WO2019188372A1 - Conductive material and connecting body manufacturing method - Google Patents

Conductive material and connecting body manufacturing method Download PDF

Info

Publication number
WO2019188372A1
WO2019188372A1 PCT/JP2019/010673 JP2019010673W WO2019188372A1 WO 2019188372 A1 WO2019188372 A1 WO 2019188372A1 JP 2019010673 W JP2019010673 W JP 2019010673W WO 2019188372 A1 WO2019188372 A1 WO 2019188372A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
resin core
particles
conductive
value
Prior art date
Application number
PCT/JP2019/010673
Other languages
French (fr)
Japanese (ja)
Inventor
宏治 北爪
康二 江島
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN202310143827.7A priority Critical patent/CN116364328A/en
Priority to KR1020207023659A priority patent/KR102517498B1/en
Priority to CN201980019724.1A priority patent/CN111886657A/en
Priority to CN202311573742.9A priority patent/CN117877784A/en
Publication of WO2019188372A1 publication Critical patent/WO2019188372A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Definitions

  • This technology relates to a conductive material for connecting, for example, an IC (Integrated Circuit) chip and a flexible wiring board, and a method for manufacturing a connection body.
  • IC Integrated Circuit
  • TFT thin film transistors
  • IZO Indium Zinc Oxide
  • ITO Indium Tin Oxide
  • the IZO wiring has a smooth surface, and an oxide layer (passive) is formed on the surface.
  • a protective layer of an oxide layer such as TiO 2 may be formed on the surface in order to prevent corrosion.
  • Al / Ti wiring may be used, but this may be the same as aluminum wiring.
  • connection resistance value tends to increase.
  • Patent Document 1 by reducing the compression recovery rate of the conductive particles and suppressing the repulsive force of the conductive particles, peeling between the electrode and the circuit connection material is suppressed, and good connection reliability is achieved. It has been proposed to obtain.
  • the present technology solves the above-described problems, and provides a conductive material that can obtain high connection reliability even under pressure bonding under low pressure conditions, and a method for manufacturing a connection body.
  • the conductive material according to the present technology includes an insulating adhesive and resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. contains.
  • the manufacturing method of the connection body according to the present technology includes an insulating adhesive and a resin core conductive material having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more.
  • a connection body includes a first electronic component, a second electronic component, and an adhesive film in which the first electronic component and the second electronic component are bonded to each other.
  • the film is formed by curing a conductive material containing an insulating adhesive and a resin core conductive particle having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. It becomes.
  • the resin core conductive particles can break through the oxide layer even under pressure bonding under a low pressure condition, and the contact area with the wiring can be increased, so that high connection reliability can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing a connection body manufacturing method according to the present embodiment.
  • FIG. 1 (A) shows an arrangement step (S1)
  • FIG. 1 (B) shows a curing step ( S2).
  • the conductive material according to the present embodiment includes an insulating adhesive and resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. contains.
  • the resin core conductive particles can break through the oxide layer even under pressure bonding under low pressure conditions, and the contact area between the resin core conductive particles and the wiring can be increased, so that high connection reliability can be obtained.
  • Examples of the conductive material include a film shape and a paste shape, and examples thereof include an anisotropic conductive film (ACF) and an anisotropic conductive paste (ACP).
  • examples of the curing type of the conductive material include a thermosetting type, a photocuring type, a photothermal combined curing type, and the like, and can be appropriately selected depending on the application.
  • thermosetting anisotropic conductive film having a two-layer structure in which a conductive particle-containing layer containing resin core conductive particles and a conductive particle non-containing layer not containing resin core conductive particles are laminated will be described as an example.
  • a thermosetting anisotropic conductive film for example, a cation curable type, an anion curable type, a radical curable type, or a combination thereof can be used.
  • an anion curable anisotropic conductive film is used. Will be described.
  • An anisotropic conductive film shown as a specific example includes a resin core conductive particle, a conductive particle-containing layer containing a film-forming resin, an epoxy resin, and an anionic polymerization initiator as an insulating adhesive, and an insulating adhesive.
  • a conductive particle non-containing layer containing a film-forming resin an epoxy resin, and an anionic polymerization initiator.
  • the compression recovery rate of the resin core conductive particles is 20% or more, more preferably 45% or more, still more preferably 60% or more, and the upper limit of the compression recovery rate is about 90%. If the compression recovery rate is higher than a certain level, the contact state between the resin core conductive particles and the bumps and wiring electrodes sandwiching the resin core conductive particles after connection is easily maintained. However, depending on the combination with the compression hardness K value, a high pressure is required for connection.
  • the compression hardness K value at 20% of the resin core conductive particles compression is a 4000 N / mm 2 or more, more preferably 8000 N / mm 2 or more, more preferably 10000 N / mm 2 or more, 20
  • the upper limit of the compression hardness K value at% compression is preferably less than 22000 N / mm 2 , more preferably 20000 N / mm 2 or less. If the compression hardness K value is higher than a certain value, the resin core conductive particles break through the insulating layer on the surface of the wiring electrode at the time of connection, and a resistance value is easily obtained. However, depending on the combination with the compression recovery rate, a high pressure is required for connection.
  • a preferred combination of the compression recovery rate of the resin core conductive particles and the compression hardness K value at 20% compression is 20% or more, and the compression hardness K value at 20% compression is 4000 N / mm 2 or more.
  • the compression recovery rate is 45% or more, the compression hardness K value at 20% compression is 4000 N / mm 2 or more, the compression recovery rate is 45% or more, and the compression hardness K value at 20% compression is 8000 N. / Mm 2 or more, or the compression recovery rate is 60% or more, and the compression hardness K value at 20% compression is 8000 N / mm 2 or more.
  • the pressure be reduced due to circumstances such as demands for thinning and bending (flexibility) of electronic components.
  • it is expected that the pressure is not always constant. Therefore, it is desirable that a good connection state be obtained even if the pressure condition varies.
  • it can be used preferably in the range of 130 MPa to 80 MPa, and more preferably in the range of 130 MPa to 50 MPa.
  • it becomes easy to meet the above-mentioned demands for thinning and flexibility of electronic components.
  • connection may vary within the above-described range when continuously connected, but merely states that if the connection can be made within this range, the variation at the time of continuous connection can be tolerated to some extent.
  • This permissible level varies depending on combinations such as connection conditions, electronic component conditions, and continuous connection apparatus conditions, and may be adjusted as appropriate.
  • the compression recovery rate of the resin core conductive particles can be measured as follows. Using a micro-compression tester, the resin core conductive particles are compressed with the end face of a cylindrical indenter (diameter 50 ⁇ m, made of diamond), and the displacement from the initial load (load 0.4 mN) to the load reversal (load 5 mN)
  • the compression recovery rate can be a value of L1 / L2 ⁇ 100 (%), where L2 is L1, and the displacement from the load reversal to the final load (load 0.4 mN) is L1.
  • the compression hardness K value (20% K value) at the time of 20% compression of the resin core conductive particles can be measured as follows. Using a micro-compression tester, the resin core conductive particles are compressed under the conditions of a compression speed of 2.6 mN / sec and a maximum test load of 10 gf on a cylindrical indenter end face (diameter 50 ⁇ m, made of diamond). The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the 20% K value can be determined by the following formula.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • K value (N / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S ⁇ 3 / 2 ⁇ R ⁇ 1/2
  • F Load value when the conductive particles are 20% compressively deformed (N)
  • S Compression displacement (mm) when conductive particles are 20% compressively deformed
  • R radius of conductive particles (mm)
  • Resin core conductive particles include resin core particles and a conductive layer covering the resin core particles.
  • the resin core conductive particles include a resin core particle, a plurality of resin core particles arranged on the surface of the resin core particle, and forming a protrusion, and a resin core particle and a conductive layer arranged on the surface of the insulating particle. It is preferable to provide. As a result, the resin core conductive particles can sufficiently penetrate the oxide layer on the electrode surface to obtain excellent conduction reliability.
  • the resin core conductive particles of the first configuration example include resin core particles, a plurality of resin core particles attached to the surface of the resin core particles and serving as a core material of the protrusion, and a conductive layer covering the resin core particles and the insulating particles.
  • the resin core conductive particles of the first configuration example can be obtained by a method of forming a conductive layer after attaching insulating particles to the surface of the resin core particles.
  • the insulating particles are added to the dispersion of the resin core particles, and the insulating particles are added to the surface of the resin core particles. For example, it is possible to accumulate and adhere by using the Waals force.
  • Examples of the method for forming the conductive layer include a method using electroless plating, a method using electroplating, and a method using physical vapor deposition. Among these, the method by electroless plating, which is easy to form a conductive layer, is preferable.
  • the resin core conductive particles of the second configuration example are attached to the surface of the resin core particles, a plurality of resin core particles, and cover the surfaces of the resin core particles and the insulating particles.
  • the adhesion of the second conductive layer constituting the outermost shell can be improved and the conduction resistance can be reduced.
  • the resin core conductive particles of the second configuration example can be obtained by a method of forming the second conductive layer after forming the first conductive layer after attaching the insulating particles to the surface of the resin core particle. it can.
  • the insulating particles are added to the dispersion of the resin core particles, and the insulating particles are added to the surface of the resin core particles.
  • the method for forming the first conductive layer and the second conductive layer include a method by electroless plating, a method by electroplating, and a method by physical vapor deposition. Among these, the method by electroless plating, which is easy to form a conductive layer, is preferable.
  • the resin core conductive particles of the third configuration example are attached to a plurality of resin core particles, a first conductive layer covering the surface of the resin core particles, and a surface of the first conductive layer, and serve as a core material of the protrusion. Insulating particles and a first conductive layer and a second conductive layer covering the surfaces of the insulating particles. That is, in the third configuration example, insulating particles are attached to the surface of the first conductive layer, and a second conductive layer is formed. Thereby, it is possible to prevent the insulating particles from biting into the resin core particles during pressure bonding, and the protrusions can easily break through the oxide layer on the electrode surface.
  • the resin core conductive particles of the third configuration example can be obtained by a method in which after forming the first conductive layer on the surface of the resin core particles, the insulating particles are attached to form the second conductive layer.
  • the insulating particles are added to the dispersion of the resin core particles on which the first conductive layer is formed, and the first conductive layer is added.
  • insulating particles are accumulated on the surface of the layer by, for example, van der Waals force and attached.
  • Examples of the method for forming the first conductive layer and the second conductive layer include a method by electroless plating, a method by electroplating, and a method by physical vapor deposition. Among these, the method by electroless plating, which is easy to form a conductive layer, is preferable.
  • the resin core particles include benzoguanamine resins, acrylic resins, styrene resins, silicone resins, polybutadiene resins, and the like, and a copolymer having a structure in which at least two kinds of repeating units based on monomers constituting these resins are combined.
  • a polymer is mentioned.
  • a plurality of insulating particles are attached to the surface of the resin core particles, and serve as a core material of a protrusion for breaking through the oxide layer on the electrode surface.
  • the insulating particles preferably have a Mohs hardness of more than 7 and 9 or more. Due to the high hardness of the insulating particles, the protrusions can break through the oxide layer on the electrode surface. Further, since the core material of the protrusion is an insulating particle, the cause of migration is reduced as compared with the case where conductive particles are used.
  • the insulating particles include zirconia (Mohs hardness 8-9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10), and the like. Two or more types may be used in combination. Among these, it is preferable to use alumina from the viewpoint of economy.
  • the average particle diameter of the insulating particles is preferably 50 nm or more and 250 nm or less, more preferably 100 nm or more and 200 nm or less.
  • the number of protrusions formed on the surface of the resin core particle 20 is preferably 1 to 500, more preferably 30 to 200.
  • the conductive layer covers the resin core particles and insulating particles, and has protrusions that are raised by a plurality of insulating particles.
  • the conductive layer is preferably nickel or a nickel alloy. Examples of the nickel alloy include Ni—WB, Ni—WP, Ni—W, Ni—B, and Ni—P. Among these, it is preferable to use Ni—WB, which has a low resistance.
  • the thickness of the conductive layer is preferably 50 nm or more and 250 nm or less, and more preferably 80 nm or more and 150 nm or less. If the thickness of the conductive layer 30 is too small, it will be difficult to function as conductive particles, and if the thickness is too large, the height of the protrusion will be lost.
  • the average particle diameter of the resin core conductive particles may be 1 to 30 ⁇ m, and preferably 2 to 10 ⁇ m.
  • the film-forming resin corresponds to, for example, a high-molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • the film-forming resin include various resins such as phenoxy resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, polyimide resin, and butyral resin. These may be used alone or in combination of two or more. May be used. Among these, it is preferable to use a phenoxy resin from the viewpoints of film formation state, connection reliability, and the like.
  • the epoxy resin forms a three-dimensional network structure and imparts good heat resistance and adhesiveness, and it is preferable to use a solid epoxy resin and a liquid epoxy resin in combination.
  • the solid epoxy resin means an epoxy resin that is solid at room temperature.
  • the liquid epoxy resin means an epoxy resin that is liquid at room temperature.
  • the normal temperature means a temperature range of 5 to 35 ° C. defined by JIS Z 8703.
  • the solid epoxy resin is not particularly limited as long as it is compatible with a liquid epoxy resin and is solid at room temperature.
  • Bisphenol A type epoxy resin bisphenol F type epoxy resin, polyfunctional type epoxy resin, dicyclopentadiene type epoxy resin , Novolak phenol type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, and the like.
  • one kind can be used alone, or two or more kinds can be used in combination.
  • YD-014 of Nippon Steel & Sumikin Chemical Co., Ltd.
  • the liquid epoxy resin is not particularly limited as long as it is liquid at normal temperature, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac phenol type epoxy resin, naphthalene type epoxy resin, and the like. Can be used alone or in combination of two or more. In particular, it is preferable to use a bisphenol A type epoxy resin from the viewpoint of film tackiness and flexibility. As a specific example available on the market, a trade name “EP828” of Mitsubishi Chemical Corporation may be mentioned.
  • anionic polymerization initiator a commonly used known curing agent can be used.
  • one kind can be used alone, or two or more kinds can be used in combination.
  • microcapsule type latent curing agent having an imidazole-modified product as a core and a surface thereof coated with polyurethane.
  • a stress relaxation agent examples include a hydrogenated styrene-butadiene block copolymer and a hydrogenated styrene-isoprene block copolymer.
  • the silane coupling agent examples include epoxy, methacryloxy, amino, vinyl, mercapto sulfide, and ureido.
  • the inorganic filler examples include silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like.
  • the dispersion method of the resin core conductive particles in the insulating adhesive may be kneaded by mixing with the insulating adhesive before coating, or the insulating adhesive formed into a film by using a mold, etc.
  • the conductive particles may be individually separated from the agent.
  • the conductive particles may be regularly arranged.
  • the resin core conductive particles can break through the oxide layer even under pressure bonding under a low pressure condition because the compression recovery rate of the resin core conductive particles and the compression hardness K value at 20% compression are large. Thus, high connection reliability can be obtained.
  • connection body manufacturing method includes an insulating adhesive, and a resin core conductive material having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more.
  • An arrangement step of arranging the first electronic component and the second electronic component via a conductive material containing particles, and a second electronic component is crimped to the first electronic component by a crimping tool;
  • a curing step of curing the material when the conductive material is not a film body, the conductive material may be applied in a film shape, or a conductive material may be provided at a pinpoint at a connection point.
  • connection body includes a first electronic component, a second electronic component, and an adhesive film in which the first electronic component and the second electronic component are bonded to each other.
  • the conductive material containing the insulating adhesive and the resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more is cured. Become. Here, even when the conductive material is not a film body, the conductive material is layered (film-like) by pressure bonding.
  • the resin core conductive particles can break through the oxide layer even in the pressure bonding under the low pressure condition, and the high connection reliability can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing a connection body manufacturing method according to the present embodiment.
  • FIG. 1 (A) shows an arrangement step (S1)
  • FIG. 1 (B) shows a curing step ( S2).
  • an anisotropic conductive film is the same as that of the above-mentioned, description is abbreviate
  • the first electronic component 10 includes a first terminal row 11, and an oxide layer is formed on the first terminal row 11.
  • the oxide layer functions as a protective layer that prevents corrosion of the wiring, and examples thereof include TiO 2 , SnO 2 , and SiO 2 .
  • the first electronic component 10 is not particularly limited and can be appropriately selected depending on the purpose.
  • Examples of the first electronic component 10 include LCD (Liquid Crystal Display) panels, flat panel display (FPD) applications such as organic EL (OLED), transparent substrates for touch panel applications, printed wiring boards (PWB), and the like. It is done.
  • the material of the printed wiring board is not particularly limited, and for example, glass epoxy such as FR-4 base material, plastic such as thermoplastic resin, ceramic, or the like can be used.
  • the first electronic component 10 is a low elasticity plastic substrate such as a PET (PolyEthylene Terephthalate) substrate, the effect of deformation of the base material is reduced and the resistance is reduced without increasing the pressure during crimping. Is very effective.
  • the elastic modulus of the plastic substrate is determined in consideration of factors such as the flexibility required for the connection body and the relationship between the flexibility and the connection strength with an electronic component such as the drive circuit element 3 described later.
  • the pressure is set to 2000 MPa to 4100 MPa.
  • the transparent substrate is not particularly limited as long as it has high transparency, and examples thereof include a glass substrate and a plastic substrate. From the viewpoint of heat resistance, a ceramic substrate is preferably used.
  • the thickness of the anisotropic conductive film 20 is not particularly limited because it can be appropriately adjusted depending on the object to be connected, but in order to facilitate handling, the lower limit is preferably 10 ⁇ m or more, and more preferably 15 ⁇ m or more.
  • the upper limit is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less, from the viewpoint of preventing protrusion when a wound body is used.
  • a two-layer anisotropic conductive film composed of a conductive particle-containing layer and a conductive particle non-containing layer may be used (a multilayer of three or more layers may be used).
  • the thickness of the above-mentioned anisotropic conductive film 20 indicates the total thickness in the case of a multilayer.
  • measuring step (S2) As shown in FIG. 1B, in the curing step (S2), the second electronic component 30 is disposed on the anisotropic conductive film 20, and the second electronic component 30 is moved to the first by the thermocompression bonding tool 40. The electronic component 10 is thermocompression bonded.
  • the second electronic component 30 includes a second terminal row 31 that faces the first terminal row 11.
  • the 2nd electronic component 30 does not have a restriction
  • the second electronic component 30 include an IC (Integrated Circuit), a flexible substrate (FPC: Flexible Printed Circuit), a tape carrier package (TCP) substrate, and a COF (Chip On Film) in which an IC is mounted on an FPC. It is done.
  • the pressure tool 40 is used as an example to press at a pressure of 40 MPa to 150 MPa, preferably a pressure of 50 MPa to 130 MPa, and a low pressure of 50 MPa to 80 MPa.
  • pressing is performed using the crimping tool 40, preferably at a temperature of 250 ° C. or lower, more preferably at a temperature of 230 ° C. or lower, and even more preferably at a temperature of 220 ° C. or lower.
  • 40 MPa to 150 MPa means 40 MPa or more and 150 MPa or less. The same is true for other notations.
  • a cushioning material may be used between the crimping tool 40 and the second electronic component 30.
  • the buffer material polytetrafluoroethylene (PTFE), silicon rubber, or the like can be used.
  • connection body manufacturing method since the compression recovery rate of the resin core conductive particles 21 and the compression hardness K value at the time of 20% compression are large, the resin core conductive particles are oxide layers even under pressure bonding under low pressure conditions. It is possible to break through and high connection reliability can be obtained. ⁇ 3. Example>
  • an anisotropic conductive film was prepared as an embodiment of the anisotropic conductive adhesive, and a connected body was prepared. Then, the initial conduction resistance of the connection body and the conduction resistance after the reliability test were measured. Note that the present technology is not limited to these examples.
  • anisotropic conductive film having a two-layer structure in which a conductive particle-containing layer containing resin core conductive particles shown in Table 1 and a conductive particle non-containing layer were laminated was prepared.
  • phenoxy resin (YP50, Nippon Steel Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, Mitsubishi Chemical Co., Ltd.), solid epoxy resin (YD-014, Nippon Steel Chemical Co., Ltd.) ) 10 parts by mass, 30 parts by mass of a microcapsule-type latent curing agent (Novacure 3941H, Asahi Kasei E-Materials Co., Ltd.) and resin core conductive particles were blended to obtain a conductive particle-containing layer having a thickness of 8 ⁇ m.
  • the resin core conductive particles were adjusted and blended so that the number density was about 50,000 / mm 2 after the film was dried. The number density was measured and determined by observing 10 ⁇ m or more of a 100 ⁇ m ⁇ 100 ⁇ m region with a metal microscope.
  • phenoxy resin (YP50, Nippon Steel Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, Mitsubishi Chemical Corporation), solid epoxy resin (YD-014, Nippon Steel Chemical Co., Ltd.) )) 10 parts by mass and 30 parts by mass of a microcapsule type latent curing agent (Novacure 3941H, Asahi Kasei E-Materials Co., Ltd.) were obtained to obtain a conductive particle-free layer having a thickness of 6 ⁇ m.
  • a microcapsule type latent curing agent Novacure 3941H, Asahi Kasei E-Materials Co., Ltd.
  • the conductive particle-containing layer and the conductive particle non-containing layer were bonded together to obtain a two-layer anisotropic conductive film having a thickness of 14 ⁇ m.
  • the connected body was manufactured by the following method and evaluated as follows.
  • a Ti / Al wiring board having an average thickness of 0.3 mm on which a Ti / Al film was patterned was used.
  • An anisotropic conductive film was slit to a predetermined width and attached to a Ti / Al wiring board. After temporarily fixing the IC chip thereon, using a heat tool coated with tetrafluoroethylene having an average thickness of 50 ⁇ m as a buffer material, temperature 220 ° C., pressure 130 MPa, time 5 sec pressure bonding condition 1, temperature 220 ° C., pressure Crimping was performed under pressure bonding condition 2 of 80 MPa, time 5 seconds, temperature 220 ° C., pressure 50 MPa, pressure time 3 of time 5 seconds, and a connected body was completed.
  • the initial conduction resistance value was evaluated as “A” for less than 1 ⁇ , “B” for 1 ⁇ or more and less than 2 ⁇ , and “C” for 2 ⁇ or more. Further, the conduction resistance value after the reliability test was evaluated as “A” when less than 2 ⁇ , “B” when 2 ⁇ or more and less than 5 ⁇ , and “C” when 5 ⁇ or more. Practically, it may be B or more, and A is preferable.
  • the rate of increase of the conduction resistance value after the reliability test with respect to the initial conduction resistance value was calculated ((conduction resistance value after reliability test / initial conduction resistance value) ⁇ 100).
  • the resistance value increase rate is preferably 200% or less, but if the initial conduction resistance evaluation and the conduction resistance evaluation after the reliability test are A evaluation, there is no problem even if the resistance value increase rate exceeds 200%. This is because the resistance value varies when the conduction resistance value is less than 2 ⁇ after the reliability test.
  • the initial conduction resistance evaluation and the conduction resistance evaluation after the reliability test are A evaluations under different pressure conditions and the resistance value increase rate is 200% or less, it is preferable because it can withstand the influence of pressure fluctuations, and 50 MPa and If 80 MPa is satisfied, it is more preferable in that it can be used at a low pressure, and it is even more preferable if it is satisfied under all pressure conditions.
  • the initial conduction resistance evaluation and the conduction resistance evaluation after the reliability test are A evaluation and the resistance value increase rate is 160% or less, the fluctuation of the resistance value is stable in a narrower range. Therefore, it is more preferable.
  • a resistance value increase rate of 160% or less indicates that even if the initial resistance value is less than 1 ⁇ , the reliability test resistance value has a sufficient margin below 2 ⁇ . Differences due to pressure conditions are the same as described above, and are omitted.
  • Resin core conductive particles were produced as follows. Benzoyl peroxide as a polymerization initiator was added to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate was adjusted, and the mixture was heated with uniform stirring at high speed to perform a polymerization reaction, thereby obtaining a fine particle dispersion. The fine particle dispersion was filtered and dried under reduced pressure to obtain a block body which is an aggregate of fine particles. Then, the block body was pulverized (pulverized) to obtain divinylbenzene resin particles having an average particle size of 3.0 ⁇ m.
  • alumina Al 2 O 3 having an average particle diameter of 150 nm was used.
  • nickel plating containing nickel plating solution (pH 8.5) containing nickel sulfate 0.23 mol / L, dimethylamine borane 0.25 mol / L, and sodium citrate 0.5 mol / L as a plating solution for the conductive layer. The liquid was used.
  • insulating particles 1 g was added to the dispersion over 3 minutes to obtain a slurry containing particles with insulating particles attached thereto. Then, while stirring the slurry at 60 ° C., a nickel plating solution was gradually dropped into the slurry to perform electroless nickel plating. After confirming that hydrogen foaming stopped, the particles were filtered, washed with water, substituted with alcohol, and then vacuum-dried. Conductive particles having protrusions formed of alumina and a conductive layer of Ni-B plating were obtained. Obtained. When the conductive particles were observed with a scanning electron microscope (SEM), the thickness of the conductive layer was about 100 nm.
  • SEM scanning electron microscope
  • the compression recovery rate of the resin core conductive particles and the compression hardness K value at 20% compression were obtained by adjusting the mixing ratio of divinylbenzene, styrene and butyl methacrylate when the resin core particles were produced. .
  • pressure bonding condition 1 at temperature 220 ° C., pressure 130 MPa, time 5 sec, pressure bonding condition 2 at temperature 220 ° C., pressure 80 MPa, time 5 sec, pressure bonding condition at temperature 220 ° C., pressure 50 MPa, time 5 sec. 3 produced a connector.
  • Example 2 As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 72%, and a compression hardness K value at compression of 20% of 10,000 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 3 As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 67%, and a compression hardness K value at compression of 20% of 9700 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 4 As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 57%, and a compression hardness K value at compression of 20% of 9000 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 5 As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 65%, and a compression hardness K value at compression of 20% of 4800 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 6 As shown in Table 1, an anisotropic conductive film was prepared using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 15%, and a compression hardness K value of 22000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 7 As shown in Table 1, an anisotropic conductive film is prepared using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 25%, and a compression hardness K value of 14000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 8 As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle diameter of 3 ⁇ m, a compression recovery rate of 24%, and a compression hardness K value of 11000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 9 As shown in Table 1, an anisotropic conductive film is prepared using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 40%, and a compression hardness K value of 6000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • Example 10 As shown in Table 1, an anisotropic conductive film was prepared using resin core conductive particles having an average particle size of 3 ⁇ m, a compression recovery rate of 37%, and a compression hardness K value at compression of 20% of 1000 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
  • the pressure is 50 MPa, the pressure is 80 MPa, and the pressure is 130 MPa.
  • the conduction resistance evaluation after the initial stage and reliability test was C.
  • the pressure is 50 MPa.
  • the initial conduction resistance evaluation under the condition of C was C
  • the conduction resistance evaluation after the reliability test under the condition of pressure 80 MPa was B
  • the conduction resistance evaluation after the reliability test under the condition of pressure 130 MPa was A.
  • Experimental Examples 1 to 5 after the reliability test of 50 MPa are in the relationship of “Experimental Example 1 ⁇ Experimental Example 2 ⁇ Experimental Example 3 ⁇ Experimental Example 4 ⁇ Experimental Example 5”. It was less than 7 ⁇ .
  • Experimental Example 1 had a resistance value of about 50% of Experimental Example 5.
  • the rate of increase in the resistance value exceeds 200%. This is because the resistance value is sufficiently small, and the A evaluation is less than 2 ⁇ (exactly less than 0.7 ⁇ ) and good. There is no problem because there is.
  • Experimental Example 1 and Experiment 2 it was found that the rate of increase in resistance value was relatively low, and a good mounting state was obtained even at a relatively low pressure of 50 MPa.
  • the capture rate was calculated by the following formula. [(Number of particles captured by one bump after connection (number) / area of one bump (mm 2 )) / (number density of anisotropic conductive film before connection (number / mm 2 ))] ⁇ 100
  • the number of particles captured by the bumps after connection was determined by observing and measuring the indentation observed with a metal microscope from the glass substrate side.
  • the particle capturing efficiency when the particle dispersion method is random was 26% in Experimental Example 1 and 28% in Experimental Example 2.
  • the particle capturing efficiency when the particle dispersion method is an array was 52% in Experimental Example 11 and 51% in Experimental Example 12. That is, it was found that the particle dispersion efficiency of the conductive particles at the time of connection is higher when the particle dispersion method is the array.

Abstract

Provided are an anisotropic conductive adhesive with which it is possible to obtain high connection reliability even in the case of pressure bonding under a low pressure condition, and a connecting body manufacturing method. The anisotropic conductive adhesive contains an insulating adhesive and resin core conductive particles having a 20% compression recovery rate of 20% or more and a compression hardness K-value of 4000 N/mm2 or more during 20% compression. This makes it possible that the conductive particles break through an oxide layer even in the case of pressure bonding under a low pressure condition, similarly to the case of pressure bonding under a high pressure condition, thereby making it possible to obtain high connection reliability.

Description

導電材料、及び接続体の製造方法Conductive material and connection body manufacturing method
 本技術は、例えばIC(Integrated Circuit)チップとフレキシブル配線板とを接続させる導電材料、及び接続体の製造方法に関する。本出願は、日本国において2018年3月30日に出願された日本特許出願番号特願2018-067630を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 This technology relates to a conductive material for connecting, for example, an IC (Integrated Circuit) chip and a flexible wiring board, and a method for manufacturing a connection body. This application claims priority on the basis of Japanese Patent Application No. 2018-067630 filed on Mar. 30, 2018 in Japan. This application is incorporated herein by reference. Incorporated.
 従来、例えばLCD(Liquid Crystal Display)、OLED(Organic Light Emitting Diode)ディスプレイなどのアクティブマトリックス型の表示装置では、ガラス等の絶縁基板上に、互いに交差する複数本の走査信号ライン及び画像信号ラインをマトリックス状に配置形成するとともに、それら走査信号ライン及び画像信号ラインの各交点に薄膜トランジスタ(以下、「TFT」と記す。)を配置形成している。 Conventionally, for example, in an active matrix type display device such as an LCD (Liquid Crystal Display) or an OLED (Organic Light Emitting Diode) display, a plurality of scanning signal lines and image signal lines intersecting each other are formed on an insulating substrate such as glass. In addition to being arranged in a matrix, thin film transistors (hereinafter referred to as “TFT”) are arranged and formed at the intersections of the scanning signal lines and the image signal lines.
 TFTのソース電極やドレイン電極などの電極用金属配線膜は、生産コストが高いITO(Indium Tin Oxide)に代わって、IZO(Indium Zinc Oxide)が用いられている。IZO配線は、表面が平滑であり、表面に酸化物層(不動態)が形成されている。また、例えばアルミニウム配線では、腐食を防止するために表面にTiOなどの酸化物層の保護層が形成されることがある。もしくは、Al/Ti配線を使う場合もあるが、これもアルミニウム配線と同様になることがある。 For metal wiring films for electrodes such as a source electrode and a drain electrode of TFT, IZO (Indium Zinc Oxide) is used instead of ITO (Indium Tin Oxide), which has a high production cost. The IZO wiring has a smooth surface, and an oxide layer (passive) is formed on the surface. For example, in an aluminum wiring, a protective layer of an oxide layer such as TiO 2 may be formed on the surface in order to prevent corrosion. Alternatively, Al / Ti wiring may be used, but this may be the same as aluminum wiring.
 しかしながら、酸化物層は硬いため、例えばドライバICを異方性導電接着剤にて接続させる場合、接続抵抗値が上昇する傾向にある。 However, since the oxide layer is hard, for example, when the driver IC is connected with an anisotropic conductive adhesive, the connection resistance value tends to increase.
 そこで、例えば、特許文献1には、導電粒子の圧縮回復率を低くし、導電粒子の反発力を低く抑えることにより、電極及び回路接続材料間での剥離を抑制し、良好な接続信頼性を得ることが提案されている。 Therefore, for example, in Patent Document 1, by reducing the compression recovery rate of the conductive particles and suppressing the repulsive force of the conductive particles, peeling between the electrode and the circuit connection material is suppressed, and good connection reliability is achieved. It has been proposed to obtain.
特開2016-1562号公報JP 2016-1562 A
 しかしながら、特許文献1に記載された方法では、導電粒子の圧縮回復率が低いため、配線との接触面積が小さくなる傾向にあり、導通抵抗値が高くなる傾向にある。このため、特許文献1に記載された方法では、高圧条件で圧着しなければ、高い接続信頼性を得ることができず、実装部品へのダメージが懸念される。 However, in the method described in Patent Document 1, since the compression recovery rate of the conductive particles is low, the contact area with the wiring tends to be small, and the conduction resistance value tends to be high. For this reason, in the method described in Patent Document 1, high connection reliability cannot be obtained unless pressure bonding is performed under high pressure conditions, and there is a concern about damage to mounted components.
 本技術は、前述した課題を解決するものであり、低圧条件の圧着でも高い接続信頼性を得ることができる導電材料、及び接続体の製造方法を提供する。 The present technology solves the above-described problems, and provides a conductive material that can obtain high connection reliability even under pressure bonding under low pressure conditions, and a method for manufacturing a connection body.
 本件発明者らは、鋭意検討した結果、適度に高い圧縮回復率と酸化物層を突き破る硬度を有する樹脂コア導電粒子を用いることにより、低圧条件の圧着でも高い接続信頼性が得られるとの知見に基づき、本技術を完成するに至った。 As a result of intensive studies, the present inventors have found that by using resin core conductive particles having a reasonably high compression recovery rate and hardness that breaks through the oxide layer, high connection reliability can be obtained even under pressure bonding under low pressure conditions. Based on this, this technology has been completed.
 すなわち、本技術に係る導電材料は、絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する。  That is, the conductive material according to the present technology includes an insulating adhesive and resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. contains.
 また、本技術に係る接続体の製造方法は、絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する導電材料を介して第1の電子部品と第2の電子部品とを配置する配置工程と、圧着ツールにより前記第2の電子部品を前記第1の電子部品に圧着させるとともに、前記導電材料を硬化させる硬化工程とを有する。 Moreover, the manufacturing method of the connection body according to the present technology includes an insulating adhesive and a resin core conductive material having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. An arrangement step of arranging the first electronic component and the second electronic component via a conductive material containing particles, and the second electronic component is crimped to the first electronic component by a crimping tool; A curing step of curing the conductive material.
 また、本技術に係る接続体は、第1の電子部品と、第2の電子部品と、前記第1の電子部品と前記第2の電子部品とが接着された接着膜とを備え、前記接着膜は、絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する導電材料が硬化してなる。 In addition, a connection body according to the present technology includes a first electronic component, a second electronic component, and an adhesive film in which the first electronic component and the second electronic component are bonded to each other. The film is formed by curing a conductive material containing an insulating adhesive and a resin core conductive particle having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. It becomes.
 本技術によれば、低圧条件の圧着でも樹脂コア導電粒子が酸化物層を突き破ること可能となり、また、配線との接触面積を増大させることができるため、高い接続信頼性を得ることができる。 According to the present technology, the resin core conductive particles can break through the oxide layer even under pressure bonding under a low pressure condition, and the contact area with the wiring can be increased, so that high connection reliability can be obtained.
図1は、本実施の形態に係る接続体の製造方法を模式的に示す断面図であり、図1(A)は、配置工程(S1)を示し、図1(B)は、硬化工程(S2)を示す。FIG. 1 is a cross-sectional view schematically showing a connection body manufacturing method according to the present embodiment. FIG. 1 (A) shows an arrangement step (S1), and FIG. 1 (B) shows a curing step ( S2).
 以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.導電材料
2.接続体の製造方法
3.実施例
Hereinafter, embodiments of the present technology will be described in detail in the following order with reference to the drawings.
1. 1. Conductive material 2. Manufacturing method of connected body Example
 <1.導電材料>
 本実施の形態に係る導電材料は、絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する。これにより、低圧条件の圧着でも樹脂コア導電粒子が酸化物層を突き破ることが可能となり、樹脂コア導電粒子と配線との接触面積を増大させることができるため、高い接続信頼性を得ることができる。これは、高い圧縮回復率及び20%圧縮時の圧縮硬さK値により配線が押し潰されて変形し、追従性が向上するため、配線との接触面積が増大するとともに、高い20%圧縮時の圧縮硬さK値により酸化物層を突き破ることが可能であるからだと考えられる。
<1. Conductive material>
The conductive material according to the present embodiment includes an insulating adhesive and resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. contains. As a result, the resin core conductive particles can break through the oxide layer even under pressure bonding under low pressure conditions, and the contact area between the resin core conductive particles and the wiring can be increased, so that high connection reliability can be obtained. . This is because the wiring is crushed and deformed by the high compression recovery rate and the compression hardness K value at 20% compression, and the followability is improved, so that the contact area with the wiring is increased and at the time of high 20% compression This is considered to be because the oxide layer can be broken through by the compression hardness K value.
 導電材料としては、フィルム状、ペースト状などの形状が挙げられ、例えば、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などが挙げられる。また、導電材料の硬化型としては、熱硬化型、光硬化型、光熱併用硬化型などが挙げられ、用途に応じて適宜選択することができる。 Examples of the conductive material include a film shape and a paste shape, and examples thereof include an anisotropic conductive film (ACF) and an anisotropic conductive paste (ACP). In addition, examples of the curing type of the conductive material include a thermosetting type, a photocuring type, a photothermal combined curing type, and the like, and can be appropriately selected depending on the application.
 以下、樹脂コア導電粒子を含有する導電粒子含有層と、樹脂コア導電粒子を含有しない導電粒子非含有層とが積層された2層構造の熱硬化型の異方性導電フィルムを例に挙げて説明する。また、熱硬化型の異方性導電フィルムとしては、例えば、カチオン硬化型、アニオン硬化型、ラジカル硬化型、又はこれらを併用することができるが、ここでは、アニオン硬化型の異方性導電フィルムについて説明する。 Hereinafter, a thermosetting anisotropic conductive film having a two-layer structure in which a conductive particle-containing layer containing resin core conductive particles and a conductive particle non-containing layer not containing resin core conductive particles are laminated will be described as an example. explain. In addition, as the thermosetting anisotropic conductive film, for example, a cation curable type, an anion curable type, a radical curable type, or a combination thereof can be used. Here, an anion curable anisotropic conductive film is used. Will be described.
 具体例として示す異方性導電フィルムは、樹脂コア導電粒子と、絶縁性接着剤として、膜形成樹脂と、エポキシ樹脂と、アニオン重合開始剤とを含有する導電粒子含有層と、絶縁性接着剤として、膜形成樹脂と、エポキシ樹脂と、アニオン重合開始剤とを含有する導電粒子非含有層とを備える。 An anisotropic conductive film shown as a specific example includes a resin core conductive particle, a conductive particle-containing layer containing a film-forming resin, an epoxy resin, and an anionic polymerization initiator as an insulating adhesive, and an insulating adhesive. As a conductive particle non-containing layer containing a film-forming resin, an epoxy resin, and an anionic polymerization initiator.
 [樹脂コア導電粒子]
 樹脂コア導電粒子の圧縮回復率は、20%以上であり、より好ましくは45%以上であり、さらに好ましくは60%以上であり、圧縮回復率の上限は90%程度である。圧縮回復率が一定以上に高ければ、接続後に樹脂コア導電粒子と、これを挟持しているバンプ、配線電極との接触状態が良好に保たれ易くなる。但し、圧縮硬さK値との組み合わせによっては、接続に高い圧力が必要となる。
[Resin core conductive particles]
The compression recovery rate of the resin core conductive particles is 20% or more, more preferably 45% or more, still more preferably 60% or more, and the upper limit of the compression recovery rate is about 90%. If the compression recovery rate is higher than a certain level, the contact state between the resin core conductive particles and the bumps and wiring electrodes sandwiching the resin core conductive particles after connection is easily maintained. However, depending on the combination with the compression hardness K value, a high pressure is required for connection.
 また、樹脂コア導電粒子の20%圧縮時の圧縮硬さK値は、4000N/mm以上であり、より好ましくは8000N/mm以上であり、さらに好ましくは10000N/mm以上であり、20%圧縮時の圧縮硬さK値の上限は、好ましくは22000N/mm未満であり、より好ましくは20000N/mm以下である。圧縮硬さK値が一定以上に高ければ、接続時に樹脂コア導電粒子が配線電極表面の絶縁層を突き破り抵抗値が得られ易くなる。但し、圧縮回復率との組み合わせによっては、接続に高い圧力が必要となる。 The compression hardness K value at 20% of the resin core conductive particles compression is a 4000 N / mm 2 or more, more preferably 8000 N / mm 2 or more, more preferably 10000 N / mm 2 or more, 20 The upper limit of the compression hardness K value at% compression is preferably less than 22000 N / mm 2 , more preferably 20000 N / mm 2 or less. If the compression hardness K value is higher than a certain value, the resin core conductive particles break through the insulating layer on the surface of the wiring electrode at the time of connection, and a resistance value is easily obtained. However, depending on the combination with the compression recovery rate, a high pressure is required for connection.
 樹脂コア導電粒子の圧縮回復率及び20%圧縮時の圧縮硬さK値の好ましい組み合わせは、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上、圧縮回復率が45%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上、圧縮回復率が45%以上であり、20%圧縮時の圧縮硬さK値が8000N/mm以上、又は、圧縮回復率が60%以上であり、20%圧縮時の圧縮硬さK値が8000N/mm以上である。これにより、例えば130MPa程度の圧力条件の圧着において、信頼性試験後の抵抗値の上昇を抑制し、高い接続信頼性を得ることができる。圧力は、電子部品の薄型化や屈曲化(フレキシブル化)の要請などの事情により、低圧化されることが望まれている。また、連続して接続する(接続体を生産する)場合、圧力が常に一定ではないことが予想されるため、圧力条件が変動しても良好な接続状態が得られることが望ましい。例えば130MPaから80MPaの範囲において使用できることが好ましく、130MPaから50MPaの範囲において使用できることがより好ましい。特に、80MPaから50MPaの範囲において使用できれば、上述の電子部品の薄型化やフレキシブル性の要請に応え易くなる。これは必ずしも連続的に接続する際に、上述の範囲で変動してよいことを示すものではなく、この範囲で接続できれば連続接続時の変動に対してある程度許容できることを述べているにすぎない。この許容できる程度は、接続条件や電子部品の条件、連続接続の装置の条件など、組み合わせによって変動するため、適宜調整すればよい。 A preferred combination of the compression recovery rate of the resin core conductive particles and the compression hardness K value at 20% compression is 20% or more, and the compression hardness K value at 20% compression is 4000 N / mm 2 or more. The compression recovery rate is 45% or more, the compression hardness K value at 20% compression is 4000 N / mm 2 or more, the compression recovery rate is 45% or more, and the compression hardness K value at 20% compression is 8000 N. / Mm 2 or more, or the compression recovery rate is 60% or more, and the compression hardness K value at 20% compression is 8000 N / mm 2 or more. Thereby, for example, in pressure bonding of about 130 MPa, an increase in the resistance value after the reliability test can be suppressed, and high connection reliability can be obtained. It is desired that the pressure be reduced due to circumstances such as demands for thinning and bending (flexibility) of electronic components. In addition, when connecting continuously (producing a connection body), it is expected that the pressure is not always constant. Therefore, it is desirable that a good connection state be obtained even if the pressure condition varies. For example, it can be used preferably in the range of 130 MPa to 80 MPa, and more preferably in the range of 130 MPa to 50 MPa. In particular, if it can be used in the range of 80 MPa to 50 MPa, it becomes easy to meet the above-mentioned demands for thinning and flexibility of electronic components. This does not necessarily indicate that the connection may vary within the above-described range when continuously connected, but merely states that if the connection can be made within this range, the variation at the time of continuous connection can be tolerated to some extent. This permissible level varies depending on combinations such as connection conditions, electronic component conditions, and continuous connection apparatus conditions, and may be adjusted as appropriate.
 樹脂コア導電粒子の圧縮回復率は、次のように測定することできる。微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で樹脂コア導電粒子を圧縮し、初期荷重時(荷重0.4mN)から荷重反転時(荷重5mN)までの変位をL2とし、荷重反転時から最終荷重時(荷重0.4mN)までの変位をL1としたときの、L1/L2×100(%)の値を圧縮回復率とすることができる。 The compression recovery rate of the resin core conductive particles can be measured as follows. Using a micro-compression tester, the resin core conductive particles are compressed with the end face of a cylindrical indenter (diameter 50 μm, made of diamond), and the displacement from the initial load (load 0.4 mN) to the load reversal (load 5 mN) The compression recovery rate can be a value of L1 / L2 × 100 (%), where L2 is L1, and the displacement from the load reversal to the final load (load 0.4 mN) is L1.
 また、樹脂コア導電粒子の20%圧縮時の圧縮硬さK値(20%K値)は、次のように測定することできる。微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、圧縮速度2.6mN/秒、及び最大試験荷重10gfの条件下で樹脂コア導電粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、20%K値を下記式により求めることができる。なお、微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電粒子が20%圧縮変形したときの荷重値(N)
 S:導電粒子が20%圧縮変形したときの圧縮変位(mm)
 R:導電粒子の半径(mm)
Moreover, the compression hardness K value (20% K value) at the time of 20% compression of the resin core conductive particles can be measured as follows. Using a micro-compression tester, the resin core conductive particles are compressed under the conditions of a compression speed of 2.6 mN / sec and a maximum test load of 10 gf on a cylindrical indenter end face (diameter 50 μm, made of diamond). The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the 20% K value can be determined by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used. K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value when the conductive particles are 20% compressively deformed (N)
S: Compression displacement (mm) when conductive particles are 20% compressively deformed
R: radius of conductive particles (mm)
 樹脂コア導電粒子は、樹脂コア粒子と、樹脂コア粒子を被覆する導電層とを備える。また、樹脂コア導電粒子は、樹脂コア粒子と、樹脂コア粒子の表面に複数配置され、突起を形成する絶縁性粒子と、樹脂コア粒子及び前記絶縁性粒子の表面に配置される導電層とを備えることが好ましい。これにより、樹脂コア導電粒子が電極表面の酸化物層を突き破って十分に食い込み、優れた導通信頼性を得ることができる。 Resin core conductive particles include resin core particles and a conductive layer covering the resin core particles. The resin core conductive particles include a resin core particle, a plurality of resin core particles arranged on the surface of the resin core particle, and forming a protrusion, and a resin core particle and a conductive layer arranged on the surface of the insulating particle. It is preferable to provide. As a result, the resin core conductive particles can sufficiently penetrate the oxide layer on the electrode surface to obtain excellent conduction reliability.
 第1の構成例の樹脂コア導電粒子は、樹脂コア粒子と、樹脂コア粒子の表面に複数付着され、突起の芯材となる絶縁性粒子と、樹脂コア粒子及び絶縁性粒子を被覆する導電層とを備える。第1の構成例の樹脂コア導電粒子は、樹脂コア粒子の表面に絶縁性粒子を付着させた後、導電層を形成する方法により得ることができる。樹脂コア粒子の表面上に絶縁性粒子を付着させる方法としては、例えば、樹脂コア粒子の分散液中に、絶縁性粒子を添加し、樹脂コア粒子の表面に絶縁性粒子を、例えば、ファンデルワールス力により集積させ、付着させることなどが挙げられる。また、導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法などが挙げられる。これらの中でも導電層の形成が簡便である無電解めっきによる方法が好ましい。 The resin core conductive particles of the first configuration example include resin core particles, a plurality of resin core particles attached to the surface of the resin core particles and serving as a core material of the protrusion, and a conductive layer covering the resin core particles and the insulating particles. With. The resin core conductive particles of the first configuration example can be obtained by a method of forming a conductive layer after attaching insulating particles to the surface of the resin core particles. As a method for attaching the insulating particles on the surface of the resin core particles, for example, the insulating particles are added to the dispersion of the resin core particles, and the insulating particles are added to the surface of the resin core particles. For example, it is possible to accumulate and adhere by using the Waals force. Examples of the method for forming the conductive layer include a method using electroless plating, a method using electroplating, and a method using physical vapor deposition. Among these, the method by electroless plating, which is easy to form a conductive layer, is preferable.
 第2の構成例の樹脂コア導電粒子は、樹脂コア粒子と、樹脂コア粒子の表面に複数付着され、突起の芯材となる絶縁性粒子と、樹脂コア粒子及び絶縁性粒子の表面を被覆する第1の導電層と、導電層を被覆する第2の導電層とを備える。すなわち、第2の構成例は、第1の構成例の導電層を2層構造としたものである。導電層を2層構造とすることにより、最外殻を構成する第2の導電層の密着性を向上させ、導通抵抗を低下させることができる。第2の構成例の樹脂コア導電粒子は、樹脂コア粒子の表面に絶縁性粒子を付着させた後、第1の導電層を形成した後、第2の導電層を形成する方法により得ることができる。樹脂コア粒子の表面上に絶縁性粒子を付着させる方法としては、例えば、樹脂コア粒子の分散液中に、絶縁性粒子を添加し、樹脂コア粒子の表面に絶縁性粒子を、例えば、ファンデルワールス力により集積させ、付着させることなどが挙げられる。また、第1の導電層及び第2の導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法などが挙げられる。これらの中でも導電層の形成が簡便である無電解めっきによる方法が好ましい。 The resin core conductive particles of the second configuration example are attached to the surface of the resin core particles, a plurality of resin core particles, and cover the surfaces of the resin core particles and the insulating particles. A first conductive layer; and a second conductive layer covering the conductive layer. That is, in the second configuration example, the conductive layer of the first configuration example has a two-layer structure. When the conductive layer has a two-layer structure, the adhesion of the second conductive layer constituting the outermost shell can be improved and the conduction resistance can be reduced. The resin core conductive particles of the second configuration example can be obtained by a method of forming the second conductive layer after forming the first conductive layer after attaching the insulating particles to the surface of the resin core particle. it can. As a method for attaching the insulating particles on the surface of the resin core particles, for example, the insulating particles are added to the dispersion of the resin core particles, and the insulating particles are added to the surface of the resin core particles. For example, it is possible to accumulate and adhere by using the Waals force. Examples of the method for forming the first conductive layer and the second conductive layer include a method by electroless plating, a method by electroplating, and a method by physical vapor deposition. Among these, the method by electroless plating, which is easy to form a conductive layer, is preferable.
 第3の構成例の樹脂コア導電粒子は、樹脂コア粒子と、樹脂コア粒子の表面を被覆する第1の導電層と、第1の導電層の表面に複数付着され、突起の芯材となる絶縁性粒子と、第1の導電層及び絶縁性粒子の表面を被覆する第2の導電層とを備える。すなわち、第3の構成例は、第1の導電層の表面に絶縁性粒子を付着させ、さらに第2の導電層を形成したものである。これにより、圧着時に絶縁性粒子が樹脂コア粒子に食い込むのを防止し、突起が電極表面の酸化物層を容易に突き破ることができる。第3の構成例の樹脂コア導電粒子は、樹脂コア粒子の表面に第1の導電層を形成した後、絶縁性粒子を付着させ、第2の導電層を形成する方法により得ることができる。第1の導電層の表面上に絶縁性粒子を付着させる方法としては、例えば、第1の導電層が形成された樹脂コア粒子の分散液中に、絶縁性粒子を添加し、第1の導電層の表面に絶縁性粒子を、例えば、ファンデルワールス力により集積させ、付着させることなどが挙げられる。また、第1の導電層及び第2の導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法などが挙げられる。これらの中でも導電層の形成が簡便である無電解めっきによる方法が好ましい。 The resin core conductive particles of the third configuration example are attached to a plurality of resin core particles, a first conductive layer covering the surface of the resin core particles, and a surface of the first conductive layer, and serve as a core material of the protrusion. Insulating particles and a first conductive layer and a second conductive layer covering the surfaces of the insulating particles. That is, in the third configuration example, insulating particles are attached to the surface of the first conductive layer, and a second conductive layer is formed. Thereby, it is possible to prevent the insulating particles from biting into the resin core particles during pressure bonding, and the protrusions can easily break through the oxide layer on the electrode surface. The resin core conductive particles of the third configuration example can be obtained by a method in which after forming the first conductive layer on the surface of the resin core particles, the insulating particles are attached to form the second conductive layer. As a method for attaching the insulating particles on the surface of the first conductive layer, for example, the insulating particles are added to the dispersion of the resin core particles on which the first conductive layer is formed, and the first conductive layer is added. For example, insulating particles are accumulated on the surface of the layer by, for example, van der Waals force and attached. Examples of the method for forming the first conductive layer and the second conductive layer include a method by electroless plating, a method by electroplating, and a method by physical vapor deposition. Among these, the method by electroless plating, which is easy to form a conductive layer, is preferable.
 樹脂コア粒子としては、ベンゾグアナミン樹脂、アクリル樹脂、スチレン樹脂、シリコーン樹脂、ポリブタジエン樹脂などが挙げられ、また、これらの樹脂を構成するモノマーに基づく繰り返し単位の少なくとも2種以上を組み合わせた構造を有する共重合体が挙げられる。これらの中でも、ジビニルベンゼン、テトラメチロールメタンテトラアクリレート、及びスチレンを組合せて得られる共重合体を用いることが好ましい。 Examples of the resin core particles include benzoguanamine resins, acrylic resins, styrene resins, silicone resins, polybutadiene resins, and the like, and a copolymer having a structure in which at least two kinds of repeating units based on monomers constituting these resins are combined. A polymer is mentioned. Among these, it is preferable to use a copolymer obtained by combining divinylbenzene, tetramethylolmethane tetraacrylate, and styrene.
 絶縁性粒子は、樹脂コア粒子の表面に複数付着され、電極表面の酸化物層を突き破るための突起の芯材となる。絶縁性粒子は、モース硬度が7より大きく、9以上であることが好ましい。絶縁性粒子の硬度が高いことにより、突起が電極表面の酸化物層を突き破ることができる。また、突起の芯材が絶縁性粒子であることにより、導電粒子を使用したときに比べマイグレーションの要因が少なくなる。 A plurality of insulating particles are attached to the surface of the resin core particles, and serve as a core material of a protrusion for breaking through the oxide layer on the electrode surface. The insulating particles preferably have a Mohs hardness of more than 7 and 9 or more. Due to the high hardness of the insulating particles, the protrusions can break through the oxide layer on the electrode surface. Further, since the core material of the protrusion is an insulating particle, the cause of migration is reduced as compared with the case where conductive particles are used.
 絶縁性粒子としては、ジルコニア(モース硬度8~9)、アルミナ(モース硬度9)、炭化タングステン(モース硬度9)及びダイヤモンド(モース硬度10)などが挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、経済性の観点からアルミナを用いることが好ましい。 Examples of the insulating particles include zirconia (Mohs hardness 8-9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10), and the like. Two or more types may be used in combination. Among these, it is preferable to use alumina from the viewpoint of economy.
 また、絶縁性粒子の平均粒子径は、好ましくは50nm以上250nm以下、より好ましくは100nm以上200nm以下である。また、樹脂コア粒子20の表面に形成された突起の個数は、好ましくは1~500、より好ましくは30~200である。このような平均粒子径の絶縁性粒子20を用いて、樹脂コア粒子20の表面に所定数の突起を形成することにより、突起が電極表面の酸化物を突き破り、電極間の接続抵抗を効果的に低くすることができる。 Further, the average particle diameter of the insulating particles is preferably 50 nm or more and 250 nm or less, more preferably 100 nm or more and 200 nm or less. Further, the number of protrusions formed on the surface of the resin core particle 20 is preferably 1 to 500, more preferably 30 to 200. By using the insulating particles 20 having such an average particle diameter, a predetermined number of protrusions are formed on the surface of the resin core particle 20, so that the protrusions break through the oxide on the electrode surface, and the connection resistance between the electrodes is effectively reduced. Can be lowered.
 導電層は、樹脂コア粒子及び絶縁性粒子を被覆し、複数の絶縁性粒子により隆起された突起を有する。導電層は、ニッケル又はニッケル合金であることが好ましい。ニッケル合金としては、Ni-W-B、Ni-W-P、Ni-W、Ni-B、Ni-Pなどが挙げられる。これらの中でも、低抵抗であるNi-W-Bを用いることが好ましい。 The conductive layer covers the resin core particles and insulating particles, and has protrusions that are raised by a plurality of insulating particles. The conductive layer is preferably nickel or a nickel alloy. Examples of the nickel alloy include Ni—WB, Ni—WP, Ni—W, Ni—B, and Ni—P. Among these, it is preferable to use Ni—WB, which has a low resistance.
 また、導電層の厚みは、好ましくは50nm以上250nm以下、より好ましくは80nm以上150nm以下である。導電層30の厚みが小さすぎると導電性粒子として機能させるのが困難となり、厚みが大きすぎると突起の高さがなくなってしまう。 Further, the thickness of the conductive layer is preferably 50 nm or more and 250 nm or less, and more preferably 80 nm or more and 150 nm or less. If the thickness of the conductive layer 30 is too small, it will be difficult to function as conductive particles, and if the thickness is too large, the height of the protrusion will be lost.
 樹脂コア導電粒子の平均粒子径は、1~30μmであってもよく、2~10μmであることが好ましい。本明細書において、平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径(D50)を意味する。また、画像型粒度分布測定装置(例として、FPIA-3000(マルバーン社))によりN=1000以上で測定して求めたものであってもよい。 The average particle diameter of the resin core conductive particles may be 1 to 30 μm, and preferably 2 to 10 μm. In this specification, the average particle diameter means a particle diameter (D50) at an integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method. Further, it may be obtained by measuring with an image type particle size distribution measuring apparatus (for example, FPIA-3000 (Malvern)) at N = 1000 or more.
 [絶縁性接着剤]
 膜形成樹脂は、例えば平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂等の種々の樹脂が挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂を好適に用いることが好ましい。
[Insulating adhesive]
The film-forming resin corresponds to, for example, a high-molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation. Examples of the film-forming resin include various resins such as phenoxy resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, polyimide resin, and butyral resin. These may be used alone or in combination of two or more. May be used. Among these, it is preferable to use a phenoxy resin from the viewpoints of film formation state, connection reliability, and the like.
エポキシ樹脂は、3次元網目構造を形成し、良好な耐熱性、接着性を付与するものであり、固形エポキシ樹脂と液状エポキシ樹脂とを併用することが好ましい。ここで、固形エポキシ樹脂とは、常温で固体であるエポキシ樹脂を意味する。また、液状エポキシ樹脂とは、常温で液状であるエポキシ樹脂を意味する。また、常温とは、JIS Z 8703で規定される5~35℃の温度範囲を意味する。 The epoxy resin forms a three-dimensional network structure and imparts good heat resistance and adhesiveness, and it is preferable to use a solid epoxy resin and a liquid epoxy resin in combination. Here, the solid epoxy resin means an epoxy resin that is solid at room temperature. The liquid epoxy resin means an epoxy resin that is liquid at room temperature. The normal temperature means a temperature range of 5 to 35 ° C. defined by JIS Z 8703.
 固形エポキシ樹脂としては、液状エポキシ樹脂と相溶し、常温で固体状であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙られ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、ビスフェノールA型エポキシ樹脂を用いることが好ましい。市場で入手可能な具体例としては、新日鉄住金化学(株)の商品名「YD-014」などを挙げることができる。 The solid epoxy resin is not particularly limited as long as it is compatible with a liquid epoxy resin and is solid at room temperature. Bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional type epoxy resin, dicyclopentadiene type epoxy resin , Novolak phenol type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, and the like. Among these, one kind can be used alone, or two or more kinds can be used in combination. Among these, it is preferable to use a bisphenol A type epoxy resin. As a specific example that can be obtained on the market, there is a trade name “YD-014” of Nippon Steel & Sumikin Chemical Co., Ltd.
 液状エポキシ樹脂としては、常温で液状であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。特に、フィルムのタック性、柔軟性などの観点から、ビスフェノールA型エポキシ樹脂を用いることが好ましい。市場で入手可能な具体例としては、三菱化学(株)の商品名「EP828」などを挙げることができる。 The liquid epoxy resin is not particularly limited as long as it is liquid at normal temperature, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac phenol type epoxy resin, naphthalene type epoxy resin, and the like. Can be used alone or in combination of two or more. In particular, it is preferable to use a bisphenol A type epoxy resin from the viewpoint of film tackiness and flexibility. As a specific example available on the market, a trade name “EP828” of Mitsubishi Chemical Corporation may be mentioned.
 アニオン重合開始剤としては、通常用いられる公知の硬化剤を使用することができる。例えば、有機酸ジヒドラジド、ジシアンジアミド、アミン化合物、ポリアミドアミン化合物、シアナートエステル化合物、フェノール樹脂、酸無水物、カルボン酸、三級アミン化合物、イミダゾール、ルイス酸、ブレンステッド酸塩、ポリメルカプタン系硬化剤、ユリア樹脂、メラミン樹脂、イソシアネート化合物、ブロックイソシアネート化合物などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤を用いることが好ましい。市場で入手可能な具体例としては、旭化成イーマテリアルズ(株)の商品名「ノバキュア3941HP」などを挙げることができる。 As the anionic polymerization initiator, a commonly used known curing agent can be used. For example, organic acid dihydrazide, dicyandiamide, amine compound, polyamidoamine compound, cyanate ester compound, phenol resin, acid anhydride, carboxylic acid, tertiary amine compound, imidazole, Lewis acid, Bronsted acid salt, polymercaptan curing agent , Urea resin, melamine resin, isocyanate compound, block isocyanate compound, and the like. Among these, one kind can be used alone, or two or more kinds can be used in combination. Among these, it is preferable to use a microcapsule type latent curing agent having an imidazole-modified product as a core and a surface thereof coated with polyurethane. As a specific example that can be obtained on the market, there can be mentioned a trade name “Novacure 3941HP” of Asahi Kasei E-Materials Co., Ltd.
 また、絶縁性接着剤として、必要に応じて、応力緩和剤、シランカップリング剤、無機フィラー等を配合してもよい。応力緩和剤としては、水添スチレン-ブタジエンブロック共重合体、水添スチレン-イソプレンブロック共重合体等を挙げることができる。また、シランカップリング剤としては、エポキシ系、メタクリロキシ系、アミノ系、ビニル系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。また、無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を挙げることができる。 Further, as the insulating adhesive, a stress relaxation agent, a silane coupling agent, an inorganic filler, or the like may be blended as necessary. Examples of the stress relaxation agent include a hydrogenated styrene-butadiene block copolymer and a hydrogenated styrene-isoprene block copolymer. Examples of the silane coupling agent include epoxy, methacryloxy, amino, vinyl, mercapto sulfide, and ureido. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like.
 また、絶縁性接着剤中の樹脂コア導電粒子の分散方式は、塗布前の絶縁性接着剤に混ぜ込むことで混練りさせてもよく、型を使用するなどしてフィルム状にした絶縁性接着剤に導電粒子を個々に離間させてもよい。またこの場合、導電粒子を規則的に配列させてもよい。導電粒子を規則的に配列させる場合、フィルムの長手方向に繰り返し単位を有していることが好ましい。 Also, the dispersion method of the resin core conductive particles in the insulating adhesive may be kneaded by mixing with the insulating adhesive before coating, or the insulating adhesive formed into a film by using a mold, etc. The conductive particles may be individually separated from the agent. In this case, the conductive particles may be regularly arranged. When the conductive particles are regularly arranged, it is preferable to have a repeating unit in the longitudinal direction of the film.
 このような導電材料によれば、樹脂コア導電粒子の圧縮回復率及び20%圧縮時の圧縮硬さK値が大きいことにより、低圧条件の圧着でも樹脂コア導電粒子が酸化物層を突き破ること可能となり、高い接続信頼性を得ることができる。 According to such a conductive material, the resin core conductive particles can break through the oxide layer even under pressure bonding under a low pressure condition because the compression recovery rate of the resin core conductive particles and the compression hardness K value at 20% compression are large. Thus, high connection reliability can be obtained.
<2.接続体の製造方法>
 本実施の形態に係る接続体の製造方法は、絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する導電材料を介して第1の電子部品と第2の電子部品とを配置する配置工程と、圧着ツールにより第2の電子部品を前記第1の電子部品に圧着させるとともに、導電材料を硬化させる硬化工程とを有する。ここで導電材料がフィルム体でない場合は、フィルム状に塗布してもよく、接続箇所にピンポイントに導電材料を設けてもよい。
<2. Manufacturing method of connection body>
The connection body manufacturing method according to the present embodiment includes an insulating adhesive, and a resin core conductive material having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. An arrangement step of arranging the first electronic component and the second electronic component via a conductive material containing particles, and a second electronic component is crimped to the first electronic component by a crimping tool; A curing step of curing the material. Here, when the conductive material is not a film body, the conductive material may be applied in a film shape, or a conductive material may be provided at a pinpoint at a connection point.
 また、本実施の形態に係る接続体は、第1の電子部品と、第2の電子部品と、第1の電子部品と第2の電子部品とが接着された接着膜とを備え、接着膜は、絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する導電材料が硬化してなる。ここで導電材料がフィルム体でない場合であっても、導電材料は圧着により層状(フィルム状)となる。 In addition, the connection body according to the present embodiment includes a first electronic component, a second electronic component, and an adhesive film in which the first electronic component and the second electronic component are bonded to each other. The conductive material containing the insulating adhesive and the resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more is cured. Become. Here, even when the conductive material is not a film body, the conductive material is layered (film-like) by pressure bonding.
 本実施の形態によれば、低圧条件の圧着でも高圧条件の圧着と同様に樹脂コア導電粒子が酸化物層を突き破ることが可能となり、高い接続信頼性を得ることができる。 According to the present embodiment, the resin core conductive particles can break through the oxide layer even in the pressure bonding under the low pressure condition, and the high connection reliability can be obtained.
 以下、前述の熱硬化型の異方性導電フィルムを用いた接続体の製造方法について説明する。図1は、本実施の形態に係る接続体の製造方法を模式的に示す断面図であり、図1(A)は、配置工程(S1)を示し、図1(B)は、硬化工程(S2)を示す。なお、異方性導電フィルムは、前述と同様のため、ここでは説明を省略する。 Hereinafter, a method for producing a connection body using the above-described thermosetting anisotropic conductive film will be described. FIG. 1 is a cross-sectional view schematically showing a connection body manufacturing method according to the present embodiment. FIG. 1 (A) shows an arrangement step (S1), and FIG. 1 (B) shows a curing step ( S2). In addition, since an anisotropic conductive film is the same as that of the above-mentioned, description is abbreviate | omitted here.
 [配置工程(S1)]
 図1(A)に示すように、配置工程(S1)では、第1の電子部品10上に異方性導電フィルム20を配置する。
[Arrangement Step (S1)]
As shown in FIG. 1A, in the arranging step (S1), the anisotropic conductive film 20 is arranged on the first electronic component 10.
 第1の電子部品10は、第1の端子列11を備え、第1の端子列11上に酸化物層が形成されている。酸化物層は、配線の腐食を防止する保護層として機能し、例えばTiO、SnO、SiOなどが挙げられる。 The first electronic component 10 includes a first terminal row 11, and an oxide layer is formed on the first terminal row 11. The oxide layer functions as a protective layer that prevents corrosion of the wiring, and examples thereof include TiO 2 , SnO 2 , and SiO 2 .
 第1の電子部品10は、特に制限はなく、目的に応じて適宜選択することができる。第1の電子部品10としては、例えば、LCD(Liquid Crystal Display)パネル、有機EL(OLED)などのフラットパネルディスプレイ(FPD)用途、タッチパネル用途などの透明基板、プリント配線板(PWB)などが挙げられる。プリント配線板の材質は、特に限定されず、例えば、FR-4基材などのガラエポでもよく、熱可塑性樹脂などのプラスチック、セラミックなども用いることができる。特に、第1の電子部品10が、PET(Poly Ethylene Terephthalate)基板などの低弾性率のプラスチック基板である場合、圧着時の圧力を高くすることなく、基材変形の影響を軽減して低抵抗を実現できるため、非常に有効である。なお、プラスチック基板の弾性率は、接続体に求められるフレキシビリティや、屈曲性と後述する駆動回路素子3等の電子部品との接続強度との関係等の要素を考慮して求められるが、一般に2000MPa~4100MPaとされる。また、透明基板は、透明性の高いものであれば特に限定はなく、ガラス基板、プラスチック基板などが挙げられる。耐熱性の観点からは、セラミック基板が好適に用いられる。 The first electronic component 10 is not particularly limited and can be appropriately selected depending on the purpose. Examples of the first electronic component 10 include LCD (Liquid Crystal Display) panels, flat panel display (FPD) applications such as organic EL (OLED), transparent substrates for touch panel applications, printed wiring boards (PWB), and the like. It is done. The material of the printed wiring board is not particularly limited, and for example, glass epoxy such as FR-4 base material, plastic such as thermoplastic resin, ceramic, or the like can be used. In particular, when the first electronic component 10 is a low elasticity plastic substrate such as a PET (PolyEthylene Terephthalate) substrate, the effect of deformation of the base material is reduced and the resistance is reduced without increasing the pressure during crimping. Is very effective. The elastic modulus of the plastic substrate is determined in consideration of factors such as the flexibility required for the connection body and the relationship between the flexibility and the connection strength with an electronic component such as the drive circuit element 3 described later. The pressure is set to 2000 MPa to 4100 MPa. The transparent substrate is not particularly limited as long as it has high transparency, and examples thereof include a glass substrate and a plastic substrate. From the viewpoint of heat resistance, a ceramic substrate is preferably used.
 異方性導電フィルム20は、前述した異方性導電フィルムと同様であるため、ここでは詳細な説明を省略する。異方性導電フィルム20の厚みは、接続する対象によって適宜調整することができるため特に制限はないが、取り扱いを容易にするためには下限を10μm以上が好ましく、15μm以上がより好ましい。上限は、巻装体にした場合のはみ出し防止の観点から、60μm以下が好ましく、50μm以下がより好ましい。また、導電粒子含有層及び導電粒子非含有層からなる2層型の異方性導電フィルムを用いてもよい(3層型以上の多層であってもよい)。上述の異方性導電フィルム20の厚みは、多層の場合は全体の合計の厚みを指す。 Since the anisotropic conductive film 20 is the same as the anisotropic conductive film described above, detailed description thereof is omitted here. The thickness of the anisotropic conductive film 20 is not particularly limited because it can be appropriately adjusted depending on the object to be connected, but in order to facilitate handling, the lower limit is preferably 10 μm or more, and more preferably 15 μm or more. The upper limit is preferably 60 μm or less, and more preferably 50 μm or less, from the viewpoint of preventing protrusion when a wound body is used. Alternatively, a two-layer anisotropic conductive film composed of a conductive particle-containing layer and a conductive particle non-containing layer may be used (a multilayer of three or more layers may be used). The thickness of the above-mentioned anisotropic conductive film 20 indicates the total thickness in the case of a multilayer.
 [硬化工程(S2)]
 図1(B)に示すように、硬化工程(S2)では、異方性導電フィルム20上に第2の電子部品30を配置し、熱圧着ツール40により第2の電子部品30を第1の電子部品10に熱圧着させる。
[Curing step (S2)]
As shown in FIG. 1B, in the curing step (S2), the second electronic component 30 is disposed on the anisotropic conductive film 20, and the second electronic component 30 is moved to the first by the thermocompression bonding tool 40. The electronic component 10 is thermocompression bonded.
 第2の電子部品30は、第1の端子列11に対向する第2の端子列31を備える。第2の電子部品30は、特に制限はなく、目的に応じて適宜選択することができる。第2の電子部品30としては、例えば、IC(Integrated Circuit)、フレキシブル基板(FPC:Flexible Printed Circuits)、テープキャリアパッケージ(TCP)基板、ICをFPCに実装したCOF(Chip On Film)などが挙げられる。 The second electronic component 30 includes a second terminal row 31 that faces the first terminal row 11. The 2nd electronic component 30 does not have a restriction | limiting in particular, According to the objective, it can select suitably. Examples of the second electronic component 30 include an IC (Integrated Circuit), a flexible substrate (FPC: Flexible Printed Circuit), a tape carrier package (TCP) substrate, and a COF (Chip On Film) in which an IC is mounted on an FPC. It is done.
 硬化工程(S2)では、圧着ツール40を用いて、一例として40MPa~150MPaの圧力、好ましくは50MPa~130MPaの圧力、低圧としてはより好ましくは50MPa~80MPaの圧力で押圧する。また、硬化工程(S2)では、圧着ツール40を用いて、好ましくは250℃以下の温度、より好ましくは230℃以下の温度、さらに好ましくは220℃以下の温度で押圧する。これにより、圧着ツール40の熱により樹脂が溶融し、圧着ツール40により第2の電子部品が十分に押し込まれ、樹脂コア導電粒子21が端子間に挟持された状態で樹脂が熱硬化するため、優れた導通性を得ることができる。尚、40MPa~150MPaとは40MPa以上、150MPa以下を指す。他の表記においても同様の趣旨である。 In the curing step (S2), the pressure tool 40 is used as an example to press at a pressure of 40 MPa to 150 MPa, preferably a pressure of 50 MPa to 130 MPa, and a low pressure of 50 MPa to 80 MPa. In the curing step (S2), pressing is performed using the crimping tool 40, preferably at a temperature of 250 ° C. or lower, more preferably at a temperature of 230 ° C. or lower, and even more preferably at a temperature of 220 ° C. or lower. Thereby, the resin is melted by the heat of the crimping tool 40, the second electronic component is sufficiently pushed by the crimping tool 40, and the resin is thermoset while the resin core conductive particles 21 are sandwiched between the terminals. Excellent electrical conductivity can be obtained. Incidentally, 40 MPa to 150 MPa means 40 MPa or more and 150 MPa or less. The same is true for other notations.
 また、硬化工程(S2)では、圧着ツール40と第2の電子部品30との間に緩衝材を使用してもよい。緩衝材としては、ポリテトラフルオロエチレン(PTFE:polytetrafluoroethylene)、シリコンラバーなどを用いることができる。 In the curing step (S2), a cushioning material may be used between the crimping tool 40 and the second electronic component 30. As the buffer material, polytetrafluoroethylene (PTFE), silicon rubber, or the like can be used.
 このような接続体の製造方法によれば、樹脂コア導電粒子21の圧縮回復率及び20%圧縮時の圧縮硬さK値が大きいことにより、低圧条件の圧着でも樹脂コア導電粒子が酸化物層を突き破ること可能となり、高い接続信頼性を得ることができる。
 <3.実施例>
According to such a connection body manufacturing method, since the compression recovery rate of the resin core conductive particles 21 and the compression hardness K value at the time of 20% compression are large, the resin core conductive particles are oxide layers even under pressure bonding under low pressure conditions. It is possible to break through and high connection reliability can be obtained.
<3. Example>
 以下、本技術の実施例について説明する。本実施例では、異方性導電接着剤の一形態として異方性導電フィルムを作製し、接続体を作製した。そして、接続体の初期の導通抵抗、及び信頼性試験後の導通抵抗を測定した。なお、本技術は、これらの実施例に限定されるものではない。 Hereinafter, examples of the present technology will be described. In this example, an anisotropic conductive film was prepared as an embodiment of the anisotropic conductive adhesive, and a connected body was prepared. Then, the initial conduction resistance of the connection body and the conduction resistance after the reliability test were measured. Note that the present technology is not limited to these examples.
 [異方性導電フィルムの作製]
 表1に示す樹脂コア導電粒子を含有する導電粒子含有層と導電粒子非含有層とが積層された2層構造の異方性導電フィルムを作製した。先ず、フェノキシ樹脂(YP50、新日鐵化学(株))20質量部、液状エポキシ樹脂(EP828、三菱ケミカル(株))30質量部、固形エポキシ樹脂(YD-014、新日鐵化学(株))10質量部、マイクロカプセル型潜在性硬化剤(ノバキュア3941H、旭化成イーマテリアルズ(株))30質量部、樹脂コア導電粒子を配合して、厚み8μmの導電粒子含有層を得た。樹脂コア導電粒子は、フィルム乾燥後に個数密度が約50000個/mmになるように調整して配合した。個数密度は、金属顕微鏡により100μm×100μmの領域を、任意に抜き取った10箇所以上で観察することで計測し、求めた。
[Preparation of anisotropic conductive film]
An anisotropic conductive film having a two-layer structure in which a conductive particle-containing layer containing resin core conductive particles shown in Table 1 and a conductive particle non-containing layer were laminated was prepared. First, 20 parts by mass of phenoxy resin (YP50, Nippon Steel Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, Mitsubishi Chemical Co., Ltd.), solid epoxy resin (YD-014, Nippon Steel Chemical Co., Ltd.) ) 10 parts by mass, 30 parts by mass of a microcapsule-type latent curing agent (Novacure 3941H, Asahi Kasei E-Materials Co., Ltd.) and resin core conductive particles were blended to obtain a conductive particle-containing layer having a thickness of 8 μm. The resin core conductive particles were adjusted and blended so that the number density was about 50,000 / mm 2 after the film was dried. The number density was measured and determined by observing 10 μm or more of a 100 μm × 100 μm region with a metal microscope.
次に、フェノキシ樹脂(YP50、新日鐵化学(株))20質量部、液状エポキシ樹脂(EP828、三菱ケミカル(株))30質量部、固形エポキシ樹脂(YD-014、新日鐵化学(株))10質量部、マイクロカプセル型潜在性硬化剤(ノバキュア3941H、旭化成イーマテリアルズ(株))30質量部を配合して、厚み6μmの導電粒子非含有層を得た。 Next, 20 parts by mass of phenoxy resin (YP50, Nippon Steel Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, Mitsubishi Chemical Corporation), solid epoxy resin (YD-014, Nippon Steel Chemical Co., Ltd.) )) 10 parts by mass and 30 parts by mass of a microcapsule type latent curing agent (Novacure 3941H, Asahi Kasei E-Materials Co., Ltd.) were obtained to obtain a conductive particle-free layer having a thickness of 6 μm.
 そして、導電粒子含有層と導電粒子非含有層とを貼り合わせて、厚み14μmの2層構造の異方性導電フィルムを得た。 Then, the conductive particle-containing layer and the conductive particle non-containing layer were bonded together to obtain a two-layer anisotropic conductive film having a thickness of 14 μm.
 [接続体の作製]
 以下の方法により接続体を製造し、以下に示す評価を行った。ガラス基板として、Ti/Al膜がパターニングされた平均厚み0.3mmのTi/Al配線板を用いた。電子部品として、ICチップ(1.8×20mm、t(厚み)=0.5mm、Au-plated bump 30μm×85μm、h(高さ)=9μm)を用いた。
[Production of connected body]
The connected body was manufactured by the following method and evaluated as follows. As a glass substrate, a Ti / Al wiring board having an average thickness of 0.3 mm on which a Ti / Al film was patterned was used. An IC chip (1.8 × 20 mm, t (thickness) = 0.5 mm, Au-plated bump 30 μm × 85 μm, h (height) = 9 μm) was used as an electronic component.
 異方性導電フィルムを所定幅にスリットして、Ti/Al配線板に張り付けた。その上にICチップを仮固定した後、緩衝材として平均厚み50μmのテトラフルオロエチレンが被覆されたヒートツールを用いて、温度220℃、圧力130MPa、時間5secの圧着条件1、温度220℃、圧力80MPa、時間5secの圧着条件2、温度220℃、圧力50MPa、時間5secの圧着条件3で圧着を行い、接続体を完成させた。 An anisotropic conductive film was slit to a predetermined width and attached to a Ti / Al wiring board. After temporarily fixing the IC chip thereon, using a heat tool coated with tetrafluoroethylene having an average thickness of 50 μm as a buffer material, temperature 220 ° C., pressure 130 MPa, time 5 sec pressure bonding condition 1, temperature 220 ° C., pressure Crimping was performed under pressure bonding condition 2 of 80 MPa, time 5 seconds, temperature 220 ° C., pressure 50 MPa, pressure time 3 of time 5 seconds, and a connected body was completed.
 [導通抵抗の測定]
 ICチップとTi/Al配線板との接続状態について、デジタルマルチメータを使用して、初期及び信頼性試験後における導通抵抗(Ω)を測定した。導通抵抗値の測定は、ベアチップのバンプに接続されたフレキシブル配線板の配線にデジタルマルチメータを接続し、50Vの電圧測定でいわゆる4端子法にて導通抵抗値を測定した。信頼性試験は、温度85℃、湿度85%、時間500hrの条件とした。
[Measurement of conduction resistance]
About the connection state of an IC chip and a Ti / Al wiring board, the conduction resistance ((ohm)) after an initial stage and a reliability test was measured using the digital multimeter. For the measurement of the conduction resistance value, a digital multimeter was connected to the wiring of the flexible wiring board connected to the bump of the bare chip, and the conduction resistance value was measured by a so-called four-terminal method with a voltage measurement of 50V. The reliability test was performed under conditions of a temperature of 85 ° C., a humidity of 85%, and a time of 500 hours.
 [導通抵抗の評価]
 初期の導通抵抗値は、1Ω未満を「A」、1Ω以上2Ω未満を「B」、2Ω以上を「C」と評価した。また、信頼性試験後の導通抵抗値は、2Ω未満を「A」、2Ω以上5Ω未満を「B」、5Ω以上を「C」と評価した。実用上はB以上であればよく、Aであれば好ましい。
[Evaluation of conduction resistance]
The initial conduction resistance value was evaluated as “A” for less than 1Ω, “B” for 1Ω or more and less than 2Ω, and “C” for 2Ω or more. Further, the conduction resistance value after the reliability test was evaluated as “A” when less than 2Ω, “B” when 2Ω or more and less than 5Ω, and “C” when 5Ω or more. Practically, it may be B or more, and A is preferable.
 また、初期の導通抵抗値に対する信頼性試験後の導通抵抗値の上昇率を算出した((信頼性試験後の導通抵抗値/初期の導通抵抗値)×100)。抵抗値上昇率は200%以下であることが好ましいが、初期導通抵抗評価、及び信頼性試験後導通抵抗評価がA評価であれば、抵抗値上昇率が200%を超えても問題ない。信頼性試験後導通抵抗値が2Ω未満における抵抗値の変動のためである。初期導通抵抗評価、及び信頼性試験後導通抵抗評価が異なる圧力条件でA評価であり、且つ抵抗値上昇率が200%以下であれば、圧力変動の影響にも耐えられることから好ましく、50MPaおよび80MPaが満足されていれば低圧で使用できる点でより好ましく、全ての圧力条件で満足されていれば更により好ましい。また、初期導通抵抗評価、及び信頼性試験後導通抵抗評価がA評価であり、且つ抵抗値上昇率が160%以下であれば、抵抗値の変動はより狭い範囲で安定していることになるため、より好ましい。抵抗値上昇率が160%以下であることは、初期抵抗値が1Ω弱であっても、信頼性試験抵抗値が2Ω未満に十分な余裕をもてることを表す。圧力条件による違いについては、上記同様のため省略する。 Also, the rate of increase of the conduction resistance value after the reliability test with respect to the initial conduction resistance value was calculated ((conduction resistance value after reliability test / initial conduction resistance value) × 100). The resistance value increase rate is preferably 200% or less, but if the initial conduction resistance evaluation and the conduction resistance evaluation after the reliability test are A evaluation, there is no problem even if the resistance value increase rate exceeds 200%. This is because the resistance value varies when the conduction resistance value is less than 2Ω after the reliability test. If the initial conduction resistance evaluation and the conduction resistance evaluation after the reliability test are A evaluations under different pressure conditions and the resistance value increase rate is 200% or less, it is preferable because it can withstand the influence of pressure fluctuations, and 50 MPa and If 80 MPa is satisfied, it is more preferable in that it can be used at a low pressure, and it is even more preferable if it is satisfied under all pressure conditions. In addition, if the initial conduction resistance evaluation and the conduction resistance evaluation after the reliability test are A evaluation and the resistance value increase rate is 160% or less, the fluctuation of the resistance value is stable in a narrower range. Therefore, it is more preferable. A resistance value increase rate of 160% or less indicates that even if the initial resistance value is less than 1Ω, the reliability test resistance value has a sufficient margin below 2Ω. Differences due to pressure conditions are the same as described above, and are omitted.
 [実験例1]
 表1に示すように、平均粒径が3μm、圧縮回復率が64%、20%圧縮時の圧縮硬さK値が12600N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した。
[Experiment 1]
As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 64%, and a compression hardness K value at compression of 20% of 12600 N / mm 2. did.
 樹脂コア導電粒子は、次のようにして作製した。ジビニルベンゼン、スチレン、ブチルメタクリレートの混合比を調整した溶液に重合開始剤としてベンゾイルパーオキサイドを投入して高速で均一攪拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。微粒子分散液をろ過し、減圧乾燥することにより微粒子の凝集体であるブロック体を得た。そして、ブロック体を粉砕(解砕)することにより、平均粒子径3.0μmのジビニルベンゼン系樹脂粒子を得た。 Resin core conductive particles were produced as follows. Benzoyl peroxide as a polymerization initiator was added to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate was adjusted, and the mixture was heated with uniform stirring at high speed to perform a polymerization reaction, thereby obtaining a fine particle dispersion. The fine particle dispersion was filtered and dried under reduced pressure to obtain a block body which is an aggregate of fine particles. Then, the block body was pulverized (pulverized) to obtain divinylbenzene resin particles having an average particle size of 3.0 μm.
 また、絶縁性粒子として、平均粒子径が150nmであるアルミナ(Al)を使用した。また、導電層用のメッキ液として、硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.25mol/L、及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を含むニッケルメッキ液を使用した。 Further, as the insulating particles, alumina (Al 2 O 3 ) having an average particle diameter of 150 nm was used. Moreover, nickel plating containing nickel plating solution (pH 8.5) containing nickel sulfate 0.23 mol / L, dimethylamine borane 0.25 mol / L, and sodium citrate 0.5 mol / L as a plating solution for the conductive layer. The liquid was used.
 先ず、パラジウム触媒液を5wt%含むアルカリ溶液100質量部に対し、樹脂コア粒子10質量部を超音波分散器で分散させた後、溶液をろ過し、樹脂コア粒子を取り出した。次いで、樹脂コア粒子10質量部をジメチルアミンボラン1wt%溶液100質量部に添加し、樹脂コア粒子の表面を活性化させた。そして、樹脂コア粒子を十分に水洗した後、蒸留水500質量部に加え、分散させることにより、パラジウムが付着された樹脂コア粒子を含む分散液を得た。 First, 10 parts by mass of resin core particles were dispersed by an ultrasonic disperser with respect to 100 parts by mass of an alkaline solution containing 5 wt% of palladium catalyst solution, and then the solution was filtered to take out resin core particles. Next, 10 parts by mass of the resin core particles were added to 100 parts by mass of a 1 wt% dimethylamine borane solution to activate the surface of the resin core particles. Then, after sufficiently washing the resin core particles with water, the dispersion was added to 500 parts by mass of distilled water and dispersed to obtain a dispersion containing resin core particles to which palladium was attached.
 次に、絶縁性粒子1gを3分間かけて分散液に添加し、絶縁性粒子が付着された粒子を含むスラリーを得た。そして、スラリーを60℃で撹拌しながら、スラリー中にニッケルメッキ液を徐々に滴下し、無電解ニッケルメッキを行った。水素の発泡が停止するのを確認した後、粒子をろ過し、水洗し、アルコール置換した後に真空乾燥し、アルミナで形成された突起と、Ni-Bメッキの導電層とを有する導電性粒子を得た。この導電性粒子を走査型電子顕微鏡(SEM)にて観察したところ、導電層の厚みは約100nmであった。 Next, 1 g of insulating particles was added to the dispersion over 3 minutes to obtain a slurry containing particles with insulating particles attached thereto. Then, while stirring the slurry at 60 ° C., a nickel plating solution was gradually dropped into the slurry to perform electroless nickel plating. After confirming that hydrogen foaming stopped, the particles were filtered, washed with water, substituted with alcohol, and then vacuum-dried. Conductive particles having protrusions formed of alumina and a conductive layer of Ni-B plating were obtained. Obtained. When the conductive particles were observed with a scanning electron microscope (SEM), the thickness of the conductive layer was about 100 nm.
 樹脂コア導電粒子の圧縮回復率及び20%圧縮時の圧縮硬さK値は、樹脂コア粒子を作製する際のジビニルベンゼン、スチレン、ブチルメタクリレートの混合比を調整することにより、所定値を得た。 The compression recovery rate of the resin core conductive particles and the compression hardness K value at 20% compression were obtained by adjusting the mixing ratio of divinylbenzene, styrene and butyl methacrylate when the resin core particles were produced. .
 そして、異方性導電フィルムを用いて温度220℃、圧力130MPa、時間5secの圧着条件1、温度220℃、圧力80MPa、時間5secの圧着条件2、温度220℃、圧力50MPa、時間5secの圧着条件3で接続体を製造した。 Then, using an anisotropic conductive film, pressure bonding condition 1 at temperature 220 ° C., pressure 130 MPa, time 5 sec, pressure bonding condition 2 at temperature 220 ° C., pressure 80 MPa, time 5 sec, pressure bonding condition at temperature 220 ° C., pressure 50 MPa, time 5 sec. 3 produced a connector.
 [実験例2]
 表1に示すように、平均粒径が3μm、圧縮回復率が72%、20%圧縮時の圧縮硬さK値が10000N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
[Experiment 2]
As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 72%, and a compression hardness K value at compression of 20% of 10,000 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
 [実験例3]
 表1に示すように、平均粒径が3μm、圧縮回復率が67%、20%圧縮時の圧縮硬さK値が9700N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
[Experiment 3]
As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 67%, and a compression hardness K value at compression of 20% of 9700 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
 [実験例4]
 表1に示すように、平均粒径が3μm、圧縮回復率が57%、20%圧縮時の圧縮硬さK値が9000N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
[Experimental Example 4]
As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 57%, and a compression hardness K value at compression of 20% of 9000 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
 [実験例5]
 表1に示すように、平均粒径が3μm、圧縮回復率が65%、20%圧縮時の圧縮硬さK値が4800N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
[Experimental Example 5]
As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 65%, and a compression hardness K value at compression of 20% of 4800 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
 [実験例6]
 表1に示すように、平均粒径が3μm、圧縮回復率が15%、20%圧縮時の圧縮硬さK値が22000N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
 [実験例7]
 表1に示すように、平均粒径が3μm、圧縮回復率が25%、20%圧縮時の圧縮硬さK値が14000N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
 [実験例8]
 表1に示すように、平均粒径が3μm、圧縮回復率が24%、20%圧縮時の圧縮硬さK値が11000N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
 [実験例9]
 表1に示すように、平均粒径が3μm、圧縮回復率が40%、20%圧縮時の圧縮硬さK値が6000N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
 [実験例10]
 表1に示すように、平均粒径が3μm、圧縮回復率が37%、20%圧縮時の圧縮硬さK値が1000N/mmの樹脂コア導電粒子を用いて異方性導電フィルムを作製した以外は、実験例1と同様に接続体を製造した。
[Experimental Example 6]
As shown in Table 1, an anisotropic conductive film was prepared using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 15%, and a compression hardness K value of 22000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
[Experimental Example 7]
As shown in Table 1, an anisotropic conductive film is prepared using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 25%, and a compression hardness K value of 14000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
[Experimental Example 8]
As shown in Table 1, an anisotropic conductive film is produced using resin core conductive particles having an average particle diameter of 3 μm, a compression recovery rate of 24%, and a compression hardness K value of 11000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
[Experimental Example 9]
As shown in Table 1, an anisotropic conductive film is prepared using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 40%, and a compression hardness K value of 6000 N / mm 2 at 20% compression. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
[Experimental Example 10]
As shown in Table 1, an anisotropic conductive film was prepared using resin core conductive particles having an average particle size of 3 μm, a compression recovery rate of 37%, and a compression hardness K value at compression of 20% of 1000 N / mm 2. A connected body was manufactured in the same manner as in Experimental Example 1 except that.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実験例10のように、20%圧縮時の圧縮硬さK値が4000N/mm未満である樹脂コア導電粒子を用いた場合、圧力50MPaの条件、圧力80MPaの条件、及び圧力130MPaの条件での初期及び信頼性試験後の導通抵抗評価がCであった。 When the resin core conductive particles having a compression hardness K value at 20% compression of less than 4000 N / mm 2 are used as in Experimental Example 10, the pressure is 50 MPa, the pressure is 80 MPa, and the pressure is 130 MPa. The conduction resistance evaluation after the initial stage and reliability test was C.
 実験例6のように、20%圧縮回復率が20%未満であり、20%圧縮時の圧縮硬さK値が20000N/mmを超える樹脂コア導電粒子を用いた場合、圧力50MPaの条件及び圧力80MPaの条件での初期及び信頼性試験後の導通抵抗評価がCであったものの、圧力130MPaの条件での初期及び信頼性試験後の導通抵抗評価がBであった。 As in Experimental Example 6, when resin core conductive particles having a 20% compression recovery rate of less than 20% and a compression hardness K value at the time of 20% compression exceeding 20000 N / mm 2 are used, Although the conduction resistance evaluation after the initial stage under the condition of 80 MPa and after the reliability test was C, the evaluation of the conduction resistance after the initial stage under the condition of 130 MPa and after the reliability test was B.
 実験例9のように、20%圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子を用いた場合、圧力50MPaの条件での初期の導通抵抗評価がCであったものの、圧力80MPaの条件及び圧力130MPaの条件での信頼性試験後の導通抵抗評価がBであった。 As in Experimental Example 9, when resin core conductive particles having a 20% compression recovery rate of 20% or more and a compression hardness K value at the time of 20% compression of 4000 N / mm 2 or more are used, the pressure is 50 MPa. Although the initial conductive resistance evaluation at C was C, the conductive resistance evaluation after the reliability test under the conditions of a pressure of 80 MPa and a pressure of 130 MPa was B.
 実験例7、8のように、20%圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が10000N/mm以上である樹脂コア導電粒子を用いた場合、圧力50MPaの条件での初期の導通抵抗評価がCであったものの、圧力80MPaの条件での信頼性試験後の導通抵抗評価がBであり、圧力130MPaの条件での信頼性試験後の導通抵抗評価がAであった。 As in Experimental Examples 7 and 8, when resin core conductive particles having a 20% compression recovery rate of 20% or more and a compression hardness K value at the time of 20% compression of 10,000 N / mm 2 or more are used, the pressure is 50 MPa. Although the initial conduction resistance evaluation under the condition of C was C, the conduction resistance evaluation after the reliability test under the condition of pressure 80 MPa was B, and the conduction resistance evaluation after the reliability test under the condition of pressure 130 MPa was A.
 実験例1~5のように、20%圧縮回復率が45%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子を用いた場合、圧力50MPaの条件、圧力80MPaの条件、及び圧力130MPaの条件での信頼性試験後の導通抵抗評価がAであった。 When using resin core conductive particles having a 20% compression recovery rate of 45% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more as in Experimental Examples 1 to 5, the pressure is 50 MPa. The conduction resistance evaluation after the reliability test under the conditions of No. 1, pressure of 80 MPa, and pressure of 130 MPa was A.
 また、表1から、130MPaおよび80MPaの圧力条件の実験例1から5及び7から9が実用上問題ないことが分かった。特に、実験例1~5が良好であり、接続時の圧力範囲が広いことから、実仕様に適していることが分かった。また、130MPa、80MPa、50MPaの圧力条件の全てで良好であることからも、実験例1~5が実仕様に適していることが分かった。特に、実験例1及び2は、全ての圧力条件で初期および信頼性試験後の導通抵抗評価がAであり、且つ抵抗値上昇率が160%以下と安定していることから、より優れた効果を示している。 Also, from Table 1, it was found that Experimental Examples 1 to 5 and 7 to 9 under pressure conditions of 130 MPa and 80 MPa had no practical problem. In particular, Experimental Examples 1 to 5 were good and the pressure range at the time of connection was wide, which proved suitable for actual specifications. Further, since all of the pressure conditions of 130 MPa, 80 MPa, and 50 MPa were satisfactory, it was found that Experimental Examples 1 to 5 were suitable for actual specifications. In particular, in Experimental Examples 1 and 2, the conduction resistance evaluation after the initial test and after the reliability test is A under all pressure conditions, and the resistance value increase rate is stable at 160% or less. Is shown.
 実装部品へのダメージが懸念されるため、低圧条件で圧着して高い接続信頼性を得ることが要求される。50MPaの信頼性試験後の実験例1~5の抵抗値は、「実験例1<実験例2<実験例3<実験例4<実験例5」の関係となり、最も高い実験例5でも0.7Ω未満であった。尚、実験例1は実験例5の約50%の抵抗値であった。実験例3は抵抗値上昇率が200%を超えているが、これは抵抗値が十分に小さい上でのことであり、A評価である2Ω未満(正確には0.7Ω未満)と良好であるため問題はない。実験例1と実験2に関しては、抵抗値上昇率も比較的低く、比較的低圧な50MPaでも良好な実装状態が得られていることが分かった。 Since there is concern about damage to mounted parts, high connection reliability is required by crimping under low pressure conditions. The resistance values of Experimental Examples 1 to 5 after the reliability test of 50 MPa are in the relationship of “Experimental Example 1 <Experimental Example 2 <Experimental Example 3 <Experimental Example 4 <Experimental Example 5”. It was less than 7Ω. Experimental Example 1 had a resistance value of about 50% of Experimental Example 5. In Experimental Example 3, the rate of increase in the resistance value exceeds 200%. This is because the resistance value is sufficiently small, and the A evaluation is less than 2Ω (exactly less than 0.7Ω) and good. There is no problem because there is. Regarding Experimental Example 1 and Experiment 2, it was found that the rate of increase in resistance value was relatively low, and a good mounting state was obtained even at a relatively low pressure of 50 MPa.
 [粒子分散方式]
 次に、実験例1、2で用いた樹脂コア導電粒子を用いて、ランダム系又は配列系の粒子分散方式の違いによる粒子捕捉性及び接続信頼性について検討した。接続信頼性については、上述と同様に、接続体の初期の導通抵抗、及び信頼性試験後の導通抵抗を測定した。
[Particle dispersion method]
Next, using the resin core conductive particles used in Experimental Examples 1 and 2, the particle trapping property and the connection reliability due to the difference in the random or arrayed particle dispersion method were examined. For connection reliability, the initial conduction resistance of the connection body and the conduction resistance after the reliability test were measured in the same manner as described above.
 [粒子捕捉性(捕捉率、粒子捕捉効率)]
 下記式により捕捉率を算出した。
 [(接続後のバンプ1個に捕捉されている粒子個数(個)/バンプ1個の面積(mm)) / (接続前の異方性導電フィルムの個数密度(個/mm))]×100
 接続後のバンプに捕捉されている粒子個数は、ガラス基板側から金属顕微鏡で観察した圧痕を、金属顕微鏡により観察し、計測して求めた。尚、捕捉数を確認したバンプは120個(N=120)とし、捕捉率の平均値を粒子捕捉効率とした(小数点以下は四捨五入した)。
[Particle trapping properties (trapping rate, particle trapping efficiency)]
The capture rate was calculated by the following formula.
[(Number of particles captured by one bump after connection (number) / area of one bump (mm 2 )) / (number density of anisotropic conductive film before connection (number / mm 2 ))] × 100
The number of particles captured by the bumps after connection was determined by observing and measuring the indentation observed with a metal microscope from the glass substrate side. The number of bumps whose number of traps was confirmed was 120 (N = 120), and the average value of the trapping rate was defined as the particle trapping efficiency (the fractional part was rounded off).
 [実験例11]
 表2に示すように、実験例1と同様の、平均粒径が3μm、圧縮回復率が64%、20%圧縮時の圧縮硬さK値が12600N/mmの樹脂コア導電粒子を用いた。樹脂コア導電粒子を配線基板上に所定の配列パターンに整列させた後、絶縁性樹脂層が設けられたフィルムによって樹脂コア導電粒子を転写することにより導電粒子含有層を形成した。配列パターンは、導電粒子をフィルム面視野で六方格子に配置した形状であり、粒子個数密度を28000個/mmとした。これ以外は、実験例1と同様に接続体を製造した。
[Experimental Example 11]
As shown in Table 2, resin core conductive particles having an average particle diameter of 3 μm, a compression recovery rate of 64%, and a compression hardness K value at the time of 20% compression of 12600 N / mm 2 were used as in Experimental Example 1. . After aligning the resin core conductive particles in a predetermined arrangement pattern on the wiring substrate, the resin core conductive particles were transferred by a film provided with an insulating resin layer to form a conductive particle-containing layer. The arrangement pattern has a shape in which conductive particles are arranged in a hexagonal lattice in the field of view of the film, and the particle number density is 28000 / mm 2 . Except for this, a connection body was manufactured in the same manner as in Experimental Example 1.
 [実験例12]
 表2に示すように、実験例2と同様の、平均粒径が3μm、圧縮回復率が72%、20%圧縮時の圧縮硬さK値が10000N/mmの樹脂コア導電粒子を用いた。樹脂コア導電粒子を配線基板上に所定の配列パターンに整列させた後、絶縁性樹脂層が設けられたフィルムによって樹脂コア導電粒子を転写することにより導電粒子含有層を形成した。配列パターンは、導電粒子をフィルム面視野で六方格子に配置した形状であり、粒子個数密度を28000個/mmとした。これ以外は、実験例1と同様に接続体を製造した。
[Experimental example 12]
As shown in Table 2, resin core conductive particles having an average particle diameter of 3 μm, a compression recovery rate of 72%, and a compression hardness K value at the time of 20% compression of 10,000 N / mm 2 were used as in Experimental Example 2. . After aligning the resin core conductive particles in a predetermined arrangement pattern on the wiring substrate, the resin core conductive particles were transferred by a film provided with an insulating resin layer to form a conductive particle-containing layer. The arrangement pattern has a shape in which conductive particles are arranged in a hexagonal lattice in the field of view of the film, and the particle number density is 28000 / mm 2 . Except for this, a connection body was manufactured in the same manner as in Experimental Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、粒子分散方式がランダムの場合の粒子捕捉効率は、実験例1が26%、実験例2が28%であった。また、粒子分散方式が配列の場合の粒子捕捉効率は、実験例11が52%、実験例12が51%であった。即ち、粒子分散方式が配列であるほうが、接続時の導電粒子の粒子捕捉効率が高いことが分かった。 As shown in Table 2, the particle capturing efficiency when the particle dispersion method is random was 26% in Experimental Example 1 and 28% in Experimental Example 2. In addition, the particle capturing efficiency when the particle dispersion method is an array was 52% in Experimental Example 11 and 51% in Experimental Example 12. That is, it was found that the particle dispersion efficiency of the conductive particles at the time of connection is higher when the particle dispersion method is the array.
 また、実験例1、2、11、12より、粒子分散方式がランダム系であっても配列系と同等の接続信頼性が得られることが分かった。すなわち、粒子分散方式としてランダム系を採用することにより、材料コストを抑えることが可能であることが分かった。 Also, from Experimental Examples 1, 2, 11, and 12, it was found that even if the particle dispersion method is a random system, connection reliability equivalent to that of the array system can be obtained. That is, it was found that the material cost can be suppressed by adopting a random system as the particle dispersion method.
 10 第1の電子部品、11 第1の端子列、20 異方性導電接着フィルム、21 樹脂コア導電粒子、30 第2の電子部品、31 第2の端子列、40 圧着ツール
 
 
DESCRIPTION OF SYMBOLS 10 1st electronic component, 11 1st terminal row | line | column, 20 anisotropic conductive adhesive film, 21 resin core conductive particle, 30 2nd electronic component, 31 2nd terminal row | line | column, 40 Crimping tool

Claims (9)

  1.  絶縁性接着剤と、
     圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する導電材料。
    An insulating adhesive;
    A conductive material containing resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more.
  2.  前記樹脂コア導電粒子の圧縮回復率が45%以上であり、20%圧縮時の圧縮硬さK値が4500N/mm以上である請求項1記載の導電材料。 The conductive material according to claim 1, wherein the compression recovery rate of the resin core conductive particles is 45% or more, and the compression hardness K value at the time of 20% compression is 4500 N / mm 2 or more.
  3.  前記樹脂コア導電粒子の圧縮回復率が60%以上である請求項1記載の導電材料。 The conductive material according to claim 1, wherein the resin core conductive particles have a compression recovery rate of 60% or more.
  4.  前記樹脂コア導電粒子の20%圧縮時の圧縮硬さK値が8000N/mm以上である請求項1記載の導電材料。 The conductive material according to claim 1, wherein the resin core conductive particles have a compression hardness K value at 20% compression of 8000 N / mm 2 or more.
  5.  前記樹脂コア導電粒子の20%圧縮時の圧縮硬さK値が20000N/mm以下である請求項1記載の導電材料。 The conductive material according to claim 1, wherein the resin core conductive particles have a compression hardness K value at 20% compression of 20000 N / mm 2 or less.
  6.  前記絶縁性接着剤が、膜形成樹脂と、エポキシ樹脂と、アニオン重合開始剤とを含有し、当該導電材料が、フィルム状である請求項1乃至5のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 5, wherein the insulating adhesive contains a film-forming resin, an epoxy resin, and an anionic polymerization initiator, and the conductive material is in the form of a film.
  7.  絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する導電材料を介して第1の電子部品と第2の電子部品とを配置する配置工程と、
     圧着ツールにより前記第2の電子部品を前記第1の電子部品に圧着させるとともに、前記導電材料を硬化させる硬化工程とを有する接続体の製造方法。
    The first through the conductive material containing the insulating adhesive and the resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. An arranging step of arranging the electronic component and the second electronic component;
    A method of manufacturing a connection body, comprising: a step of crimping the second electronic component to the first electronic component with a crimping tool; and a curing step of curing the conductive material.
  8.  前記硬化工程では、40MPa~150MPaの条件で前記第2の電子部品を前記第1の電子部品に圧着させる請求項7記載の接続体の製造方法。 The method for manufacturing a connection body according to claim 7, wherein, in the curing step, the second electronic component is pressure-bonded to the first electronic component under a condition of 40 MPa to 150 MPa.
  9.  第1の電子部品と、第2の電子部品と、前記第1の電子部品と前記第2の電子部品とが接着された接着膜とを備え、
     前記接着膜は、絶縁性接着剤と、圧縮回復率が20%以上であり、20%圧縮時の圧縮硬さK値が4000N/mm以上である樹脂コア導電粒子とを含有する導電材料が硬化してなる接続体。
     
    A first electronic component; a second electronic component; and an adhesive film in which the first electronic component and the second electronic component are bonded.
    The adhesive film is made of a conductive material containing an insulating adhesive and resin core conductive particles having a compression recovery rate of 20% or more and a compression hardness K value at 20% compression of 4000 N / mm 2 or more. Hardened connection body.
PCT/JP2019/010673 2018-03-30 2019-03-14 Conductive material and connecting body manufacturing method WO2019188372A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202310143827.7A CN116364328A (en) 2018-03-30 2019-03-14 Method for preparing conductive material and connector
KR1020207023659A KR102517498B1 (en) 2018-03-30 2019-03-14 Conductive material and manufacturing method of connection body
CN201980019724.1A CN111886657A (en) 2018-03-30 2019-03-14 Conductive material and method for producing connector
CN202311573742.9A CN117877784A (en) 2018-03-30 2019-03-14 Method for preparing conductive material and connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-067630 2018-03-30
JP2018067630A JP2019179647A (en) 2018-03-30 2018-03-30 Conductive material, and manufacturing method of connection body

Publications (1)

Publication Number Publication Date
WO2019188372A1 true WO2019188372A1 (en) 2019-10-03

Family

ID=68058334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010673 WO2019188372A1 (en) 2018-03-30 2019-03-14 Conductive material and connecting body manufacturing method

Country Status (5)

Country Link
JP (2) JP2019179647A (en)
KR (1) KR102517498B1 (en)
CN (3) CN116364328A (en)
TW (1) TW202001932A (en)
WO (1) WO2019188372A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548160B1 (en) * 2020-12-17 2023-06-28 덕산네오룩스 주식회사 High-strength Bid, Conductive Particles using the same
KR102546837B1 (en) * 2020-12-17 2023-06-29 덕산네오룩스 주식회사 High-strength Bid, Conductive Particles using the same
KR102546836B1 (en) * 2020-12-17 2023-06-30 덕산네오룩스 주식회사 High-strength Bid, Conductive Particles using the same
WO2023013529A1 (en) 2021-08-06 2023-02-09 パナック株式会社 Method for producing connected body, and connected body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007334A1 (en) * 2012-07-05 2014-01-09 積水化学工業株式会社 Conductive particle, resin particle, conductive material, and connection structure
JP2017069191A (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Conductive particle, conductive material and connection structure
WO2017191776A1 (en) * 2016-05-02 2017-11-09 デクセリアルズ株式会社 Method for manufacturing anisotropic conductive film, and anisotropic conductive film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667374B1 (en) * 2004-12-16 2007-01-10 제일모직주식회사 Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
JP5896732B2 (en) 2011-01-06 2016-03-30 積水化学工業株式会社 Anisotropic conductive material and connection structure
CN103329217B (en) * 2011-01-25 2016-06-29 株式会社日本触媒 Electrically conductive microparticle and resin particle and employ their anisotropic conductive material
KR101962977B1 (en) * 2011-07-28 2019-03-27 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
JP5737278B2 (en) * 2011-12-21 2015-06-17 日立化成株式会社 Circuit connection material, connection body, and method of manufacturing connection body
JP6057521B2 (en) 2012-03-05 2017-01-11 デクセリアルズ株式会社 Connection method using anisotropic conductive material and anisotropic conductive joined body
JP6212366B2 (en) * 2013-08-09 2017-10-11 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP6429228B2 (en) * 2014-04-24 2018-11-28 タツタ電線株式会社 Metal-coated resin particles and conductive adhesive using the same
JP6337630B2 (en) 2014-06-12 2018-06-06 日立化成株式会社 Circuit connection material and circuit connection structure
CN109983543B (en) 2017-03-30 2021-07-02 积水化学工业株式会社 Conductive particle, conductive material, and connection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007334A1 (en) * 2012-07-05 2014-01-09 積水化学工業株式会社 Conductive particle, resin particle, conductive material, and connection structure
JP2017069191A (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Conductive particle, conductive material and connection structure
WO2017191776A1 (en) * 2016-05-02 2017-11-09 デクセリアルズ株式会社 Method for manufacturing anisotropic conductive film, and anisotropic conductive film

Also Published As

Publication number Publication date
JP2019179647A (en) 2019-10-17
CN111886657A (en) 2020-11-03
CN117877784A (en) 2024-04-12
KR102517498B1 (en) 2023-04-03
JP2022173197A (en) 2022-11-18
KR20200110393A (en) 2020-09-23
TW202001932A (en) 2020-01-01
CN116364328A (en) 2023-06-30
JP7420883B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP7420883B2 (en) Conductive film, connection body manufacturing method, and connection body
JP7100088B2 (en) Conductive material
TWI618094B (en) Anisotropic conductive adhesive composite and film, and circuit connecting structure including the same
JP5067355B2 (en) Circuit connection material and circuit member connection structure
JP5737278B2 (en) Circuit connection material, connection body, and method of manufacturing connection body
JP6212366B2 (en) Conductive particles, conductive materials, and connection structures
JP2009074020A (en) Anisotropic conductive film
KR20140035993A (en) Circuit-connecting material and connected circuit board structure
JP2011100605A (en) Circuit connecting material and connection structure of circuit member using the same
JP2019065062A (en) Conductive adhesive film
TWI775562B (en) Method for manufacturing anisotropic conductive film, anisotropic conductive film, wound body of anisotropic conductive film, method for manufacturing connection structure, connection structure, method for manufacturing filler disposing film, and filler disposing film
WO2017047671A1 (en) Connection material
KR20190133023A (en) Screening method of a conductive particle, a circuit connection material, a bonded structure, its manufacturing method, and conductive particle
KR20110053115A (en) Anisotropic conductive film
TWI740807B (en) Conductive material, connection structure, and manufacturing method of connection structure
TWI738772B (en) Anisotropic conductive film manufacturing method and anisotropic conductive film
JP2021036522A (en) Connection material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774966

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20207023659

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774966

Country of ref document: EP

Kind code of ref document: A1