Except this, preparation and evaluation were performed similarly to Example 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Insulating Materials (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention achieves a laminate of an organic-inorganic hybrid composite and a metal, the laminate having excellent thermal conductivity and interlayer adhesion. This composition for a heat-dissipation member contains: a first inorganic filler (11) to which one end of a first silane coupling agent (21) has been bonded; a second inorganic filler (12) to which one end of a second silane coupling agent (22) has been bonded; a third inorganic filler (13) to which one end of a third silane coupling agent (23) has been bonded; a first at least bifunctional polymerizable compound (31); and a second at least bifunctional polymerizable compound (32). Per 100 total parts by weight of the first at least bifunctional polymerizable compound (31) and the second at least bifunctional polymerizable compound (32), there are a total of 300–600 parts by weight of the first inorganic filler (11), the second inorganic filler (12), and the third inorganic filler (13).

Description

放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法Composition for heat radiation member, heat radiation member, electronic device, method of manufacturing heat radiation member
 本発明は、放熱部材用組成物およびこれを用いた放熱部材、電子機器に関する。特に、電子機器内部に生じた熱を効率よく伝導、伝達することにより放熱でき、電子基板等を形成可能な放熱部材用組成物およびこれを用いた放熱部材、電子機器に関する。 The present invention relates to a composition for a heat dissipating member, a heat dissipating member using the same, and an electronic device. In particular, the present invention relates to a composition for a heat dissipating member which can dissipate heat by efficiently conducting and transmitting heat generated inside the electronic device, and a heat dissipating member using the composition, and an electronic device using the composition.
 近年、ハイブリッド自動車や電気自動車などの電力制御用の半導体素子や、高速コンピューター用のCPUなどにおいて、内部の半導体の温度が高くなり過ぎないように、チップ・パッケージ材料の高熱伝導化が望まれている。すなわち半導体チップから発生した熱を効果的に外部に放出させる能力が重要になっている。また、動作温度の上昇により、チップ・パッケージ内に使用されている材料間の熱膨張率の差により熱歪が発生し、配線の剥離、積層基板の層剥離などによる寿命の低下が問題になっている。 In recent years, in semiconductor devices for power control such as hybrid cars and electric cars, and CPUs for high-speed computers, high thermal conductivity of chip and package materials is desired so that the temperature of the internal semiconductors does not become too high. There is. That is, the ability to effectively release the heat generated from the semiconductor chip to the outside is important. In addition, due to the rise in operating temperature, thermal strain is generated due to the difference in the thermal expansion coefficient between the materials used in the chip and package, and the reduction in life due to peeling of wiring, delamination of laminated substrate, etc. becomes a problem. ing.
 このような放熱問題を解決する方法としては、発熱部位に高熱伝導性材料(放熱部材)を接触させて熱を外部に導き、放熱する方法が挙げられる。特許文献1には、有機材料と無機材料とを複合化させた放熱部材であって、無機材料間をシランカップリング剤と重合性液晶化合物で繋いだ放熱部材が開示されている(段落0007)。引用文献1では、シランカップリング剤と重合性液晶化合物で繋ぐことにより、無機材料間の熱伝導性を著しく高くさせることが可能となった。しかしながら、この放熱部材の反応性部位は、シランカップリング剤と結合した重合性液晶化合物の先端部位、およびシランカップリング剤の先端部位にしかないことから、シランカップリング剤と重合性液晶化合物で繋ぐためには、フィラー間の距離をシランカップリング剤の鎖長と重合性液晶化合物の鎖長の和の長さになるまで高い圧力をかけて近づける必要があった。また、高熱伝導性接着剤として用いる場合にも、高い圧力でフィラーとフィラー、およびフィラーと被接着体を密着させ、さらに加熱により反応させる必要があった。 As a method for solving such a heat radiation problem, there is a method in which a high thermal conductivity material (heat radiation member) is brought into contact with the heat generation portion to lead the heat to the outside and radiate the heat. Patent Document 1 discloses a heat dissipation member in which an organic material and an inorganic material are compounded, and the heat dissipation member in which inorganic materials are connected by a silane coupling agent and a polymerizable liquid crystal compound (paragraph 0007). . In Reference 1, it has become possible to significantly increase the thermal conductivity between the inorganic materials by connecting the silane coupling agent and the polymerizable liquid crystal compound. However, since the reactive site of this heat dissipation member is only at the tip end of the polymerizable liquid crystal compound bonded to the silane coupling agent and at the tip end of the silane coupling agent, the silane coupling agent and the polymerizable liquid crystal compound are linked. In order to achieve this, it has been necessary to bring the distance between the fillers close to each other by applying high pressure until the sum of the chain length of the silane coupling agent and the chain length of the polymerizable liquid crystal compound. Moreover, also when using as a high thermal conductivity adhesive, it was necessary to make a filler, a filler, a filler, and a to-be-adhered body contact | adhere with high pressure, and also to make it react by heating.
 特許文献2には、前記チップ・パッケージ内で用いられる熱伝導性の高い接着剤として、銀粒子を充填したダイボンディングペーストが開示されている。また特許文献3には、ハンダ粒子を含有する接着剤のペーストが開示されている。そして、特許文献4には、表面処理が施された非球状銀粒子と揮発性分散媒体からなるペースト状銀粒子組成物を100℃以上400℃以下で加熱することにより銀粒子が焼結して固形状の銀とする方法が開示されている。
 しかしながら、特許文献4に記載のペースト状銀粒子組成物は、塗布や乾燥工程を必要となるため、溶媒乾燥時の斑の発生や焼結時のボイドの発生により、接着性が不十分となるという問題があった。また、これら高熱伝導のダイボンディングペーストは金属粒子を使用しているため電気伝導性が高く、絶縁が必要な部位には別途絶縁加工が必要になる問題もあった。
Patent Document 2 discloses a die bonding paste filled with silver particles as a highly thermally conductive adhesive used in the chip package. Patent Document 3 discloses a paste of an adhesive containing solder particles. In Patent Document 4, the silver particles are sintered by heating a paste-like silver particle composition comprising non-spherical silver particles subjected to surface treatment and a volatile dispersion medium at 100 ° C. or more and 400 ° C. or less. A method of making solid silver is disclosed.
However, since the paste-like silver particle composition described in Patent Document 4 requires a coating and drying step, adhesion becomes insufficient due to the generation of spots during solvent drying and the generation of voids during sintering. There was a problem that. In addition, since these high thermal conductivity die bonding pastes use metal particles, they have a high electrical conductivity, and there is also a problem that a separate insulation process is required for the portions requiring insulation.
国際公開第2016/031888号公報International Publication No. 2016/031888 特開2006-392834号公報JP, 2006-392834, A 特開2005-93996号公報JP 2005-93996 A 国際公開第2017/034833号公報International Publication No. 2017/034833
 上述のとおり、チップ・パッケージ内で使用される放熱部材とそれを構成する様々な材料が検討されてきた。しかしながら、例えば、特許文献1では無機フィラー間および無機フィラーと被接着体との間を、1分子または2分子のシランカップリング剤と、2官能以上の重合性液晶化合物とで結合させていることから、図1のように接着面積が小さく、全体としての接着強度を上げることができず、電気絶縁性で熱伝導性および他素材からなる層との接着性に優れた放熱部材は得られていない。また、より容易な放熱部材の製造方法も得られていない。
 このようなことから、本発明は、有機材料と無機材料との複合化材料からなる電気絶縁性および接着性に優れた放熱部材を提供すること、さらには、少ない工程でより容易に放熱部材を製造可能な放熱部材用組成物の製造方法を提供することを課題とする。
As mentioned above, the heat dissipating member used in the chip package and various materials constituting it have been considered. However, for example, in Patent Document 1, between the inorganic filler and between the inorganic filler and the adherend, one molecule or two molecules of the silane coupling agent and a bifunctional or higher polymerizable liquid crystal compound are bonded. Therefore, as shown in FIG. 1, the bonding area is small, and the bonding strength as a whole can not be increased, and a heat dissipating member which is electrically insulating and has excellent thermal conductivity and adhesiveness with layers made of other materials is obtained. Absent. In addition, a simpler method of manufacturing the heat dissipating member has not been obtained.
From the above, the present invention provides a heat dissipation member excellent in electrical insulation and adhesiveness, which is a composite material of an organic material and an inorganic material, and further, the heat dissipation member can be more easily obtained in a small number of steps. It is an object of the present invention to provide a method for producing a heat sink component composition that can be produced.
 そこで、本発明者らは、上述の課題を解決するために検討を重ねた。その結果、有機材料と無機材料とを含む放熱部材用組成物に、さらに重合性化合物および重合性液晶化合物を加え、結合可能距離を長くすることにより、有機材料と無機材料との複合化において、図2のように接着面積を拡大し接着力を高められるように、無機材料同士を、シランカップリング剤を介して有機材料で繋げるような態様、すなわち、シランカップリング剤と、無機材料である無機フィラーと、有機材料である2官能以上の重合性化合物とを含む組成物により形成される複合体層(以下、この複合体層を有機無機ハイブリッド接着層ということがある。)を用いることで、金属/金属間、金属/半導体間、金属/樹脂間などの接着性に優れ、熱伝導性の極めて高い放熱部材が得られることを見出し、本発明を完成させた。 Then, the present inventors repeated examination in order to solve the above-mentioned subject. As a result, a polymerizable compound and a polymerizable liquid crystal compound are further added to the composition for a heat dissipation member containing an organic material and an inorganic material to lengthen the bondable distance, whereby the organic material and the inorganic material are complexed. An aspect in which inorganic materials are connected with an organic material via a silane coupling agent so as to expand the adhesion area and enhance adhesion as shown in FIG. 2, that is, a silane coupling agent and an inorganic material By using a composite layer formed of a composition containing an inorganic filler and a bifunctional or higher polymerizable compound that is an organic material (hereinafter, this composite layer may be referred to as an organic-inorganic hybrid adhesion layer). The present invention has been accomplished by finding that a heat-radiating member having excellent adhesion between metal / metal, metal / semiconductor, metal / resin and the like and having extremely high thermal conductivity can be obtained.
 本発明の第1の態様に係る放熱部材用組成物は、図3に示すように、第1のシランカップリング剤21の一端と結合した第1の無機フィラー11、第2のシランカップリング剤22の一端と結合した第2の無機フィラー12、第3のシランカップリング剤23の一端と結合した第3の無機フィラー13、第1の2官能以上の重合性化合物31、および第2の2官能以上の重合性化合物32を含有する放熱部材用組成物であり、前記第1の2官能以上の重合性化合物31および前記第2の2官能以上の重合性化合物32の全量100重量部に対する、前記第1の無機フィラー11、前記第2の無機フィラー12、および前記第3の無機フィラー13の合計量の比率が300~600重量部である。
 「一端」とは、分子の形状の縁または端であればよく、分子の長辺の両端であってもなくてもよい。
 このように構成すると、金属、セラミック材料などの基板層と接着することが可能な放熱部材用組成物が得られる。 
 該放熱部材用組成物を用いて有機無機ハイブリッド接着層を形成すると、熱伝導の主な要素であるフォノンを有機無機ハイブリッド接着層と基板層との間で直接伝播することができる積層体を作製することができる。該積層体は、放熱部材として使用することができ、水平方向だけでなく厚み方向にも極めて高い熱伝導性を有する。また、該積層体は、有機無機ハイブリッド接着層と基板層との層間の接着性にも優れる。なお、ここでいうフォノンとは固体内の原子の格子振動のことである。
The composition for a heat dissipation member according to the first aspect of the present invention is, as shown in FIG. 3, a first inorganic filler 11 combined with one end of a first silane coupling agent 21, a second silane coupling agent The second inorganic filler 12 bonded to one end of the second 22, the third inorganic filler 13 bonded to one end of the third silane coupling agent 23, the first bifunctional or higher polymerizable compound 31, and the second 2 A composition for a heat dissipation member containing a polymerizable compound 32 having a functionality or higher than the total amount of 100 parts by weight of the first bifunctional or higher polymerizable compound 31 and the second difunctional or higher polymerizable compound 32 The ratio of the total amount of the first inorganic filler 11, the second inorganic filler 12, and the third inorganic filler 13 is 300 to 600 parts by weight.
The “one end” may be the edge or the end of the shape of the molecule, and may or may not be the long side of the molecule.
According to this structure, a composition for heat dissipating member which can be bonded to the substrate layer such as metal or ceramic material is obtained.
When an organic-inorganic hybrid adhesive layer is formed using the composition for heat dissipation member, a laminate capable of directly propagating phonon, which is a main element of heat conduction, between the organic-inorganic hybrid adhesive layer and the substrate layer is produced. can do. The laminate can be used as a heat dissipation member and has extremely high thermal conductivity not only in the horizontal direction but also in the thickness direction. In addition, the laminate is also excellent in the adhesiveness between the organic-inorganic hybrid adhesive layer and the substrate layer. The term "phonon" as used herein refers to lattice vibration of atoms in a solid.
 本発明の第2の態様に係る放熱部材用組成物は、上記本発明の第1に係る放熱部材用組成物において、前記第1の無機フィラーと、前記第2の無機フィラーとが、それぞれに結合したシランカップリング剤の他端と、前記第1の2官能以上の重合性化合物および第2の2官能以上の重合性化合物から選ばれる少なくとも1つで結合する。
 このように構成すると、無機フィラー同士をシランカップリング剤/2官能以上の重合性化合物/シランカップリング剤を介して結合させて積層体を形成することができる。そのため、熱伝導の主な要素であるフォノンを無機フィラー同士、および無機フィラーと被基板層などの接着体間で直接伝播することができる。さらに、有機無機ハイブリッド接着層と被接着層との間は結合の増加により接着性にも優れる。
The composition for heat dissipation member according to the second aspect of the present invention is the composition for heat dissipation member according to the first aspect of the present invention, wherein the first inorganic filler and the second inorganic filler respectively The other end of the bound silane coupling agent is bound by at least one selected from the first bifunctional or higher polymerizable compound and the second bifunctional or higher polymerizable compound.
According to this structure, the inorganic fillers can be bonded to each other via the silane coupling agent / the polymerizable compound having two or more functions / silane coupling agent to form a laminate. Therefore, phonons, which are the main elements of heat conduction, can be directly propagated between the inorganic fillers, and between the inorganic fillers and the adherend such as the substrate layer. Furthermore, the adhesion between the organic-inorganic hybrid adhesive layer and the adherend layer is also excellent due to the increase in bonding.
 本発明の第3の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、前記第1の2官能以上の重合性化合物または第2の2官能以上の重合性化合物が、下記式(1-1)および下記式(1-2)で表される重合性液晶化合物からなる群から選ばれる少なくとも2種を含む。
     R-Z-(A-Z)-R    (1-1)
 前記式(1-1)中、
 Rは、それぞれ独立して、シランカップリング剤の他端の官能基と結合可能な官能基であり、
 Aは、それぞれ独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
 これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
 該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく、
 Zは、それぞれ独立して、単結合、または炭素数1~20のアルキレンであり、
 該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、-N(O)=N-、または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく、
 mは、1~6の整数である。
     J-X-J           (1-2)
 前記式(1-2)中、
 Jは、それぞれ独立して、前記式(1-1)の他端の官能基と結合可能な官能基であり、
 Xは、それぞれ独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
 これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
 該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく、
 nは、1~6の整数である。
 このように構成すると、粒子表面にエポキシ基などの官能基を有する無機フィラーと金属層などの基板層とをシランカップリング剤および重合性液晶化合物を介して結合させた積層体を形成することができる。そのため、絶縁性の物質内での熱伝導の主な要素であるフォノンを有機無機ハイブリッド接着層と基板層などの被接着体との間で直接伝播することができ、有機無機ハイブリッド接着層と被接着体間において熱伝導性に優れる。さらに、有機無機ハイブリッド接着層と基板層などの被接着体との間の結合が増加することになり層間接着性にも優れる。
The composition for heat dissipation member according to the third aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the first bifunctional or higher polymerizable compound or The second bifunctional or higher polymerizable compound includes at least two selected from the group consisting of polymerizable liquid crystal compounds represented by the following formula (1-1) and the following formula (1-2).
R a -Z- (A-Z) m -R a (1-1)
In the above formula (1-1),
Each R a is independently a functional group capable of binding to the functional group at the other end of the silane coupling agent,
A each independently represents 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2, 7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
In these rings, any —CH 2 — may be replaced by —O—, and any —CH = may be replaced by —N =, and any hydrogen may be halogen, one carbon atom It may be replaced by an alkyl of up to 10 or an alkyl halide having 1 to 10 carbon atoms,
In the alkyl, arbitrary —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH = CH—, or —C≡C—,
Z is each independently a single bond or alkylene having 1 to 20 carbon atoms,
In the alkylene, arbitrary —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH = CH—, —CF = CF—, —CH = N—, -N = CH-, -N = N-, -N (O) = N-, or -C≡C-, and any hydrogen may be replaced by halogen,
m is an integer of 1 to 6;
J-X n -J (1-2)
In the above formula (1-2),
J is each independently a functional group capable of binding to the functional group at the other end of the above formula (1-1),
X independently represents 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2, 7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
In these rings, any —CH 2 — may be replaced by —O—, and any —CH = may be replaced by —N =, and any hydrogen may be halogen, one carbon atom It may be replaced by an alkyl of up to 10 or an alkyl halide having 1 to 10 carbon atoms,
In the alkyl, arbitrary —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH = CH—, or —C≡C—,
n is an integer of 1 to 6.
According to this structure, it is possible to form a laminate in which an inorganic filler having a functional group such as an epoxy group on the particle surface and a substrate layer such as a metal layer are bonded via a silane coupling agent and a polymerizable liquid crystal compound. it can. Therefore, phonon, which is a main element of heat conduction in the insulating substance, can be directly propagated between the organic-inorganic hybrid adhesive layer and the adherend such as the substrate layer, and the organic-inorganic hybrid adhesive layer and It has excellent thermal conductivity between bonded bodies. Furthermore, the bond between the organic-inorganic hybrid adhesive layer and the adherend such as the substrate layer is increased, and the interlayer adhesion is also excellent.
 本発明の第4の態様に係る放熱部材用組成物は、上記本発明の第3の態様に係る放熱部材用組成物において、前記式(1-1)中、Zが、単結合、-(CH-、-O(CH-、-(CHO-、-O(CHO-、-CH=CH-、-C≡C-、-COO-、-OCO-、-CH=CH-COO-、-OCO-CH=CH-、-CHCH-COO-、-OCO-CHCH-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-であり、該aが1~20の整数である。
 このように構成すると、無機フィラー間はシランカップリング剤/2官能以上の重合性化合物/シランカップリング剤を介した結合を有する。そのため、熱伝導の主な要素であるフォノンを無機フィラー間で直接伝播することができ、有機無機ハイブリッド接着層は水平方向だけでなく厚み方向にも極めて高い熱伝導性を有することができる。
The composition for heat dissipation member according to the fourth aspect of the present invention is the composition for heat dissipation member according to the third aspect of the present invention, wherein Z is a single bond,- CH 2 ) a- , -O (CH 2 ) a -,-(CH 2 ) a O-, -O (CH 2 ) a O-, -CH = CH-, -C≡C-, -COO-, -OCO -, - CH = CH- COO -, - OCO-CH = CH -, - CH 2 CH 2 -COO -, - OCO-CH 2 CH 2 -, - CH = N -, - N = CH-, -N = N-, -OCF 2 -or -CF 2 O-, wherein a is an integer of 1 to 20.
According to this structure, the inorganic filler has a bond via the silane coupling agent / the polymerizable compound having two or more functional groups / silane coupling agent. Therefore, phonon, which is a main component of heat conduction, can be directly propagated between the inorganic fillers, and the organic-inorganic hybrid adhesive layer can have extremely high thermal conductivity not only in the horizontal direction but also in the thickness direction.
 本発明の第5の態様に係る放熱部材用組成物は、上記本発明の第3の態様または第4の態様に係る放熱部材用組成物において、前記式(1-1)中、Rが、それぞれ独立して、下記式(2-1)~(2-4)のいずれかで表される重合性基である。
Figure JPOXMLDOC01-appb-I000002
      
 前記式(2-1)~(2-2)中、Rは水素、ハロゲン、-CF、炭素数1~5のアルキルであり、qは0または1である。
 前記式(2-3)~(2-4)中、Rは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
 これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよい。任意の水素はハロゲンで置き換えられてもよい。
 Rは、それぞれ独立して、水素、ハロゲン、または炭素数1~5のアルキルである。
 このように構成すると、シランカップリング剤が、無機フィラーと強固に結合することができる。
The composition for heat dissipation member according to the fifth aspect of the present invention is the composition for heat dissipation member according to the third aspect or the fourth aspect of the present invention, wherein in the formula (1-1), Ra is And each independently a polymerizable group represented by any one of the following formulas (2-1) to (2-4).
Figure JPOXMLDOC01-appb-I000002

In the formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , alkyl having 1 to 5 carbon atoms, and q is 0 or 1.
In the above formulas (2-3) to (2-4), R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene -2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
In these rings, any —CH 2 — may be replaced by —O—, and any —CH = may be replaced by —N =, and any hydrogen may be halogen, one carbon atom ~ 10 alkyl, or alkyl having 1 to 10 carbon atoms may be replaced, and in the alkyl, arbitrary —CH 2 — is —O—, —CO—, —COO—, —OCO—, It may be replaced by -CH = CH- or -C≡C-. Any hydrogen may be replaced by halogen.
Each R d is independently hydrogen, halogen or alkyl having 1 to 5 carbon atoms.
With this configuration, the silane coupling agent can be strongly bonded to the inorganic filler.
 本発明の第6の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第5の態様のいずれか1に係る放熱部材用組成物において、窒化物、炭素材料、珪酸塩化物または金属酸化物であり、前記第2の無機フィラーが、金属酸化物であり、前記第3の無機フィラーが、前記第1の無機フィラーと同じである。
 このように構成すると、放熱部材は、無機フィラーとして、より好ましい化合物を含有することができると同時に、重合性化合物の重合度を上げることができる。
A composition for a heat dissipation member according to a sixth aspect of the present invention is a composition for a heat dissipation member according to any one of the first to fifth aspects of the present invention, which comprises a nitride, a carbon material, and a silicified salt. The second inorganic filler is a metal oxide, and the third inorganic filler is the same as the first inorganic filler.
According to this structure, the heat dissipation member can contain a more preferable compound as an inorganic filler, and at the same time, can increase the degree of polymerization of the polymerizable compound.
 本発明の第7の態様に係る放熱部材用組成物は、上記本発明の第6の態様に係る放熱部材用組成物において、前記第1の無機フィラーは、窒化ホウ素、窒化アルミニウム、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、アルミナ、およびコーディエライトから選ばれる少なくとも一つであり、前記第2の無機フィラーは、アルミナ、金属窒化物、酸化亜鉛、酸化ジルコニウム、および酸化チタンから選ばれる少なくとも一つである。
 このように構成すると、熱伝導率が高く、熱膨張率が小さい放熱部材が得られる。
The composition for heat dissipation member according to the seventh aspect of the present invention is the composition for heat dissipation member according to the sixth aspect of the present invention, wherein the first inorganic filler is boron nitride, aluminum nitride, boron carbide, At least one selected from boron nitride carbon, graphite, carbon fiber, carbon nanotube, alumina, and cordierite, and the second inorganic filler is alumina, metal nitride, zinc oxide, zirconium oxide, and titanium oxide Or at least one selected from
According to this structure, a heat dissipating member having a high thermal conductivity and a low thermal expansion coefficient can be obtained.
 本発明の第8の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第7の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーのシランカップリング剤の修飾率が0.1重量%以上である。
 このように構成すると、放熱部材用組成物の密度を高くし、機械強度を向上させることができる。
The composition for heat dissipation member according to the eighth aspect of the present invention is the composition for heat dissipation member according to any one of the first aspect to the seventh aspect of the present invention, wherein the first inorganic filler The modification rate of the silane coupling agent is 0.1% by weight or more.
According to this structure, the density of the composition for heat dissipation member can be increased, and the mechanical strength can be improved.
 本発明の第9の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第8の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、重合性化合物をさらに含む。
 このように構成すると、第1、第2の無機フィラーを直接接続して硬化させて得た放熱部材では、放熱部材の熱伝導率を向上させるためにフィラーの粒径を大きくするにつれて、それにあいまって空隙率が高くなる。その空隙を結合していない重合性化合物や高分子化合物で満たすことにより、放熱部材の熱伝導率や水蒸気遮断性能などを向上させることができる。
The composition for a heat dissipation member according to a ninth aspect of the present invention is the composition for a heat dissipation member according to any one of the first to eighth aspects of the present invention, wherein the first inorganic filler And a polymerizable compound not bound to the second inorganic filler.
According to this structure, in the heat dissipating member obtained by directly connecting and curing the first and second inorganic fillers, as the particle diameter of the filler is increased in order to improve the thermal conductivity of the heat dissipating member, the heat dissipating member is damaged. Thus, the porosity is increased. By filling the void with a polymerizable compound or a polymer compound that is not bonded, it is possible to improve the thermal conductivity, the water vapor blocking performance, and the like of the heat dissipation member.
 本発明の第10の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第9の態様のいずれか1の態様に係る放熱部材用組成物の硬化物と基板層とからなる放熱部材である。
 このように構成すると、放熱部材は、無機フィラー間に結合を有し、この結合が通常の樹脂のように分子振動や相変化を起こさないため熱膨張の直線性が高く、さらに高い熱伝導性を有することができる。
The composition for a heat dissipation member according to the tenth aspect of the present invention comprises the substrate and the cured product of the composition for a heat dissipation member according to any one of the first to ninth aspects of the present invention. Is a heat dissipation member.
In such a configuration, the heat dissipation member has a bond between the inorganic fillers, and this bond does not cause molecular vibration or phase change as in ordinary resins, so that the thermal expansion has high linearity and further high thermal conductivity. You can have
 本発明の第11の態様に係る電子機器は、上記本発明の第10の態様に係る放熱部材と、発熱部を有する電子デバイスとを備え、前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された、電子機器である。
 このように構成すると、放熱部材が、耐熱性がよく熱膨張率を高温まで制御できるため、電子機器に生じ得る熱歪を抑制することができる。
An electronic device according to an eleventh aspect of the present invention includes the heat dissipation member according to the tenth aspect of the present invention and an electronic device having a heat generating portion, and the heat dissipating member is in contact with the heat generating portion. It is an electronic device disposed in an electronic device.
According to this structure, the heat dissipation member has high heat resistance and can control the thermal expansion coefficient to a high temperature, so that the thermal distortion that may occur in the electronic device can be suppressed.
 本発明の第12の態様に係る放熱部材用組成物の製造方法は、
 第1の無機フィラーと、第1のシランカップリング剤の一端とを結合させる工程と、
 第2の無機フィラーと、第2のシランカップリング剤の一端とを結合させる工程と、
 第3の無機フィラーと、第3のシランカップリング剤の一端とを結合させる工程と、
 第1のシランカップリング剤の一端と結合した第1の無機フィラー、第2のシランカップリング剤の一端と結合した第2の無機フィラー、および第3のシランカップリングの一端と結合した第3の無機フィラーを含有させる工程と、
 前記シランカップリング剤のそれぞれの他端と、2官能以上の重合性化合物とを結合させる工程を備える。
 このように構成すると、無機フィラー同士がシランカップリング剤と2官能以上の重合性化合物で結合した放熱部材が製造できる。
According to a twelfth aspect of the present invention, there is provided a method of producing a composition for a heat dissipation member,
Bonding the first inorganic filler and one end of the first silane coupling agent;
Bonding the second inorganic filler and one end of the second silane coupling agent;
Bonding the third inorganic filler and one end of the third silane coupling agent;
A first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, and a third bonded to one end of a third silane coupling Adding an inorganic filler of
And a step of combining the other end of each of the silane coupling agents with a bifunctional or higher functional polymerizable compound.
According to this structure, it is possible to manufacture a heat dissipating member in which the inorganic fillers are bound to each other by the silane coupling agent and the bifunctional or higher polymerizable compound.
 本発明の放熱部材用組成物は、硬化することによって、金属層やセラミック層などの基板層との積層体になり得るものであり、極めて高い熱伝導性と、放熱部材用組成物の漏れが少ないことから、優れた基板層間の接着性を有する。さらに、化学的安定性、硬度、および機械的強度などの優れた特性を有する。本発明の積層体は、例えば、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱塗膜、放熱接着剤や、電極付放熱性絶縁基板、熱伝導性電子基板などに適している。さらに、本発明の積層体の製造方法は、少ない工程でより容易に有機無機ハイブリッド接着層と金属やセラミックなどの基板層との積層体を製造することができる。 The composition for heat dissipation member of the present invention can be a laminate with a substrate layer such as a metal layer or a ceramic layer by curing, and has extremely high thermal conductivity and leakage of the composition for heat dissipation member. Because it is small, it has excellent adhesion between substrate layers. In addition, it has excellent properties such as chemical stability, hardness, and mechanical strength. The laminate of the present invention is suitable, for example, for a heat dissipating substrate, a heat dissipating plate (planar heat sink), a heat dissipating sheet, a heat dissipating coating, a heat dissipating adhesive, a heat dissipating insulating substrate with electrodes, a heat conductive electronic substrate, and the like. Furthermore, the method for producing a laminate of the present invention can produce a laminate of an organic / inorganic hybrid adhesive layer and a substrate layer of metal, ceramic or the like more easily with few steps.
第1のカップリング剤21の一端と結合した無機フィラー10が第1の2官能以上の重合性化合物31を介して基板1と結合していることを示す概念図である。FIG. 6 is a conceptual view showing that the inorganic filler 10 bonded to one end of the first coupling agent 21 is bonded to the substrate 1 via the first bifunctional or higher polymerizable compound 31. 第2のカップリング剤22の一端と結合した無機フィラー10が第1の2官能以上の重合性化合物31および第2の2官能以上の重合性化合物32、さらに第1の2官能以上の重合性化合物31を介して基板1と結合していることを示す概念図である。The inorganic filler 10 bonded to one end of the second coupling agent 22 has a first bifunctional or higher polymerizable compound 31 and a second bifunctional or higher polymerizable compound 32 and a first bifunctional or higher polymerizable compound. FIG. 6 is a conceptual view showing that it is bonded to a substrate 1 via a compound 31. 放熱部材用組成物の硬化処理により、第1のカップリング剤21の一端と結合した第1の無機フィラー11と、第2のシランカップリング剤22の一端と結合した第2の無機フィラー12とが、第1の2官能以上の重合性化合物31および/または第2の2官能以上の重合性化合物32を介して結合し、第2の無機フィラー12と基板1とが、第2のシランカップリング剤22の一端と結合した第2の2官能以上の重合性化合物31と結合し、さらに、第1の2官能以上の重合性化合物31および第2の2官能以上の重合性化合物32、および第1の2官能以上の重合性化合物31を介して結合していることを示し、また、第1のシランカップリング剤21の一端と結合した第1の無機フィラー11と、第3のシランカップリング23の一端と結合した第3の無機フィラー13とが、第1のシランカップリング剤21の他の一端と、第3のシランカップリング剤23の他の一端と結合し、第3の無機フィラー11に結合した第3のシランカップリング剤23に結合した第2の2官能以上の重合性化合物32および第1の2官能以上の重合性化合物31を介して基板1と結合していることを示す概念図である。The first inorganic filler 11 bonded to one end of the first coupling agent 21 and the second inorganic filler 12 bonded to one end of the second silane coupling agent 22 by curing of the composition for heat dissipation member Are bonded via the first bifunctional or higher polymerizable compound 31 and / or the second bifunctional or higher polymerizable compound 32, and the second inorganic filler 12 and the substrate 1 are bonded to the second silane cup A second bifunctional or higher polymerizable compound 31 bonded to one end of the ring agent 22, and further, a first bifunctional or higher polymerizable compound 31 and a second bifunctional or higher polymerizable compound 32; The first inorganic filler 11 bonded to one end of the first silane coupling agent 21 and the third silane cup are shown to indicate that they are bonded via the first bifunctional or higher polymerizable compound 31. One end of ring 23 The bonded third inorganic filler 13 is bonded to the other end of the first silane coupling agent 21 and the other end of the third silane coupling agent 23 and bonded to the third inorganic filler 11 A conceptual diagram showing that the substrate is bonded to the substrate 1 via the second bifunctional or higher polymerizable compound 32 bonded to the third silane coupling agent 23 and the first bifunctional or higher polymerizable compound 31 is there. 引っ張り試験および漏れ率測定に用いた試験部材を示す図である。It is a figure which shows the test member used for the tension test and the leak rate measurement. 引っ張り試験および漏れ率測定に用いた試験部材の断面を示す図である。It is a figure which shows the cross section of the test member used for the tension test and the leak rate measurement. 漏れ率測定に用いた試験部材の上面を示す図である。It is a figure which shows the upper surface of the test member used for the leak rate measurement.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description will be omitted. Further, the present invention is not limited to the following embodiments.
 本明細書における用語の使い方は以下のとおりである。
 「液晶化合物」「液晶性化合物」は、ネマチック相やスメクチック相などの液晶相を発現する化合物である。
The usage of the terms in the present specification is as follows.
“Liquid crystal compound” and “liquid crystal compound” are compounds that express a liquid crystal phase such as a nematic phase or a smectic phase.
 「アルキルにおける任意の-CH-は、-O-などで置き換えられてもよい」あるいは「任意の-CHCH-は-CH=CH-などで置き換えられてもよい」等の句の意味を下記の一例で示す。例えば、C-における任意の-CH-が、-O-または-CH=CH-で置き換えられた基としては、CO-、CH-O-(CH-、CH-O-CH-O-などである。同様にC11-における任意の-CHCH-が、-CH=CH-で置き換えられた基としては、HC=CH-(CH-、CH-CH=CH-(CH-など、さらに任意の-CH-が-O-で置き換えられた基としては、CH-CH=CH-CH-O-などである。このように「任意の」という語は、「区別なく選択された少なくとも1つの」を意味する。なお、化合物の安定性を考慮して、酸素と酸素とが隣接したCH-O-O-CH-よりも、酸素と酸素とが隣接しないCH-O-CH-O-の方が好ましい。 Phrases such as “Any —CH 2 — in alkyl may be replaced by —O— or the like” or “Any —CH 2 CH 2 — may be replaced by —CH = CH— or the like” The meaning is shown in the following example. For example, as a group in which arbitrary —CH 2 — in C 4 H 9 — is replaced by —O— or —CH = CH—, C 3 H 7 O—, CH 3 —O— (CH 2 ) 2 -, CH 3 -O-CH 2 -O- and the like. Similarly, as a group in which arbitrary —CH 2 CH 2 — in C 5 H 11 — is replaced by —CH = CH—, H 2 C = CH— (CH 2 ) 3 —, CH 3 —CH = CH Further, as a group in which arbitrary —CH 2 — is further replaced by —O— such as — (CH 2 ) 2 —, it is CH 3 —CH = CH—CH 2 —O— or the like. Thus, the term "arbitrary" means "at least one selected indiscriminately". In addition, in consideration of the stability of the compound, CH 3 -O-CH 2 -O- in which oxygen and oxygen are not adjacent to each other than CH 3 -O-O-CH 2 -in which oxygen and oxygen are adjacent to each other. Is preferred.
 また、環Aに関して「任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよい」の句は、例えば1,4-フェニレンの2,3,5,6位の水素の少なくとも1つがフッ素やメチル等の置換基で置き換えられた場合の態様を意味し、また置換基が「炭素数1~10のハロゲン化アルキル」である場合の態様としては、2-フルオロエチルや3-フルオロ-5-クロロヘキシルのような例を包含する。 Further, the phrase “optional hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons” in relation to ring A is, for example, 2 of 1,4-phenylene It means an embodiment where at least one of hydrogens at 3, 3, 5 and 6 is replaced with a substituent such as fluorine or methyl, and when the substituent is “halogenated alkyl having 1 to 10 carbon atoms” Embodiments include examples such as 2-fluoroethyl and 3-fluoro-5-chlorohexyl.
 「化合物(1-1)」は、後述する下記式(1-1)で表される重合性液晶化合物を意味し、また、下記式(1-1)で表される化合物の少なくとも1種を意味することもある。「放熱部材用組成物」は、前記化合物(1-1)または他の重合性化合物から選択される少なくとも1種の化合物を含有する組成物を意味する。1つの化合物(1-1)が複数のAを有するとき、任意の2つのAは同一でも異なっていてもよい。複数の化合物(1-1)がAを有するとき、任意の2つのAは同一でも異なっていてもよい。この規則は、RやZなど他の記号、基などにも適用される。 The “compound (1-1)” means a polymerizable liquid crystal compound represented by the following formula (1-1) described later, and at least one of the compounds represented by the following formula (1-1) It also means something. The “composition for heat dissipation member” means a composition containing at least one compound selected from the compound (1-1) or other polymerizable compounds. When one compound (1-1) has a plurality of A, any two A may be the same or different. When a plurality of compounds (1-1) have A, any two A may be the same or different. This rule also applies to other symbols such as Ra and Z, groups and the like.
[放熱部材用組成物]
 放熱部材用組成物は、第1のシランカップリング剤の一端と結合した第1の無機フィラー、第2のシランカップリング剤の一端と結合した第2の無機フィラー、第3のシランカップリングの一端と結合した第3の無機フィラー、第1の2官能以上の重合性化合物、および第2の2官能以上の重合性化合物を含有し、前記第1の2官能以上の重合性化合物および第2の2官能以上の重合性化合物の全量100重量部に対する、前記第1の無機フィラー、前記第2の無機フィラー、および前記第3の無機フィラーの合計量の比率が300~600重量部である。
[Composition for heat dissipation member]
The composition for heat dissipation member includes a first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, and a third silane coupling A second inorganic compound having a third inorganic filler bonded to one end, a first bifunctional or higher polymerizable compound, and a second bifunctional or higher polymerizable compound, and the first bifunctional or higher polymerizable compound and the second The ratio of the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 300 to 600 parts by weight with respect to 100 parts by weight of the total amount of the bifunctional or higher functional polymerizable compound.
 放熱部材用組成物は、無機フィラー間の結合を形成可能な無機フィラーの組合せを含んでもよい。例えば、第1のシランカップリング剤の一端と結合した第1の無機フィラーと、第1および/または第2の2官能以上の重合性化合物と結合させた、第2のシランカップリング剤の一端と結合した第2の無機フィラー、第3のシランカップリング剤が結合した第3の無機フィラーと、第1の2官能以上の重合性化合物と、第2の2官能以上の重合性化合物とを含む場合に、放熱部材用組成物を硬化させると、無機フィラー同士をシランカップリング剤および2官能以上の重合性化合物を介して結合させることができる。無機フィラーとして窒化ホウ素(h-BN)の粒子を用いた場合、窒化ホウ素をシランカップリング剤で処理すると、窒化ホウ素はその結晶構造から粒子の平面に反応基が少ないため、側面の周囲に比較的多くのシランカップリング剤が結合する。シランカップリング剤で処理された窒化ホウ素は、2官能以上の重合性化合物と結合することができる。
 したがって、第1のシランカップリング剤で処理された窒化ホウ素11のシランカップリング剤21の他端と、シランカップリング処理された窒化ホウ素21の重合性化合物22の他端とを2官能以上の重合性化合物で結合させることにより、窒化ホウ素同士を互いに結合させることができる。一方、アルミナや窒化アルミニウムのような全面にシランカップリング剤が結合できる不定形または球状の粒子では、窒化ホウ素に比べより結合が増加することになり、その使用により接着性が向上する。
 このように、第1と第2の無機フィラー同士をシランカップリング剤および2官能以上の重合性化合物を介して結合させることにより、直接的にフォノンを伝播することができるので、硬化物は極めて高い熱伝導性を有し、接着性の高い放熱部材の作製が可能になる。
 このような第1の無機フィラーと第2の無機フィラーとの間の結合を実現させることが本発明では重要であり、予めシランカップリング剤22と第1の2官能以上の重合性化合物31とを有機合成技術を用いて結合させ、その後、第2のシランカップリング剤22を第2の無機フィラー12に結合させてもよい。第1の無機フィラーと第3の無機フィラーとの間の結合を実現させることで、さらに基板との密着性が増し、高い熱伝導性を有する放熱部材の作製が可能になる。
The composition for heat dissipation members may include a combination of inorganic fillers capable of forming bonds between inorganic fillers. For example, one end of a second silane coupling agent combined with a first inorganic filler bonded to one end of a first silane coupling agent and a first and / or second bifunctional or higher polymerizable compound. A second inorganic filler bonded to a third inorganic filler bonded to a third silane coupling agent, a first bifunctional or higher polymerizable compound, and a second bifunctional or higher polymerizable compound When it contains, when the composition for thermal radiation members is hardened, inorganic fillers can be combined via a silane coupling agent and a bifunctional or higher polymerizable compound. When particles of boron nitride (h-BN) are used as the inorganic filler, when boron nitride is treated with a silane coupling agent, boron nitride has less reactive groups in the plane of the particles due to its crystal structure, so Many silane coupling agents are bonded. The boron nitride treated with a silane coupling agent can be combined with a bifunctional or higher functional polymerizable compound.
Therefore, the other end of the silane coupling agent 21 of boron nitride 11 treated with the first silane coupling agent and the other end of the polymerizable compound 22 of boron nitride 21 treated with silane coupling are bifunctional or more By bonding with a polymerizable compound, boron nitrides can be bonded to each other. On the other hand, in the case of amorphous or spherical particles in which a silane coupling agent can be bonded to the entire surface, such as alumina or aluminum nitride, bonding will increase more than boron nitride, and its use improves adhesion.
Thus, since the phonon can be directly transmitted by bonding the first and second inorganic fillers to each other via the silane coupling agent and the bifunctional or higher polymerizable compound, the cured product is extremely effective. It is possible to produce a highly heat dissipating member having high thermal conductivity and high adhesiveness.
It is important in the present invention to realize such a bond between the first inorganic filler and the second inorganic filler, and the silane coupling agent 22 and the first bifunctional or higher polymerizable compound 31 are preliminarily obtained. May be bonded using organic synthesis techniques, and then the second silane coupling agent 22 may be bonded to the second inorganic filler 12. By achieving the bond between the first inorganic filler and the third inorganic filler, the adhesion to the substrate is further enhanced, and it becomes possible to produce a heat dissipation member having high thermal conductivity.
[第1の2官能以上の重合性化合物]
 第1の2官能以上の重合性化合物としては、2官能以上の重合性液晶化合物(以下、単に「重合性液晶化合物」ということがある)を用いることが好ましい。
 重合性液晶化合物としては、下記式(1-1)で表される液晶化合物が好ましく、液晶骨格と重合性基を有し、高い重合反応性、広い液晶相温度範囲、良好な混和性などを有する。この化合物(1-1)は、他の液晶性の化合物や重合性の化合物などと混合するとき、均一になりやすい。
   R-Z-(A-Z)-R     (1-1)
 mは1~6の整数、好ましくは2~6の整数、さらに好ましくは2~4の整数である。
[First bifunctional or higher polymerizable compound]
As the first bifunctional or higher polymerizable compound, it is preferable to use a bifunctional or higher polymerizable liquid crystal compound (hereinafter sometimes referred to simply as “polymerizable liquid crystal compound”).
The polymerizable liquid crystal compound is preferably a liquid crystal compound represented by the following formula (1-1), which has a liquid crystal skeleton and a polymerizable group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, etc. Have. This compound (1-1) tends to be uniform when mixed with other liquid crystalline compounds, polymerizable compounds, and the like.
R a -Z- (A-Z) m -R a (1-1)
m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
 上記化合物(1-1)の末端基R、環構造Aおよび結合基Zを適宜選択することによって、液晶相発現領域などの物性を任意に調整することができる。末端基R、環構造Aおよび結合基Zの種類が、化合物(1-1)の物性に与える効果、ならびに、これらの好ましい例を以下に説明する。 Physical properties such as the liquid crystal phase expression region can be arbitrarily adjusted by appropriately selecting the terminal group R a , the ring structure A and the bonding group Z of the compound (1-1). The effects of the types of the terminal group R a , the ring structure A and the bonding group Z on the physical properties of the compound (1-1), and preferred examples thereof are described below.
・末端基R
 末端基Rは、それぞれ独立して、第1のシランカップリング剤と第2のシランカップリング剤の他端の官能基と結合可能な官能基であればよい。
 例えば、下記式(2-1)~(2-4)のいずれかで表される重合性基、シクロヘキセンオキシド、無水フタル酸、または無水コハク酸を挙げることができるが、これらに限られない。
・ Terminal group R a
The terminal groups R a may be each independently a functional group capable of binding to the functional group at the other end of the first silane coupling agent and the other end of the second silane coupling agent.
Examples thereof include, but are not limited to, a polymerizable group represented by any of the following formulas (2-1) to (2-4), cyclohexene oxide, phthalic anhydride, or succinic anhydride.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 前記式(2-1)~(2-2)中、Rが、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。また、前記式(2-3)~(2-4)中、Rは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよい。Rは、それぞれ独立して、水素、ハロゲン、または炭素数1~5のアルキルである。 In the formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or an alkyl having 1 to 5 carbon atoms, and q is 0 or 1. In the above formulas (2-3) to (2-4), R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, With tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl And in these rings, any -CH 2 -may be replaced by -O-, any -CH = may be replaced by -N =, and any hydrogen may be halogen, carbon, It may be replaced with alkyl of 1 to 10 or alkyl of 1 to 10 carbons, and in the alkyl, arbitrary -CH 2 -is -O-, -CO-, -COO-, -OCO -, -CH = CH-, or -C≡ - it may be replaced by. Each R d is independently hydrogen, halogen or alkyl having 1 to 5 carbon atoms.
 好ましいRとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイルなどが挙げられる。 Preferred R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl, Naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7-diyl, 9,9-dimethylfluorene-2,7 -Diyl, 9-ethylfluorene-2,7-diyl, 9-fluorofluorene-2,7-diyl, 9,9-difluorofluorene-2,7-diyl and the like.
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。 The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. The latter is not illustrated because 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene and the like.
 さらに好ましいRとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレンなどである。特に好ましいRは、1,4-シクロへキシレンおよび1,4-フェニレンである。 More preferable R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like. Particularly preferred R c is 1,4-cyclohexylene and 1,4-phenylene.
 さらに、末端基Rとシランカップリング剤との結合を形成する官能基の組合せとしては、例えば、オキシラニルとアミノ、オキセタニルとアミノ、ビニル同士、メタクリロキシ同士、カルボキシまたはカルボン酸無水物残基とアミン、イミダゾールとオキシラニル、イミダゾールとオキセタニル等の組合せを挙げることができるが、これらに限られない。耐熱性の高い組合せがより好ましい。 Furthermore, as a combination of functional groups that form a bond between the terminal group R a and the silane coupling agent, for example, oxiranyl and amino, oxetanyl and amino, vinyl to vinyl, methacryloxy to each other, carboxy or carboxylic anhydride residue and amine Examples include, but are not limited to, combinations of imidazole and oxiranyl, and imidazole and oxetanyl. A combination with high heat resistance is more preferable.
・環構造A
 上記化合物(1-1)の環構造Aにおける少なくとも1つの環が1,4-フェニレンの場合、配向秩序パラメーター(orientational order parameter)および磁化異方性が大きい。また、少なくとも2つの環が1,4-フェニレンの場合、液晶相の温度範囲が広く、さらに透明点が高い。1,4-フェニレン環上の少なくとも1つの水素がシアノ、ハロゲン、-CFまたは-OCFに置換された場合、誘電率異方性が高い。また、少なくとも2つの環が1,4-シクロヘキシレンである場合、透明点が高く、かつ粘度が小さい。
・ Ring structure A
When at least one ring in the ring structure A of the compound (1-1) is 1,4-phenylene, the orientational order parameter and the magnetization anisotropy are large. In the case where at least two rings are 1,4-phenylene, the temperature range of the liquid crystal phase is wide and the clearing point is high. The dielectric anisotropy is high when at least one hydrogen on the 1,4-phenylene ring is replaced by cyano, halogen, -CF 3 or -OCF 3 . In addition, when at least two rings are 1,4-cyclohexylene, the clearing point is high and the viscosity is small.
 好ましいAとしては、それぞれ独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイルなどが挙げられる。 As preferred A, each independently, 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5- Diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1, 4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3, 6-diyl, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7-diyl, 9,9-dimethyl Fluorene-2,7-diyl, 9-ethyl-2,7-diyl, 9-fluoro-2,7-diyl, etc. 9,9-difluoro-2,7-diyl.
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。 The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. The latter is not illustrated because 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene and the like.
 さらに好ましいAとしては、それぞれ独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレンなどである。特に好ましいAは、1,4-シクロへキシレンおよび1,4-フェニレンである。 More preferable examples of A are each independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1 And 4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like. Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
・結合基Z
 上記化合物(1-1)の結合基Zが、それぞれ独立して、単結合、-(CH-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-または-(CH-である場合、特に、単結合、-(CH-、-CFO-、-OCF-、-CH=CH-または-(CH-である場合、粘度が小さくなる。また、結合基Zが、-CH=CH-、-CH=N-、-N=CH-、-N=N-または-CF=CF-である場合、液晶相の温度範囲が広い。また、結合基Zが、炭素数4~10程度のアルキルの場合、融点が低下する。
・ Linking group Z
Bonding group Z of the compound (1-1) are each independently a single bond, - (CH 2) 2 - , - CH 2 O -, - OCH 2 -, - CF 2 O -, - OCF 2 - , -CH = CH -, - CF = CF- or - (CH 2) 4 - when it, in particular a single bond, - (CH 2) 2 - , - CF 2 O -, - OCF 2 -, - CH = CH- or - (CH 2) 4 - when it, the viscosity decreases. When the bonding group Z is —CH = CH—, —CH = N—, —N = CH—, —N = N— or —CF = CF—, the temperature range of the liquid crystal phase is wide. When the bonding group Z is alkyl having about 4 to 10 carbon atoms, the melting point is lowered.
 好ましいZとしては、それぞれ独立して、単結合、-(CH-、-(CF-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-、-C≡C-、-(CH-、-(CHO-、-O(CH-、-(CHCOO-、-OCO(CH-、-CH=CH-COO-、-OCO-CH=CH-などが挙げられる。 As preferred Z, each independently a single bond,-(CH 2 ) 2 -,-(CF 2 ) 2- , -COO-, -OCO-, -CH 2 O-, -OCH 2- , -CF 2 O-, -OCF 2- , -CH = CH-, -CF = CF-, -C≡C-,-(CH 2 ) 4 -,-(CH 2 ) 3 O-, -O (CH 2 ) 3 -, - (CH 2) 2 COO -, - OCO (CH 2) 2 -, - CH = CH-COO -, - OCO-CH = CH- , and the like.
 さらに好ましいZとしては、それぞれ独立して、単結合、-(CH-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-C≡C-などが挙げられる。特に好ましいZとしては、それぞれ独立して、単結合、-(CH-、-COO-または-OCO-である。 As further preferable Z, each independently, a single bond,-(CH 2 ) 2- , -COO-, -OCO-, -CH 2 O-, -OCH 2- , -CF 2 O-, -OCF 2 -, -CH = CH-, -C≡C- and the like. Particularly preferable Z is each independently a single bond,-(CH 2 ) 2- , -COO- or -OCO-.
 上記化合物(1-1)が多くの環を持つほどより高温で軟化しにくくなるので放熱部材用組成物の材料として好ましいが、軟化温度が重合温度よりも高くなると成形が難しくなるので、目的にそって両者のバランスをとることが好ましい。なお、本明細書においては、基本的に6員環および6員環を含む縮合環等を環とみなし、例えば3員環や4員環、5員環単独のものは環とみなさない。また、ナフタレン環やフルオレン環などの縮合環は1つの環とみなす。 The greater the number of rings in the compound (1-1), the more difficult it is to soften at high temperature, so it is preferable as the material of the composition for heat dissipation member, but if the softening temperature is higher than the polymerization temperature, molding becomes difficult. It is preferable to balance the two. In the present specification, a fused ring or the like basically comprising a 6-membered ring and a 6-membered ring is regarded as a ring, and a 3-membered ring, a 4-membered ring or a 5-membered ring alone is not regarded as a ring. In addition, a fused ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
 上記化合物(1-1)は、光学活性であってもよいし、光学的に不活性でもよい。化合物(1-1)が光学活性である場合、該化合物(1-1)は不斉炭素を有する場合と軸不斉を有する場合がある。不斉炭素の立体配置はRでもSでもよい。不斉炭素はRまたはAのいずれに位置していてもよく、不斉炭素を有すると、化合物(1-1)の相溶性がよい。化合物(1-1)が軸不斉を有する場合、ねじれ誘起力が大きい。また、施光性はいずれでも構わない。
 以上のように、末端基R、環構造Aおよび結合基Zの種類、環の数を適宜選択することにより、目的の物性を有する化合物を得ることができる。
The compound (1-1) may be optically active or optically inactive. When the compound (1-1) is optically active, the compound (1-1) may have asymmetric carbon or axial asymmetry. The configuration of the asymmetric carbon may be R or S. The asymmetric carbon may be located at either Ra or A, and if it has an asymmetric carbon, the compatibility of the compound (1-1) is good. When the compound (1-1) has axial asymmetry, the twist induction force is large. Also, the light distribution may be any.
As described above, by appropriately selecting the types of the terminal group R a , the ring structure A and the bonding group Z, and the number of rings, a compound having the desired physical properties can be obtained.
・化合物(1-1)
 化合物(1-1)は、下記式(1-a)または(1-b)のように表すこともできる。
  P-Y-(A-Z)-R      (1-a)
  P-Y-(A-Z)-Y-P     (1-b)
・ Compound (1-1)
The compound (1-1) can also be represented as the following formula (1-a) or (1-b).
P-Y- (A-Z) m- R a (1-a)
P-Y- (A-Z) m -Y-P (1-b)
 上記式(1-a)および(1-b)中、A、Z、Rは上記式(1-1)で定義したA、Z、Rと同義であり、Pは下記式(2-1)~(2-4)で表される重合性基、シクロヘキセンオキシド、無水フタル酸、または無水コハク酸を示し、Yは独立して単結合または炭素数1~20のアルキレン、好ましくは炭素数1~10のアルキレンを示し、該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-または-CH=CH-で置き換えられてもよい。特に好ましいYとしては、炭素数1~10のアルキレンの片末端もしくは両末端の-CH-が-O-で置き換えられたアルキレンである。mは1~6の整数、好ましくは2~6の整数、さらに好ましくは2~4の整数である。 In the above formulas (1-a) and (1-b), A, Z and R a have the same meanings as A, Z and R a defined in the above formula (1-1), and P is a group of the following formula (2- 1) to a polymerizable group represented by 1 to (2-4), cyclohexene oxide, phthalic anhydride, or succinic anhydride; and Y independently represents a single bond or an alkylene having 1 to 20 carbon atoms, preferably a carbon number In the alkylene, any —CH 2 — is substituted with —O—, —S—, —CO—, —COO—, —OCO— or —CH = CH—. Good. Particularly preferable Y is alkylene in which —CH 2 — at one end or both ends of alkylene having 1 to 10 carbon atoms is replaced by —O—. m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 式(2-1)~(2-2)中、Rが、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。また、前記式(2-3)~(2-4)中、Rは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
 これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
 該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよい。
 Rは、それぞれ独立して、水素、ハロゲン、または炭素数1~5のアルキルである。
In formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1. In the above formulas (2-3) to (2-4), R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, With tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl Yes,
In these rings, any —CH 2 — may be replaced by —O—, and any —CH = may be replaced by —N =, and any hydrogen may be halogen, one carbon atom It may be replaced by an alkyl of up to 10 or an alkyl halide having 1 to 10 carbon atoms,
In the alkyl, optional —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH = CH—, or —C≡C—.
Each R d is independently hydrogen, halogen or alkyl having 1 to 5 carbon atoms.
 好ましい化合物(1-1)の例としては、以下に示す化合物(a-1)~(a-10)、(b-1)~(b-16)、(c-1)~(c-16)、(d-1)~(d-15)、(e-1)~(e-15)、(f-1)~(f-14)、(g-1)~(g-20)が挙げられる。なお、式中の*は不斉炭素を示す。 Preferred examples of the compound (1-1) include compounds (a-1) to (a-10) and (b-1) to (b-16) and (c-1) to (c-16) shown below. ), (D-1) to (d-15), (e-1) to (e-15), (f-1) to (f-14), (g-1) to (g-20) It can be mentioned. In the formulae, * represents an asymmetric carbon.
Figure JPOXMLDOC01-appb-I000005












Figure JPOXMLDOC01-appb-I000005












Figure JPOXMLDOC01-appb-I000006
















Figure JPOXMLDOC01-appb-I000006
















Figure JPOXMLDOC01-appb-I000007






















Figure JPOXMLDOC01-appb-I000007






















Figure JPOXMLDOC01-appb-I000008

















Figure JPOXMLDOC01-appb-I000008

















Figure JPOXMLDOC01-appb-I000009























Figure JPOXMLDOC01-appb-I000009























Figure JPOXMLDOC01-appb-I000010





















Figure JPOXMLDOC01-appb-I000010





















Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012






















Figure JPOXMLDOC01-appb-I000012






















Figure JPOXMLDOC01-appb-I000013

















Figure JPOXMLDOC01-appb-I000013

















Figure JPOXMLDOC01-appb-I000014


















Figure JPOXMLDOC01-appb-I000014


















Figure JPOXMLDOC01-appb-I000015



















Figure JPOXMLDOC01-appb-I000015



















Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017






Figure JPOXMLDOC01-appb-I000017






Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
 これらの式において、R、PおよびYは上記式(1-a)および(1-b)で定義したとおりである。
 Zは、それぞれ独立して、単結合、-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-、または-CFO-である。なお、複数のZは同一でも異なっていてもよい。
In these formulas, R a , P and Y are as defined in the above formulas (1-a) and (1-b).
Z 1 is independently a single bond, - (CH 2) 2 - , - (CF 2) 2 -, - (CH 2) 4 -, - CH 2 O -, - OCH 2 -, - (CH 2 ) 3 O-, -O (CH 2 ) 3- , -COO-, -OCO-, -CH = CH-, -CF = CF-, -CH = CHCOO-, -OCOCH = CH-,-(CH 2) 2 COO -, - OCO (CH 2) 2 -, - C≡C -, - C≡C-COO -, - OCO-C≡C -, - C≡C-CH = CH -, - CH = CH—C≡C—, —CH = N—, —N = CH—, —N = N—, —OCF 2 —, or —CF 2 O—. The plurality of Z 1 may be the same or different.
 Zは、それぞれ独立して、-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-、または-CFO-である。 Z 2 are each independently, - (CH 2) 2 - , - (CF 2) 2 -, - (CH 2) 4 -, - CH 2 O -, - OCH 2 -, - (CH 2) 3 O -, - O (CH 2 ) 3 -, - COO -, - OCO -, - CH = CH -, - CF = CF -, - CH = CHCOO -, - OCOCH = CH -, - (CH 2) 2 COO-, -OCO (CH 2 ) 2- , -C≡C-, -C≡C-COO-, -OCO-C≡C-, -C≡C-CH = CH-, -CH = CH-C ≡C -, - CH = N - , - N = CH -, - N = N -, - OCF 2 -, or -CF 2 is O-.
 Zは、それぞれ独立して、単結合、炭素数1~10のアルキル、-(CH-、-O(CHO-、-CHO-、-OCH-、-O(CH-、-(CHO-、-COO-、-OCO-、-CH=CH-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-CF=CF-、-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-、または-CFO-であり、複数のZは同一でも異なっていてもよい。aは1~20の整数である。 Z 3 is each independently a single bond, alkyl having 1 to 10 carbon atoms,-(CH 2 ) a- , -O (CH 2 ) a O-, -CH 2 O-, -OCH 2 -,- O (CH 2 ) 3 -,-(CH 2 ) 3 O-, -COO-, -OCO-, -CH = CH-, -CH = CHCOO-, -OCOCH = CH-,-(CH 2 ) 2 COO -, -OCO (CH 2 ) 2- , -CF = CF-, -C≡C-, -CH = N-, -N = CH-, -N = N-, -OCF 2- , or -CF 2 O-, and a plurality of Z 3 may be the same or different. a is an integer of 1 to 20.
 Xは、任意の水素がハロゲン、アルキル、フッ化アルキルで置き換えられてもよい1,4-フェニレン、またはフルオレン-2,7-ジイルの置換基であり、ハロゲン、アルキル、またはフッ化アルキルを示す。 X is a substituent of any hydrogen being halogen, alkyl, 1,4-phenylene which may be substituted with alkyl fluoride, or fluorene-2,7-diyl, and represents halogen, alkyl, or alkyl fluoride. .
 上記化合物(1-1)のより好ましい態様について説明する。より好ましい化合物(1-1)は、下記式(1-c)または(1-d)で表すことができる。
   P-Y-(A-Z)-R       (1-c)
   P-Y-(A-Z)-Y-P     (1-d)
 上記式中、A、Y、Z、Rおよびmはすでに定義したとおりであり、Pは下記式(2-1)~(2-4)のいずれかで表される重合性基を示す。上記式(1-d)の場合、2つのPは同一の重合性基(2-1)~(2-4)を示し、2つのYは同一の基を示し、2つのYは対称となるように結合する。
A more preferred embodiment of the compound (1-1) is described. More preferable compound (1-1) can be represented by the following formula (1-c) or (1-d).
P 1 -Y- (A-Z) m -R a (1-c)
P 1 -Y- (A-Z) m -Y-P 1 (1-d)
In the above formulae, A, Y, Z, R a and m are as defined above, and P 1 represents a polymerizable group represented by any one of the following formulas (2-1) to (2-4) . In the case of the above formula (1-d), two P 1 represent the same polymerizable groups (2-1) to (2-4), two Y represent the same group, and two Y were symmetrical. Combine to become
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
 上記化合物(1-1)のより好ましい具体例を以下に示す。





























More preferred specific examples of the compound (1-1) are shown below.





























Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021







Figure JPOXMLDOC01-appb-I000021







Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022
・化合物(1-1)、(1-2)の合成方法
 上記化合物(1-1)と(1-2)は、有機合成化学における公知の手法を組合せることにより合成できる。出発物質に目的の末端基、環構造および結合基を導入する方法は、例えば、ホーベン-ワイル(Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart)、オーガニック・シンセシーズ(Organic Syntheses, John Wily & Sons, Inc.)、オーガニック・リアクションズ(Organic Reactions, John Wily & Sons Inc.)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。また、特開2006-265527号公報を参照してもよい。
Method of Synthesizing Compounds (1-1) and (1-2) The compounds (1-1) and (1-2) can be synthesized by combining known methods in organic synthesis chemistry. For example, Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John, can be used to introduce the desired end groups, ring structures and linking groups into the starting materials. Articles such as Wily & Sons, Inc., Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis (Pergamon Press), New Experimental Chemistry Course (Maruzen), etc. It is described in. Further, reference may be made to JP-A-2006-265527.
     J-X-J ・・・(1-2)
 前記式(1-2)中、Jは、それぞれ独立して、前記式(1-1)の他端の官能基と結合可能な官能基であり、Xは、それぞれ独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく、nは、1~6の整数である。
J-X n- J (1-2)
In the formula (1-2), J is independently the formula (1-1) is a functional group capable of binding a functional group at the other end of, X n are each independently 1, 4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2. 2) oct-1,4-diyl or bicyclo [3.1.0] hex-3,6-diyl, and in these rings, any —CH 2 — may be replaced by —O— And any -CH = may be replaced by -N =, and any hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons , In the alkyl, any -CH 2— may be replaced by —O—, —CO—, —COO—, —OCO—, —CH = CH—, or —C≡C—, and n is an integer of 1 to 6.
 2官能以上の重合性化合物が多環であると耐熱性が高くなり、直線性が高いと無機フィラー間の熱による伸びや揺らぎが少なく、さらに熱のフォノン伝導を効率よく伝えることができるため好ましい。多環で直線性が高いと結果として液晶性を発現することが多いので、液晶性であれば熱伝導がよくなるといえる。
 しかし、2官能以上の重合性化合物は、上記式(1-1)で示す重合性液晶化合物以外に液晶性を示さない重合性化合物であってもよい。例えば、ポリエーテルのジグリシジルエーテル、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビフェノールのジグリシジルエーテル、または式(1-1)の化合物の中でも直線性が足りず液晶性を発現しなかった化合物などが挙げられる。
 上記重合性化合物は、有機合成化学における公知の手法を組合せることにより合成できる。
If the bifunctional or higher polymerizable compound is a polycycle, the heat resistance is high, and if the linearity is high, the elongation and fluctuation due to the heat between the inorganic fillers are small, and furthermore, the phonon conduction of heat can be efficiently transmitted. . When the linearity is high in a polycycle, the liquid crystallinity is often expressed as a result, so that it can be said that the heat conduction is improved in the case of the liquid crystallinity.
However, the polymerizable compound having two or more functional groups may be a polymerizable compound which does not exhibit liquid crystallinity other than the polymerizable liquid crystal compound represented by the above formula (1-1). For example, it exhibits liquid crystallinity due to insufficient linearity among the diglycidyl ether of polyether, the diglycidyl ether of bisphenol A, the diglycidyl ether of bisphenol F, the diglycidyl ether of biphenol, or the compound of formula (1-1) And compounds that were not included.
The above polymerizable compounds can be synthesized by combining known methods in organic synthetic chemistry.
 本発明に用いる2官能以上の重合性化合物は、シランカップリング剤との結合を形成するため2官能以上の官能基を有しており、3官能以上、また4官能以上である場合を含む。さらに、2官能以上の重合性化合物としては、長辺の両端に官能基を有することが直線的な結合を形成できるため好ましい。 The polymerizable compound having two or more functional groups used in the present invention has a functional group having two or more functional groups to form a bond with a silane coupling agent, and includes a case where it is trifunctional or more and tetrafunctional or more. Furthermore, as a bifunctional or higher polymerizable compound, it is preferable to have a functional group at both ends of the long side because a linear bond can be formed.
[無機フィラー]
 第1の無機フィラー、第2の無機フィラー、第3の無機フィラーとしては、それぞれ、窒化物、炭化物、炭素材料、金属酸化物、ケイ酸塩鉱物等を挙げることができ、好ましくは、第1の無機フィラー、第3の無機フィラーは、それぞれ、窒化物、炭化物、炭素材料、金属酸化物、ケイ酸塩鉱物であり、第2の無機フィラーは、金属酸化物である。第1の無機フィラー、第2の無機フィラー、第3の無機フィラーは、同一であってもよく異なったものでもよい。
 具体的には、第1の無機フィラー、第3の無機フィラーには、高熱伝導性である無機フィラーとして、窒化ホウ素、炭化ホウ素、窒化炭素ホウ素、黒鉛、炭素繊維、カーボンナノチューブを挙げることができる。または、アルミナ、シリカ、酸化マグネシウム、酸化亜鉛、酸化鉄、フェライト、ムライト、コーディエライト、窒化珪素、および炭化珪素を挙げることができる。また、第2の無機フィラーには、高熱伝導性である無機フィラーとして、アルミナ、金属窒化物、酸化亜鉛、酸化ジルコニウム、および酸化チタンを挙げることができる。
[Inorganic filler]
Examples of the first inorganic filler, the second inorganic filler, and the third inorganic filler include nitrides, carbides, carbon materials, metal oxides, silicate minerals, etc. The third inorganic filler is a nitride, a carbide, a carbon material, a metal oxide, a silicate mineral, and the second inorganic filler is a metal oxide. The first inorganic filler, the second inorganic filler, and the third inorganic filler may be the same or different.
Specifically, as the first inorganic filler and the third inorganic filler, boron nitride, boron carbide, carbon nitride boron, graphite, carbon fibers, carbon nanotubes can be mentioned as inorganic fillers having high thermal conductivity. . Or, alumina, silica, magnesium oxide, zinc oxide, iron oxide, ferrite, mullite, cordierite, silicon nitride, and silicon carbide can be mentioned. In addition, examples of the second inorganic filler include alumina, metal nitride, zinc oxide, zirconium oxide, and titanium oxide as inorganic fillers having high thermal conductivity.
 第1、第2、第3の無機フィラーは混在させてもよい。なお、第1、第2、第3の無機フィラーは、シランカップリング剤が有する有機官能基と結合可能な官能基を粒子表面に有し、その修飾量は無機フィラーの重量に対し、0.1重量%以上であればよく、0.3~50重量%であることが好ましく、0.5~25重量%であることがより好ましい。また、電気絶縁性が重要視される部位では、絶縁性の無機フィラーを使用した方が超寿命化などの信頼性が高くなるので、導電体である炭素材料や、半導体である一部の酸化物等は使用しない方が好ましい。 The first, second and third inorganic fillers may be mixed. The first, second, and third inorganic fillers have a functional group capable of binding to the organic functional group of the silane coupling agent on the particle surface, and the modification amount thereof is 0. 0 to the weight of the inorganic filler. It may be 1% by weight or more, preferably 0.3 to 50% by weight, and more preferably 0.5 to 25% by weight. In addition, in areas where electrical insulation is regarded as important, the use of an insulating inorganic filler results in higher reliability such as longer life, so carbon materials that are conductors and some oxides that are semiconductors are used. It is preferable not to use a thing etc.
 第1、第3の無機フィラーは、さらに好ましくは、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素、黒鉛、炭素繊維、カーボンナノチューブである。特に六方晶系の窒化ホウ素(h-BN)や黒鉛が好ましい。窒化ホウ素、黒鉛は平面方向の熱伝導率が非常に高く、窒化ホウ素は誘電率も低く、絶縁性も高いため好ましい。例えば、板状結晶の窒化ホウ素を用いると、成型および硬化時に、原料のフローや圧力によって、板状構造が金型に沿って配向され易いため好ましい。 The first and third inorganic fillers are more preferably boron nitride, aluminum nitride, silicon nitride, silicon carbide, graphite, carbon fibers, carbon nanotubes. In particular, hexagonal boron nitride (h-BN) and graphite are preferable. Boron nitride and graphite are preferable because they have a very high thermal conductivity in the planar direction and boron nitride has a low dielectric constant and high insulation. For example, it is preferable to use plate-like crystal boron nitride because the plate-like structure is easily oriented along the mold due to the flow or pressure of the raw material at the time of molding and curing.
 2官能以上の重合性化合物の構造はこれら無機フィラーの間を効率よく直接結合できる形状及び長さを持っていることが望ましい。無機フィラーの種類、形状、大きさ、添加量などは、目的に応じて適宜選択できる。放熱部材用組成物の硬化物が絶縁性を必要とする場合、所望の絶縁性が保たれれば導電性を有する無機フィラーであっても構わない。無機フィラーの形状としては、板状、球状、無定形、繊維状、棒状、筒状などが挙げられる。 It is desirable that the structure of the bifunctional or higher polymerizable compound have a shape and a length capable of efficiently directly bonding between these inorganic fillers. The type, shape, size, addition amount, etc. of the inorganic filler can be appropriately selected according to the purpose. When the hardened | cured material of the composition for thermal radiation members requires insulation, as long as desired insulation is maintained, it may be an inorganic filler which has conductivity. Examples of the shape of the inorganic filler include plate-like, spherical, amorphous, fibrous, rod-like and cylindrical.
 第1、第2および第3の無機フィラーの平均粒径は、0.1~600μmであることが好ましい。より好ましくは、1~200μmである。0.1μm以上であると熱伝導率がよく、200μm以下であると充填率を上げることができる。
 なお、本明細書において平均粒径とは、レーザー回折・散乱法による粒度分布測定に基づく。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法により、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。
 無機フィラーとシランカップリング剤および重合性化合物の割合は、使用する無機フィラーと結合させるシランカップリング剤の量に依存する。第1、第2および第3の無機フィラーとして用いられる化合物(例えば窒化ホウ素)は、反応基にできるだけ多くのシランカップリング剤を結合させ、その反応基の数と同数か少し多い有機化合物を結合させることが好ましい。無機フィラーへのシランカップリング剤の反応量は、主に無機フィラーの大きさや使用するシランカップリング剤の反応性により変化する。例えば、無機フィラーが大きくなるほど、無機フィラーの側面の面積比が減少するので修飾量は少ない。できるだけ多くのシランカップリング剤を反応させたいが、粒子を小さくすると生成物の熱伝導率が低くなるので、バランスを取ることが好ましい。
The average particle size of the first, second and third inorganic fillers is preferably 0.1 to 600 μm. More preferably, it is 1 to 200 μm. A thermal conductivity is good in it being 0.1 micrometer or more, and a filling factor can be raised as it is 200 micrometers or less.
In the present specification, the average particle diameter is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle diameter by a wet method using analysis based on the franhofer diffraction theory and Mie's scattering theory, the diameter at which the large side and the small side become equivalent (volume based) As the median diameter.
The ratio of the inorganic filler to the silane coupling agent and the polymerizable compound depends on the amount of the silane coupling agent to be combined with the inorganic filler used. Compounds used as the first, second and third inorganic fillers (for example, boron nitride) bind as many silane coupling agents as possible to the reactive groups, and bind organic compounds equal in number or slightly more to the number of reactive groups It is preferable to The reaction amount of the silane coupling agent to the inorganic filler mainly changes depending on the size of the inorganic filler and the reactivity of the silane coupling agent used. For example, as the size of the inorganic filler increases, the area ratio of the side surfaces of the inorganic filler decreases, so the amount of modification is small. It is desirable to react as much of the silane coupling agent as possible, but it is preferable to balance as smaller particles result in lower thermal conductivity of the product.
[シランカップリング剤]
 シランカップリング剤としては、シランカップリング剤同士が結合可能な官能基を持つもの、または、2官能以上の重合性化合物が有する官能基と結合可能な官能基を持つもの、または、第3の無機フィラーが有する官能基と結合可能な官能基を持つものが好ましい。結合する相手側の官能基がオキシラニルや酸無水物残基等である場合は、それらの官能基と反応することが好ましいので、アミン系反応基を末端に持つものが好ましい。例えば、JNC(株)製では、サイラエース(登録商標)S310、S320、S330、S360、信越化学工業(株)製では、KBM-903、KBE-903などが挙げられる。相手側の末端がアミンであった場合には、オキシラニル等を末端に持つシランカップリング剤が好ましい。例えば、JNC(株)製では、サイラエース(登録商標)S510、S530などが挙げられる。
 シランカップリング剤と相手側との結合を形成する官能基の組合せとしては、例えば、オキシラニルとアミノ、ビニル同士、メタクリロキシ同士、カルボキシまたはカルボン酸無水物残基とアミン、イミダゾールとオキシラニル等の組合せを挙げることができるが、これらに限られない。シランカップリング剤と相手側との結合が形成可能な官能基の組合せであればよい。耐熱性の高い組合せがより好ましい。
 なお、第1のシランカップリング剤、第2のシランカップリング剤は、同一のものでもよく異なるものでもよい。
[Silane coupling agent]
As the silane coupling agent, a silane coupling agent having a functional group to which two or more silane coupling agents can bind, or a functional group capable of binding to a functional group of a bifunctional or higher polymerizable compound, or a third one Those having a functional group capable of binding to the functional group possessed by the inorganic filler are preferred. In the case where the functional group on the other side to be bound is an oxiranyl or an acid anhydride residue, etc., it is preferable to react with the functional group, and therefore, one having an amine reactive group at the end is preferable. For example, Thyraace (registered trademark) S310, S320, S330, S360, manufactured by JNC Co., Ltd., and KBM-903, KBE-903, etc., manufactured by Shin-Etsu Chemical Co., Ltd. can be mentioned. When the terminal at the opposite side is an amine, a silane coupling agent having an oxiranyl or the like at the end is preferred. For example, in JNC Co., Ltd. product, Thyra Ace (registered trademark) S510, S530, etc. may be mentioned.
Examples of combinations of functional groups that form a bond between the silane coupling agent and the other side include combinations of oxiranyl with amino, vinyl with each other, methacryloxy with each other, carboxy or carboxylic anhydride residue with amine, imidazole with oxiranyl, etc. Although it can mention, it is not restricted to these. It may be a combination of functional groups capable of forming a bond between the silane coupling agent and the other side. A combination with high heat resistance is more preferable.
The first silane coupling agent and the second silane coupling agent may be the same or different.
[その他の構成要素]
 放熱部材用組成物は、さらに第1の無機フィラーおよび第2の無機フィラーに結合していない、すなわち結合に寄与していない有機化合物(例えば重合性化合物または高分子化合物)を含んでいてもよく、重合開始剤や溶媒等を含んでいてもよい。
 放熱部材用組成物の硬化物において、熱伝導率を向上させるためにフィラーの粒径を大きくするにつれて、それにあいまって空隙率が高くなる場合には、その空隙を結合していない化合物で満たすことができ、熱伝導率や水蒸気遮断性能などを向上させることができる。
[Other components]
The composition for heat dissipation member may further contain an organic compound (for example, a polymerizable compound or a polymer compound) not bound to the first inorganic filler and the second inorganic filler, that is, not contributing to the binding. , And may contain a polymerization initiator, a solvent, and the like.
In the cured product of the composition for heat dissipation member, if the porosity increases as the particle size of the filler increases in order to improve the thermal conductivity, the void is filled with a non-bonded compound It is possible to improve the thermal conductivity and the water vapor blocking performance.
[結合していない重合性化合物]
 放熱部材用組成物は、無機フィラーに結合していない重合性化合物(この場合、必ずしも2官能以上でなくてもよい)を構成要素として含んでいてもよい。このような重合性化合物としては、放熱部材用組成物の熱硬化を妨げず、加熱により蒸発やブリードアウトがない化合物が好ましい。この重合性化合物は、液晶性を有しない化合物と液晶性を有する化合物とに分類される。液晶性を有しない重合性化合物としては、ビニル誘導体、スチレン誘導体、(メタ)アクリル酸誘導体、ソルビン酸誘導体、フマル酸誘導体、イタコン酸誘導体、などが挙げられる。含有量は、まず結合していない重合性化合物を含まない、放熱部材用組成物を作製し、その空隙率を測定して、その空隙を埋められる量の重合性化合物を添加することが望ましい。
[Polymerizable compound not bound]
The composition for heat dissipation members may contain a polymerizable compound (in this case, not necessarily bifunctional or more) which is not bonded to the inorganic filler as a component. As such a polymerizable compound, a compound which does not prevent the heat curing of the composition for heat dissipation member and does not evaporate or bleed out by heating is preferable. The polymerizable compounds are classified into compounds having no liquid crystallinity and compounds having liquid crystallinity. Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives and itaconic acid derivatives. As for the content, it is desirable to first prepare a composition for a heat-dissipation member which does not contain a polymerizable compound which is not bonded, measure its porosity, and add an amount of the polymerizable compound capable of filling the voids.
[結合していない高分子化合物]
 放熱部材用組成物は、無機フィラーに結合していない高分子化合物を構成要素としてもよい。このような高分子化合物としては、膜形成性および機械的強度を低下させない化合物が好ましい。この高分子化合物は、無機フィラー、シランカップリング剤、および重合性化合物と反応しない高分子化合物であればよく、例えば、重合性化合物がオキシラニルでシランカップリング剤がアミノを持つ場合は、ポリオレフィン系樹脂、ポリビニル系樹脂、シリコーン樹脂、ワックスなどが挙げられる。含有量は、まず結合していない高分子化合物を含まない放熱部材用組成物を作製し、その空隙率を測定して、その空隙を埋められる量の高分子化合物を添加することが望ましい。
[Unbound polymer compound]
The composition for heat dissipation member may have a polymer compound not bound to the inorganic filler as a component. As such a high molecular compound, a compound which does not reduce film formability and mechanical strength is preferable. The polymer compound may be an inorganic filler, a silane coupling agent, and a polymer compound which does not react with the polymerizable compound. For example, when the polymerizable compound is oxiranyl and the silane coupling agent has amino, a polyolefin compound Resin, polyvinyl resin, silicone resin, wax etc. are mentioned. As for the content, it is desirable to first prepare a composition for a heat radiating member not containing a non-bonded polymer compound, measure the porosity thereof, and add a polymer compound in an amount capable of filling the voids.
[非重合性の液晶性化合物]
 放熱部材用組成物は、重合性基を有しない液晶性化合物を構成要素としてもよい。このような非重合性の液晶性化合物の例は、液晶性化合物のデータベースであるリクリスト(LiqCryst, LCI Publisher GmbH, Hamburg, Germany)などに記載されている。非重合性の液晶性化合物を含有する該組成物を重合させることによって、例えば、化合物(1-1)の重合体と液晶性化合物との複合材(composite materials)を得ることができる。このような複合材では、高分子分散型液晶のような高分子網目中に非重合性の液晶性化合物が存在している。よって、使用する温度領域で流動性が無いような特性を持つ液晶性化合物が望ましい。無機フィラーを硬化させた後で、等方相を示す温度領域でその空隙に注入するような手法で複合化させてもよく、無機フィラーに予め空隙を埋めるように計算した分量の液晶性化合物を混合しておき、無機フィラー同士を重合させてもよい。
[Non-polymerizable liquid crystalline compound]
The composition for heat dissipation member may have a liquid crystal compound having no polymerizable group as a component. Examples of such non-polymerizable liquid crystalline compounds are described in Liquist (LiqCryst, LCI Publisher GmbH, Hamburg, Germany), which is a database of liquid crystalline compounds, and the like. For example, composite materials of the polymer of compound (1-1) and the liquid crystal compound can be obtained by polymerizing the composition containing the non-polymerizable liquid crystal compound. In such a composite material, a non-polymerizable liquid crystal compound is present in a polymer network such as a polymer dispersed liquid crystal. Therefore, a liquid crystal compound having such a property that there is no fluidity in the temperature range to be used is desirable. After curing the inorganic filler, the inorganic filler may be compounded by a method of injecting into the voids in a temperature range showing an isotropic phase, or the amount of the liquid crystal compound calculated to fill the voids in the inorganic filler in advance. After mixing, the inorganic fillers may be polymerized.
[重合開始剤]
 放熱部材用組成物は重合開始剤を構成要素としてもよい。重合開始剤は、該組成物の構成要素および重合方法に応じて、例えば光ラジカル重合開始剤、光カチオン重合開始剤、熱ラジカル重合開始剤などを用いればよい。特に無機フィラーが紫外線を吸収してしまうので、熱ラジカル重合開始剤が好ましい。
 熱ラジカル重合用の好ましい開始剤としては、例えば、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド(DTBPO)、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)などが挙げられる。
[Polymerization initiator]
The composition for heat dissipation member may have a polymerization initiator as a component. As the polymerization initiator, for example, a photo radical polymerization initiator, a photo cationic polymerization initiator, a thermal radical polymerization initiator or the like may be used depending on the constituent elements of the composition and the polymerization method. In particular, a thermal radical polymerization initiator is preferred because the inorganic filler absorbs ultraviolet light.
Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide Oxides (DTBPO), t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2'-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile (ACN), etc. It can be mentioned.
[溶媒]
 放熱部材用組成物は溶媒を含有してもよい。重合させる必要がある構成要素を該組成物中に含む場合、重合は溶媒中で行っても、無溶媒で行ってもよい。溶媒を含有する該組成物を基板上に、例えばスピンコート法などにより塗布した後、溶媒を除去してから光重合させてもよい。または、光硬化後適当な温度に加温して熱硬化により後処理を行ってもよい。
 好ましい溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、PGMEAなどが挙げられる。上記溶媒は1種単独で用いても、2種以上を混合して用いてもよい。
 なお、重合時の溶媒の使用割合を限定することにはあまり意味がなく、重合効率、溶媒コスト、エネルギーコストなどを考慮して、個々のケースごとに決定すればよい。
[solvent]
The composition for heat dissipation members may contain a solvent. When the composition which needs to be polymerized is contained in the composition, the polymerization may be carried out in a solvent or without solvent. The composition containing a solvent may be coated on a substrate by, for example, spin coating, and then the solvent may be removed and then photopolymerization may be performed. Alternatively, after photocuring, post-treatment may be performed by heating to a suitable temperature and heat curing.
Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, γ-butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide, cyclohexane, methylcyclohexane, cyclopentanone , Cyclohexanone, PGMEA and the like. The above solvents may be used singly or in combination of two or more.
There is no point in limiting the use ratio of the solvent at the time of polymerization, and it may be determined for each case in consideration of the polymerization efficiency, solvent cost, energy cost and the like.
[その他]
 放熱部材用組成物には、取扱いを容易にするために、安定剤を添加してもよい。前記安定剤としては、本発明の効果を損なわない限り特に制限されず、酸化防止剤、硬化剤、銅害防止剤、金属不活性化剤、粘着性付与剤、老化防止剤、消泡剤、帯電防止剤、耐候剤などが挙げられる。酸化防止剤としては、例えば、ハイドロキノン、4-エトキシフェノールおよび3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)が挙げられる。
 例えば、接着層を形成する樹脂が金属との接触により劣化する場合には、特開平5-48265号公報に挙げられるような銅害防止剤または金属不活性化剤の添加が好ましい。
 前記銅害防止剤(商品名)としては、(株)ADEKA製、Mark ZS-27、Mark CDA-16;三光化学工業(株)製、SANKO-EPOCLEAN;BASF社製、Irganox MD1024;などが好ましい。
 前記銅害防止剤の添加量は、接着層の金属と接触する部分の樹脂の劣化を防止できるなどの点から、接着層に含まれる樹脂の総量100重量部に対して、好ましくは0.1~3重量部である。
 さらに、放熱部材用組成物の粘度や色を調整するために添加剤(酸化物等)を添加してもよい。例えば、白色にするための酸化チタン、黒色にするためのカーボンブラック、粘度を調整するためのシリカの微粉末を挙げることができる。また、機械的強度をさらに増すために添加剤を添加してもよい。例えば、ガラスファイバー、カーボンファイバー、カーボンナノチューブなどの無機繊維やクロス、または高分子添加剤として、ポリビニルホルマール、ポリビニルブチラール、ポリエステル、ポリアミド、ポリイミドなどの繊維または長分子を挙げることができる。
[Others]
A stabilizer may be added to the composition for heat dissipation member in order to facilitate handling. The stabilizer is not particularly limited as long as the effects of the present invention are not impaired, and may be an antioxidant, a curing agent, a copper inhibitor, a metal deactivator, a tackifier, an antiaging agent, an antifoamer, Antistatic agents, weathering agents and the like can be mentioned. Antioxidants include, for example, hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
For example, when the resin forming the adhesive layer is deteriorated by contact with a metal, the addition of a copper inhibitor or a metal deactivator as mentioned in JP-A-5-48265 is preferable.
As said copper damage inhibitor (brand name), ADEKA Co., Ltd. product, Mark ZS-27, Mark CDA-16; Sanko Chemical Industries Co., Ltd. product, SANKO-EPOCLEAN; BASF company make, Irganox MD1024; etc. are preferable. .
The addition amount of the copper inhibitor is preferably 0.1 parts by weight to 100 parts by weight in total of the resin contained in the adhesive layer, from the viewpoint of preventing deterioration of the resin of the part in contact with the metal of the adhesive layer. It is up to 3 parts by weight.
Furthermore, an additive (such as an oxide) may be added to adjust the viscosity and color of the composition for heat dissipation member. For example, fine powders of titanium oxide for making white, carbon black for making black, and fine powder of silica for adjusting viscosity can be mentioned. Also, additives may be added to further increase the mechanical strength. For example, inorganic fibers or cloths such as glass fibers, carbon fibers, carbon nanotubes or the like, or as polymer additives, fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, polyimide and the like can be mentioned.
[基板層]
 基板層は、図3に示すとおり、シランカップリング剤および2官能以上の重合性化合物を介して、無機フィラーと結合を形成し、有機無機ハイブリッド接着層との積層体を構成する。基板層には、例えば、銅、アルミニウム、ニッケル、金、合金、またはセラミック等を挙げることができる。例えば、基板層の材料として金属層を用いた場合、有機無機ハイブリッド接着層と基板層との結合は、基板層の最表面に位置する金属層と有機無機ハイブリッド接着層の間に形成される。よって、メッキ等の薄膜を有する材料では、メッキ材料と有機無機ハイブリッド接着層の間に、シランカップリング剤や2官能以上の重合性化合物を介した結合が形成される。このように、金属層は、メッキ材料となり得る金属であってもよい。また、基板層の厚みに特に制限はなく、用途に応じた厚みを用いることができる。より厚いものは、放熱性に優れるため好ましい。
[Substrate layer]
The substrate layer forms a bond with an inorganic filler via a silane coupling agent and a bifunctional or higher functional polymerizable compound as shown in FIG. 3 to form a laminate with an organic-inorganic hybrid adhesive layer. The substrate layer can include, for example, copper, aluminum, nickel, gold, an alloy, or a ceramic. For example, when a metal layer is used as the material of the substrate layer, a bond between the organic-inorganic hybrid adhesive layer and the substrate layer is formed between the metal layer located on the outermost surface of the substrate layer and the organic-inorganic hybrid adhesive layer. Therefore, in a material having a thin film such as plating, a bond is formed between the plating material and the organic-inorganic hybrid adhesion layer via a silane coupling agent or a bifunctional or higher polymerizable compound. Thus, the metal layer may be a metal that can be a plating material. Moreover, there is no restriction | limiting in particular in the thickness of a board | substrate layer, The thickness according to a use can be used. A thicker one is preferable because of its excellent heat dissipation.
 基板層は、放熱部材用組成物を塗布でき、放熱部材用組成物を硬化させてなる有機無機ハイブリッド接着層と積層体を形成可能な形状や材料であればよい。例えば、形状としては、板状、棒状等を挙げることができる。
 基板層の材料として金属層を用いた場合、放熱部材としてだけでなく、金属電極として用いることもできる。よって、金属層は、一枚の金属電極であってもよく、一枚の金属電極が複数に分割された状態の金属電極であってもよい。すなわち、金属層は、複数の金属電極から構成された層であってもよい。このように、本願の積層体は、熱伝導性、放熱性、絶縁性を有する電子基板(プリント基板)として用いることもできる。
The substrate layer may be any shape or material capable of applying the composition for heat dissipation member and forming a laminate with the organic-inorganic hybrid adhesion layer formed by curing the composition for heat dissipation member. For example, as a shape, plate shape, rod shape, etc. can be mentioned.
When a metal layer is used as the material of the substrate layer, it can be used not only as a heat dissipation member but also as a metal electrode. Therefore, the metal layer may be a single metal electrode, or may be a metal electrode in a state in which one metal electrode is divided into a plurality. That is, the metal layer may be a layer composed of a plurality of metal electrodes. Thus, the laminate of the present application can also be used as an electronic substrate (printed substrate) having thermal conductivity, heat dissipation, and insulation.
[製造方法]
 以下、放熱部材用組成物を製造する方法、および該組成物と基板層とから積層体を製造する方法を、放熱部材用組成物を例に具体的に説明する。
(1)シランカップリング処理を施す
 第1の無機フィラーに第1のシランカップリング剤でシランカップリング処理を施し、第1のシランカップリング剤の一端と第1の無機フィラーを結合させる。シランカップリング処理は、公知の方法を用いることができる。第2、第3の無機フィラーも同様に第2、第3のシランカップリング剤でシランカップリング処理を行うことができる。
 一例として、まず無機フィラーとシランカップリング剤を溶媒に加える。スターラー等を用いて撹拌したのち、乾燥する。溶媒乾燥後に、真空乾燥機等を用いて、真空条件下で加熱処理をする。この無機フィラーに溶媒を加えて、超音波処理により粉砕する。遠心分離機を用いてこの溶液を分離精製する。上澄みを捨てたのち、溶媒を加えて同様の操作を数回行う。オーブンを用いて精製後のシランカップリング処理を施した無機フィラーを乾燥させる。
(2)2官能以上の重合性化合物で修飾する
 第2の無機フィラーに第2のシランカップリング剤でシランカップリング処理を施し(または第1のシランカップリング剤でシランカップリング処理を施した上記第1の無機フィラーを第2の無機フィラーとして用いてもよい。)、第2のシランカップリング剤の他端にさらに第1の2官能以上の重合性化合物を結合させる。
 一例として、シランカップリング処理された無機フィラーと第2の官能以上の重合性化合物を、メノウ乳鉢等を用いて混合したのち、2本ロール等を用いて混練する。その後、超音波処理および遠心分離によって分離精製する。
(3)混合する
 第1のシランカップリング剤の一端と結合した第1の無機フィラーと、第2のシランカップリング剤の一端と結合した第2の無機フィラーと、第3のシランカップリング剤の一端と結合した第3の無機フィラーとを、例えば無機フィラーのみの重量が1:1:1になるように量り取り、メノウ乳鉢等で混合する。その後、2本ロール等を用いて混合し、放熱部材用組成物を得る。
 第1のシランカップリング剤の一端と結合した第1の無機フィラーと、第2のシランカップリング剤の一端と結合した第2の無機フィラーと、第3のシランカップリング剤の一端と結合した第3の無機フィラーとの混合割合は、第1の無機フィラーと第2の無機フィラー間の結合を形成する結合基がそれぞれアミン:エポキシの場合、無機フィラーのみの重量は例えば、重量比で1:0.1~1:30であることが好ましく、より好ましくは1:3~1:20である。更に好ましくは、1:4~1:10である。混合割合は、第1の無機フィラーと第2の無機フィラー間の結合を形成する末端の結合基の数により決定し、例えば1級アミンであれば2個のオキシラニルと反応できるため、オキシラニル側に比べて少量でよく、オキシラニル側は開環してしまっている可能性もありエポキシ当量から計算される量を多めに使用することが好ましい。
[Production method]
Hereinafter, the method for producing the composition for heat dissipation member, and the method for producing a laminate from the composition and the substrate layer will be specifically described using the composition for heat dissipation member as an example.
(1) Conducting silane coupling treatment The first inorganic filler is subjected to silane coupling treatment with a first silane coupling agent to bond one end of the first silane coupling agent to the first inorganic filler. A well-known method can be used for a silane coupling process. Similarly, the second and third inorganic fillers can be subjected to the silane coupling treatment with the second and third silane coupling agents.
As an example, first, the inorganic filler and the silane coupling agent are added to the solvent. After stirring using a stirrer etc., it dries. After solvent drying, heat treatment is performed under vacuum conditions using a vacuum dryer or the like. A solvent is added to the inorganic filler, and the mixture is crushed by ultrasonication. The solution is separated and purified using a centrifuge. After discarding the supernatant, the solvent is added and the same operation is repeated several times. The dried inorganic coupling-treated filler is dried using an oven.
(2) Modification with Bifunctional or Higher Polymerizable Compound The second inorganic filler was subjected to a silane coupling treatment with a second silane coupling agent (or was subjected to a silane coupling treatment with a first silane coupling agent) The first inorganic filler may be used as a second inorganic filler), and the other terminal of the second silane coupling agent is further bonded to a first bifunctional or higher polymerizable compound.
As an example, after mixing the inorganic filler by which the silane coupling process was carried out, and the polymeric compound more than a 2nd functional using an agate mortar etc., it knead | mixes using 2 rolls etc. It is then separated and purified by sonication and centrifugation.
(3) Mixing The first inorganic filler bonded to one end of the first silane coupling agent, the second inorganic filler bonded to one end of the second silane coupling agent, and the third silane coupling agent The third inorganic filler bonded to one end of the mixture is weighed, for example, so that the weight of the inorganic filler alone is 1: 1: 1, and mixed in an agate mortar or the like. Then, it mixes using 2 rolls etc. and obtains the composition for thermal radiation members.
A first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, and one end of a third silane coupling agent When the bonding ratio with the third inorganic filler is such that the bonding group forming the bond between the first inorganic filler and the second inorganic filler is respectively amine: epoxy, the weight of only the inorganic filler is, for example, 1 by weight ratio It is preferably 0.1 to 1:30, more preferably 1: 3 to 1:20. More preferably, it is 1: 4 to 1:10. The mixing ratio is determined by the number of terminal bonding groups that form a bond between the first inorganic filler and the second inorganic filler, and for example, a primary amine can react with two oxiranyl, so The amount may be relatively small, and the oxiranyl side may be open, and it is preferable to use a larger amount calculated from the epoxy equivalent.
 圧縮成形時の温度は、室温~350℃、好ましくは室温~300℃、より好ましくは50℃~250℃の範囲であり、時間は、5秒~10時間、好ましくは1分~5時間、より好ましくは5分~1時間の範囲である。硬化後は、応力ひずみなど抑制するために徐冷することが好ましい。また、再加熱処理を行い、ひずみなどを緩和させてもよい。このように、有機無機ハイブリッド接着層の形成と、有機無機ハイブリッド接着層と基板層(金属層)の接合を、比較的低い温度の加熱圧着で行うことができる。
 有機無機ハイブリッド接着層の膜厚は、垂直方向の熱伝導率をよくするためには、薄いほうが好ましい。好ましくは、30μm~2000μm、より好ましくは、30μm~1000μmである。さらに好ましくは、30μm~から500μmである。有機無機ハイブリッド接着層および基板層(金属層)の膜厚は、用途に応じて適宜変更すればよい。
The temperature during compression molding is in the range of room temperature to 350 ° C., preferably room temperature to 300 ° C., more preferably 50 ° C. to 250 ° C., and the time is 5 seconds to 10 hours, preferably 1 minute to 5 hours, Preferably, it is in the range of 5 minutes to 1 hour. After curing, it is preferable to gradually cool in order to suppress stress distortion and the like. Further, reheating treatment may be performed to reduce distortion and the like. As described above, the formation of the organic-inorganic hybrid adhesive layer and the bonding of the organic-inorganic hybrid adhesive layer and the substrate layer (metal layer) can be performed by thermocompression bonding at a relatively low temperature.
The thickness of the organic-inorganic hybrid adhesive layer is preferably thin in order to improve the thermal conductivity in the vertical direction. Preferably, it is 30 μm to 2000 μm, more preferably 30 μm to 1000 μm. More preferably, it is 30 μm to 500 μm. The film thickness of the organic-inorganic hybrid adhesive layer and the substrate layer (metal layer) may be appropriately changed depending on the application.
 以上、本発明の放熱部材は、放熱部材用組成物を硬化させた硬化物である有機無機ハイブリッド接着層と基板層(金属層)を有する積層体である。放熱部材用組成物の硬化物は、高熱伝導性を有するとともに、使用する有機材料と無機材料の種類、配合比率、硬化条件等により、熱膨張率が負から正の値をとり、化学的安定性、硬度および機械的強度などに優れている。なお、前記機械的強度とは、ヤング率、引っ張り強度、引き裂き強度、曲げ強度、曲げ弾性率、衝撃強度などである。
 本発明の放熱部材は、放熱板、放熱シート、放熱フィルム、放熱接着材、放熱成形品などに有用である。さらに、熱伝導性、放熱性、絶縁性を有する電子基板(プリント基板)として用いることもできる。
As mentioned above, the heat radiating member of this invention is a laminated body which has the organic-inorganic hybrid adhesion layer and substrate layer (metal layer) which are the hardened | cured material which hardened the composition for heat radiating members. The cured product of the composition for heat dissipation member has high thermal conductivity and has a negative to positive thermal expansion coefficient depending on the type of organic material and inorganic material used, the compounding ratio, curing conditions, etc., and is chemically stable. Superior in hardness, hardness and mechanical strength. The mechanical strength includes Young's modulus, tensile strength, tear strength, flexural strength, flexural modulus, impact strength and the like.
The heat dissipation member of the present invention is useful for a heat dissipation plate, a heat dissipation sheet, a heat dissipation film, a heat dissipation adhesive, a heat dissipation molded product, and the like. Furthermore, it can also be used as an electronic substrate (printed substrate) having thermal conductivity, heat dissipation, and insulation.
[電子機器]
 本発明の電子機器は、本発明の放熱部材と、発熱部を有する電子デバイスとを備える。放熱部材は、前記発熱部に接触するように電子デバイスに配置される。放熱部材の態様は、放熱電子基板、放熱板、放熱シート、放熱フィルム、放熱接着材、放熱成形品などのいずれであってもよい。
 例えば、電子デバイスとして、半導体素子を挙げることができる。本発明の放熱部材は、高熱伝導性に加えて、高耐熱性、高絶縁性を有する。そのため、半導体素子の中でも高電力のためより効率的な放熱機構を必要とするシリコン、炭化ケイ素、窒化ガリウム、酸化ガリウム、ダイヤモンドなどのパワー半導体に特に有効である。これらのパワー半導体を備えた電子機器には、大電力インバータの主変換素子、無停電電源装置、交流電動機の可変電圧可変周波数制御装置、鉄道車両の制御装置、ハイブリッドカー、エレクトリックカーなどの電動輸送機器、IH調理器などを挙げることができる。
[Electronics]
The electronic device of the present invention includes the heat dissipation member of the present invention and an electronic device having a heat generating portion. The heat dissipation member is disposed in the electronic device so as to contact the heat generating portion. The mode of the heat dissipating member may be any of a heat dissipating electronic substrate, a heat dissipating plate, a heat dissipating sheet, a heat dissipating film, a heat dissipating adhesive, a heat dissipating molded product, and the like.
For example, a semiconductor element can be mentioned as an electronic device. The heat radiating member of the present invention has high heat resistance and high insulation in addition to high thermal conductivity. Therefore, the semiconductor device is particularly effective for power semiconductors such as silicon carbide, silicon nitride, gallium nitride, gallium oxide and diamond, which require a more efficient heat dissipation mechanism because of high power. Electronic devices equipped with these power semiconductors include main conversion elements of large power inverters, uninterruptible power supplies, variable voltage variable frequency controllers for AC motors, controllers for railway vehicles, electric vehicles such as hybrid cars and electric cars, etc. Equipment, IH cooker, etc. can be mentioned.
 以下に、実施例を用いて本発明を詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the contents described in the following examples.
 本発明の実施例に用いた成分材料は次のとおりである。 The component materials used in the examples of the present invention are as follows.
<無機フィラー>
・窒化ホウ素:h-BN粒子、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製、(商品名)PolarTherm PTX-25
・アルミナ
 ・日本軽金属(株)製、(商品名)日軽金FS-210B
 ・日本軽金属(株)製、(商品名)日軽金FS-243
 ・日本軽金属(株)製、(商品名)日軽金FS-711C
 ・日本軽金属(株)製、(商品名)ニッケイランダムV325F
 ・日本軽金属(株)製、(商品名)多面体アルミナCT50
 ・デンカ(株)製、(商品名)DAW-20
<Inorganic filler>
-Boron nitride: h-BN particles, manufactured by Momentive Performance Materials Japan (O), (trade name) PolarTherm PTX-25
・ Alumina ・ Nippon Light Metal Co., Ltd. made, (trade name) Nikkkei FS-210B
・ Nippon Light Metal Co., Ltd. (trade name) Nichigane FS-243
-Nippon Light Metal Co., Ltd. product (trade name) Nichigane FS-711C
-Nippon Light Metal Co., Ltd. (trade name) Nikkei Random V 325 F
-Nippon Light Metal Co., Ltd. (trade name) Polyhedral alumina CT50
-Denka Co., Ltd. product (trade name) DAW-20
<シランカップリング剤>
・N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、JNC(株)製、(商品名)S320
Figure JPOXMLDOC01-appb-I000023
・3-グリシドキシプロピルトリメトキシシラン、JNC(株)製、(商品名)サイラエース(登録商標)S510
Figure JPOXMLDOC01-appb-I000024
<Silane coupling agent>
N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, manufactured by JNC Co., Ltd., (trade name) S320
Figure JPOXMLDOC01-appb-I000023
3-Glycidoxypropyltrimethoxysilane, manufactured by JNC Co., Ltd., (trade name) Thyraace (registered trademark) S510
Figure JPOXMLDOC01-appb-I000024
<2官能以上の重合性化合物>
・重合性オキシラニル化合物、JNC(株)製、下記式(1-11)

Figure JPOXMLDOC01-appb-I000025
(1-11)

・重合性オキシラニル化合物、三菱化学(株)製、(商品名)jER807
<Bifunctional or Higher Polymerizable Compound>
Polymerizable oxiranyl compounds, manufactured by JNC Co., Ltd., the following formula (1-11)

Figure JPOXMLDOC01-appb-I000025
(1-11)

・ Polymerizable oxiranyl compound, manufactured by Mitsubishi Chemical Corporation, (trade name) jER 807
・重合性アミン化合物、4,4’-ジアミノ-1,2-ジフェニルメタン、和光純薬工業(株)製
Figure JPOXMLDOC01-appb-I000026
・重合性アミン化合物、4,4’-エチレンジアニリン、東京化成工業(株)製
Figure JPOXMLDOC01-appb-I000027
・ Polymerizable amine compound, 4,4'-diamino-1,2-diphenylmethane, manufactured by Wako Pure Chemical Industries, Ltd.
Figure JPOXMLDOC01-appb-I000026
・ Polymerizable amine compound, 4,4'-ethylenedianiline, manufactured by Tokyo Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-I000027
<基板層>
 銅板はDCB基板、アルミ板はDBA基板を想定した材料として用いた。
・銅箔、古河電気工業(株)製、(商品名)FS-WS
・銅板:サイズ 4×4cm、厚み 400μm
・アルミ板:サイズ 4×4cm、厚み 400μm
<Substrate layer>
The copper plate was used as a DCB substrate, and the aluminum plate was used as a DBA substrate.
・ Copper foil, manufactured by Furukawa Electric Co., Ltd. (trade name) FS-WS
・ Copper plate: Size 4 × 4 cm, thickness 400 μm
-Aluminum plate: Size 4 x 4 cm, thickness 400 μm
[実施例1]
・修飾フィラー作製工程
 第1の無機フィラーとして、窒化ホウ素粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製PolarTherm PTX-25)を10g、第1のシランカップリング剤として、JNC(株)製サイラエース(登録商標)S320を1g、トルエン100mLに加え、スターラーを用いて500rpmで1時間攪拌し、得られた混合物を40℃で4時間乾燥した。さらに、溶媒乾燥後に120℃に設定した真空乾燥機を用いて、真空条件下で5時間加熱処理をした。得られた粒子は、第1のシランカップリング剤の一端と結合した第1の無機フィラーであり、これを修飾フィラーXとする。
 上記のPTX-25の代わりにアルミナ粒子(日本軽金属(株)製 日軽金LS-210B)を用いて同様にして、得られた粒子は、第2のシランカップリング剤の一端と結合した第2の無機フィラーであり、これを修飾フィラーYとする。
 上記修飾フィラーXのシランカップリング剤S320の代わりに、シランカップリング剤(JNC(株)製サイラエース(登録商標)S510)2.5gを純水125gに加え、スターラーを用いて500rpmで15時間攪拌した。ついで、窒化ホウ素粒子(モメンティブ・パフォーマンス・ジャパン(合)製PolarTherm PTX-25)12.5gを溶液に投入し、スターラーを用いて、500rpmで1時間攪拌し、得られた混合物を60℃で4時間乾燥した。さらに乾燥後に80℃に設定した真空オーブンを用いて、真空条件下で5時間加熱処理をした。得られた粒子は、第3のシランカップリング剤の一端と結合した第3の無機フィラーであり、これを修飾フィラーZとする。
Example 1
-Modified filler preparation process 10 g of boron nitride particles (Polaritive Performance Materials Japan (combined) made by PolarTherm PTX-25) as the first inorganic filler, and as the first silane coupling agent, manufactured by JNC Co., Ltd. 1 g of Silaace (registered trademark) S320 was added to 100 mL of toluene, and the mixture was stirred at 500 rpm for 1 hour using a stirrer, and the resulting mixture was dried at 40 ° C. for 4 hours. Furthermore, it heat-processed under vacuum conditions for 5 hours using the vacuum dryer set to 120 degreeC after solvent drying. The resulting particles are the first inorganic filler bonded to one end of the first silane coupling agent, and this is referred to as the modified filler X.
In the same manner, using alumina particles (Nippon Light Metal Co., Ltd. Nippon Light Metal LS-210B) in place of the above PTX-25, the obtained particles are bonded to one end of the second silane coupling agent. The inorganic filler of No. 2 is referred to as modified filler Y.
In place of the silane coupling agent S320 of the modified filler X, 2.5 g of a silane coupling agent (JNC Co., Ltd. Sila Ace (registered trademark) S510) is added to 125 g of pure water and stirred at 500 rpm for 15 hours using a stirrer did. Next, 12.5 g of boron nitride particles (Polaritive Performance Japan Co., Ltd. PolarTherm PTX-25) is added to the solution, and stirred at 500 rpm for 1 hour using a stirrer, and the obtained mixture is heated at 60 ° C. 4 Dried for hours. After drying, heat treatment was performed for 5 hours under vacuum conditions using a vacuum oven set at 80 ° C. The resulting particles are the third inorganic filler bonded to one end of the third silane coupling agent, and this is referred to as the modified filler Z.
・放熱部材用組成物作製工程
 修飾フィラー粒子Xを0.9g、修飾フィラー粒子Yを2g、修飾フィラー粒子Zを0.1g、第1の2官能以上の重合性化合物としてJNC(株)製化合物(1-11)を0.6g、第2の2官能以上の重合性化合物として4,4’-ジアミノ-1,2-ジフェニルメタンを0.3g量り取り、これらを室温で混合した。得られた混合物が放熱部材用組成物である。
-Composition preparation process for heat dissipation member 0.9 g of modified filler particle X, 2 g of modified filler particle Y, 0.1 g of modified filler particle Z, compound manufactured by JNC Co., Ltd. as a first bifunctional or higher polymerizable compound 0.6 g of (1-11) and 0.3 g of 4,4′-diamino-1,2-diphenylmethane as a second bifunctional or higher polymerizable compound were weighed out and mixed at room temperature. The obtained mixture is a composition for heat dissipation members.
・放熱部材(1)の作製
 放熱部材用組成物0.2gを量り取り、これを基材とするアルミ板(4cm×4cm×400μm)のおよそ下部(1.65cm×4cm)に乗せ、乗せた部分にのみ重なるように、同様のアルミ板を置いて挟み込み、150℃に設定した圧縮成形機((株)東洋精機製作所製 mini test press-10型小型加熱プレス)を用いて20MPaまで加圧し、15分間加熱状態を続けることで、配向処理と硬化を行った。すなわちアルミ板の間を放熱部材用組成物が広がる際に、窒化ホウ素粒子は板状粒子であるため、窒化ホウ素粒子とアルミ板とが平行になるように配向する。また、アルミ板/放熱部材用組成物の層/アルミ板の積層体の厚みが約1mmになるように、放熱部材用組成物の量を調整した。得られた積層体を放熱部材(1)とした。
-Preparation of heat dissipation member (1) Weighed 0.2 g of the composition for heat dissipation member and placed it on the lower part (1.65 cm x 4 cm) of an aluminum plate (4 cm x 4 cm x 400 μm) using this as a base material Place the same aluminum plate so as to overlap only on the part, sandwich it, press it to 20 MPa using a compression molding machine (mini test press-10 small heat press manufactured by Toyo Seiki Seisakusho Co., Ltd.) set at 150 ° C. Alignment treatment and curing were performed by continuing heating for 15 minutes. That is, when the composition for heat dissipation member spreads between the aluminum plates, the boron nitride particles are plate-like particles, so the boron nitride particles and the aluminum plate are oriented so as to be parallel to each other. Further, the amount of the composition for heat dissipation member was adjusted so that the thickness of the laminate of the layer of aluminum plate / composition for heat dissipation member / aluminum plate was about 1 mm. The obtained laminate was used as a heat dissipation member (1).
・放熱部材(2)の作製
 放熱部材用組成物0.1gを量り取り、これを基材とする銅箔(5cm×5cm×35μm)に乗せ、重なるように、同様の銅箔を置いて挟み込み、150℃に設定した圧縮成形機((株)東洋精機製作所製 mini test press-10型小型加熱プレス)を用いて20MPaまで加圧し、15分間加熱状態を続けることで、配向処理と硬化を行った。すなわち銅箔の間を放熱部材用組成物が広がる際に、窒化ホウ素粒子は板状粒子であるため、窒化ホウ素粒子と銅箔が平行になるように配向する。また、銅箔/放熱部材用組成物の層/銅箔の積層体の厚みが約300μmになるように、放熱部材用組成物の量を調整した。得られた積層体を放熱部材(2)とした。
-Preparation of heat dissipation member (2) Weigh out 0.1 g of the composition for heat dissipation member, place it on a copper foil (5 cm x 5 cm x 35 μm) using this as a base material, place similar copper foil and sandwich so as to overlap Using a compression molding machine (mini test press-10 small heat press manufactured by Toyo Seiki Seisakusho Co., Ltd.) set at 150 ° C., pressurize to 20 MPa and continue heating for 15 minutes to perform alignment treatment and curing The That is, when the composition for heat dissipation member spreads between the copper foils, the boron nitride particles are plate-like particles, and therefore, the boron nitride particles and the copper foil are oriented in parallel. Further, the amount of the composition for heat dissipation member was adjusted such that the thickness of the laminate of the layer of the composition for copper foil / the composition for heat dissipation member / copper foil was about 300 μm. The obtained laminate was used as a heat dissipation member (2).
<接着部材の漏れ度合い評価(漏れ率)>
 一般に重合性化合物などの樹脂成分と無機フィラーの混合物を用いて加圧状態で接着を行う場合、無機フィラー成分が被接着体の間に残り、余分な樹脂成分が周辺に漏れ出してくる問題が起こる。しかしながら、本発明の図1のような構造をとることにより、この樹脂成分と無機フィラーとが分離する問題を解決することができる。逆に、漏れ出た樹脂成分が少ないということは、図1の構造ができていると考えられる。
以下のとおり、接着部材の漏れ度合いを確認した。
 放熱部材(1)において、図6に示すように漏れでた面積を接着すべき面積で割った数値に100を掛けた値を漏れ率として算出した。
<ピール強度測定>
 以下のとおり、引っ張り試験を行い、ピール強度を確認した。
 放熱部材(1)において、図4、5に示すように2枚のアルミ板の接着していない部位を上下に挟み込むようにして、引っ張り試験測定機(島津製作所製AGS-X方引っ張り試験機)を用いて、5mm/minの速度で引っ張り、破断した時の張力を測定した。破断しない場合は、検出限界(1000N)以上とした。
<熱拡散率の測定>
 放熱部材(2)を用いて、(株)アイフェイズ製ai-Phase Mobile 1u熱拡散率装置により熱拡散率を測定した。
<Evaluation of leak degree of adhesive member (leak rate)>
Generally, when bonding is performed under pressure using a mixture of a resin component such as a polymerizable compound and an inorganic filler, there is a problem that the inorganic filler component remains between adherends and extra resin component leaks to the periphery. Occur. However, by taking the structure as shown in FIG. 1 of the present invention, it is possible to solve the problem that the resin component and the inorganic filler are separated. Conversely, the fact that the amount of the leaked resin component is small is considered to be the structure shown in FIG.
The degree of leakage of the adhesive member was confirmed as follows.
In the heat radiating member (1), as shown in FIG. 6, a value obtained by multiplying the area obtained by the leakage by the area to be bonded and the value 100 is calculated as the leakage rate.
<Peel strength measurement>
The tensile test was conducted as follows, and the peel strength was confirmed.
In the heat dissipating member (1), as shown in FIGS. 4 and 5, the non-adhered portions of the two aluminum plates are sandwiched vertically, and a tensile test measurement machine (AGS-X tensile tester manufactured by Shimadzu Corporation) Was pulled at a speed of 5 mm / min, and the tension at break was measured. When it did not break, it was made more than the detection limit (1000 N).
<Measurement of thermal diffusivity>
Using a heat dissipation member (2), the thermal diffusivity was measured with ai-Phase Mobile 1u thermal diffusivity device manufactured by I-phase.
[実施例2]
 4,4’-ジアミノ-1,2-ジフェニルメタンの代わりに4,4’-エチレンジアニリンを第2の2官能以上の重合性化合物として使用した。これ以外は実施例1と同様に作製、評価を行った。
Example 2
Instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 1 except for the above.
[実施例3]
 日軽金LS-210Bの代わりに日軽金LS-243を第2の無機フィラーとして使用した。これ以外は実施例1と同様に作製、評価を行った。
[Example 3]
Nichigane LS-243 was used as a second inorganic filler instead of Nichigane LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
[実施例4]
 4,4’-ジアミノ-1,2-ジフェニルメタンの代わりに4,4’-エチレンジアニリンを第2の2官能以上の重合性化合物として使用した。これ以外は実施例3と同様に作製、評価を行った。
Example 4
Instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 3 except for the above.
[実施例5]
 日軽金LS-210Bの代わりに日軽金LS-711Cを第2の無機フィラーとして使用した。これ以外は実施例1と同様に作製、評価を行った。
[Example 5]
Nichigane LS-711C was used as a second inorganic filler instead of Nichigane LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
[実施例6]
 4,4’-ジアミノ-1,2-ジフェニルメタンの代わりに4,4’-エチレンジアニリンを第2の2官能以上の重合性化合物として使用した。これ以外は実施例5と同様に作製、評価を行った。
[Example 6]
Instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Except for this, preparation and evaluation were performed in the same manner as in Example 5.
[実施例7]
 日軽金LS-210Bの代わりにニッケイランダムV325Fを第2の無機フィラーとして使用した。これ以外は実施例1と同様に作製、評価を行った。
[Example 7]
Nikkei random V325F was used as a second inorganic filler in place of the light weight LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
[実施例8]
 4,4’-ジアミノ-1,2-ジフェニルメタンの代わりに4,4’-エチレンジアニリンを第2の2官能以上の重合性化合物として使用した。これ以外は実施例7と同様に作製、評価を行った。
[Example 8]
Instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 7 except for the above.
[実施例9]
 日軽金LS-210Bの代わりに多面体アルミナCT50を使用した。これ以外は実施例1と同様に作製、評価を行った。
[Example 9]
Polyhedral alumina CT50 was used in place of the light-light LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
[実施例10]
 4,4’-ジアミノ-1,2-ジフェニルメタンの代わりに4,4’-エチレンジアニリンを第2の2官能以上の重合性化合物として使用した。これ以外は実施例9と同様に作製、評価を行った。
[Example 10]
Instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Production and evaluation were performed in the same manner as in Example 9 except for the above.
[実施例11]
 日軽金LS-210Bの代わりにDAW-20を使用した。これ以外は実施例1と同様に作製、評価を行った。
[Example 11]
DAW-20 was used in place of light duty LS-210B. Production and evaluation were performed in the same manner as in Example 1 except for the above.
[実施例12]
 4,4’-ジアミノ-1,2-ジフェニルメタンの代わりに4,4’-エチレンジアニリンを第2の2官能以上の重合性化合物として使用した。これ以外は実施例11と同様に作製、評価を行った。
[Example 12]
Instead of 4,4'-diamino-1,2-diphenylmethane, 4,4'-ethylenedianiline was used as a second bifunctional or higher polymerizable compound. Except this, preparation and evaluation were performed similarly to Example 11.
[比較例1]
 JNC(株)製化合物(1-11)の代わりにエピコートjER807を使用した。これ以外は実施例11と同様に作製、評価を行った。
Comparative Example 1
Epicoat jER 807 was used instead of JNC Co., Ltd. compound (1-11). Except this, preparation and evaluation were performed similarly to Example 11.
 実施例、比較例の評価結果を表1に示した。
 また、実施例、比較例の放熱部材用組成物の組成を表2に示した。
The evaluation results of Examples and Comparative Examples are shown in Table 1.
Moreover, the composition of the composition for thermal radiation members of an Example and a comparative example was shown in Table 2.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 上記表1のとおり、JNC(株)製化合物(1-11)を、第1の2官能以上の重合性化合物として用いた場合、基板層である金属層との密着性が高く、放熱部材用組成物の漏れも少なく、垂直方向の熱拡散率が高い値となった。特にアミノ基を持つ4,4’-エチレンジアニリンを用いたときの密着性が良好であった。
 これに比べて、第1の2官能以上の重合性化合物として重合性オキシラニル化合物であるエピコートjER807を用いたものは、放熱部材用組成物の漏れが著しくひどくこれが影響して、基板層である金属層との密着性が不良となり、同時に熱拡散率も低くなった。
As shown in Table 1 above, when the compound (1-11) manufactured by JNC Co., Ltd. is used as the first bifunctional or higher polymerizable compound, the adhesion with the metal layer which is the substrate layer is high, and it is for heat dissipation members There was also little leakage of the composition, and the thermal diffusivity in the vertical direction became a high value. The adhesion was particularly good when 4,4'-ethylenedianiline having an amino group was used.
Compared with this, the one using the epicoat jER 807, which is a polymerizable oxiranyl compound, as the first bifunctional or higher polymerizable compound, the leakage of the composition for heat radiation member is extremely severe, and this affects the metal that is the substrate layer. Adhesion to the layer was poor, and at the same time, the thermal diffusivity was lowered.
1   基板
10  無機フィラー
11  第1の無機フィラー
12  第2の無機フィラー
13  第3の無機フィラー
21  第1のシランカップリング剤
22  第2のシランカップリング剤
23  第3のシランカップリング剤
31  第1の2官能以上の重合性化合物
32  第2の2官能以上の重合性化合物
41  上の金属板
42  放熱部材用組成物
43  下の金属板
51  貼り合わせ面
52  貼り合わせ面から漏れ出た放熱部材用組成物
61  接着すべき面積
62  漏れでた面積
REFERENCE SIGNS LIST 1 substrate 10 inorganic filler 11 first inorganic filler 12 second inorganic filler 13 third inorganic filler 21 first silane coupling agent 22 second silane coupling agent 23 third silane coupling agent 31 first The bifunctional or higher functional polymerizable compound 32 The metal plate 42 on the second bifunctional or higher polymerizable compound 41 The composition for the heat radiating member 43 The metal plate 51 below The bonding surface 52 For the heat radiating member leaking from the bonding surface Composition 61 Area to be bonded 62 Area leaked

Claims (12)

  1.  第1のシランカップリング剤の一端と結合した第1の無機フィラー、第2のシランカップリング剤の一端と結合した第2の無機フィラー、第3のシランカップリングの一端と結合した第3の無機フィラー、第1の2官能以上の重合性化合物、および第2の2官能以上の重合性化合物を含有する放熱部材用組成物であり、
     前記第1の2官能以上の重合性化合物および前記第2の2官能以上の重合性化合物の全量100重量部に対する、前記第1の無機フィラー、前記第2の無機フィラー、および前記第3の無機フィラーの合計量の比率が300~600重量部である放熱部材用組成物。
    A first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, a third bonded to one end of a third silane coupling It is a composition for heat dissipation members containing an inorganic filler, a first bifunctional or higher polymerizable compound, and a second bifunctional or higher polymerizable compound,
    The first inorganic filler, the second inorganic filler, and the third inorganic based on 100 parts by weight of the first bifunctional or higher polymerizable compound and the second bifunctional or higher polymerizable compound. A composition for a heat dissipating member, wherein the ratio of the total amount of fillers is 300 to 600 parts by weight.
  2.  前記第1の無機フィラーと、前記第2の無機フィラーとが、それぞれに結合したシランカップリング剤の他端と、前記第1の2官能以上の重合性化合物および第2の2官能以上の重合性化合物から選ばれる少なくとも1つで結合する請求項1に記載の放熱部材用組成物。 The other end of the silane coupling agent in which the first inorganic filler and the second inorganic filler are bonded to each other, the first bifunctional or higher polymerizable compound and the second bifunctional or higher polymerization The composition for heat dissipation members according to claim 1, wherein the composition is bound by at least one compound selected from the group consisting of
  3.  前記第1の2官能以上の重合性化合物または第2の2官能以上の重合性化合物が、下記式(1-1)および下記式(1-2)で表される重合性液晶化合物からなる群から選ばれる少なくとも2種を含む、
    請求項1または2に記載の放熱部材用組成物。
         R-Z-(A-Z)-R    (1-1)
    [前記式(1-1)中、
     Rは、それぞれ独立して、シランカップリング剤の他端の官能基と結合可能な官能基であり、
     Aは、それぞれ独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
     これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
     該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく、
     Zは、それぞれ独立して、単結合、または炭素数1~20のアルキレンであり、
     該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、-N(O)=N-、または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく、
     mは、1~6の整数である。]
         J-X-J           (1-2)
    [前記式(1-2)中、
     Jは、それぞれ独立して、前記式(1-1)の他端の官能基と結合可能な官能基であり、
     Xは、それぞれ独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
     これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
     該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく、
     nは、1~6の整数である。]
    A group in which the first bifunctional or more polymerizable compound or the second bifunctional or more polymerizable compound is a polymerizable liquid crystal compound represented by the following formula (1-1) and the following formula (1-2) Containing at least two selected from
    The composition for heat dissipation members according to claim 1 or 2.
    R a -Z- (A-Z) m -R a (1-1)
    [In the above formula (1-1),
    Each R a is independently a functional group capable of binding to the functional group at the other end of the silane coupling agent,
    A each independently represents 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2, 7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
    In these rings, any —CH 2 — may be replaced by —O—, and any —CH = may be replaced by —N =, and any hydrogen may be halogen, one carbon atom It may be replaced by an alkyl of up to 10 or an alkyl halide having 1 to 10 carbon atoms,
    In the alkyl, arbitrary —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH = CH—, or —C≡C—,
    Z is each independently a single bond or alkylene having 1 to 20 carbon atoms,
    In the alkylene, arbitrary —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH = CH—, —CF = CF—, —CH = N—, -N = CH-, -N = N-, -N (O) = N-, or -C≡C-, and arbitrary hydrogen may be replaced by halogen,
    m is an integer of 1 to 6; ]
    J-X n -J (1-2)
    [In said Formula (1-2),
    J is each independently a functional group capable of binding to the functional group at the other end of the above formula (1-1),
    X independently represents 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2, 7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
    In these rings, any —CH 2 — may be replaced by —O—, and any —CH = may be replaced by —N =, and any hydrogen may be halogen, one carbon atom It may be replaced by an alkyl of up to 10 or an alkyl halide having 1 to 10 carbon atoms,
    In the alkyl, arbitrary —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH = CH—, or —C≡C—,
    n is an integer of 1 to 6. ]
  4.  前記式(1-1)中、Zが、単結合、-(CH-、-O(CH-、-(CHO-、-O(CHO-、-CH=CH-、-C≡C-、-COO-、-OCO-、-CH=CH-COO-、-OCO-CH=CH-、-CHCH-COO-、-OCO-CHCH-、-CH=N-、-N=CH-、-N=N-、-OCF-、または-CFO-であり、該aが1~20の整数である、
    請求項3に記載の放熱部材用組成物。
    In the formula (1-1), Z is a single bond, - (CH 2) a - , - O (CH 2) a -, - (CH 2) a O -, - O (CH 2) a O- , -CH = CH-, -C≡C-, -COO-, -OCO-, -CH = CH-COO-, -OCO-CH = CH-, -CH 2 CH 2 -COO-, -OCO-CH 2 CH 2- , -CH = N-, -N = CH-, -N = N-, -OCF 2- , or -CF 2 O-, wherein a is an integer of 1 to 20,
    The composition for heat dissipation members according to claim 3.
  5.  前記式(1-1)中、Rが、それぞれ独立して、下記式(2-1)~(2-4)のいずれかで表される重合性基である、請求項3または4に記載の放熱部材用組成物。
    Figure JPOXMLDOC01-appb-I000001

    [前記式(2-1)~(2-2)中、Rは、水素、ハロゲン、-CF、炭素数1~5のアルキルであり、qは0または1である。
     前記式(2-3)~(2-4)中、Rは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
     これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
     該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよい。
     Rは、それぞれ独立して、水素、ハロゲン、または炭素数1~5のアルキルである。]
    5. The method according to claim 3, wherein in the formula (1-1), each R a is a polymerizable group represented by any one of the following formulas (2-1) to (2-4). The composition for thermal radiation members as described.
    Figure JPOXMLDOC01-appb-I000001

    In the above formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , an alkyl having 1 to 5 carbon atoms, and q is 0 or 1.
    In the above formulas (2-3) to (2-4), R c is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene -2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
    In these rings, any —CH 2 — may be replaced by —O—, and any —CH = may be replaced by —N =, and any hydrogen may be halogen, one carbon atom It may be replaced by an alkyl of up to 10 or an alkyl halide having 1 to 10 carbon atoms,
    In the alkyl, optional —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH = CH—, or —C≡C—.
    Each R d is independently hydrogen, halogen or alkyl having 1 to 5 carbon atoms. ]
  6.  前記第1の無機フィラーが、窒化物、炭素材料、珪酸塩化物、または金属酸化物であり、前記第2の無機フィラーが、金属酸化物であり、前記第3の無機フィラーが、前記第1の無機フィラーと同じである、
    請求項1~5のいずれか1項に記載の放熱部材用組成物。
    The first inorganic filler is a nitride, a carbon material, a silicate, or a metal oxide, the second inorganic filler is a metal oxide, and the third inorganic filler is the first inorganic filler. Same as the inorganic filler of
    The composition for a heat dissipation member according to any one of claims 1 to 5.
  7.  前記第1の無機フィラーが、窒化ホウ素、窒化アルミニウム、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、アルミナ、およびコーディエライトから選ばれる少なくとも一つであり、前記第2の無機フィラーが、アルミナ、金属窒化物、酸化亜鉛、酸化ジルコニウム、および酸化チタンから選ばれる少なくとも一つである、
    請求項6に記載の放熱部材用組成物。
    The first inorganic filler is at least one selected from boron nitride, aluminum nitride, boron carbide, boron carbon nitride, graphite, carbon fiber, carbon nanotube, alumina, and cordierite, and the second inorganic filler Is at least one selected from alumina, metal nitrides, zinc oxide, zirconium oxide, and titanium oxide,
    The composition for heat dissipation members according to claim 6.
  8.  前記第1の無機フィラーのシランカップリング剤の修飾率が0.1重量%以上である、
    請求項1~7のいずれか1項に記載の放熱部材用組成物。
    The modification rate of the silane coupling agent of the first inorganic filler is 0.1% by weight or more.
    A composition for a heat dissipation member according to any one of claims 1 to 7.
  9.  前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、重合性化合物をさらに含む、
    請求項1~8のいずれか1項に記載の放熱部材用組成物。
    It further comprises a polymerizable compound not bound to the first inorganic filler and the second inorganic filler,
    A composition for a heat dissipation member according to any one of claims 1 to 8.
  10.  請求項1~9のいずれか1項に記載の放熱部材用組成物の硬化物と基板層とからなる
    放熱部材。
    A heat dissipating member comprising the cured product of the composition for heat dissipating member according to any one of claims 1 to 9 and a substrate layer.
  11.  請求項10に記載の放熱部材と、
     発熱部を有する電子デバイスとを備え、
     前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された、
    電子機器。
    A heat dissipation member according to claim 10,
    And an electronic device having a heat generating portion,
    The heat dissipation member is disposed in the electronic device such that the heat dissipation member contacts the heat generating portion;
    Electronics.
  12.  第1の無機フィラーと、第1のシランカップリング剤の一端とを結合させる工程と、
     第2の無機フィラーと、第2のシランカップリング剤の一端とを結合させる工程と、
     第3の無機フィラーと、第3のシランカップリング剤の一端とを結合させる工程と、
     第1のシランカップリング剤の一端と結合した第1の無機フィラー、第2のシランカップリング剤の一端と結合した第2の無機フィラー、および第3のシランカップリングの一端と結合した第3の無機フィラーを含有させる工程と、
     前記シランカップリング剤のそれぞれの他端と、2官能以上の重合性化合物とを結合させる工程を備える、
    放熱部材用組成物の製造方法。
    Bonding the first inorganic filler and one end of the first silane coupling agent;
    Bonding the second inorganic filler and one end of the second silane coupling agent;
    Bonding the third inorganic filler and one end of the third silane coupling agent;
    A first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, and a third bonded to one end of a third silane coupling Adding an inorganic filler of
    Combining the other end of each of the silane coupling agents with a bifunctional or higher functional polymerizable compound,
    The manufacturing method of the composition for thermal radiation members.
PCT/JP2019/000426 2018-01-12 2019-01-10 Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member WO2019139057A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019564722A JP7566467B2 (en) 2018-01-12 2019-01-10 Composition for heat dissipating member, heat dissipating member, electronic device, and method for producing heat dissipating member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018003589 2018-01-12
JP2018-003589 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019139057A1 true WO2019139057A1 (en) 2019-07-18

Family

ID=67219686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000426 WO2019139057A1 (en) 2018-01-12 2019-01-10 Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member

Country Status (3)

Country Link
JP (1) JP7566467B2 (en)
TW (1) TW201934653A (en)
WO (1) WO2019139057A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115379636A (en) * 2021-05-18 2022-11-22 鹏鼎控股(深圳)股份有限公司 Circuit board with heat dissipation function and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169891A (en) * 1995-12-21 1997-06-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material, its production and inorganic filler
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
JP2016017164A (en) * 2014-07-10 2016-02-01 中国塗料株式会社 Coating composition and production method of coating film
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169891A (en) * 1995-12-21 1997-06-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material, its production and inorganic filler
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
JP2016017164A (en) * 2014-07-10 2016-02-01 中国塗料株式会社 Coating composition and production method of coating film
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method

Also Published As

Publication number Publication date
JP7566467B2 (en) 2024-10-15
JPWO2019139057A1 (en) 2021-01-28
TW201934653A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6831501B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member
JP6959488B2 (en) Method for manufacturing composition for low thermal expansion member, low thermal expansion member, electronic device, low thermal expansion member
JPWO2015170744A1 (en) Composition for heat dissipation member, heat dissipation member, electronic device
WO2019117156A1 (en) Method for manufacturing heat dissipation sheet, heat dissipation sheet, substrate, and power semiconductor module
JP6902192B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member composition, method for manufacturing heat-dissipating member
WO2020045560A1 (en) Composition, cured product, laminated body, and electronic device
WO2017150586A1 (en) Laminate, electronic device, and production method for laminate
JP6992654B2 (en) Laminated sheet, heat dissipation parts, light emitting device, light emitting device
WO2019139057A1 (en) Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member
JP7070554B2 (en) Laminates, electronic devices, manufacturing methods for laminates
JPWO2019194221A1 (en) Composition for heat dissipation member, visible light reflective heat dissipation member, light emitting device, light emitting device
WO2018181838A1 (en) Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member
WO2019049911A1 (en) Composition for heat dissipating member, heat dissipating member, electronic device, and method for manufacturing heat dissipating member
JP2020122113A (en) Three-dimensional structure, method for manufacturing three-dimensional structure, and electronic component
JP2019172937A (en) Composition for heat radiation member, heat radiation member, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738961

Country of ref document: EP

Kind code of ref document: A1