WO2018181838A1 - Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member - Google Patents

Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member Download PDF

Info

Publication number
WO2018181838A1
WO2018181838A1 PCT/JP2018/013501 JP2018013501W WO2018181838A1 WO 2018181838 A1 WO2018181838 A1 WO 2018181838A1 JP 2018013501 W JP2018013501 W JP 2018013501W WO 2018181838 A1 WO2018181838 A1 WO 2018181838A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
coupling agent
polymerizable compound
compound
composition
Prior art date
Application number
PCT/JP2018/013501
Other languages
French (fr)
Japanese (ja)
Inventor
研人 氏家
武 藤原
國信 隆史
和宏 滝沢
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2019510204A priority Critical patent/JPWO2018181838A1/en
Publication of WO2018181838A1 publication Critical patent/WO2018181838A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the composition for heat radiating members according to the third aspect of the present invention is the composition for heat radiating members according to the first aspect or the second aspect of the present invention, wherein the first inorganic filler and the second inorganic filler are used.
  • the fillers are boron nitride, boron carbide, boron boron nitride, graphite, carbon fiber, carbon nanotube, graphene, alumina, aluminum nitride, silica, silicon nitride, silicon carbide, zinc oxide, magnesium oxide, magnesium hydroxide, cordier, respectively. It is at least one selected from light or iron oxide materials.
  • the inorganic filler has a high thermal conductivity, and the thermal expansion coefficient is positive, very small, or negative, and by combining with these fillers, the intended composition for a heat dissipation member can be obtained. can get.
  • the composition for a heat radiating member according to the fourth aspect of the present invention is the composition for a heat radiating member according to any one of the first aspect to the third aspect of the present invention.
  • a third inorganic filler having a coefficient of thermal expansion different from that of the second inorganic filler.
  • R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms. If comprised in this way, it is a heat radiating member containing the inorganic filler which couple
  • the heat radiating member of this application it is a conceptual diagram which shows the coupling
  • any —CH 2 — in alkyl may be replaced by —O—” or “any —CH 2 CH 2 — may be replaced by —CH ⁇ CH—, etc.”
  • the meaning is shown in the following example.
  • a group in which any —CH 2 — in C 4 H 9 — is replaced by —O— or —CH ⁇ CH— includes C 3 H 7 O—, CH 3 —O— (CH 2 ) 2 —, CH 3 —O—CH 2 —O— and the like.
  • composition for heat dissipation member is a composition that forms a heat radiating member by curing and bonding inorganic fillers via a coupling agent and a bifunctional or higher functional polymerizable compound.
  • FIG. 1 shows an example in which boron nitride is used as an inorganic filler.
  • boron nitride h-BN
  • boron nitride there is no reactive group in the plane of the particle, so that the coupling agent binds only around the periphery.
  • Boron nitride treated with a coupling agent can form a bond with the polymerizable compound. Therefore, as shown in FIG.
  • the heat radiating member composition according to the first embodiment of the present invention is, for example, as shown in FIG. 1 and FIG. 2, a first thermally conductive material coupled to one end of a plurality of first coupling agents 1.
  • a thermally conductive second inorganic filler 2 bonded to one end of a plurality of second coupling agents 12, wherein the other end of the second coupling agent 12 is further bifunctional or higher.
  • a second inorganic filler to which the polymerizable compound 22 is bonded As shown in FIG. 2, when the heat radiating member composition is cured, the other end of the coupling agent 11 bonded to the first inorganic filler 1 is bonded to the polymerizable compound 22 of the second inorganic filler 2. In this way, a bond between inorganic fillers is formed.
  • the bifunctional or higher functional polymerizable compound may be a non-liquid crystalline compound.
  • the bifunctional or higher functional polymerizable compound has a functional group capable of forming a bond with a coupling agent.
  • Examples of the bifunctional or higher polymerizable compound include polymerizable compounds represented by the following formula (1-1).
  • R a is the following formulas (2-1) to (2-2), amino, vinyl, carboxylic anhydride residues, or any polymerizable group containing these structures
  • Rx represents naphthalene-2,6-diyl, or naphthalene-2,7-diyl represented by the following formulas (2-3) to (2-6), biphenyl-2,2 ′, biphenyl-2,4 ', One of biphenyl-3,3'
  • n is an integer from 1 to 3
  • R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms.
  • R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
  • R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms.
  • each Ra should just be a functional group which can couple
  • combinations of functional groups that form a bond between Ra and a coupling agent include combinations of oxiranyl and amino, vinyls, methacryloxys, carboxy or carboxylic anhydride residues and amines, imidazole and oxiranyl, and the like.
  • Any combination of functional groups capable of forming a bond between the polymerizable compound and the coupling agent may be used. A combination with high heat resistance is more preferable.
  • the bifunctional or higher polymerizable compound may be a liquid crystal compound.
  • the bifunctional or higher functional polymerizable compound having liquid crystallinity include a polymerizable liquid crystal compound represented by the following formula (1-2).
  • the polymerizable liquid crystal compound has a liquid crystal skeleton and a polymerizable group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (1-2) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
  • Terminal group R a has the same meaning as R a defined in the above formula (1-1).
  • Preferred examples of A include 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4 -Phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2 , 3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl, naphthalene -2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9
  • A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like.
  • Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
  • the linking group Z of the compound (1-2) is a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH
  • —, —CF ⁇ CF— or — (CH 2 ) 4 — in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH— or —
  • the viscosity becomes small.
  • Preferred Z is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, — OCF 2 —, —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — ( CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH— and the like.
  • the compound (1-2) may be optically active or optically inactive.
  • the compound (1-2) may have an asymmetric carbon or an axial asymmetry.
  • the configuration of the asymmetric carbon may be R or S.
  • the asymmetric carbon may be located at either Ra or A, and when it has an asymmetric carbon, the compatibility of the compound (1-2) is good.
  • the compound (1-2) has axial asymmetry, the twist-inducing force is large.
  • the light application property may be any.
  • a compound having desired physical properties can be obtained by appropriately selecting the terminal group R a , the type of the ring structure A and the bonding group Z, and the number of rings.
  • A, Z and R a have the same meaning as A, Z and R a defined in the above formula (1-2), and P represents the following formula (2- 1) to (2-2) represents a polymerizable group, cyclohexene oxide, phthalic anhydride, or succinic anhydride, and Y is a single bond or alkylene having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms.
  • arbitrary —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, —OCO— or —CH ⁇ CH—.
  • Y is alkylene in which —CH 2 — at one or both ends of alkylene having 1 to 10 carbon atoms is replaced by —O—.
  • m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
  • R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
  • R a , P and Y are as defined in the above formulas (1-a) and (1-b).
  • Z 1 is each independently a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —C ⁇ C—, —C ⁇ C—COO—, —OCO—C ⁇ C—, —C ⁇ C—CH ⁇ CH—, —CH ⁇ CH —C ⁇ C—, —CH ⁇ N—, —N ⁇ CH—,
  • Z 3 is each independently a single bond, alkyl having 1 to 10 carbon atoms, — (CH 2 ) a —, —O (CH 2 ) a O—, —CH 2 O—, —OCH 2 —, —O (CH 2 ) 3 —, — (CH 2 ) 3 O—, —COO—, —OCO—, —CH ⁇ CH—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, — (CH 2 ) 2 COO— , —OCO (CH 2 ) 2 —, —CF ⁇ CF—, —C ⁇ C—, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ N—, —OCF 2 — or —CF 2 O— And the plurality of Z 3 may be the same or different.
  • a is an integer of 1 to 20.
  • X is a substituent of 1,4-phenylene and fluorene-2,7-diyl in which arbitrary hydrogen may be replaced by halogen, alkyl or fluorinated alkyl, and represents halogen, alkyl or fluorinated alkyl.
  • More preferred compound (1-2) can be represented by the following formula (1-c) or (1-d).
  • A, Y, Z, R a and m are as defined above, and P 1 represents a polymerizable group represented by the following formulas (2-1) to (2-2).
  • two P 1 represent the same polymerizable group (2-1) to (2-2)
  • two Y represent the same group
  • two Y are symmetrical. Combine to be.
  • the compounds (1-1) and (1-2) can be synthesized by combining known methods in organic synthetic chemistry. Methods for introducing the desired end groups, ring structures and linking groups into the starting materials are described, for example, by Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John Books such as Wily & Sons, Inc., Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis, Pergamon Press, New Experimental Chemistry Course (Maruzen) It is described in. Reference may also be made to JP-A-2006-265527.
  • the bifunctional or higher functional polymerizable compound may be a polymerizable compound other than the polymerizable compound represented by the above formulas (1-1) and (1-2).
  • polymerizable compound may be a polymerizable compound other than the polymerizable compound represented by the above formulas (1-1) and (1-2).
  • the liquid crystallinity is insufficient. Examples of the compound that were not present.
  • the polymerizable compound can be synthesized by combining known methods in organic synthetic chemistry.
  • the polymerizable compound used in the present invention preferably has a bifunctional or higher functional group in order to form a bond with a coupling agent, and includes a case where the functional group is trifunctional or higher, or tetrafunctional or higher. Furthermore, a compound having a functional group at both ends of the long side of the polymerizable compound is preferable because it can form a linear bond. If the surface modification with a polymerizable compound or the like is too little, the strength of the resin becomes strong because the number of molecules binding between the fillers is too few and the strength is lowered. Therefore, it is desirable to appropriately adjust the surface modification amount according to the required characteristics.
  • Examples of the first inorganic filler and the second inorganic filler include nitrides, carbides, carbon materials, metal oxides, and silicate minerals.
  • the first inorganic filler and the second inorganic filler may be the same or different.
  • boron nitride, boron carbide, boron nitride, graphite, and the like are used as inorganic fillers having high thermal conductivity and a very small or negative coefficient of thermal expansion. Examples thereof include carbon fibers and carbon nanotubes.
  • alumina, silica, magnesium oxide, zinc oxide, iron oxide, ferrite, mullite, cordierite, silicon nitride, and silicon carbide can be given.
  • an inorganic filler having the following high thermal conductivity and a positive coefficient of thermal expansion may be used for either one of the first and second inorganic fillers.
  • the third inorganic filler may be unmodified, may be modified with a coupling agent, or may be modified with a coupling agent and a polymerizable compound.
  • the inorganic filler is preferably boron nitride, aluminum nitride, silicon nitride, silicon carbide, graphite, carbon fiber, or carbon nanotube.
  • hexagonal boron nitride (h-BN) and graphite are preferable.
  • Boron nitride and graphite are preferable because they have a very high thermal conductivity in the plane direction, and boron nitride has a low dielectric constant and high insulation.
  • the use of plate-like crystal boron nitride is preferable because the plate-like structure is easily oriented along the mold by the flow and pressure of the raw material during molding and curing.
  • the average particle size of the inorganic filler is preferably 0.1 to 200 ⁇ m. More preferably, it is 1 to 100 ⁇ m. When it is 0.1 ⁇ m or more, the thermal conductivity is good, and when it is 200 ⁇ m or less, the filling rate can be increased.
  • the average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis based on the Franhofer diffraction theory and Mie's scattering theory, the larger side and the smaller side are equivalent (volume basis). Was the median diameter.
  • the ratio of the inorganic filler, the coupling agent, and the polymerizable compound depends on the amount of the coupling agent to be combined with the inorganic filler to be used.
  • the compound used as the first and second inorganic fillers for example, boron nitride
  • the reaction amount of the coupling agent to the inorganic filler varies mainly depending on the size of the inorganic filler and the reactivity of the coupling agent used.
  • the larger the inorganic filler the smaller the amount of modification because the area ratio of the side surface of the inorganic filler decreases.
  • the volume ratio of the coupling agent and polymerizable compound in the heat radiating member to the inorganic component is preferably in the range of 5:95 to 30:70, more preferably 10:90 to 25:75. desirable.
  • An inorganic component is an inorganic raw material before performing a silane coupling agent process.
  • the coupling agent to be bonded to the inorganic filler has a functional group that can be bonded to the functional group of the bifunctional or higher polymerizable compound.
  • Examples of the coupling agent include silane coupling agents represented by the following formula (3-1).
  • R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
  • R 2 is — (CH 2 ) 0-3 —O—;
  • R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
  • R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
  • R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
  • Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
  • j is an integer from 0 to 3;
  • k is an integer from 0 to
  • the functional group possessed by the bifunctional or higher polymerizable compound is oxiranyl, an acid anhydride residue, or the like, it preferably reacts with these functional groups, and therefore preferably has an amine-based reactive group at the terminal.
  • Silica Ace (registered trademark) S310, S320, S330, and S360 are available from JNC Corporation, and KBM903 and KBE903 are available from Shin-Etsu Chemical Co., Ltd.
  • the terminal of the bifunctional or higher polymerizable compound is an amine, a coupling agent having oxiranyl or the like at the terminal is preferable.
  • the product manufactured by JNC Corporation includes Sila Ace (registered trademark) S510, S530, and the like.
  • combinations of functional groups that form a bond between a coupling agent and a polymerizable compound include, for example, combinations of oxiranyl and amino, vinyls, methacryloxys, carboxy or carboxylic anhydride residues and amines, imidazole and oxiranyl, etc. It can be mentioned, but is not limited to these. Any combination of functional groups capable of forming a bond between the coupling agent and the polymerizable compound may be used. A combination with high heat resistance is more preferable. Modification of the inorganic filler with a coupling agent is more preferable as the number of bonds increases as the number increases.
  • the first coupling agent and the second coupling agent may be the same or different.
  • the composition for heat dissipation member may further contain an organic compound (for example, a polymerizable compound or a polymer compound) that is not bonded to the first inorganic filler and the second inorganic filler, that is, does not contribute to the bonding. Further, it may contain a polymerization initiator, a solvent and the like.
  • an organic compound for example, a polymerizable compound or a polymer compound
  • it may contain a polymerization initiator, a solvent and the like.
  • the composition for a heat radiating member may include a polymerizable compound (in this case, not necessarily bifunctional or higher) that is not bonded to an inorganic filler as a constituent element.
  • a polymerizable compound a compound which does not hinder the thermosetting of the inorganic filler and does not evaporate or bleed out by heating is preferable.
  • This polymerizable compound is classified into a compound having no liquid crystallinity and a compound having liquid crystallinity.
  • Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, itaconic acid derivatives, and the like.
  • the content first, it is desirable to prepare a composition for a heat dissipation member that does not contain an unbonded polymerizable compound, measure its porosity, and add an amount of the polymerizable compound that can fill the void.
  • the composition for a heat radiating member may include a polymer compound that is not bonded to an inorganic filler as a constituent element.
  • a polymer compound a compound that does not lower the film formability and the mechanical strength is preferable.
  • the polymer compound may be a polymer compound that does not react with an inorganic filler, a coupling agent, and a polymerizable compound.
  • the polymerizable compound is oxiranyl and the silane coupling agent has amino, a polyolefin resin , Polyvinyl resin, silicone resin, wax and the like.
  • the inorganic filler After the inorganic filler is cured, it may be compounded by a method such as injecting into the void in a temperature range showing an isotropic phase, and an amount of liquid crystal compound calculated so as to fill the void in the inorganic filler in advance. It may be mixed and the inorganic fillers may be polymerized.
  • the composition for heat radiating members may contain a polymerization initiator as a constituent element.
  • a polymerization initiator for example, a radical photopolymerization initiator, a cationic photopolymerization initiator, a thermal radical polymerization initiator, or the like may be used depending on the components of the composition and the polymerization method.
  • a thermal radical polymerization initiator is preferable.
  • Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide.
  • Oxide (DTBPO) t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile (ACN), etc.
  • DTBPO diisopropyl peroxydicarbonate
  • t-butylperoxy-2-ethylhexanoate t-butylperoxypivalate
  • di-t-butylperoxide Oxide
  • MAIB dimethyl 2,2′-azobisisobutyrate
  • AIBN azobisisobuty
  • the composition for heat radiating members may contain a solvent.
  • the polymerization may be performed in a solvent or without a solvent.
  • the composition containing a solvent may be applied onto a substrate by, for example, a spin coating method and then photopolymerized after removing the solvent.
  • post-treatment may be performed by heat curing after heating to an appropriate temperature.
  • fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, and polyimide can be used as inorganic fibers and cloth such as glass fibers, carbon fibers, and carbon nanotubes, or polymer additives.
  • a coupling process is performed on the first inorganic filler, and one end of the coupling agent and the first inorganic filler are bonded together.
  • a known method can be used for the coupling treatment.
  • an inorganic filler and a coupling agent are added to a solvent. After stirring using a stirrer etc., it dries. After drying the solvent, heat treatment is performed under vacuum conditions using a vacuum dryer or the like.
  • a solvent is added to the inorganic filler and pulverized by ultrasonic treatment. The solution is separated and purified using a centrifuge.
  • the inorganic filler subjected to the coupling treatment after purification is dried using an oven.
  • the second inorganic filler is subjected to a coupling treatment (or the first inorganic filler subjected to the coupling treatment may be used as a second inorganic filler), and a coupling agent A bifunctional or higher functional polymerizable compound is further bonded to the other end of the substrate.
  • the inorganic filler subjected to the coupling treatment and the bifunctional or higher functional polymerizable compound are mixed using an agate mortar or the like, and then kneaded using two rolls or the like.
  • the first inorganic filler and the second inorganic filler are weighed, for example, so that the weight of the inorganic filler alone is 1: 1, and mixed in an agate mortar or the like. Then, it mixes using 2 rolls etc. and the composition for heat radiating members is obtained.
  • the mixing ratio of the first inorganic filler and the second inorganic filler is such that when the bonding group forming a bond between the first inorganic filler and the second inorganic filler is amine: epoxy, the weight of the inorganic filler alone is, for example, The weight ratio is preferably 1: 1 to 1:30, more preferably 1: 3 to 1:20.
  • the mixing ratio is determined by the number of terminal linking groups that form a bond between the first inorganic filler and the second inorganic filler. For example, if it is a secondary amine, it can react with two oxiranyls. A small amount may be used, and the oxiranyl side may be ring-opened, and it is preferable to use a larger amount calculated from the epoxy equivalent.
  • Manufacturing a heat radiating member As an example, a method for manufacturing a film as a heat radiating member using the composition for a heat radiating member will be described. The heat radiating member composition is sandwiched between hot plates using a compression molding machine, and oriented / cured by compression molding.
  • the pressure at the time of compression molding is preferably 50 ⁇ 200kgf / cm 2, more preferably 70 ⁇ 180kgf / cm 2.
  • the pressure during curing is preferably high.
  • the pressure is appropriately changed depending on the fluidity of the mold and the target physical properties (which direction of thermal conductivity is important) and an appropriate pressure is applied.
  • the composition is applied onto a substrate, and the solvent is removed by drying to form a coating layer having a uniform film thickness.
  • the coating method include spin coating, roll coating, caten coating, flow coating, printing, micro gravure coating, gravure coating, wire bar coating, dip coating, spray coating, meniscus coating, and the like.
  • the solvent can be removed by drying, for example, by air drying at room temperature, drying on a hot plate, drying in a drying furnace, blowing hot air or hot air, and the like.
  • the conditions for removing the solvent are not particularly limited, and it may be dried until the solvent is almost removed and the fluidity of the coating layer is lost.
  • the substrate examples include metal substrates such as copper, aluminum, and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride, and zinc oxide; glass substrates such as alkali glass, borosilicate glass, and flint glass; alumina; Inorganic insulating substrates such as aluminum nitride; polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenyleneoxide, polyethyleneterephthalate, polybutyleneterephthalate , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, Triacetyl cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and a plastic film substrate such as norbornene resins.
  • the film substrate may be a uniaxially stretched film or a biaxially stretched film.
  • the film substrate may be subjected to surface treatment such as saponification treatment, corona treatment, or plasma treatment in advance.
  • the material used as the protective layer include polyvinyl alcohol.
  • an anchor coat layer may be formed in order to improve the adhesion between the protective layer and the substrate.
  • Such an anchor coat layer may be any inorganic or organic material as long as it improves the adhesion between the protective layer and the substrate.
  • the bond between the inorganic fillers is configured by the coupling-processed inorganic filler and the coupling-processed inorganic filler modified with the polymerizable compound has been described.
  • the first inorganic filler is subjected to a coupling treatment with an amino-containing silane coupling agent.
  • the second inorganic filler is coupled with the silane coupling agent. Finally, the amino on the first inorganic filler side is bonded to the epoxy contained in the polymerizable compound on the second inorganic filler side.
  • the inorganic filler modified with the polymerizable compound after the coupling treatment may be used to bond the polymerizable compounds with an appropriate polymerization initiator or the like to form a bond between the inorganic fillers.
  • the above compound (1-2) is preferable as a heat dissipation material because it has a larger number of rings and is less likely to be softened at a higher temperature.
  • the heat resistance is high, and when the linearity is high, the elongation and fluctuation due to heat between the inorganic fillers are small, and furthermore, heat phonon conduction can be efficiently transmitted, which is preferable.
  • polycyclic and high linearity often develops liquid crystallinity as a result, it can be said that the liquid crystallinity improves heat conduction.
  • the heat radiating member according to the second embodiment of the present invention is formed by molding a cured product obtained by curing the composition for heat radiating member according to the first embodiment.
  • the cured product has high thermal conductivity and high heat resistance, and has a negative or very small thermal expansion coefficient, and is excellent in chemical stability, hardness, mechanical strength, and the like.
  • the mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, bending elastic modulus, impact strength, and the like.
  • the heat radiating member of the present invention is useful for a heat radiating plate, a heat radiating sheet, a heat radiating film, a heat radiating adhesive, a heat radiating molded product, and the like.
  • thermosetting temperature ranges from room temperature to 350 ° C., preferably from room temperature to 250 ° C., more preferably from 50 ° C. to 200 ° C.
  • curing time is 5 ° C.
  • the range is from second to 10 hours, preferably from 1 minute to 5 hours, more preferably from 5 minutes to 1 hour.
  • reheating treatment may be performed to reduce strain and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Polyethers (AREA)

Abstract

The present invention is a composition which is capable of forming a heat dissipation member that has high thermal conductivity and high heat resistance, while being able to be controlled with respect to the thermal expansion coefficient. A composition for heat dissipation members according to the present invention contains: a heat conductive first inorganic filler 1 which is bonded to one end of a first coupling agent; and a heat conductive second inorganic filler 2 which is bonded to one end of a second coupling agent, with the other end of the second coupling agent being bonded with a bi- or higher functional polymerizable compound 22. The bi- or higher functional polymerizable compound is a non-liquid crystalline compound; and at least one functional group of the polymerizable compound is able to be bonded to the other end of the first coupling agent.

Description

放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法Composition for heat radiating member, heat radiating member, electronic device, method for producing heat radiating member
 本発明は、放熱部材用組成物に関する。特に、電子機器内部に生じた熱を効率よく伝導、伝達することにより放熱し、熱膨張率を制御できる、放熱部材を形成可能な放熱部材用組成物に関する。 The present invention relates to a composition for a heat dissipation member. In particular, the present invention relates to a composition for a heat radiating member capable of forming a heat radiating member that can dissipate heat by efficiently conducting and transmitting heat generated inside the electronic device and control a coefficient of thermal expansion.
 近年、ハイブリッド自動車や電気自動車などの電力制御用の半導体素子や、高速コンピューター用のCPUなどにおいて、内部の半導体の温度が高くなり過ぎないように、パッケージ材料の高熱伝導化が望まれている。すなわち半導体チップから発生した熱を効果的に外部に放出させる能力が重要になっている。また、動作温度の上昇により、パッケージ内に使用されている材料間の熱膨張率の差により熱歪が発生し、配線の剥離などによる寿命の低下が問題になっている。 In recent years, in semiconductor elements for power control such as hybrid cars and electric cars, CPUs for high-speed computers, etc., it has been desired to increase the thermal conductivity of package materials so that the temperature of internal semiconductors does not become too high. That is, the ability to effectively release the heat generated from the semiconductor chip to the outside is important. In addition, due to the increase in operating temperature, thermal distortion occurs due to the difference in coefficient of thermal expansion between the materials used in the package, and there is a problem of a decrease in life due to peeling of the wiring.
 このような放熱問題を解決する方法としては、発熱部位に高熱伝導性材料(放熱部材)を接触させて熱を外部に導き、放熱する方法が挙げられる。特許文献1には、有機材料と無機材料を複合化させた放熱部材であって、無機材料間をカップリング剤と重合性液晶化合物で繋いだ放熱部材が開示されている(段落0007、図1、2)。カップリング剤と重合性液晶化合物で繋ぐことにより、無機材料間の熱伝導性を極めて高めることを可能とした。 As a method for solving such a heat dissipation problem, there is a method in which a heat-generating part is brought into contact with a highly heat-conductive material (heat-dissipating member) to guide heat to the outside and dissipate heat. Patent Document 1 discloses a heat dissipating member in which an organic material and an inorganic material are combined, and the heat dissipating member in which the inorganic material is connected by a coupling agent and a polymerizable liquid crystal compound (paragraph 0007, FIG. 1). 2). By connecting the coupling agent and the polymerizable liquid crystal compound, the thermal conductivity between the inorganic materials can be greatly enhanced.
国際公開第2016/031888号International Publication No. 2016/031888
 しかし、液晶化合物は多くの反応部位を有し、熱による影響を受けやすい。
 そこで本発明は、高熱伝導性を有し、熱膨張率を制御でき、さらに高耐熱性を有する、放熱部材を形成可能な組成物および放熱部材を提供することを課題とする。
However, liquid crystal compounds have many reaction sites and are easily affected by heat.
Then, this invention makes it a subject to provide the composition and heat dissipation member which can form the heat radiating member which has high heat conductivity, can control a thermal expansion coefficient, and also has high heat resistance.
 本発明者らは、放熱部材用組成物において、重合性化合物およびカップリング剤のうち特定の構造を有するものを使用すると、高熱伝導性有し、熱膨張率を制御でき、さらに耐熱性を向上させることができることを見出し、本発明を完成させた。 The present inventors use a polymerizable compound and a coupling agent having a specific structure in the heat radiating member composition, have high thermal conductivity, can control the coefficient of thermal expansion, and further improve heat resistance. The present invention has been completed.
 本発明の第1の態様に係る放熱部材用組成物は、例えば図2に示すように、第1のカップリング剤11の一端と結合した熱伝導性の第1の無機フィラー1と;第2のカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2であって、前記第2のカップリング剤12の他端にさらに2官能以上の重合性化合物22が結合した第2の無機フィラーと;を含み、前記第2のカップリング剤12は、前記2官能以上の重合性化合物22として、下記式(1-1)で表される重合性化合物が結合しており、前記重合性化合物22は、非液晶性化合物であり、前記重合性化合物22が有する官能基の少なくとも一つは、前記第1のカップリング剤11の他端と結合可能である。
   R-R-O-(Rx)-O-R11-R     (1-1)
 上記式(1-1)中、
 Rは、それぞれ、下記式(2-1)~(2-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 Rxは、下記式(2-3)~(2-6)のいずれかであり;
 nは、1~3の整数であり;
 R、R11は、それぞれ独立して単結合、または炭素数1~20のアルキレンである。
Figure JPOXMLDOC01-appb-C000005
 
 式(2-1)~(2-2)中、Rは、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。
Figure JPOXMLDOC01-appb-C000006
 式(2-4)~(2-6)中、R~R10は、それぞれ独立して水素、または炭素数1~20のアルキレンである。
 「一端」および「他端」とは、分子の形状の縁または端であればよく、分子の長辺の両端であってもなくてもよい。
 このように構成すると、無機フィラー同士をカップリング剤および重合性化合物を介して直接結合させて放熱部材を形成することができる。そのため、熱伝導の主な要素であるフォノンを直接伝播することができ、硬化後の放熱部材は水平方向だけでなく厚み方向にも極めて高い熱伝導性を有することができる。さらに、重合性化合物の構造は反応部位が少なく、熱による影響を受けにくいため、放熱部材は高耐熱性を有することができる。
The composition for heat radiating members according to the first aspect of the present invention includes, for example, as shown in FIG. 2, a thermally conductive first inorganic filler 1 bonded to one end of the first coupling agent 11; The second inorganic filler 2 that is thermally conductive and is bonded to one end of the coupling agent 12, and the second coupling agent 12 is bonded to the other end of the second coupling agent 12 with a second or higher functional polymerizable compound 22. In the second coupling agent 12, a polymerizable compound represented by the following formula (1-1) is bonded as the bifunctional or higher functional polymerizable compound 22; The polymerizable compound 22 is a non-liquid crystal compound, and at least one of the functional groups of the polymerizable compound 22 can be bonded to the other end of the first coupling agent 11.
R a —R 6 —O— (Rx) n —O—R 11 —R a (1-1)
In the above formula (1-1),
Each R a is the following formulas (2-1) to (2-2), amino, vinyl, carboxylic anhydride residues, or any polymerizable group containing these structures;
Rx is any one of the following formulas (2-3) to (2-6);
n is an integer from 1 to 3;
R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000005

In the formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
Figure JPOXMLDOC01-appb-C000006
In formulas (2-4) to (2-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms.
“One end” and “the other end” may be edges or ends of the shape of the molecule, and may or may not be both ends of the long side of the molecule.
If comprised in this way, inorganic fillers can be directly combined through a coupling agent and a polymeric compound, and a heat radiating member can be formed. Therefore, the phonon which is the main element of heat conduction can be directly propagated, and the cured heat dissipation member can have extremely high heat conductivity not only in the horizontal direction but also in the thickness direction. Furthermore, since the structure of the polymerizable compound has few reaction sites and is not easily affected by heat, the heat dissipation member can have high heat resistance.
 本発明の第2の態様に係る放熱部材用組成物は、上記本発明の第1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーに、前記第1のカップリング剤および前記第2のカップリング剤として、下記式(3-1)で表されるシランカップリング剤が結合した組成物である。
 (R-O)-Si(R3-j-(R-(R-(R-Ry
                            (3-1)
 上記式(3-1)中、
 Rは、H-、またはCH-(CH0~4-であり;
 Rは、-(CH0~3-O-であり;
 Rは、1,3-フェニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、またはナフタレン-2,7-ジイルであり;
 Rは、-(NH)0~1-(CH0~3-であり;
 Rは、H-、またはCH-(CH0~7-であり;
 Ryは、オキシラニル、オキセタニル、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 jは、0~3の整数であり;
 kは、0~1の整数であり;
 式(3-1)は、RとRの少なくとも1つを含む。
 このように構成すると、カップリング剤の構造は反応部位が少なく、熱による影響を受けにくいため、放熱部材は高耐熱性を有することができる。
The composition for a heat radiating member according to the second aspect of the present invention is the composition for a heat radiating member according to the first aspect of the present invention, wherein the first inorganic filler and the second inorganic filler include the first A composition in which a silane coupling agent represented by the following formula (3-1) is bonded as the first coupling agent and the second coupling agent.
(R 1 -O) j -Si (R 5 ) 3-j- (R 2 ) k- (R 3 ) k- (R 4 ) k -Ry
(3-1)
In the above formula (3-1),
R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
R 2 is — (CH 2 ) 0-3 —O—;
R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
j is an integer from 0 to 3;
k is an integer from 0 to 1;
Formula (3-1) includes at least one of R 3 and R 4 .
If comprised in this way, since the structure of a coupling agent has few reaction sites and is hard to receive the influence by heat, a heat radiating member can have high heat resistance.
 本発明の第3の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、前記第1の無機フィラーと前記第2の無機フィラーが、それぞれ、窒化ホウ素、炭化ホウ素、窒化炭素ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、グラフェン、アルミナ、窒化アルミニウム、シリカ、窒化珪素、炭化珪素、酸化亜鉛、酸化マグネシウム、水酸化マグネシウム、コーディエライト、または酸化鉄系材料から選ばれる少なくとも一つである。
 このように構成すると、無機フィラーは、熱伝導率が高く、熱膨張率が正か非常に小さいかまたは負であり、これらのフィラーと複合化することにより、目的とする放熱部材用組成物が得られる。
The composition for heat radiating members according to the third aspect of the present invention is the composition for heat radiating members according to the first aspect or the second aspect of the present invention, wherein the first inorganic filler and the second inorganic filler are used. The fillers are boron nitride, boron carbide, boron boron nitride, graphite, carbon fiber, carbon nanotube, graphene, alumina, aluminum nitride, silica, silicon nitride, silicon carbide, zinc oxide, magnesium oxide, magnesium hydroxide, cordier, respectively. It is at least one selected from light or iron oxide materials.
When configured in this way, the inorganic filler has a high thermal conductivity, and the thermal expansion coefficient is positive, very small, or negative, and by combining with these fillers, the intended composition for a heat dissipation member can be obtained. can get.
 本発明の第4の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第3の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーと異なる熱膨張率を持つ第3の無機フィラー;をさらに含む。
 このように構成すると、前記第1の無機フィラーと前記第2の無機フィラーが異なる熱膨張率を持つ場合、それらを複合化させると、複合化した放熱部材用組成物の熱膨張率は、各々のフィラーのみで複合化した場合の中間的な値になる。しかし、そのままではフィラーの隙間が多いような場合は、熱伝導率が高くならないばかりか、隙間への水分の侵入により電気絶縁性が低下する。そこで、熱伝導率が高く、第1、第2の無機フィラーに比べ粒子径の小さな第3の無機フィラーを加えることにより、第1、第2の無機フィラーの隙間を埋め、材料の安定性を高くする。さらに、第1、第2の無機フィラーのみを使用した場合に比べ、熱伝導率がより高い第3の無機フィラーを加えることにより、放熱部材の熱伝導率を高くすることが可能になる。第3の無機フィラーに使用する無機フィラーに制約はないが、高絶縁性が必要な場合には窒化ホウ素や窒化アルミニウム、炭化珪素素、窒化珪素素、高絶縁性が必要でない場合はダイヤモンド、カーボンナノチューブ、グラフェン、金属粉などの熱伝導率が高い物であることが望ましい。
The composition for a heat radiating member according to the fourth aspect of the present invention is the composition for a heat radiating member according to any one of the first aspect to the third aspect of the present invention. And a third inorganic filler having a coefficient of thermal expansion different from that of the second inorganic filler.
When comprised in this way, when the said 1st inorganic filler and the said 2nd inorganic filler have different thermal expansion coefficients, when they are compounded, the thermal expansion coefficient of the compounded composition for heat radiating members is respectively It becomes an intermediate value when combined with only the filler. However, if there are many gaps between the fillers as they are, not only the thermal conductivity will not be increased, but also the electrical insulation will be reduced due to the penetration of moisture into the gaps. Therefore, by adding a third inorganic filler having a high thermal conductivity and a particle size smaller than that of the first and second inorganic fillers, the gap between the first and second inorganic fillers is filled, and the stability of the material is improved. Make it high. Furthermore, compared with the case where only the first and second inorganic fillers are used, it is possible to increase the thermal conductivity of the heat radiating member by adding a third inorganic filler having a higher thermal conductivity. There are no restrictions on the inorganic filler used for the third inorganic filler, but boron nitride, aluminum nitride, silicon carbide, silicon nitride, or diamond or carbon when high insulation is not required when high insulation is required. It is desirable that the material has a high thermal conductivity such as a nanotube, graphene, or metal powder.
 本発明の第5の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第4の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、有機化合物または高分子化合物;をさらに含む。
 このように構成すると、第1、第2の無機フィラーを接続して硬化させた放熱部材において、熱伝導率を向上させるためにフィラーの粒径を大きくするにつれて、それにあいまって空隙率が高くなる場合は、その空隙を結合していない化合物で満たすことができ、熱伝導率や水蒸気遮断性能などを向上させることができる。
The composition for a heat radiating member according to the fifth aspect of the present invention is the composition for a heat radiating member according to any one of the first aspect to the fourth aspect of the present invention. And an organic compound or a polymer compound that is not bonded to the second inorganic filler.
If comprised in this way, in the heat radiating member which connected and hardened the 1st, 2nd inorganic filler, as the particle size of a filler is enlarged in order to improve thermal conductivity, the porosity becomes high together. In such a case, the voids can be filled with an unbonded compound, and the thermal conductivity, water vapor blocking performance, and the like can be improved.
 本発明の第6の態様に係る放熱部材は、上記本発明の第1の態様~第5の態様のいずれか1の態様に係る放熱部材用組成物が硬化した放熱部材である。
 このように構成すると、放熱部材は、無機フィラー間に結合を有し、極めて高い熱伝導性および耐熱性を有することができる。
The heat dissipation member according to the sixth aspect of the present invention is a heat dissipation member obtained by curing the composition for heat dissipation member according to any one of the first to fifth aspects of the present invention.
If comprised in this way, a thermal radiation member has a coupling | bonding between inorganic fillers, and can have very high thermal conductivity and heat resistance.
 本発明の第7の態様に係る電子機器は、上記本発明の第6の態様に係る放熱部材と;発熱部を有する電子デバイスと;を備え、前記放熱部材は、前記発熱部に接触するように前記電子デバイスに配置されている。
 このように構成すると、高熱伝導性、高耐熱性を有する放熱部材により、電子デバイスに生じた熱を効率よく伝導させることができる。また、面方向の熱膨張率を、放熱部材に取り付けた銅配線やシリコン、窒化ケイ素などの半導体素子の熱膨張率に近づけておくことにより、ヒートサイクルによる剥がれを抑制できる。
An electronic apparatus according to a seventh aspect of the present invention includes the heat dissipation member according to the sixth aspect of the present invention; and an electronic device having a heat generating portion, and the heat dissipation member is in contact with the heat generating portion. Arranged in the electronic device.
If comprised in this way, the heat which generate | occur | produced in the electronic device can be efficiently conducted with the heat radiating member which has high heat conductivity and high heat resistance. Moreover, peeling by heat cycle can be suppressed by making the thermal expansion coefficient in the surface direction close to the thermal expansion coefficient of a semiconductor element such as copper wiring, silicon, or silicon nitride attached to the heat dissipation member.
 本発明の第8の態様に係る放熱部材の製造方法は、例えば図2に示すとおり、熱伝導性の第1の無機フィラー1を、第1のカップリング剤11の一端と結合させる工程と;熱伝導性の第2の無機フィラー2を、第2のカップリング剤12の一端と結合させる工程と;前記第2のカップリング剤12の他端を、2官能以上の重合性化合物22と結合させる工程と;前記第1のカップリング剤11の他端を、前記2官能以上の重合性化合物11と結合させる工程と;を備え、前記2官能以上の重合性化合物22は、下記式(1-1)で表される重合性化合物であり、前記重合性化合物は、非液晶性化合物である。
   R-R-O-(Rx)-O-R11-R     (1-1)
 上記式(1-1)中、
 Rは、それぞれ、下記式(2-1)~(2-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 Rxは、下記式(2-3)~(2-6)のいずれかであり;
 nは、1~3の整数であり;
 R、R11は、それぞれ独立して単結合、または炭素数1~20のアルキレンである。
Figure JPOXMLDOC01-appb-C000007
 
 式(2-1)~(2-2)中、Rは、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。
Figure JPOXMLDOC01-appb-C000008
 
 式(2-4)~(2-6)中、R~R10は、それぞれ独立して水素、または炭素数1~20のアルキレンである。
 このように構成すると、無機フィラー間をカップリング剤および重合性化合物を介して結合した無機フィラーを含む放熱部材であって、高耐熱性の放熱部材を製造することができる。
The manufacturing method of the heat radiating member according to the eighth aspect of the present invention includes, for example, a step of bonding the thermally conductive first inorganic filler 1 to one end of the first coupling agent 11 as shown in FIG. Bonding the thermally conductive second inorganic filler 2 to one end of the second coupling agent 12; bonding the other end of the second coupling agent 12 to the bifunctional or higher functional polymerizable compound 22; And a step of bonding the other end of the first coupling agent 11 to the bifunctional or higher functional polymerizable compound 11, wherein the bifunctional or higher functional polymerizable compound 22 is represented by the following formula (1 -1), and the polymerizable compound is a non-liquid crystalline compound.
R a —R 6 —O— (Rx) n —O—R 11 —R a (1-1)
In the above formula (1-1),
Each R a is the following formulas (2-1) to (2-2), amino, vinyl, carboxylic anhydride residues, or any polymerizable group containing these structures;
Rx is any one of the following formulas (2-3) to (2-6);
n is an integer from 1 to 3;
R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000007

In the formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
Figure JPOXMLDOC01-appb-C000008

In formulas (2-4) to (2-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms.
If comprised in this way, it is a heat radiating member containing the inorganic filler which couple | bonded between the inorganic fillers via the coupling agent and the polymeric compound, Comprising: A high heat resistant heat radiating member can be manufactured.
 本発明の放熱部材用組成物から形成された放熱部材は、極めて高い熱伝導性、熱膨張率の制御性、および高耐熱性を有する。さらに、化学的安定性、硬度、および機械的強度などの優れた特性をも有する。当該放熱部材は、例えば、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱塗膜、放熱接着剤などに適している。 The heat radiating member formed from the composition for heat radiating member of the present invention has extremely high thermal conductivity, controllability of thermal expansion coefficient, and high heat resistance. In addition, it has excellent properties such as chemical stability, hardness, and mechanical strength. The heat radiating member is suitable for, for example, a heat radiating substrate, a heat radiating plate (planar heat sink), a heat radiating sheet, a heat radiating coating, and a heat radiating adhesive.
本願の放熱部材において、無機フィラー同士の結合を窒化ホウ素を例として示す概念図である。In the heat radiating member of this application, it is a conceptual diagram which shows the coupling | bonding of inorganic fillers as an example for boron nitride. 放熱部材用組成物の硬化により、第1の無機フィラー1に結合したカップリング剤11の他端が、第2の無機フィラー2の重合性化合物22と結合することを示す概念図である。It is a conceptual diagram which shows that the other end of the coupling agent 11 couple | bonded with the 1st inorganic filler 1 couple | bonds with the polymeric compound 22 of the 2nd inorganic filler 2 by hardening of the composition for heat radiating members. フィラーA、フィラーB、放熱部材の作製工程を示す概念図である。It is a conceptual diagram which shows the preparation process of the filler A, the filler B, and a heat radiating member.
 この出願は、日本国で2017年3月31日に出願された特願2017-072255号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。 This application is based on Japanese Patent Application No. 2017-072255 filed on March 31, 2017 in Japan, the contents of which form part of the present application. The present invention will be more fully understood from the following detailed description. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, the detailed description and specific examples are preferred embodiments of the present invention and are described for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the invention. The applicant does not intend to contribute any of the described embodiments to the public, and modifications and alternatives that may not be included in the scope of the claims within the scope of the claims are also subject to equivalence. As part of the invention.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description is omitted. Further, the present invention is not limited to the following embodiments.
 本明細書における用語の使い方は以下のとおりである。
 「液晶化合物」「液晶性化合物」は、ネマチック相やスメクチック相などの液晶相を発現する化合物である。
 「重合性基」は、重合反応に関与する基である。
Terms used in this specification are as follows.
“Liquid crystal compound” and “liquid crystal compound” are compounds that exhibit a liquid crystal phase such as a nematic phase or a smectic phase.
A “polymerizable group” is a group that participates in a polymerization reaction.
 「アルキルにおける任意の-CH-は、-O-などで置き換えられてもよい」あるいは「任意の-CHCH-は-CH=CH-などで置き換えられてもよい」等の句の意味を下記の一例で示す。例えば、C-における任意の-CH-が、-O-または-CH=CH-で置き換えられた基としては、CO-、CH-O-(CH-、CH-O-CH-O-などである。同様にC11-における任意の-CHCH-が、-CH=CH-で置き換えられた基としては、HC=CH-(CH-、CH-CH=CH-(CH-など、さらに任意の-CH-が-O-で置き換えられた基としては、CH-CH=CH-CH-O-などである。このように「任意の」という語は、「区別なく選択された少なくとも1つの」を意味する。なお、化合物の安定性を考慮して、酸素と酸素とが隣接したCH-O-O-CH-よりも、酸素と酸素とが隣接しないCH-O-CH-O-の方が好ましい。 In a phrase such as “any —CH 2 — in alkyl may be replaced by —O—” or “any —CH 2 CH 2 — may be replaced by —CH═CH—, etc.” The meaning is shown in the following example. For example, a group in which any —CH 2 — in C 4 H 9 — is replaced by —O— or —CH═CH— includes C 3 H 7 O—, CH 3 —O— (CH 2 ) 2 —, CH 3 —O—CH 2 —O— and the like. Similarly, groups in which any —CH 2 CH 2 — in C 5 H 11 — is replaced by —CH═CH— include H 2 C═CH— (CH 2 ) 3 —, CH 3 —CH═CH Examples of the group in which arbitrary —CH 2 — is replaced by —O—, such as — (CH 2 ) 2 —, include CH 3 —CH═CH—CH 2 —O—. Thus, the term “arbitrary” means “at least one selected without distinction”. In consideration of the stability of the compound, CH 3 —O—CH 2 —O— in which oxygen and oxygen are not adjacent to each other is more preferable than CH 3 —O—O—CH 2 — in which oxygen and oxygen are adjacent to each other. Is preferred.
 また、環Aに関して「任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよい」の句は、例えば1,4-フェニレンの2,3,5,6位の水素の少なくとも1つがフッ素やメチル基等の置換基で置き換えられた場合の態様を意味し、また置換基が「炭素数1~10のハロゲン化アルキル」である場合の態様としては、2-フルオロエチル基や3-フルオロ-5-クロロヘキシル基のような例を包含する。 The phrase “any hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons, or halogenated alkyl having 1 to 10 carbons” with respect to ring A is, for example, 2 of 1,4-phenylene. , 3, 5 and 6 positions are substituted with a substituent such as fluorine or methyl group, and the substituent is “halogenated alkyl having 1 to 10 carbon atoms” Examples of these include examples such as a 2-fluoroethyl group and a 3-fluoro-5-chlorohexyl group.
 「化合物(1-2)」は、後述する下記式(1-2)で表される液晶化合物を意味し、また、下記式(1-2)で表される化合物の少なくとも1種を意味することもある。「放熱部材用組成物」は、前記化合物(1-2)または他の重合性化合物から選択される少なくとも1種の化合物を含有する組成物を意味する。1つの化合物(1-2)が複数のAを有するとき、任意の2つのAは同一でも異なっていてもよい。複数の化合物(1-2)がAを有するとき、任意の2つのAは同一でも異なっていてもよい。この規則は、RやZなど他の記号、基などにも適用される。 “Compound (1-2)” means a liquid crystal compound represented by the following formula (1-2) described later, and also means at least one compound represented by the following formula (1-2). Sometimes. “Composition for heat dissipation member” means a composition containing at least one compound selected from the compound (1-2) or other polymerizable compounds. When one compound (1-2) has a plurality of A, any two A may be the same or different. When a plurality of compounds (1-2) have A, any two A may be the same or different. This rule also applies to other symbols and groups such as Ra and Z.
[放熱部材用組成物]
 本願の放熱部材用組成物は、硬化させることにより、無機フィラー同士をカップリング剤および2官能以上の重合性化合物を介して結合させて、放熱部材を形成する組成物である。図1は無機フィラーとしての窒化ホウ素を用いた場合の例である。窒化ホウ素(h-BN)をカップリング剤で処理すると、窒化ホウ素の場合は粒子の平面に反応基がないため、その周囲のみにカップリング剤が結合する。カップリング剤で処理された窒化ホウ素は、重合性化合物との結合を形成できる。したがって、図2に示すとおり、カップリング処理された窒化ホウ素1のカップリング剤11の他端と、カップリング処理されさらに重合性化合物22で修飾された窒化ホウ素2の重合性化合物22の他端とを結合させることにより、窒化ホウ素同士を図1のように互いに結合させることができる。
 このように、無機フィラー同士をカップリング剤および重合性化合物を介して結合させることにより、直接的にフォノンを伝播することができるので、硬化後の放熱部材は極めて高い熱伝導性を有し、無機成分の熱膨張率を直接反映させた有機無機複合材料の作製が可能になる。
[Composition for heat dissipation member]
The composition for heat radiating members of the present application is a composition that forms a heat radiating member by curing and bonding inorganic fillers via a coupling agent and a bifunctional or higher functional polymerizable compound. FIG. 1 shows an example in which boron nitride is used as an inorganic filler. When boron nitride (h-BN) is treated with a coupling agent, in the case of boron nitride, there is no reactive group in the plane of the particle, so that the coupling agent binds only around the periphery. Boron nitride treated with a coupling agent can form a bond with the polymerizable compound. Therefore, as shown in FIG. 2, the other end of the coupling agent 11 of the boron nitride 1 subjected to the coupling treatment and the other end of the polymerizable compound 22 of the boron nitride 2 that has been coupled and further modified with the polymerizable compound 22. Can be combined with each other as shown in FIG.
In this way, by bonding inorganic fillers via a coupling agent and a polymerizable compound, phonons can be directly propagated, so the heat-dissipating member after curing has extremely high thermal conductivity, An organic-inorganic composite material that directly reflects the coefficient of thermal expansion of the inorganic component can be produced.
 本発明の第1の実施の形態に係る放熱部材用組成物は、例えば図1、図2に示すように、複数の第1のカップリング剤1の一端と結合した熱伝導性の第1の無機フィラー11と;複数の第2のカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2であって、前記第2のカップリング剤12の他端にさらに2官能以上の重合性化合物22が結合した第2の無機フィラーと;を含む。
 図2に示すように、放熱部材用組成物を硬化させると、第1の無機フィラー1に結合したカップリング剤11の他端が、第2の無機フィラー2の重合性化合物22と結合する。このようにして、無機フィラー間の結合が形成される。
The heat radiating member composition according to the first embodiment of the present invention is, for example, as shown in FIG. 1 and FIG. 2, a first thermally conductive material coupled to one end of a plurality of first coupling agents 1. A thermally conductive second inorganic filler 2 bonded to one end of a plurality of second coupling agents 12, wherein the other end of the second coupling agent 12 is further bifunctional or higher. And a second inorganic filler to which the polymerizable compound 22 is bonded.
As shown in FIG. 2, when the heat radiating member composition is cured, the other end of the coupling agent 11 bonded to the first inorganic filler 1 is bonded to the polymerizable compound 22 of the second inorganic filler 2. In this way, a bond between inorganic fillers is formed.
[2官能以上の重合性化合物]
 2官能以上の重合性化合物は、非液晶性化合物であってもよい。2官能以上の重合性化合物は、カップリング剤との結合を形成可能な官能基を有する。
 2官能以上の重合性化合物としては、下記式(1-1)で表される重合性化合物を挙げることができる。
   R-R-O-(Rx)-O-R11-R     (1-1)
 上記式(1-1)中、
 Rは、それぞれ、下記式(2-1)~(2-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 Rxは、ナフタレン-2,6-ジイル、または、下記式(2-3)~(2-6)で表されるナフタレン-2,7-ジイル、ビフェニル-2,2’、ビフェニル-2,4’、ビフェニル-3,3’のいずれかであり;
 nは、1~3の整数であり;
 R、R11は、それぞれ独立して単結合、または炭素数1~20のアルキレンである。
Figure JPOXMLDOC01-appb-C000009
 
 式(2-1)~(2-2)中、Rは、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。
Figure JPOXMLDOC01-appb-C000010
 
 式(2-4)~(2-6)中、R~R10は、それぞれ独立して水素、または炭素数1~20のアルキレンである。
[Bifunctional or higher polymerizable compound]
The bifunctional or higher functional polymerizable compound may be a non-liquid crystalline compound. The bifunctional or higher functional polymerizable compound has a functional group capable of forming a bond with a coupling agent.
Examples of the bifunctional or higher polymerizable compound include polymerizable compounds represented by the following formula (1-1).
R a —R 6 —O— (Rx) n —O—R 11 —R a (1-1)
In the above formula (1-1),
Each R a is the following formulas (2-1) to (2-2), amino, vinyl, carboxylic anhydride residues, or any polymerizable group containing these structures;
Rx represents naphthalene-2,6-diyl, or naphthalene-2,7-diyl represented by the following formulas (2-3) to (2-6), biphenyl-2,2 ′, biphenyl-2,4 ', One of biphenyl-3,3';
n is an integer from 1 to 3;
R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000009

In the formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
Figure JPOXMLDOC01-appb-C000010

In formulas (2-4) to (2-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms.
 なお、Rは、それぞれ独立して、第1のカップリング剤の他端の官能基および第2のカップリング剤の他端の官能基と結合可能な官能基であればよい。例えば、上記式(2-1)~(2-2)で表される重合性基の他、シクロヘキセンオキシド、無水フタル酸、または無水コハク酸を挙げることができるが、これらに限られない。
 Rとカップリング剤との結合を形成する官能基の組合せとしては、例えば、オキシラニルとアミノ、ビニル同士、メタクリロキシ同士、カルボキシまたはカルボン酸無水物残基とアミン、イミダゾールとオキシラニル等の組合せを挙げることができるが、これらに限られない。重合性化合物とカップリング剤との結合が形成可能な官能基の組合せであればよい。耐熱性の高い組合せがより好ましい。
In addition, each Ra should just be a functional group which can couple | bond with the functional group of the other end of a 1st coupling agent, and the functional group of the other end of a 2nd coupling agent each independently. Examples thereof include, but are not limited to, a polymerizable group represented by the above formulas (2-1) to (2-2), cyclohexene oxide, phthalic anhydride, or succinic anhydride.
Examples of combinations of functional groups that form a bond between Ra and a coupling agent include combinations of oxiranyl and amino, vinyls, methacryloxys, carboxy or carboxylic anhydride residues and amines, imidazole and oxiranyl, and the like. Can, but is not limited to. Any combination of functional groups capable of forming a bond between the polymerizable compound and the coupling agent may be used. A combination with high heat resistance is more preferable.
 式(1-1)で表される重合性化合物は、その構造中反応部位が少なく、熱による影響を受けにくい。一方で、その構造はフォノンの伝播に優れることがわかった。よって、放熱部材用組成物から形成された放熱部材は、高熱伝導性とともに高耐熱性を有することができる。 The polymerizable compound represented by the formula (1-1) has few reaction sites in its structure and is hardly affected by heat. On the other hand, the structure was found to be excellent in phonon propagation. Therefore, the heat radiating member formed from the composition for heat radiating members can have high heat resistance with high heat conductivity.
 2官能以上の重合性化合物は、液晶性化合物であってもよい。液晶性を有する2官能以上の重合性化合物としては、下記式(1-2)で表される重合性液晶化合物を挙げることができる。
 重合性液晶化合物は、液晶骨格と重合性基を有し、高い重合反応性、広い液晶相温度範囲、良好な混和性などを有する。この化合物(1-2)は他の液晶性の化合物や重合性の化合物などと混合するとき、均一になりやすい。
   R-Z-(A-Z)-R     (1-2)
The bifunctional or higher polymerizable compound may be a liquid crystal compound. Examples of the bifunctional or higher functional polymerizable compound having liquid crystallinity include a polymerizable liquid crystal compound represented by the following formula (1-2).
The polymerizable liquid crystal compound has a liquid crystal skeleton and a polymerizable group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (1-2) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
R a -Z- (AZ) m -R a (1-2)
 上記化合物(1-2)の末端基R、環構造Aおよび結合基Zを適宜選択することによって、液晶相発現領域などの物性を任意に調整することができる。末端基R、環構造Aおよび結合基Zの種類が、化合物(1-2)の物性に与える効果、ならびに、これらの好ましい例を以下に説明する。 By appropriately selecting the terminal group R a , the ring structure A, and the bonding group Z of the compound (1-2), physical properties such as a liquid crystal phase developing region can be arbitrarily adjusted. The effects of the terminal group R a , the ring structure A and the bonding group Z on the physical properties of the compound (1-2), and preferred examples thereof will be described below.
・末端基R
 末端基Rは、上記式(1-1)で定義したRと同義である。
・ Terminal group R a
The terminal group R a has the same meaning as R a defined in the above formula (1-1).
・環構造A
 上記化合物(1-2)の環構造Aにおける少なくとも1つの環が1,4-フェニレンの場合、配向秩序パラメーター(orientational order parameter)および磁化異方性が大きい。また、少なくとも2つの環が1,4-フェニレンの場合、液晶相の温度範囲が広く、さらに透明点が高い。1,4-フェニレン環上の少なくとも1つの水素がシアノ、ハロゲン、-CFまたは-OCFに置換された場合、誘電率異方性が高い。また、少なくとも2つの環が1,4-シクロヘキシレンである場合、透明点が高く、かつ粘度が小さい。
・ Ring structure A
When at least one ring in the ring structure A of the compound (1-2) is 1,4-phenylene, the orientational order parameter and the magnetic anisotropy are large. When at least two rings are 1,4-phenylene, the temperature range of the liquid crystal phase is wide and the clearing point is high. When at least one hydrogen on the 1,4-phenylene ring is substituted with cyano, halogen, —CF 3 or —OCF 3 , the dielectric anisotropy is high. When at least two rings are 1,4-cyclohexylene, the clearing point is high and the viscosity is low.
 好ましいAとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイルなどが挙げられる。 Preferred examples of A include 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4 -Phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2 , 3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-3,6-diyl, naphthalene -2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7-diyl, 9,9-dimethylfluorene-2,7 Diyl, 9-ethyl-2,7-diyl, 9-fluoro-2,7-diyl, 9,9-like difluoro-2,7-diyl.
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。 The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
 さらに好ましいAとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレンなどである。特に好ましいAは、1,4-シクロへキシレンおよび1,4-フェニレンである。 More preferable A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene and the like. Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
・結合基Z
 上記化合物(1-2)の結合基Zが、単結合、-(CH-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-または-(CH-である場合、特に、単結合、-(CH-、-CFO-、-OCF-、-CH=CH-または-(CH-である場合、粘度が小さくなる。また、結合基Zが、-CH=CH-、-CH=N-、-N=CH-、-N=N-または-CF=CF-である場合、液晶相の温度範囲が広い。また、結合基Zが、炭素数4~10程度のアルキルの場合、融点が低下する。
・ Linking group Z
The linking group Z of the compound (1-2) is a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═CH In the case of —, —CF═CF— or — (CH 2 ) 4 —, in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH═CH— or — In the case of (CH 2 ) 4 —, the viscosity becomes small. Further, when the bonding group Z is —CH═CH—, —CH═N—, —N═CH—, —N═N— or —CF═CF—, the temperature range of the liquid crystal phase is wide. In addition, when the bonding group Z is alkyl having about 4 to 10 carbon atoms, the melting point is lowered.
 好ましいZとしては、単結合、-(CH-、-(CF-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-、-C≡C-、-(CH-、-(CHO-、-O(CH-、-(CHCOO-、-OCO(CH-、-CH=CH-COO-、-OCO-CH=CH-などが挙げられる。 Preferred Z is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, — OCF 2 —, —CH═CH—, —CF═CF—, —C≡C—, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — ( CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH═CH—COO—, —OCO—CH═CH— and the like.
 さらに好ましいZとしては、単結合、-(CH-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-C≡C-などが挙げられる。特に好ましいZとしては、単結合、-(CH-、-COO-または-OCO-である。 More preferable Z is a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═ CH—, —C≡C— and the like can be mentioned. Particularly preferred Z is a single bond, — (CH 2 ) 2 —, —COO— or —OCO—.
 上記化合物(1-2)が多くの環を持つほどより高温で軟化しにくくなるので放熱材料として好ましいが、軟化温度が重合温度よりも高くなると成形が難しくなるので、目的にそって両者のバランスをとることが好ましい。なお、本明細書においては、基本的に6員環および6員環を含む縮合環等を環とみなし、例えば3員環や4員環、5員環単独のものは環とみなさない。また、ナフタレン環やフルオレン環などの縮合環は1つの環とみなす。 The more the compound (1-2) has more rings, the more difficult it is to soften at a higher temperature, which is preferable as a heat dissipation material. However, since the molding becomes difficult when the softening temperature is higher than the polymerization temperature, the balance between the two according to the purpose. It is preferable to take In the present specification, basically, a 6-membered ring and a condensed ring including a 6-membered ring are regarded as a ring, and for example, a 3-membered ring, a 4-membered ring or a 5-membered ring alone is not regarded as a ring. A condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
 上記化合物(1-2)は、光学活性であってもよいし、光学的に不活性でもよい。化合物(1-2)が光学活性である場合、該化合物(1-2)は不斉炭素を有する場合と軸不斉を有する場合がある。不斉炭素の立体配置はRでもSでもよい。不斉炭素はRまたはAのいずれに位置していてもよく、不斉炭素を有すると、化合物(1-2)の相溶性がよい。化合物(1-2)が軸不斉を有する場合、ねじれ誘起力が大きい。また、施光性はいずれでも構わない。
 以上のように、末端基R、環構造Aおよび結合基Zの種類、環の数を適宜選択することにより、目的の物性を有する化合物を得ることができる。
The compound (1-2) may be optically active or optically inactive. When the compound (1-2) is optically active, the compound (1-2) may have an asymmetric carbon or an axial asymmetry. The configuration of the asymmetric carbon may be R or S. The asymmetric carbon may be located at either Ra or A, and when it has an asymmetric carbon, the compatibility of the compound (1-2) is good. When the compound (1-2) has axial asymmetry, the twist-inducing force is large. In addition, the light application property may be any.
As described above, a compound having desired physical properties can be obtained by appropriately selecting the terminal group R a , the type of the ring structure A and the bonding group Z, and the number of rings.
・化合物(1-2)
 化合物(1-2)は、下記式(1-a)または(1-b)のように表すこともできる。 
   P-Y-(A-Z)-R     (1-a)
   P-Y-(A-Z)-Y-P     (1-b)
・ Compound (1-2)
The compound (1-2) can also be represented by the following formula (1-a) or (1-b).
PY- (AZ) m -R a (1-a)
PY- (AZ) m -YP (1-b)
 上記式(1-a)および(1-b)中、A、Z、Rは上記式(1-2)で定義したA、Z、Rと同義であり、Pは下記式(2-1)~(2-2)で表される重合性基、シクロヘキセンオキシド、無水フタル酸、または無水コハク酸を示し、Yは単結合または炭素数1~20のアルキレン、好ましくは炭素数1~10のアルキレンを示し、該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-または-CH=CH-で置き換えられてもよい。特に好ましいYとしては、炭素数1~10のアルキレンの片末端もしくは両末端の-CH-が-O-で置き換えられたアルキレンである。mは1~6の整数、好ましくは2~6の整数、さらに好ましくは2~4の整数である。
Figure JPOXMLDOC01-appb-C000011
 式(2-1)~(2-2)中、Rが、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。
In the above formulas (1-a) and (1-b), A, Z and R a have the same meaning as A, Z and R a defined in the above formula (1-2), and P represents the following formula (2- 1) to (2-2) represents a polymerizable group, cyclohexene oxide, phthalic anhydride, or succinic anhydride, and Y is a single bond or alkylene having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. In the alkylene, arbitrary —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, —OCO— or —CH═CH—. Particularly preferred Y is alkylene in which —CH 2 — at one or both ends of alkylene having 1 to 10 carbon atoms is replaced by —O—. m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
Figure JPOXMLDOC01-appb-C000011
In formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
 好ましい化合物(1-2)の例としては、以下に示す化合物(a-1)~(a-10)、(b-1)~(b-16)、(c-1)~(c-16)、(d-1)~(d-15)、(e-1)~(e-15)、(f-1)~(f-14)、(g-1)~(g-20)が挙げられる。なお、式中の*は不斉炭素を示す。 Examples of preferred compound (1-2) include compounds (a-1) to (a-10), (b-1) to (b-16), and (c-1) to (c-16) shown below. ), (D-1) to (d-15), (e-1) to (e-15), (f-1) to (f-14), and (g-1) to (g-20). Can be mentioned. In the formula, * represents an asymmetric carbon.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
 上記化学式(a-1)~(g-20)において、R、PおよびYは上記式(1-a)および(1-b)で定義したとおりである。
 Zは、それぞれ独立して単結合、-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-である。なお、複数のZは同一でも異なっていてもよい。
In the chemical formulas (a-1) to (g-20), R a , P and Y are as defined in the above formulas (1-a) and (1-b).
Z 1 is each independently a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH═CH—, —CF═CF—, —CH═CHCOO—, —OCOCH═CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —C≡C—, —C≡C—COO—, —OCO—C≡C—, —C≡C—CH═CH—, —CH═CH —C≡C—, —CH═N—, —N═CH—, —N═N—, —OCF 2 — or —CF 2 O—. A plurality of Z 1 may be the same or different.
 Zは、それぞれ独立して-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-である。 Z 2 is independently — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O —, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH═CH—, —CF═CF—, —CH═CHCOO—, —OCOCH═CH—, — (CH 2 ) 2 COO —, —OCO (CH 2 ) 2 —, —C≡C—, —C≡C—COO—, —OCO—C≡C—, —C≡C—CH═CH—, —CH═CH—C≡ C—, —CH═N—, —N═CH—, —N═N—, —OCF 2 — or —CF 2 O—.
 Zは、それぞれ独立して単結合、炭素数1~10のアルキル、-(CH-、-O(CHO-、-CHO-、-OCH-、-O(CH-、-(CHO-、-COO-、-OCO-、-CH=CH-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-CF=CF-、-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-であり、複数のZは同一でも異なっていてもよい。aは1~20の整数である。 Z 3 is each independently a single bond, alkyl having 1 to 10 carbon atoms, — (CH 2 ) a —, —O (CH 2 ) a O—, —CH 2 O—, —OCH 2 —, —O (CH 2 ) 3 —, — (CH 2 ) 3 O—, —COO—, —OCO—, —CH═CH—, —CH═CHCOO—, —OCOCH═CH—, — (CH 2 ) 2 COO— , —OCO (CH 2 ) 2 —, —CF═CF—, —C≡C—, —CH═N—, —N═CH—, —N═N—, —OCF 2 — or —CF 2 O— And the plurality of Z 3 may be the same or different. a is an integer of 1 to 20.
 Xは、任意の水素がハロゲン、アルキル、フッ化アルキルで置き換えられてもよい1,4-フェニレンおよびフルオレン-2,7-ジイルの置換基であり、ハロゲン、アルキルまたはフッ化アルキルを示す。 X is a substituent of 1,4-phenylene and fluorene-2,7-diyl in which arbitrary hydrogen may be replaced by halogen, alkyl or fluorinated alkyl, and represents halogen, alkyl or fluorinated alkyl.
 上記化合物(1-2)のより好ましい態様について説明する。より好ましい化合物(1-2)は、下記式(1-c)または(1-d)で表すことができる。
   P-Y-(A-Z)-R     (1-c)
   P-Y-(A-Z)-Y-P     (1-d)
 上記式中、A、Y、Z、Rおよびmはすでに定義したとおりであり、Pは下記式(2-1)~(2-2)で表される重合性基を示す。上記式(1-d)の場合、2つのPは同一の重合性基(2-1)~(2-2)を示し、2つのYは同一の基を示し、2つのYは対称となるように結合する。
Figure JPOXMLDOC01-appb-C000026
 
A more preferred embodiment of the compound (1-2) will be described. More preferred compound (1-2) can be represented by the following formula (1-c) or (1-d).
P 1 -Y- (AZ) m -R a (1-c)
P 1 -Y- (AZ) m -YP 1 (1-d)
In the above formula, A, Y, Z, R a and m are as defined above, and P 1 represents a polymerizable group represented by the following formulas (2-1) to (2-2). In the case of the above formula (1-d), two P 1 represent the same polymerizable group (2-1) to (2-2), two Y represent the same group, and two Y are symmetrical. Combine to be.
Figure JPOXMLDOC01-appb-C000026
 上記化合物(1-2)のより好ましい具体例を以下に示す。 More preferred specific examples of the compound (1-2) are shown below.
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
・化合物(1-1)(1-2)の合成方法
 上記化合物(1-1)(1-2)は、有機合成化学における公知の手法を組合せることにより合成できる。出発物質に目的の末端基、環構造および結合基を導入する方法は、例えば、ホーベン-ワイル(Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart)、オーガニック・シンセシーズ(Organic Syntheses, John Wily & Sons, Inc.)、オーガニック・リアクションズ(Organic Reactions, John Wily & Sons Inc.)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。また、特開2006-265527号公報を参照してもよい。
Synthesis method of compounds (1-1) and (1-2) The compounds (1-1) and (1-2) can be synthesized by combining known methods in organic synthetic chemistry. Methods for introducing the desired end groups, ring structures and linking groups into the starting materials are described, for example, by Houben-Wyle, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John Books such as Wily & Sons, Inc., Organic Reactions, John Wily & Sons Inc., Comprehensive Organic Synthesis, Pergamon Press, New Experimental Chemistry Course (Maruzen) It is described in. Reference may also be made to JP-A-2006-265527.
 2官能以上の重合性化合物(以下、単に「重合性化合物」ということがある)は、上記式(1-1)(1-2)で示す重合性化合物以外の重合性化合物であってもよい。例えば、ポリエーテルのジグリシジルエーテル、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビフェノールのジグリシジルエーテル、または式(1-2)の化合物の中でも直線性が足りず液晶性を発現しなかった化合物などが挙げられる。
 上記重合性化合物は、有機合成化学における公知の手法を組合せることにより合成できる。
The bifunctional or higher functional polymerizable compound (hereinafter sometimes simply referred to as “polymerizable compound”) may be a polymerizable compound other than the polymerizable compound represented by the above formulas (1-1) and (1-2). . For example, among diglycidyl ether of polyether, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of biphenol, or a compound of formula (1-2), the liquid crystallinity is insufficient. Examples of the compound that were not present.
The polymerizable compound can be synthesized by combining known methods in organic synthetic chemistry.
 本発明に用いる重合性化合物は、カップリング剤との結合を形成するため2官能以上の官能基を有することが好ましく、3官能以上、または4官能以上である場合を含む。さらに、重合性化合物の長辺の両端に官能基を有する化合物が直線的な結合を形成できるため好ましい。
 なお、重合性化合物等による表面修飾は少なすぎるとフィラー間を結合する分子が少なすぎるため強度が低くなり、多すぎるとガラス転移温度が発現するなど樹脂の性質が強く出る。したがって、求められる特性によって、表面修飾量は適宜調整することが望ましい。
The polymerizable compound used in the present invention preferably has a bifunctional or higher functional group in order to form a bond with a coupling agent, and includes a case where the functional group is trifunctional or higher, or tetrafunctional or higher. Furthermore, a compound having a functional group at both ends of the long side of the polymerizable compound is preferable because it can form a linear bond.
If the surface modification with a polymerizable compound or the like is too little, the strength of the resin becomes strong because the number of molecules binding between the fillers is too few and the strength is lowered. Therefore, it is desirable to appropriately adjust the surface modification amount according to the required characteristics.
[無機フィラー]
 第1の無機フィラー、および第2の無機フィラーとしては、窒化物、炭化物、炭素材料、金属酸化物、ケイ酸塩鉱物等を挙げることができる。第1の無機フィラーおよび第2の無機フィラーは、同一であってもよく異なったものでもよい。
 具体的には、第1の無機フィラー、第2の無機フィラーには、高熱伝導性で熱膨張率が非常に小さいか負である無機フィラーとして、窒化ホウ素、炭化ホウ素、窒化炭素ホウ素、黒鉛、炭素繊維、カーボンナノチューブを挙げることができる。または、アルミナ、シリカ、酸化マグネシウム、酸化亜鉛、酸化鉄、フェライト、ムライト、コーディエライト、窒化珪素、および炭化珪素を挙げることができる。
 または、第1または第2の無機フィラーのどちらか一方に下記の熱伝導率が高く熱膨張率が正である無機フィラーを用いてもよい。
[Inorganic filler]
Examples of the first inorganic filler and the second inorganic filler include nitrides, carbides, carbon materials, metal oxides, and silicate minerals. The first inorganic filler and the second inorganic filler may be the same or different.
Specifically, for the first inorganic filler and the second inorganic filler, boron nitride, boron carbide, boron nitride, graphite, and the like are used as inorganic fillers having high thermal conductivity and a very small or negative coefficient of thermal expansion. Examples thereof include carbon fibers and carbon nanotubes. Alternatively, alumina, silica, magnesium oxide, zinc oxide, iron oxide, ferrite, mullite, cordierite, silicon nitride, and silicon carbide can be given.
Alternatively, an inorganic filler having the following high thermal conductivity and a positive coefficient of thermal expansion may be used for either one of the first and second inorganic fillers.
 第3の無機フィラーとしては、熱伝導率が高い、または第1、第2の無機フィラーよりもサイズが小さい、第1、第2の無機フィラーとは異なる熱膨張率を持つ等の無機フィラーが好ましい。例えば、アルミナ、シリカ、窒化ホウ素、炭化ホウ素、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、カーボンナノチューブ、黒鉛、グラフェン、珪素、ベリリア、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化珪素、酸化銅、酸化チタン、酸化セリウム、酸化イットリウム、酸化錫、酸化ホルミニウム、酸化ビスマス、酸化コバルト、酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、金、銀、銅、白金、鉄、錫、鉛、ニッケル、アルミニウム、マグネシウム、タングステン、モリブデン、ステンレスなどの無機充填材および金属充填材を挙げることができる。第3の無機フィラーは、未修飾であってもよく、カップリング剤で修飾したものであってもよく、カップリング剤と重合性化合物で修飾したものであってもよい。 As the third inorganic filler, an inorganic filler having a high thermal conductivity, a smaller size than the first and second inorganic fillers, a thermal expansion coefficient different from that of the first and second inorganic fillers, and the like. preferable. For example, alumina, silica, boron nitride, boron carbide, silicon carbide, aluminum nitride, silicon nitride, diamond, carbon nanotube, graphite, graphene, silicon, beryllia, magnesium oxide, aluminum oxide, zinc oxide, silicon oxide, copper oxide, oxidation Titanium, cerium oxide, yttrium oxide, tin oxide, holmium oxide, bismuth oxide, cobalt oxide, calcium oxide, magnesium hydroxide, aluminum hydroxide, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium And inorganic fillers and metal fillers such as tungsten, molybdenum and stainless steel. The third inorganic filler may be unmodified, may be modified with a coupling agent, or may be modified with a coupling agent and a polymerizable compound.
 重合性化合物の構造はこれら無機フィラーの間を効率よく直接結合できる形状及び長さを持っていることが望ましい。無機フィラーの種類、形状、大きさ、添加量などは、目的に応じて適宜選択できる。得られる放熱部材が絶縁性を必要とする場合、所望の絶縁性が保たれれば導電性を有する無機フィラーであっても構わない。無機フィラーの形状としては、板状、球状、無定形、繊維状、棒状、筒状などが挙げられる。 It is desirable that the structure of the polymerizable compound has a shape and length that can efficiently and directly bond these inorganic fillers. The kind, shape, size, addition amount, and the like of the inorganic filler can be appropriately selected according to the purpose. When the obtained heat radiating member requires insulation, an inorganic filler having conductivity may be used as long as the desired insulation is maintained. Examples of the shape of the inorganic filler include a plate shape, a spherical shape, an amorphous shape, a fiber shape, a rod shape, and a tubular shape.
 無機フィラーは、好ましくは、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素、黒鉛、炭素繊維、カーボンナノチューブである。特に六方晶系の窒化ホウ素(h-BN)や黒鉛が好ましい。窒化ホウ素、黒鉛は平面方向の熱伝導率が非常に高く、窒化ホウ素は誘電率も低く、絶縁性も高いため好ましい。例えば、板状結晶の窒化ホウ素を用いると、成型および硬化時に、原料のフローや圧力によって、板状構造が金型に沿って配向され易いため好ましい。 The inorganic filler is preferably boron nitride, aluminum nitride, silicon nitride, silicon carbide, graphite, carbon fiber, or carbon nanotube. In particular, hexagonal boron nitride (h-BN) and graphite are preferable. Boron nitride and graphite are preferable because they have a very high thermal conductivity in the plane direction, and boron nitride has a low dielectric constant and high insulation. For example, the use of plate-like crystal boron nitride is preferable because the plate-like structure is easily oriented along the mold by the flow and pressure of the raw material during molding and curing.
 無機フィラーの平均粒径は、0.1~200μmであることが好ましい。より好ましくは、1~100μmである。0.1μm以上であると熱伝導率がよく、200μm以下であると充填率を上げることができる。
 なお、本明細書において平均粒径とは、レーザー回折・散乱法による粒度分布測定に基づく。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法により、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。
 無機フィラーとカップリング剤および重合性化合物の割合は、使用する無機フィラーと結合させるカップリング剤の量に依存する。第1、第2の無機フィラーとして用いられる化合物(例えば窒化ホウ素)は、前述のように表面に反応基がなく、側面にのみ反応基が存在する。その少ない反応基にできるだけ多くのカップリング剤を結合させ、その反応基の数と同数か少し多い有機化合物を結合させることが好ましい。無機フィラーへのカップリング剤の反応量は、主に無機フィラーの大きさや使用するカップリング剤の反応性により変化する。例えば、無機フィラーが大きくなるほど、無機フィラーの側面の面積比が減少するので修飾量は少ない。できるだけ多くのカップリング剤を反応させたいが、粒子を小さくすると生成物の熱伝導率が低くなるので、バランスを取ることが好ましい。
 放熱部材中のカップリング剤および重合性化合物と、無機成分との体積比率は、5:95~30:70の範囲になることが望ましく、さらに望ましくは10:90~25:75になることが望ましい。無機成分とは、シランカップリング剤処理などをおこなう前の無機原料のことである。
The average particle size of the inorganic filler is preferably 0.1 to 200 μm. More preferably, it is 1 to 100 μm. When it is 0.1 μm or more, the thermal conductivity is good, and when it is 200 μm or less, the filling rate can be increased.
In the present specification, the average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis based on the Franhofer diffraction theory and Mie's scattering theory, the larger side and the smaller side are equivalent (volume basis). Was the median diameter.
The ratio of the inorganic filler, the coupling agent, and the polymerizable compound depends on the amount of the coupling agent to be combined with the inorganic filler to be used. The compound used as the first and second inorganic fillers (for example, boron nitride) has no reactive group on the surface as described above, and the reactive group exists only on the side surface. It is preferable that as many coupling agents as possible be bound to the few reactive groups, and an organic compound equal to or slightly larger than the number of reactive groups be bound. The reaction amount of the coupling agent to the inorganic filler varies mainly depending on the size of the inorganic filler and the reactivity of the coupling agent used. For example, the larger the inorganic filler, the smaller the amount of modification because the area ratio of the side surface of the inorganic filler decreases. Although it is desired to react as much coupling agent as possible, it is preferable to balance the particle size because the thermal conductivity of the product is lowered when the particle size is reduced.
The volume ratio of the coupling agent and polymerizable compound in the heat radiating member to the inorganic component is preferably in the range of 5:95 to 30:70, more preferably 10:90 to 25:75. desirable. An inorganic component is an inorganic raw material before performing a silane coupling agent process.
[カップリング剤]
 無機フィラーに結合させるカップリング剤は、2官能以上の重合性化合物が有する官能基と結合可能な官能基を持つ。カップリング剤としては、下記式(3-1)で表されるシランカップリング剤を挙げることができる。
 (R-O)-Si(R3-j-(R-(R-(R-Ry
                            (3-1)
 上記式(3-1)中、
 Rは、H-、またはCH-(CH0~4-であり;
 Rは、-(CH0~3-O-であり;
 Rは、1,3-フェニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、またはナフタレン-2,7-ジイルであり;
 Rは、-(NH)0~1-(CH0~3-であり;
 Rは、H-、またはCH-(CH0~7-であり;
 Ryは、オキシラニル、オキセタニル、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 jは、0~3の整数であり;
 kは、0~1の整数であり;
 式(3-1)は、RとRの少なくとも1つを含む。
[Coupling agent]
The coupling agent to be bonded to the inorganic filler has a functional group that can be bonded to the functional group of the bifunctional or higher polymerizable compound. Examples of the coupling agent include silane coupling agents represented by the following formula (3-1).
(R 1 -O) j -Si (R 5 ) 3-j- (R 2 ) k- (R 3 ) k- (R 4 ) k -Ry
(3-1)
In the above formula (3-1),
R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
R 2 is — (CH 2 ) 0-3 —O—;
R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
j is an integer from 0 to 3;
k is an integer from 0 to 1;
Formula (3-1) includes at least one of R 3 and R 4 .
 2官能以上の重合性化合物が有する官能基がオキシラニルや酸無水物残基等の場合は、それらの官能基と反応することが好ましいので、アミン系反応基を末端にもつものが好ましい。例えば、JNC(株)製では、サイラエース(登録商標)S310、S320、S330、S360、信越化学工業(株)製では、KBM903、KBE903などが挙げられる。
 2官能以上の重合性化合物の末端がアミンの場合は、オキシラニル等を末端に持つカップリング剤が好ましい。例えば、JNC(株)製では、サイラエース(登録商標)S510、S530などが挙げられる。
 カップリング剤と重合性化合物との結合を形成する官能基の組合せとしては、例えば、オキシラニルとアミノ、ビニル同士、メタクリロキシ同士、カルボキシまたはカルボン酸無水物残基とアミン、イミダゾールとオキシラニル等の組合せを挙げることができるが、これらに限られない。カップリング剤と重合性化合物との結合が形成可能な官能基の組合せであればよい。耐熱性の高い組合せがより好ましい。
 カップリング剤による無機フィラーの修飾は、多ければ多いほど結合が増えるため好ましい。第1のカップリング剤と第2のカップリング剤は、同一のものでもよく異なるものでもよい。
When the functional group possessed by the bifunctional or higher polymerizable compound is oxiranyl, an acid anhydride residue, or the like, it preferably reacts with these functional groups, and therefore preferably has an amine-based reactive group at the terminal. For example, Silica Ace (registered trademark) S310, S320, S330, and S360 are available from JNC Corporation, and KBM903 and KBE903 are available from Shin-Etsu Chemical Co., Ltd.
When the terminal of the bifunctional or higher polymerizable compound is an amine, a coupling agent having oxiranyl or the like at the terminal is preferable. For example, the product manufactured by JNC Corporation includes Sila Ace (registered trademark) S510, S530, and the like.
Examples of combinations of functional groups that form a bond between a coupling agent and a polymerizable compound include, for example, combinations of oxiranyl and amino, vinyls, methacryloxys, carboxy or carboxylic anhydride residues and amines, imidazole and oxiranyl, etc. It can be mentioned, but is not limited to these. Any combination of functional groups capable of forming a bond between the coupling agent and the polymerizable compound may be used. A combination with high heat resistance is more preferable.
Modification of the inorganic filler with a coupling agent is more preferable as the number of bonds increases as the number increases. The first coupling agent and the second coupling agent may be the same or different.
[その他の構成要素]
 放熱部材用組成物は、さらに第1の無機フィラーおよび第2の無機フィラーに結合していない、すなわち結合に寄与していない有機化合物(例えば重合性化合物または高分子化合物)を含んでいてもよく、重合開始剤や溶媒等を含んでいてもよい。
[Other components]
The composition for heat dissipation member may further contain an organic compound (for example, a polymerizable compound or a polymer compound) that is not bonded to the first inorganic filler and the second inorganic filler, that is, does not contribute to the bonding. Further, it may contain a polymerization initiator, a solvent and the like.
[結合していない重合性化合物]
 放熱部材用組成物は、無機フィラーに結合していない重合性化合物(この場合、必ずしも2官能以上でなくてもよい)を構成要素としてもよい。このような重合性化合物としては、無機フィラーの熱硬化を妨げず、加熱により蒸発やブリードアウトがない化合物が好ましい。この重合性化合物は、液晶性を有しない化合物と液晶性を有する化合物とに分類される。液晶性を有しない重合性化合物としては、ビニル誘導体、スチレン誘導体、(メタ)アクリル酸誘導体、ソルビン酸誘導体、フマル酸誘導体、イタコン酸誘導体、などが挙げられる。含有量は、まず結合していない重合性化合物を含まない放熱部材用組成物を作製し、その空隙率を測定して、その空隙を埋められる量の重合性化合物を添加することが望ましい。
[Unbonded polymerizable compound]
The composition for a heat radiating member may include a polymerizable compound (in this case, not necessarily bifunctional or higher) that is not bonded to an inorganic filler as a constituent element. As such a polymerizable compound, a compound which does not hinder the thermosetting of the inorganic filler and does not evaporate or bleed out by heating is preferable. This polymerizable compound is classified into a compound having no liquid crystallinity and a compound having liquid crystallinity. Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, itaconic acid derivatives, and the like. As for the content, first, it is desirable to prepare a composition for a heat dissipation member that does not contain an unbonded polymerizable compound, measure its porosity, and add an amount of the polymerizable compound that can fill the void.
[結合していない高分子化合物]
 放熱部材用組成物は、無機フィラーに結合していない高分子化合物を構成要素としてもよい。このような高分子化合物としては、膜形成性および機械的強度を低下させない化合物が好ましい。この高分子化合物は、無機フィラー、カップリング剤、および重合性化合物と反応しない高分子化合物であればよく、例えば、重合性化合物がオキシラニルでシランカップリング剤がアミノを持つ場合は、ポリオレフィン系樹脂、ポリビニル系樹脂、シリコーン樹脂、ワックスなどが挙げられる。含有量は、まず結合していない高分子化合物を含まない放熱部材用組成物を作製し、その空隙率を測定して、その空隙を埋められる量の高分子化合物を添加することが望ましい。
[Unbound polymer compound]
The composition for a heat radiating member may include a polymer compound that is not bonded to an inorganic filler as a constituent element. As such a polymer compound, a compound that does not lower the film formability and the mechanical strength is preferable. The polymer compound may be a polymer compound that does not react with an inorganic filler, a coupling agent, and a polymerizable compound. For example, when the polymerizable compound is oxiranyl and the silane coupling agent has amino, a polyolefin resin , Polyvinyl resin, silicone resin, wax and the like. As for the content, it is desirable to prepare a composition for a heat dissipation member that does not contain an unbonded polymer compound, measure the porosity, and add a polymer compound in an amount that can fill the void.
[非重合性の液晶性化合物]
 放熱部材用組成物は、重合性基を有しない液晶性化合物を構成要素としてもよい。このような非重合性の液晶性化合物の例は、液晶性化合物のデータベースであるリクリスト(LiqCryst, LCI Publisher GmbH, Hamburg, Germany)などに記載されている。非重合性の液晶性化合物を含有する該組成物を重合させることによって、例えば、化合物(1-2)の重合体と液晶性化合物との複合材(composite materials)を得ることができる。このような複合材では、高分子分散型液晶のような高分子網目中に非重合性の液晶性化合物が存在している。よって、使用する温度領域で流動性が無いような特性を持つ液晶性化合物が望ましい。無機フィラーを硬化させた後で、等方相を示す温度領域でその空隙に注入するような手法で複合化させてもよく、無機フィラーに予め空隙を埋めるように計算した分量の液晶性化合物を混合しておき、無機フィラー同士を重合させてもよい。
[Non-polymerizable liquid crystalline compound]
The composition for a heat radiating member may contain a liquid crystal compound having no polymerizable group as a constituent element. Examples of such non-polymerizable liquid crystal compounds are described in Licris, a database of liquid crystal compounds (LiqCryst, LCI Publisher GmbH, Hamburg, Germany). By polymerizing the composition containing a non-polymerizable liquid crystal compound, for example, a composite material of a polymer of compound (1-2) and a liquid crystal compound can be obtained. In such a composite material, a non-polymerizable liquid crystalline compound exists in a polymer network such as a polymer-dispersed liquid crystal. Therefore, a liquid crystalline compound having characteristics that do not have fluidity in the temperature range to be used is desirable. After the inorganic filler is cured, it may be compounded by a method such as injecting into the void in a temperature range showing an isotropic phase, and an amount of liquid crystal compound calculated so as to fill the void in the inorganic filler in advance. It may be mixed and the inorganic fillers may be polymerized.
[重合開始剤]
 放熱部材用組成物は重合開始剤を構成要素としてもよい。重合開始剤は、該組成物の構成要素および重合方法に応じて、例えば光ラジカル重合開始剤、光カチオン重合開始剤、熱ラジカル重合開始剤などを用いればよい。特に無機フィラーが紫外線を吸収してしまうので、熱ラジカル重合開始剤が好ましい。
 熱ラジカル重合用の好ましい開始剤としては、例えば、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド(DTBPO)、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)などが挙げられる。
[Polymerization initiator]
The composition for heat radiating members may contain a polymerization initiator as a constituent element. As the polymerization initiator, for example, a radical photopolymerization initiator, a cationic photopolymerization initiator, a thermal radical polymerization initiator, or the like may be used depending on the components of the composition and the polymerization method. In particular, since the inorganic filler absorbs ultraviolet rays, a thermal radical polymerization initiator is preferable.
Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide. Oxide (DTBPO), t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile (ACN), etc. Can be mentioned.
[溶媒]
 放熱部材用組成物は溶媒を含有してもよい。重合させる必要がある構成要素を該組成物中に含む場合、重合は溶媒中で行っても、無溶媒で行ってもよい。溶媒を含有する該組成物を基板上に、例えばスピンコート法などにより塗布した後、溶媒を除去してから光重合させてもよい。または、光硬化後適当な温度に加温して熱硬化により後処理を行ってもよい。
 好ましい溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、PGMEAなどが挙げられる。上記溶媒は1種単独で用いても、2種以上を混合して用いてもよい。
 なお、重合時の溶媒の使用割合を限定することにはあまり意味がなく、重合効率、溶媒コスト、エネルギーコストなどを考慮して、個々のケースごとに決定すればよい。
[solvent]
The composition for heat radiating members may contain a solvent. When a component that needs to be polymerized is contained in the composition, the polymerization may be performed in a solvent or without a solvent. The composition containing a solvent may be applied onto a substrate by, for example, a spin coating method and then photopolymerized after removing the solvent. Alternatively, post-treatment may be performed by heat curing after heating to an appropriate temperature.
Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, γ-butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, cyclohexane, methylcyclohexane, cyclopentanone. , Cyclohexanone, PGMEA and the like. The said solvent may be used individually by 1 type, or may mix and use 2 or more types.
In addition, there is not much meaning in limiting the use ratio of the solvent at the time of polymerization, and it may be determined for each case in consideration of polymerization efficiency, solvent cost, energy cost, and the like.
[その他]
 放熱部材用組成物には、取扱いを容易にするために、安定剤を添加してもよい。このような安定剤としては、公知のものを制限なく使用でき、例えば、ハイドロキノン、4-エトキシフェノールおよび3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)などが挙げられる。
 さらに、放熱部材用組成物の粘度や色を調整するために添加剤(酸化物等)を添加してもよい。例えば、白色にするための酸化チタン、黒色にするためのカーボンブラック、粘度を調整するためのシリカの微粉末を挙げることができる。また、機械的強度をさらに増すために添加剤を添加してもよい。例えば、ガラスファイバー、カーボンファイバー、カーボンナノチューブなどの無機繊維やクロス、または高分子添加剤として、ポリビニルホルマール、ポリビニルブチラール、ポリエステル、ポリアミド、ポリイミドなどの繊維または長分子を挙げることができる。
[Others]
A stabilizer may be added to the heat radiating member composition in order to facilitate handling. As such a stabilizer, known ones can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
Furthermore, you may add an additive (oxide etc.) in order to adjust the viscosity and color of the composition for heat radiating members. For example, titanium oxide for making white, carbon black for making black, and silica fine powder for adjusting viscosity can be mentioned. Further, an additive may be added to further increase the mechanical strength. For example, fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, and polyimide can be used as inorganic fibers and cloth such as glass fibers, carbon fibers, and carbon nanotubes, or polymer additives.
[製造方法]
 以下、放熱部材用組成物を製造する方法、および該組成物から放熱部材を製造する方法について具体的に説明する。
(1)カップリング処理を施す
 第1の無機フィラーにカップリング処理を施し、カップリング剤の一端と第1の無機フィラーを結合させる。カップリング処理は、公知の方法を用いることができる。
 一例として、まず無機フィラーとカップリング剤を溶媒に加える。スターラー等を用いて撹拌したのち、乾燥する。溶媒乾燥後に、真空乾燥機等を用いて、真空条件下で加熱処理をする。この無機フィラーに溶媒を加えて、超音波処理により粉砕する。遠心分離機を用いてこの溶液を分離精製する。上澄みを捨てたのち、溶媒を加えて同様の操作を数回行う。オーブンを用いて精製後のカップリング処理を施した無機フィラーを乾燥させる。
(2)重合性化合物で修飾する
 第2の無機フィラーにカップリング処理を施し(またはカップリング処理を施した上記第1の無機フィラーを第2の無機フィラーとして用いてもよい)、カップリング剤の他端にさらに2官能以上の重合性化合物を結合させる。
 一例として、カップリング処理された無機フィラーと2官能以上の重合性化合物を、メノウ乳鉢等を用いて混合したのち、2本ロール等を用いて混練する。その後、超音波処理および遠心分離によって分離精製する。
(3)混合する
 第1の無機フィラーと第2の無機フィラーを、例えば無機フィラーのみの重量が1:1になるように量り取り、メノウ乳鉢等で混合する。その後2本ロール等を用いて混合し、放熱部材用組成物を得る。
 第1の無機フィラーと第2の無機フィラーの混合割合は、第1の無機フィラーと第2の無機フィラー間の結合を形成する結合基がそれぞれアミン:エポキシの場合、無機フィラーのみの重量は例えば、重量比で1:1~1:30であることが好ましく、より好ましくは1:3~1:20である。混合割合は、第1の無機フィラーと第2の無機フィラー間の結合を形成する末端の結合基の数により決定し、例えば2級アミンであれば2個のオキシラニルと反応できるため、オキシラニル側に比べて少量でよく、オキシラニル側は開環してしまっている可能性もありエポキシ当量から計算される量を多めに使用することが好ましい。
(4)放熱部材を製造する
 一例として、放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法を説明する。放熱部材用組成物を、圧縮成形機を用いて加熱板中にはさみ、圧縮成形により配向・硬化成形する。さらに、オーブン等を用いて後硬化を行い、放熱部材を得る。なお、圧縮成形時の圧力は、50~200kgf/cmが好ましく、より好ましくは70~180kgf/cmである。硬化時の圧力は基本的には高い方が好ましい。しかし、金型の流動性や、目的とする物性(どちら向きの熱伝導率を重視するかなど)によって適宜変更し、適切な圧力を加えることが好ましい。
[Production method]
Hereinafter, a method for producing a composition for a heat radiating member and a method for producing a heat radiating member from the composition will be specifically described.
(1) A coupling process is performed on the first inorganic filler, and one end of the coupling agent and the first inorganic filler are bonded together. A known method can be used for the coupling treatment.
As an example, first, an inorganic filler and a coupling agent are added to a solvent. After stirring using a stirrer etc., it dries. After drying the solvent, heat treatment is performed under vacuum conditions using a vacuum dryer or the like. A solvent is added to the inorganic filler and pulverized by ultrasonic treatment. The solution is separated and purified using a centrifuge. After discarding the supernatant, a solvent is added and the same operation is repeated several times. The inorganic filler subjected to the coupling treatment after purification is dried using an oven.
(2) Modification with a polymerizable compound The second inorganic filler is subjected to a coupling treatment (or the first inorganic filler subjected to the coupling treatment may be used as a second inorganic filler), and a coupling agent A bifunctional or higher functional polymerizable compound is further bonded to the other end of the substrate.
As an example, the inorganic filler subjected to the coupling treatment and the bifunctional or higher functional polymerizable compound are mixed using an agate mortar or the like, and then kneaded using two rolls or the like. Thereafter, separation and purification are performed by sonication and centrifugation.
(3) Mixing The first inorganic filler and the second inorganic filler are weighed, for example, so that the weight of the inorganic filler alone is 1: 1, and mixed in an agate mortar or the like. Then, it mixes using 2 rolls etc. and the composition for heat radiating members is obtained.
The mixing ratio of the first inorganic filler and the second inorganic filler is such that when the bonding group forming a bond between the first inorganic filler and the second inorganic filler is amine: epoxy, the weight of the inorganic filler alone is, for example, The weight ratio is preferably 1: 1 to 1:30, more preferably 1: 3 to 1:20. The mixing ratio is determined by the number of terminal linking groups that form a bond between the first inorganic filler and the second inorganic filler. For example, if it is a secondary amine, it can react with two oxiranyls. A small amount may be used, and the oxiranyl side may be ring-opened, and it is preferable to use a larger amount calculated from the epoxy equivalent.
(4) Manufacturing a heat radiating member As an example, a method for manufacturing a film as a heat radiating member using the composition for a heat radiating member will be described. The heat radiating member composition is sandwiched between hot plates using a compression molding machine, and oriented / cured by compression molding. Further, post-curing is performed using an oven or the like to obtain a heat radiating member. The pressure at the time of compression molding is preferably 50 ~ 200kgf / cm 2, more preferably 70 ~ 180kgf / cm 2. Basically, the pressure during curing is preferably high. However, it is preferable that the pressure is appropriately changed depending on the fluidity of the mold and the target physical properties (which direction of thermal conductivity is important) and an appropriate pressure is applied.
 以下、溶媒を含有する放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法について具体的に説明する。
 まず、基板上に該組成物を塗布し、溶媒を乾燥除去して膜厚の均一な塗膜層を形成する。塗布方法としては、例えば、スピンコート、ロールコート、カテンコート、フローコート、プリント、マイクログラビアコート、グラビアコート、ワイヤーバーコート、ディップコート、スプレーコート、メニスカスコート法などが挙げられる。
 溶媒の乾燥除去は、例えば、室温での風乾、ホットプレートでの乾燥、乾燥炉での乾燥、温風や熱風の吹き付けなどにより行うことができる。溶媒除去の条件は特に限定されず、溶媒がおおむね除去され、塗膜層の流動性がなくなるまで乾燥すればよい。
Hereinafter, a method for producing a film as a heat radiating member using a composition for a heat radiating member containing a solvent will be specifically described.
First, the composition is applied onto a substrate, and the solvent is removed by drying to form a coating layer having a uniform film thickness. Examples of the coating method include spin coating, roll coating, caten coating, flow coating, printing, micro gravure coating, gravure coating, wire bar coating, dip coating, spray coating, meniscus coating, and the like.
The solvent can be removed by drying, for example, by air drying at room temperature, drying on a hot plate, drying in a drying furnace, blowing hot air or hot air, and the like. The conditions for removing the solvent are not particularly limited, and it may be dried until the solvent is almost removed and the fluidity of the coating layer is lost.
 上記基板としては、例えば、銅、アルミニウム、鉄、などの金属基板;シリコン、窒化ケイ素、窒化ガリウム、酸化亜鉛などの無機半導体基板;アルカリガラス、ホウ珪酸ガラス、フリントガラスなどのガラス基板、アルミナ、窒化アルミニウムなどの無機絶縁基板;ポリイミド、ポリアミドイミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、セルロース、トリアセチルセルロースもしくはその部分鹸化物、エポキシ樹脂、フェノール樹脂、ノルボルネン樹脂などのプラスティックフィルム基板などが挙げられる。 Examples of the substrate include metal substrates such as copper, aluminum, and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride, and zinc oxide; glass substrates such as alkali glass, borosilicate glass, and flint glass; alumina; Inorganic insulating substrates such as aluminum nitride; polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenyleneoxide, polyethyleneterephthalate, polybutyleneterephthalate , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, Triacetyl cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and a plastic film substrate such as norbornene resins.
 上記フィルム基板は、一軸延伸フィルムでも、二軸延伸フィルムであってもよい。上記フィルム基板は、事前に鹸化処理、コロナ処理、プラズマ処理などの表面処理を施してもよい。なお、これらのフィルム基板上には、上記放熱部材用組成物に含まれる溶媒に侵されないような保護層を形成してもよい。保護層として用いられる材料としては、例えばポリビニルアルコールが挙げられる。さらに、保護層と基板の密着性を高めるためにアンカーコート層を形成させてもよい。このようなアンカーコート層は保護層と基板の密着性を高めるものであれば、無機系および有機系のいずれの材料であってもよい。 The film substrate may be a uniaxially stretched film or a biaxially stretched film. The film substrate may be subjected to surface treatment such as saponification treatment, corona treatment, or plasma treatment in advance. In addition, you may form the protective layer which is not attacked by the solvent contained in the said composition for heat radiating members on these film substrates. Examples of the material used as the protective layer include polyvinyl alcohol. Furthermore, an anchor coat layer may be formed in order to improve the adhesion between the protective layer and the substrate. Such an anchor coat layer may be any inorganic or organic material as long as it improves the adhesion between the protective layer and the substrate.
 以上、無機フィラー同士の結合を、カップリング処理された無機フィラーと、カップリング処理されさらに重合性化合物で修飾された無機フィラーで構成する場合を説明した。なお、上記のような無機フィラー間の結合を実現することが本発明では重要であり、あらかじめカップリング剤と重合性化合物を有機合成技術を用いて結合させ、その後当該カップリング剤を第2の無機フィラーに結合させてもよい。例えば、第1の無機フィラーを、アミノを有するシランカップリング剤でカップリング処理する。次に、ビニルを有するシランカップリング剤を、末端にビニルとエポキシをそれぞれ有する重合性化合物で修飾した後、当該シランカップリング剤で第2の無機フィラーをカップリング処理する。最後に第1の無機フィラー側のアミノと、第2の無機フィラー側の重合性化合物が有するエポキシとを結合させる。
 または、カップリング処理後さらに重合性化合物で修飾した無機フィラーのみを用いて、適切な重合開始剤等により重合性化合物同士を結合させて、無機フィラー間に結合を形成してもよい。
As described above, the case where the bond between the inorganic fillers is configured by the coupling-processed inorganic filler and the coupling-processed inorganic filler modified with the polymerizable compound has been described. In addition, it is important in the present invention to realize the bonding between the inorganic fillers as described above, and the coupling agent and the polymerizable compound are bonded in advance using an organic synthesis technique, and then the coupling agent is added to the second agent. You may make it couple | bond with an inorganic filler. For example, the first inorganic filler is subjected to a coupling treatment with an amino-containing silane coupling agent. Next, after modifying the vinyl-containing silane coupling agent with a polymerizable compound having vinyl and epoxy at the terminals, the second inorganic filler is coupled with the silane coupling agent. Finally, the amino on the first inorganic filler side is bonded to the epoxy contained in the polymerizable compound on the second inorganic filler side.
Alternatively, only the inorganic filler modified with the polymerizable compound after the coupling treatment may be used to bond the polymerizable compounds with an appropriate polymerization initiator or the like to form a bond between the inorganic fillers.
 上記化合物(1-2)は、多くの環を持つほどより高温で軟化しにくくなるので放熱材料として好ましい。このように、重合性化合物が多環であると耐熱性が高くなり、直線性が高いと無機フィラー間の熱による伸びや揺らぎが少なく、さらに熱のフォノン伝導を効率よく伝えることができるため好ましい。多環で直線性が高いと結果として液晶性を発現することが多いので、液晶性であれば熱伝導がよくなるといえる。
 しかし、2官能以上の重合性化合物として、上記式(1-1)で示す2官能以上の重合性化合物を用いた場合にも、高熱伝導性、高耐熱性を得ることができることがわかった。化合物(1-1)は化合物(1-2)に比べ、分子鎖が短く、合成が容易であり、扱いやすく、好ましい。
The above compound (1-2) is preferable as a heat dissipation material because it has a larger number of rings and is less likely to be softened at a higher temperature. Thus, when the polymerizable compound is polycyclic, the heat resistance is high, and when the linearity is high, the elongation and fluctuation due to heat between the inorganic fillers are small, and furthermore, heat phonon conduction can be efficiently transmitted, which is preferable. . Since polycyclic and high linearity often develops liquid crystallinity as a result, it can be said that the liquid crystallinity improves heat conduction.
However, it has been found that high thermal conductivity and high heat resistance can be obtained even when a bifunctional or higher functional polymerizable compound represented by the above formula (1-1) is used as the bifunctional or higher functional polymerizable compound. Compound (1-1) has a shorter molecular chain than compound (1-2), is easy to synthesize, is easy to handle, and is preferred.
[放熱部材]
 本発明の第2の実施の形態に係る放熱部材は、上記第1の実施の形態に係る放熱部材用組成物を硬化させた硬化物を用途に応じて成形したものである。この硬化物は、高熱伝導性、高耐熱性を有するとともに、熱膨張率が負かまたは非常に小さい正であり、化学的安定性、硬度および機械的強度などに優れている。なお、前記機械的強度とは、ヤング率、引っ張り強度、引き裂き強度、曲げ強度、曲げ弾性率、衝撃強度などである。
 本発明の放熱部材は、放熱板、放熱シート、放熱フィルム、放熱接着材、放熱成形品などに有用である。
[Heat dissipation member]
The heat radiating member according to the second embodiment of the present invention is formed by molding a cured product obtained by curing the composition for heat radiating member according to the first embodiment. The cured product has high thermal conductivity and high heat resistance, and has a negative or very small thermal expansion coefficient, and is excellent in chemical stability, hardness, mechanical strength, and the like. The mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, bending elastic modulus, impact strength, and the like.
The heat radiating member of the present invention is useful for a heat radiating plate, a heat radiating sheet, a heat radiating film, a heat radiating adhesive, a heat radiating molded product, and the like.
 熱重合により放熱部材用組成物を硬化させる条件としては、熱硬化温度が、室温~350℃、好ましくは室温~250℃、より好ましくは50℃~200℃の範囲であり、硬化時間は、5秒~10時間、好ましくは1分~5時間、より好ましくは5分~1時間の範囲である。重合後は、応力ひずみなど抑制するために徐冷することが好ましい。また、再加熱処理を行い、ひずみなどを緩和させてもよい。 The conditions for curing the heat radiating member composition by thermal polymerization are that the thermosetting temperature ranges from room temperature to 350 ° C., preferably from room temperature to 250 ° C., more preferably from 50 ° C. to 200 ° C., and the curing time is 5 ° C. The range is from second to 10 hours, preferably from 1 minute to 5 hours, more preferably from 5 minutes to 1 hour. After the polymerization, it is preferable to slowly cool in order to suppress stress strain and the like. In addition, reheating treatment may be performed to reduce strain and the like.
 本願の放熱部材は、上記放熱部材用組成物から形成され、シート、フィルム、薄膜、繊維、成形体などの形状で使用する。好ましい形状は、板、シート、フィルムおよび薄膜である。なお、本明細書におけるシートの膜厚は1mm以上であり、フィルムの膜厚は5μm以上、好ましくは10~500μm、より好ましくは20~300μmであり、薄膜の膜厚は5μm未満である。膜厚は、用途に応じて適宜変更すればよい。 The heat radiating member of the present application is formed from the above composition for a heat radiating member, and is used in the form of a sheet, a film, a thin film, a fiber, a molded body, or the like. Preferred shapes are plates, sheets, films and thin films. Note that in this specification, the thickness of the sheet is 1 mm or more, the thickness of the film is 5 μm or more, preferably 10 to 500 μm, more preferably 20 to 300 μm, and the thickness of the thin film is less than 5 μm. What is necessary is just to change a film thickness suitably according to a use.
[電子機器]
 本発明の第3の実施の形態に係る電子機器は、上記第2の実施の形態に係る放熱部材と、発熱部を有する電子デバイスとを備える。放熱部材は、前記発熱部に接触するように電子デバイスに配置される。放熱部材の形状は、放熱電子基板、放熱板、放熱シート、放熱フィルム、放熱接着材、放熱成形品などのいずれであってもよい。
 例えば、電子デバイスとして、半導体素子を挙げることができる。本願の放熱部材は、高熱伝導性に加えて、高耐熱性、高絶縁性を有する。そのため、半導体素子の中でも高電力のためより効率的な放熱機構を必要とする絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)に特に有効である。IGBTは半導体素子のひとつで、MOSFETをゲート部に組み込んだバイポーラトランジスタであり、電力制御の用途で使用される。IGBTを備えた電子機器には、大電力インバータの主変換素子、無停電電源装置、交流電動機の可変電圧可変周波数制御装置、鉄道車両の制御装置、ハイブリッドカー、エレクトリックカーなどの電動輸送機器、IH調理器などを挙げることができる。
[Electronics]
An electronic apparatus according to the third embodiment of the present invention includes the heat dissipating member according to the second embodiment and an electronic device having a heat generating portion. A heat radiating member is arrange | positioned at an electronic device so that the said heat-emitting part may be contacted. The shape of the heat dissipation member may be any of a heat dissipation electronic substrate, a heat dissipation plate, a heat dissipation sheet, a heat dissipation film, a heat dissipation adhesive, a heat dissipation molded product, and the like.
For example, a semiconductor element can be given as an electronic device. The heat dissipating member of the present application has high heat resistance and high insulation in addition to high thermal conductivity. Therefore, the present invention is particularly effective for an insulated gate bipolar transistor (IGBT) that requires a more efficient heat dissipation mechanism because of high power among semiconductor elements. An IGBT is one of semiconductor elements and is a bipolar transistor in which a MOSFET is incorporated in a gate portion, and is used for power control. Electronic devices equipped with IGBTs include high-power inverter main conversion elements, uninterruptible power supply devices, AC motor variable voltage variable frequency control devices, railway vehicle control devices, electric vehicles such as hybrid cars and electric cars, IH A cooker can be mentioned.
 以上、本発明は、無機材料と有機化合物の複合化において、無機材料間に有機化合物で結合を形成し、熱伝導性、耐熱性を著しく向上させたものであり、さらに熱膨張率を制御できるものである。なお、上記の官能基は例示であり、本発明の効果を得られる限り上記の官能基に限られない。 As described above, in the present invention, in the composite of an inorganic material and an organic compound, a bond is formed between the inorganic materials with the organic compound, the thermal conductivity and the heat resistance are remarkably improved, and the thermal expansion coefficient can be controlled. Is. In addition, said functional group is an illustration and is not restricted to said functional group as long as the effect of this invention is acquired.
 以下に、本発明を実施例を用いて詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the contents described in the following examples.
 本発明の実施例に用いた、放熱部材を構成する成分材料は次のとおりである。
<無機フィラー>
・窒化ホウ素:h-BN粒子、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製、(商品名)PolarTherm PTX-25
・窒化ホウ素:h-BN粒子、デンカ(株)製、(商品名)SGP
・アルミナ:デンカ(株)製、(商品名)DAW-20
The component material which comprises the heat radiating member used for the Example of this invention is as follows.
<Inorganic filler>
Boron nitride: h-BN particles, manufactured by Momentive Performance Materials Japan (trade name), (trade name) PolarTherm PTX-25
Boron nitride: h-BN particles, manufactured by Denka Co., Ltd. (trade name) SGP
Alumina: Denka Co., Ltd. (trade name) DAW-20
<シランカップリング剤>
・N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、JNC(株)製、(商品名)S320
Figure JPOXMLDOC01-appb-C000030
 
・3-アミノプロピルトリエトキシシラン、JNC(株)製、(商品名)S330
Figure JPOXMLDOC01-appb-C000031
 
・3-アミノプロピルトリメトキシシラン、信越化学工業(株)製、(商品名)KBM-903
Figure JPOXMLDOC01-appb-C000032
 
・p-アミノフェニルトリメトキシシラン、GELEST社製、(商品名)SIA0599.1-d
Figure JPOXMLDOC01-appb-C000033
 
<Silane coupling agent>
N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, manufactured by JNC Corporation, (trade name) S320
Figure JPOXMLDOC01-appb-C000030

・ 3-aminopropyltriethoxysilane, manufactured by JNC Corporation, (trade name) S330
Figure JPOXMLDOC01-appb-C000031

・ 3-Aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., (trade name) KBM-903
Figure JPOXMLDOC01-appb-C000032

P-aminophenyltrimethoxysilane, manufactured by GELEST, (trade name) SIA0599.1-d
Figure JPOXMLDOC01-appb-C000033
<重合性化合物>
・三菱化学(株)製、(商品名)jER YL6121H
 下記式(1-11)と(1-12)が1:1で混合している。
Figure JPOXMLDOC01-appb-C000034
 
・三菱化学(株)製、(商品名)jER YX4000H
Figure JPOXMLDOC01-appb-C000035
 
・JNC(株)製、下記式(1-13)
 下記式(1-13)は、特許第5084148号公報に記載の方法で合成することができる。
Figure JPOXMLDOC01-appb-C000036
 
<Polymerizable compound>
・ Mitsubishi Chemical Co., Ltd. (trade name) jER YL6121H
The following formulas (1-11) and (1-12) are mixed at 1: 1.
Figure JPOXMLDOC01-appb-C000034

・ Mitsubishi Chemical Co., Ltd. (trade name) jER YX4000H
Figure JPOXMLDOC01-appb-C000035

・ JNC Co., Ltd., the following formula (1-13)
The following formula (1-13) can be synthesized by the method described in Japanese Patent No. 5084148.
Figure JPOXMLDOC01-appb-C000036
<定義>
 以下の実施例では、第1のカップリング剤と結合した第1の無機フィラーをフィラーA(窒化ホウ素+シランカップリング剤)とする。
 第2のカップリング剤と結合した第2の無機フィラーであって、さらに2官能以上の重合性化合物が結合した第2の無機フィラーをフィラーB(窒化ホウ素+シランカップリング剤+重合性化合物)とする。
 フィラーAとフィラーBが結合したものを放熱部材とする。
 図3に、フィラーA、フィラーB、放熱部材の作製工程を示す。
<Definition>
In the following examples, the first inorganic filler combined with the first coupling agent is filler A (boron nitride + silane coupling agent).
A second inorganic filler bonded to a second coupling agent, and further a second inorganic filler bonded with a bifunctional or higher polymerizable compound is added to filler B (boron nitride + silane coupling agent + polymerizable compound). And
A combination of filler A and filler B is defined as a heat dissipation member.
In FIG. 3, the manufacturing process of the filler A, the filler B, and the heat radiating member is shown.
<実施例1>
・フィラーA作製工程
 窒化ホウ素粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製PolarTherm PTX-25)15gと、シランカップリング剤(JNC(株)製S320)2.25gをトルエン100mLに加え、スターラーを用いて500rpmで1時間攪拌し、得られた混合物を40℃で4時間乾燥した。さらに、溶媒乾燥後に120℃に設定した真空乾燥機を用いて、真空条件下で5時間加熱処理をした。得られた粒子をフィラーAとする。
<Example 1>
Filler A production process Boron nitride particles (PolarTher PTX-25 manufactured by Momentive Performance Materials Japan Co., Ltd.) 15 g and 2.25 g of silane coupling agent (J320 Co., Ltd. S320) are added to 100 mL of toluene. The mixture was stirred at 500 rpm for 1 hour using a stirrer, and the resulting mixture was dried at 40 ° C. for 4 hours. Furthermore, it heat-processed on vacuum conditions for 5 hours using the vacuum dryer set to 120 degreeC after solvent drying. The obtained particles are referred to as filler A.
・フィラーB作製工程
 フィラーA粒子2gと、重合性化合物(三菱化学(株)製jER YL6121H)を3.2g測り取り、これらを2本ロール((株)井元製作所製IMC-AE00型)を用いて120℃で10分間混合した。この重量比はフィラーA粒子が有するアミノ基が十分に反応するエポキシ環の個数並びに2本ロール上で双方が十分に練り合わせられる量である。得られた混合物をテトラヒドロフラン45mLに加え、十分攪拌した後、遠心分離機(日立工機(株)製高速冷却遠心機CR22N形、4,000回転×10分×25℃)で不溶分を沈降させ、デカンテーションで未反応の重合性化合物が溶解した分を含む溶液を取り除いた。続いて、アセトン45mLを加え、前述と同様の操作を行った。さらに、テトラヒドロフラン、アセトンの順に同様の操作を繰り返した。不溶分を乾燥して得られた粒子をフィラーBとする。
Filler B production process 3.2 g of 2 g of filler A particles and a polymerizable compound (jER YL6121H manufactured by Mitsubishi Chemical Corporation) were measured, and two rolls (IMC-AE00 type manufactured by Imoto Seisakusho Co., Ltd.) were used. And mixed at 120 ° C. for 10 minutes. This weight ratio is the number of the epoxy rings with which the amino group of the filler A particles sufficiently reacts and the amount that both are sufficiently kneaded on the two rolls. After adding the obtained mixture to 45 mL of tetrahydrofuran and stirring sufficiently, the insoluble matter was allowed to settle with a centrifugal separator (high-speed cooling centrifuge CR22N type, 4,000 rpm × 10 minutes × 25 ° C., manufactured by Hitachi Koki Co., Ltd.). Then, the solution containing the amount of the unreacted polymerizable compound dissolved by decantation was removed. Subsequently, 45 mL of acetone was added and the same operation as described above was performed. Further, the same operation was repeated in the order of tetrahydrofuran and acetone. The particles obtained by drying the insoluble matter are referred to as filler B.
・放熱部材作製工程
 フィラーA0.46gとフィラーB0.24gを測り取り、混合した後、ステンレス製板中に挟み、150℃に設定した圧縮成形機((株)井元製作所製IMC-19EC)を用いて30MPaまで加圧し、15分間加熱状態を続けることで、配向処理と前硬化を行った。すなわちステンレス板の間を混合物が広がる際に、BN粒子は板状粒子であるため、粒子とステンレス板が平行になるように配向する。また、試料の厚みが約300μmになるように、試料の量を調整した。さらに、オーブンを用いて、120℃で12時間の後硬化を行った。この操作で得られた試料を放熱部材とする。
・ Heat dissipation member production process 0.46 g of filler A and 0.24 g of filler B were measured, mixed, and then sandwiched between stainless steel plates, using a compression molding machine (IMC-19EC manufactured by Imoto Seisakusho Co., Ltd.) set at 150 ° C. The pressure was increased to 30 MPa and the heating state was continued for 15 minutes to perform orientation treatment and precuring. That is, when the mixture spreads between the stainless steel plates, since the BN particles are plate-like particles, the particles and the stainless steel plates are oriented in parallel. Further, the amount of the sample was adjusted so that the thickness of the sample was about 300 μm. Further, post-curing was performed at 120 ° C. for 12 hours using an oven. Let the sample obtained by this operation be a heat radiating member.
<評価>
・熱重量(TG)測定
 フィラーA、フィラーBおよび放熱部材の、重合性化合物またはシランカップリング剤の無機フィラーに対する被覆量は、熱重量・示差熱測定装置((株)リガク製TG-8121)を用いて、その910℃における加熱減量から算出した。
 また、放熱部材の5%重量減少温度は、前記の測定装置を用いて、140℃から900℃への減少量を100重量%とした際の5重量%減少した時の温度から算出した。
・熱膨張率の評価
 得られた試料から、3×15mmの試験片を切り出し、熱膨張率を50~200℃の範囲で求めた。熱膨張率は、SII(株)製TMA-SS6100熱機械的分析装置で測定した。
・色彩の評価
 得られた試料から、15×15mmの試験片を切り出し、色彩を測定した。色彩は、日本電色工業(株)製スペクトロフォトメーターSD7000で測定した。
<Evaluation>
・ Thermogravimetric (TG) measurement The coating amount of filler A, filler B and heat radiating member on the inorganic filler of the polymerizable compound or silane coupling agent is the thermogravimetric / differential calorimeter (TG-8121, manufactured by Rigaku Corporation). Was calculated from the loss on heating at 910 ° C.
Further, the 5% weight reduction temperature of the heat radiating member was calculated from the temperature when the reduction amount from 140 ° C. to 900 ° C. was 5% by weight when the amount of reduction from 140 ° C. to 900 ° C. was 100% by weight.
Evaluation of coefficient of thermal expansion A 3 × 15 mm test piece was cut out from the obtained sample, and the coefficient of thermal expansion was determined in the range of 50 to 200 ° C. The coefficient of thermal expansion was measured with a TMA-SS6100 thermomechanical analyzer manufactured by SII.
-Color evaluation A 15 x 15 mm test piece was cut out from the obtained sample, and the color was measured. The color was measured with a spectrophotometer SD7000 manufactured by Nippon Denshoku Industries Co., Ltd.
<実施例2>
 実施例2は、フィラーB工程の2本ロール加熱温度を150℃とした。
<Example 2>
In Example 2, the two-roll heating temperature in the filler B step was 150 ° C.
<実施例3、4>
 実施例3、4は、三菱化学(株)製重合性化合物jER YX4000Hを用いた。
 実施例4は、フィラーB工程の2本ロール加熱温度を150℃とした。
<Examples 3 and 4>
In Examples 3 and 4, a polymerizable compound jER YX4000H manufactured by Mitsubishi Chemical Corporation was used.
In Example 4, the two-roll heating temperature in the filler B step was 150 ° C.
<実施例5~12>
 実施例5~12は、BN粒子にデンカ(株)製SGPを用いた。
 実施例5、6のシランカップリング剤は、信越化学工業(株)製KBM-903を用いた。
 実施例7~12のシランカップリング剤は、JNC(株)製S330を用いた。
<Examples 5 to 12>
In Examples 5 to 12, SGP manufactured by Denka Co., Ltd. was used as the BN particles.
As the silane coupling agent of Examples 5 and 6, KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd. was used.
SNC manufactured by JNC Corporation was used as the silane coupling agent of Examples 7-12.
<実施例13>
 実施例13のシランカップリング剤は、GELEST社製のSIA0599.1-d(p-アミノフェニルトリメトキシシラン)を用いた。
・フィラーA作製工程
 窒化ホウ素粒子(デンカ(株)製SGP)7gと、シランカップリング剤(SIA0599.1-d)0.36gをメタノール20mLおよび水50mLに加え、スターラーを用いて920rpmで60℃にて1時間攪拌し、得られた混合物を一晩放置した。さらに、溶媒乾燥後に120℃に設定した真空乾燥機を用いて、真空条件下で5時間加熱処理をした。得られた粒子をフィラーAとする。
・フィラーB作製工程
 フィラーA粒子2.56gと、重合性化合物(三菱化学(株)製jER YX4000H)を4.8g測り取り、これらを2本ロール((株)井元製作所製IMC-AE00型)を用いて180℃で10分間混合した。この重量比はフィラーA粒子が有するアミノ基が十分に反応するエポキシ環の個数並びに2本ロール上で双方が十分に練り合わせられる量である。得られた混合物をテトラヒドロフラン45mLに加え、十分攪拌した後、遠心分離機(日立工機(株)製高速冷却遠心機CR22N形、4,000回転×10分×25℃)で不溶分を沈降させ、デカンテーションで未反応の重合性化合物が溶解した分を含む溶液を取り除いた。続いて、アセトン45mLを加え、前述と同様の操作を行った。さらに、テトラヒドロフラン、アセトンの順に同様の操作を繰り返した。不溶分を乾燥して得られた粒子をフィラーBとする。
<Example 13>
As the silane coupling agent of Example 13, SIA0599.1-d (p-aminophenyltrimethoxysilane) manufactured by GELEST was used.
Filler A preparation process 7 g of boron nitride particles (SGP manufactured by Denka Co., Ltd.) and 0.36 g of a silane coupling agent (SIA0599.1-d) are added to 20 mL of methanol and 50 mL of water, and at 60 ° C. at 920 rpm using a stirrer. The resulting mixture was left overnight. Furthermore, it heat-processed on vacuum conditions for 5 hours using the vacuum dryer set to 120 degreeC after solvent drying. The obtained particles are referred to as filler A.
Filler B production process 4.8 g of filler A particles 2.56 g and a polymerizable compound (jER YX4000H manufactured by Mitsubishi Chemical Corporation) were measured, and two rolls (IMC-AE00 type manufactured by Imoto Seisakusho Co., Ltd.) And mixed at 180 ° C. for 10 minutes. This weight ratio is the number of the epoxy rings with which the amino group of the filler A particles sufficiently reacts and the amount that both are sufficiently kneaded on the two rolls. After adding the obtained mixture to 45 mL of tetrahydrofuran and stirring sufficiently, the insoluble matter was allowed to settle with a centrifugal separator (high-speed cooling centrifuge CR22N type, 4,000 rpm × 10 minutes × 25 ° C., manufactured by Hitachi Koki Co., Ltd.). Then, the solution containing the amount of the unreacted polymerizable compound dissolved by decantation was removed. Subsequently, 45 mL of acetone was added and the same operation as described above was performed. Further, the same operation was repeated in the order of tetrahydrofuran and acetone. The particles obtained by drying the insoluble matter are referred to as filler B.
<実施例14>
 実施例14は、無機フィラー粒子として、アルミナ(デンカ(株)製DAW-20)を用いた。
<Example 14>
In Example 14, alumina (DAW-20 manufactured by Denka Co., Ltd.) was used as the inorganic filler particles.
<比較例1,2>
 比較例1,2は、BN粒子としてデンカ(株)製SGPを用いた。
 比較例1のシランカップリング剤は、信越化学工業(株)製KBM-903を用いた。
 比較例2のシランカップリング剤は、JNC(株)製S320を用いた。
 架橋する重合性化合物として、JNC(株)製式(1-13)を用いた。
<Comparative Examples 1 and 2>
In Comparative Examples 1 and 2, SGP manufactured by Denka Co., Ltd. was used as the BN particles.
As the silane coupling agent of Comparative Example 1, KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd. was used.
SNC manufactured by JNC Corporation was used as the silane coupling agent of Comparative Example 2.
A formula (1-13) manufactured by JNC Corporation was used as a polymerizable compound to be crosslinked.
<比較例3>
 比較例3は比較例2と同じだが、無機フィラー粒子として、アルミナ(デンカ(株)製のDAW20)を用いた。
<Comparative Example 3>
Comparative Example 3 is the same as Comparative Example 2, but alumina (DAW20 manufactured by Denka Co., Ltd.) was used as the inorganic filler particles.
Figure JPOXMLDOC01-appb-T000037
 
Figure JPOXMLDOC01-appb-T000037
 
Figure JPOXMLDOC01-appb-T000038
 
Figure JPOXMLDOC01-appb-T000038
 
Figure JPOXMLDOC01-appb-T000039
 
Figure JPOXMLDOC01-appb-T000039
 
Figure JPOXMLDOC01-appb-T000040
 
Figure JPOXMLDOC01-appb-T000040
 
 実施例1~14の5%重量減少温度は、比較例1~3と比較すると、すべて高い温度を示した。実施例の有機成分(重合性化合物およびシランカップリング剤)の構造は置換基が少なく、熱による影響を受けにくいため、放熱部材の耐熱性が向上したと考えられる。さらに、実施例1~14の熱膨張率は正負のものが混在しており、組合せにより放熱部材の熱膨張の制御が可能となる。さらに、実施例1~14のL*は、比較例1~3と比較すると明度が増加している。比較例と比べ実施例の有機成分は置換基が少なく、酸化により色づくことが抑制され白味が増したためと考えられる。実施例1~14で用いた重合性化合物は、液晶性を発現する重合性化合物に比べ分子鎖が短いが、実施例1~14の放熱部材は、高熱伝導性、高耐熱性を有することができる。 The 5% weight loss temperatures of Examples 1 to 14 were all higher than those of Comparative Examples 1 to 3. Since the structure of the organic component (polymerizable compound and silane coupling agent) in the examples has few substituents and is not easily affected by heat, it is considered that the heat resistance of the heat dissipation member has been improved. Further, the thermal expansion coefficients of Examples 1 to 14 are positive and negative, and the thermal expansion of the heat radiating member can be controlled by the combination. Further, the brightness of L * in Examples 1 to 14 is higher than that in Comparative Examples 1 to 3. It is considered that the organic components of the examples had fewer substituents than the comparative examples, and coloring was suppressed by oxidation and whiteness was increased. The polymerizable compound used in Examples 1 to 14 has a shorter molecular chain than the polymerizable compound that exhibits liquid crystallinity, but the heat dissipation members of Examples 1 to 14 may have high thermal conductivity and high heat resistance. it can.
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込む、また、その内容のすべてをここで述べるのと同じ程度で、参照してここに組み込む。 All publications, including publications, patent applications and patents cited herein are hereby specifically incorporated by reference, with each reference individually and to the same extent as described herein. So reference here and incorporate it.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。 The use of nouns and similar directives used in connection with the description of the invention (especially in connection with the claims below) is not specifically pointed out herein or clearly contradicted by context. , And construed to cover both singular and plural. The phrases “comprising”, “having”, “including” and “including” are to be interpreted as open-ended terms (ie, including but not limited to) unless otherwise specified. The use of numerical ranges in this specification is intended only to serve as a shorthand for referring individually to each value falling within that range, unless otherwise indicated herein. Each value is incorporated into the specification as if it were individually listed herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Any examples or exemplary phrases used herein (eg, “etc.”) are intended only to better describe the invention, unless otherwise stated, and to limit the scope of the invention. is not. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを予期しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の変更および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。 In this specification, preferred embodiments of the present invention are described, including the best mode known to the inventors for carrying out the invention. Variations of these preferred embodiments will become apparent to those skilled in the art after reading the above description. The inventor anticipates that skilled artisans will apply such variations as appropriate and intends to implement the invention in ways other than those specifically described herein. . Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
1   第1の無機フィラー、窒化ホウ素
2   第2の無機フィラー、窒化ホウ素
11  第1のカップリング剤
12  第2のカップリング剤
22  重合性化合物
DESCRIPTION OF SYMBOLS 1 1st inorganic filler, boron nitride 2 2nd inorganic filler, boron nitride 11 1st coupling agent 12 2nd coupling agent 22 Polymerizable compound

Claims (8)

  1.  第1のカップリング剤の一端と結合した熱伝導性の第1の無機フィラーと;
     第2のカップリング剤の一端と結合した熱伝導性の第2の無機フィラーであって、前記第2のカップリング剤の他端にさらに2官能以上の重合性化合物が結合した第2の無機フィラーと;を含み、
     前記第2のカップリング剤は、前記2官能以上の重合性化合物として、下記式(1-1)で表される重合性化合物が結合しており、
     前記重合性化合物は、非液晶性化合物であり、
     前記重合性化合物が有する官能基の少なくとも一つは、前記第1のカップリング剤の他端と結合可能である、
     放熱部材用組成物。
     
       R-R-O-(Rx)-O-R11-R  (1-1)
    [上記式(1-1)中、
     Rは、それぞれ、下記式(2-1)~(2-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
     Rxは、下記式(2-3)~(2-6)のいずれかであり;
     nは、1~3の整数であり;
     R、R11は、それぞれ独立して単結合、または炭素数1~20のアルキレンである。]
    Figure JPOXMLDOC01-appb-C000001
     
    [式(2-1)~(2-2)中、Rは、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2-4)~(2-6)中、R~R10は、それぞれ独立して水素、または炭素数1~20のアルキレンである。]
    A thermally conductive first inorganic filler bonded to one end of the first coupling agent;
    A second inorganic filler that is thermally conductive and bonded to one end of the second coupling agent, and further has a bifunctional or higher functional polymerizable compound bonded to the other end of the second coupling agent. And a filler;
    In the second coupling agent, a polymerizable compound represented by the following formula (1-1) is bonded as the bifunctional or more polymerizable compound.
    The polymerizable compound is a non-liquid crystal compound,
    At least one of the functional groups of the polymerizable compound can be bonded to the other end of the first coupling agent.
    Composition for heat dissipation member.

    R a —R 6 —O— (Rx) n —O—R 11 —R a (1-1)
    [In the above formula (1-1),
    Each R a is the following formulas (2-1) to (2-2), amino, vinyl, carboxylic anhydride residues, or any polymerizable group containing these structures;
    Rx is any one of the following formulas (2-3) to (2-6);
    n is an integer from 1 to 3;
    R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000001

    [In the formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formulas (2-4) to (2-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms. ]
  2.  前記第1の無機フィラーおよび前記第2の無機フィラーは、前記第1のカップリング剤および前記第2のカップリング剤として、下記式(3-1)で表されるシランカップリング剤が結合した、
     請求項1に記載の放熱部材用組成物。
     
     (R-O)-Si(R3-j-(R-(R-(R-Ry
                             (3-1)
    [上記式(3-1)中、
     Rは、H-、またはCH-(CH0~4-であり;
     Rは、-(CH0~3-O-であり;
     Rは、1,3-フェニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、またはナフタレン-2,7-ジイルであり;
     Rは、-(NH)0~1-(CH0~3-であり;
     Rは、H-、またはCH-(CH0~7-であり;
     Ryは、オキシラニル、オキセタニル、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
     jは、0~3の整数であり;
     kは、0~1の整数であり;
     式(3-1)は、RとRの少なくとも1つを含む。]
    In the first inorganic filler and the second inorganic filler, a silane coupling agent represented by the following formula (3-1) is bonded as the first coupling agent and the second coupling agent. ,
    The composition for heat radiating members according to claim 1.

    (R 1 -O) j -Si (R 5 ) 3-j- (R 2 ) k- (R 3 ) k- (R 4 ) k -Ry
    (3-1)
    [In the above formula (3-1),
    R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
    R 2 is — (CH 2 ) 0-3 —O—;
    R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
    R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
    R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
    Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
    j is an integer from 0 to 3;
    k is an integer from 0 to 1;
    Formula (3-1) includes at least one of R 3 and R 4 . ]
  3.  前記第1の無機フィラーと前記第2の無機フィラーは、それぞれ、窒化ホウ素、炭化ホウ素、窒化炭素ホウ素、黒鉛、炭素繊維、カーボンナノチューブ、グラフェン、アルミナ、窒化アルミニウム、シリカ、窒化珪素、炭化珪素、酸化亜鉛、酸化マグネシウム、水酸化マグネシウム、コーディエライト、または酸化鉄系材料から選ばれる少なくとも一つである、
     請求項1または請求項2に記載の放熱部材用組成物。
    The first inorganic filler and the second inorganic filler are boron nitride, boron carbide, carbon boron nitride, graphite, carbon fiber, carbon nanotube, graphene, alumina, aluminum nitride, silica, silicon nitride, silicon carbide, respectively. It is at least one selected from zinc oxide, magnesium oxide, magnesium hydroxide, cordierite, or iron oxide-based material,
    The composition for heat radiating members according to claim 1 or 2.
  4.  前記第1の無機フィラーおよび前記第2の無機フィラーと異なる熱膨張率を持つ第3の無機フィラー;をさらに含む、
     請求項1~請求項3のいずれか1項に記載の放熱部材用組成物。
    A third inorganic filler having a coefficient of thermal expansion different from that of the first inorganic filler and the second inorganic filler;
    The composition for a heat radiating member according to any one of claims 1 to 3.
  5.  前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、有機化合物または高分子化合物;をさらに含む、
     請求項1~請求項4のいずれか1項に記載の放熱部材用組成物。
    An organic compound or a polymer compound that is not bound to the first inorganic filler and the second inorganic filler;
    The composition for a heat radiating member according to any one of claims 1 to 4.
  6.  請求項1~請求項5のいずれか1項に記載の放熱部材用組成物が硬化した、
     放熱部材。
    The heat radiating member composition according to any one of claims 1 to 5 is cured.
    Heat dissipation member.
  7.  請求項6に記載の放熱部材と;
     発熱部を有する電子デバイスと;を備え、
     前記放熱部材は、前記発熱部に接触するように前記電子デバイスに配置された、
     電子機器。
    A heat dissipating member according to claim 6;
    An electronic device having a heat generating part;
    The heat dissipating member is disposed in the electronic device so as to contact the heat generating portion,
    Electronics.
  8.  熱伝導性の第1の無機フィラーを、第1のカップリング剤の一端と結合させる工程と;
     熱伝導性の第2の無機フィラーを、第2のカップリング剤の一端と結合させる工程と;
     前記第2のカップリング剤の他端を、2官能以上の重合性化合物と結合させる工程と;
     前記第1のカップリング剤の他端を、前記2官能以上の重合性化合物と結合させる工程と;を備え、
     前記2官能以上の重合性化合物は、下記式(1-1)で表される重合性化合物であり、
     前記重合性化合物は、非液晶性化合物である、
     放熱部材の製造方法。
     
       R-R-O-(Rx)-O-R11-R  (1-1)
    [上記式(1-1)中、
     Rは、それぞれ、下記式(2-1)~(2-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
     Rxは、下記式(2-3)~(2-6)のいずれかであり;
     nは、1~3の整数であり;
     R、R11は、それぞれ独立して単結合、または炭素数1~20のアルキレンである。]
    Figure JPOXMLDOC01-appb-C000003
     
    [式(2-1)~(2-2)中、Rは、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。]
    Figure JPOXMLDOC01-appb-C000004
     
    [式(2-4)~(2-6)中、R~R10は、それぞれ独立して水素、または炭素数1~20のアルキレンである。]
     
    Combining a thermally conductive first inorganic filler with one end of the first coupling agent;
    Combining a thermally conductive second inorganic filler with one end of the second coupling agent;
    Bonding the other end of the second coupling agent to a bifunctional or higher functional polymerizable compound;
    Bonding the other end of the first coupling agent to the bifunctional or higher functional polymerizable compound;
    The bifunctional or higher polymerizable compound is a polymerizable compound represented by the following formula (1-1):
    The polymerizable compound is a non-liquid crystalline compound.
    Manufacturing method of heat dissipation member.

    R a —R 6 —O— (Rx) n —O—R 11 —R a (1-1)
    [In the above formula (1-1),
    Each R a is the following formulas (2-1) to (2-2), amino, vinyl, carboxylic anhydride residues, or any polymerizable group containing these structures;
    Rx is any one of the following formulas (2-3) to (2-6);
    n is an integer from 1 to 3;
    R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000003

    [In the formulas (2-1) to (2-2), R b is hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1. ]
    Figure JPOXMLDOC01-appb-C000004

    [In the formulas (2-4) to (2-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms. ]
PCT/JP2018/013501 2017-03-31 2018-03-29 Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member WO2018181838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019510204A JPWO2018181838A1 (en) 2017-03-31 2018-03-29 Composition for heat dissipating member, heat dissipating member, electronic device, method for manufacturing heat dissipating member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072255 2017-03-31
JP2017-072255 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181838A1 true WO2018181838A1 (en) 2018-10-04

Family

ID=63676210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013501 WO2018181838A1 (en) 2017-03-31 2018-03-29 Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member

Country Status (3)

Country Link
JP (1) JPWO2018181838A1 (en)
TW (1) TW201842151A (en)
WO (1) WO2018181838A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980103B (en) * 2010-01-29 2017-04-12 日本化药株式会社 Phenolic compound, epoxy resin, epoxy resin composition, prepreg, and cured product thereof
JP2012031402A (en) * 2010-07-02 2012-02-16 Hitachi Chem Co Ltd Resin composition, b stage sheet, metal foil with applied resin, metal substrate and led substrate
US20160137772A1 (en) * 2013-05-30 2016-05-19 Sumitomo Bakelite Co., Ltd. Hydrophobic inorganic particles, resin composition for heat dissipation member, and electronic component device
JP2015017165A (en) * 2013-07-10 2015-01-29 住友ベークライト株式会社 Epoxy resin composition for sealing, and semiconductor device
JP2015059130A (en) * 2013-09-17 2015-03-30 明和化成株式会社 Epoxy resin composition, use thereof and filler for epoxy resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method

Also Published As

Publication number Publication date
JPWO2018181838A1 (en) 2020-02-20
TW201842151A (en) 2018-12-01

Similar Documents

Publication Publication Date Title
WO2016031888A1 (en) Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
WO2015170744A1 (en) Composition for heat-dissipation members, heat-dissipation member, and electronic device
JP6902193B2 (en) Manufacture method of composition for heat dissipation member, heat dissipation member, electronic device, heat dissipation member
WO2017150587A1 (en) Composition for low thermal expansion members, low thermal expansion member, electronic device, and method for producing low thermal expansion member
JP6902192B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member composition, method for manufacturing heat-dissipating member
WO2017150586A1 (en) Laminate, electronic device, and production method for laminate
WO2020045560A1 (en) Composition, cured product, laminated body, and electronic device
JP2019172936A (en) Composition for heat radiation member, heat radiation member, and electronic device
JP2019177688A (en) Laminated sheet, heat dissipation component, light-emitting device, and light-emitting apparatus
WO2019194221A1 (en) Composition for heat dissipating member, visible light reflective heat dissipating member, light emitting device, light emitting apparatus
WO2019188973A1 (en) Composition, heat dissipation member, electronic device and method for producing composition
WO2018181838A1 (en) Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member
WO2018181839A1 (en) Laminated body, electronic apparatus, and method for manufacturing laminated body
JP7060021B2 (en) Manufacturing method of composition for heat dissipation member, heat dissipation member, electronic device, heat dissipation member
WO2019139057A1 (en) Composition for heat-dissipation member, heat-dissipation member, electronic apparatus, and production method for heat-dissipation member
JP2019172937A (en) Composition for heat radiation member, heat radiation member, and electronic device
JPWO2019049911A1 (en) Method for manufacturing composition for heat radiating member, heat radiating member, electronic device, heat radiating member
JP2019137801A (en) Composition for heat radiation members, heat radiation member, electronic apparatus, and method for producing heat radiation member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776416

Country of ref document: EP

Kind code of ref document: A1