WO2019194221A1 - Composition for heat dissipating member, visible light reflective heat dissipating member, light emitting device, light emitting apparatus - Google Patents

Composition for heat dissipating member, visible light reflective heat dissipating member, light emitting device, light emitting apparatus Download PDF

Info

Publication number
WO2019194221A1
WO2019194221A1 PCT/JP2019/014794 JP2019014794W WO2019194221A1 WO 2019194221 A1 WO2019194221 A1 WO 2019194221A1 JP 2019014794 W JP2019014794 W JP 2019014794W WO 2019194221 A1 WO2019194221 A1 WO 2019194221A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
coupling agent
diyl
composition
heat radiating
Prior art date
Application number
PCT/JP2019/014794
Other languages
French (fr)
Japanese (ja)
Inventor
武 藤原
國信 隆史
研人 氏家
和宏 滝沢
上利 泰幸
寛 平野
門多 丈治
哲周 岡田
Original Assignee
Jnc株式会社
地方独立行政法人大阪産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, 地方独立行政法人大阪産業技術研究所 filed Critical Jnc株式会社
Priority to JP2020512284A priority Critical patent/JPWO2019194221A1/en
Publication of WO2019194221A1 publication Critical patent/WO2019194221A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the present invention relates to a composition for a heat dissipation member.
  • the present invention relates to a heat radiating member composition capable of radiating heat by efficiently conducting and transmitting heat, controlling the coefficient of thermal expansion, and forming a heat radiating member excellent in visible light reflectivity.
  • Patent Document 1 discloses an embodiment in which an inorganic material is not added to a resin in a composite of an organic material and an inorganic material, but an inorganic material is connected to each other, that is, a coupling agent and a bifunctional or higher functional polymerizable compound.
  • a composite material is disclosed in which the inorganic materials are bonded to each other or the inorganic materials are bonded to each other via a coupling agent, so that the thermal conductivity is extremely high and the thermal expansion coefficient can be controlled. (Paragraph 0007).
  • Examples of products that require heat countermeasures include LED lighting fixtures.
  • LED light contains almost no heat, but the LED itself generates heat. This heat is contained in the LED element part, the power supply part, the surrounding resin, and the like. If this heat is not efficiently dissipated, the part having the heat deteriorates and the life of the LED is shortened. Thus, excellent thermal conductivity is also required for light emitting devices such as LED lighting fixtures. At the same time, such a light emitting device is required to have excellent visible light reflectivity. Then, this invention makes it a subject to provide the composition and visible light reflective heat radiating member which can form the heat radiating member excellent in both the characteristics of heat conductivity and visible light reflectivity.
  • the present inventors have intensively studied whether or not visible light reflectivity can be imparted to a heat dissipation member in which inorganic materials are connected to each other via a coupling agent and a polymerizable compound.
  • a specific amount of a specific white pigment with a combination of an inorganic material, a coupling agent, and a polymerizable compound, high heat conductivity and controllability of an excellent coefficient of thermal expansion can be achieved.
  • the present invention has been completed by discovering that sex can coexist.
  • the heat radiating member composition according to the first aspect of the present invention comprises, for example, as shown in FIG. 2, a first coupling agent 11; A first inorganic filler 1; a second coupling agent 12; a thermally conductive second inorganic filler 2 bonded to one end of the second coupling agent 12; a bifunctional or higher functional polymerizable compound 22.
  • the agent 11 and the polymerizable compound 22 each have a group capable of bonding to each other, and the average particle size of the third inorganic filler is greater than the average particle size of the first inorganic filler and the second inorganic filler.
  • the third inorganic filler is 1 of the inorganic filler, the second inorganic filler, the proportion of the total amount of the third inorganic filler is 1 to 50 mass%.
  • the “one end” and “the other end” may be edges or ends of the molecule shape, and may or may not be both ends of the long side of the molecule. If comprised in this way, the heat radiating member excellent in thermal conductivity, thermal expansion controllability, and visible light reflectivity can be obtained from the said composition for heat radiating members.
  • the composition for a heat radiating member according to the second aspect of the present invention is the composition for a heat radiating member according to the first aspect of the present invention described above, for example, as shown in FIG.
  • the third inorganic filler 3 has a bond with one end of the third coupling agent 13, and the third coupling agent 13 and the polymerizable compound 22 are groups capable of binding to each other. Respectively. If comprised in this way, in the heat radiating member formed from the said composition for heat radiating members, a 3rd inorganic filler can also be couple
  • the composition for a heat dissipation member according to the third aspect of the present invention has a first coupling agent 11; a thermally conductive material bonded to one end of the first coupling agent 11.
  • the first coupling agent 11 and the second coupling agent 12 each have a group capable of binding to each other, and the average particle size of the third inorganic filler is
  • the third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler, and the third inorganic filler is a total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler. 1-50 mass It is. If comprised in this way, the heat radiating member excellent in thermal conductivity, thermal expansion controllability, and visible light reflectivity can be obtained from
  • the composition for a heat radiating member according to the fourth aspect of the present invention is the composition for a heat radiating member according to the third aspect of the present invention described above, for example, as shown in FIG. Further, the third inorganic filler 3 has a bond with one end of the third coupling agent 13, and the third coupling agent 13 and the second coupling agent 12 are bonded to each other. Each has a possible group. If comprised in this way, in the heat radiating member formed from the said composition for heat radiating members, a 3rd inorganic filler can also be couple
  • the composition for a heat radiating member according to the fifth aspect of the present invention is the composition for a heat radiating member according to any one of the first to fourth aspects of the present invention.
  • the average particle size of the second inorganic filler is 0.1 to 500 ⁇ m, and the average particle size of the third inorganic filler is 0.01 to 50 ⁇ m. If comprised in this way, the average particle diameter of a 1st, 2nd inorganic filler and a 3rd inorganic filler can be made into the combination of the magnitude
  • the composition for a heat radiating member according to the sixth aspect of the present invention is the composition for a heat radiating member according to any one of the first to fifth aspects of the present invention.
  • the second inorganic filler is independently at least one selected from boron nitride, aluminum nitride, zirconia, diamond, alumina, and cordierite. If comprised in this way, it can become the composition for heat radiating members which can form the heat radiating member which has the outstanding visible light reflectivity, without preventing the characteristic of the 3rd filler which has visible light reflectivity.
  • the composition for a heat radiating member according to the seventh aspect of the present invention is the composition for a heat radiating member according to any one of the first aspect to the sixth aspect of the present invention. Is at least one selected from titanium oxide, silica, alumina, and zinc oxide. If comprised in this way, it can become the composition for heat radiating members which can form the heat radiating member which has the outstanding visible light reflectivity by presence of a 3rd inorganic filler.
  • the composition for a heat radiating member according to the eighth aspect of the present invention is the composition for a heat radiating member according to any one of the first to seventh aspects of the present invention.
  • bonded with the said 2nd inorganic filler and the said 3rd inorganic filler is further included.
  • composition for heat radiating members according to the ninth aspect of the present invention is the composition for heat radiating members according to the second aspect or the fourth aspect of the present invention, wherein the first coupling agent, the second The coupling agent and the third coupling agent are each independently a silane coupling agent represented by the following formula (6).
  • R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
  • R 2 is — (CH 2 ) 0-3 —O—;
  • R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
  • R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
  • R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
  • Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
  • j is an integer from 0 to 3;
  • k is an integer from 0 to
  • composition for heat dissipation members according to the tenth aspect of the present invention is the polymerizable compound before being combined with the coupling agent in the composition for heat dissipation members according to the first aspect or the second aspect of the present invention.
  • R a —R 6 —O— (Rx) n —O—R 11 —R a
  • Each R a is independently any of the following formulas (1-1) to (1-2), amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
  • Rx is any one of the following formulas (1-3) to (1-6);
  • n is an integer from 1 to 3;
  • R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms.
  • [Chemical 1] [In the formulas (1-1) to (1-2), each R b is independently hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1. .
  • R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms. ] If comprised in this way, since the structure of a polymeric compound has few reaction sites and it is hard to receive the influence by a heat
  • composition for heat radiating members according to the eleventh aspect of the present invention is the polymerizable compound before combined with the coupling agent in the composition for heat radiating members according to the first aspect or the second aspect of the present invention.
  • Ra-Z- (AZ) m-Ra (2) [In the formula (2), Each Ra is independently a group capable of binding to the other end of the first coupling agent, the second coupling agent, or the third coupling agent; A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] Oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl, In these rings, arbitrary —CH 2 — may be replaced with —O—, optional —CH ⁇ may be replaced with —N ⁇ , and optional hydrogen is halogen, carbon number 1 May be substituted with an alkyl having 10 to 10 or an alkyl halide having 1 to 10 carbon atoms, In the alkyl, optional —CH 2
  • a polymeric compound is thermosetting, can be hardened without being influenced by the quantity of a filler, and is further excellent in heat resistance.
  • the molecular structure has symmetry and linearity, which is considered advantageous for phonon propagation.
  • composition for heat radiating members according to the twelfth aspect of the present invention is the polymerizable compound before being combined with the coupling agent in the composition for heat radiating members according to the first aspect or the second aspect of the present invention.
  • any —CH ⁇ may be replaced by —N ⁇ , and any hydrogen is replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons May be
  • alkyl substituted with any hydrogen any —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—
  • Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 20 carbon atoms, In the alkylene, any —CH 2 — may be replaced with —O—, —S—, —CO—, —COO—, or —OCO—, and any hydrogen may be replaced with a halogen. .
  • x is an integer greater than or equal to 2;
  • Ring B is benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, 9,9-diphenylfluorene, adamantane, or biadamantane;
  • any —CH 2 — may be replaced by —O—, and any —CH ⁇ may be replaced by —N ⁇ , and any hydrogen may be halogen, a carbon number of 1 to 3 alkyl, or an alkyl halide having 1 to 3 carbon atoms,
  • arbitrary —CH 2 — is replaced by —O—, —CO—, —COO—, or —OCO—.
  • the composition for heat radiating members can be comprised using the especially preferable compound among the polymeric compounds which have a bifunctional or more functional hydroxyl group. These compounds are thermosetting and can be cured without being affected by the amount of filler. In addition, the molecular structure has symmetry and linearity, which is considered advantageous for phonon propagation.
  • the visible light reflective heat radiating member according to the thirteenth aspect of the present invention is a cured product of the composition for a heat radiating member according to any one of the first to twelfth aspects of the present invention. If comprised in this way, the visible light reflective heat radiating member has a coupling
  • a light-emitting device is a substrate; a light-emitting chip mounted on the substrate; a reflective frame surrounding the light-emitting chip on the substrate, and the thirteenth aspect of the present invention. And a reflective frame formed by the visible light reflective heat dissipating member described in 1 above. If comprised in this way, the light-emitting device can improve the light extraction efficiency to the exterior by the reflective frame which has high visible light reflectivity. At the same time, the heat generated in the light emitting chip can be efficiently radiated by the reflective frame having high thermal conductivity.
  • a light emitting apparatus includes a plurality of light emitting devices according to the fourteenth aspect of the present invention. If comprised in this way, the influence of the heat
  • the visible light reflective heat radiating member formed from the composition for a heat radiating member of the present invention can dissipate heat by efficiently conducting and transmitting heat, can control the coefficient of thermal expansion, and has excellent visible light reflectivity. Can be.
  • FIG. 6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 1.
  • FIG. 6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 2.
  • 6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 3.
  • 6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 4.
  • 10 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 5.
  • 10 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 6.
  • 6 is a graph showing measurement results obtained by the thermomechanical analyzer of Comparative Example 1.
  • 6 is a graph showing a measurement result by a thermomechanical analyzer of Comparative Example 2.
  • 10 is a graph showing measurement results obtained by the thermomechanical analyzer of Comparative Example 3.
  • Liquid crystal compound and “liquid crystal compound” are compounds that exhibit a liquid crystal phase such as a nematic phase or a smectic phase.
  • any —CH 2 — in alkyl may be replaced by —O—” or “any —CH 2 CH 2 — may be replaced by —CH ⁇ CH—, etc.”
  • the meaning is shown in the following example. For example, as the group in which any —CH 2 — in C 4 H 9 — is replaced by —O— or —CH ⁇ CH—, C 3 H 7 O—, CH 3 —O— (CH 2 ) 2 —, CH 3 —O—CH 2 —O— and the like.
  • groups in which any —CH 2 CH 2 — in C 5 H 11 — is replaced by —CH ⁇ CH— include H 2 C ⁇ CH— (CH 2 ) 3 —, CH 3 —CH ⁇ CH
  • the term “arbitrary” means “at least one selected without distinction”.
  • CH 3 —O—CH 2 —O— in which oxygen and oxygen are not adjacent to each other is more preferable than CH 3 —O—O—CH 2 — in which oxygen and oxygen are adjacent to each other. Is preferred.
  • any hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons, or halogenated alkyl having 1 to 10 carbons” with respect to ring A is, for example, 2 of 1,4-phenylene. , 3, 5 and 6 positions are substituted with a substituent such as fluorine or methyl group, and the substituent is “halogenated alkyl having 1 to 10 carbon atoms” Examples of these include examples such as a 2-fluoroethyl group and a 3-fluoro-5-chlorohexyl group.
  • Compound (1) means a polymerizable compound represented by the following formula (1), which will be described later, and may mean at least one compound represented by the following formula (1).
  • Composition for heat radiating member means a composition containing at least one compound selected from the compound (1) or other polymerizable compounds. When one compound (1) has a plurality of A, any two A may be the same or different. When two or more compounds (1) have A, arbitrary two A may be the same or different. This rule also applies to other symbols and groups such as Ra and Z.
  • the heat radiating member composition of the present invention is a composition that forms a heat radiating member by bonding inorganic fillers with each other via a coupling agent and a bifunctional or higher functional polymerizable compound.
  • FIG. 1 shows an example of bonding when boron nitride is used as the inorganic filler.
  • boron nitride h-BN
  • boron nitride does not have a reactive group on the plane (flat surface) of the particle, and therefore, a plurality of coupling agents are bonded only around the periphery.
  • bonding with a some coupling agent is formed with respect to an inorganic filler.
  • the coupling agent can also be combined with a polymerizable compound. Therefore, a plurality of bonds can be formed between boron nitrides by coupling the coupling agents bonded to boron nitride with a polymerizable compound, as shown in FIG.
  • the heat radiating member (hereinafter sometimes referred to as a heat radiating member) has extremely high thermal conductivity, and becomes a composite material that directly reflects the thermal expansion coefficient of the inorganic component.
  • the composition for a heat dissipation member according to the first embodiment of the present invention includes, for example, as shown in FIG. 2, a first coupling agent 11; and heat conduction combined with one end of the first coupling agent 11.
  • the compound 22 includes a polymerizable compound 22 in which one functional group is bonded to the other end of the second coupling agent 12; and a visible light reflective third inorganic filler.
  • the first coupling agent 11 and the polymerizable compound 22 each have a group capable of bonding to each other.
  • the average particle size of the third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler.
  • the ratio of the third inorganic filler to the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 1 to 50% by mass.
  • the third inorganic filler includes a visible light reflective third inorganic filler 3 bonded to the third coupling agent 13, and is polymerizable with the third coupling agent 13. It is preferable that each of the compounds 22 has a group capable of bonding to each other because the other end of the third coupling agent 13 can form a bond with the polymerizable compound 22 by curing of the heat radiating member composition.
  • the composition for a heat radiating member according to the second embodiment of the present invention includes a first coupling agent 11; and heat conduction combined with one end of the first coupling agent 11.
  • the first coupling agent 11 and the second coupling agent 12 each have a group capable of binding to each other.
  • the average particle size of the third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler.
  • the ratio of the third inorganic filler to the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 1 to 50% by mass.
  • the bond between the first inorganic filler 1 and the second inorganic filler 2 is Formed (FIG. 1).
  • the third inorganic filler includes a visible light reflective third inorganic filler 3 bonded to the third coupling agent 13, and includes the third coupling agent 13 and the second inorganic filler 3.
  • the coupling agent 12 has a group capable of binding to each other, the other end of the third coupling agent 13 can form a bond with the second coupling agent 12 by curing of the heat radiating member composition. preferable.
  • the bifunctional or higher polymerizable compound one having a group capable of forming a bond with a coupling agent is selected.
  • the bifunctional or higher functional polymerizable compound may be a non-liquid crystalline compound.
  • Examples of the non-liquid crystalline bifunctional or higher polymerizable compound include a polymerizable compound represented by the following formula (1).
  • R a R 6 —O— (Rx) n —O—R 11 —R a
  • Rx represents naphthalene-2,6-diyl, or naphthalene-2,7-diyl represented by the following formulas (1-3) to (1-6), biphenyl-2,2 ′, biphenyl-2,4 ', One of biphenyl-3,3';
  • n is an integer from 1 to 3;
  • R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms.
  • R b is independently hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
  • R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms.
  • each R a can be independently bonded to the other end of the first coupling agent, the other end of the second coupling agent, or the other end of the third coupling agent. Any group may be used. Examples thereof include, but are not limited to, a polymerizable group represented by the above formulas (1-1) to (1-2), cyclohexene oxide, phthalic anhydride, or succinic anhydride.
  • the polymerizable compound represented by the formula (1) has few reactive sites in its structure and is not easily affected by heat. On the other hand, the structure was found to be excellent in phonon propagation. Therefore, the heat radiating member formed from the composition for heat radiating member can have high heat resistance with high heat conductivity.
  • the bifunctional or higher polymerizable compound may be a liquid crystal compound.
  • the bifunctional or higher functional polymerizable compound having liquid crystallinity include a polymerizable liquid crystal compound represented by the following formula (2).
  • the polymerizable liquid crystal compound has a liquid crystal skeleton and a polymerizable group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (2) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
  • Terminal group R a has the same meaning as R a defined in the above formula (1).
  • preferable A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2, 5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro- 1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine- 3,6-diyl, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methyl
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
  • A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro. -1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, and the like.
  • Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
  • the linking group Z of the compound (2) is a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH—,
  • — (CH 2 ) 4 — in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH— or — (CH 2) 4 -, the viscosity is reduced.
  • the bonding group Z is —CH ⁇ CH—, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ N— or —CF ⁇ CF—
  • the temperature range of the liquid crystal phase is wide.
  • the bonding group Z is alkyl having about 4 to 10 carbon atoms, the melting point is lowered.
  • preferred Z is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH— and the like.
  • Z is a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, — OCF 2 —, —CH ⁇ CH—, —C ⁇ C— and the like can be mentioned.
  • Particularly preferred Z is a single bond, — (CH 2 ) 2 —, —COO— or —OCO—.
  • a 6-membered ring and a condensed ring including a 6-membered ring are regarded as a ring, and for example, a 3-membered ring, a 4-membered ring or a 5-membered ring alone is not regarded as a ring.
  • a condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
  • the compound (2) may be optically active or optically inactive.
  • the compound (2) may have an asymmetric carbon or an axial asymmetry.
  • the configuration of the asymmetric carbon may be R or S.
  • the asymmetric carbon may be located at either Ra or A, and when it has an asymmetric carbon, the compatibility of the compound (2) is good.
  • the twist-inducing force is large. Further, any optical rotation may be used.
  • a compound having desired physical properties can be obtained by appropriately selecting the terminal group R a , the type of the ring structure A and the bonding group Z, and the number of rings.
  • Compound (2) can also be represented by the following formula (2a) or (2b).
  • A, Z, R a has the same meaning as A, Z, R a as defined by the above formula (2)
  • P is the following formula (2-1) to (2 2) represents a polymerizable group represented by 2), cyclohexene oxide, phthalic anhydride, or succinic anhydride
  • Y represents a single bond or alkylene having 1 to 20 carbon atoms, preferably alkylene having 1 to 10 carbon atoms
  • alkylene arbitrary —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, —OCO— or —CH ⁇ CH—.
  • Y is alkylene in which —CH 2 — at one or both ends of alkylene having 1 to 10 carbon atoms is replaced by —O—.
  • m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
  • R b is independently hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
  • Examples of preferred compound (2) include the following compounds (a-1) to (a-10), (b-1) to (b-16), (c-1) to (c-16), (D-1) to (d-15), (e-1) to (e-15), (f-1) to (f-14), (g-1) to (g-20).
  • * represents an asymmetric carbon.
  • R a , P and Y are as defined in the above formulas (2a) and (2b).
  • Z 1 each independently represents a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —C ⁇ C—, —C ⁇ C—COO—, —OCO—C ⁇ C—, —C ⁇ C—CH ⁇ CH—, —CH ⁇ CH—C ⁇ C—, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ CH—, —N ⁇
  • each Z 2 independently represents — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —C ⁇ C—, —C ⁇ C—COO—, —OCO—C ⁇ C—, — C ⁇ C—CH ⁇ CH—, —CH ⁇ CH—C ⁇ C—, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ N—, —OCF 2 — or —CF 2 O—.
  • each Z 3 independently represents a single bond, alkyl having 1 to 10 carbon atoms, — (CH 2 ) a —, —O (CH 2 ) a O—, —CH 2 O—, —OCH 2 —, —O (CH 2 ) 3 —, — (CH 2 ) 3 O—, —COO—, —OCO—, —CH ⁇ CH—, —CH ⁇ CHCOO —, —OCOCH ⁇ CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CF ⁇ CF—, —C ⁇ C—, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ N—, —OCF 2 — or —CF 2 O—, and the plurality of Z 3 may be the same or different.
  • a is an integer of 1 to 20.
  • X represents substitution of 1,4-phenylene and fluorene-2,7-diyl in which arbitrary hydrogen may be replaced by halogen, alkyl, or alkyl fluoride.
  • More preferable compound (2) has the following characteristics in the following formula (2a) or (2b).
  • A, Y, Z, Ra and m are as defined above, and P represents a polymerizable group represented by the following formulas (2-1) to (2-2).
  • P represents a polymerizable group represented by the following formulas (2-1) to (2-2).
  • two Ps represent the same polymerizable groups (2-1) to (2-2)
  • two Ys represent the same group
  • two Ys are symmetrical. Join.
  • the bifunctional or higher functional polymerizable compound may be a non-liquid crystalline compound having a hydroxy group.
  • Examples of the polymerizable compound having a non-liquid crystalline bifunctional or higher functional hydroxyl group include at least one polymerizable compound represented by the following formula (3) or (4). [Chemical 22]
  • any —CH ⁇ may be replaced by —N ⁇ , and any hydrogen is replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons May be
  • alkyl substituted with any hydrogen any —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—
  • Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 20 carbon atoms, In the alkylene, any —CH 2 — may be replaced with —O—, —S—, —CO—, —COO—, or —OCO—, and any hydrogen may be replaced with a halogen. .
  • A is a single bond, alkylene having 1 to 10 carbon atoms, phenylene, or phenylene in which any hydrogen is replaced by a halogen or a methyl group
  • Z 1 and Z 2 are each independently Single bond, — (CH 2 ) a —, —O—, —O (CH 2 ) a —, — (CH 2 ) a O—, —O (CH 2 ) a O—, —COO—, — OCO—, —CH 2 CH 2 —COO—, —OCO—CH 2 CH 2 —, —OCF 2 — or —CF 2 O—, and a is preferably an integer of 1-20.
  • Examples of particularly preferred compound (3) include compounds (3-1) to (3-11) shown below.
  • x is an integer greater than or equal to 2;
  • Ring B is benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, 9,9-diphenylfluorene, adamantane, or biadamantane,
  • any —CH 2 — may be replaced by —O—
  • any —CH ⁇ may be replaced by —N ⁇
  • any hydrogen may be halogen, a carbon number of 1 to 3 alkyl, or an alkyl halide having 1 to 3 carbon atoms
  • arbitrary —CH 2 — is replaced by —O—, —CO—, —COO—, or —OCO—. May be.
  • ring B is preferably benzene, naphthalene, 9,9-diphenylfluorene, or adamantane.
  • Examples of particularly preferred compound (4) include compounds (4-1) to (4-10) shown below.
  • the bifunctional or higher functional polymerizable compound may be a liquid crystalline compound having a hydroxy group.
  • the polymerizable compound having a bifunctional or higher functional hydroxy group having liquid crystallinity include at least one polymerizable compound represented by the following formula (5).
  • the compound (5) has a liquid crystal skeleton and a bifunctional or higher functional hydroxy group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (5) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
  • s is an integer of 0 to 4
  • t is an integer of 1 or more
  • u is an integer of 1 or more.
  • the linking group Y independently represents a single bond or alkylene having 1 to 20 carbon atoms, preferably alkylene having 1 to 10 carbon atoms.
  • alkylene having 2 to 20 carbon atoms Any —CH 2 — that is not bound to a group may be replaced with —O—, —S—, —CO—, —COO— or —OCO—, and any hydrogen may be replaced with halogen.
  • Y is a linear alkylene, the temperature range of the liquid crystal phase is wide and the viscosity is small.
  • compatibility with other liquid crystal compounds is good.
  • preferable ring C is 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2. , 5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro -1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine -3,6-diyl, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-d
  • 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
  • C is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro. -1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, and the like.
  • Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
  • the bonding group W of the compound (5) is independently a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, — When CH ⁇ CH—, —CF ⁇ CF— or — (CH 2 ) 4 —, in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH ⁇ CH - or - (CH 2) 4 - when it, the viscosity decreases.
  • the temperature range of the liquid crystal phase is wide. Further, when the bonding group W is alkylene having about 4 to 10 carbon atoms, the melting point is lowered.
  • preferable bonding group W is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2.
  • more preferable bonding group W is a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—. , —OCF 2 —, —CH ⁇ CH—, —C ⁇ C— and the like.
  • Particularly preferred bonding group W is a single bond, — (CH 2 ) 2 —, —COO— or —OCO—.
  • the viscosity is low, and when it has 3 or more rings, the clearing point is high.
  • the compound (5) may be optically active or optically inactive.
  • the compound (5) may have an asymmetric carbon or an axial asymmetry.
  • the configuration of the asymmetric carbon may be R or S.
  • the asymmetric carbon may be located in any of the ring C, the linking group W, and the linking group Y.
  • the compatibility of the compound (5) is good.
  • the twist-inducing force is large. Further, any optical rotation may be used.
  • a compound having desired physical properties can be obtained by appropriately selecting the type of ring C, bonding group W, bonding group Y, and number of rings.
  • Bifunctional or higher polymerizable compounds are polymerizable compounds other than the polymerizable compounds represented by the above formulas (1), (2), (3), (4), and (5). It may be.
  • the diglycidyl ether of polyether, the diglycidyl ether of bisphenol A, the diglycidyl ether of bisphenol F, the diglycidyl ether of biphenol, or the compound of formula (2) (5) lacks linearity and exhibits liquid crystallinity. Examples of the compounds that were not used.
  • the polymerizable compound can be synthesized by combining known methods in organic synthetic chemistry.
  • the polymerizable compound used in the present invention preferably has a bifunctional or higher functional group, including a case of a trifunctional or higher functional group or a tetrafunctional or higher functional group. Furthermore, a compound having a functional group at both ends of the long side of the polymerizable compound is preferable because it can form a linear bond.
  • a nitride etc. can be mentioned as a 1st inorganic filler and a 2nd inorganic filler.
  • the first inorganic filler and the second inorganic filler may be the same or different.
  • boron nitride, zirconia, diamond, or the like may be used as an inorganic filler having high thermal conductivity and a very small or negative coefficient of thermal expansion.
  • an inorganic filler having a high thermal conductivity and a positive thermal expansion coefficient such as aluminum nitride, alumina, or cordierite, may be used for either the first or second inorganic filler.
  • boron nitride and aluminum nitride are preferred.
  • hexagonal boron nitride (h-BN) is preferable.
  • Boron nitride is preferable because it has a very high thermal conductivity in the planar direction, a low dielectric constant, and a high insulating property.
  • it is preferable to use plate-like crystal boron nitride because the plate-like structure is easily oriented along the mold by the flow and pressure of the raw material during molding and curing.
  • the kind, shape, size, addition amount, etc. of the inorganic filler can be appropriately selected according to the purpose.
  • an inorganic filler having conductivity may be used as long as the desired insulation is maintained.
  • Examples of the shape of the inorganic filler include a plate shape, a spherical shape, an amorphous shape, a fiber shape, a rod shape, and a tubular shape.
  • the polymerizable compound preferably has a shape and length that can efficiently bond these inorganic fillers.
  • the appearance of the inorganic filler is preferably light-colored, translucent or transparent.
  • the average particle diameter of the first inorganic filler and the second inorganic filler is preferably 0.1 to 500 ⁇ m. More preferably, it is 1 to 100 ⁇ m. When it is 0.1 ⁇ m or more, the thermal conductivity is good, and when it is 500 ⁇ m or less, the filling rate can be increased.
  • the average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis by Franhofer diffraction theory and Mie's scattering theory, the diameter where the large side and the small side are equivalent (volume basis) The median diameter was used.
  • the third inorganic filler has a white appearance or a similar appearance, and it is preferable to use an inorganic filler that does not promote oxidation of organic components. More preferred are titanium oxide, silica, alumina, zinc oxide and the like.
  • the average particle size of the third inorganic filler is preferably 0.01 to 50 ⁇ m. More preferably, it is 0.05 to 25 ⁇ m. When it is 0.01 ⁇ m or more, the thermal conductivity is good, and when it is 50 ⁇ m or less, the filling rate can be increased.
  • Examples of the shape of the third inorganic filler include a plate shape, a spherical shape, an amorphous shape, a fiber shape, a rod shape, and a tubular shape.
  • the coupling agent to be bonded to the inorganic filler one having a group that reacts with the functional group of the polymerizable compound can be selected.
  • the polymerizable compound when it has an oxiranyl group, it preferably has an amine group.
  • Silac Ace (trade names) S310, S320, S330, and S360 are available from JNC Corporation, and KBM903 and KBE903 are available from Shin-Etsu Chemical Co., Ltd.
  • a coupling agent having an oxiranyl group or the like is preferable. Examples of the products manufactured by JNC Corporation include Sila Ace (trade names) S510 and S530.
  • the amount of modification of the coupling agent with respect to the inorganic filler is preferably 0.2 to 20% by weight, more preferably 1 from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. ⁇ 10% by weight.
  • R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
  • R 2 is — (CH 2 ) 0-3 —O—;
  • R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
  • R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
  • R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
  • Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable
  • the composition for heat radiating members of the present invention may further contain an inorganic filler and contain a plurality of types of inorganic fillers.
  • the first inorganic filler and the second inorganic filler are two-dimensional plate-like or one-dimensional linear, if only these are combined, the physical properties of the combined heat radiating member composition are greatly different. A direction arises.
  • By adding an additional filler there is an advantage that the orientation of the first and second inorganic fillers is relaxed and anisotropy is reduced.
  • the thermal expansion coefficient of the first and second inorganic fillers is very small or negative
  • by adding an additional filler having a positive thermal expansion coefficient the thermal expansion coefficient is more accurately adjusted from negative to positive depending on the mixing ratio. It becomes possible to control.
  • limiting in the inorganic filler used for an additional filler It is desirable that it is a thing with high heat conductivity.
  • Additional fillers are silicon carbide, aluminum nitride, silicon nitride, diamond, silicon, beryllia, magnesium oxide, aluminum oxide, zinc oxide, silicon oxide, copper oxide, titanium oxide, which have high thermal conductivity and positive thermal expansion. , Cerium oxide, yttrium oxide, tin oxide, holmium oxide, bismuth oxide, cobalt oxide, calcium oxide, magnesium hydroxide, aluminum hydroxide, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium, Mention may be made of inorganic fillers and metal fillers such as tungsten, molybdenum and stainless steel.
  • the composition for a heat dissipation member of the present invention further includes an organic compound that is not bonded to the first inorganic filler, the second inorganic filler, and the third inorganic filler, that is, does not contribute to bonding (for example, a polymerizable compound or a high Molecular compound) and a polymerization initiator, a solvent, and the like.
  • an organic compound that is not bonded to the first inorganic filler, the second inorganic filler, and the third inorganic filler that is, does not contribute to bonding (for example, a polymerizable compound or a high Molecular compound) and a polymerization initiator, a solvent, and the like.
  • the composition for a heat radiating member may include a polymerizable compound (in this case, not necessarily bifunctional or higher) that is not bonded to an inorganic filler as a constituent element.
  • a polymerizable compound a compound which does not reduce moldability and mechanical strength is preferable.
  • This polymerizable compound is classified into a compound having no liquid crystallinity and a compound having liquid crystallinity.
  • the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, itaconic acid derivatives, and the like.
  • the content first, it is desirable to prepare a composition for a heat dissipation member that does not contain an unbonded polymerizable compound, measure its porosity, and add an amount of the polymerizable compound that can fill the void.
  • the composition for a heat radiating member may include a polymer compound that is not bonded to an inorganic filler as a constituent element.
  • a polymer compound a compound that does not lower the film-forming property and mechanical strength is preferable.
  • the polymer compound may be a polymer compound that does not react with the first, second, and third inorganic fillers and the polymerizable compound.
  • a polyolefin resin, a polyvinyl resin, a polyamide resin, a polyitaconic acid resin, and the like Is mentioned.
  • the composition for a heat radiating member may contain a liquid crystal compound having no polymerizable group as a constituent element.
  • non-polymerizable liquid crystal compounds are described in Licris, a database of liquid crystal compounds (LiqCryst, LCI Publisher GmbH, Hamburg, Germany).
  • a composite material of a polymer of the compound (2) and a liquid crystal compound can be obtained.
  • a non-polymerizable liquid crystal compound is present in a polymer network like a polymer dispersed liquid crystal.
  • the first, second, and third fillers may be combined by a method in which the first, second, and third fillers are injected into the voids in a temperature region that exhibits an isotropic phase.
  • the filler may be polymerized by mixing an amount of liquid crystalline compound calculated so as to fill the voids in advance.
  • the composition for heat radiating members may contain a polymerization initiator as a constituent element.
  • a polymerization initiator for example, a radical photopolymerization initiator, a cationic photopolymerization initiator, a thermal radical polymerization initiator, or the like may be used depending on the components of the composition and the polymerization method.
  • Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide.
  • DTBPO dimethyl 2,2′-azobisisobutyrate
  • MAIB dimethyl 2,2′-azobisisobutyrate
  • AIBN azobisisobutyronitrile
  • ACN azobiscyclohexanecarbonitrile
  • the composition for heat radiating members may contain a solvent.
  • the polymerization may be performed in a solvent or without a solvent.
  • a composition containing a solvent may be applied onto a substrate by, for example, a spin coating method and then photopolymerized after removing the solvent. Further, after photocuring, it may be heated to an appropriate temperature and post-treated by heat curing.
  • Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, ⁇ -butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, cyclohexane, methylcyclohexane, cyclopentanone. , Cyclohexanone, PGMEA and the like.
  • the said solvent may be used individually by 1 type, or may mix and use 2 or more types. It should be noted that there is not much meaning in limiting the ratio of the solvent used during the polymerization, and it may be determined for each case in consideration of the polymerization efficiency, the solvent cost, the energy cost, and the like.
  • a stabilizer may be added to the heat dissipating member composition for easy handling.
  • a stabilizer known ones can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
  • BHT 3,5-di-t-butyl-4-hydroxytoluene
  • an additive may be added to further increase the mechanical strength.
  • fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, and polyimide can be used as inorganic fibers and cloth such as glass and carbon fiber, or polymer additives.
  • the ratio of the first and second inorganic fillers, the coupling agent, and the bifunctional or higher polymerizable compound depends on the amount of the coupling agent to be combined with the inorganic filler to be used.
  • boron nitride When boron nitride is used as the first and second inorganic fillers, boron nitride has no reactive groups on the surface and has reactive groups only on the side surfaces. It is preferable that a coupling agent is bonded to the few reactive groups, and a polymerizable compound having the same number as or slightly larger than the number of the reactive groups is bonded.
  • the first inorganic filler is treated with the first coupling agent, and the first inorganic filler and one end of the first coupling agent are bonded together to form a modified filler A.
  • a known method can be used for the coupling treatment. As an example, first, an inorganic filler and a coupling agent are added to a solvent. Stir using a stirrer or the like and then dry. After solvent drying, heat treatment is performed under vacuum conditions using a vacuum dryer or the like. A solvent is added to the inorganic filler and pulverized by ultrasonic treatment. The solution is separated and purified using a centrifuge. After discarding the supernatant, a solvent is added and the same operation is repeated several times.
  • the inorganic filler (modified filler A) subjected to the coupling treatment after purification using an oven is dried.
  • a modified filler C obtained by treating a third inorganic filler with a third coupling agent (the third coupling agent may be the same as or different from the first coupling agent).
  • the other end of the second coupling agent of the second inorganic filler (which may be the same as or different from the modified filler A) treated with the second coupling agent that is modified with the polymerizable compound A bifunctional or higher functional polymerizable compound is bound to.
  • the filler modified with the polymerizable compound in this way is referred to as a modified filler B.
  • the inorganic filler subjected to the coupling treatment and the polymerizable compound are mixed using an agate mortar or the like and then kneaded using a biaxial roll or the like. Thereafter, separation and purification are performed by sonication and centrifugation.
  • the mixing ratio (weight ratio) of only the first inorganic filler and the second inorganic filler is, for example, 1: 1 to 1 when the bonding group forming the bond between the modified filler A and the modified filler B is amino: epoxy, respectively. : 30 is preferable, and 1: 3 to 1:20 is more preferable.
  • the mixing ratio is determined by the number of terminal linking groups that form the bond between the modified filler A and the modified filler B. For example, if it is a secondary amino, it can react with two oxiranyl groups, so it is a small amount compared to the oxiranyl group side It's okay. Moreover, since the oxiranyl group side may be ring-opened, it is preferable to use more than the amount calculated from an epoxy equivalent.
  • the mixing ratio of only the third inorganic filler is 1 to 50 mass with respect to 100 mass% of the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler. % Is preferable.
  • the content is 1% by mass or more, a high visible light reflectance can be obtained, and when the content is 50% by mass or less, a heat radiating member having both high reflectance and high thermal conductivity can be obtained.
  • ⁇ Manufacturing heat dissipation member> As an example, the method to manufacture the film as a heat radiating member using the composition for heat radiating members is demonstrated.
  • the heat radiating member composition is sandwiched between hot plates using a compression molding machine, and cured by compression molding. Further, post-curing is performed using an oven or the like to obtain the heat radiating member of the present invention.
  • the pressure at the time of compression molding is preferably 50 ⁇ 200kgf / cm 2, more preferably 70 ⁇ 180kgf / cm 2.
  • the pressure during curing is preferably high. However, it is preferable that the pressure is appropriately changed depending on the fluidity of the mold and the target physical properties (which direction of thermal conductivity is important) and an appropriate pressure is applied.
  • the composition for heat radiating members is apply
  • the coating method include spin coating, roll coating, curtain coating, flow coating, printing, micro gravure coating, gravure coating, wire bar coating, dip coating, spray coating, meniscus coating, and the like.
  • the solvent can be removed by drying, for example, by air drying at room temperature, drying on a hot plate, drying in a drying furnace, blowing hot air or hot air, and the like.
  • the conditions for removing the solvent are not particularly limited, and it may be dried until the solvent is almost removed and the fluidity of the coating layer is lost.
  • the substrate examples include metal substrates such as copper, aluminum, and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride, and zinc oxide; glass substrates such as alkali glass, borosilicate glass, and flint glass; alumina; Inorganic insulating substrates such as aluminum nitride; polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenyleneoxide, polyethyleneterephthalate, polybutyleneterephthalate , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, Triacetyl cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and a plastic film substrate such as norbornene resins.
  • the film substrate may be a uniaxially stretched film or a biaxially stretched film.
  • the film substrate may be subjected to surface treatment such as saponification treatment, corona treatment, or plasma treatment in advance.
  • the material used as the protective layer include polyvinyl alcohol.
  • an anchor coat layer may be formed in order to improve the adhesion between the protective layer and the substrate.
  • Such an anchor coat layer may be any inorganic or organic material as long as it improves the adhesion between the protective layer and the substrate.
  • thermosetting temperature ranges from room temperature to 350 ° C., preferably from room temperature to 250 ° C., more preferably from 50 ° C. to 200 ° C.
  • curing time is 5 ° C.
  • the range is from second to 50 hours, preferably from 1 minute to 30 hours, more preferably from 5 minutes to 20 hours.
  • reheating treatment may be performed to reduce strain and the like.
  • the bond between the coupling agent and the bifunctional or higher-polymerizable compound or the bond between the coupling agents is not particularly limited as long as it is a combination of groups that can be bonded to each other. As long as a bond can be formed, a combination of different ones or the same combination may be used. For example, a combination in which one has an amino group and the other has an epoxy group may be used.
  • oxiranyl group and amino group vinyl groups, methacryloxy groups, carboxy group or carboxylic anhydride residue and amino group, imidazole group and oxiranyl group, hydroxy group and A combination of an oxiranyl group and the like can be mentioned, but is not limited thereto. A combination with high heat resistance is more preferable.
  • the polymerizable compound having two or more functions may have different functional groups.
  • the first inorganic filler is coupled with a first silane coupling agent having an amino group.
  • the second silane coupling agent having a vinyl group is modified with a polymerizable compound having a vinyl group and an epoxy group at the terminals, and then the second inorganic filler is coupled with the second silane coupling agent.
  • the amino group of the first coupling agent and the epoxy group of the polymerizable compound are bonded.
  • the visible light reflective heat radiating member according to the third embodiment of the present invention is a cured product obtained by curing the composition for heat radiating member according to the first embodiment and the second embodiment according to the use. Molded.
  • This cured product has high thermal conductivity and a negative or very small positive coefficient of thermal expansion, and is excellent in chemical stability, heat resistance, hardness, mechanical strength, and the like. In addition, it has excellent visible light reflectivity.
  • the mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, bending elastic modulus, impact strength, and the like.
  • the visible light reflective heat radiating member of the present invention is formed from the above heat radiating member composition, and is used in the form of a sheet, a film, a thin film, a fiber, a molded body or the like.
  • Preferred shapes are plates, sheets, films and thin films.
  • the thickness of the heat dissipating member in this specification is 2 ⁇ m or more, preferably 5 ⁇ m to 5 mm, more preferably 10 ⁇ m to 2 mm, and still more preferably 20 ⁇ m to 1 mm. What is necessary is just to change thickness suitably according to a use.
  • the visible light reflective heat radiating member of the present invention is suitable for, for example, a heat radiating substrate, a heat radiating plate (planar heat sink), a heat radiating sheet, a heat radiating film, a heat radiating coating film, a heat radiating adhesive, and a heat radiating molded product.
  • a light emitting device includes: a substrate; a light emitting chip mounted on the substrate; a reflective frame surrounding the light emitting chip on the substrate; A reflective frame formed by a heat-radiating member.
  • an LED package as a light emitting device includes a resin outer frame, and an LED element as a light emitting chip is mounted therein. The LED element surrounded by the outer frame is sealed with a sealing resin.
  • a light emitting device is a light emitting device including a plurality of the light emitting devices.
  • Specific examples include an electronic bulletin board, a large video device, a traffic light, a light source for light exposure inside an electrophotographic printer, a light source for optical communication, a light source for sensors, and the like in addition to the illumination device.
  • the heat of the LED element can be effectively radiated while effectively using the light of the LED element by using the visible light reflective heat radiating member of the present invention. Can do.
  • the component material which comprises the heat radiating member used for the Example of this invention is as follows.
  • the first inorganic filler in a state of being bonded to the first coupling agent is referred to as a modified filler A (boron nitride modified with a silane coupling agent).
  • a modified filler A boron nitride modified with a silane coupling agent.
  • bonded with the 3rd coupling agent be the modification filler C (what modified
  • the second inorganic filler is a modified filler B (boron nitride modified with a silane coupling agent and a polymerizable compound).
  • a material in which the other end of the first coupling agent is bonded to another hydroxy group of the polymerizable compound having a bifunctional or higher functional hydroxyl group by curing is used as a heat dissipation member.
  • a silane coupling agent (Silaace S510) was added to 45 g of methanol, and the mixture was stirred at 500 rpm for 15 hours using a stirrer to obtain a mixed solution of methanol and a silane coupling agent.
  • 7.5 g of titanium oxide (White DCF-T-17050 manufactured by Resino Color Industry Co., Ltd.) was added to 45 mL of pure water, and then mixed with the methanol and the silane coupling agent while stirring at 500 rpm using a stirrer. Was put there.
  • the resulting dispersion was stirred for 1 hour, and the resulting mixture was dried at 50 ° C. for 6 hours. Furthermore, using a vacuum oven set to 80 ° C. after drying the solvent, heat treatment was performed under vacuum conditions for 5 hours.
  • the obtained particles were named modified filler C (TiO2-S510).
  • modified filler B 2 g of modified filler A (BN-S510) particles, 3.96 g of a polymerizable compound (bisphenol A) and 40 mg of a curing accelerator (Cureazole 2P4MZ) are weighed, and two rolls ((stock) ) Using Imoto Seisakusho IMC-AE00 type), the mixture was mixed at 160 ° C. for 10 minutes. This weight ratio is the number of phenol groups with which the epoxy group of the modified filler A particles reacts sufficiently and the amount with which both are sufficiently kneaded on the two rolls.
  • the BN particles are plate-like particles, the particles and the stainless steel plate are oriented in parallel when the mixture spreads between the stainless steel plates. Further, the amount of the sample was adjusted so that the thickness of the sample was about 760 ⁇ m. Furthermore, using a vacuum oven (DP300 manufactured by Yamato Scientific Co., Ltd.) set at 150 ° C., post-curing was performed for 15 hours under vacuum conditions. The sample obtained by this operation was used as a heat radiating member.
  • DP300 manufactured by Yamato Scientific Co., Ltd.
  • Thermogravimetric (TG) measurement The coating amount of the modified filler A, the modified filler B, the modified filler C and the heat dissipating member on the inorganic filler of the polymerizable compound or the silane coupling agent is the thermogravimetric / differential calorimeter (Corporation) Using Rigaku TG-8121), the heat loss at 900 ° C. was calculated. Further, the 5% weight reduction temperature of the heat radiating member was calculated from the temperature when the reduction amount from 140 ° C. to 900 ° C. was 5% by weight when the amount of reduction from 140 ° C. to 900 ° C. was 100% by weight.
  • the CIELAB value of the heat radiating member was measured by performing specular reflection component excluding (SCE) treatment with a spectral color meter SD7000 type manufactured by Nippon Denshoku Industries Co., Ltd.
  • ⁇ Reflectance measurement The reflectivity of the heat radiating member was measured by specular reflection + diffuse reflection spectrum (SCI) measurement using an ultraviolet-visible spectrophotometer UV-2450 type manufactured by Shimadzu Corporation and an absolute specular reflectance measuring device ASR3105 type. The reflectance at a wavelength of 450 nm was compared.
  • the thermal conductivity was measured in advance with the specific heat of the heat radiating member (measured with a DSC type high sensitivity differential scanning calorimeter Thermo Plus EVO2 DSC-8231 manufactured by Rigaku Corporation) and the specific gravity (manufactured by Shinko Electronics Co., Ltd.) (Measured with a scale-type specific gravity meter DME-220), and by multiplying the value by the thermal diffusivity obtained with an ai-Phase Mobile 1u thermal diffusivity measuring device manufactured by I-Phase Co., Ltd. The conductivity was determined.
  • thermal expansion coefficient A test piece having a width of 4 mm was cut out from the obtained sample, and the thermal expansion coefficient (measured with a TMA-SS6100 thermomechanical analyzer) was determined in the range of 50 to 200 ° C. The length of the test piece was appropriately adjusted according to the shape of the sample to be measured.
  • Example 2 In Example 2, 343 mg of modified filler A (BN-S510), 333 mg of modified filler C (TiO 2 -S510), 434 mg of modified filler B, and 10 mg of 2-ethyl-4-methylimidazole dissolved in 2 mL of acetone 51 ⁇ L A heat radiating member was produced in the same manner as in Example 1, except that the above was measured and mixed.
  • Example 3 In Example 3, 459 mg of modified filler A (BN-S510) produced by the same procedure as in Example 1, 294 mg of modified filler B, and 322 mg of titanium oxide (white DCF-T-17050) not modified with a coupling agent A heat radiating member was prepared in the same manner as in Example 1, except that 30 ⁇ L of a solution of 10 mg of 2-ethyl-4-methylimidazole dissolved in 2 mL of acetone was weighed and mixed.
  • modified filler A (BN-S510) was obtained in the same manner as in Example 1 except that the amount of sila ace S510 was changed to 3.0 g. .
  • modified filler B was obtained by the same operation as in Example 1 except that the modified filler A was used.
  • Example 4 810 mg of the above-mentioned modified filler A (BN-S510), 709 mg of the modified filler B, 651 mg of the modified filler C (TiO 2 -S510) manufactured by the same procedure as in Example 1, 2 A heat radiating member was prepared in the same manner as in Example 1 except that 39 ⁇ L of a solution of 20 mg of ethyl-4-methylimidazole dissolved in 2 mL of acetone was weighed out.
  • Example 5 The modified filler C (TiO 2 -S510) manufacturing process of Example 5, except that the 0.68g of input of Sila-Ace S510, produced a modified filler C (TiO 2 -S510) by operating the same manner as in Example 1 did.
  • Example 6 In the heat radiating member manufacturing process of Example 6, 345 mg of modified filler A (BN-S510), 326 mg of modified filler C (TiO 2 -S510), 415 mg of modified filler B, A heat radiating member was produced in the same manner as in Example 5, except that 43 ⁇ L of a solution obtained by dissolving 20 mg of ethyl-4-methylimidazole in 2 mL of acetone was weighed.
  • Table 2 shows the spectral colors and reflectances of Examples 1 to 6 and Comparative Examples 1 to 3. [Table 2]
  • Table 3 and FIGS. 4 to 12 show the 5% weight loss temperature, the thermal conductivity in the thickness direction, and the thermal expansion coefficient of the heat radiating members of Examples 1 to 6 and Comparative Examples 1 to 3, respectively. [Table 3]
  • Examples 1 and 2 and Examples 4 to 6 boron nitride and titanium oxide are covalently bonded through a coupling agent and a polymerizable compound, thereby exhibiting higher thermal conductivity.
  • the thermal expansion coefficients of Examples 1 to 6 are about 8 ppm / K from the negative thermal expansion coefficient, and an appropriate thermal expansion coefficient depending on the application is used so that the difference in thermal expansion coefficient with other members is reduced. It is effective to use a heat radiating member.
  • the visible light reflective heat radiating member of the present invention can be used as a visible light reflective thermal expansion control material having high thermal conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention provides a composition capable of forming a heat dissipating member excellent in both heat conductivity and visible light reflectivity and also provides a visible light reflective heat dissipating member. The composition for a heat dissipating member of the present invention comprises: a first coupling agent 11; a thermally conductive first inorganic filler 1 bonded to one end of the first coupling agent 11; a second coupling agent 12; a thermally conductive second inorganic filler 2 bonded to one end of the second coupling agent 12; a polymerizable compound 22 which is bifunctional or has higher functionality, the polymerizable compound 22 being bonded by one functional group to the other end of the second coupling agent 12; and a visible light reflective third inorganic filler. The first coupling agent 11 and the polymerizable compound 22 have mutually bondable groups. The average particle diameter of the third inorganic filler is smaller than the average particle diameters of the first inorganic filler and the second inorganic filler. The ratio of the third inorganic filler to the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 1%-50% by mass.

Description

放熱部材用組成物、可視光反射性放熱部材、発光デバイス、発光装置Composition for heat radiation member, visible light reflective heat radiation member, light emitting device, light emitting device
 本発明は、放熱部材用組成物に関する。特に、熱を効率よく伝導、伝達することにより放熱し、熱膨張率を制御でき、さらに可視光反射性に優れた放熱部材を形成可能な放熱部材用組成物に関する。 The present invention relates to a composition for a heat dissipation member. In particular, the present invention relates to a heat radiating member composition capable of radiating heat by efficiently conducting and transmitting heat, controlling the coefficient of thermal expansion, and forming a heat radiating member excellent in visible light reflectivity.
 近年、ハイブリッド自動車や電気自動車などの電力制御用の半導体素子や、高速コンピューター用のCPUなどにおいて、内部の半導体の温度が高くなり過ぎないように、パッケージ材料の高熱伝導化が望まれている。すなわち半導体チップから発生した熱を効果的に外部に放出させる能力が重要になっている。また、動作温度の上昇により、パッケージ内に使用されている材料間の熱膨張率の差により熱歪が発生し、配線の剥離などによる寿命の低下が問題になっている。 In recent years, in semiconductor elements for power control such as hybrid cars and electric cars, CPUs for high-speed computers, etc., it has been desired to increase the thermal conductivity of package materials so that the temperature of internal semiconductors does not become too high. That is, the ability to effectively release the heat generated from the semiconductor chip to the outside is important. In addition, due to the increase in operating temperature, thermal distortion occurs due to the difference in coefficient of thermal expansion between the materials used in the package, and there is a problem of a decrease in life due to peeling of the wiring.
 このような放熱問題を解決する方法として、無機材料と樹脂とを複合化し、高熱伝導化した放熱部材の開発が行われている。特許文献1には、有機材料と無機材料の複合化において、樹脂に無機材料を添加するのではなく、無機材料同士をつなげるような態様、すなわち、カップリング剤と2官能以上の重合性化合物を介して無機材料同士を結合させることにより、または、カップリング剤を介して無機材料同士を結合させることにより、熱伝導率が極めて高く、熱膨張率の制御が可能な複合材が開示されている(段落0007)。 As a method for solving such a heat dissipation problem, development of a heat dissipation member in which an inorganic material and a resin are combined to increase heat conductivity has been performed. Patent Document 1 discloses an embodiment in which an inorganic material is not added to a resin in a composite of an organic material and an inorganic material, but an inorganic material is connected to each other, that is, a coupling agent and a bifunctional or higher functional polymerizable compound. A composite material is disclosed in which the inorganic materials are bonded to each other or the inorganic materials are bonded to each other via a coupling agent, so that the thermal conductivity is extremely high and the thermal expansion coefficient can be controlled. (Paragraph 0007).
国際公開2016/031888号International Publication No. 2016/031888
 熱対策が必要な製品として、例えばLED照明器具を挙げることができる。LEDの光には熱はほとんど含まれていないがLED自体は発熱している。この熱はLED素子部分、電源部、まわりの樹脂等に含まれ、この熱を効率よく放熱しないと熱を持った箇所が劣化してしまい、LEDの寿命を縮めることになる。このように、LED照明器具のような発光装置においても優れた熱伝導性が求められる。同時に、このような発光装置は可視光反射性にも優れることが求められる。
 そこで本発明は、熱伝導性と可視光反射性の両特性に優れた放熱部材を形成可能な組成物および可視光反射性放熱部材を提供することを課題とする。
Examples of products that require heat countermeasures include LED lighting fixtures. LED light contains almost no heat, but the LED itself generates heat. This heat is contained in the LED element part, the power supply part, the surrounding resin, and the like. If this heat is not efficiently dissipated, the part having the heat deteriorates and the life of the LED is shortened. Thus, excellent thermal conductivity is also required for light emitting devices such as LED lighting fixtures. At the same time, such a light emitting device is required to have excellent visible light reflectivity.
Then, this invention makes it a subject to provide the composition and visible light reflective heat radiating member which can form the heat radiating member excellent in both the characteristics of heat conductivity and visible light reflectivity.
 本発明者らは、無機材料同士をカップリング剤と重合性化合物を介してつなげる態様の放熱部材において、可視光反射性をも付与させられるかどうか鋭意検討を行なった。その結果、無機材料、カップリング剤、重合性化合物の組合せに、さらに特定の白色顔料の特定量を組合せることにより、高熱伝導性と優れた熱膨張率の制御性に、さらに高可視光反射性を共存させることができることを見出し、本発明を完成させた。 The present inventors have intensively studied whether or not visible light reflectivity can be imparted to a heat dissipation member in which inorganic materials are connected to each other via a coupling agent and a polymerizable compound. As a result, by combining a specific amount of a specific white pigment with a combination of an inorganic material, a coupling agent, and a polymerizable compound, high heat conductivity and controllability of an excellent coefficient of thermal expansion can be achieved. The present invention has been completed by discovering that sex can coexist.
 本発明の第1の態様に係る放熱部材用組成物は、例えば図2に示すように、第1のカップリング剤11と;前記第1のカップリング剤11の一端と結合した熱伝導性の第1の無機フィラー1と;第2のカップリング剤12と;前記第2のカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2と;2官能以上の重合性化合物22であって、1の官能基が前記第2のカップリング剤12の他端と結合した重合性化合物22と:可視光反射性の第3の無機フィラーと;を含み、前記第1のカップリング剤11と前記重合性化合物22は、互いに結合可能な基をそれぞれ有し、前記第3の無機フィラーの平均粒径は、前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径よりも小さく、前記第3の無機フィラーは、前記第1の無機フィラー、前記第2の無機フィラー、前記第3の無機フィラーの総量に対する割合が、1~50質量%である。「一端」および「他端」とは、分子の形状の縁または端であればよく、分子の長辺の両端であってもなくてもよい。
 このように構成すると、上記放熱部材用組成物から、熱伝導性、熱膨張制御性、および可視光反射性に優れた放熱部材を得ることができる。
The heat radiating member composition according to the first aspect of the present invention comprises, for example, as shown in FIG. 2, a first coupling agent 11; A first inorganic filler 1; a second coupling agent 12; a thermally conductive second inorganic filler 2 bonded to one end of the second coupling agent 12; a bifunctional or higher functional polymerizable compound 22. A polymerizable compound 22 having one functional group bonded to the other end of the second coupling agent 12; and a third inorganic filler that reflects visible light; and the first coupling. The agent 11 and the polymerizable compound 22 each have a group capable of bonding to each other, and the average particle size of the third inorganic filler is greater than the average particle size of the first inorganic filler and the second inorganic filler. And the third inorganic filler is 1 of the inorganic filler, the second inorganic filler, the proportion of the total amount of the third inorganic filler is 1 to 50 mass%. The “one end” and “the other end” may be edges or ends of the molecule shape, and may or may not be both ends of the long side of the molecule.
If comprised in this way, the heat radiating member excellent in thermal conductivity, thermal expansion controllability, and visible light reflectivity can be obtained from the said composition for heat radiating members.
 本発明の第2の態様に係る放熱部材用組成物は、上記本発明の第1の態様に係る放熱部材用組成物において、例えば図2に示すように、第3のカップリング剤13;をさらに備え、前記第3の無機フィラー3は、前記第3のカップリング剤13の一端との結合を有し、前記第3のカップリング剤13と前記重合性化合物22は、互いに結合可能な基をそれぞれ有する。
 このように構成すると、上記放熱部材用組成物から形成された放熱部材において、第3の無機フィラーもカップリング剤および重合性化合物を介して第2の無機フィラーに結合できる。第3の無機フィラーとの結合がさらに加わることにより、さらに熱伝導性を向上させることができる。これは、第3の無機フィラーとの結合により、放熱部材の稠密性が増大し、空隙が減少するため、熱伝導の主な要素であるフォノンの伝播に適した経路を増加させることができるためと考えられる。
The composition for a heat radiating member according to the second aspect of the present invention is the composition for a heat radiating member according to the first aspect of the present invention described above, for example, as shown in FIG. Further, the third inorganic filler 3 has a bond with one end of the third coupling agent 13, and the third coupling agent 13 and the polymerizable compound 22 are groups capable of binding to each other. Respectively.
If comprised in this way, in the heat radiating member formed from the said composition for heat radiating members, a 3rd inorganic filler can also be couple | bonded with a 2nd inorganic filler through a coupling agent and a polymeric compound. By further combining with the third inorganic filler, the thermal conductivity can be further improved. This is because, by combining with the third inorganic filler, the density of the heat dissipating member is increased and the voids are reduced, so that the number of paths suitable for the propagation of phonons, which are the main elements of heat conduction, can be increased. it is conceivable that.
 本発明の第3の態様に係る放熱部材用組成物は、例えば図3に示すように、第1のカップリング剤11と;前記第1のカップリング剤11の一端と結合した熱伝導性の第1の無機フィラー1と;第2のカップリング剤12と;前記第2のカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2と;可視光反射性の第3の無機フィラーと;を含み、前記第1のカップリング剤11と前記第2のカップリング剤12は、互いに結合可能な基をそれぞれ有し、前記第3の無機フィラーの平均粒径は、前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径よりも小さく、前記第3の無機フィラーは、前記第1の無機フィラー、前記第2の無機フィラー、および前記第3の無機フィラーの総量に対する割合が、1~50質量%である。
 このように構成すると、上記放熱部材用組成物から、熱伝導性、熱膨張制御性、および可視光反射性に優れた放熱部材を得ることができる。
For example, as shown in FIG. 3, the composition for a heat dissipation member according to the third aspect of the present invention has a first coupling agent 11; a thermally conductive material bonded to one end of the first coupling agent 11. A first inorganic filler 1; a second coupling agent 12; a thermally conductive second inorganic filler 2 bonded to one end of the second coupling agent 12; a visible light reflective third The first coupling agent 11 and the second coupling agent 12 each have a group capable of binding to each other, and the average particle size of the third inorganic filler is The third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler, and the third inorganic filler is a total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler. 1-50 mass It is.
If comprised in this way, the heat radiating member excellent in thermal conductivity, thermal expansion controllability, and visible light reflectivity can be obtained from the said composition for heat radiating members.
 本発明の第4の態様に係る放熱部材用組成物は、上記本発明の第3の態様に係る放熱部材用組成物において、例えば図3に示すように、第3のカップリング剤13;をさらに備え、前記第3の無機フィラー3は、前記第3のカップリング剤13の一端との結合を有し、前記第3のカップリング剤13と前記第2のカップリング剤12は、互いに結合可能な基をそれぞれ有する。
 このように構成すると、上記放熱部材用組成物から形成された放熱部材において、第3の無機フィラーもカップリング剤を介して第2の無機フィラーに結合できる。第3の無機フィラーとの結合がさらに加わることにより、さらに熱伝導性を向上させることができる。これは、第3の無機フィラーとの結合により、放熱部材の稠密性が増大し、空隙が減少するため、熱伝導の主な要素であるフォノンの伝播に適した経路を増加させることができるためと考えられる。
The composition for a heat radiating member according to the fourth aspect of the present invention is the composition for a heat radiating member according to the third aspect of the present invention described above, for example, as shown in FIG. Further, the third inorganic filler 3 has a bond with one end of the third coupling agent 13, and the third coupling agent 13 and the second coupling agent 12 are bonded to each other. Each has a possible group.
If comprised in this way, in the heat radiating member formed from the said composition for heat radiating members, a 3rd inorganic filler can also be couple | bonded with a 2nd inorganic filler through a coupling agent. By further combining with the third inorganic filler, the thermal conductivity can be further improved. This is because, by combining with the third inorganic filler, the density of the heat dissipating member is increased and the voids are reduced, so that the number of paths suitable for the propagation of phonons, which are the main elements of heat conduction, can be increased. it is conceivable that.
 本発明の第5の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第4の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径は、0.1~500μmであり、前記第3の無機フィラーの平均粒径は、0.01~50μmである。
 このように構成すると、第1、第2の無機フィラーと第3の無機フィラーの平均粒径を熱伝導に適した大きさの組合せとすることができる。
The composition for a heat radiating member according to the fifth aspect of the present invention is the composition for a heat radiating member according to any one of the first to fourth aspects of the present invention. The average particle size of the second inorganic filler is 0.1 to 500 μm, and the average particle size of the third inorganic filler is 0.01 to 50 μm.
If comprised in this way, the average particle diameter of a 1st, 2nd inorganic filler and a 3rd inorganic filler can be made into the combination of the magnitude | size suitable for heat conduction.
 本発明の第6の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第5の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーと前記第2の無機フィラーは、それぞれ独立して、窒化ホウ素、窒化アルミニウム、ジルコニア、ダイヤモンド、アルミナ、およびコーディエライトから選ばれる少なくとも一つである。
 このように構成すると、可視光反射性を有する第3のフィラーの特性を妨げず、優れた可視光反射性を有する放熱部材を形成可能な放熱部材用組成物となり得る。
The composition for a heat radiating member according to the sixth aspect of the present invention is the composition for a heat radiating member according to any one of the first to fifth aspects of the present invention. And the second inorganic filler is independently at least one selected from boron nitride, aluminum nitride, zirconia, diamond, alumina, and cordierite.
If comprised in this way, it can become the composition for heat radiating members which can form the heat radiating member which has the outstanding visible light reflectivity, without preventing the characteristic of the 3rd filler which has visible light reflectivity.
 本発明の第7の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第6の態様のいずれか1の態様に係る放熱部材用組成物において、前記第3の無機フィラーは、酸化チタン、シリカ、アルミナ、および酸化亜鉛から選ばれる少なくとも一つである。
 このように構成すると、第3の無機フィラーの存在により、優れた可視光反射性を有する放熱部材を形成可能な放熱部材用組成物となり得る。
The composition for a heat radiating member according to the seventh aspect of the present invention is the composition for a heat radiating member according to any one of the first aspect to the sixth aspect of the present invention. Is at least one selected from titanium oxide, silica, alumina, and zinc oxide.
If comprised in this way, it can become the composition for heat radiating members which can form the heat radiating member which has the outstanding visible light reflectivity by presence of a 3rd inorganic filler.
 本発明の第8の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第7の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラー、前記第2の無機フィラー、および前記第3の無機フィラーに結合していない、有機化合物、高分子化合物、または、無機化合物をさらに含む。
 このように構成すると、熱伝導率を向上させるために第1、第2、第3の無機フィラーの大きさを大きくするにつれて、それにあいまって空隙率が高くなった場合に、その空隙を結合していない化合物で満たすことができ、熱伝導率や水蒸気遮断性能などを向上させることができる。
The composition for a heat radiating member according to the eighth aspect of the present invention is the composition for a heat radiating member according to any one of the first to seventh aspects of the present invention. The organic compound, the high molecular compound, or the inorganic compound which is not couple | bonded with the said 2nd inorganic filler and the said 3rd inorganic filler is further included.
With this configuration, when the size of the first, second, and third inorganic fillers is increased in order to improve the thermal conductivity, and the void ratio increases accordingly, the voids are combined. It can be filled with a compound that is not present, and heat conductivity, water vapor blocking performance, and the like can be improved.
 本発明の第9の態様に係る放熱部材用組成物は、上記本発明の第2の態様または第4の態様に係る放熱部材用組成物において、前記第1のカップリング剤、前記第2のカップリング剤、前記第3のカップリング剤は、それぞれ独立して、下記式(6)で表されるシランカップリング剤である。
 (R-O)-Si(R3-j-(R-(R-(R
 -Ry (6)
[上記式(6)中、
 Rは、H-、またはCH-(CH0~4-であり;
 Rは、-(CH0~3-O-であり;
 Rは、1,3-フェニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、またはナフタレン-2,7-ジイルであり;
 Rは、-(NH)0~1-(CH0~3-であり;
 Rは、H-、またはCH-(CH0~7-であり;
 Ryは、オキシラニル、オキセタニル、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 jは、0~3の整数であり;
 kは、0~1の整数であり;
 mは、0~1の整数であり;
 nは、0~1の整数であり;
 式(6)は、RとRの少なくとも1つを含む。]
 このように構成すると、カップリング剤の構造は反応部位が少なく、熱による影響を受けにくいため、放熱部材は高耐熱性を有することができる。
The composition for heat radiating members according to the ninth aspect of the present invention is the composition for heat radiating members according to the second aspect or the fourth aspect of the present invention, wherein the first coupling agent, the second The coupling agent and the third coupling agent are each independently a silane coupling agent represented by the following formula (6).
(R 1 -O) j -Si (R 5 ) 3-j- (R 2 ) k- (R 3 ) m- (R 4 ) n
-Ry (6)
[In the above formula (6),
R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
R 2 is — (CH 2 ) 0-3 —O—;
R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
j is an integer from 0 to 3;
k is an integer from 0 to 1;
m is an integer from 0 to 1;
n is an integer from 0 to 1;
Formula (6) includes at least one of R 3 and R 4 . ]
If comprised in this way, since the structure of a coupling agent has few reaction sites and is hard to be influenced by heat, a heat radiating member can have high heat resistance.
 本発明の第10の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、カップリング剤と結合する前の前記重合性化合物は、下記式(1)で表される2官能以上の重合性非液晶化合物の少なくとも1種である。
   R-R-O-(Rx)-O-R11-R   (1)
[上記式(1)中、
 Rは、それぞれ独立して、下記式(1-1)~(1-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 Rxは、下記式(1-3)~(1-6)のいずれかであり;
 nは、1~3の整数であり;
 R、R11は、それぞれ独立して、単結合、または炭素数1~20のアルキレンである。]
[化1]
Figure JPOXMLDOC01-appb-I000004
[式(1-1)~(1-2)中、Rは、それぞれ独立して、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。]
[化2]
Figure JPOXMLDOC01-appb-I000005
[式(1-4)~(1-6)中、R~R10は、それぞれ独立して、水素、または炭素数1~20のアルキレンである。]
 このように構成すると、重合性化合物の構造は反応部位が少なく、熱による影響を受けにくいため、放熱部材は高耐熱性を有することができる。
The composition for heat dissipation members according to the tenth aspect of the present invention is the polymerizable compound before being combined with the coupling agent in the composition for heat dissipation members according to the first aspect or the second aspect of the present invention. Is at least one bifunctional or higher-polymerizable non-liquid crystal compound represented by the following formula (1).
R a —R 6 —O— (Rx) n —O—R 11 —R a (1)
[In the above formula (1),
Each R a is independently any of the following formulas (1-1) to (1-2), amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
Rx is any one of the following formulas (1-3) to (1-6);
n is an integer from 1 to 3;
R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms. ]
[Chemical 1]
Figure JPOXMLDOC01-appb-I000004
[In the formulas (1-1) to (1-2), each R b is independently hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1. . ]
[Chemical 2]
Figure JPOXMLDOC01-appb-I000005
[In the formulas (1-4) to (1-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms. ]
If comprised in this way, since the structure of a polymeric compound has few reaction sites and it is hard to receive the influence by a heat | fever, a heat radiating member can have high heat resistance.
 本発明の第11の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、カップリング剤と結合する前の前記重合性化合物は、下記式(2)で表される2官能以上の重合性液晶化合物の少なくとも1種である。
   Ra-Z-(A-Z)m-Ra   (2)
[前記式(2)中、
 Raは、それぞれ独立して、第1のカップリング剤、第2のカップリング剤、または、第3のカップリング剤の他端と結合可能な基であり;
 Aは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
 これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
 該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく;
 Zは、それぞれ独立して、単結合、または炭素数1~20のアルキレンであり、
 該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;
 mは、1~6の整数である。]
 このように構成すると、重合性化合物は熱硬化性であり、フィラーの量に影響を受けずに硬化させることができ、さらに耐熱性に優れる。また分子構造は、対称性、直線性を有するため、フォノンの伝播に有利であると考えられる。
The composition for heat radiating members according to the eleventh aspect of the present invention is the polymerizable compound before combined with the coupling agent in the composition for heat radiating members according to the first aspect or the second aspect of the present invention. Is at least one bifunctional or higher polymerizable liquid crystal compound represented by the following formula (2).
Ra-Z- (AZ) m-Ra (2)
[In the formula (2),
Each Ra is independently a group capable of binding to the other end of the first coupling agent, the second coupling agent, or the third coupling agent;
A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] Oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
In these rings, arbitrary —CH 2 — may be replaced with —O—, optional —CH═ may be replaced with —N═, and optional hydrogen is halogen, carbon number 1 May be substituted with an alkyl having 10 to 10 or an alkyl halide having 1 to 10 carbon atoms,
In the alkyl, optional —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH═CH—, or —C≡C—;
Each Z is independently a single bond or alkylene having 1 to 20 carbon atoms,
In the alkylene, arbitrary —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH═CH—, —CF═CF—, —CH═N—, —N═CH—, —N═N—, or —C≡C— may be substituted, and any hydrogen may be replaced with a halogen;
m is an integer of 1 to 6. ]
If comprised in this way, a polymeric compound is thermosetting, can be hardened without being influenced by the quantity of a filler, and is further excellent in heat resistance. In addition, the molecular structure has symmetry and linearity, which is considered advantageous for phonon propagation.
 本発明の第12の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、カップリング剤と結合する前の前記重合性化合物は、下記式(3)または(4)で表される2官能以上のヒドロキシ基を有する重合性非液晶化合物の少なくとも1種である。
[化3]
Figure JPOXMLDOC01-appb-I000006
[上記式(3)中、
 RおよびRは、それぞれ独立して、水素、ハロゲン、または炭素数1~3のアルキルであり;
 mは2~4の整数であり、nは1~3の整数であり、pは2~4の整数であり、qは1~3の整数であり、m+n=5であり、p+q=5であり;
 Aは、単結合、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、または、ビアダマンタンジイルであり、
 炭素数1~10のアルキレンにおいて、任意の水素は-CHで置き換えられてもよく、
 シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、または、ビアダマンタンジイルにおいて、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
 任意の水素と置き換えられたアルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
 Z、Zは、それぞれ独立して、単結合、または炭素数1~20のアルキレンであり、
該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよい。]
[上記式(4)中、
 xは2以上の整数であり;
 環Bは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、9,9‐ジフェニルフルオレン、アダマンタン、またはビアダマンタンであり、
 環Bにおいて、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、
 環Bの炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。]
 このように構成すると、2官能以上のヒドロキシ基を有する重合性化合物のうち特に好ましい化合物を用いて放熱部材用組成物を構成することができる。これらの化合物は熱硬化性であり、フィラーの量に影響を受けずに硬化させることができる。また分子構造は、対称性、直線性を有するため、フォノンの伝播に有利であると考えられる。
The composition for heat radiating members according to the twelfth aspect of the present invention is the polymerizable compound before being combined with the coupling agent in the composition for heat radiating members according to the first aspect or the second aspect of the present invention. Is at least one polymerizable non-liquid crystal compound having a bifunctional or higher functional hydroxy group represented by the following formula (3) or (4).
[Chemical formula 3]
Figure JPOXMLDOC01-appb-I000006
[In the above formula (3),
R 1 and R 2 are each independently hydrogen, halogen, or alkyl having 1 to 3 carbons;
m is an integer of 2 to 4, n is an integer of 1 to 3, p is an integer of 2 to 4, q is an integer of 1 to 3, m + n = 5, and p + q = 5 Yes;
A represents a single bond, alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′-(9-fluorenylidene) diphenylene, adamantanediyl, or biadamantanediyl And
In the alkylene having 1 to 10 carbon atoms, arbitrary hydrogen may be replaced with —CH 3 .
Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, In bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′-(9-fluorenylidene) diphenylene, adamantanediyl, or biadamantanediyl, any —CH 2 — is —O—. Any —CH═ may be replaced by —N═, and any hydrogen is replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons May be
In alkyl substituted with any hydrogen, any —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—;
Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 20 carbon atoms,
In the alkylene, any —CH 2 — may be replaced with —O—, —S—, —CO—, —COO—, or —OCO—, and any hydrogen may be replaced with a halogen. . ]
[In the above formula (4),
x is an integer greater than or equal to 2;
Ring B is benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, 9,9-diphenylfluorene, adamantane, or biadamantane;
In Ring B, any —CH 2 — may be replaced by —O—, and any —CH═ may be replaced by —N═, and any hydrogen may be halogen, a carbon number of 1 to 3 alkyl, or an alkyl halide having 1 to 3 carbon atoms,
In the alkyl having 1 to 3 carbon atoms or the alkyl halide having 1 to 3 carbon atoms in the ring B, arbitrary —CH 2 — is replaced by —O—, —CO—, —COO—, or —OCO—. May be. ]
When comprised in this way, the composition for heat radiating members can be comprised using the especially preferable compound among the polymeric compounds which have a bifunctional or more functional hydroxyl group. These compounds are thermosetting and can be cured without being affected by the amount of filler. In addition, the molecular structure has symmetry and linearity, which is considered advantageous for phonon propagation.
 本発明の第13の態様に係る可視光反射性放熱部材は、上記本発明の第1の態様~第12の態様のいずれか1項に記載の放熱部材用組成物の硬化物である。
 このように構成すると、可視光反射性放熱部材は、無機フィラー間に結合を有し、極めて高い熱伝導性を有することができる。
The visible light reflective heat radiating member according to the thirteenth aspect of the present invention is a cured product of the composition for a heat radiating member according to any one of the first to twelfth aspects of the present invention.
If comprised in this way, the visible light reflective heat radiating member has a coupling | bonding between inorganic fillers, and can have very high thermal conductivity.
 本発明の第14の態様に係る発光デバイスは、基板と;前記基板上に実装された発光チップと;前記基板上の前記発光チップを囲む反射枠であって、上記本発明の第13の態様に記載の可視光反射性放熱部材により形成された反射枠と;を備える。
 このように構成すると、発光デバイスは、高可視光反射性を有する反射枠により外部への光取り出し効率を向上させることができる。同時に、高熱伝導性を有する反射枠により発光チップに生じた熱を効率よく放熱させることができる。
A light-emitting device according to a fourteenth aspect of the present invention is a substrate; a light-emitting chip mounted on the substrate; a reflective frame surrounding the light-emitting chip on the substrate, and the thirteenth aspect of the present invention. And a reflective frame formed by the visible light reflective heat dissipating member described in 1 above.
If comprised in this way, the light-emitting device can improve the light extraction efficiency to the exterior by the reflective frame which has high visible light reflectivity. At the same time, the heat generated in the light emitting chip can be efficiently radiated by the reflective frame having high thermal conductivity.
 本発明の第15の態様に係る発光装置は、上記本発明の第14の態様に記載の発光デバイスを複数備える。
 このように構成すると、発光デバイスの放熱効果により、発光装置への熱の影響を抑制することができる。
A light emitting apparatus according to a fifteenth aspect of the present invention includes a plurality of light emitting devices according to the fourteenth aspect of the present invention.
If comprised in this way, the influence of the heat | fever to a light-emitting device can be suppressed according to the thermal radiation effect of a light-emitting device.
 本発明の放熱部材用組成物から形成された可視光反射性放熱部材は、熱を効率よく伝導、伝達することにより放熱し、熱膨張率を制御でき、さらに可視光反射性に優れた放熱部材となり得る。 The visible light reflective heat radiating member formed from the composition for a heat radiating member of the present invention can dissipate heat by efficiently conducting and transmitting heat, can control the coefficient of thermal expansion, and has excellent visible light reflectivity. Can be.
本発明の放熱部材において、無機フィラー同士の結合を、窒化ホウ素を例として示す概念図である。In the heat radiating member of this invention, it is a conceptual diagram which shows the coupling | bonding of inorganic fillers by making boron nitride into an example. 本発明の一実施の形態による放熱部材用組成物が含有する、第1のカップリング剤11と結合した第1の無機フィラー1と、重合性化合物22および第2のカップリング剤12と結合した第2の無機フィラー2と、第3のカップリング剤13と結合した第3の無機フィラー3のイメージ図である。1st inorganic filler 1 couple | bonded with the 1st coupling agent 11 which the composition for heat radiating members by one embodiment of this invention couple | bonded, and the polymeric compound 22 and the 2nd coupling agent 12 couple | bonded It is an image figure of the 3rd inorganic filler 3 couple | bonded with the 2nd inorganic filler 2 and the 3rd coupling agent 13. FIG. 本発明の他の実施の形態による放熱部材用組成物が含有する、第1のカップリング剤11と結合した第1の無機フィラー1と、第2のカップリング剤12と結合した第2の無機フィラー2と、第3のカップリング剤13と結合した第3の無機フィラー3のイメージ図である。The 1st inorganic filler 1 couple | bonded with the 1st coupling agent 11 and the 2nd inorganic couple | bonded with the 2nd coupling agent 12 which the composition for heat radiating members by other embodiment of this invention contains It is an image figure of the 3rd inorganic filler 3 couple | bonded with the filler 2 and the 3rd coupling agent 13. FIG. 実施例1の熱機械分析装置による測定結果を示すグラフである。6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 1. FIG. 実施例2の熱機械分析装置による測定結果を示すグラフである。6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 2. 実施例3の熱機械分析装置による測定結果を示すグラフである。6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 3. 実施例4の熱機械分析装置による測定結果を示すグラフである。6 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 4. 実施例5の熱機械分析装置による測定結果を示すグラフである。10 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 5. 実施例6の熱機械分析装置による測定結果を示すグラフである。10 is a graph showing measurement results obtained by the thermomechanical analyzer of Example 6. 比較例1の熱機械分析装置による測定結果を示すグラフである。6 is a graph showing measurement results obtained by the thermomechanical analyzer of Comparative Example 1. 比較例2の熱機械分析装置による測定結果を示すグラフである。6 is a graph showing a measurement result by a thermomechanical analyzer of Comparative Example 2. 比較例3の熱機械分析装置による測定結果を示すグラフである。10 is a graph showing measurement results obtained by the thermomechanical analyzer of Comparative Example 3.
 この出願は、日本国で2018年4月5日に出願された特願2018-073364号に基づいており、その内容は本願の内容としてその一部を形成する。
 また、本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、本発明の精神と範囲内における、種々の変更、改変が、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
This application is based on Japanese Patent Application No. 2018-073364 filed on Apr. 5, 2018 in Japan, the contents of which form part of the present application.
The present invention will also be more fully understood from the following detailed description. Further scope of applicability of the present invention will become apparent from the following detailed description. However, the detailed description and specific examples are preferred embodiments of the present invention and are described for illustrative purposes only. From this detailed description, various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art. The applicant does not intend to contribute any of the described embodiments to the public, and modifications and alternatives that may not be included in the scope of the claims within the scope of the claims are also subject to equivalence. As part of the invention.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description is omitted. Further, the present invention is not limited to the following embodiments.
 本明細書における用語の使い方は以下のとおりである。
 「液晶化合物」「液晶性化合物」は、ネマチック相やスメクチック相などの液晶相を発現する化合物である。
Terms used in this specification are as follows.
“Liquid crystal compound” and “liquid crystal compound” are compounds that exhibit a liquid crystal phase such as a nematic phase or a smectic phase.
 「アルキルにおける任意の-CH-は、-O-などで置き換えられてもよい」あるいは「任意の-CHCH-は-CH=CH-などで置き換えられてもよい」等の句の意味を下記の一例で示す。例えば、C-における任意の-CH-が、-O-または-CH=CH-で置き換えられた基としては、CO-、CH-O-(CH-、CH-O-CH-O-などである。同様にC11-における任意の-CHCH-が、-CH=CH-で置き換えられた基としては、HC=CH-(CH-、CH-CH=CH-(CH-など、さらに任意の-CH-が-O-で置き換えられた基としては、CH-CH=CH-CH-O-などである。このように「任意の」という語は、「区別なく選択された少なくとも1つの」を意味する。なお、化合物の安定性を考慮して、酸素と酸素とが隣接したCH-O-O-CH-よりも、酸素と酸素とが隣接しないCH-O-CH-O-の方が好ましい。 In a phrase such as “any —CH 2 — in alkyl may be replaced by —O—” or “any —CH 2 CH 2 — may be replaced by —CH═CH—, etc.” The meaning is shown in the following example. For example, as the group in which any —CH 2 — in C 4 H 9 — is replaced by —O— or —CH═CH—, C 3 H 7 O—, CH 3 —O— (CH 2 ) 2 —, CH 3 —O—CH 2 —O— and the like. Similarly, groups in which any —CH 2 CH 2 — in C 5 H 11 — is replaced by —CH═CH— include H 2 C═CH— (CH 2 ) 3 —, CH 3 —CH═CH Examples of the group in which arbitrary —CH 2 — is replaced by —O—, such as — (CH 2 ) 2 —, include CH 3 —CH═CH—CH 2 —O—. Thus, the term “arbitrary” means “at least one selected without distinction”. In consideration of the stability of the compound, CH 3 —O—CH 2 —O— in which oxygen and oxygen are not adjacent to each other is more preferable than CH 3 —O—O—CH 2 — in which oxygen and oxygen are adjacent to each other. Is preferred.
 また、環Aに関して「任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよい」の句は、例えば1,4-フェニレンの2,3,5,6位の水素の少なくとも1つがフッ素やメチル基等の置換基で置き換えられた場合の態様を意味し、また置換基が「炭素数1~10のハロゲン化アルキル」である場合の態様としては、2-フルオロエチル基や3-フルオロ-5-クロロヘキシル基のような例を包含する。 The phrase “any hydrogen may be replaced by halogen, alkyl having 1 to 10 carbons, or halogenated alkyl having 1 to 10 carbons” with respect to ring A is, for example, 2 of 1,4-phenylene. , 3, 5 and 6 positions are substituted with a substituent such as fluorine or methyl group, and the substituent is “halogenated alkyl having 1 to 10 carbon atoms” Examples of these include examples such as a 2-fluoroethyl group and a 3-fluoro-5-chlorohexyl group.
 「化合物(1)」は、後述する下記式(1)で表される重合性化合物を意味し、また、下記式(1)で表される化合物の少なくとも1種を意味することもある。「放熱部材用組成物」は、前記化合物(1)または他の重合性化合物から選択される少なくとも1種の化合物を含有する組成物を意味する。1つの化合物(1)が複数のAを有するとき、任意の2つのAは同一でも異なっていてもよい。複数の化合物(1)がAを有するとき、任意の2つのAは同一でも異なっていてもよい。この規則は、RやZなど他の記号、基などにも適用される。 “Compound (1)” means a polymerizable compound represented by the following formula (1), which will be described later, and may mean at least one compound represented by the following formula (1). “Composition for heat radiating member” means a composition containing at least one compound selected from the compound (1) or other polymerizable compounds. When one compound (1) has a plurality of A, any two A may be the same or different. When two or more compounds (1) have A, arbitrary two A may be the same or different. This rule also applies to other symbols and groups such as Ra and Z.
[放熱部材用組成物]
 本発明の放熱部材用組成物は、無機フィラー同士をカップリング剤および2官能以上の重合性化合物を介して結合させることにより放熱部材を形成する組成物であって、さらに可視光反射性の無機フィラーを含む。図1は無機フィラーとして窒化ホウ素を用いた場合の結合例である。窒化ホウ素(h-BN)をカップリング剤で処理すると、窒化ホウ素は粒子の平面(平らな面)に反応基がないため、その周囲のみに複数のカップリング剤が結合する。このように、無機フィラーに対し複数のカップリング剤との結合が形成される。さらにカップリング剤は重合性化合物とも結合できる。したがって、窒化ホウ素に結合したカップリング剤同士を重合性化合物でつなぐことにより、図1に示すように、窒化ホウ素間に複数の結合を形成することができる。
 このように、無機フィラー同士をカップリング剤および重合性化合物を介して結合させることにより、直接的にフォノンを伝播することができるので、本発明の放熱部材用組成物から形成された可視光反射性放熱部材(以後、放熱部材ということもある)は極めて高い熱伝導性を有し、無機成分の熱膨張率を直接反映させた複合材料となる。
[Composition for heat dissipation member]
The heat radiating member composition of the present invention is a composition that forms a heat radiating member by bonding inorganic fillers with each other via a coupling agent and a bifunctional or higher functional polymerizable compound. Contains filler. FIG. 1 shows an example of bonding when boron nitride is used as the inorganic filler. When boron nitride (h-BN) is treated with a coupling agent, boron nitride does not have a reactive group on the plane (flat surface) of the particle, and therefore, a plurality of coupling agents are bonded only around the periphery. Thus, the coupling | bonding with a some coupling agent is formed with respect to an inorganic filler. Furthermore, the coupling agent can also be combined with a polymerizable compound. Therefore, a plurality of bonds can be formed between boron nitrides by coupling the coupling agents bonded to boron nitride with a polymerizable compound, as shown in FIG.
Thus, since the phonons can be directly propagated by bonding the inorganic fillers via the coupling agent and the polymerizable compound, the visible light reflection formed from the composition for a heat dissipation member of the present invention. The heat radiating member (hereinafter sometimes referred to as a heat radiating member) has extremely high thermal conductivity, and becomes a composite material that directly reflects the thermal expansion coefficient of the inorganic component.
 本発明の第1の実施の形態に係る放熱部材用組成物は、例えば図2に示すように、第1のカップリング剤11と;前記第1のカップリング剤11の一端と結合した熱伝導性の第1の無機フィラー1と;第2のカップリング剤12と;前記第2のカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2と;2官能以上の重合性化合物22であって、1の官能基が前記第2のカップリング剤12の他端と結合した重合性化合物22と:可視光反射性の第3の無機フィラーと;を含む。前記第1のカップリング剤11と前記重合性化合物22は、互いに結合可能な基をそれぞれ有する。前記第3の無機フィラーの平均粒径は、前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径よりも小さい。前記第3の無機フィラーは、前記第1の無機フィラー、前記第2の無機フィラー、前記第3の無機フィラーの総量に対する割合が、1~50質量%である。
 放熱部材用組成物の硬化により、第1のカップリング剤11の他端が重合性化合物22と結合すると、第1の無機フィラー1と第2の無機フィラー2との間の結合が形成される(図1)。
 さらに、第3の無機フィラーとして、図2に示すように、第3のカップリング剤13と結合した可視光反射性の第3の無機フィラー3を含み、第3のカップリング剤13と重合性化合物22が、互いに結合可能な基をそれぞれ有する場合、放熱部材用組成物の硬化により、第3のカップリング剤13の他端が重合性化合物22と結合を形成できるため好ましい。
The composition for a heat dissipation member according to the first embodiment of the present invention includes, for example, as shown in FIG. 2, a first coupling agent 11; and heat conduction combined with one end of the first coupling agent 11. A first inorganic filler 1 having a conductive property; a second coupling agent 12; a second inorganic filler 2 having thermal conductivity bonded to one end of the second coupling agent 12; The compound 22 includes a polymerizable compound 22 in which one functional group is bonded to the other end of the second coupling agent 12; and a visible light reflective third inorganic filler. The first coupling agent 11 and the polymerizable compound 22 each have a group capable of bonding to each other. The average particle size of the third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler. The ratio of the third inorganic filler to the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 1 to 50% by mass.
When the other end of the first coupling agent 11 is bonded to the polymerizable compound 22 due to the curing of the heat radiating member composition, a bond between the first inorganic filler 1 and the second inorganic filler 2 is formed. (FIG. 1).
Further, as shown in FIG. 2, the third inorganic filler includes a visible light reflective third inorganic filler 3 bonded to the third coupling agent 13, and is polymerizable with the third coupling agent 13. It is preferable that each of the compounds 22 has a group capable of bonding to each other because the other end of the third coupling agent 13 can form a bond with the polymerizable compound 22 by curing of the heat radiating member composition.
 本発明の第2の実施の形態に係る放熱部材用組成物は、例えば図3に示すように、第1のカップリング剤11と;前記第1のカップリング剤11の一端と結合した熱伝導性の第1の無機フィラー1と;第2のカップリング剤12と;前記第2のカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2と;可視光反射性の第3の無機フィラーと;を含む。前記第1のカップリング剤11と前記第2のカップリング剤12は、互いに結合可能な基をそれぞれ有する。前記第3の無機フィラーの平均粒径は、前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径よりも小さい。前記第3の無機フィラーは、前記第1の無機フィラー、前記第2の無機フィラー、前記第3の無機フィラーの総量に対する割合が、1~50質量%である。
 放熱部材用組成物の硬化により、第1のカップリング剤11の他端が第2のカップリング剤12と結合すると、第1の無機フィラー1と第2の無機フィラー2との間の結合が形成される(図1)。
 さらに、第3の無機フィラーとして、図3に示すように、第3のカップリング剤13と結合した可視光反射性の第3の無機フィラー3を含み、第3のカップリング剤13と第2のカップリング剤12が、互いに結合可能な基をそれぞれ有する場合、放熱部材用組成物の硬化により、第3のカップリング剤13の他端が第2のカップリング剤12と結合を形成できるため好ましい。
For example, as shown in FIG. 3, the composition for a heat radiating member according to the second embodiment of the present invention includes a first coupling agent 11; and heat conduction combined with one end of the first coupling agent 11. A first conductive inorganic filler 1; a second coupling agent 12; a thermally conductive second inorganic filler 2 bonded to one end of the second coupling agent 12; a visible light reflective first 3 inorganic fillers; The first coupling agent 11 and the second coupling agent 12 each have a group capable of binding to each other. The average particle size of the third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler. The ratio of the third inorganic filler to the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 1 to 50% by mass.
When the other end of the first coupling agent 11 is bonded to the second coupling agent 12 by the curing of the heat radiating member composition, the bond between the first inorganic filler 1 and the second inorganic filler 2 is Formed (FIG. 1).
Further, as shown in FIG. 3, the third inorganic filler includes a visible light reflective third inorganic filler 3 bonded to the third coupling agent 13, and includes the third coupling agent 13 and the second inorganic filler 3. When the coupling agent 12 has a group capable of binding to each other, the other end of the third coupling agent 13 can form a bond with the second coupling agent 12 by curing of the heat radiating member composition. preferable.
 2官能以上の重合性化合物は、カップリング剤との結合を形成可能な基を有するものを選択する。
<2官能以上の重合性非液晶化合物>
 2官能以上の重合性化合物は、非液晶性化合物であってもよい。非液晶性の2官能以上の重合性化合物としては、下記式(1)で表される重合性化合物を挙げることができる。
   R-R-O-(Rx)-O-R11-R   (1)
 上記式(1)中、
 Rは、それぞれ独立して、下記式(1-1)~(1-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 Rxは、ナフタレン-2,6-ジイル、または、下記式(1-3)~(1-6)で表されるナフタレン-2,7-ジイル、ビフェニル-2,2’、ビフェニル-2,4’、ビフェニル-3,3’のいずれかであり;
 nは、1~3の整数であり;
 R、R11は、それぞれ独立して、単結合、または炭素数1~20のアルキレンである。
[化4]
Figure JPOXMLDOC01-appb-I000007
 
 式(1-1)~(1-2)中、Rは、それぞれ独立して、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。
[化5]
Figure JPOXMLDOC01-appb-I000008
 式(1-4)~(1-6)中、R~R10は、それぞれ独立して、水素、または炭素数1~20のアルキレンである。
As the bifunctional or higher polymerizable compound, one having a group capable of forming a bond with a coupling agent is selected.
<A bifunctional or higher polymerizable non-liquid crystal compound>
The bifunctional or higher functional polymerizable compound may be a non-liquid crystalline compound. Examples of the non-liquid crystalline bifunctional or higher polymerizable compound include a polymerizable compound represented by the following formula (1).
R a —R 6 —O— (Rx) n —O—R 11 —R a (1)
In the above formula (1),
Each R a is independently any of the following formulas (1-1) to (1-2), amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
Rx represents naphthalene-2,6-diyl, or naphthalene-2,7-diyl represented by the following formulas (1-3) to (1-6), biphenyl-2,2 ′, biphenyl-2,4 ', One of biphenyl-3,3';
n is an integer from 1 to 3;
R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms.
[Chemical formula 4]
Figure JPOXMLDOC01-appb-I000007

In formulas (1-1) to (1-2), R b is independently hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
[Chemical formula 5]
Figure JPOXMLDOC01-appb-I000008
In formulas (1-4) to (1-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms.
 上記式(1)中、Rは、それぞれ独立して、第1のカップリング剤の他端、第2のカップリング剤の他端、または、第3のカップリング剤の他端と結合可能な基であればよい。例えば、上記式(1-1)~(1-2)で表される重合性基の他、シクロヘキセンオキシド、無水フタル酸、または無水コハク酸を挙げることができるが、これらに限られない。
 式(1)で表される重合性化合物は、その構造中反応部位が少なく、熱による影響を受けにくい。一方で、その構造はフォノンの伝播に優れることがわかった。よって、放熱部材用組成物から形成される放熱部材は、高熱伝導性とともに高耐熱性を有することができる。
In the above formula (1), each R a can be independently bonded to the other end of the first coupling agent, the other end of the second coupling agent, or the other end of the third coupling agent. Any group may be used. Examples thereof include, but are not limited to, a polymerizable group represented by the above formulas (1-1) to (1-2), cyclohexene oxide, phthalic anhydride, or succinic anhydride.
The polymerizable compound represented by the formula (1) has few reactive sites in its structure and is not easily affected by heat. On the other hand, the structure was found to be excellent in phonon propagation. Therefore, the heat radiating member formed from the composition for heat radiating member can have high heat resistance with high heat conductivity.
<2官能以上の重合性液晶化合物>
 2官能以上の重合性化合物は、液晶性化合物であってもよい。液晶性を有する2官能以上の重合性化合物としては、下記式(2)で表される重合性液晶化合物を挙げることができる。
 重合性液晶化合物は、液晶骨格と重合性基を有し、高い重合反応性、広い液晶相温度範囲、良好な混和性などを有する。この化合物(2)は他の液晶性の化合物や重合性の化合物などと混合するとき、均一になりやすい。
   R-Z-(A-Z)-R   (2)
<Bifunctional or higher polymerizable liquid crystal compound>
The bifunctional or higher polymerizable compound may be a liquid crystal compound. Examples of the bifunctional or higher functional polymerizable compound having liquid crystallinity include a polymerizable liquid crystal compound represented by the following formula (2).
The polymerizable liquid crystal compound has a liquid crystal skeleton and a polymerizable group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (2) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
R a -Z- (AZ) m -R a (2)
 上記化合物(2)の末端基R、環構造Aおよび結合基Zを適宜選択することによって、液晶相発現領域などの物性を任意に調整することができる。末端基R、環構造Aおよび結合基Zの種類が、化合物(2)の物性に与える効果、ならびに、これらの好ましい例を以下に説明する。 By appropriately selecting the terminal group R a , the ring structure A, and the bonding group Z of the compound (2), physical properties such as a liquid crystal phase expression region can be arbitrarily adjusted. The effects of the terminal group R a , the ring structure A and the bonding group Z on the physical properties of the compound (2) and preferred examples thereof will be described below.
・末端基R
 末端基Rは、上記式(1)で定義したRと同義である。
・ Terminal group R a
The terminal group R a has the same meaning as R a defined in the above formula (1).
・環構造A
 上記化合物(2)の環構造Aにおける少なくとも1つの環が1,4-フェニレンの場合、配向秩序パラメーター(orientational order parameter)および磁化異方性が大きい。また、少なくとも2つの環が1,4-フェニレンの場合、液晶相の温度範囲が広く、さらに透明点が高い。1,4-フェニレン環上の少なくとも1つの水素がシアノ、ハロゲン、-CFまたは-OCFに置換された場合、誘電率異方性が高い。また、少なくとも2つの環が1,4-シクロヘキシレンである場合、透明点が高く、かつ粘度が小さい。
・ Ring structure A
When at least one ring in the ring structure A of the compound (2) is 1,4-phenylene, the orientational order parameter and the magnetic anisotropy are large. When at least two rings are 1,4-phenylene, the temperature range of the liquid crystal phase is wide and the clearing point is high. When at least one hydrogen on the 1,4-phenylene ring is substituted with cyano, halogen, —CF 3 or —OCF 3 , the dielectric anisotropy is high. When at least two rings are 1,4-cyclohexylene, the clearing point is high and the viscosity is low.
 上記式(2)中、好ましいAとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイルなどが挙げられる。 In the above formula (2), preferable A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2, 5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro- 1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine- 3,6-diyl, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7-diyl, 9,9-dimethylphenol Oren-2,7-diyl, 9-ethyl-2,7-diyl, 9-fluoro-2,7-diyl, etc. 9,9-difluoro-2,7-diyl.
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。 The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
 上記式(2)中、さらに好ましいAとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレンなどである。特に好ましいAは、1,4-シクロへキシレンおよび1,4-フェニレンである。 In the above formula (2), more preferable A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro. -1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, and the like. Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
・結合基Z
 上記化合物(2)の結合基Zが、単結合、-(CH-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-または-(CH-である場合、特に、単結合、-(CH-、-CFO-、-OCF-、-CH=CH-または-(CH-である場合、粘度が小さくなる。また、結合基Zが、-CH=CH-、-CH=N-、-N=CH-、-N=N-または-CF=CF-である場合、液晶相の温度範囲が広い。また、結合基Zが、炭素数4~10程度のアルキルの場合、融点が低下する。
・ Linking group Z
The linking group Z of the compound (2) is a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═CH—, When —CF═CF— or — (CH 2 ) 4 —, in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH═CH— or — (CH 2) 4 -, the viscosity is reduced. Further, when the bonding group Z is —CH═CH—, —CH═N—, —N═CH—, —N═N— or —CF═CF—, the temperature range of the liquid crystal phase is wide. In addition, when the bonding group Z is alkyl having about 4 to 10 carbon atoms, the melting point is lowered.
 上記式(2)中、好ましいZとしては、単結合、-(CH-、-(CF-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-、-C≡C-、-(CH-、-(CHO-、-O(CH-、-(CHCOO-、-OCO(CH-、-CH=CH-COO-、-OCO-CH=CH-などが挙げられる。 In the above formula (2), preferred Z is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═CH—, —CF═CF—, —C≡C—, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH═CH—COO—, —OCO—CH═CH— and the like.
 上記式(2)中、さらに好ましいZとしては、単結合、-(CH-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-C≡C-などが挙げられる。特に好ましいZとしては、単結合、-(CH-、-COO-または-OCO-である。 In the above formula (2), more preferable Z is a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, — OCF 2 —, —CH═CH—, —C≡C— and the like can be mentioned. Particularly preferred Z is a single bond, — (CH 2 ) 2 —, —COO— or —OCO—.
 上記化合物(2)が多くの環を持つほどより高温で軟化しにくくなるので放熱材料として好ましいが、軟化温度が重合温度よりも高くなると成形が難しくなるので、目的にそって両者のバランスをとることが好ましい。なお、本明細書においては、基本的に6員環および6員環を含む縮合環等を環とみなし、例えば3員環や4員環、5員環単独のものは環とみなさない。また、ナフタレン環やフルオレン環などの縮合環は1つの環とみなす。 The more the compound (2) has more rings, the more difficult it is to soften at higher temperatures, so it is preferable as a heat dissipation material. However, since the molding becomes difficult when the softening temperature is higher than the polymerization temperature, a balance between both is achieved according to the purpose. It is preferable. In the present specification, basically, a 6-membered ring and a condensed ring including a 6-membered ring are regarded as a ring, and for example, a 3-membered ring, a 4-membered ring or a 5-membered ring alone is not regarded as a ring. A condensed ring such as a naphthalene ring or a fluorene ring is regarded as one ring.
 上記化合物(2)は、光学活性であってもよいし、光学的に不活性でもよい。化合物(2)が光学活性である場合、該化合物(2)は不斉炭素を有する場合と軸不斉を有する場合がある。不斉炭素の立体配置はRでもSでもよい。不斉炭素はRまたはAのいずれに位置していてもよく、不斉炭素を有すると、化合物(2)の相溶性がよい。化合物(2)が軸不斉を有する場合、ねじれ誘起力が大きい。また、旋光性はいずれでも構わない。
 以上のように、末端基R、環構造Aおよび結合基Zの種類、環の数を適宜選択することにより、目的の物性を有する化合物を得ることができる。
The compound (2) may be optically active or optically inactive. When the compound (2) is optically active, the compound (2) may have an asymmetric carbon or an axial asymmetry. The configuration of the asymmetric carbon may be R or S. The asymmetric carbon may be located at either Ra or A, and when it has an asymmetric carbon, the compatibility of the compound (2) is good. When the compound (2) has axial asymmetry, the twist-inducing force is large. Further, any optical rotation may be used.
As described above, a compound having desired physical properties can be obtained by appropriately selecting the terminal group R a , the type of the ring structure A and the bonding group Z, and the number of rings.
 化合物(2)は、下記式(2a)または(2b)のように表すこともできる。
   P-Y-(A-Z)-R   (2a)
   P-Y-(A-Z)-Y-P   (2b)
 上記式(2a)および(2b)中、A、Z、Rは上記式(2)で定義したA、Z、Rと同義であり、Pは下記式(2-1)~(2-2)で表される重合性基、シクロヘキセンオキシド、無水フタル酸、または無水コハク酸を示し、Yは単結合または炭素数1~20のアルキレン、好ましくは炭素数1~10のアルキレンを示し、該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-または-CH=CH-で置き換えられてもよい。特に好ましいYとしては、炭素数1~10のアルキレンの片末端もしくは両末端の-CH-が-O-で置き換えられたアルキレンである。mは1~6の整数、好ましくは2~6の整数、さらに好ましくは2~4の整数である。
[化6]
Figure JPOXMLDOC01-appb-I000009
 式(2-1)~(2-2)中、Rが、それぞれ独立して、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。
Compound (2) can also be represented by the following formula (2a) or (2b).
PY- (AZ) m -R a (2a)
PY- (AZ) m -YP (2b)
In the above formula (2a) and (2b), A, Z, R a has the same meaning as A, Z, R a as defined by the above formula (2), P is the following formula (2-1) to (2 2) represents a polymerizable group represented by 2), cyclohexene oxide, phthalic anhydride, or succinic anhydride, Y represents a single bond or alkylene having 1 to 20 carbon atoms, preferably alkylene having 1 to 10 carbon atoms, In alkylene, arbitrary —CH 2 — may be replaced by —O—, —S—, —CO—, —COO—, —OCO— or —CH═CH—. Particularly preferred Y is alkylene in which —CH 2 — at one or both ends of alkylene having 1 to 10 carbon atoms is replaced by —O—. m is an integer of 1 to 6, preferably an integer of 2 to 6, and more preferably an integer of 2 to 4.
[Chemical 6]
Figure JPOXMLDOC01-appb-I000009
In formulas (2-1) to (2-2), R b is independently hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbons, and q is 0 or 1.
 好ましい化合物(2)の例としては、以下に示す化合物(a-1)~(a-10)、(b-1)~(b-16)、(c-1)~(c-16)、(d-1)~(d-15)、(e-1)~(e-15)、(f-1)~(f-14)、(g-1)~(g-20)が挙げられる。なお、式中の*は不斉炭素を示す。 Examples of preferred compound (2) include the following compounds (a-1) to (a-10), (b-1) to (b-16), (c-1) to (c-16), (D-1) to (d-15), (e-1) to (e-15), (f-1) to (f-14), (g-1) to (g-20). . In the formula, * represents an asymmetric carbon.
[化7]
Figure JPOXMLDOC01-appb-I000010
[Chemical 7]
Figure JPOXMLDOC01-appb-I000010
[化8]
Figure JPOXMLDOC01-appb-I000011
[Chemical 8]
Figure JPOXMLDOC01-appb-I000011
[化9]
Figure JPOXMLDOC01-appb-I000012
[Chemical 9]
Figure JPOXMLDOC01-appb-I000012
[化10]
Figure JPOXMLDOC01-appb-I000013
[Chemical Formula 10]
Figure JPOXMLDOC01-appb-I000013
[化11]
Figure JPOXMLDOC01-appb-I000014
[Chemical 11]
Figure JPOXMLDOC01-appb-I000014
[化12]
Figure JPOXMLDOC01-appb-I000015
[Chemical 12]
Figure JPOXMLDOC01-appb-I000015
[化13]
Figure JPOXMLDOC01-appb-I000016
[Chemical 13]
Figure JPOXMLDOC01-appb-I000016
[化14]
Figure JPOXMLDOC01-appb-I000017
[Chemical 14]
Figure JPOXMLDOC01-appb-I000017
[化15]
Figure JPOXMLDOC01-appb-I000018
[Chemical 15]
Figure JPOXMLDOC01-appb-I000018
[化16]
Figure JPOXMLDOC01-appb-I000019
[Chemical 16]
Figure JPOXMLDOC01-appb-I000019
[化17]
Figure JPOXMLDOC01-appb-I000020
[Chemical Formula 17]
Figure JPOXMLDOC01-appb-I000020
[化18]
Figure JPOXMLDOC01-appb-I000021
[Chemical Formula 18]
Figure JPOXMLDOC01-appb-I000021
[化19]
Figure JPOXMLDOC01-appb-I000022
[Chemical formula 19]
Figure JPOXMLDOC01-appb-I000022
[化20]
Figure JPOXMLDOC01-appb-I000023
[Chemical 20]
Figure JPOXMLDOC01-appb-I000023
 上記化学式(a-1)~(g-20)において、R、PおよびYは上記式(2a)および(2b)で定義したとおりである。
 Zは、それぞれ独立して、単結合、-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-である。なお、複数のZは同一でも異なっていてもよい。
In the chemical formulas (a-1) to (g-20), R a , P and Y are as defined in the above formulas (2a) and (2b).
Z 1 each independently represents a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH═CH—, —CF═CF—, —CH═CHCOO—, —OCOCH═CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —C≡C—, —C≡C—COO—, —OCO—C≡C—, —C≡C—CH═CH—, —CH═ CH—C≡C—, —CH═N—, —N═CH—, —N═N—, —OCF 2 — or —CF 2 O—. The plurality of Z 1 may be the same or different.
 上記化学式(a-1)~(g-20)において、Zは、それぞれ独立して、-(CH-、-(CF-、-(CH-、-CHO-、-OCH-、-(CHO-、-O(CH-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-C≡C-、-C≡C-COO-、-OCO-C≡C-、-C≡C-CH=CH-、-CH=CH-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-である。 In the above chemical formulas (a-1) to (g-20), each Z 2 independently represents — (CH 2 ) 2 —, — (CF 2 ) 2 —, — (CH 2 ) 4 —, —CH 2 O—, —OCH 2 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —COO—, —OCO—, —CH═CH—, —CF═CF—, —CH═ CHCOO—, —OCOCH═CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —C≡C—, —C≡C—COO—, —OCO—C≡C—, — C≡C—CH═CH—, —CH═CH—C≡C—, —CH═N—, —N═CH—, —N═N—, —OCF 2 — or —CF 2 O—.
 上記化学式(a-1)~(g-20)において、Zは、それぞれ独立して、単結合、炭素数1~10のアルキル、-(CH-、-O(CHO-、-CHO-、-OCH-、-O(CH-、-(CHO-、-COO-、-OCO-、-CH=CH-、-CH=CHCOO-、-OCOCH=CH-、-(CHCOO-、-OCO(CH-、-CF=CF-、-C≡C-、-CH=N-、-N=CH-、-N=N-、-OCF-または-CFO-であり、複数のZは同一でも異なっていてもよい。aは1~20の整数である。 In the above chemical formulas (a-1) to (g-20), each Z 3 independently represents a single bond, alkyl having 1 to 10 carbon atoms, — (CH 2 ) a —, —O (CH 2 ) a O—, —CH 2 O—, —OCH 2 —, —O (CH 2 ) 3 —, — (CH 2 ) 3 O—, —COO—, —OCO—, —CH═CH—, —CH═CHCOO —, —OCOCH═CH—, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CF═CF—, —C≡C—, —CH═N—, —N═CH—, —N═N—, —OCF 2 — or —CF 2 O—, and the plurality of Z 3 may be the same or different. a is an integer of 1 to 20.
 上記化学式(a-1)~(g-20)において、Xは、任意の水素がハロゲン、アルキル、フッ化アルキルで置き換えられてもよい1,4-フェニレンおよびフルオレン-2,7-ジイルの置換基であり、ハロゲン、アルキルまたはフッ化アルキルを示す。 In the above chemical formulas (a-1) to (g-20), X represents substitution of 1,4-phenylene and fluorene-2,7-diyl in which arbitrary hydrogen may be replaced by halogen, alkyl, or alkyl fluoride. Group, halogen, alkyl or alkyl fluoride.
 上記化合物(2)のより好ましい態様について説明する。より好ましい化合物(2)は、下記式(2a)または(2b)において以下の特徴を有する。
   P-Y-(A-Z)-R   (2a)
   P-Y-(A-Z)-Y-P   (2b)
 上記式中、A、Y、Z、Rおよびmはすでに定義したとおりであり、Pは下記式(2-1)~(2-2)で表される重合性基を示す。上記式(2b)の場合、2つのPは同一の重合性基(2-1)~(2-2)を示し、2つのYは同一の基を示し、2つのYは対称となるように結合する。
[化21]
Figure JPOXMLDOC01-appb-I000024
The more preferable aspect of the said compound (2) is demonstrated. More preferable compound (2) has the following characteristics in the following formula (2a) or (2b).
PY- (AZ) m -R a (2a)
PY- (AZ) m -YP (2b)
In the above formula, A, Y, Z, Ra and m are as defined above, and P represents a polymerizable group represented by the following formulas (2-1) to (2-2). In the case of the above formula (2b), two Ps represent the same polymerizable groups (2-1) to (2-2), two Ys represent the same group, and two Ys are symmetrical. Join.
[Chemical Formula 21]
Figure JPOXMLDOC01-appb-I000024
<2官能以上のヒドロキシ基を有する重合性非液晶化合物>
 2官能以上の重合性化合物は、ヒドロキシ基を有する非液晶性化合物であってもよい。非液晶性の2官能以上のヒドロキシ基を有する重合性化合物としては、下記式(3)または(4)で表される少なくとも1つの重合性化合物を挙げることができる。
[化22]
Figure JPOXMLDOC01-appb-I000025
<Polymerizable non-liquid crystal compound having a bifunctional or higher hydroxy group>
The bifunctional or higher functional polymerizable compound may be a non-liquid crystalline compound having a hydroxy group. Examples of the polymerizable compound having a non-liquid crystalline bifunctional or higher functional hydroxyl group include at least one polymerizable compound represented by the following formula (3) or (4).
[Chemical 22]
Figure JPOXMLDOC01-appb-I000025
 上記式(3)において、
 RおよびRは、それぞれ独立して、水素、ハロゲン、または炭素数1~3のアルキルであり;
 mは2~4の整数であり、nは1~3の整数であり、pは2~4の整数であり、qは1~3の整数であり、m+n=5であり、p+q=5であり;
 Aは、単結合、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、またはビアダマンタンジイルであり、
 炭素数1~10のアルキレンにおいて、任意の水素は-CHで置き換えられてもよく、
 シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、または、ビアダマンタンジイルにおいて、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
 任意の水素と置き換えられたアルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
 Z、Zは、それぞれ独立して、単結合、または炭素数1~20のアルキレンであり、
該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよい。
In the above formula (3),
R 1 and R 2 are each independently hydrogen, halogen, or alkyl having 1 to 3 carbons;
m is an integer of 2 to 4, n is an integer of 1 to 3, p is an integer of 2 to 4, q is an integer of 1 to 3, m + n = 5, and p + q = 5 Yes;
A represents a single bond, alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] with oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′-(9-fluorenylidene) diphenylene, adamantanediyl, or biadamantanediyl Yes,
In the alkylene having 1 to 10 carbon atoms, arbitrary hydrogen may be replaced with —CH 3 .
Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, In bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′-(9-fluorenylidene) diphenylene, adamantanediyl, or biadamantanediyl, any —CH 2 — is —O—. Any —CH═ may be replaced by —N═, and any hydrogen is replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons May be
In alkyl substituted with any hydrogen, any —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—;
Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 20 carbon atoms,
In the alkylene, any —CH 2 — may be replaced with —O—, —S—, —CO—, —COO—, or —OCO—, and any hydrogen may be replaced with a halogen. .
 上記式(3)において、Aは、単結合、炭素数1~10のアルキレン、フェニレン、または任意の水素がハロゲンもしくはメチル基で置き換えられたフェニレンであり;Z、Zは、それぞれ独立して、単結合、-(CH-、-O-、-O(CH-、-(CHO-、-O(CHO-、-COO-、-OCO-、-CHCH-COO-、-OCO-CHCH-、-OCF-または-CFO-であり、該aが1~20の整数であることが好ましい。 In the above formula (3), A is a single bond, alkylene having 1 to 10 carbon atoms, phenylene, or phenylene in which any hydrogen is replaced by a halogen or a methyl group; Z 1 and Z 2 are each independently Single bond, — (CH 2 ) a —, —O—, —O (CH 2 ) a —, — (CH 2 ) a O—, —O (CH 2 ) a O—, —COO—, — OCO—, —CH 2 CH 2 —COO—, —OCO—CH 2 CH 2 —, —OCF 2 — or —CF 2 O—, and a is preferably an integer of 1-20.
 特に好ましい化合物(3)の例としては、以下に示す化合物(3-1)~(3-11)が挙げられる。
[化23]
Figure JPOXMLDOC01-appb-I000026
 上記式(3-1)~(3-11)において、R、R、m、n、p、q、Z、Zは、式(3)と同一であり;R~R63は、それぞれ独立して、水素、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルである。
Examples of particularly preferred compound (3) include compounds (3-1) to (3-11) shown below.
[Chemical Formula 23]
Figure JPOXMLDOC01-appb-I000026
In the above formulas (3-1) to (3-11), R 1 , R 2 , m, n, p, q, Z 1 and Z 2 are the same as those in the formula (3); R 3 to R 63 Are each independently hydrogen, halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons.
 上記式(4)において、
 xは2以上の整数であり;
 環Bは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、9,9‐ジフェニルフルオレン、アダマンタン、または、ビアダマンタンであり、
 環Bにおいて、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、
 環Bの炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。
In the above formula (4),
x is an integer greater than or equal to 2;
Ring B is benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, 9,9-diphenylfluorene, adamantane, or biadamantane,
In Ring B, any —CH 2 — may be replaced by —O—, and any —CH═ may be replaced by —N═, and any hydrogen may be halogen, a carbon number of 1 to 3 alkyl, or an alkyl halide having 1 to 3 carbon atoms,
In the alkyl having 1 to 3 carbon atoms or the alkyl halide having 1 to 3 carbon atoms in the ring B, arbitrary —CH 2 — is replaced by —O—, —CO—, —COO—, or —OCO—. May be.
 上記式(4)において、環Bは、ベンゼン、ナフタレン、9,9‐ジフェニルフルオレン、またはアダマンタンであることが好ましい。 In the above formula (4), ring B is preferably benzene, naphthalene, 9,9-diphenylfluorene, or adamantane.
 特に好ましい化合物(4)の例としては、以下に示す化合物(4-1)~(4-10)が挙げられる。
[化24]
Figure JPOXMLDOC01-appb-I000027
 上記式(4-1)~(4-10)において、xは、式(4)と同一である。上記式(4-1)~(4-10)の環において、ヒドロキシ基の位置は任意である。
Examples of particularly preferred compound (4) include compounds (4-1) to (4-10) shown below.
[Chemical formula 24]
Figure JPOXMLDOC01-appb-I000027
In the above formulas (4-1) to (4-10), x is the same as in formula (4). In the rings of the above formulas (4-1) to (4-10), the position of the hydroxy group is arbitrary.
<2官能以上のヒドロキシ基を有する重合性液晶化合物>
 2官能以上の重合性化合物は、ヒドロキシ基を有する液晶性化合物であってもよい。液晶性を有する2官能以上のヒドロキシ基を有する重合性化合物としては、下記式(5)で表される少なくとも1つの重合性化合物を挙げることができる。化合物(5)は、液晶骨格と2官能以上のヒドロキシ基を有し、高い重合反応性、広い液晶相温度範囲、良好な混和性などを有する。この化合物(5)は他の液晶性の化合物や重合性の化合物などと混合するとき、均一になりやすい。
<Polymerizable liquid crystal compound having a bifunctional or higher functional hydroxy group>
The bifunctional or higher functional polymerizable compound may be a liquid crystalline compound having a hydroxy group. Examples of the polymerizable compound having a bifunctional or higher functional hydroxy group having liquid crystallinity include at least one polymerizable compound represented by the following formula (5). The compound (5) has a liquid crystal skeleton and a bifunctional or higher functional hydroxy group, and has high polymerization reactivity, a wide liquid crystal phase temperature range, good miscibility, and the like. This compound (5) tends to be uniform when mixed with other liquid crystalline compounds or polymerizable compounds.
[化25]
Figure JPOXMLDOC01-appb-I000028
[Chemical Formula 25]
Figure JPOXMLDOC01-appb-I000028
 上記式(5)において、sは0~4の整数であり、tは1以上の整数であり、uは1以上の整数である。
 上記化合物(5)の環Cおよび結合基W、結合基Yを適宜選択することによって、液晶相発現領域などの物性を任意に調整することができる。環C、結合基Wおよび結合基Yの種類が、化合物(5)の物性に与える効果、ならびに、これらの好ましい例を以下に説明する。
In the above formula (5), s is an integer of 0 to 4, t is an integer of 1 or more, and u is an integer of 1 or more.
By appropriately selecting the ring C, the bonding group W, and the bonding group Y of the compound (5), the physical properties such as the liquid crystal phase developing region can be arbitrarily adjusted. The effects of ring C, linking group W and linking group Y on the physical properties of compound (5) and preferred examples thereof will be described below.
・結合基Y
 上記式(5)において、結合基Yは、独立して、単結合または炭素数1~20のアルキレン、好ましくは炭素数1~10のアルキレンを示し、炭素数2~20の該アルキレンにおいて、ヒドロキシ基と結合していない任意の-CH-は、-O-、-S-、-CO-、-COO-または-OCO-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよい。Yが直鎖状アルキレンである場合、液晶相の温度範囲が広く、かつ粘度が小さい。一方、Yが分岐状アルキレンである場合、他の液晶性の化合物との相溶性がよい。
・ Linking group Y
In the above formula (5), the linking group Y independently represents a single bond or alkylene having 1 to 20 carbon atoms, preferably alkylene having 1 to 10 carbon atoms. In the alkylene having 2 to 20 carbon atoms, Any —CH 2 — that is not bound to a group may be replaced with —O—, —S—, —CO—, —COO— or —OCO—, and any hydrogen may be replaced with halogen. Good. When Y is a linear alkylene, the temperature range of the liquid crystal phase is wide and the viscosity is small. On the other hand, when Y is branched alkylene, compatibility with other liquid crystal compounds is good.
・環C
 上記化合物(5)の環Cにおける少なくとも1つの環が1,4-フェニレンの場合、配向秩序パラメーター(orientational order parameter)および磁化異方性が大きい。また、少なくとも2つの環が1,4-フェニレンの場合、液晶相の温度範囲が広く、さらに透明点が高い。1,4-フェニレン環上の少なくとも1つの水素がシアノ、ハロゲン、-CFまたは-OCFに置換された場合、誘電率異方性が高い。また、少なくとも2つの環が1,4-シクロヘキシレンである場合、透明点が高く、かつ粘度が小さい。
・ Ring C
When at least one ring in the ring C of the compound (5) is 1,4-phenylene, the orientational order parameter and the magnetic anisotropy are large. When at least two rings are 1,4-phenylene, the temperature range of the liquid crystal phase is wide and the clearing point is high. When at least one hydrogen on the 1,4-phenylene ring is substituted with cyano, halogen, —CF 3 or —OCF 3 , the dielectric anisotropy is high. When at least two rings are 1,4-cyclohexylene, the clearing point is high and the viscosity is low.
 上記式(5)において、好ましい環Cとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、2,2-ジフルオロ-1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-3,6-ジイル、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、9,9-ジメチルフルオレン-2,7-ジイル、9-エチルフルオレン-2,7-ジイル、9-フルオロフルオレン-2,7-ジイル、9,9-ジフルオロフルオレン-2,7-ジイルなどが挙げられる。 In the above formula (5), preferable ring C is 1,4-cyclohexylene, 1,4-cyclohexenylene, 2,2-difluoro-1,4-cyclohexylene, 1,3-dioxane-2. , 5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro -1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine -3,6-diyl, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7-diyl, 9,9-di Chill-2,7-diyl, 9-ethyl-2,7-diyl, 9-fluoro-2,7-diyl, etc. 9,9-difluoro-2,7-diyl.
 1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンおよび3-フルオロ-1,4-フェニレンは構造的に同一であるので、後者は例示していない。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンとの関係などにも適用される。 The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene and 3-fluoro-1,4-phenylene are structurally identical, the latter is not illustrated. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
 上記式(5)において、さらに好ましいCとしては、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレンなどである。特に好ましいAは、1,4-シクロへキシレンおよび1,4-フェニレンである。 In the above formula (5), more preferable C is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro. -1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, and the like. Particularly preferred A is 1,4-cyclohexylene and 1,4-phenylene.
・結合基W
 上記化合物(5)の結合基Wが、それぞれ独立して、単結合、-(CH-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-または-(CH-である場合、特に、単結合、-(CH-、-CFO-、-OCF-、-CH=CH-または-(CH-である場合、粘度が小さくなる。また、結合基Wが、-CH=CH-、-CH=N-、-N=CH-、-N=N-または-CF=CF-である場合、液晶相の温度範囲が広い。また、結合基Wが、炭素数4~10程度のアルキレンの場合、融点が低下する。
・ Linking group W
The bonding group W of the compound (5) is independently a single bond, — (CH 2 ) 2 —, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, — When CH═CH—, —CF═CF— or — (CH 2 ) 4 —, in particular, a single bond, — (CH 2 ) 2 —, —CF 2 O—, —OCF 2 —, —CH═CH - or - (CH 2) 4 - when it, the viscosity decreases. When the bonding group W is —CH═CH—, —CH═N—, —N═CH—, —N═N— or —CF═CF—, the temperature range of the liquid crystal phase is wide. Further, when the bonding group W is alkylene having about 4 to 10 carbon atoms, the melting point is lowered.
 上記式(5)において、好ましい結合基Wとしては、単結合、-(CH-、-(CF-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-CF=CF-、-C≡C-、-(CH-、-(CHO-、-O(CH-、-(CHCOO-、-OCO(CH-、-CH=CH-COO-、-OCO-CH=CH-などが挙げられる。 In the above formula (5), preferable bonding group W is a single bond, — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2. —, —CF 2 O—, —OCF 2 —, —CH═CH—, —CF═CF—, —C≡C—, — (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, — (CH 2 ) 2 COO—, —OCO (CH 2 ) 2 —, —CH═CH—COO—, —OCO—CH═CH— and the like can be mentioned.
 上記式(5)において、さらに好ましい結合基Wとしては、単結合、-(CH-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH=CH-、-C≡C-などが挙げられる。特に好ましい結合基Wとしては、単結合、-(CH-、-COO-または-OCO-である。 In the above formula (5), more preferable bonding group W is a single bond, — (CH 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—. , —OCF 2 —, —CH═CH—, —C≡C— and the like. Particularly preferred bonding group W is a single bond, — (CH 2 ) 2 —, —COO— or —OCO—.
 上記化合物(5)が3つ以下の環を有するときは粘度が低く、3つ以上の環を有するときは透明点が高い。 When the compound (5) has 3 or less rings, the viscosity is low, and when it has 3 or more rings, the clearing point is high.
 上記化合物(5)は、光学活性であってもよいし、光学的に不活性でもよい。化合物(5)が光学活性である場合、化合物(5)は不斉炭素を有する場合と軸不斉を有する場合がある。不斉炭素の立体配置はRでもSでもよい。不斉炭素は、環C、結合基W、結合基Yのいずれに位置していてもよく、不斉炭素を有すると、化合物(5)の相溶性がよい。化合物(5)が軸不斉を有する場合、ねじれ誘起力が大きい。また、旋光性はいずれでも構わない。
 以上のように、環C、結合基W、結合基Yの種類、環の数を適宜選択することにより、目的の物性を有する化合物を得ることができる。
The compound (5) may be optically active or optically inactive. When the compound (5) is optically active, the compound (5) may have an asymmetric carbon or an axial asymmetry. The configuration of the asymmetric carbon may be R or S. The asymmetric carbon may be located in any of the ring C, the linking group W, and the linking group Y. When the asymmetric carbon is present, the compatibility of the compound (5) is good. When the compound (5) has axial asymmetry, the twist-inducing force is large. Further, any optical rotation may be used.
As described above, a compound having desired physical properties can be obtained by appropriately selecting the type of ring C, bonding group W, bonding group Y, and number of rings.
 上記化合物(2b)、上記化合物(5)の好ましい化合物として、具体例(f-1-1)~(f-14-2)を以下に示す。 Specific examples (f-1-1) to (f-14-2) are shown below as preferred compounds of the compound (2b) and the compound (5).
[化26]
Figure JPOXMLDOC01-appb-I000029
[Chemical Formula 26]
Figure JPOXMLDOC01-appb-I000029
[化27]
Figure JPOXMLDOC01-appb-I000030
[Chemical 27]
Figure JPOXMLDOC01-appb-I000030
[化28]
Figure JPOXMLDOC01-appb-I000031
[Chemical 28]
Figure JPOXMLDOC01-appb-I000031
・化合物(1)(2)(3)(4)(5)の合成方法
 上記化合物(1)(2)(3)(4)(5)は、有機合成化学における公知の手法を組合せることにより合成できる。出発物質に目的の末端基、環構造および結合基を導入する方法は、例えば、ホーベン-ワイル(Houben-Weyl, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart)、オーガニック・シンセシーズ(Organic Syntheses, John Wiley & Sons, Inc.)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc.)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。また、特開2006-265527号公報を参照してもよい。
-Method for synthesizing compounds (1), (2), (3), (4), and (5) The above compounds (1), (2), (3), (4), and (5) are combined with known methods in organic synthetic chemistry. Can be synthesized. Methods for introducing the desired end groups, ring structures and linking groups into the starting materials are described, for example, by Houben-Weyl, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart, Organic Syntheses, John Wiley & Sons, Inc., Organic Reactions, John Wiley & Sons, Inc., Comprehensive Organic Synthesis, Pergamon Press, New Experimental Chemistry Course (Maruzen) It is described in the book. Reference may also be made to JP-A-2006-265527.
 2官能以上の重合性化合物(以下、単に「重合性化合物」ということがある)は、上記式(1)(2)(3)(4)(5)で示す重合性化合物以外の重合性化合物であってもよい。例えば、ポリエーテルのジグリシジルエーテル、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビフェノールのジグリシジルエーテル、または式(2)(5)の化合物の中でも直線性が足りず液晶性を発現しなかった化合物などが挙げられる。
 上記重合性化合物は、有機合成化学における公知の手法を組合せることにより合成できる。
Bifunctional or higher polymerizable compounds (hereinafter sometimes simply referred to as “polymerizable compounds”) are polymerizable compounds other than the polymerizable compounds represented by the above formulas (1), (2), (3), (4), and (5). It may be. For example, the diglycidyl ether of polyether, the diglycidyl ether of bisphenol A, the diglycidyl ether of bisphenol F, the diglycidyl ether of biphenol, or the compound of formula (2) (5) lacks linearity and exhibits liquid crystallinity. Examples of the compounds that were not used.
The polymerizable compound can be synthesized by combining known methods in organic synthetic chemistry.
 本発明に用いる重合性化合物は、2官能以上の官能基を有することが好ましく、3官能以上、また4官能以上である場合を含む。さらに、重合性化合物の長辺の両端に官能基を有する化合物が直線的な結合を形成できるため好ましい。 The polymerizable compound used in the present invention preferably has a bifunctional or higher functional group, including a case of a trifunctional or higher functional group or a tetrafunctional or higher functional group. Furthermore, a compound having a functional group at both ends of the long side of the polymerizable compound is preferable because it can form a linear bond.
<第1、第2の無機フィラー>
 第1の無機フィラー、第2の無機フィラーとしては、窒化物等を挙げることができる。第1の無機フィラーおよび第2の無機フィラーは、同一であってもよく異なったものでもよい。
 第1の無機フィラー、第2の無機フィラーには、高熱伝導性で熱膨張率が非常に小さいか負である無機フィラーとして、窒化ホウ素、ジルコニア、ダイヤモンド等を用いてもよい。または、第1または第2の無機フィラーのどちらか一方に、窒化アルミニウム、アルミナ、コーディエライト等の熱伝導率が高く熱膨張率が正である無機フィラーを用いてもよい。
 好ましくは、窒化ホウ素、窒化アルミニウムである。特に六方晶系の窒化ホウ素(h-BN)が好ましい。窒化ホウ素は平面方向の熱伝導率が非常に高く、誘電率も低く、絶縁性も高いため好ましい。例えば、板状結晶の窒化ホウ素を用いると、成型および硬化時に、原料のフローや圧力によって、板状構造が金型に沿って配向され易いため好ましい。
<First and second inorganic fillers>
A nitride etc. can be mentioned as a 1st inorganic filler and a 2nd inorganic filler. The first inorganic filler and the second inorganic filler may be the same or different.
For the first inorganic filler and the second inorganic filler, boron nitride, zirconia, diamond, or the like may be used as an inorganic filler having high thermal conductivity and a very small or negative coefficient of thermal expansion. Alternatively, an inorganic filler having a high thermal conductivity and a positive thermal expansion coefficient, such as aluminum nitride, alumina, or cordierite, may be used for either the first or second inorganic filler.
Preferred are boron nitride and aluminum nitride. In particular, hexagonal boron nitride (h-BN) is preferable. Boron nitride is preferable because it has a very high thermal conductivity in the planar direction, a low dielectric constant, and a high insulating property. For example, it is preferable to use plate-like crystal boron nitride because the plate-like structure is easily oriented along the mold by the flow and pressure of the raw material during molding and curing.
 無機フィラーの種類、形状、大きさ、添加量などは、目的に応じて適宜選択できる。放熱部材が絶縁性を必要とする場合、所望の絶縁性が保たれれば導電性を有する無機フィラーを用いてもよい。無機フィラーの形状としては、板状、球状、無定形、繊維状、棒状、筒状などが挙げられる。なお、重合性化合物はこれらの無機フィラー間を効率よく結合できる形状および長さを持っていることが望ましい。無機フィラーの外観は、色の薄いものや半透明、透明であるものが好ましい。 The kind, shape, size, addition amount, etc. of the inorganic filler can be appropriately selected according to the purpose. When the heat dissipating member needs insulation, an inorganic filler having conductivity may be used as long as the desired insulation is maintained. Examples of the shape of the inorganic filler include a plate shape, a spherical shape, an amorphous shape, a fiber shape, a rod shape, and a tubular shape. The polymerizable compound preferably has a shape and length that can efficiently bond these inorganic fillers. The appearance of the inorganic filler is preferably light-colored, translucent or transparent.
 第1の無機フィラー、第2の無機フィラーの平均粒径は、0.1~500μmであることが好ましい。より好ましくは、1~100μmである。0.1μm以上であると熱伝導率がよく、500μm以下であると充填率を上げることができる。
 なお、本明細書において平均粒径とは、レーザー回折・散乱法による粒度分布測定に基づく。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法により粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。
The average particle diameter of the first inorganic filler and the second inorganic filler is preferably 0.1 to 500 μm. More preferably, it is 1 to 100 μm. When it is 0.1 μm or more, the thermal conductivity is good, and when it is 500 μm or less, the filling rate can be increased.
In the present specification, the average particle size is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle size by the wet method using the analysis by Franhofer diffraction theory and Mie's scattering theory, the diameter where the large side and the small side are equivalent (volume basis) The median diameter was used.
<第3の無機フィラー>
 第3の無機フィラーは、白色かそれに近い外観を有するものであって、有機成分の酸化が促進されないような無機フィラーを用いることが好ましい。より好ましくは、酸化チタン、シリカ、アルミナ、酸化亜鉛等である。
 第3の無機フィラーの平均粒径は、0.01~50μmであることが好ましい。より好ましくは、0.05~25μmである。0.01μm以上であると熱伝導率がよく、50μm以下であると充填率を上げることができる。第3の無機フィラーの形状としては、板状、球状、無定形、繊維状、棒状、筒状などが挙げられる。
<Third inorganic filler>
The third inorganic filler has a white appearance or a similar appearance, and it is preferable to use an inorganic filler that does not promote oxidation of organic components. More preferred are titanium oxide, silica, alumina, zinc oxide and the like.
The average particle size of the third inorganic filler is preferably 0.01 to 50 μm. More preferably, it is 0.05 to 25 μm. When it is 0.01 μm or more, the thermal conductivity is good, and when it is 50 μm or less, the filling rate can be increased. Examples of the shape of the third inorganic filler include a plate shape, a spherical shape, an amorphous shape, a fiber shape, a rod shape, and a tubular shape.
<カップリング剤>
 無機フィラーに結合させるカップリング剤は、重合性化合物が有する官能基と反応する基をもつものを選択することができる。例えば、重合性化合物がオキシラニル基を有する場合は、アミン系の基を持つものが好ましい。JNC(株)製では、サイラエース(商品名)S310、S320、S330、S360、信越化学工業(株)製では、KBM903、KBE903などが挙げられる。重合性化合物がアミン系の基またはヒドロキシ基を有する場合は、オキシラニル基等を持つカップリング剤が好ましい。JNC(株)製では、サイラエース(商品名)S510、S530などが挙げられる。無機フィラーに対するカップリング剤の修飾量は、高熱伝導性、高耐熱性にバランスよく優れる放熱部材を容易に得ることができる等の点から、好ましくは0.2~20重量%、より好ましくは1~10重量%である。
<Coupling agent>
As the coupling agent to be bonded to the inorganic filler, one having a group that reacts with the functional group of the polymerizable compound can be selected. For example, when the polymerizable compound has an oxiranyl group, it preferably has an amine group. For example, Silac Ace (trade names) S310, S320, S330, and S360 are available from JNC Corporation, and KBM903 and KBE903 are available from Shin-Etsu Chemical Co., Ltd. When the polymerizable compound has an amine group or a hydroxy group, a coupling agent having an oxiranyl group or the like is preferable. Examples of the products manufactured by JNC Corporation include Sila Ace (trade names) S510 and S530. The amount of modification of the coupling agent with respect to the inorganic filler is preferably 0.2 to 20% by weight, more preferably 1 from the viewpoint that a heat radiating member excellent in balance between high thermal conductivity and high heat resistance can be easily obtained. ~ 10% by weight.
 カップリング剤としては、下記式(6)で表されるシランカップリング剤を用いることが好ましい。
 (R-O)-Si(R3-j-(R-(R-(R
 -Ry (6)
 上記式(6)中、
 Rは、H-、またはCH-(CH0~4-であり;
 Rは、-(CH0~3-O-であり;
 Rは、1,3-フェニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、またはナフタレン-2,7-ジイルであり;
 Rは、-(NH)0~1-(CH0~3-であり;
 Rは、H-、またはCH-(CH0~7-であり;
 Ryは、オキシラニル、オキセタニル、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
 jは、0~3の整数であり;
 kは、0~1の整数であり;
 mは、0~1の整数であり;
 nは、0~1の整数であり;
 式(6)は、RとRの少なくとも1つを含む。
As the coupling agent, it is preferable to use a silane coupling agent represented by the following formula (6).
(R 1 -O) j -Si (R 5 ) 3-j- (R 2 ) k- (R 3 ) m- (R 4 ) n
-Ry (6)
In the above formula (6),
R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
R 2 is — (CH 2 ) 0-3 —O—;
R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
j is an integer from 0 to 3;
k is an integer from 0 to 1;
m is an integer from 0 to 1;
n is an integer from 0 to 1;
Formula (6) includes at least one of R 3 and R 4 .
<追加フィラー>
 本発明の放熱部材用組成物は、さらに無機フィラーを追加し、複数種類の無機フィラーを含有させてもよい。例えば、第1の無機フィラー、第2の無機フィラー、第3の無機フィラーと異なる熱膨張率を持つ無機フィラーを追加してもよい。また、第1の無機フィラーと第2の無機フィラーが2次元の板状または1次元の線状である場合、それらだけを複合化させると、複合化した放熱部材用組成物の物性に大きな異方性が生じる。追加フィラーを加えることにより、第1、第2の無機フィラーの配向性が緩和し、異方性が少なくなる利点がある。さらに、第1、第2の無機フィラーの熱膨張率が非常に小さいか負であるとき、熱膨張率が正の追加フィラーを加えることにより、その混合比率によって熱膨張率を負から正により精密に制御することが可能になる。追加フィラーに使用する無機フィラーに制約はないが、熱伝導率が高い物であることが望ましい。
<Additional filler>
The composition for heat radiating members of the present invention may further contain an inorganic filler and contain a plurality of types of inorganic fillers. For example, you may add the inorganic filler which has a thermal expansion coefficient different from a 1st inorganic filler, a 2nd inorganic filler, and a 3rd inorganic filler. In addition, when the first inorganic filler and the second inorganic filler are two-dimensional plate-like or one-dimensional linear, if only these are combined, the physical properties of the combined heat radiating member composition are greatly different. A direction arises. By adding an additional filler, there is an advantage that the orientation of the first and second inorganic fillers is relaxed and anisotropy is reduced. Furthermore, when the thermal expansion coefficient of the first and second inorganic fillers is very small or negative, by adding an additional filler having a positive thermal expansion coefficient, the thermal expansion coefficient is more accurately adjusted from negative to positive depending on the mixing ratio. It becomes possible to control. Although there is no restriction | limiting in the inorganic filler used for an additional filler, It is desirable that it is a thing with high heat conductivity.
 追加フィラーとしては、熱伝導率が高く熱膨張率が正である、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、珪素、ベリリア、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化珪素、酸化銅、酸化チタン、酸化セリウム、酸化イットリウム、酸化錫、酸化ホルミウム、酸化ビスマス、酸化コバルト、酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、金、銀、銅、白金、鉄、錫、鉛、ニッケル、アルミニウム、マグネシウム、タングステン、モリブデン、ステンレスなどの無機充填材および金属充填材を挙げることができる。 Additional fillers are silicon carbide, aluminum nitride, silicon nitride, diamond, silicon, beryllia, magnesium oxide, aluminum oxide, zinc oxide, silicon oxide, copper oxide, titanium oxide, which have high thermal conductivity and positive thermal expansion. , Cerium oxide, yttrium oxide, tin oxide, holmium oxide, bismuth oxide, cobalt oxide, calcium oxide, magnesium hydroxide, aluminum hydroxide, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium, Mention may be made of inorganic fillers and metal fillers such as tungsten, molybdenum and stainless steel.
<その他の構成要素>
 本発明の放熱部材用組成物は、さらに第1の無機フィラー、第2の無機フィラー、第3の無機フィラーに結合していない、すなわち結合に寄与していない有機化合物(例えば重合性化合物または高分子化合物)を含んでいてもよく、重合開始剤や溶媒等を含んでいてもよい。
<Other components>
The composition for a heat dissipation member of the present invention further includes an organic compound that is not bonded to the first inorganic filler, the second inorganic filler, and the third inorganic filler, that is, does not contribute to bonding (for example, a polymerizable compound or a high Molecular compound) and a polymerization initiator, a solvent, and the like.
<結合していない重合性化合物>
 放熱部材用組成物は、無機フィラーに結合していない重合性化合物(この場合、必ずしも2官能以上でなくてもよい)を構成要素としてもよい。このような重合性化合物としては、成形性および機械的強度を低下させない化合物が好ましい。この重合性化合物は、液晶性を有しない化合物と液晶性を有する化合物とに分類される。液晶性を有しない重合性化合物としては、ビニル誘導体、スチレン誘導体、(メタ)アクリル酸誘導体、ソルビン酸誘導体、フマル酸誘導体、イタコン酸誘導体、などが挙げられる。含有量は、まず結合していない重合性化合物を含まない放熱部材用組成物を作製し、その空隙率を測定して、その空隙を埋められる量の重合性化合物を添加することが望ましい。
<Polymerizable compound not bonded>
The composition for a heat radiating member may include a polymerizable compound (in this case, not necessarily bifunctional or higher) that is not bonded to an inorganic filler as a constituent element. As such a polymerizable compound, a compound which does not reduce moldability and mechanical strength is preferable. This polymerizable compound is classified into a compound having no liquid crystallinity and a compound having liquid crystallinity. Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives, itaconic acid derivatives, and the like. As for the content, first, it is desirable to prepare a composition for a heat dissipation member that does not contain an unbonded polymerizable compound, measure its porosity, and add an amount of the polymerizable compound that can fill the void.
<結合していない高分子化合物>
 放熱部材用組成物は、無機フィラーに結合していない高分子化合物を構成要素としてもよい。このような高分子化合物としては、膜形成性および機械的強度を低下させない化合物が好ましい。この高分子化合物は、第1、第2、第3の無機フィラーおよび重合性化合物と反応しない高分子化合物であればよく、例えばポリオレフィン系樹脂、ポリビニル系樹脂、ポリアミド系樹脂、ポリイタコン酸系樹脂などが挙げられる。含有量は、まず結合していない高分子化合物を含まない放熱部材用組成物を作成し、その空隙率を測定して、その空隙を埋められる量の高分子化合物を添加することが望ましい。
<Polymer compound not bonded>
The composition for a heat radiating member may include a polymer compound that is not bonded to an inorganic filler as a constituent element. As such a polymer compound, a compound that does not lower the film-forming property and mechanical strength is preferable. The polymer compound may be a polymer compound that does not react with the first, second, and third inorganic fillers and the polymerizable compound. For example, a polyolefin resin, a polyvinyl resin, a polyamide resin, a polyitaconic acid resin, and the like. Is mentioned. As for the content, it is desirable to prepare a composition for a heat radiation member that does not contain an unbonded polymer compound, measure its porosity, and add an amount of the polymer compound that can fill the void.
<非重合性の液晶性化合物>
 放熱部材用組成物は、重合性基を有しない液晶性化合物を構成要素としてもよい。このような非重合性の液晶性化合物の例は、液晶性化合物のデータベースであるリクリスト(LiqCryst, LCI Publisher GmbH, Hamburg, Germany)などに記載されている。非重合性の液晶性化合物を含有する放熱部材用組成物を重合させることによって、例えば、化合物(2)の重合体と液晶性化合物との複合材料(composite materials)を得ることができる。このような複合材料では、高分子分散型液晶のように高分子網目中に非重合性の液晶性化合物が存在している。好ましくは、使用する温度領域で流動性がないような特性を持つ液晶性化合物である。第1、第2、第3のフィラーを硬化させた後で、等方相を示す温度領域でその空隙に注入するような手法で複合化させてもよく、第1、第2、第3のフィラーに予め空隙を埋めるように計算した分量の液晶性化合物を混合しておき、フィラーを重合させてもよい。
<Non-polymerizable liquid crystalline compound>
The composition for a heat radiating member may contain a liquid crystal compound having no polymerizable group as a constituent element. Examples of such non-polymerizable liquid crystal compounds are described in Licris, a database of liquid crystal compounds (LiqCryst, LCI Publisher GmbH, Hamburg, Germany). By polymerizing a composition for a heat dissipation member containing a non-polymerizable liquid crystal compound, for example, a composite material of a polymer of the compound (2) and a liquid crystal compound can be obtained. In such a composite material, a non-polymerizable liquid crystal compound is present in a polymer network like a polymer dispersed liquid crystal. Preferably, it is a liquid crystalline compound having such a characteristic that it does not have fluidity in the temperature range to be used. After the first, second, and third fillers are cured, the first, second, and third fillers may be combined by a method in which the first, second, and third fillers are injected into the voids in a temperature region that exhibits an isotropic phase. The filler may be polymerized by mixing an amount of liquid crystalline compound calculated so as to fill the voids in advance.
<重合開始剤>
 放熱部材用組成物は重合開始剤を構成要素としてもよい。重合開始剤は、組成物の構成要素および重合方法に応じて、例えば光ラジカル重合開始剤、光カチオン重合開始剤、熱ラジカル重合開始剤などを用いればよい。
 熱ラジカル重合用の好ましい開始剤としては、例えば、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド(DTBPO)、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)などが挙げられる。
<Polymerization initiator>
The composition for heat radiating members may contain a polymerization initiator as a constituent element. As the polymerization initiator, for example, a radical photopolymerization initiator, a cationic photopolymerization initiator, a thermal radical polymerization initiator, or the like may be used depending on the components of the composition and the polymerization method.
Preferred initiators for thermal radical polymerization include, for example, benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-t-butylperoxide. Oxide (DTBPO), t-butylperoxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbonitrile (ACN), etc. Can be mentioned.
<溶媒>
 放熱部材用組成物は溶媒を含有してもよい。重合させる必要がある構成要素を組成物中に含む場合、重合は溶媒中で行っても無溶媒で行ってもよい。溶媒を含有する組成物を基板上に、例えばスピンコート法などにより塗布した後、溶媒を除去してから光重合させてもよい。また、光硬化後適当な温度に加温して熱硬化により後処理を行ってもよい。
 好ましい溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、PGMEAなどが挙げられる。上記溶媒は1種単独で用いても2種以上を混合して用いてもよい。
 なお、重合時の溶媒の使用割合を限定することにあまり意味はなく、重合効率、溶媒コスト、エネルギーコストなどを考慮して、個々のケースごとに決定すればよい。
<Solvent>
The composition for heat radiating members may contain a solvent. When a component that needs to be polymerized is contained in the composition, the polymerization may be performed in a solvent or without a solvent. A composition containing a solvent may be applied onto a substrate by, for example, a spin coating method and then photopolymerized after removing the solvent. Further, after photocuring, it may be heated to an appropriate temperature and post-treated by heat curing.
Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, γ-butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, cyclohexane, methylcyclohexane, cyclopentanone. , Cyclohexanone, PGMEA and the like. The said solvent may be used individually by 1 type, or may mix and use 2 or more types.
It should be noted that there is not much meaning in limiting the ratio of the solvent used during the polymerization, and it may be determined for each case in consideration of the polymerization efficiency, the solvent cost, the energy cost, and the like.
<その他>
 放熱部材用組成物には取扱いを容易にするために、安定剤を添加してもよい。このような安定剤としては、公知のものを制限なく使用でき、例えば、ハイドロキノン、4-エトキシフェノールおよび3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)などが挙げられる。
 さらに、機械的強度をさらに増すために添加剤を添加してもよい。例えば、ガラス、カーボンファイバーなどの無機繊維やクロス、または高分子添加剤として、ポリビニルホルマール、ポリビニルブチラール、ポリエステル、ポリアミド、ポリイミドなどの繊維または長分子を挙げることができる。
<Others>
A stabilizer may be added to the heat dissipating member composition for easy handling. As such a stabilizer, known ones can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
Furthermore, an additive may be added to further increase the mechanical strength. For example, fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, and polyimide can be used as inorganic fibers and cloth such as glass and carbon fiber, or polymer additives.
[製造方法]
 以下、放熱部材用組成物を製造する方法、および放熱部材用組成物から放熱部材を製造する方法について具体的に説明する。以下では、無機フィラー間の結合に2官能以上の重合性化合物を含む場合を説明しているが、2官能以上の重合性化合物を含まない場合(カップリング剤同士を直接結合させる)も同様の方法で製造することができる。
[Production method]
Hereinafter, the method for producing the heat radiating member composition and the method for producing the heat radiating member from the heat radiating member composition will be specifically described. In the following, the case where a bifunctional or higher functional polymerizable compound is included in the bond between inorganic fillers is described, but the same applies when the bifunctional or higher functional polymerizable compound is not included (coupling agents are directly bonded to each other). It can be manufactured by the method.
<放熱部材用組成物を製造する>
 第1、第2の無機フィラー、カップリング剤、2官能以上の重合性化合物の割合は、使用する無機フィラーと結合させるカップリング剤の量に依存する。第1、第2の無機フィラーとして窒化ホウ素を用いた場合、窒化ホウ素は表面に反応基がなく側面にのみ反応基が存在する。その少ない反応基にカップリング剤を結合させ、その反応基の数と同数か少し多い重合性化合物を結合させることが好ましい。
<Manufacturing composition for heat dissipation member>
The ratio of the first and second inorganic fillers, the coupling agent, and the bifunctional or higher polymerizable compound depends on the amount of the coupling agent to be combined with the inorganic filler to be used. When boron nitride is used as the first and second inorganic fillers, boron nitride has no reactive groups on the surface and has reactive groups only on the side surfaces. It is preferable that a coupling agent is bonded to the few reactive groups, and a polymerizable compound having the same number as or slightly larger than the number of the reactive groups is bonded.
・カップリング処理を施す
 第1の無機フィラーを第1のカップリング剤で処理し、第1の無機フィラーと第1のカップリング剤の一端とを結合させたものを修飾フィラーAとする。カップリング処理は、公知の方法を用いることができる。
 一例として、まず無機フィラーとカップリング剤を溶媒に加える。スターラー等を用いて撹拌した後乾燥する。溶媒乾燥後に、真空乾燥機等を用いて真空条件下で加熱処理をする。この無機フィラーに溶媒を加えて、超音波処理により粉砕する。遠心分離機を用いてこの溶液を分離精製する。上澄みを捨てた後、溶媒を加えて同様の操作を数回行う。オーブンを用いて精製後のカップリング処理を施した無機フィラー(修飾フィラーA)を乾燥させる。
 同様に、第3の無機フィラーを第3のカップリング剤で処理したものを修飾フィラーC(第3のカップリング剤は、第1のカップリング剤と同じであってもよく、異なってもよい)とする。
-Applying the coupling treatment The first inorganic filler is treated with the first coupling agent, and the first inorganic filler and one end of the first coupling agent are bonded together to form a modified filler A. A known method can be used for the coupling treatment.
As an example, first, an inorganic filler and a coupling agent are added to a solvent. Stir using a stirrer or the like and then dry. After solvent drying, heat treatment is performed under vacuum conditions using a vacuum dryer or the like. A solvent is added to the inorganic filler and pulverized by ultrasonic treatment. The solution is separated and purified using a centrifuge. After discarding the supernatant, a solvent is added and the same operation is repeated several times. The inorganic filler (modified filler A) subjected to the coupling treatment after purification using an oven is dried.
Similarly, a modified filler C obtained by treating a third inorganic filler with a third coupling agent (the third coupling agent may be the same as or different from the first coupling agent). ).
・重合性化合物で修飾する
 第2のカップリング剤で処理した第2の無機フィラー(上記修飾フィラーAと同じであってもよく、異なってもよい)の、第2のカップリング剤の他端に2官能以上の重合性化合物を結合させる。このように重合性化合物で修飾したフィラーを修飾フィラーBとする。
 一例として、カップリング処理された無機フィラーと重合性化合物を、メノウ乳鉢等を用いて混合した後、2軸ロール等を用いて混練する。その後、超音波処理および遠心分離によって分離精製する。
The other end of the second coupling agent of the second inorganic filler (which may be the same as or different from the modified filler A) treated with the second coupling agent that is modified with the polymerizable compound A bifunctional or higher functional polymerizable compound is bound to. The filler modified with the polymerizable compound in this way is referred to as a modified filler B.
As an example, the inorganic filler subjected to the coupling treatment and the polymerizable compound are mixed using an agate mortar or the like and then kneaded using a biaxial roll or the like. Thereafter, separation and purification are performed by sonication and centrifugation.
・混合する
 修飾フィラーA、修飾フィラーB、修飾フィラーCを、例えば第1の無機フィラーと第2の無機フィラー(修飾なし)の重量比が1:1になるように量り取り、メノウ乳鉢等で混合する。その後2軸ロール等を用いて混合し、放熱部材用組成物を得る。
 第1の無機フィラーと第2の無機フィラーのみの混合割合(重量比)は、修飾フィラーAと修飾フィラーBの結合を形成する結合基がそれぞれアミノ:エポキシの場合、例えば、1:1~1:30であることが好ましく、より好ましくは1:3~1:20である。混合割合は、修飾フィラーAと修飾フィラーBの結合を形成する末端の結合基の数により決定し、例えば2級アミノであれば2個のオキシラニル基と反応できるため、オキシラニル基側に比べて少量でよい。また、オキシラニル基側は開環してしまっている可能性もあるためエポキシ当量から計算される量より多めに使用することが好ましい。
 第3の無機フィラーのみ(カップリング剤等を含まない)の混合割合は、第1の無機フィラー、第2の無機フィラー、第3の無機フィラーの総量100質量%に対して、1~50質量%含むことが好ましい。より好ましくは5~40質量%である。1質量%以上であると、高い可視光の反射率を得ることができ、50質量%以下であると、高反射率と高熱伝導性を両立させた放熱部材を得ることができる。
Mixing Weigh the modified filler A, modified filler B, and modified filler C so that the weight ratio of the first inorganic filler to the second inorganic filler (without modification) is 1: 1, for example, with an agate mortar Mix. Then, it mixes using a biaxial roll etc. and obtains the composition for heat radiating members.
The mixing ratio (weight ratio) of only the first inorganic filler and the second inorganic filler is, for example, 1: 1 to 1 when the bonding group forming the bond between the modified filler A and the modified filler B is amino: epoxy, respectively. : 30 is preferable, and 1: 3 to 1:20 is more preferable. The mixing ratio is determined by the number of terminal linking groups that form the bond between the modified filler A and the modified filler B. For example, if it is a secondary amino, it can react with two oxiranyl groups, so it is a small amount compared to the oxiranyl group side It's okay. Moreover, since the oxiranyl group side may be ring-opened, it is preferable to use more than the amount calculated from an epoxy equivalent.
The mixing ratio of only the third inorganic filler (not including the coupling agent or the like) is 1 to 50 mass with respect to 100 mass% of the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler. % Is preferable. More preferably, it is 5 to 40% by mass. When the content is 1% by mass or more, a high visible light reflectance can be obtained, and when the content is 50% by mass or less, a heat radiating member having both high reflectance and high thermal conductivity can be obtained.
<放熱部材を製造する>
 一例として、放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法を説明する。放熱部材用組成物を、圧縮成形機を用いて加熱板中にはさみ、圧縮成形により硬化成形する。さらに、オーブン等を用いて後硬化を行い、本発明の放熱部材を得る。なお、圧縮成形時の圧力は、50~200kgf/cmが好ましく、より好ましくは70~180kgf/cmである。硬化時の圧力は基本的には高い方が好ましい。しかし、金型の流動性や、目的とする物性(どちら向きの熱伝導率を重視するかなど)によって適宜変更し、適切な圧力を加えることが好ましい。
<Manufacturing heat dissipation member>
As an example, the method to manufacture the film as a heat radiating member using the composition for heat radiating members is demonstrated. The heat radiating member composition is sandwiched between hot plates using a compression molding machine, and cured by compression molding. Further, post-curing is performed using an oven or the like to obtain the heat radiating member of the present invention. The pressure at the time of compression molding is preferably 50 ~ 200kgf / cm 2, more preferably 70 ~ 180kgf / cm 2. Basically, the pressure during curing is preferably high. However, it is preferable that the pressure is appropriately changed depending on the fluidity of the mold and the target physical properties (which direction of thermal conductivity is important) and an appropriate pressure is applied.
 以下、溶媒を含有する放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法について具体的に説明する。
 まず、基板上に放熱部材用組成物を塗布し、溶媒を乾燥除去して膜厚の均一な塗膜層を形成する。塗布方法としては、例えば、スピンコート、ロールコート、カーテンコート、フローコート、プリント、マイクログラビアコート、グラビアコート、ワイヤーバーコート、ディップコート、スプレーコート、メニスカスコート法などが挙げられる。
 溶媒の乾燥除去は、例えば、室温での風乾、ホットプレートでの乾燥、乾燥炉での乾燥、温風や熱風の吹き付けなどにより行うことができる。溶媒除去の条件は特に限定されず、溶媒がおおむね除去され、塗膜層の流動性がなくなるまで乾燥すればよい。
Hereinafter, a method for producing a film as a heat radiating member using a composition for a heat radiating member containing a solvent will be specifically described.
First, the composition for heat radiating members is apply | coated on a board | substrate, a solvent is dried and removed, and the coating-film layer with a uniform film thickness is formed. Examples of the coating method include spin coating, roll coating, curtain coating, flow coating, printing, micro gravure coating, gravure coating, wire bar coating, dip coating, spray coating, meniscus coating, and the like.
The solvent can be removed by drying, for example, by air drying at room temperature, drying on a hot plate, drying in a drying furnace, blowing hot air or hot air, and the like. The conditions for removing the solvent are not particularly limited, and it may be dried until the solvent is almost removed and the fluidity of the coating layer is lost.
 上記基板としては、例えば、銅、アルミニウム、鉄、などの金属基板;シリコン、窒化ケイ素、窒化ガリウム、酸化亜鉛などの無機半導体基板;アルカリガラス、ホウ珪酸ガラス、フリントガラスなどのガラス基板、アルミナ、窒化アルミニウムなどの無機絶縁基板;ポリイミド、ポリアミドイミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、セルロース、トリアセチルセルロースもしくはその部分鹸化物、エポキシ樹脂、フェノール樹脂、ノルボルネン樹脂などのプラスティックフィルム基板などが挙げられる。 Examples of the substrate include metal substrates such as copper, aluminum, and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride, and zinc oxide; glass substrates such as alkali glass, borosilicate glass, and flint glass; alumina; Inorganic insulating substrates such as aluminum nitride; polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenyleneoxide, polyethyleneterephthalate, polybutyleneterephthalate , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, Triacetyl cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and a plastic film substrate such as norbornene resins.
 上記フィルム基板は、一軸延伸フィルムでも、二軸延伸フィルムであってもよい。上記フィルム基板は、事前に鹸化処理、コロナ処理、プラズマ処理などの表面処理を施してもよい。なお、これらのフィルム基板上には、上記放熱部材用組成物に含まれる溶媒に侵されないような保護層を形成してもよい。保護層として用いられる材料としては、例えばポリビニルアルコールが挙げられる。さらに、保護層と基板の密着性を高めるためにアンカーコート層を形成させてもよい。このようなアンカーコート層は保護層と基板の密着性を高めるものであれば、無機系および有機系のいずれの材料であってもよい。 The film substrate may be a uniaxially stretched film or a biaxially stretched film. The film substrate may be subjected to surface treatment such as saponification treatment, corona treatment, or plasma treatment in advance. In addition, you may form the protective layer which is not attacked by the solvent contained in the said composition for heat radiating members on these film substrates. Examples of the material used as the protective layer include polyvinyl alcohol. Furthermore, an anchor coat layer may be formed in order to improve the adhesion between the protective layer and the substrate. Such an anchor coat layer may be any inorganic or organic material as long as it improves the adhesion between the protective layer and the substrate.
 熱重合により放熱部材用組成物を硬化させる条件としては、熱硬化温度が、室温~350℃、好ましくは室温~250℃、より好ましくは50℃~200℃の範囲であり、硬化時間は、5秒~50時間、好ましくは1分~30時間、より好ましくは5分~20時間の範囲である。重合後は、応力ひずみなど抑制するために徐冷することが好ましい。また、再加熱処理を行い、ひずみなどを緩和させてもよい。 The conditions for curing the heat radiating member composition by thermal polymerization are that the thermosetting temperature ranges from room temperature to 350 ° C., preferably from room temperature to 250 ° C., more preferably from 50 ° C. to 200 ° C., and the curing time is 5 ° C. The range is from second to 50 hours, preferably from 1 minute to 30 hours, more preferably from 5 minutes to 20 hours. After the polymerization, it is preferable to slowly cool in order to suppress stress strain and the like. In addition, reheating treatment may be performed to reduce strain and the like.
<互いに結合可能な基>
 カップリング剤と2官能以上の重合性化合物との結合、または、カップリング剤同士の結合は、互いに結合可能な基の組合せであればよく特に限定されない。結合が形成できる限り、異なるものの組合せでもよく、同一のものの組合せでもよい。例えば、一方がアミノ基を有し他方がエポキシ基を有する組合せであってもよい。
 このように、互いに結合可能な基の組合せとしては、オキシラニル基とアミノ基、ビニル基同士、メタクリロキシ基同士、カルボキシ基またはカルボン酸無水物残基とアミノ基、イミダゾール基とオキシラニル基、ヒドロキシ基とオキシラニル基等の組合せを挙げることができるが、これらに限られない。耐熱性の高い組合せがより好ましい。
<Group capable of bonding to each other>
The bond between the coupling agent and the bifunctional or higher-polymerizable compound or the bond between the coupling agents is not particularly limited as long as it is a combination of groups that can be bonded to each other. As long as a bond can be formed, a combination of different ones or the same combination may be used. For example, a combination in which one has an amino group and the other has an epoxy group may be used.
Thus, as a combination of groups which can be bonded to each other, oxiranyl group and amino group, vinyl groups, methacryloxy groups, carboxy group or carboxylic anhydride residue and amino group, imidazole group and oxiranyl group, hydroxy group and A combination of an oxiranyl group and the like can be mentioned, but is not limited thereto. A combination with high heat resistance is more preferable.
 また、2官能以上の重合性化合物は異なる官能基を有してもよい。例えば、第1の無機フィラーを、アミノ基を有する第1のシランカップリング剤でカップリング処理する。次に、ビニル基を有する第2のシランカップリング剤を、末端にビニル基とエポキシ基をそれぞれ有する重合性化合物で修飾した後、第2のシランカップリング剤で第2の無機フィラーをカップリング処理する。硬化処理時には、第1のカップリング剤のアミノ基と、重合性化合物が有するエポキシ基とが結合する。 Moreover, the polymerizable compound having two or more functions may have different functional groups. For example, the first inorganic filler is coupled with a first silane coupling agent having an amino group. Next, the second silane coupling agent having a vinyl group is modified with a polymerizable compound having a vinyl group and an epoxy group at the terminals, and then the second inorganic filler is coupled with the second silane coupling agent. To process. During the curing treatment, the amino group of the first coupling agent and the epoxy group of the polymerizable compound are bonded.
[可視光反射性放熱部材]
 本発明の第3の実施の形態に係る可視光反射性放熱部材は、上記第1の実施の形態および第2の実施の形態に係る放熱部材用組成物を硬化させた硬化物を用途に応じて成形したものである。この硬化物は、高い熱伝導性を有するとともに、熱膨張率が負かまたは非常に小さい正であり、化学的安定性、耐熱性、硬度および機械的強度などに優れている。その上に、さらに優れた可視光反射性を有する。なお、前記機械的強度とは、ヤング率、引っ張り強度、引き裂き強度、曲げ強度、曲げ弾性率、衝撃強度などである。
[Visible light reflective heat dissipation member]
The visible light reflective heat radiating member according to the third embodiment of the present invention is a cured product obtained by curing the composition for heat radiating member according to the first embodiment and the second embodiment according to the use. Molded. This cured product has high thermal conductivity and a negative or very small positive coefficient of thermal expansion, and is excellent in chemical stability, heat resistance, hardness, mechanical strength, and the like. In addition, it has excellent visible light reflectivity. The mechanical strength includes Young's modulus, tensile strength, tear strength, bending strength, bending elastic modulus, impact strength, and the like.
 本発明の可視光反射性放熱部材は、上記放熱部材用組成物から形成され、シート、フィルム、薄膜、繊維、成形体などの形状で使用する。好ましい形状は、板、シート、フィルムおよび薄膜である。なお、本明細書における放熱部材の厚みは2μm以上であり、好ましくは5μm~5mm、より好ましくは10μm~2mmであり、さらに好ましくは、20μm~1mmである。厚みは、用途に応じて適宜変更すればよい。
 本発明の可視光反射性放熱部材は、例えば、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱フィルム、放熱塗膜、放熱接着材、放熱成形品などに適している。
The visible light reflective heat radiating member of the present invention is formed from the above heat radiating member composition, and is used in the form of a sheet, a film, a thin film, a fiber, a molded body or the like. Preferred shapes are plates, sheets, films and thin films. Note that the thickness of the heat dissipating member in this specification is 2 μm or more, preferably 5 μm to 5 mm, more preferably 10 μm to 2 mm, and still more preferably 20 μm to 1 mm. What is necessary is just to change thickness suitably according to a use.
The visible light reflective heat radiating member of the present invention is suitable for, for example, a heat radiating substrate, a heat radiating plate (planar heat sink), a heat radiating sheet, a heat radiating film, a heat radiating coating film, a heat radiating adhesive, and a heat radiating molded product.
[発光デバイス]
 本発明の第4の実施の形態に係る発光デバイスは、基板と;前記基板上に実装された発光チップと;前記基板上の前記発光チップを囲む反射枠であって、本発明の可視光反射性放熱部材により形成された反射枠と;を備える。例えば、発光デバイスとしてのLEDパッケージは、樹脂製の外枠を備え、その内部に発光チップとしてのLED素子が搭載される。外枠に囲まれたLED素子は封止樹脂で封止される。この外枠を本発明の可視光反射性放熱部材で形成することにより、優れた可視光反射性によりLED素子の光を有効に利用できるとともに、LED素子が発する熱を効果的に放熱することができる。
[Light emitting device]
A light emitting device according to a fourth embodiment of the present invention includes: a substrate; a light emitting chip mounted on the substrate; a reflective frame surrounding the light emitting chip on the substrate; A reflective frame formed by a heat-radiating member. For example, an LED package as a light emitting device includes a resin outer frame, and an LED element as a light emitting chip is mounted therein. The LED element surrounded by the outer frame is sealed with a sealing resin. By forming this outer frame with the visible light reflective heat radiating member of the present invention, it is possible to effectively use the light of the LED element due to excellent visible light reflectivity and to effectively radiate the heat generated by the LED element. it can.
[発光装置]
 本発明の第5の実施の形態に係る発光装置は、上記発光デバイスを複数備える発光装置である。具体的には、照明装置の他、電子掲示板、大型映像装置、信号機、電子写真式プリンター内部の感光用光源、光通信用光源、センサ用光源等を挙げることができる。このように、LED素子が搭載される装置であれば、本発明の可視光反射性放熱部材を用いることにより、LED素子の光を有効に利用しながらLED素子の熱を効果的に放熱することができる。
[Light emitting device]
A light emitting device according to a fifth embodiment of the present invention is a light emitting device including a plurality of the light emitting devices. Specific examples include an electronic bulletin board, a large video device, a traffic light, a light source for light exposure inside an electrophotographic printer, a light source for optical communication, a light source for sensors, and the like in addition to the illumination device. Thus, if it is an apparatus mounted with an LED element, the heat of the LED element can be effectively radiated while effectively using the light of the LED element by using the visible light reflective heat radiating member of the present invention. Can do.
 以下に、実施例を用いて本発明を詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the contents described in the following examples.
 本発明の実施例に用いた、放熱部材を構成する成分材料は次のとおりである。
<無機フィラー>
・窒化ホウ素:h-BN粒子、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製、(商品名)PolarTherm PTX-25
・酸化チタン:レジノカラー工業(株)製、(商品名)ホワイトDCF-T-17050
・酸化亜鉛:パナソニック(株)製、(商品名)パナテトラ WZ-0511
・シリカ:デンカ(株)製、(商品名)FB-950
The component material which comprises the heat radiating member used for the Example of this invention is as follows.
<Inorganic filler>
Boron nitride: h-BN particles, manufactured by Momentive Performance Materials Japan (trade name), (trade name) PolarTherm PTX-25
・ Titanium oxide: manufactured by Resino Color Industry Co., Ltd. (trade name) White DCF-T-17050
・ Zinc oxide: Panasonic Corporation, (trade name) Panatetra WZ-0511
Silica: manufactured by Denka Co., Ltd. (trade name) FB-950
<シランカップリング剤>
・3-グリシドキシプロピルトリメトキシシラン:JNC(株)製、(商品名)サイラエース(登録商標)S510
[化29]
Figure JPOXMLDOC01-appb-I000032
<Silane coupling agent>
3-glycidoxypropyltrimethoxysilane: JNC Corporation, (trade name) Silaace (registered trademark) S510
[Chemical 29]
Figure JPOXMLDOC01-appb-I000032
<重合性化合物>
・4,4’-(プロパン-2,2-ジイル)ジフェノール:和光純薬工業(株)製、(慣用名)ビスフェノールA
[化30]
Figure JPOXMLDOC01-appb-I000033
・ビスフェノールF型エポキシ樹脂:三菱ケミカル(株)製、(商品名)jER807
・酸無水物:新日本理化(株)製、(商品名)リカシッドBT100
<Polymerizable compound>
・ 4,4 ′-(propane-2,2-diyl) diphenol: Wako Pure Chemical Industries, Ltd. (common name) bisphenol A
[Chemical 30]
Figure JPOXMLDOC01-appb-I000033
-Bisphenol F type epoxy resin: manufactured by Mitsubishi Chemical Corporation (trade name) jER807
・ Anhydride: New Nippon Rika Co., Ltd., (trade name) Ricacid BT100
<硬化促進剤>
・2-フェニル-4-メチル-1H-イミダゾール:四国化成工業(株)製、(商品名)キュアゾール2P4MZ
[化31]
Figure JPOXMLDOC01-appb-I000034
・2-エチル-4-メチル-1H-イミダゾール:和光純薬工業(株)製、(一般名)2-エチル-4-メチル-イミダゾール
[化32]
Figure JPOXMLDOC01-appb-I000035
<Curing accelerator>
2-Phenyl-4-methyl-1H-imidazole: manufactured by Shikoku Kasei Kogyo Co., Ltd. (trade name) Curesol 2P4MZ
[Chemical 31]
Figure JPOXMLDOC01-appb-I000034
2-ethyl-4-methyl-1H-imidazole: manufactured by Wako Pure Chemical Industries, Ltd. (generic name) 2-ethyl-4-methyl-imidazole [Chemical Formula 32]
Figure JPOXMLDOC01-appb-I000035
<定義>
 以下の実施例では、第1のカップリング剤と結合した状態の第1の無機フィラーを修飾フィラーA(窒化ホウ素にシランカップリング剤を修飾したもの)とする。第3のカップリング剤と結合した状態の第3の無機フィラーを修飾フィラーC(酸化チタンにシランカップリング剤を修飾したもの)とする。
 第2のカップリング剤と結合した第2の無機フィラーであって、さらに2官能以上のヒドロキシ基を有する重合性化合物の1のヒドロキシ基が前記第2のカップリング剤の他端と結合した状態の第2の無機フィラーを修飾フィラーB(窒化ホウ素に、シランカップリング剤および重合性化合物を修飾したもの)とする。
 硬化により、前記第1のカップリング剤の他端が、前記2官能以上のヒドロキシ基を有する重合性化合物の他のヒドロキシ基と結合した状態のものを放熱部材とする。
<Definition>
In the following examples, the first inorganic filler in a state of being bonded to the first coupling agent is referred to as a modified filler A (boron nitride modified with a silane coupling agent). Let the 3rd inorganic filler of the state couple | bonded with the 3rd coupling agent be the modification filler C (what modified | denatured the silane coupling agent to titanium oxide).
A second inorganic filler bonded to a second coupling agent, wherein one hydroxy group of a polymerizable compound having a bifunctional or higher functional hydroxy group is bonded to the other end of the second coupling agent The second inorganic filler is a modified filler B (boron nitride modified with a silane coupling agent and a polymerizable compound).
A material in which the other end of the first coupling agent is bonded to another hydroxy group of the polymerizable compound having a bifunctional or higher functional hydroxyl group by curing is used as a heat dissipation member.
<実施例1>
・修飾フィラーAおよび修飾フィラーCの作製工程
 シランカップリング剤(サイラエースS510)1.5gを純水150mLに加え、スターラーを用いて500rpmで15時間攪拌した。次いで、窒化ホウ素粒子(PolarTherm PTX-25)15gを溶液に投入し、スターラーを用いて500rpmで1時間攪拌し、得られた混合物を50℃で6時間乾燥した。さらに、溶媒乾燥後に80℃に設定した真空オーブンを用いて、真空条件下で5時間加熱処理をした。得られた粒子を修飾フィラーA(BN-S510)とした。
 さらに、シランカップリング剤(サイラエースS510)0.3gをメタノール45gに加え、スターラーを用いて500rpmで15時間攪拌し、メタノールとシランカップリング剤の混合溶液を得た。次いで、酸化チタン(レジノカラー工業(株)製ホワイトDCF-T-17050)7.5gを純水45mLに投入した後、スターラーを用いて500rpmで攪拌しながら、前記メタノールとシランカップリング剤の混合溶液をそこに投入した。得られた分散液を1時間攪拌し、得られた混合物を50℃で6時間乾燥した。さらに、溶媒乾燥後に80℃に設定した真空オーブンを用いて、真空条件下で5時間加熱処理をした。得られた粒子を修飾フィラーC(TiO2-S510)とした。
<Example 1>
-Production Step of Modified Filler A and Modified Filler C 1.5 g of a silane coupling agent (Syra Ace S510) was added to 150 mL of pure water and stirred for 15 hours at 500 rpm using a stirrer. Next, 15 g of boron nitride particles (PolarTherm PTX-25) was added to the solution, stirred at 500 rpm for 1 hour using a stirrer, and the resulting mixture was dried at 50 ° C. for 6 hours. Furthermore, using a vacuum oven set to 80 ° C. after drying the solvent, heat treatment was performed under vacuum conditions for 5 hours. The obtained particles were named modified filler A (BN-S510).
Further, 0.3 g of a silane coupling agent (Silaace S510) was added to 45 g of methanol, and the mixture was stirred at 500 rpm for 15 hours using a stirrer to obtain a mixed solution of methanol and a silane coupling agent. Next, 7.5 g of titanium oxide (White DCF-T-17050 manufactured by Resino Color Industry Co., Ltd.) was added to 45 mL of pure water, and then mixed with the methanol and the silane coupling agent while stirring at 500 rpm using a stirrer. Was put there. The resulting dispersion was stirred for 1 hour, and the resulting mixture was dried at 50 ° C. for 6 hours. Furthermore, using a vacuum oven set to 80 ° C. after drying the solvent, heat treatment was performed under vacuum conditions for 5 hours. The obtained particles were named modified filler C (TiO2-S510).
・修飾フィラーBの作製工程
 修飾フィラーA(BN-S510)粒子2gと、重合性化合物(ビスフェノールA)3.96g、硬化促進剤(キュアゾール2P4MZ)40mgを量り取り、これらを2本ロール((株)井元製作所製IMC-AE00型)を用いて160℃で10分間混合した。この重量比は修飾フィラーA粒子が有するエポキシ基が十分に反応するフェノール基の個数並びに2本ロール上で双方が十分に練り合わせられる量である。得られた混合物をテトラヒドロフラン45mLに加え、十分攪拌した後、遠心分離機(日立工機(株)製高速冷却遠心機CR22N形、4,000回転×10分×25℃)で不溶分を沈降させ、デカンテーションで未反応の重合性化合物が溶解した分を含む溶液を取り除いた。続いて、アセトン45mLを加え、前述と同様の操作を行った。さらに、テトラヒドロフラン、アセトンの順に同様の操作を繰り返した。不溶分を乾燥して得られた粒子を修飾フィラーBとした。
-Preparation process of modified filler B 2 g of modified filler A (BN-S510) particles, 3.96 g of a polymerizable compound (bisphenol A) and 40 mg of a curing accelerator (Cureazole 2P4MZ) are weighed, and two rolls ((stock) ) Using Imoto Seisakusho IMC-AE00 type), the mixture was mixed at 160 ° C. for 10 minutes. This weight ratio is the number of phenol groups with which the epoxy group of the modified filler A particles reacts sufficiently and the amount with which both are sufficiently kneaded on the two rolls. After adding the obtained mixture to 45 mL of tetrahydrofuran and stirring sufficiently, the insoluble matter was allowed to settle with a centrifugal separator (high-speed cooling centrifuge CR22N type, 4,000 rpm × 10 minutes × 25 ° C., manufactured by Hitachi Koki Co., Ltd.). Then, the solution containing the amount of the unreacted polymerizable compound dissolved by decantation was removed. Subsequently, 45 mL of acetone was added and the same operation as described above was performed. Further, the same operation was repeated in the order of tetrahydrofuran and acetone. Particles obtained by drying the insoluble matter were designated as modified filler B.
・放熱部材の作製工程
 修飾フィラーA(BN-S510)548mgと、修飾フィラーC(TiO-S510)150mgと、修飾フィラーB391mgと、硬化促進剤(2-エチル-4-メチルイミダゾール)10mgをアセトン2mLに溶かした溶液51μLを量り取って混合した。得られた混合物をステンレス製板中に挟み、150℃に設定した圧縮成形機((株)井元製作所製IMC-19EC)を用いて30MPaまで加圧し、10分間加熱状態を続けることで、前硬化を行った。すなわちBN粒子は板状粒子であるため、ステンレス板の間を混合物が広がる際に、粒子とステンレス板が平行になるように配向する。また、試料の厚みが約760μmになるように、試料の量を調整した。さらに、150℃に設定した真空オーブン(ヤマト科学(株)製DP300)を用いて、真空条件下で15時間の後硬化を行った。この操作で得られた試料を放熱部材とした。
Production process of heat dissipation member 548 mg of modified filler A (BN-S510), 150 mg of modified filler C (TiO 2 -S510), 391 mg of modified filler B, and 10 mg of a curing accelerator (2-ethyl-4-methylimidazole) in acetone 51 μL of the solution dissolved in 2 mL was weighed and mixed. The resulting mixture is sandwiched between stainless steel plates and pressurized to 30 MPa using a compression molding machine (IMC-19EC manufactured by Imoto Seisakusho Co., Ltd.) set at 150 ° C., and preheating is continued for 10 minutes. Went. That is, since the BN particles are plate-like particles, the particles and the stainless steel plate are oriented in parallel when the mixture spreads between the stainless steel plates. Further, the amount of the sample was adjusted so that the thickness of the sample was about 760 μm. Furthermore, using a vacuum oven (DP300 manufactured by Yamato Scientific Co., Ltd.) set at 150 ° C., post-curing was performed for 15 hours under vacuum conditions. The sample obtained by this operation was used as a heat radiating member.
<評価>
・熱重量(TG)測定
 修飾フィラーA、修飾フィラーB、修飾フィラーCおよび放熱部材の、重合性化合物またはシランカップリング剤の無機フィラーに対する被覆量は、熱重量・示差熱測定装置((株)リガク製TG-8121)を用いて、その900℃における加熱減量から算出した。
 また、放熱部材の5%重量減少温度は、前記の測定装置を用いて、140℃から900℃への減少量を100重量%とした際の5重量%減少した時の温度から算出した。
・分光色彩測定
 放熱部材のCIELAB値は、日本電色工業(株)製分光色彩計SD7000型により、正反射成分を除く(SCE)処理を行って測定した。
・反射率測定
 放熱部材の反射率は、(株)島津製作所製紫外可視分光光度計UV-2450型、および絶対鏡面反射率測定装置ASR3105型を用いた鏡面反射+拡散反射スペクトル(SCI)測定を行い、波長450nmでの反射率を比較した。
・熱伝導率評価
 熱伝導率は、予め放熱部材の比熱((株)リガク製DSC型高感度示差走査熱量計Thermo Plus EVO2 DSC-8231で測定した)と比重(新光電子(株)製比電子はかり式比重計DME-220により測定した)を求めておき、その値を(株)アイフェイズ製ai-Phase Mobile 1u熱拡散率測定装置により求めた熱拡散率を掛け合わせることにより厚み方向の熱伝導率を求めた。
・熱膨張率評価
 得られた試料から幅4mmの試験片を切り出し、熱膨張率(SII(株)TMA-SS6100熱機械分析装置で測定した)を、50~200℃の範囲で求めた。試験片の長さは、測定する試料の形状により適宜調整した。
<Evaluation>
・ Thermogravimetric (TG) measurement The coating amount of the modified filler A, the modified filler B, the modified filler C and the heat dissipating member on the inorganic filler of the polymerizable compound or the silane coupling agent is the thermogravimetric / differential calorimeter (Corporation) Using Rigaku TG-8121), the heat loss at 900 ° C. was calculated.
Further, the 5% weight reduction temperature of the heat radiating member was calculated from the temperature when the reduction amount from 140 ° C. to 900 ° C. was 5% by weight when the amount of reduction from 140 ° C. to 900 ° C. was 100% by weight.
-Spectral color measurement The CIELAB value of the heat radiating member was measured by performing specular reflection component excluding (SCE) treatment with a spectral color meter SD7000 type manufactured by Nippon Denshoku Industries Co., Ltd.
・ Reflectance measurement The reflectivity of the heat radiating member was measured by specular reflection + diffuse reflection spectrum (SCI) measurement using an ultraviolet-visible spectrophotometer UV-2450 type manufactured by Shimadzu Corporation and an absolute specular reflectance measuring device ASR3105 type. The reflectance at a wavelength of 450 nm was compared.
-Thermal conductivity evaluation The thermal conductivity was measured in advance with the specific heat of the heat radiating member (measured with a DSC type high sensitivity differential scanning calorimeter Thermo Plus EVO2 DSC-8231 manufactured by Rigaku Corporation) and the specific gravity (manufactured by Shinko Electronics Co., Ltd.) (Measured with a scale-type specific gravity meter DME-220), and by multiplying the value by the thermal diffusivity obtained with an ai-Phase Mobile 1u thermal diffusivity measuring device manufactured by I-Phase Co., Ltd. The conductivity was determined.
Evaluation of thermal expansion coefficient A test piece having a width of 4 mm was cut out from the obtained sample, and the thermal expansion coefficient (measured with a TMA-SS6100 thermomechanical analyzer) was determined in the range of 50 to 200 ° C. The length of the test piece was appropriately adjusted according to the shape of the sample to be measured.
<実施例2>
 実施例2では、修飾フィラーA(BN-S510)343mgと、修飾フィラーC(TiO-S510)333mgと、修飾フィラーB434mgと、2-エチル-4-メチルイミダゾール10mgをアセトン2mLに溶かした溶液51μLを量り取って混合したほかは、実施例1と同様の操作で放熱部材を作製した。
<Example 2>
In Example 2, 343 mg of modified filler A (BN-S510), 333 mg of modified filler C (TiO 2 -S510), 434 mg of modified filler B, and 10 mg of 2-ethyl-4-methylimidazole dissolved in 2 mL of acetone 51 μL A heat radiating member was produced in the same manner as in Example 1, except that the above was measured and mixed.
<実施例3>
実施例3では、実施例1と同様の手順で作製した修飾フィラーA(BN-S510)459mgと、修飾フィラーB294mgと、カップリング剤を修飾していない酸化チタン(ホワイトDCF-T-17050)322mgと、2-エチル-4-メチルイミダゾール10mgをアセトン2mLに溶かした溶液30μLを量り取って混合したほかは、実施例1と同様の操作で放熱部材を作製した。
<Example 3>
In Example 3, 459 mg of modified filler A (BN-S510) produced by the same procedure as in Example 1, 294 mg of modified filler B, and 322 mg of titanium oxide (white DCF-T-17050) not modified with a coupling agent A heat radiating member was prepared in the same manner as in Example 1, except that 30 μL of a solution of 10 mg of 2-ethyl-4-methylimidazole dissolved in 2 mL of acetone was weighed and mixed.
<実施例4>
 実施例4の修飾フィラーA(BN-S510)作製工程では、サイラエースS510の投入量を3.0gとしたほかは、実施例1と同様の操作で、修飾フィラーA(BN-S510)を得た。
 実施例4の修飾フィラーB作製工程では、上記修飾フィラーAを用いたほかは、実施例1と同様の操作で修飾フィラーBを得た。
 実施例4の放熱部材作製工程では、上記修飾フィラーA(BN-S510)810mgと、修飾フィラーB709mgと、実施例1と同様の手順で作製した修飾フィラーC(TiO-S510)651mgと、2-エチル-4-メチルイミダゾール20mgをアセトン2mLに溶かした溶液を39μL量り取ったほかは、実施例1と同様の操作で放熱部材を作製した。
<Example 4>
In the modified filler A (BN-S510) production process of Example 4, modified filler A (BN-S510) was obtained in the same manner as in Example 1 except that the amount of sila ace S510 was changed to 3.0 g. .
In the modified filler B production process of Example 4, modified filler B was obtained by the same operation as in Example 1 except that the modified filler A was used.
In the heat radiating member manufacturing process of Example 4, 810 mg of the above-mentioned modified filler A (BN-S510), 709 mg of the modified filler B, 651 mg of the modified filler C (TiO 2 -S510) manufactured by the same procedure as in Example 1, 2 A heat radiating member was prepared in the same manner as in Example 1 except that 39 μL of a solution of 20 mg of ethyl-4-methylimidazole dissolved in 2 mL of acetone was weighed out.
<実施例5>
 実施例5の修飾フィラーC(TiO-S510)作製工程では、サイラエースS510の投入量を0.68gとしたほかは、実施例1と同様の操作で修飾フィラーC(TiO-S510)を作製した。
 実施例5の放熱部材作製工程では、実施例4と同様の手順で作製した修飾フィラーA(BN-S510)459mgと、修飾フィラーB370mgと、上記修飾フィラーC(TiO-S510)146mgと、2-エチル-4-メチルイミダゾール20mgをアセトン2mLに溶かした溶液を39μL量り取ったほかは、実施例5と同様の操作で放熱部材を作製した。
<Example 5>
The modified filler C (TiO 2 -S510) manufacturing process of Example 5, except that the 0.68g of input of Sila-Ace S510, produced a modified filler C (TiO 2 -S510) by operating the same manner as in Example 1 did.
In the heat radiating member manufacturing step of Example 5, 459 mg of modified filler A (BN-S510), 370 mg of modified filler B, 146 mg of the modified filler C (TiO 2 -S510) prepared in the same procedure as in Example 4, 2 A heat radiating member was prepared in the same manner as in Example 5 except that 39 μL of a solution of 20 mg of ethyl-4-methylimidazole dissolved in 2 mL of acetone was weighed out.
<実施例6>
 実施例6の放熱部材作製工程では、実施例5と同様の操作で作製した修飾フィラーA(BN-S510)345mgと、修飾フィラーC(TiO-S510)326mgと、修飾フィラーB415mgと、2-エチル-4-メチルイミダゾール20mgをアセトン2mLに溶かした溶液を43μL量り取ったほかは、実施例5と同様の操作で放熱部材を作製した。
<Example 6>
In the heat radiating member manufacturing process of Example 6, 345 mg of modified filler A (BN-S510), 326 mg of modified filler C (TiO 2 -S510), 415 mg of modified filler B, A heat radiating member was produced in the same manner as in Example 5, except that 43 μL of a solution obtained by dissolving 20 mg of ethyl-4-methylimidazole in 2 mL of acetone was weighed.
<比較例1>
 比較例1の放熱部材作製工程では、実施例1と同様の手順で作製した修飾フィラーA(BN-S510)548mgと、修飾フィラーB352gと、2-エチル-4-メチルイミダゾール10mgをアセトン2mLに溶かした溶液を51μL量り取ったほかは、実施例1と同様の操作で放熱部材を作製した。
<Comparative Example 1>
In the heat radiating member production process of Comparative Example 1, 548 mg of Modified Filler A (BN-S510), 352 g of Modified Filler B, and 10 mg of 2-ethyl-4-methylimidazole produced in the same procedure as in Example 1 were dissolved in 2 mL of acetone. A heat radiating member was produced in the same manner as in Example 1 except that 51 μL of the solution was taken out.
<比較例2>
 比較例2の修飾フィラーA(BN-S510)作製工程では、実施例4と同様の手順で作製した修飾フィラーA(BN-S510)735mgと、修飾フィラーB525mgと、2-エチル-4-メチルイミダゾール10mgをアセトン2mLに溶かした溶液を50μL量り取ったほかは、実施例1と同様の操作で放熱部材を作製した。
<Comparative example 2>
In the modified filler A (BN-S510) production process of Comparative Example 2, 735 mg of modified filler A (BN-S510) produced in the same procedure as in Example 4, 525 mg of modified filler B, and 2-ethyl-4-methylimidazole A heat radiating member was produced in the same manner as in Example 1 except that 50 μL of a solution obtained by dissolving 10 mg in 2 mL of acetone was taken out.
<比較例3>
 エポキシ(jER807)を100mg、酸無水物(リカシッドBT100)を80mg、酸化チタン(ホワイトDCF-T-17050)を250mg、酸化亜鉛(パナテトラ WZ-0511)を40mg、シリカ(FB950)を700mgそれぞれ量りとり、これらを90℃に設定したホットプレート上の容器内にて10分間よくかき混ぜた。この混合物を冷却後、乳鉢を用いて粉砕した。得られた粉砕後の混合物をステンレス製板中に挟み、180℃に設定した圧縮成形機((株)井元製作所製IMC-19EC)を用いて40MPaまで加圧し、30分間加熱状態を続けた。この操作で得られた試料を放熱部材とした。
<Comparative Example 3>
Weigh 100 mg of epoxy (jER807), 80 mg of acid anhydride (Ricacid BT100), 250 mg of titanium oxide (white DCF-T-17050), 40 mg of zinc oxide (Panatetra WZ-0511), and 700 mg of silica (FB950). These were mixed well in a container on a hot plate set at 90 ° C. for 10 minutes. The mixture was cooled and pulverized using a mortar. The obtained mixture after pulverization was sandwiched between stainless steel plates, pressurized to 40 MPa using a compression molding machine (IMC-19EC manufactured by Imoto Seisakusho Co., Ltd.) set at 180 ° C., and kept heated for 30 minutes. The sample obtained by this operation was used as a heat radiating member.
 実施例1~6、比較例1~3の作製に用いた修飾フィラーA、修飾フィラーB、修飾フィラーCの熱重量減少量(TG)、作製した放熱部材のTG、および放熱部材の作製に用いた無機フィラー中のTiOの割合を表1に示す。
[表1]
Figure JPOXMLDOC01-appb-I000036
Used for the production of the heat-dissipating member, the thermal weight loss (TG) of the modified filler A, the modified filler B and the modified filler C used in the production of Examples 1 to 6 and Comparative Examples 1 to 3, and the TG of the produced heat-radiating member Table 1 shows the ratio of TiO 2 in the inorganic filler.
[Table 1]
Figure JPOXMLDOC01-appb-I000036
 実施例1~6、比較例1~3の分光色彩、および反射率を表2に示す。
[表2]
Figure JPOXMLDOC01-appb-I000037
Table 2 shows the spectral colors and reflectances of Examples 1 to 6 and Comparative Examples 1 to 3.
[Table 2]
Figure JPOXMLDOC01-appb-I000037
 実施例1~6、比較例1~3の放熱部材の5%重量減少温度、厚み方向の熱伝導率、熱膨張率を表3、図4~12に示す。
[表3]
Figure JPOXMLDOC01-appb-I000038
Table 3 and FIGS. 4 to 12 show the 5% weight loss temperature, the thermal conductivity in the thickness direction, and the thermal expansion coefficient of the heat radiating members of Examples 1 to 6 and Comparative Examples 1 to 3, respectively.
[Table 3]
Figure JPOXMLDOC01-appb-I000038
 表2において、実施例1~6を比較例1~3と比較すると、明度L*が高いほど色相を反映することができるため好ましい。また、無機フィラーとして窒化ホウ素のみを用いた比較例1~2の反射率が90%を下回ったのに対し、可視光反射性の無機フィラーとして酸化チタンを添加した実施例1~6は、いずれも90%以上の反射率を示した。表3において、比較例3が酸化チタンに由来する高い反射率を示す一方で1W/m・Kという低い熱伝導率を示すのに対し、実施例1~6では窒化ホウ素と窒化ホウ素がカップリング剤と重合性化合物を介して共有結合で結ばれることで高い熱伝導率が発現している。加えて、実施例1~2、実施例4~6では、窒化ホウ素と酸化チタンとがカップリング剤と重合性化合物を介して共有結合で結ばれることにより、より高い熱伝導性が発現している。実施例1~6の熱膨張率は、負の熱膨張率から約8ppm/Kを示しており、他の部材との熱膨張率差が少なくなるよう、用途に応じて適切な熱膨張率の放熱部材を使用することが有効である。これらの結果を鑑みると、本発明の可視光反射性放熱部材は高熱伝導率な可視光反射熱膨張制御材料として使用できることがわかる。 In Table 2, when Examples 1 to 6 are compared with Comparative Examples 1 to 3, the lightness L * is preferable because the hue can be reflected. Further, while the reflectance of Comparative Examples 1 and 2 using only boron nitride as the inorganic filler was lower than 90%, Examples 1 to 6 in which titanium oxide was added as the visible light reflective inorganic filler Also showed a reflectance of 90% or more. In Table 3, while Comparative Example 3 shows a high reflectance derived from titanium oxide, it shows a low thermal conductivity of 1 W / m · K, whereas in Examples 1 to 6, boron nitride and boron nitride are coupled. High thermal conductivity is expressed by being covalently bonded through the agent and the polymerizable compound. In addition, in Examples 1 and 2 and Examples 4 to 6, boron nitride and titanium oxide are covalently bonded through a coupling agent and a polymerizable compound, thereby exhibiting higher thermal conductivity. Yes. The thermal expansion coefficients of Examples 1 to 6 are about 8 ppm / K from the negative thermal expansion coefficient, and an appropriate thermal expansion coefficient depending on the application is used so that the difference in thermal expansion coefficient with other members is reduced. It is effective to use a heat radiating member. In view of these results, it can be seen that the visible light reflective heat radiating member of the present invention can be used as a visible light reflective thermal expansion control material having high thermal conductivity.
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照により組み込む、また、その内容のすべてをここで述べるのと同じ程度で、参照によりここに組み込む。 All publications, including publications, patent applications, and patents cited herein are hereby expressly incorporated by reference as if each reference were specifically and individually described, all to the same extent as described herein. , Incorporated herein by reference.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定されない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、請求項に記載されていない要素を、本発明の実施に不可欠であるものとして示すものとは解釈されないものとする。 The use of nouns and similar directives used in connection with the description of the invention (especially in connection with the claims below) is not specifically pointed out herein or clearly contradicted by context. , And construed to cover both singular and plural. The phrases “comprising”, “having”, “including” and “including” are to be interpreted as open-ended terms (ie, including but not limited to), unless otherwise specified. The use of numerical ranges in this specification is intended only to serve as a shorthand for referring individually to each value falling within that range, unless otherwise indicated herein. Each value is incorporated into the specification as if it were individually listed herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Any examples or exemplary phrases used herein (eg, “etc.”) are intended only to better describe the invention, unless otherwise stated, and to limit the scope of the invention. is not. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読めば、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを予期しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。したがって本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。 In this specification, preferred embodiments of the present invention are described, including the best mode known to the inventors for carrying out the invention. Variations of these preferred embodiments will become apparent to those skilled in the art after reading the above description. The inventor anticipates that skilled artisans will apply such variations as appropriate and intends to implement the invention in ways other than those specifically described herein. . Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
1   第1の無機フィラー
2   第2の無機フィラー
3   第3の無機フィラー
11  第1のカップリング剤
12  第2のカップリング剤
13  第3のカップリング剤
22  重合性化合物
DESCRIPTION OF SYMBOLS 1 1st inorganic filler 2 2nd inorganic filler 3 3rd inorganic filler 11 1st coupling agent 12 2nd coupling agent 13 3rd coupling agent 22 Polymerizable compound

Claims (15)

  1.  第1のカップリング剤と;
     前記第1のカップリング剤の一端と結合した熱伝導性の第1の無機フィラーと;
     第2のカップリング剤と;
     前記第2のカップリング剤の一端と結合した熱伝導性の第2の無機フィラーと;
     2官能以上の重合性化合物であって、1の官能基が前記第2のカップリング剤の他端と結合した重合性化合物と:
     可視光反射性の第3の無機フィラーと;を含み、
     前記第1のカップリング剤と前記重合性化合物は、互いに結合可能な基をそれぞれ有し、
     前記第3の無機フィラーの平均粒径は、前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径よりも小さく、
     前記第3の無機フィラーは、前記第1の無機フィラー、前記第2の無機フィラー、前記第3の無機フィラーの総量に対する割合が、1~50質量%である、
     放熱部材用組成物。
    A first coupling agent;
    A thermally conductive first inorganic filler bonded to one end of the first coupling agent;
    A second coupling agent;
    A thermally conductive second inorganic filler bonded to one end of the second coupling agent;
    A polymerizable compound having two or more functional groups, wherein one functional group is bonded to the other end of the second coupling agent;
    A visible light reflective third inorganic filler;
    The first coupling agent and the polymerizable compound each have a group capable of binding to each other;
    The average particle size of the third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler,
    The ratio of the third inorganic filler to the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 1 to 50% by mass.
    Composition for heat dissipation member.
  2.  第3のカップリング剤;をさらに備え、
     前記第3の無機フィラーは、前記第3のカップリング剤の一端との結合を有し、
     前記第3のカップリング剤と前記重合性化合物は、互いに結合可能な基をそれぞれ有する、
     請求項1に記載の放熱部材用組成物。
    A third coupling agent;
    The third inorganic filler has a bond with one end of the third coupling agent,
    The third coupling agent and the polymerizable compound each have a group capable of binding to each other;
    The composition for heat radiating members according to claim 1.
  3.  第1のカップリング剤と;
     前記第1のカップリング剤の一端と結合した熱伝導性の第1の無機フィラーと;
     第2のカップリング剤と;
     前記第2のカップリング剤の一端と結合した熱伝導性の第2の無機フィラーと;
     可視光反射性の第3の無機フィラーと;を含み、
     前記第1のカップリング剤と前記第2のカップリング剤は、互いに結合可能な基をそれぞれ有し、
     前記第3の無機フィラーの平均粒径は、前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径よりも小さく、
     前記第3の無機フィラーは、前記第1の無機フィラー、前記第2の無機フィラー、および前記第3の無機フィラーの総量に対する割合が、1~50質量%である、
     放熱部材用組成物。
    A first coupling agent;
    A thermally conductive first inorganic filler bonded to one end of the first coupling agent;
    A second coupling agent;
    A thermally conductive second inorganic filler bonded to one end of the second coupling agent;
    A visible light reflective third inorganic filler;
    The first coupling agent and the second coupling agent each have a group capable of binding to each other,
    The average particle size of the third inorganic filler is smaller than the average particle size of the first inorganic filler and the second inorganic filler,
    The ratio of the third inorganic filler to the total amount of the first inorganic filler, the second inorganic filler, and the third inorganic filler is 1 to 50% by mass.
    Composition for heat dissipation member.
  4.  第3のカップリング剤;をさらに備え、
     前記第3の無機フィラーは、前記第3のカップリング剤の一端との結合を有し、
     前記第3のカップリング剤と前記第2のカップリング剤は、互いに結合可能な基をそれぞれ有する、
     請求項3に記載の放熱部材用組成物。
    A third coupling agent;
    The third inorganic filler has a bond with one end of the third coupling agent,
    The third coupling agent and the second coupling agent each have a group capable of binding to each other;
    The composition for heat radiating members of Claim 3.
  5.  前記第1の無機フィラーおよび前記第2の無機フィラーの平均粒径は、0.1~500μmであり、
     前記第3の無機フィラーの平均粒径は、0.01~50μmである、
     請求項1~4のいずれか1項に記載の放熱部材用組成物。
    The average particle size of the first inorganic filler and the second inorganic filler is 0.1 to 500 μm,
    The average particle size of the third inorganic filler is 0.01 to 50 μm.
    The composition for a heat dissipation member according to any one of claims 1 to 4.
  6.  前記第1の無機フィラーと前記第2の無機フィラーは、それぞれ独立して、窒化ホウ素、窒化アルミニウム、ジルコニア、ダイヤモンド、アルミナ、およびコーディエライトから選ばれる少なくとも一つである、
     請求項1~5のいずれか1項に記載の放熱部材用組成物。
    The first inorganic filler and the second inorganic filler are each independently at least one selected from boron nitride, aluminum nitride, zirconia, diamond, alumina, and cordierite.
    The composition for a heat radiating member according to any one of claims 1 to 5.
  7.  前記第3の無機フィラーは、酸化チタン、シリカ、アルミナ、および酸化亜鉛から選ばれる少なくとも一つである、
     請求項1~6のいずれか1項に記載の放熱部材用組成物。
    The third inorganic filler is at least one selected from titanium oxide, silica, alumina, and zinc oxide.
    The composition for a heat radiating member according to any one of claims 1 to 6.
  8.  前記第1の無機フィラー、前記第2の無機フィラー、および前記第3の無機フィラーに結合していない、有機化合物、高分子化合物、または、無機化合物をさらに含む、
     請求項1~7のいずれか1項に記載の放熱部材用組成物。
    Further comprising an organic compound, a polymer compound, or an inorganic compound not bonded to the first inorganic filler, the second inorganic filler, and the third inorganic filler,
    The composition for a heat radiating member according to any one of claims 1 to 7.
  9.  前記第1のカップリング剤、前記第2のカップリング剤、前記第3のカップリング剤は、それぞれ独立して、下記式(6)で表されるシランカップリング剤である、
     請求項2または請求項4に記載の放熱部材用組成物。
     (R-O)-Si(R3-j-(R-(R-(R
     -Ry (6)
    [上記式(6)中、
     Rは、H-、またはCH-(CH0~4-であり;
     Rは、-(CH0~3-O-であり;
     Rは、1,3-フェニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、またはナフタレン-2,7-ジイルであり;
     Rは、-(NH)0~1-(CH0~3-であり;
     Rは、H-、またはCH-(CH0~7-であり;
     Ryは、オキシラニル、オキセタニル、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
     jは、0~3の整数であり;
     kは、0~1の整数であり;
     mは、0~1の整数であり;
     nは、0~1の整数であり;
     式(6)は、RとRの少なくとも1つを含む。]
    The first coupling agent, the second coupling agent, and the third coupling agent are each independently a silane coupling agent represented by the following formula (6).
    The composition for heat radiating members of Claim 2 or Claim 4.
    (R 1 -O) j -Si (R 5 ) 3-j- (R 2 ) k- (R 3 ) m- (R 4 ) n
    -Ry (6)
    [In the above formula (6),
    R 1 is H—, or CH 3 — (CH 2 ) 0-4 — ;
    R 2 is — (CH 2 ) 0-3 —O—;
    R 3 is 1,3-phenylene, 1,4-phenylene, naphthalene-2,6-diyl, or naphthalene-2,7-diyl;
    R 4 is — (NH) 0-1 — (CH 2 ) 0-3 — ;
    R 5 is H—, or CH 3 — (CH 2 ) 0-7 — ;
    Ry is oxiranyl, oxetanyl, amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
    j is an integer from 0 to 3;
    k is an integer from 0 to 1;
    m is an integer from 0 to 1;
    n is an integer from 0 to 1;
    Formula (6) includes at least one of R 3 and R 4 . ]
  10.  カップリング剤と結合する前の前記重合性化合物は、下記式(1)で表される2官能以上の重合性非液晶化合物の少なくとも1種である、
     請求項1または請求項2に記載の放熱部材用組成物。
       R-R-O-(Rx)-O-R11-R   (1)
    [上記式(1)中、
     Rは、それぞれ独立して、下記式(1-1)~(1-2)、アミノ、ビニル、カルボン酸無水物残基、またはこれらの構造を含むいずれかの重合性基であり;
     Rxは、下記式(1-3)~(1-6)のいずれかであり;
     nは、1~3の整数であり;
     R、R11は、それぞれ独立して、単結合、または炭素数1~20のアルキレンである。]
    [化1]
    Figure JPOXMLDOC01-appb-I000001
    [式(1-1)~(1-2)中、Rは、それぞれ独立して、水素、ハロゲン、-CF、または炭素数1~5のアルキルであり、qは0または1である。]
    [化2]
    Figure JPOXMLDOC01-appb-I000002
    [式(1-4)~(1-6)中、R~R10は、それぞれ独立して、水素、または炭素数1~20のアルキレンである。]
    The polymerizable compound before binding to the coupling agent is at least one of a bifunctional or higher-polymerizable non-liquid crystal compound represented by the following formula (1).
    The composition for heat radiating members according to claim 1 or 2.
    R a —R 6 —O— (Rx) n —O—R 11 —R a (1)
    [In the above formula (1),
    Each R a is independently any of the following formulas (1-1) to (1-2), amino, vinyl, carboxylic anhydride residue, or any polymerizable group containing these structures;
    Rx is any one of the following formulas (1-3) to (1-6);
    n is an integer from 1 to 3;
    R 6 and R 11 are each independently a single bond or alkylene having 1 to 20 carbon atoms. ]
    [Chemical 1]
    Figure JPOXMLDOC01-appb-I000001
    [In the formulas (1-1) to (1-2), each R b is independently hydrogen, halogen, —CF 3 , or alkyl having 1 to 5 carbon atoms, and q is 0 or 1. . ]
    [Chemical 2]
    Figure JPOXMLDOC01-appb-I000002
    [In the formulas (1-4) to (1-6), R 7 to R 10 are each independently hydrogen or alkylene having 1 to 20 carbon atoms. ]
  11.  カップリング剤と結合する前の前記重合性化合物は、下記式(2)で表される2官能以上の重合性液晶化合物の少なくとも1種である、
     請求項1または請求項2に記載の放熱部材用組成物。
        Ra-Z-(A-Z)m-Ra   (2)
     [前記式(2)中、
     Raは、それぞれ独立して、第1のカップリング剤、第2のカップリング剤、または、第3のカップリング剤の他端と結合可能な基であり;
     Aは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、またはビシクロ[3.1.0]ヘキス-3,6-ジイルであり、
     これらの環において、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
     該アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、-OCO-、-CH=CH-、または-C≡C-で置き換えられてもよく;
     Zは、それぞれ独立して、単結合、または炭素数1~20のアルキレンであり、
     該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CH=N-、-N=CH-、-N=N-、または-C≡C-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよく;
     mは、1~6の整数である。]
    The polymerizable compound before being bonded to the coupling agent is at least one of a bifunctional or higher functional polymerizable liquid crystal compound represented by the following formula (2).
    The composition for heat radiating members according to claim 1 or 2.
    Ra-Z- (AZ) m-Ra (2)
    [In the formula (2),
    Each Ra is independently a group capable of binding to the other end of the first coupling agent, the second coupling agent, or the third coupling agent;
    A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] Oct-1,4-diyl, or bicyclo [3.1.0] hex-3,6-diyl,
    In these rings, arbitrary —CH 2 — may be replaced with —O—, optional —CH═ may be replaced with —N═, and optional hydrogen is halogen, carbon number 1 May be substituted with an alkyl having 10 to 10 or an alkyl halide having 1 to 10 carbon atoms,
    In the alkyl, optional —CH 2 — may be replaced by —O—, —CO—, —COO—, —OCO—, —CH═CH—, or —C≡C—;
    Each Z is independently a single bond or alkylene having 1 to 20 carbon atoms,
    In the alkylene, arbitrary —CH 2 — is —O—, —S—, —CO—, —COO—, —OCO—, —CH═CH—, —CF═CF—, —CH═N—, —N═CH—, —N═N—, or —C≡C— may be substituted, and any hydrogen may be replaced with a halogen;
    m is an integer of 1 to 6. ]
  12.  カップリング剤と結合する前の前記重合性化合物は、下記式(3)または(4)で表される2官能以上のヒドロキシ基を有する重合性非液晶化合物の少なくとも1種である、
     請求項1または請求項2に記載の放熱部材用組成物。
     [化3]
    Figure JPOXMLDOC01-appb-I000003
    [上記式(3)中、
     RおよびRは、それぞれ独立して、水素、ハロゲン、または炭素数1~3のアルキルであり;
     mは2~4の整数であり、nは1~3の整数であり、pは2~4の整数であり、qは1~3の整数であり、m+n=5であり、p+q=5であり;
     Aは、単結合、炭素数1~10のアルキレン、シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、または、ビアダマンタンジイルであり、
     炭素数1~10のアルキレンにおいて、任意の水素は-CHで置き換えられてもよく、
     シクロヘキシレン、シクロヘキセニレン、フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、ビシクロ[2.2.2]オクト-1,4-ジイル、ビシクロ[3.1.0]ヘキス-3,6-ジイル、4,4’-(9-フルオレニリデン)ジフェニレン、アダマンタンジイル、または、ビアダマンタンジイルにおいて、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~10のアルキル、または炭素数1~10のハロゲン化アルキルで置き換えられてもよく、
     任意の水素と置き換えられたアルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく;
     Z、Zは、それぞれ独立して、単結合、または炭素数1~20のアルキレンであり、
    該アルキレンにおいて、任意の-CH-は、-O-、-S-、-CO-、-COO-、または-OCO-で置き換えられてもよく、任意の水素はハロゲンで置き換えられてもよい。]
    [上記式(4)中、
     xは2以上の整数であり;
     環Bは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、フルオレン、9,9‐ジフェニルフルオレン、アダマンタン、またはビアダマンタンであり、
     環Bにおいて、任意の-CH-は、-O-で置き換えられてもよく、任意の-CH=は、-N=で置き換えられてもよく、任意の水素は、ハロゲン、炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルで置き換えられてもよく、
     環Bの炭素数1~3のアルキル、または炭素数1~3のハロゲン化アルキルにおいて、任意の-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよい。]
    The polymerizable compound before binding with the coupling agent is at least one polymerizable non-liquid crystal compound having a bifunctional or higher functional hydroxy group represented by the following formula (3) or (4).
    The composition for heat radiating members according to claim 1 or 2.
    [Chemical formula 3]
    Figure JPOXMLDOC01-appb-I000003
    [In the above formula (3),
    R 1 and R 2 are each independently hydrogen, halogen, or alkyl having 1 to 3 carbons;
    m is an integer of 2 to 4, n is an integer of 1 to 3, p is an integer of 2 to 4, q is an integer of 1 to 3, m + n = 5, and p + q = 5 Yes;
    A represents a single bond, alkylene having 1 to 10 carbon atoms, cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [ 2.2.2] Oct-1,4-diyl, bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′-(9-fluorenylidene) diphenylene, adamantanediyl, or biadamantanediyl And
    In the alkylene having 1 to 10 carbon atoms, arbitrary hydrogen may be replaced with —CH 3 .
    Cyclohexylene, cyclohexenylene, phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo [2.2.2] oct-1,4-diyl, In bicyclo [3.1.0] hex-3,6-diyl, 4,4 ′-(9-fluorenylidene) diphenylene, adamantanediyl, or biadamantanediyl, any —CH 2 — is —O—. Any —CH═ may be replaced by —N═, and any hydrogen is replaced by halogen, alkyl having 1 to 10 carbons, or alkyl halide having 1 to 10 carbons May be
    In alkyl substituted with any hydrogen, any —CH 2 — may be replaced with —O—, —CO—, —COO—, or —OCO—;
    Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 20 carbon atoms,
    In the alkylene, any —CH 2 — may be replaced with —O—, —S—, —CO—, —COO—, or —OCO—, and any hydrogen may be replaced with a halogen. . ]
    [In the above formula (4),
    x is an integer greater than or equal to 2;
    Ring B is benzene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, 9,9-diphenylfluorene, adamantane, or biadamantane;
    In Ring B, any —CH 2 — may be replaced by —O—, and any —CH═ may be replaced by —N═, and any hydrogen may be halogen, a carbon number of 1 to 3 alkyl, or an alkyl halide having 1 to 3 carbon atoms,
    In the alkyl having 1 to 3 carbon atoms or the alkyl halide having 1 to 3 carbon atoms in the ring B, arbitrary —CH 2 — is replaced by —O—, —CO—, —COO—, or —OCO—. May be. ]
  13.  請求項1~12のいずれか1項に記載の放熱部材用組成物の硬化物である、
     可視光反射性放熱部材。
    A cured product of the composition for a heat dissipation member according to any one of claims 1 to 12,
    Visible light reflective heat dissipation member.
  14.  基板と;
     前記基板上に実装された発光チップと;
     前記基板上の前記発光チップを囲む反射枠であって、請求項13に記載の可視光反射性放熱部材により形成された反射枠と;を備える、
     発光デバイス。
    A substrate;
    A light emitting chip mounted on the substrate;
    A reflective frame surrounding the light emitting chip on the substrate, the reflective frame formed by the visible light reflective heat radiating member according to claim 13;
    Light emitting device.
  15.  請求項14に記載の発光デバイスを複数備える、
     発光装置。
    A plurality of light emitting devices according to claim 14 are provided.
    Light emitting device.
PCT/JP2019/014794 2018-04-05 2019-04-03 Composition for heat dissipating member, visible light reflective heat dissipating member, light emitting device, light emitting apparatus WO2019194221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020512284A JPWO2019194221A1 (en) 2018-04-05 2019-04-03 Composition for heat dissipation member, visible light reflective heat dissipation member, light emitting device, light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018073364 2018-04-05
JP2018-073364 2018-04-05

Publications (1)

Publication Number Publication Date
WO2019194221A1 true WO2019194221A1 (en) 2019-10-10

Family

ID=68100318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014794 WO2019194221A1 (en) 2018-04-05 2019-04-03 Composition for heat dissipating member, visible light reflective heat dissipating member, light emitting device, light emitting apparatus

Country Status (3)

Country Link
JP (1) JPWO2019194221A1 (en)
TW (1) TW201945512A (en)
WO (1) WO2019194221A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230047A1 (en) * 2020-05-15 2021-11-18 デクセリアルズ株式会社 Thermally conductive sheet, and method for manufacturing thermally conductive sheet
JP2021182617A (en) * 2020-05-15 2021-11-25 デクセリアルズ株式会社 Heat conductive sheet and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169891A (en) * 1995-12-21 1997-06-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material, its production and inorganic filler
JP2008106231A (en) * 2006-09-29 2008-05-08 Toray Ind Inc Adhesive sheet for electronic equipment
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169891A (en) * 1995-12-21 1997-06-30 Matsushita Electric Works Ltd Epoxy resin composition for sealing material, its production and inorganic filler
JP2008106231A (en) * 2006-09-29 2008-05-08 Toray Ind Inc Adhesive sheet for electronic equipment
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230047A1 (en) * 2020-05-15 2021-11-18 デクセリアルズ株式会社 Thermally conductive sheet, and method for manufacturing thermally conductive sheet
JP2021182617A (en) * 2020-05-15 2021-11-25 デクセリアルズ株式会社 Heat conductive sheet and manufacturing method thereof
US11742258B2 (en) 2020-05-15 2023-08-29 Dexerials Corporation Thermally conductive sheet and method for manufacturing thermally conductive sheet

Also Published As

Publication number Publication date
TW201945512A (en) 2019-12-01
JPWO2019194221A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6831501B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member
WO2015170744A1 (en) Composition for heat-dissipation members, heat-dissipation member, and electronic device
JP6959488B2 (en) Method for manufacturing composition for low thermal expansion member, low thermal expansion member, electronic device, low thermal expansion member
JP6902192B2 (en) Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member composition, method for manufacturing heat-dissipating member
JP6992654B2 (en) Laminated sheet, heat dissipation parts, light emitting device, light emitting device
WO2019194221A1 (en) Composition for heat dissipating member, visible light reflective heat dissipating member, light emitting device, light emitting apparatus
WO2020045560A1 (en) Composition, cured product, laminated body, and electronic device
JP2019172936A (en) Composition for heat radiation member, heat radiation member, and electronic device
WO2019188973A1 (en) Composition, heat dissipation member, electronic device and method for producing composition
WO2017150586A1 (en) Laminate, electronic device, and production method for laminate
JP7070554B2 (en) Laminates, electronic devices, manufacturing methods for laminates
WO2018181838A1 (en) Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member
JP2019172937A (en) Composition for heat radiation member, heat radiation member, and electronic device
JPWO2019049911A1 (en) Method for manufacturing composition for heat radiating member, heat radiating member, electronic device, heat radiating member
JP2019137801A (en) Composition for heat radiation members, heat radiation member, electronic apparatus, and method for producing heat radiation member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781387

Country of ref document: EP

Kind code of ref document: A1