WO2019188884A1 - ヒートシンク付き絶縁回路基板 - Google Patents

ヒートシンク付き絶縁回路基板 Download PDF

Info

Publication number
WO2019188884A1
WO2019188884A1 PCT/JP2019/012325 JP2019012325W WO2019188884A1 WO 2019188884 A1 WO2019188884 A1 WO 2019188884A1 JP 2019012325 W JP2019012325 W JP 2019012325W WO 2019188884 A1 WO2019188884 A1 WO 2019188884A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
heat sink
circuit board
thickness
bonded
Prior art date
Application number
PCT/JP2019/012325
Other languages
English (en)
French (fr)
Inventor
遼平 湯本
智哉 大開
丈嗣 北原
長友 義幸
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020207030702A priority Critical patent/KR20200136962A/ko
Priority to JP2020510020A priority patent/JP7054073B2/ja
Priority to CN201980017185.8A priority patent/CN111819681A/zh
Priority to EP19774225.7A priority patent/EP3780084A4/en
Priority to US17/040,236 priority patent/US11289390B2/en
Publication of WO2019188884A1 publication Critical patent/WO2019188884A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to an insulating circuit board with a heat sink in which a heat sink is bonded to an insulating circuit board such as a power module board used in a semiconductor device that controls a large current and a high voltage.
  • An insulating circuit board with a heat sink is known in which a circuit layer is bonded to one surface of an insulating layer made of a ceramic substrate such as aluminum nitride, and an aluminum heat sink is bonded to the other surface via an aluminum plate. ing.
  • an insulating circuit board with a heat sink disclosed in Patent Document 1 has a circuit layer made of any one of a pure aluminum plate, an aluminum alloy plate, a pure copper plate, a copper alloy plate, etc. on one surface of an insulating layer made of a ceramic substrate.
  • a metal layer made of pure aluminum or an aluminum alloy metal plate is bonded to the other surface of the insulating layer, and a heat sink made of aluminum or an aluminum alloy is bonded to the metal layer via a copper layer.
  • the insulating layer and the metal layer are bonded using a brazing material, and the metal layer and the heat sink are bonded by solid phase diffusion between the copper layer interposed therebetween.
  • Patent Document 3 a first metal plate is bonded to one surface of a first ceramic substrate, and a second metal plate is bonded to the other surface of the first ceramic substrate and one surface of the second ceramic substrate.
  • a metal-ceramic bonding substrate (insulated circuit substrate with a heat sink) in which a plate-like heat radiation member having a plurality of fins is bonded to the other surface of the second ceramic substrate is disclosed.
  • This metal-ceramic bonding substrate is formed by arranging a first ceramic substrate and a second ceramic substrate in a carbon mold at intervals and pouring a molten aluminum alloy into the mold to cool and solidify. .
  • the metal / ceramic bonding substrate disclosed in Patent Document 3 is manufactured by placing two ceramic substrates at intervals in a mold and pouring a molten aluminum alloy into the mold.
  • the metal plate, the heat radiating member, and the fin are the same aluminum alloy.
  • This invention is made in view of such a situation, and it aims at suppressing the curvature of the insulated circuit board with a heat sink by which the heat sink consisting of the metal of a composition different from the metal layer of an insulated circuit board is joined. .
  • An insulated circuit board with a heat sink of the present invention comprises a ceramic substrate, a circuit layer bonded to one surface of the ceramic substrate, and a metal layer made of aluminum or an aluminum alloy bonded to the other surface of the ceramic substrate.
  • the thickness T1 of the first metal layer is not less than 0.3 mm and not more than 3.0 mm, and the thickness ratio T1 / T2 is not less than 1.0.
  • the heat sink includes a first metal layer bonded to the metal layer of the insulating circuit board, a ceramic plate material bonded to the first metal layer, and a second metal layer bonded to the ceramic plate material. ing. That is, since the ceramic plate material is incorporated inside the first metal layer and the second metal layer made of copper or copper alloy, the linear expansion coefficient of the heat sink can be reduced, and the difference in linear expansion from the insulating circuit board can be reduced. it can. Thereby, the amount of warp change between the high temperature and low temperature of the insulated circuit board with the heat sink can be suppressed.
  • the thickness T1 of the first metal layer is set to 0.3 mm or more and 3.0 mm or less. If the thickness T1 of the first metal layer is less than 0.3 mm, the heat dissipation effect of the heat sink may be reduced. Yes, if the thickness T1 exceeds 3.0 mm, the influence of expansion of the first metal layer made of copper or copper alloy is increased, and the linear expansion of the joined body (heat sink) with the ceramic plate material is increased. This is because warpage of an insulating circuit board with a heat sink, which is a joined body of the board and the heat sink, increases.
  • the thickness T1 of the first metal layer is less than the thickness T1 of the second metal layer, there is a possibility that the insulating circuit substrate with a heat sink warps in a convex shape toward the insulating circuit side, so that T1 / T2 is 1.0 or more.
  • the thickness ratio T1 / T2 is preferably 10.0 or less.
  • the thickness T2 of the second metal layer is preferably 0.3 or more.
  • the circuit layer may be made of aluminum or an aluminum alloy
  • the ceramic substrate may be made of aluminum nitride
  • the ceramic plate material may be made of silicon nitride.
  • the metal layer and the first metal layer may be bonded by solid phase diffusion bonding.
  • the curvature of the insulated circuit board with a heat sink formed by joining the insulated circuit board which has a metal layer, and the heat sink which has a metal layer of a composition different from the metal layer of an insulated circuit board can be suppressed.
  • FIG. 1 It is sectional drawing which shows the power module using the insulated circuit board with a heat sink concerning one Embodiment of this invention. It is the top view which looked at the insulated circuit board with a heat sink in the said embodiment from the circuit layer side. It is sectional drawing explaining the manufacturing method of the insulated circuit board with a heat sink shown in FIG. It is sectional drawing explaining the manufacturing method of the insulated circuit board with a heat sink shown in FIG. It is sectional drawing explaining the manufacturing method of the insulated circuit board with a heat sink shown in FIG.
  • an insulated circuit board 100 with a heat sink is formed by bonding a heat sink 2 to an insulated circuit board 1, and is used as, for example, a power module board.
  • an element 30 is mounted to form a power module.
  • This element 30 is an electronic component including a semiconductor, and various elements such as IGBT (Insulated Gate Bipolar Transistor), MOSFET (Metal Oxide Semiconductor Field Transistor), FWD (Free Wheeled Semiconductor) are selected.
  • the element 30 is provided with an upper electrode part at the upper part and a lower electrode part at the lower part, and the lower electrode part is joined to the upper surface of the circuit layer 12 by solder 31 or the like.
  • the element 30 is mounted on the upper surface of the circuit layer 12.
  • the upper electrode portion of the element 30 is connected to the circuit electrode portion and the like of the circuit layer 12 via a lead frame and the like joined by solder or the like, and the power module is manufactured.
  • the insulated circuit board 1 includes a ceramic substrate 11, a circuit layer 12 bonded to one surface of the ceramic substrate 11, and a metal layer 13 bonded to the other surface of the ceramic substrate 11.
  • the ceramic substrate 11 is a rectangular plate-like insulating substrate that prevents electrical connection between the circuit layer 12 and the metal layer 13.
  • the ceramic substrate 11 is aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), aluminum oxide ( Al 2 O 3 ), a zirconia reinforced alumina substrate or the like, and its thickness is 0.2 mm to 1.2 mm.
  • AlN aluminum nitride
  • Si 3 N 4 silicon nitride
  • Al 2 O 3 aluminum oxide
  • zirconia reinforced alumina substrate or the like and its thickness is 0.2 mm to 1.2 mm.
  • both the circuit layer 12 and the metal layer 13 joined to both surfaces of the ceramic substrate 11 are made of aluminum or an aluminum alloy, it is preferable to be made of aluminum nitride.
  • the planar size of the ceramic substrate 11 is not particularly limited, but is set to 40 mm to 140 mm ⁇ 40 mm to 100 mm in the present embodiment.
  • the circuit layer 12 is bonded to the upper surface (surface) of the ceramic substrate 11, pure aluminum or aluminum alloy having a purity of 99% by mass or more is used, and the thickness thereof is, for example, 0.2 mm or more and 0.9 mm.
  • the planar size of the circuit layer 12 is smaller than that of the ceramic substrate 11 and is not particularly limited, but is set to 36 mm to 136 mm ⁇ 36 mm to 96 mm in this embodiment.
  • the metal layer 13 is bonded to the lower surface (back surface) of the ceramic substrate 11 and is made of pure aluminum or aluminum alloy having a purity of 99% by mass or more. According to the JIS standard, aluminum in the 1000s, particularly 1N99 (purity of 99.99% by mass or more). : So-called 4N aluminum) can be used.
  • the thickness is, for example, 0.2 mm to 0.9 mm.
  • the planar size of the metal layer 13 is smaller than that of the ceramic substrate 11 and is not particularly limited. However, in this embodiment, it is set to 36 mm to 136 mm ⁇ 36 mm to 96 mm and the same as the circuit layer 12.
  • the circuit layer 12 and the metal layer 13 preferably have the same composition and the same thickness and size.
  • the heat sink 2 is bonded to the insulated circuit board 1 and radiates heat transferred from the insulated circuit board 1.
  • the heat sink 2 includes a first metal layer 21 bonded to the metal layer 13 of the insulating circuit board 1, a ceramic plate material 23 bonded to the lower surface (back surface) of the first metal layer 21, and a lower surface (back surface) of the ceramic plate material 23. ) And the second metal layer 22 joined to each other.
  • the first metal layer 21 is made of copper or a copper alloy, and its thickness T1 is set to 0.3 mm or more and 3.0 mm or less.
  • the 2nd metal layer 22 consists of copper or a copper alloy, and the thickness T2 is set to 0.3 mm or more and 3.0 mm or less.
  • the thickness of the first metal layer 21 is less than 0.3 mm, the heat dissipation effect of the heat sink 2 may be reduced. If the thickness exceeds 3.0 mm, the bonded body (heat sink 2) of the ceramic plate member 23 may be reduced. Since the linear expansion increases, the warpage of the insulating circuit board 100 with the heat sink, which is a joined body of the insulating circuit board 1 and the heat sink 2, increases. Further, if the thickness of the first metal layer 21 is smaller than the thickness of the second metal layer 22, the heat sink 2 may be warped convexly toward the first metal layer 21 during heating.
  • the thickness T1 of the first metal layer 21 is not less than 0.3 mm and not more than 3.0 mm and not less than the thickness T2 of the second metal layer 22 (is equal to or equal to the thickness T2 of the second metal layer 22). Thicker than T2).
  • the thickness ratio T1 / T2 between the thickness T1 of the first metal layer 21 and the thickness T2 of the second metal layer 22 is 1.0 or more and preferably 10.0 or less.
  • the ceramic plate material 23 is provided in order to reduce the difference in linear expansion between the heat sink 2 and the insulating circuit board 1, and silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and aluminum oxide (Al 2 O 3 ).
  • Si 3 N 4 silicon nitride
  • AlN aluminum nitride
  • Al 2 O 3 aluminum oxide
  • a zirconia reinforced alumina substrate or the like, and its thickness T3 is set to 0.2 mm to 1.2 mm.
  • the planar size of the first metal layer 21, the second metal layer 22, and the ceramic plate member 23 is larger than that of the ceramic substrate 11 and is not particularly limited. However, all are set to the same size, for example, 50 mm to 180 mm ⁇ 60 mm to It is set to 140 mm.
  • plate material 23 is more preferably comprised by silicon nitride.
  • the ceramic substrate 11 is larger than the circuit layer 12 and the heat sink 2 (the first metal layer 21, the second metal layer 21 is larger than the ceramic substrate 11 as shown in FIG.
  • the metal layer 22 and the ceramic plate 23) are large.
  • the heat sink 2 has a structure in which the ceramic plate material 23 is built inside the first metal layer 21 and the second metal layer 22 made of copper or a copper alloy.
  • a method of manufacturing an insulating circuit board 100 with a heat sink is obtained by joining a circuit layer metal plate 120 and a metal layer metal plate 130 made of pure aluminum or an aluminum alloy to a ceramic substrate 11.
  • Manufacturing process FIG. 3A
  • heat sink manufacturing process FIG. 3B
  • insulated circuit board 1 and the heat sink 2 FIG. 3C
  • the circuit layer metal plate 120 and the metal layer metal plate 130 are joined to the ceramic substrate 11 using an Al—Si brazing material.
  • a circuit layer metal plate 120 and a metal layer metal plate 130 are laminated on the front surface (upper surface) and back surface (lower surface) of the ceramic substrate 11 with an Al—Si brazing foil 14 interposed therebetween, respectively.
  • These laminates are sandwiched between carbon plates and heated in a vacuum while applying a load in the laminating direction, thereby joining the ceramic substrate 11 to the circuit layer metal plate 120 and the metal layer metal plate 130.
  • the circuit layer 12 is bonded to the surface (upper surface) of the ceramic substrate 11 via the bonding portion (brazing portion), and the metal layer 13 is bonded to the rear surface (lower surface) via the bonding portion (brazing portion). Insulated circuit board 1 is formed.
  • the pressing force in the stacking direction is preferably 0.3 MPa to 1.5 MPa, and the heating temperature is preferably 630 ° C. or more and 655 ° C. or less.
  • the Al—Si brazing foil may have a thickness of 5 ⁇ m to 15 ⁇ m.
  • an Al—Ge based, Al—Cu based, Al—Mg based, Al—Mn based, or Al—Si—Mg based brazing material can also be used.
  • the metal plates 220 for the second metal layer having a thickness of 0.3 mm to 3.0 mm and T1 or less are joined using an Ag—Cu—Ti brazing material.
  • the metal plate 210 for the first metal layer and the second metal layer are disposed on the front surface (upper surface) and the back surface (lower surface) of the ceramic plate material 23 with an Ag—Cu—Ti brazing material foil 14 interposed therebetween, respectively.
  • the metal plates 220 are laminated, these laminates are sandwiched between carbon plates, and heated in a vacuum while applying a load in the laminating direction, whereby the ceramic plate material 23, the first metal layer metal plate 210, and the second metal layer.
  • the metal plate 220 is joined.
  • the first metal layer 21 having a thickness T1 of 0.3 mm to 3.0 mm is bonded to the front surface (upper surface) of the ceramic plate material 23 via the bonding portion (brazing portion), and the thickness is applied to the rear surface (lower surface).
  • a heat sink 2 is formed in which a second metal layer 22 having a T2 of 0.3 mm to 3.0 mm and a thickness T1 or less of the first metal layer 21 is bonded via a bonding portion (brazing portion).
  • the pressure in the stacking direction is preferably 0.1 MPa to 1.0 MPa, and the heating temperature is preferably 800 ° C. to 930 ° C.
  • the Ag—Cu—Ti brazing foil may have a thickness of 5 ⁇ m to 15 ⁇ m.
  • a Cu—P brazing material can also be used.
  • the insulating circuit board 1 and the heat sink 2 are solid phase diffusion bonded.
  • the metal layer 13 of the insulating circuit board 1 is laminated on the heat sink 2, and the laminated body is heated to the bonding temperature in a vacuum atmosphere in a state where the laminated body is pressurized in the lamination direction.
  • the metal layer 13 and the heat sink 2 are solid-phase diffusion bonded.
  • the applied pressure is, for example, 0.5 MPa to 2.0 MPa
  • the heating temperature is 500 ° C. to 540 ° C.
  • this pressurization and heating state is maintained for 30 minutes to 120 minutes.
  • the metal layer 13 and the heat sink 2 are joined, and as shown in FIG. 1, the insulated circuit board 100 with a heat sink is obtained.
  • the joint surface of the metal layer 13 and the joint surface of the heat sink 2 are solid phase diffusion bonded after the scratches are removed and smoothed in advance.
  • the heat sink is composed of a single plate of copper or copper alloy, since the linear expansion difference with the metal layer 13 made of aluminum or aluminum alloy of the insulating circuit board 1 is large, The shrinkage rate at a low temperature is different, and the warpage of the insulating circuit board 100 with the heat sink increases.
  • the first metal layer 21 bonded to the metal layer 13 of the insulating circuit board 1, the ceramic plate material 23 bonded to the first metal layer 21, and the ceramic plate material 23 are bonded.
  • the heat sink 2 is constituted by the second metal layer 22. That is, since the ceramic plate material 23 is built inside the first metal layer 21 and the second metal layer 22 made of copper or copper alloy, the linear expansion coefficient of the heat sink 2 can be reduced, and the insulating circuit board 1 can be reduced. The difference in linear expansion can be reduced.
  • the thickness T1 of the first metal layer 21 is 0.3 mm or more and 3.0 mm or less and the thickness T2 of the second metal layer 22 is more than T2 (T1 ⁇ T2), the heat dissipation effect of the heat sink 2 is maintained.
  • the warpage of the heat sink 2 can be suppressed, and as a result, the amount of warpage change between the high temperature and the low temperature of the insulated circuit board 100 with the heat sink can be further suppressed.
  • the circuit layer 12 is made of aluminum or an aluminum alloy.
  • the circuit layer 12 is not limited thereto, and may be made of oxygen-free copper, for example. That is, the composition of the circuit layer 12 does not matter.
  • the insulating circuit board 100 with a heat sink is used as a power module board with a heat sink.
  • the insulating circuit board 100 with a heat sink can be used as various insulating boards such as an LED element substrate. You can also.
  • Insulating circuit boards constituting the samples of Examples 1 to 18, Comparative Examples 1 to 3 and the conventional example include a ceramic layer having a thickness of 0.635 mm, a planar size of 120 mm ⁇ 90 mm, and a circuit layer having a thickness of 0.4 mm and A metal layer having a thickness of 0.4 mm was manufactured by the manufacturing method described in the above embodiment, and circuit layers and metal layers having the compositions shown in Table 1 were prepared.
  • the heat sinks constituting the materials of Examples 1 to 18 and Comparative Examples 1 to 3 include a first metal layer made of oxygen-free copper on a ceramic substrate having a thickness of 0.32 mm and a planar size of 140 mm ⁇ 100 mm, and The second metal layer was manufactured by the manufacturing method described in the above embodiment, and the first metal layer and the second metal layer having thicknesses shown in Table 1 were prepared.
  • the heat sink comprised by the single plate of oxygen free copper of thickness 5.0mm and plane size 140mm x 100mm was manufactured.
  • the amount of warpage was measured using a moire type three-dimensional shape measuring machine (Akerometrics thermal warpage / strain measuring machine Thermoire PS200) with the center of the second metal layer of the heat sink (100 mm ⁇ 80 mm range) as the measurement surface. More specifically, the least square surface was obtained from the profile of the measurement surface, and the difference (absolute value) between the highest point and the lowest point was obtained on the basis of the surface to obtain the warpage amount.
  • a moire type three-dimensional shape measuring machine Akerometrics thermal warpage / strain measuring machine Thermoire PS200
  • the least square surface was obtained from the profile of the measurement surface, and the difference (absolute value) between the highest point and the lowest point was obtained on the basis of the surface to obtain the warpage amount.
  • the positive / negative is set according to the warpage state for the warpage amount thus obtained. That is, when the center of the measurement range is closer to the circuit layer side than the surface formed by the four corners of the measurement range (the second metal layer protrudes toward the circuit layer side), and the center of the measurement range is on the surface formed by the four corners of the measurement range Is set to a positive value, and when the center of the measurement range is farther from the circuit layer side than the surface formed by the four corners of the measurement range (the second metal layer protrudes toward the heat sink), the negative value is set.
  • the difference between the amount of warpage when heated at 285 ° C. and the amount of warpage when cooled at 30 ° C. (the amount of warpage when heated at 285 ° C. where positive and negative are set minus the amount of warpage when cooled at 30 ° C. where positive and negative are set)
  • the absolute value of (amount) was defined as the amount of warpage change.
  • the amount of warpage change was as small as 1.20 mm or less, and the evaluation of the element position deviation and the thermal cycle reliability were both “A”. For this reason, it is an effective range that the thickness T1 of the first metal layer of the heat sink is 0.3 mm or more and 3.0 mm or less and the thickness T2 or more (T1 ⁇ T2) of the second metal layer. I understood.
  • Comparative Examples 1 and 2 Although the amount of change in warpage was relatively large, the evaluation of the element position deviation was good “A”. B ". For this reason, when the thickness of the 1st metal layer was 4.0 mm, it turned out that an effective result cannot be obtained.
  • Comparative Example 3 although the evaluation of the reliability of the thermal cycle was good “A”, the warpage change amount was as large as 1.3 mm or more and the element position deviation occurred, so the evaluation was “B”. . For this reason, it turned out that an effective result cannot be obtained when thickness T2 of the 2nd metal layer is larger than thickness T1 of the 1st metal layer.
  • Warpage of an insulated circuit board with a heat sink formed by joining an insulated circuit board having a metal layer and a heat sink having a metal layer having a composition different from the metal layer of the insulated circuit board can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cookers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

セラミックス基板の一方の面に回路層が接合されるとともに、セラミックス基板の他方の面にアルミニウム又はアルミニウム合金からなる金属層が接合されてなる絶縁回路基板と、前記金属層に接合されたヒートシンクと、を備え、前記ヒートシンクは、前記金属層に接合された銅又は銅合金からなる第1金属層と、前記第1金属層の前記金属層とは反対側の面に接合されたセラミックス板材と、前記セラミックス板材の前記第1金属層とは反対側の面に接合された銅又は銅合金からなる第2金属層と、を有し、前記第1金属層の厚さT1は、0.3mm以上3.0mm以下であり、かつ前記第2金属層の厚さT2以上である。

Description

ヒートシンク付き絶縁回路基板
 本発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板等の絶縁回路基板にヒートシンクが接合されたヒートシンク付き絶縁回路基板に関する。本願は、2018年3月27日に出願された特願2018-59658号に基づき優先権を主張し、その内容をここに援用する。
 窒化アルミニウムを始めとするセラミックス基板からなる絶縁層の一方の面に回路層が接合されるとともに、他方の面にアルミニウム板を介してアルミニウム系のヒートシンクが接合されたヒートシンク付絶縁回路基板が知られている。
 例えば特許文献1に開示されているヒートシンク付絶縁回路基板は、セラミックス基板からなる絶縁層の一方の面に純アルミニウム板、アルミニウム合金板、純銅板、銅合金板等のいずれかからなる回路層が接合され、絶縁層の他方の面に純アルミニウム又はアルミニウム合金の金属板からなる金属層が接合され、この金属層に、アルミニウム又はアルミニウム合金で構成されたヒートシンクが銅層を介して接合されている。この場合、絶縁層と金属層とはろう材を用いて接合され、金属層とヒートシンクとは、その間に介在した銅層との間で固相拡散接合されている。
 このようなヒートシンク付き絶縁回路基板において、セラミックス基板とアルミニウム板のような熱膨張係数の異なる部材の接合による反りが発生するおそれがある。そのような反りを防止するため、ヒートシンクの材料として、特許文献2に開示される多孔質炭化珪素成形体にアルミニウムを主成分とする金属を含浸させてなる低膨張係数の複合体を用いることが考えられる。
 特許文献3は、第1のセラミックス基板の一方の面に第1の金属板が接合され、第1のセラミックス基板の他方の面と第2のセラミックス基板の一方の面に第2の金属板が接合され、第2のセラミックス基板の他方の面に複数のフィンを有する板状の放熱部材が接合されてなる金属-セラミックス接合基板(ヒートシンク付き絶縁回路基板)を開示している。この金属-セラミックス接合基板は、第1のセラミックス基板および第2のセラミックス基板をカーボン製の鋳型内に間隔を開けて配置し、アルミニウム合金溶湯を鋳型に流し込んで冷却、固化させることにより形成される。
特開2014-60215号公報 特開2000-281465号公報 特開2017-212316号公報
 特許文献3に開示されている金属-セラミックス接合基板は、2枚のセラミックス基板を鋳型内に間隔を開けて配置して、溶融状態のアルミニウム合金を鋳型に流し込むことにより製造されるため、全ての金属板、放熱部材およびフィンが同じアルミニウム合金となる。
 本発明は、このような事情に鑑みてなされたもので、絶縁回路基板の金属層と異なる組成の金属からなるヒートシンクが接合されてなるヒートシンク付絶縁回路基板の反りを抑制することを目的とする。
 本発明のヒートシンク付き絶縁回路基板は、セラミックス基板、前記セラミックス基板の一方の面に接合された回路層、および前記セラミックス基板の他方の面に接合されたアルミニウム又はアルミニウム合金からなる金属層を備える絶縁回路基板と;前記金属層に接合されたヒートシンクと;を備え、前記ヒートシンクは、前記金属層に接合された銅又は銅合金からなる厚さT1の第1金属層と、前記第1金属層の前記金属層とは反対側の面に接合されたセラミックス板材と、前記セラミックス板材の前記第1金属層とは反対側の面に接合された銅又は銅合金からなる厚さT2の第2金属層と、を有し、前記第1金属層の前記厚さT1は0.3mm以上3.0mm以下であり、厚さ比率T1/T2が1.0以上である。
 本発明では、ヒートシンクが絶縁回路基板の金属層に接合された第1金属層と、前記第1金属層に接合されたセラミックス板材と、前記セラミックス板材に接合された第2金属層とにより構成されている。すなわち、銅又は銅合金からなる第1金属層と第2金属層との内側にセラミックス板材が内蔵されているので、このヒートシンクの線膨張係数を小さくでき、絶縁回路基板との線膨張差を小さくできる。これにより、ヒートシンク付き絶縁回路基板の高温時と低温時との反り変化量を抑制できる。
 また、第1金属層の厚さT1を0.3mm以上3.0mm以下としたのは、第1金属層の厚さT1が0.3mm未満であるとヒートシンクの放熱効果が低下する可能性があり、厚さT1が3.0mmを超えると、銅又は銅合金からなる第1金属層の膨張の影響が大きくなり、セラミックス板材との接合体(ヒートシンク)の線膨張が増大するため、絶縁回路基板とヒートシンクとの接合体であるヒートシンク付き絶縁回路基板の反りが増大するからである。また、第1金属層の厚さT1が第2金属層の厚さT1未満となると、ヒートシンク付き絶縁回路基板の加熱時に絶縁回路側に凸状に反る可能性があるから、T1/T2を1.0以上とする。
 本発明のヒートシンク付き絶縁回路基板の好ましい態様としては、前記厚さ比率T1/T2が10.0以下であるとよい。
 本発明のヒートシンク付き絶縁回路基板の好ましい態様としては、前記第2金属層の前記厚さT2が0.3以上であるとよい。
 本発明のヒートシンク付き絶縁回路基板の好ましい態様としては、前記回路層はアルミニウム又はアルミニウム合金により構成され、前記セラミックス基板は窒化アルミニウムにより構成され、前記セラミックス板材は窒化珪素により構成されているとよい。
 本発明のヒートシンク付き絶縁回路基板の好ましい態様としては、前記金属層と前記第1金属層とは、固相拡散接合しているとよい。
 本発明によれば、金属層を有する絶縁回路基板と、絶縁回路基板の金属層とは異なる組成の金属層を有するヒートシンクとが接合されてなるヒートシンク付絶縁回路基板の反りを抑制することができる。
本発明の一実施形態に係るヒートシンク付き絶縁回路基板を用いたパワーモジュールを示す断面図である。 上記実施形態におけるヒートシンク付き絶縁回路基板を回路層側から見た平面図である。 図1に示すヒートシンク付き絶縁回路基板の製造方法を説明する断面図である。 図1に示すヒートシンク付き絶縁回路基板の製造方法を説明する断面図である。 図1に示すヒートシンク付き絶縁回路基板の製造方法を説明する断面図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
[絶縁回路基板の概略構成]
 本発明に係るヒートシンク付き絶縁回路基板100は、図1に示すように、絶縁回路基板1にヒートシンク2が接合されてなり、例えば、パワーモジュール用基板として用いられる。このヒートシンク付き絶縁回路基板100の表面(上面)には、図1の二点鎖線で示すように、素子30が搭載されパワーモジュールとなる。
 この素子30は、半導体を備えた電子部品であり、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、FWD(Free Wheeling Diode)等の種々の半導体素子が選択される。この場合、素子30は、図示を省略するが、上部に上部電極部が設けられ、下部に下部電極部が設けられており、下部電極部が回路層12の上面にはんだ31等により接合されることで、素子30が回路層12の上面に搭載される。また、素子30の上部電極部は、はんだ等で接合されたリードフレーム等を介して回路層12の回路電極部等に接続され、パワーモジュールが製造される。
[絶縁回路基板の構成]
 絶縁回路基板1は、セラミックス基板11と、セラミックス基板11の一方の面に接合された回路層12と、セラミックス基板11の他方の面に接合された金属層13とを備える。
 セラミックス基板11は、回路層12と金属層13の間の電気的接続を防止する矩形板状の絶縁基板であって、例えば窒化アルミニウム(AlN)、窒化珪素(Si)、酸化アルミニウム(Al)、ジルコニア強化アルミナ基板等により形成され、その厚さは0.2mm~1.2mmである。なお、セラミックス基板11の両面に接合される回路層12及び金属層13がいずれもアルミニウム又はアルミニウム合金からなる場合には、窒化アルミニウムにより構成されることが好ましい。
 また、セラミックス基板11の平面サイズは、特に限定されないが、本実施形態では40mm~140mm×40mm~100mmに設定されている。
 回路層12は、セラミックス基板11の上面(表面)に接合され、純度99質量%以上の純アルミニウム又はアルミニウム合金が用いられ、その厚さは、例えば0.2mm以上0.9mmである。
 また、回路層12の平面サイズはセラミックス基板11よりも小さく、特に限定されないが、本実施形態では36mm~136mm×36mm~96mmに設定されている。
 金属層13は、セラミックス基板11の下面(裏面)に接合され、純度99質量%以上の純アルミニウム又はアルミニウム合金が用いられ、JIS規格では1000番台のアルミニウム、特に1N99(純度99.99質量%以上:いわゆる4Nアルミニウム)を用いることができる。その厚さは、例えば0.2mm~0.9mmである。
 また、金属層13の平面サイズはセラミックス基板11よりも小さく、特に限定されないが、本実施形態では36mm~136mm×36mm~96mmで回路層12と同じに設定されている。なお、回路層12及び金属層13は、同じ組成で、かつ、同じ厚さ、大きさであることが好ましい。
[ヒートシンクの構成]
 ヒートシンク2は、絶縁回路基板1に接合されて、前記絶縁回路基板1から伝達された熱を放熱する。このヒートシンク2は、絶縁回路基板1の金属層13に接合された第1金属層21と、第1金属層21の下面(裏面)に接合されたセラミックス板材23と、セラミックス板材23の下面(裏面)に接合された第2金属層22とからなる。
 第1金属層21は、銅又は銅合金からなり、その厚さT1は0.3mm以上3.0mm以下に設定されている。また、第2金属層22は、銅又は銅合金からなり、その厚さT2は0.3mm以上3.0mm以下に設定されている。
 なお、第1金属層21の厚さが0.3mm未満であるとヒートシンク2の放熱効果が低下する可能性があり、3.0mmを超えると、セラミックス板材23との接合体(ヒートシンク2)の線膨張が増大するため、絶縁回路基板1とヒートシンク2との接合体であるヒートシンク付き絶縁回路基板100の反りが増大する。また、第1金属層21の厚さが第2金属層22の厚さよりも小さいと、ヒートシンク2が加熱時に第1金属層21側に凸状に反る可能性がある。このため、第1金属層21の厚さT1は、0.3mm以上3.0mm以下、かつ第2金属層22の厚さT2以上に(第2金属層22の厚さT2と等しいか、厚さT2より厚く)設定されている。
 また、第1金属層21の厚さT1と第2金属層22の厚さT2との厚さ比率T1/T2は1.0以上であり、10.0以下であることが好ましい。
 セラミックス板材23は、ヒートシンク2と絶縁回路基板1との線膨張差を低減させるために設けられており、窒化珪素(Si)、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、ジルコニア強化アルミナ基板等により形成され、その厚さT3は、0.2mm~1.2mmに設定されている。
 また、第1金属層21、第2金属層22及びセラミックス板材23の平面サイズはセラミックス基板11よりも大きく、特に限定されないが、いずれも同じ大きさに設定され、例えば、50mm~180mm×60mm~140mmに設定されている。なお、セラミックス板材23は、その両面に銅又は銅合金からなる第1金属層21及び第2金属層22が接合されるため、窒化珪素により構成されることがより好ましい。
 ヒートシンク付き絶縁回路基板100を回路層12側から見た場合、図2に示すように、回路層12よりもセラミックス基板11が大きく、セラミックス基板11よりもヒートシンク2(第1金属層21,第2金属層22およびセラミックス板材23)が大きい。
 以上説明したように、ヒートシンク2は、銅又は銅合金からなる第1金属層21と第2金属層22との内側にセラミックス板材23が内蔵された構成となっている。
[ヒートシンク付き絶縁回路基板の製造方法]
 次に、本実施形態のヒートシンク付き絶縁回路基板100の製造方法について説明する。
 ヒートシンク付き絶縁回路基板100の製造方法は、図3A~3Cに示すように、セラミックス基板11に純アルミニウム又はアルミニウム合金からなる回路層用金属板120及び金属層用金属板130を接合する絶縁回路基板製造工程(図3A)と、セラミックス板材23に銅又は銅合金からなる第1金属層用金属板210及び第2金属層用金属板220を接合するヒートシンク製造工程(図3B)と、絶縁回路基板1とヒートシンク2とを接合する接合工程(図3C)と、を有する。以下、この工程順に説明する。
(絶縁回路基板製造工程)
 まず、図3Aに示すように、セラミックス基板11に回路層用金属板120及び金属層用金属板130をそれぞれAl-Si系のろう材を用いて接合する。具体的には、セラミックス基板11の表面(上面)及び裏面(下面)に、それぞれAl-Si系のろう材箔14を介在させて回路層用金属板120及び金属層用金属板130を積層し、これらの積層体をカーボン板により挟持し、積層方向に荷重をかけながら真空中で加熱することにより、セラミックス基板11と回路層用金属板120及び金属層用金属板130を接合する。これにより、セラミックス基板11の表面(上面)に回路層12が接合部(ろう付け部)を介して接合され、裏面(下面)に金属層13が接合部(ろう付け部)を介して接合された絶縁回路基板1が形成される。
 なお、積層方向への加圧力は0.3MPa~1.5MPa、加熱温度は630℃以上655℃以下とするとよい。また、Al-Si系ろう材箔は、厚さ5μm~15μmであるとよい。さらに、Al-Si系ろう材の他、Al-Ge系、Al-Cu系、Al-Mg系、Al-Mn系、又はAl-Si-Mg系ろう材を用いることもできる。
(ヒートシンク製造工程)
 次に、図3Bに示すように、厚さT3が0.2mm~1.2mmのセラミックス板材23に厚さT1が0.3mm~3.0mmの第1金属層用金属板210及び厚さT2が0.3mm~3.0mmかつT1以下の第2金属層用金属板220をそれぞれAg-Cu-Ti系のろう材を用いて接合する。具体的には、セラミックス板材23の表面(上面)及び裏面(下面)に、それぞれAg-Cu-Ti系のろう材箔14を介在させて第1金属層用金属板210及び第2金属層用金属板220を積層し、これらの積層体をカーボン板により挟持し、積層方向に荷重をかけながら真空中で加熱することにより、セラミックス板材23と第1金属層用金属板210及び第2金属層用金属板220を接合する。これにより、セラミックス板材23の表面(上面)に厚さT1が0.3mm~3.0mmの第1金属層21が接合部(ろう付け部)を介して接合され、裏面(下面)に厚さT2が0.3mm~3.0mmで、かつ第1金属層21の厚さT1以下の第2金属層22が接合部(ろう付け部)を介して接合されたヒートシンク2が形成される。
 また、積層方向への加圧力は0.1MPa~1.0MPa、加熱温度は800℃~930℃とするとよい。また、Ag-Cu-Ti系ろう材箔は、厚さ5μm~15μmであるとよい。さらに、Ag-Cu-Ti系ろう材の他、Cu-P系ろう材を用いることもできる。
(接合工程)
 そして、絶縁回路基板1とヒートシンク2とを固相拡散接合する。具体的には、図3Cに示すように、絶縁回路基板1の金属層13をヒートシンク2上に積層し、これらの積層体を積層方向に加圧した状態で、真空雰囲気下で接合温度に加熱することにより、金属層13とヒートシンク2を固相拡散接合する。この場合の加圧力としては例えば0.5MPa~2.0MPa、加熱温度としては500℃~540℃とされ、この加圧及び加熱状態を30分~120分保持する。これにより、金属層13とヒートシンク2とが接合され、図1に示すように、ヒートシンク付き絶縁回路基板100が得られる。
 なお、本実施形態においては、金属層13の接合面及びヒートシンク2の接合面は、予め傷が除去されて平滑にされた後に固相拡散接合される。
 ここで、ヒートシンクが銅又は銅合金の一枚板にて構成されている場合、絶縁回路基板1のアルミニウム又はアルミニウム合金からなる金属層13との線膨張差が大きいため、高温時の膨張率や低温時の収縮率が異なり、ヒートシンク付き絶縁回路基板100の反りが大きくなる。
 これに対し、本実施形態では、絶縁回路基板1の金属層13に接合された第1金属層21と、前記第1金属層21に接合されたセラミックス板材23と、前記セラミックス板材23に接合された第2金属層22とによりヒートシンク2が構成されている。すなわち、銅又は銅合金からなる第1金属層21と第2金属層22との内側にセラミックス板材23が内蔵されているので、このヒートシンク2の線膨張係数を小さくでき、絶縁回路基板1との線膨張差を小さくできる。
 また、第1金属層21の厚さT1が0.3mm以上3.0mm以下であり、かつ第2金属層22の厚さT2以上(T1≧T2)であるので、ヒートシンク2の放熱効果を維持しつつ、ヒートシンク2の反りを抑制でき、ひいてはヒートシンク付き絶縁回路基板100の高温時と低温時との反り変化量をさらに抑制できる。
 その他、細部構成は実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記実施形態では、回路層12は、アルミニウム又はアルミニウム合金からなることとしたが、これに限らず、例えば、無酸素銅により構成されてもよい。すなわち、回路層12の組成は問わない。
 また、上記実施形態では、ヒートシンク付き絶縁回路基板100をヒートシンク付きパワーモジュール用基板として用いる例を説明したが、このヒートシンク付き絶縁回路基板100は、LED素子用基板等、各種の絶縁基板として用いることもできる。
 次に、本発明の効果について実施例を用いて詳細に説明するが、本発明は下記の実施例に限定されるものではない。
 実施例1~18、比較例1~3及び従来例の試料を構成する絶縁回路基板としては、厚さ0.635mm、平面サイズが120mm×90mmのセラミックス基板に厚さ0.4mmの回路層及び厚さ0.4mmの金属層を上記実施形態で述べた製造方法により製造し、回路層及び金属層については、表1に示す組成のものを用意した。
 また、実施例1~18及び比較例1~3の資料を構成するヒートシンクとしては、厚さ0.32mm、平面サイズが140mm×100mmのセラミックス基板に無酸素銅により構成される第1金属層及び第2金属層を上記実施形態で述べた製造方法により製造し、第1金属層及び第2金属層については、表1に示す厚さのものを用意した。なお、従来例については、厚さ5.0mm、平面サイズが140mm×100mmの無酸素銅の一枚板により構成されるヒートシンクを製造した。
 そして、これら絶縁回路基板とヒートシンクとを上記実施形態で述べた接合方法により接合し、得られた試料(実施例1~18,比較例1~3,および従来例)について下記の実験を行った。
(反り変化量)
 得られた各試料につき、30℃から285℃に加熱した後冷却して30℃とする一連の加熱試験において、285℃加熱時の反り量及び285℃に加熱した後冷却して30℃となった際の反り量(30℃冷却時の反り量)をそれぞれ測定し、温度変化による各試料の変形を反り変化量として確認した。
 反り量はモアレ式三次元形状測定機(Akrometrix社製熱反り・歪み測定機 Thermoire PS200)を用いて、ヒートシンクの第2金属層の中央(100mm×80mmの範囲)を測定面として測定した。より具体的には、測定面のプロファイルから最小二乗面を求め、その面を基準として最高点と最低点との差(絶対値)を求めて反り量を得た。
 このように得られた反り量について反り状態に応じて正負を設定する。すなわち、測定範囲の中心が測定範囲の四隅が形成する面よりも回路層側に近い場合(第2金属層が回路層側に凸)および測定範囲の中心が測定範囲の四隅が形成する面上となる場合は正の値、測定範囲の中心が測定範囲の四隅が形成する面よりも回路層側から遠い場合(第2金属層がヒートシンク側に凸)は負の値として設定した。
 このように正負が設定された285℃加熱時の反り量及び30℃冷却時の反り量の差(正負が設定された285℃加熱時の反り量-正負が設定された30℃冷却時の反り量)の絶対値を反り変化量とした。
(素子位置ずれの評価)
 素子位置ずれの評価は、電子部品を回路層にはんだ付けした後に、そのはんだ付け位置を計測することにより、位置ずれ発生の有無を、試料を30個製作して確認した。そして、0.2mm以上の位置ずれが生じた場合を不合格とし、0.2mm未満の位置ずれの場合は合格と評価した。
 そして、試料30個について行った各評価において、合格の比率が90%以上の場合を良「A」、合格の比率が90%未満の場合を否「B」と評価した。
(冷熱サイクル信頼性の評価)
 また、実施例1~18、比較例1~3及び従来例のヒートシンク付き絶縁回路基板に対して、-50℃~175℃の間で1000回変化させる温度サイクル試験を実行した後、絶縁回路基板のセラミックス基板に割れがあるか否かを目視にて判定した。この際、セラミックス基板に割れがあるものを否「B」、セラミックス基板に割れがないものを良「A」と判定した。反り変化量、素子位置ずれの評価及び冷熱サイクル信頼性の評価について、表2に結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、実施例1~18では、反り変化量が1.20mm以下と小さく、素子位置ずれ及び冷熱サイクル信頼性の評価がいずれも良「A」であった。このため、ヒートシンクの第1金属層の厚さT1が0.3mm以上3.0mm以下であり、かつ第2金属層の厚さT2以上(T1≧T2)であることが有効な範囲であることがわかった。
 一方、比較例1及び2は、反り変化量は比較的大きいものの素子位置ずれの評価は良「A」であったが、上記冷熱サイクル試験の結果、セラミックス基板が割れたので、評価が否「B」であった。このため、第1金属層の厚さが4.0mmの場合は、有効な結果を得られないことがわかった。また、比較例3は、冷熱サイクル信頼性の評価が良「A」であったものの、反り変化量が1.3mm以上と大きく、素子位置ずれが発生したため、評価が否「B」であった。このため、第1金属層の厚さT1よりも第2金属層の厚さT2が大きい場合は、有効な結果を得られないことがわかった。
 金属層を有する絶縁回路基板と、絶縁回路基板の金属層とは異なる組成の金属層を有するヒートシンクとが接合されてなるヒートシンク付絶縁回路基板の反りを抑制できる。
1 絶縁回路基板
2 ヒートシンク
11 セラミックス基板
12 回路層
13 金属層
14 ろう材箔
21 第1金属層
22 第2金属層
23 セラミックス板材
30 素子
31 はんだ
100 ヒートシンク付き絶縁回路基板
120 回路層用金属板
130 金属層用金属板
210 第1金属層用金属板
220 第2金属層用金属板

Claims (5)

  1.  セラミックス基板、前記セラミックス基板の一方の面に接合された回路層、および前記セラミックス基板の他方の面に接合されたアルミニウム又はアルミニウム合金からなる金属層を備える絶縁回路基板と;前記金属層に接合されたヒートシンクと;を備えるヒートシンク付絶縁回路基板であって、
     前記ヒートシンクは、前記金属層に接合された銅又は銅合金からなる厚さT1の第1金属層と、前記第1金属層の前記金属層とは反対側の面に接合されたセラミックス板材と、前記セラミックス板材の前記第1金属層とは反対側の面に接合された銅又は銅合金からなる厚さT2の第2金属層と、を有し、
     前記第1金属層の前記厚さT1は0.3mm以上3.0mm以下であり、厚さ比率T1/T2が1.0以上であることを特徴とするヒートシンク付き絶縁回路基板。
  2.  前記厚さ比率T1/T2が10.0以下であることを特徴とする請求項1に記載のヒートシンク付き絶縁回路基板。
  3.  前記第2金属層の前記厚さT2が0.3mm以上であることを特徴とする請求項1または2に記載のヒートシンク付き絶縁回路基板。
  4.  前記回路層は、アルミニウム又はアルミニウム合金により構成され、
     前記セラミックス基板は、窒化アルミニウムにより構成され、
     前記セラミックス板材は、窒化珪素により構成されている
    ことを特徴とする請求項1又は2に記載のヒートシンク付き絶縁回路基板。
  5.  前記金属層と前記第1金属層とは、固相拡散接合していることを特徴とする請求項1から3のいずれか一項に記載のヒートシンク付き絶縁回路基板。
PCT/JP2019/012325 2018-03-27 2019-03-25 ヒートシンク付き絶縁回路基板 WO2019188884A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207030702A KR20200136962A (ko) 2018-03-27 2019-03-25 히트 싱크가 부착된 절연 회로 기판
JP2020510020A JP7054073B2 (ja) 2018-03-27 2019-03-25 ヒートシンク付き絶縁回路基板
CN201980017185.8A CN111819681A (zh) 2018-03-27 2019-03-25 带散热器的绝缘电路基板
EP19774225.7A EP3780084A4 (en) 2018-03-27 2019-03-25 Insulated circuit board with heat sink
US17/040,236 US11289390B2 (en) 2018-03-27 2019-03-25 Insulation circuit board with heat sink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059658 2018-03-27
JP2018059658 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188884A1 true WO2019188884A1 (ja) 2019-10-03

Family

ID=68058958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012325 WO2019188884A1 (ja) 2018-03-27 2019-03-25 ヒートシンク付き絶縁回路基板

Country Status (7)

Country Link
US (1) US11289390B2 (ja)
EP (1) EP3780084A4 (ja)
JP (1) JP7054073B2 (ja)
KR (1) KR20200136962A (ja)
CN (1) CN111819681A (ja)
TW (1) TWI770373B (ja)
WO (1) WO2019188884A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281465A (ja) 1999-03-29 2000-10-10 Ookuraito:Kk セラミックスボールの製造法
JP2001135789A (ja) * 1999-11-04 2001-05-18 Mitsubishi Materials Corp 積層セラミック基板及びこれを用いたパワーモジュール用基板
JP2002076214A (ja) * 2000-08-28 2002-03-15 Toshiba Corp 絶縁基板、その製造方法、およびそれを用いた半導体装置
JP2006156975A (ja) * 2004-10-25 2006-06-15 Mitsubishi Materials Corp 接合体、パワーモジュール用基板、及び、パワーモジュール並びに接合体の製造方法
JP2012094867A (ja) * 2010-10-27 2012-05-17 Curamik Electronics Gmbh 金属−セラミック基板及びそのような基板を製造するための方法
JP2013247230A (ja) * 2012-05-25 2013-12-09 Kyocera Corp 多層配線基板および電子装置
JP2014060125A (ja) 2012-09-19 2014-04-03 Asahi Kasei Corp リチウムイオン二次電池
JP2014143342A (ja) * 2013-01-25 2014-08-07 Sanken Electric Co Ltd 半導体モジュール及びその製造方法
JP2016167502A (ja) * 2015-03-09 2016-09-15 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP2017212316A (ja) 2016-05-25 2017-11-30 Dowaホールディングス株式会社 金属−セラミックス接合基板およびその製造方法
JP2018059658A (ja) 2016-10-04 2018-04-12 株式会社テイエルブイ 気体減温器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821389B2 (ja) * 2011-04-20 2015-11-24 三菱マテリアル株式会社 パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP5991102B2 (ja) 2012-09-14 2016-09-14 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP6384112B2 (ja) * 2014-04-25 2018-09-05 三菱マテリアル株式会社 パワーモジュール用基板及びヒートシンク付パワーモジュール用基板
DE112016000904T5 (de) * 2015-02-25 2017-11-09 Mitsubishi Electric Corporation Leistungsmodul
WO2018047551A1 (ja) * 2016-09-09 2018-03-15 富士電機株式会社 半導体装置製造方法及び半導体装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281465A (ja) 1999-03-29 2000-10-10 Ookuraito:Kk セラミックスボールの製造法
JP2001135789A (ja) * 1999-11-04 2001-05-18 Mitsubishi Materials Corp 積層セラミック基板及びこれを用いたパワーモジュール用基板
JP2002076214A (ja) * 2000-08-28 2002-03-15 Toshiba Corp 絶縁基板、その製造方法、およびそれを用いた半導体装置
JP2006156975A (ja) * 2004-10-25 2006-06-15 Mitsubishi Materials Corp 接合体、パワーモジュール用基板、及び、パワーモジュール並びに接合体の製造方法
JP2012094867A (ja) * 2010-10-27 2012-05-17 Curamik Electronics Gmbh 金属−セラミック基板及びそのような基板を製造するための方法
JP2013247230A (ja) * 2012-05-25 2013-12-09 Kyocera Corp 多層配線基板および電子装置
JP2014060125A (ja) 2012-09-19 2014-04-03 Asahi Kasei Corp リチウムイオン二次電池
JP2014143342A (ja) * 2013-01-25 2014-08-07 Sanken Electric Co Ltd 半導体モジュール及びその製造方法
JP2016167502A (ja) * 2015-03-09 2016-09-15 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP2017212316A (ja) 2016-05-25 2017-11-30 Dowaホールディングス株式会社 金属−セラミックス接合基板およびその製造方法
JP2018059658A (ja) 2016-10-04 2018-04-12 株式会社テイエルブイ 気体減温器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780084A4

Also Published As

Publication number Publication date
TW201943035A (zh) 2019-11-01
EP3780084A1 (en) 2021-02-17
US20210020530A1 (en) 2021-01-21
EP3780084A4 (en) 2021-12-29
JPWO2019188884A1 (ja) 2021-03-25
CN111819681A (zh) 2020-10-23
US11289390B2 (en) 2022-03-29
JP7054073B2 (ja) 2022-04-13
TWI770373B (zh) 2022-07-11
KR20200136962A (ko) 2020-12-08

Similar Documents

Publication Publication Date Title
KR102232098B1 (ko) 히트 싱크가 부착된 파워 모듈용 기판 및 그 제조 방법
US10068829B2 (en) Power-module substrate unit and power module
WO2016002803A1 (ja) パワーモジュール用基板ユニット及びパワーモジュール
JP6417834B2 (ja) 冷却器付パワーモジュール用基板及び冷却器付パワーモジュール用基板の製造方法
JP6601512B2 (ja) ヒートシンク付きパワーモジュール用基板及びパワーモジュール
US20220223493A1 (en) Insulation circuit board with heat sink
US20200413534A1 (en) Insulated circuit board
JP2011071260A (ja) 積層材およびその製造方法、絶縁積層材およびその製造方法
KR20210096069A (ko) 접합체, 히트 싱크가 부착된 절연 회로 기판 및 히트 싱크
WO2019188884A1 (ja) ヒートシンク付き絶縁回路基板
US11013107B2 (en) Insulated circuit board
JP2018030738A (ja) セラミックス基板とアルミニウム含浸炭化珪素多孔質体との接合体の製造方法
JP2021150558A (ja) 絶縁回路基板
CN111656518A (zh) 铜-钛-铝接合体、绝缘电路基板、带散热器的绝缘电路基板、功率模块、led模块、热电模块
JP2014072244A (ja) ヒートシンク付パワーモジュール用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207030702

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019774225

Country of ref document: EP

Effective date: 20201027