JP6057521B2 - Connection method using anisotropic conductive material and anisotropic conductive joined body - Google Patents

Connection method using anisotropic conductive material and anisotropic conductive joined body Download PDF

Info

Publication number
JP6057521B2
JP6057521B2 JP2012047773A JP2012047773A JP6057521B2 JP 6057521 B2 JP6057521 B2 JP 6057521B2 JP 2012047773 A JP2012047773 A JP 2012047773A JP 2012047773 A JP2012047773 A JP 2012047773A JP 6057521 B2 JP6057521 B2 JP 6057521B2
Authority
JP
Japan
Prior art keywords
hardness
metal part
anisotropic conductive
electronic component
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012047773A
Other languages
Japanese (ja)
Other versions
JP2013183118A (en
Inventor
克哉 工藤
克哉 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2012047773A priority Critical patent/JP6057521B2/en
Priority to PCT/JP2013/055335 priority patent/WO2013133116A1/en
Priority to CN201380012602.2A priority patent/CN104145329B/en
Priority to KR1020147027523A priority patent/KR101994507B1/en
Priority to TW102107605A priority patent/TWI528384B/en
Publication of JP2013183118A publication Critical patent/JP2013183118A/en
Application granted granted Critical
Publication of JP6057521B2 publication Critical patent/JP6057521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • H01L2224/1132Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/1316Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13164Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29316Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29357Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/2936Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29371Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75312Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8185Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83905Combinations of bonding methods provided for in at least two different groups from H01L2224/838 - H01L2224/83904
    • H01L2224/83907Intermediate bonding, i.e. intermediate bonding step for temporarily bonding the semiconductor or solid-state body, followed by at least a further bonding step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/381Pitch distance

Description

本発明は、異方性導電材料を用いた接続方法及び異方性導電接合体に関する。   The present invention relates to a connection method using an anisotropic conductive material and an anisotropic conductive joined body.

従来より、電子部品を基板と接続する手段として、導電性粒子が分散された熱硬化性樹脂を剥離フィルムに塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film)などの異方性導電材料)が用いられている。   Conventionally, as a means for connecting an electronic component to a substrate, a tape-like connection material in which a thermosetting resin in which conductive particles are dispersed is applied to a release film (for example, anisotropic conductive film (ACF)) Anisotropic conductive materials) are used.

この異方性導電材料は、例えば、フレキシブルプリント基板(FPC)やICチップの端子と、LCDパネルのガラス基板上に形成されたITO(Indium Tin Oxide)電極とを接続する場合を始めとして、種々の端子同士を接着すると共に電気的に接続する場合に用いられている。   This anisotropic conductive material can be used for various purposes, for example, when connecting terminals of a flexible printed circuit board (FPC) or an IC chip and ITO (Indium Tin Oxide) electrodes formed on a glass substrate of an LCD panel. These terminals are used for bonding and electrically connecting the terminals.

近年、電子部品は、より小型化、集積化が進んでいる。そのため、前記電子部品の有する電極は、隣り合う電極間のピッチがより小さく(ファインピッチ)なりつつある。ファインピッチの配線には、高電圧及び高電流に対応する為に高硬度を有する配線(例えば、Al、Cu、非結晶ITO、IZOなど)が使用されている。ところが、高硬度の配線を使用する場合は、前記異方性導電材料に高硬度の導電性粒子を使用する必要がある。そうすると、従来のように、種々の端子がAuのみからなる場合は、Auが軟金属であることから、前記導電性粒子が前記端子に埋没してしまい、前記導電性粒子の潰れが十分に行われず、異方性導電接続の初期から接続抵抗値が高くなり、接続信頼性が低下するという問題がある。一方、前記端子の硬度を高くすると、前記導電性粒子の潰れが過剰になる為に、異方性導電接続の経時における粒子反発が大きくなり、接続信頼性が低下するという問題がある。   In recent years, electronic components have been further miniaturized and integrated. For this reason, in the electrodes of the electronic component, the pitch between adjacent electrodes is becoming smaller (fine pitch). For the fine pitch wiring, wiring having high hardness (for example, Al, Cu, amorphous ITO, IZO, etc.) is used in order to cope with high voltage and high current. However, when using a high-hardness wiring, it is necessary to use high-hardness conductive particles for the anisotropic conductive material. Then, as in the conventional case, when various terminals are made of only Au, since Au is a soft metal, the conductive particles are buried in the terminals, and the conductive particles are sufficiently crushed. However, there is a problem that the connection resistance value increases from the initial stage of the anisotropic conductive connection, and the connection reliability decreases. On the other hand, when the hardness of the terminal is increased, the conductive particles are crushed excessively, so that the particle repulsion over time of the anisotropic conductive connection is increased and the connection reliability is lowered.

種々の端子の埋没を防ぐ技術として、第1の基板に形成された第1の金製突起状電極と、第2の基板に形成された第2の金製突起状電極とを固着した電子デバイスであって、前記第1の金製突起状電極における硬度を、前記第2の金製突起状電極における硬度に比べて高く形成することが開示されている(特許文献1参照)。また、前記第1の金製突起状電極として、金より硬度が高い金属の接合面側又は全表面上に金を被覆した電極が開示されている。
しかし、この場合は、前記第1の金製突起状電極と前記第2の金製突起状電極とを直接固着することから、前記異方性導電材料を使用することが想定されておらず、導電性粒子が端子に埋没してしまい、導電性粒子の潰れが十分に行われず、異方性導電接続の初期から接続抵抗値が高くなり、接続信頼性が低下する前記問題及び、粒子反発が大きくなり、異方性導電接続の経時における接続信頼性が低下してしまうという問題が依然として残る。
As a technique for preventing the burying of various terminals, an electronic device in which a first gold protruding electrode formed on a first substrate and a second gold protruding electrode formed on a second substrate are fixed However, it is disclosed that the hardness of the first gold protruding electrode is higher than the hardness of the second gold protruding electrode (see Patent Document 1). Moreover, the electrode which coat | covered gold | metal | money on the joint surface side or the whole surface of the metal whose hardness is higher than gold | metal | money is disclosed as said 1st gold | metal protrusion electrode.
However, in this case, since the first gold protruding electrode and the second gold protruding electrode are directly fixed, it is not assumed that the anisotropic conductive material is used, Since the conductive particles are buried in the terminals, the conductive particles are not sufficiently crushed, the connection resistance value is increased from the initial stage of anisotropic conductive connection, and the connection reliability is lowered, and the particle repulsion occurs. The problem still remains that the connection reliability of the anisotropic conductive connection with the passage of time is reduced.

したがって、ファインピッチの異方性導電接続において、導電性粒子の潰れが良好に行われ、異方性導電接続の初期から接続抵抗値が低く、かつ異方性導電接続の経時における導電性粒子の粒子反発が小さくなり、接続信頼性が向上する、異方性導電材料を用いた接続方法及び異方性導電接合体の提供が求められているのが現状である。   Therefore, in the fine pitch anisotropic conductive connection, the conductive particles are crushed well, the connection resistance value is low from the initial stage of the anisotropic conductive connection, and the conductive particles over time of the anisotropic conductive connection At present, there is a demand for a connection method using an anisotropic conductive material and an anisotropic conductive joined body that reduce particle repulsion and improve connection reliability.

特開2004−193161号公報JP 2004-193161 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、ファインピッチの異方性導電接続において、導電性粒子の潰れが良好に行われ、異方性導電接続の初期から接続抵抗値が低く、かつ異方性導電接続の経時における導電性粒子の粒子反発が小さくなり、接続信頼性が向上する、異方性導電材料を用いた接続方法及び異方性導電接合体を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, according to the present invention, in the fine pitch anisotropic conductive connection, the conductive particles are crushed well, the connection resistance value is low from the initial stage of the anisotropic conductive connection, and the anisotropic conductive connection over time. It is an object of the present invention to provide a connection method using an anisotropic conductive material and an anisotropic conductive joined body, in which particle repulsion of conductive particles is reduced and connection reliability is improved.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 第1の電子部品の端子と第2の電子部品の端子とを、異方性導電材料を介して接続した異方性導電接合体であって、
前記第1の電子部品の端子が、硬金属部及び前記硬金属部よりも柔らかい軟金属部を有し、
前記異方性導電材料が導電性粒子を有し、
前記軟金属部が、前記導電性粒子と接しており、
前記硬金属部が、前記第1の電子部品の配線と接しており、
前記硬金属部の硬度が、Hv100〜Hv650であり、
前記軟金属部の硬度が、Hv10〜Hv100であり、
前記導電性粒子の硬度が、5,880N/mm〜26,460N/mmであることを特徴とする異方性導電接合体である。
<2> 硬金属部が、平板状であり、接続前の前記硬金属部の平均厚みが、3.0μm〜12.0μmであり、
軟金属部が、平板状であり、接続前の前記軟金属部の平均厚みが、0.1μm〜9.0μmである前記<1>に記載の異方性導電接合体である。
<3> 接続前の導電性粒子の個数平均粒子径が、3.0μm〜10.0μmである前記<1>から<2>いずれかに記載の異方性導電接合体である。
<4> 接続前の平板状の軟金属部の平均厚み〔A(μm)〕と、接続前の導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)が、0.02〜1.00である前記<2>から<3>のいずれかに記載の異方性導電接合体である。
<5> 硬金属部の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv40以上である前記<1>から<4>のいずれかに記載の異方性導電接合体である。
<6> 接続前の平板状の軟金属部の平均厚み〔A(μm)〕と、接続前の導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)が、0.07〜0.70であり、
硬金属の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv50〜Hv350である前記<2>から<5>のいずれかに記載の異方性導電接合体である。
<7> 第1の電子部品の端子と第2の電子部品の端子とを、異方性導電接続させる接続方法であって、
前記第1の電子部品の端子が、硬金属部及び前記硬金属部よりも柔らかい軟金属部を有し、
前記硬金属部が、前記第1の電子部品の配線と接しており、
前記第1の電子部品の端子及び前記第2の電子部品の端子のいずれか一方の上に、導電性粒子を含有する異方性導電材料を配置する配置工程と、
前記異方性導電材料上に他方の前記電子部品を載置する載置工程と、
前記軟金属部と前記導電性粒子とが接するように、前記第1の電子部品及び前記第2の電子部品のいずれか一方を、加熱及び押圧する加熱押圧工程とを含み、
前記硬金属部の硬度が、Hv100〜Hv650であり、
前記軟金属部の硬度が、Hv10〜Hv100であり、
前記導電性粒子の硬度が、5,880N/mm〜26,460N/mmであることを特徴とする接続方法である。
<8> 硬金属部が、平板状であり、接続前の前記硬金属部の平均厚みが、3.0μm〜12.0μmであり、
軟金属部が、平板状であり、接続前の前記軟金属部の平均厚みが、0.1μm〜9.0μmである前記<7>に記載の接続方法である。
<9> 接続前の導電性粒子の個数平均粒子径が、3.0μm〜10.0μmである前記<7>から<8>のいずれかに記載の接続方法である。
<10> 接続前の平板状の軟金属部の平均厚み〔A(μm)〕と、接続前の導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)が、0.02〜1.00である前記<8>から<9>のいずれかに記載の接続方法である。
<11> 硬金属部の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv40以上である前記<7>から<10>のいずれかに記載の接続方法である。
<12> 接続前の平板状の軟金属部の平均厚み〔A(μm)〕と、接続前の導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)が、0.07〜0.70であり、
硬金属の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv50〜Hv350である前記<8>から<11>のいずれかに記載の接続方法である。
<13> 前記<7>から<12>のいずれかに記載の接続方法により製造されたことを特徴とする異方性導電接合体である。
Means for solving the problems are as follows. That is,
<1> An anisotropic conductive joint in which a terminal of a first electronic component and a terminal of a second electronic component are connected via an anisotropic conductive material,
The terminal of the first electronic component has a hard metal part and a soft metal part softer than the hard metal part,
The anisotropic conductive material has conductive particles;
The soft metal portion is in contact with the conductive particles;
The hard metal portion is in contact with the wiring of the first electronic component;
The hardness of the hard metal part is Hv100-Hv650,
The soft metal part has a hardness of Hv10 to Hv100,
The anisotropic conductive joint according to claim 1, wherein the conductive particles have a hardness of 5,880 N / mm 2 to 26,460 N / mm 2 .
<2> The hard metal part has a flat plate shape, and the average thickness of the hard metal part before connection is 3.0 μm to 12.0 μm,
The anisotropic conductive joint according to <1>, wherein the soft metal part has a flat plate shape, and an average thickness of the soft metal part before connection is 0.1 μm to 9.0 μm.
<3> The anisotropic conductive joined body according to any one of <1> to <2>, wherein the number average particle diameter of the conductive particles before connection is 3.0 μm to 10.0 μm.
<4> The ratio (A / D) between the average thickness [A (μm)] of the flat soft metal part before connection and the number average particle diameter [D (μm)] of the conductive particles before connection, The anisotropic conductive joint according to any one of <2> to <3>, which is 0.02 to 1.00.
<5> The anisotropy according to any one of <1> to <4>, wherein the difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part is Hv40 or more. Conductive conductive assembly.
<6> The ratio (A / D) between the average thickness [A (μm)] of the flat soft metal part before connection and the number average particle diameter [D (μm)] of the conductive particles before connection, 0.07-0.70,
The anisotropic conductive joint according to any one of <2> to <5>, wherein the difference (HS) between the hardness (H) of the hard metal and the hardness (S) of the soft metal portion is Hv50 to Hv350. Is the body.
<7> A connection method for anisotropically connecting the terminals of the first electronic component and the terminals of the second electronic component,
The terminal of the first electronic component has a hard metal part and a soft metal part softer than the hard metal part,
The hard metal portion is in contact with the wiring of the first electronic component;
An arrangement step of arranging an anisotropic conductive material containing conductive particles on either one of the terminal of the first electronic component and the terminal of the second electronic component;
A placing step of placing the other electronic component on the anisotropic conductive material;
A heating and pressing step of heating and pressing either the first electronic component or the second electronic component so that the soft metal portion and the conductive particles are in contact with each other,
The hardness of the hard metal part is Hv100-Hv650,
The soft metal part has a hardness of Hv10 to Hv100,
The connection method is characterized in that the conductive particles have a hardness of 5,880 N / mm 2 to 26,460 N / mm 2 .
<8> The hard metal part has a flat plate shape, and the average thickness of the hard metal part before connection is 3.0 μm to 12.0 μm,
The connection method according to <7>, wherein the soft metal part has a flat plate shape, and an average thickness of the soft metal part before connection is 0.1 μm to 9.0 μm.
<9> The connection method according to any one of <7> to <8>, wherein the number average particle diameter of the conductive particles before connection is 3.0 μm to 10.0 μm.
<10> The ratio (A / D) of the average thickness [A (μm)] of the flat soft metal part before connection and the number average particle diameter [D (μm)] of the conductive particles before connection, The connection method according to any one of <8> to <9>, wherein the connection method is 0.02 to 1.00.
<11> The connection method according to any one of <7> to <10>, wherein the difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part is Hv40 or more. It is.
<12> The ratio (A / D) between the average thickness [A (μm)] of the flat soft metal part before connection and the number average particle diameter [D (μm)] of the conductive particles before connection, 0.07-0.70,
The connection method according to any one of <8> to <11>, wherein the difference (HS) between the hardness (H) of the hard metal and the hardness (S) of the soft metal portion is Hv50 to Hv350.
<13> An anisotropic conductive joint produced by the connection method according to any one of <7> to <12>.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、ファインピッチの異方性導電接続において、導電性粒子の潰れが良好に行われ、異方性導電接続の初期から接続抵抗値が低く、かつ異方性導電接続の経時における導電性粒子の粒子反発が小さくなり、接続信頼性が向上する、異方性導電材料の接続方法及び異方性導電接合体を提供することができる。   According to the present invention, the above-described problems can be solved and the object can be achieved, and in the fine pitch anisotropic conductive connection, the conductive particles are well crushed, and the anisotropic conductive connection. Connection method of anisotropic conductive material and anisotropic conductive joint, in which the connection resistance value is low from the initial stage, the particle repulsion of the conductive particles over time of anisotropic conductive connection is reduced, and the connection reliability is improved Can be provided.

図1は、本発明に用いる第1の電子部品の一例を説明するための概略断面図である。FIG. 1 is a schematic cross-sectional view for explaining an example of a first electronic component used in the present invention. 図2Aは、本発明の接続方法の一例を説明するための概略断面図である。FIG. 2A is a schematic cross-sectional view for explaining an example of the connection method of the present invention. 図2Bは、本発明の接続方法の一例を説明するための概略断面図である。FIG. 2B is a schematic cross-sectional view for explaining an example of the connection method of the present invention. 図2Cは、本発明の接続方法の一例を説明するための概略断面図である。FIG. 2C is a schematic cross-sectional view for explaining an example of the connection method of the present invention.

(異方性導電接合体)
本発明の異方性導電接合体は、第1の電子部品と、第2の電子部品と、異方性導電材料とを少なくとも有し、更に必要に応じて、その他の部材を有する。
前記異方性導電接合体は、前記第1の電子部品の端子と前記第2の電子部品の端子とを、前記異方性導電材料を介して接続した接合体である。
(Anisotropic conductive assembly)
The anisotropic conductive joint of the present invention includes at least a first electronic component, a second electronic component, and an anisotropic conductive material, and further includes other members as necessary.
The anisotropic conductive joined body is a joined body in which the terminal of the first electronic component and the terminal of the second electronic component are connected via the anisotropic conductive material.

<第1の電子部品>
前記第1の電子部品としては、端子を有し、前記異方性導電材料を用いた異方性導電接続の対象となる電子部品であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ICチップ、TABテープ、液晶パネルなどが挙げられる。前記ICチップとしては、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップなどが挙げられる。
<First electronic component>
The first electronic component is not particularly limited as long as it is an electronic component that has terminals and is an object of anisotropic conductive connection using the anisotropic conductive material, and is appropriately selected according to the purpose. For example, an IC chip, a TAB tape, a liquid crystal panel, and the like can be given. Examples of the IC chip include a liquid crystal screen control IC chip in a flat panel display (FPD).

−第1の電子部品の端子−
前記第1の電子部品の端子としては、前記異方性導電材料を用いた異方性導電接続の対象となる電子部品の端子であり、硬金属部及び前記硬金属部よりも柔らかい軟金属部を有していれば、特に制限はなく、目的に応じて適宜選択することができる。
-Terminal of first electronic component-
The terminal of the first electronic component is a terminal of an electronic component that is a target of anisotropic conductive connection using the anisotropic conductive material, and is a hard metal portion and a soft metal portion that is softer than the hard metal portion. If it has, there will be no restriction | limiting in particular, According to the objective, it can select suitably.

−−硬金属部−−
前記硬金属部としては、前記第1の電子部品の配線と接しており、硬度がHv100〜Hv650であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記硬金属部の材質としては、例えば、Ni、Pd、Cu、Ti、Fe、Cr、Al、Inなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記硬金属部の硬度としては、Hv100〜Hv450が好ましい。
-Hard metal part-
The hard metal part is in contact with the wiring of the first electronic component and is not particularly limited as long as the hardness is Hv100 to Hv650, and can be appropriately selected according to the purpose.
Examples of the material of the hard metal part include Ni, Pd, Cu, Ti, Fe, Cr, Al, and In. These may be used individually by 1 type and may use 2 or more types together.
The hardness of the hard metal part is preferably Hv100 to Hv450.

−−硬度(Hv)−−
前記硬度は、ビッカース硬さである。前記ビッカース硬さの測定方法としては、JIS Z2244に記載の方法などが挙げられる。
--Hardness (Hv)-
The hardness is Vickers hardness. Examples of the method for measuring the Vickers hardness include the method described in JIS Z2244.

−−−硬金属部の形状等−−−
前記硬金属部の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、凹板状、凸板状、凹凸板状、波板状などが挙げられる。これらの中でも、平板状が好ましい。
前記硬金属部の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1種単独の部材で形成された構造、2種以上の部材で形成された構造などが挙げられる。
前記硬金属部の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記異方性導電接合体の耐久性及び異方性導電接続時の導電性の点で、3.0μm〜12.0μmが好ましく、5.0μm〜11.0μmがより好ましく、10.0μm〜11.0μmが特に好ましい。なお、前記硬金属部の平均厚みは、前記第1の電子部品の端子と前記第2の電子部品の端子とが接続する前に測定される平均厚みである。
前記硬金属部の平均厚みは、例えば、前記硬金属部から任意の10点を選び、それぞれの点における厚みを測定し、測定結果の厚みの平均値を算出することにより求めることができる。
--- Shape of hard metal part, etc .---
There is no restriction | limiting in particular as a shape of the said hard metal part, According to the objective, it can select suitably, For example, flat plate shape, concave plate shape, convex plate shape, uneven plate shape, corrugated plate shape etc. are mentioned. Among these, a flat plate shape is preferable.
There is no restriction | limiting in particular as a structure of the said hard metal part, According to the objective, it can select suitably, For example, the structure formed with the 1 type single member, the structure formed with 2 or more types of members, etc. Can be mentioned.
The average thickness of the hard metal part is not particularly limited and may be appropriately selected depending on the purpose. However, in terms of durability of the anisotropic conductive joint and conductivity during anisotropic conductive connection, 3.0 μm to 12.0 μm is preferable, 5.0 μm to 11.0 μm is more preferable, and 10.0 μm to 11.0 μm is particularly preferable. In addition, the average thickness of the said hard metal part is an average thickness measured before the terminal of a said 1st electronic component and the terminal of a said 2nd electronic component connect.
The average thickness of the hard metal part can be obtained, for example, by selecting arbitrary 10 points from the hard metal part, measuring the thickness at each point, and calculating the average value of the thicknesses of the measurement results.

−−軟金属部−−
前記軟金属部としては、導電性粒子と接しており、硬度がHv10〜Hv100であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記軟金属部の材質としては、例えば、Au、Ag、ハンダなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記硬金属部の硬度(H)と軟金属部の硬度(S)との差(H−S)としては、Hv40以上が好ましく、Hv50〜Hv350がより好ましい。
--Soft metal part--
The soft metal part is not particularly limited as long as it is in contact with the conductive particles and has a hardness of Hv10 to Hv100, and can be appropriately selected according to the purpose.
Examples of the material of the soft metal part include Au, Ag, and solder. These may be used individually by 1 type and may use 2 or more types together.
The difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part is preferably Hv40 or more, more preferably Hv50 to Hv350.

−−−軟金属部の形状等−−−
前記軟金属部の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、凹板状、凸板状、凹凸板状、波板状などが挙げられる。これらの中でも、平板状が好ましい。
前記軟金属部の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1種単独の部材で形成された構造、2種以上の部材で形成された構造などが挙げられる。
前記軟金属部の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記異方性導電接合体の耐久性及び異方性導電接続時の導電性の点で、0.1μm〜9.0μmが好ましく、0.2μm〜7.0μmがより好ましく、10.0μm〜2.0μmが特に好ましい。なお、前記軟金属部の平均厚みは、前記第1の電子部品の端子と前記第2の電子部品の端子とが接続する前に測定される平均厚みである。
前記軟金属部の平均厚みの測定方法としては、例えば、前記軟金属部から任意の10点を選び、それぞれの点における厚みを測定し、測定結果の厚みの平均値を算出することにより求めることができる。
---- Soft metal part shape, etc .---
There is no restriction | limiting in particular as a shape of the said soft metal part, According to the objective, it can select suitably, For example, flat plate shape, concave plate shape, convex plate shape, uneven plate shape, corrugated plate shape etc. are mentioned. Among these, a flat plate shape is preferable.
There is no restriction | limiting in particular as a structure of the said soft metal part, According to the objective, it can select suitably, For example, the structure formed with one type of single member, the structure formed with two or more types of members, etc. Can be mentioned.
The average thickness of the soft metal part is not particularly limited and may be appropriately selected depending on the purpose. However, in terms of durability of the anisotropic conductive joint and conductivity during anisotropic conductive connection, 0.1 μm to 9.0 μm is preferable, 0.2 μm to 7.0 μm is more preferable, and 10.0 μm to 2.0 μm is particularly preferable. The average thickness of the soft metal part is an average thickness measured before the terminal of the first electronic component and the terminal of the second electronic component are connected.
As a measuring method of the average thickness of the soft metal part, for example, any 10 points are selected from the soft metal part, the thickness at each point is measured, and the average value of the thickness of the measurement result is calculated Can do.

<第2の電子部品>
前記第2の電子部品としては、端子を有し、前記異方性導電材料を用いた異方性導電接続の対象となる電子部品であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の電子部品と同様な電子部品、ITOガラス基板、非結晶ITOガラス基板、IZOガラス基板、その他ガラスパターン基板などが挙げられる。この中でも、非結晶ITOガラス基板、IZOガラス基板が好ましい。
<Second electronic component>
The second electronic component is not particularly limited as long as it is an electronic component that has a terminal and is an object of anisotropic conductive connection using the anisotropic conductive material, and is appropriately selected according to the purpose. Examples thereof include electronic components similar to the first electronic component, ITO glass substrate, amorphous ITO glass substrate, IZO glass substrate, and other glass pattern substrates. Among these, an amorphous ITO glass substrate and an IZO glass substrate are preferable.

−第2の電子部品の端子−
前記第2の電子部品の端子としては、前記異方性導電材料を用いた異方性導電接続の対象となる電子部品の端子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の電子部品の端子と同様の端子などが挙げられる。
-Terminal of second electronic component-
The terminal of the second electronic component is not particularly limited as long as it is a terminal of an electronic component that is an object of anisotropic conductive connection using the anisotropic conductive material, and is appropriately selected according to the purpose. For example, a terminal similar to the terminal of the first electronic component may be used.

<異方性導電材料>
前記異方性導電材料は、導電性粒子を少なくとも含有し、更に必要に応じて、その他の成分を含有する。
前記異方性導電材料の形態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィルム状、液体状などが挙げられる。
<Anisotropic conductive material>
The anisotropic conductive material contains at least conductive particles, and further contains other components as necessary.
There is no restriction | limiting in particular as a form of the said anisotropic electrically-conductive material, According to the objective, it can select suitably, For example, a film form, a liquid form, etc. are mentioned.

−導電性粒子−
前記導電性粒子としては、硬度が5,880N/mm〜26,460N/mm(600kgf/mm〜2,500kgf/mm)であれば、特に制限はなく、目的に応じて適宜選択することができる。
-Conductive particles-
The conductive particles are not particularly limited as long as the hardness is 5,880 N / mm 2 to 26,460 N / mm 2 (600 kgf / mm 2 to 2,500 kgf / mm 2 ), and are appropriately selected according to the purpose. can do.

前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子(Ni、Fe、Cu、Al、Sn、Pb、Cr、Coなど)、樹脂コア金属メッキ粒子などが挙げられる。前記樹脂コア金属メッキ粒子における樹脂コアの材質としては、例えば、ジビニルベンゼン重合体、ポリスチレン樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   There is no restriction | limiting in particular as said electroconductive particle, According to the objective, it can select suitably, For example, metal particles (Ni, Fe, Cu, Al, Sn, Pb, Cr, Co etc.), resin core metal plating And particles. Examples of the material of the resin core in the resin core metal plating particles include divinylbenzene polymer, polystyrene resin, epoxy resin, phenol resin, acrylic resin, acrylonitrile / styrene (AS) resin, and benzoguanamine resin. These may be used individually by 1 type and may use 2 or more types together.

前記導電性粒子の硬度は、20%K値(圧縮弾性変形特性K20)として求められる硬度であり、例えば、以下の方法により測定することができる。
前記硬度は、前記導電性粒子の粒子直径が20%変位したときの圧縮弾性変形特性K20であり、微小圧縮試験機(MCT−W201、島津製作所製)を用い、直径50μmのダイヤモンド製円柱の平滑端面で、圧縮速度0.225g/秒間にて、得られた粒子を圧縮した際の荷重値、圧縮変位等を測定し、下記式から求められる値である。即ち、20%K値は、粒子の20%変位に必要な荷重及び圧縮変形量を測定して求める。
20=(3/√2)×(S20 −3/2)×(R−1/2)×F20
20:粒子の20%変位に必要な荷重(N)
20:粒子の20%変位における圧縮変形量(mm)
R:粒子の半径(mm)
なお、前記K20値は、粒子の硬さを普遍的かつ定量的に表すものである。
The hardness of the conductive particles is a hardness obtained as a 20% K value (compression elastic deformation characteristic K 20 ), and can be measured, for example, by the following method.
The hardness is the compressive elastic deformation characteristic K 20 when the particle diameter of the conductive particles is displaced 20%, using a micro-compression tester (MCT-W201, manufactured by Shimadzu Corporation), the diameter 50μm of diamond cylinder It is a value obtained from the following equation by measuring the load value, compression displacement, etc. when the obtained particles are compressed at a smooth end face at a compression rate of 0.225 g / sec. That is, the 20% K value is obtained by measuring the load and the amount of compressive deformation necessary for 20% displacement of particles.
K 20 = (3 / √2) × (S 20 −3/2 ) × (R −1/2 ) × F 20
F 20 : Load required for 20% displacement of particles (N)
S 20 : amount of compressive deformation at 20% displacement of particles (mm)
R: radius of particle (mm)
The K 20 value represents the hardness of the particles universally and quantitatively.

−−導電性粒子の形状等−−
前記導電性粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができる。
前記導電性粒子の個数平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、前記異方性導電接合体の耐久性及び異方性導電接続時の導電性の点で、3.0μm〜12.0μmが好ましい。
なお、前記導電性粒子の個数平均粒子径は、異方性導電接続前に測定される個数平均粒子径である。
前記導電性粒子の個数平均粒子径は、例えば、レーザー回折を用いて測定した粒度分布より測定することができる。
-Shape of conductive particles, etc .--
There is no restriction | limiting in particular as a shape of the said electroconductive particle, According to the objective, it can select suitably.
The number average particle diameter of the conductive particles is not particularly limited and can be appropriately selected according to the purpose. However, the durability of the anisotropic conductive joint and the conductivity at the time of anisotropic conductive connection can be selected. In this respect, 3.0 μm to 12.0 μm is preferable.
The number average particle size of the conductive particles is a number average particle size measured before anisotropic conductive connection.
The number average particle diameter of the conductive particles can be measured from, for example, a particle size distribution measured using laser diffraction.

前記軟金属部の平均厚み〔A(μm)〕と前記導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.02〜1.00が好ましく、0.07〜0.70がより好ましい。前記比が、前記より好ましい範囲内であると、接続信頼性により優れる点で有利である。   The ratio (A / D) between the average thickness [A (μm)] of the soft metal part and the number average particle diameter [D (μm)] of the conductive particles is not particularly limited, and is appropriately determined depending on the purpose. Although it can be selected, 0.02 to 1.00 is preferable, and 0.07 to 0.70 is more preferable. When the ratio is within the more preferable range, it is advantageous in that the connection reliability is more excellent.

−その他の成分−
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、膜形成樹脂、熱硬化性樹脂、硬化剤、シランカップリング剤などが挙げられる。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, film forming resin, a thermosetting resin, a hardening | curing agent, a silane coupling agent etc. are mentioned.

−−膜形成樹脂−−
前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。前記膜形成樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、製膜性、加工性、接続信頼性の点からフェノキシ樹脂が特に好ましい。
前記フェノキシ樹脂とは、ビスフェノールAとエピクロルヒドリンより合成される樹脂であって、適宜合成したものを使用してもよいし、市販品を使用してもよい。
前記異方性導電材料における前記膜形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--- Film forming resin--
There is no restriction | limiting in particular as said film formation resin, According to the objective, it can select suitably, For example, phenoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin Resin etc. are mentioned. The film forming resin may be used alone or in combination of two or more. Among these, phenoxy resin is particularly preferable from the viewpoints of film formability, processability, and connection reliability.
The said phenoxy resin is resin synthesize | combined from bisphenol A and epichlorohydrin, Comprising: What was synthesize | combined suitably may be used and a commercial item may be used.
There is no restriction | limiting in particular as content of the said film formation resin in the said anisotropic electrically-conductive material, According to the objective, it can select suitably.

−−熱硬化性樹脂−−
前記熱硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、アクリル樹脂などが挙げられる。
--- Thermosetting resin-
There is no restriction | limiting in particular as said thermosetting resin, According to the objective, it can select suitably, For example, an epoxy resin, an acrylic resin, etc. are mentioned.

−−−エポキシ樹脂−−−
前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、それらの変性エポキシ樹脂等の熱硬化性エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記異方性導電材料における前記エポキシ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
---- Epoxy resin ---
There is no restriction | limiting in particular as said epoxy resin, According to the objective, it can select suitably, For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, naphthalene type epoxy resin, those modified epoxy Examples thereof include thermosetting epoxy resins such as resins. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as content of the said epoxy resin in the said anisotropic conductive material, According to the objective, it can select suitably.

−−−アクリル樹脂−−−
前記アクリル樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、リン酸基含有(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、テトラメチレングリコールテトラ(メタ)アクリレート、2−ヒドロキシ−1,3−ジ(メタ)アクリロキシプロパン、2,2−ビス[4−((メタ)アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−((メタ)アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記異方性導電材料における前記アクリル樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--- Acrylic resin ---
There is no restriction | limiting in particular as said acrylic resin, According to the objective, it can select suitably, For example, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, phosphoric acid Group-containing (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, tetramethylene glycol tetra (meth) acrylate 2-hydroxy-1,3-di (meth) acryloxypropane, 2,2-bis [4-((meth) acryloxymethoxy) phenyl] propane, 2,2-bis [4-((meth) acrylic) Roxyethoxy) phenyl] Propane, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate, tris ((meth) acryloxy ethyl) isocyanurate, urethane (meth) acrylate, epoxy (meth) acrylate. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as content of the said acrylic resin in the said anisotropic conductive material, According to the objective, it can select suitably.

−−硬化剤−−
前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カチオン系硬化剤、ラジカル系硬化剤などが挙げられる。
--Curing agent--
The curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a cationic curing agent and a radical curing agent.

−−−カチオン系硬化剤−−−
前記カチオン系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホニウム塩、オニウム塩、トリエチルアミン等のアルキルアミン、ピリジン、イミダゾールなどが挙げられる。
前記カチオン系硬化剤は、前記熱硬化性樹脂としてのエポキシ樹脂と併用することが好ましい。
前記異方性導電材料における前記カチオン系硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--- Cationic curing agent ---
There is no restriction | limiting in particular as said cationic hardening | curing agent, According to the objective, it can select suitably, For example, alkylamines, such as a sulfonium salt, onium salt, and a triethylamine, pyridine, imidazole etc. are mentioned.
The cationic curing agent is preferably used in combination with an epoxy resin as the thermosetting resin.
There is no restriction | limiting in particular as content of the said cationic hardening | curing agent in the said anisotropic electrically-conductive material, According to the objective, it can select suitably.

−−−ラジカル系硬化剤−−−
前記ラジカル系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機過酸化物などが挙げられる。
前記有機過酸化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイドなどが挙げられる。
前記ラジカル系硬化剤は、前記熱硬化性樹脂としてのアクリル樹脂と併用することが好ましい。
前記異方性導電材料における前記ラジカル系硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--- Radical curing agent ---
There is no restriction | limiting in particular as said radical type hardening | curing agent, According to the objective, it can select suitably, For example, an organic peroxide etc. are mentioned.
There is no restriction | limiting in particular as said organic peroxide, According to the objective, it can select suitably, For example, lauroyl peroxide, butyl peroxide, benzyl peroxide, etc. are mentioned.
The radical curing agent is preferably used in combination with an acrylic resin as the thermosetting resin.
There is no restriction | limiting in particular as content of the said radical type hardening | curing agent in the said anisotropic electrically-conductive material, According to the objective, it can select suitably.

−−シランカップリング剤−−
前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、チオール系シランカップリング剤、アミン系シランカップリング剤などが挙げられる。
前記異方性導電材料における前記シランカップリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--Silane coupling agent--
The silane coupling agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an epoxy silane coupling agent, an acrylic silane coupling agent, a thiol silane coupling agent, and an amine silane. A coupling agent etc. are mentioned.
There is no restriction | limiting in particular as content of the said silane coupling agent in the said anisotropic electrically-conductive material, According to the objective, it can select suitably.

本発明の異方性導電接合体は、前記第1の電子部品の端子が、前記硬金属部及び前記軟金属部を有し、かつ前記硬金属部の硬度、前記軟金属部の硬度、及び前記導電性粒子の硬度が特定の範囲であるため、前記軟金属部に前記導電性粒子を適度に埋没させることなどにより、前記異方性導電材料に含有された前記導電性粒子を適度に潰すことができ、潰れ不足及び過剰な潰れを抑制できる。そうすることにより、従来の問題、即ち、前記軟金属部と、前記異方性導電材料とが接するように載置した前記第1の電子部品の端子を、前記異方性導電材料に押し込む際に、前記導電性粒子が、前記第1の電子部品の端子に埋没することにより、前記導電性粒子の潰れが十分に得られず、高抵抗になってしまう問題、及び前記導電性粒子が潰れすぎることにより、前記導電性粒子の反発が大きくなり、接続信頼性が悪化してしまう問題を解消できる。その結果、ファインピッチの異方性導電接続において、導電性粒子の潰れが良好に行われ、異方性導電接続の初期から接続抵抗値が低く、かつ異方性導電接続の経時における導電性粒子の粒子反発が小さくなり、接続信頼性を向上させることができる。   In the anisotropic conductive joint of the present invention, the terminal of the first electronic component has the hard metal portion and the soft metal portion, and the hardness of the hard metal portion, the hardness of the soft metal portion, and Since the hardness of the conductive particles is in a specific range, the conductive particles contained in the anisotropic conductive material are appropriately crushed by appropriately burying the conductive particles in the soft metal portion. It is possible to suppress crushing shortage and excessive crushing. By doing so, the conventional problem, that is, when the terminal of the first electronic component placed so that the soft metal portion and the anisotropic conductive material are in contact with each other is pushed into the anisotropic conductive material. In addition, since the conductive particles are buried in the terminals of the first electronic component, the conductive particles are not sufficiently crushed, resulting in high resistance, and the conductive particles are crushed. By being too much, the repulsion of the said electroconductive particle becomes large and the problem that connection reliability deteriorates can be eliminated. As a result, in the anisotropic conductive connection of fine pitch, the conductive particles are crushed well, the connection resistance value is low from the initial stage of the anisotropic conductive connection, and the conductive particles over time of the anisotropic conductive connection The particle repulsion is reduced, and the connection reliability can be improved.

(異方性導電材料を用いた接続方法)
本発明の異方性導電材料を用いた接続方法は、配置工程と、載置工程と、加熱押圧工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
前記接続方法は、第1の電子部品の端子と第2の電子部品の端子とを、異方性導電接続させる接続方法であって、異方性導電材料を介して、前記第1の電子部品の端子と前記第2の電子部品の端子とを接続させる方法である。
前記接続方法は、本発明の異方性導電接合体の製造に好適に用いることができる。
(Connection method using anisotropic conductive material)
The connection method using the anisotropic conductive material of the present invention includes at least an arrangement step, a placement step, and a heating and pressing step, and further includes other steps as necessary.
The connection method is a connection method in which a terminal of a first electronic component and a terminal of a second electronic component are anisotropically conductively connected, and the first electronic component is interposed via an anisotropic conductive material. And a terminal of the second electronic component.
The said connection method can be used suitably for manufacture of the anisotropic conductive assembly of this invention.

<配置工程>
前記配置工程としては、前記第1の電子部品の端子及び前記第2の電子部品の端子のいずれか一方の上に、導電性粒子を含有する前記異方性導電材料を配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、貼付、塗布などが挙げられる。
<Arrangement process>
The placement step is a step of placing the anisotropic conductive material containing conductive particles on one of the terminal of the first electronic component and the terminal of the second electronic component. There is no particular limitation, and it can be appropriately selected according to the purpose. Examples thereof include sticking and coating.

−第1の電子部品−
前記第1の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の異方性導電接合体の説明において記載した前記第1の電子部品と同様のものなどが挙げられる。
即ち、前記第1の電子部品は、端子を有する。前記端子は、硬金属部及び前記硬金属部よりも柔らかい軟金属部を有する。前記硬金属部は、前記第1の電子部品の配線と接している。前記硬金属部の硬度は、Hv100〜Hv650である。前記軟金属部の硬度は、Hv10〜Hv100である。
-First electronic component-
There is no restriction | limiting in particular as said 1st electronic component, According to the objective, it can select suitably, For example, it is the same as that of the said 1st electronic component described in description of the anisotropic conductive joining body of this invention. Things.
That is, the first electronic component has a terminal. The terminal includes a hard metal portion and a soft metal portion that is softer than the hard metal portion. The hard metal portion is in contact with the wiring of the first electronic component. The hardness of the hard metal part is Hv100 to Hv650. The hardness of the soft metal part is Hv10 to Hv100.

−第2の電子部品−
前記第2の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の異方性導電接合体の説明において記載した前記第2の電子部品と同様のものなどが挙げられる。
-Second electronic component-
There is no restriction | limiting in particular as said 2nd electronic component, According to the objective, it can select suitably, For example, it is the same as that of the said 2nd electronic component described in description of the anisotropic conductive joining body of this invention. Things.

−異方性導電材料−
前記異方性導電材料としては、導電性粒子を有する異方性導電材料であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の異方性導電接合体の説明において記載した前記異方性導電材料と同様のものなどが挙げられる。
前記導電性粒子の硬度は、5,880N/mm〜26,460N/mmである。
-Anisotropic conductive material-
The anisotropic conductive material is not particularly limited as long as it is an anisotropic conductive material having conductive particles, and can be appropriately selected according to the purpose. For example, the anisotropic conductive joint of the present invention Examples similar to the anisotropic conductive material described in the description of the above.
The conductive particles have a hardness of 5,880 N / mm 2 to 26,460 N / mm 2 .

前記配置工程において、前記第1の電子部品の端子の上に、前記導電性粒子を含有する前記異方性導電材料を配置する場合には、前記軟金属部と、前記異方性導電材料とが接するように配置される。   In the arranging step, when the anisotropic conductive material containing the conductive particles is arranged on the terminal of the first electronic component, the soft metal portion, the anisotropic conductive material, Are arranged to touch.

<載置工程>
前記載置工程としては、前記配置工程において配置した電子部品でない方の電子部品(他方の電子部品)を、前記異方性導電材料上に、載置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記載置工程において、他方の電子部品として前記第1の電子部品を用いる場合には、前記第1の電子部品は、前記軟金属部と、前記異方性導電材料とが接するように載置される。
この際、前記導電性粒子は加熱及び押圧されずに、前記導電性粒子は潰れていないため、異方性導電接続は行われていない。
<Installation process>
The placing step is not particularly limited as long as it is a step of placing the electronic component (the other electronic component) which is not the electronic component placed in the placing step on the anisotropic conductive material, It can be appropriately selected according to the purpose.
In the above placement step, when the first electronic component is used as the other electronic component, the first electronic component is placed so that the soft metal portion and the anisotropic conductive material are in contact with each other. Is done.
At this time, since the conductive particles are not heated and pressed and the conductive particles are not crushed, anisotropic conductive connection is not performed.

<加熱押圧工程>
前記加熱押圧工程としては、前記軟金属部と前記導電性粒子とが接するように、前記第1の電子部品及び前記第2の電子部品のいずれか一方を、加熱及び押圧する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱押圧部材により加熱及び押圧することができる。
前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、140℃〜200℃が好ましい。
前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1MPa〜80MPaが好ましい。
前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5秒間〜120秒間が挙げられる。
<Heat pressing process>
The heating and pressing step is a step of heating and pressing either the first electronic component or the second electronic component so that the soft metal portion and the conductive particles are in contact with each other. There is no restriction | limiting in particular, According to the objective, it can select suitably, For example, it can heat and press with a heating press member.
Examples of the heating and pressing member include a pressing member having a heating mechanism. Examples of the pressing member having the heating mechanism include a heat tool.
There is no restriction | limiting in particular as temperature of the said heating, Although it can select suitably according to the objective, 140 to 200 degreeC is preferable.
There is no restriction | limiting in particular as the pressure of the said press, Although it can select suitably according to the objective, 0.1 MPa-80 MPa are preferable.
There is no restriction | limiting in particular as time of the said heating and press, According to the objective, it can select suitably, For example, 0.5 second-120 second is mentioned.

第1の電子部品の端子と第2の電子部品の端子とを、異方性導電材料を介して接続する本発明の接続方法について、その一例を、図を参照して説明する。
図2A〜図2Cは、本発明の接続方法(異方性導電接合体の製造方法)により本発明の異方性導電接合体を製造する一例を説明するための概略断面図である。まず、第2の電子部品1の端子2の上に、導電性粒子3を含有する異方性導電材料4を配置する(図2A)。続いて、異方性導電材料4の上に、硬金属部6及び軟金属部5を有する第1の電子部品7の端子の軟金属部5が異方性導電材料4と接するように、第1の電子部品7を載置する。この時点では、第2の電子部品1の端子2と第1の電子部品7の端子とは、導電性粒子3が加熱及び押圧されずに、導電性粒子3が潰れていないため、まだ異方性導電接続されていない(図2B)。そして、第1の電子部品7の上から加熱押圧部材(図示せず)により加熱及び押圧することで、第1の電子部品7の軟金属部5と、異方性導電材料4に含有される導電性粒子3とが接触し、第2の電子部品1と前記第1の電子部品7とが、異方性導電材料4を介して異方性導電接続され、異方性導電接合体8が製造される(図2C)。
An example of the connection method of the present invention for connecting the terminal of the first electronic component and the terminal of the second electronic component via an anisotropic conductive material will be described with reference to the drawings.
2A to 2C are schematic cross-sectional views for explaining an example of manufacturing the anisotropic conductive joined body of the present invention by the connection method of the present invention (manufacturing method of the anisotropic conductive joined body). First, an anisotropic conductive material 4 containing conductive particles 3 is disposed on the terminal 2 of the second electronic component 1 (FIG. 2A). Subsequently, on the anisotropic conductive material 4, the soft metal portion 5 of the terminal of the first electronic component 7 having the hard metal portion 6 and the soft metal portion 5 is in contact with the anisotropic conductive material 4. 1 electronic component 7 is placed. At this point, the terminals 2 of the second electronic component 1 and the terminals of the first electronic component 7 are still anisotropic because the conductive particles 3 are not crushed without being heated and pressed. There is no conductive connection (FIG. 2B). And it is contained in the soft metal part 5 of the 1st electronic component 7, and the anisotropic conductive material 4 by heating and pressing with a heating press member (not shown) from the top of the 1st electronic component 7. The conductive particles 3 come into contact, the second electronic component 1 and the first electronic component 7 are anisotropically conductively connected via the anisotropic conductive material 4, and the anisotropic conductive joint 8 is Manufactured (FIG. 2C).

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

〔硬度(Hv)〕
第1の電子部品の端子における、硬金属部及び軟金属部の硬度は、ビッカース硬度計(品番:VMT−X、マツザワ社製)を用いて測定した。
具体的には、無電解メッキ法を用いて、測定サンプルを作製し、測定対象の任意の10点を選択し、JIS Z2244に記載の測定方法に従って、前記ビッカース硬度計を用いて硬度を測定した。上記10点におけるビッカース硬度の平均値を算出することにより前記硬度を求めた。
[Hardness (Hv)]
The hardness of the hard metal part and the soft metal part in the terminal of the first electronic component was measured using a Vickers hardness meter (product number: VMT-X, manufactured by Matsuzawa).
Specifically, a measurement sample was prepared using an electroless plating method, arbitrary 10 points to be measured were selected, and the hardness was measured using the Vickers hardness tester according to the measurement method described in JIS Z2244. . The said hardness was calculated | required by calculating the average value of the Vickers hardness in the said 10 points | pieces.

〔硬度(N/mm(kgf/mm))〕
異方性導電材料に含有される導電性粒子の硬度(20%K値)は、以下の方法により測定した。
前記硬度は、前記導電性粒子の粒子直径が20%変位したときの圧縮弾性変形特性K20であり、微小圧縮試験機(品番:MCT−W201、島津製作所製)を用い、直径50μmのダイヤモンド製円柱の平滑端面で、圧縮速度0.225g/秒間にて、得られた粒子を圧縮した際の荷重値、圧縮変位等を測定し、下記式から求めた。即ち、20%K値は、粒子の20%変位に必要な荷重及び圧縮変形量を測定して求めた。
20=(3/√2)×(S20 −3/2)×(R−1/2)×F20
20:粒子の20%変位に必要な荷重(N)
20:粒子の20%変位における圧縮変形量(mm)
R:粒子の半径(mm)
[Hardness (N / mm 2 (kgf / mm 2 ))]
The hardness (20% K value) of the conductive particles contained in the anisotropic conductive material was measured by the following method.
The hardness is the compression elastic deformation characteristic K 20 when the particle diameter of the conductive particles is displaced by 20%, and is made of diamond having a diameter of 50 μm using a micro compression tester (product number: MCT-W201, manufactured by Shimadzu Corporation). On the smooth end face of the cylinder, the load value, compression displacement, and the like when the obtained particles were compressed at a compression rate of 0.225 g / second were measured and determined from the following formula. That is, the 20% K value was obtained by measuring the load and the amount of compressive deformation necessary for 20% displacement of particles.
K 20 = (3 / √2) × (S 20 −3/2 ) × (R −1/2 ) × F 20
F 20 : Load required for 20% displacement of particles (N)
S 20 : amount of compressive deformation at 20% displacement of particles (mm)
R: radius of particle (mm)

〔平均厚み〕
異方性導電接続前の第1の電子部品の端子における軟金属部の厚み及び硬金属部の厚みは、第1の電子部品の断面を金属顕微鏡(品番:MX51、オリンパス社製)を用いて観察して測定した。任意の10点を選び、それぞれの点における厚みを測定し、測定結果の厚みの平均値を算出することで、平均厚みを求めた。
[Average thickness]
The thickness of the soft metal part and the thickness of the hard metal part in the terminal of the first electronic component before the anisotropic conductive connection is obtained by using a metal microscope (product number: MX51, manufactured by Olympus Corporation) for the cross section of the first electronic component. Observed and measured. Arbitrary 10 points were selected, the thickness at each point was measured, and the average thickness of the measurement results was calculated to obtain the average thickness.

〔導電性粒子の個数平均粒子径(D)〕
導電性粒子の個数平均粒子径は、レーザー回折を用いて測定した粒度分布より測定した。
[Number average particle diameter of conductive particles (D)]
The number average particle size of the conductive particles was measured from the particle size distribution measured using laser diffraction.

〔硬金属部及び軟金属部の硬度(Hv)の調整方法〕
特開2009−71093号公報の段落〔0030〕に記載のように、熱処理を行い、バンプ硬度を適宜調整した。なお、軟金属部については、硬度をHv10〜100に調整した金(Au)を使用した。硬金属部については、硬度をHv100〜650に調整したパラジウム(Pd)を使用した。
[Method of adjusting hardness (Hv) of hard metal portion and soft metal portion]
As described in paragraph [0030] of Japanese Patent Application Laid-Open No. 2009-71093, heat treatment was performed, and the bump hardness was appropriately adjusted. In addition, about the soft metal part, the gold | metal | money (Au) which adjusted hardness to Hv10-100 was used. For the hard metal part, palladium (Pd) having a hardness adjusted to Hv 100 to 650 was used.

(導電性粒子1の製造例)
<樹脂コア粒子1の作製>
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を調整した溶液に、重合開始剤としてベンゾイルパーオキサイドを投入して、均一攪拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。前記微粒子分散液をろ過し減圧乾燥することにより微粒子の凝集体であるブロック体を得た。更に、前記ブロック体を粉砕することにより、樹脂コア粒子1として個数平均粒子径3.0μmのジビニルベンゼン系樹脂粒子を作製した。
(Production example of conductive particles 1)
<Preparation of resin core particle 1>
Benzoyl peroxide was added as a polymerization initiator to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate was adjusted, and the mixture was heated with uniform stirring to perform a polymerization reaction, thereby obtaining a fine particle dispersion. The fine particle dispersion was filtered and dried under reduced pressure to obtain a block body that was an aggregate of fine particles. Furthermore, the block body was pulverized to produce divinylbenzene resin particles having a number average particle diameter of 3.0 μm as the resin core particles 1.

<樹脂コアニッケルメッキ粒子(導電性粒子)1の作製>
個数平均粒子経3.0μmのジビニルベンゼン系樹脂粒子(5.0g)に、パラジウム触媒を浸漬法により担持させた。次いで、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調製された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、種々のリン含有量を有するニッケルめっき層(金属層)が表面に形成された導電性粒子1を作製した。得られた導電性粒子1の個数平均粒子径は3.0μmであり、硬度は、7,840N/mmであった。
<Preparation of Resin Core Nickel Plating Particle (Conductive Particle) 1>
A palladium catalyst was supported by a dipping method on divinylbenzene resin particles (5.0 g) having a number average particle diameter of 3.0 μm. Next, an electroless nickel plating solution (pH 12, plating solution temperature 50 ° C.) prepared from nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate is applied to the resin particles. Electroless nickel plating was used to produce conductive particles 1 having nickel plating layers (metal layers) having various phosphorus contents formed on the surface. The obtained conductive particles 1 had a number average particle diameter of 3.0 μm and a hardness of 7,840 N / mm 2 .

<導電性粒子2〜3の製造例>
樹脂コア粒子1の作製における均一攪拌の回転数を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が5.0μm、及び硬度が7,840N/mmである導電性粒子2を作製した。
樹脂コア粒子1の作製における均一攪拌の回転数を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が10.0μm、及び硬度が7,840N/mmである導電性粒子3を作製した。
<Production Example of Conductive Particles 2-3>
The number average particle diameter is 5.0 μm and the hardness is 7,840 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the rotation speed of uniform stirring in the production of the resin core particles 1 is appropriately changed. A certain conductive particle 2 was produced.
The number average particle diameter is 10.0 μm and the hardness is 7,840 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the rotation speed of uniform stirring in the production of the resin core particles 1 is appropriately changed. A certain conductive particle 3 was produced.

<導電性粒子4〜9の製造例>
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を適宜変更すること以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が3.0μm、及び硬度が3,920N/mmである導電性粒子4を作製した。
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が3.0μm、及び硬度が5,880N/mmである導電性粒子5を作製した。
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が3.0μm、及び硬度が13,720N/mmである導電性粒子6を作製した。
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が3.0μm、及び硬度が19,600N/mmである導電性粒子7を作製した。
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が3.0μm、及び硬度が24,500N/mmである導電性粒子8を作製した。
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が3.0μm、及び硬度が26,460N/mmである導電性粒子9を作製した。
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を適宜変更する以外は、導電性粒子1の製造例と同様にして、個数平均粒子径が3.0μm、及び硬度が29,400N/mmである導電性粒子10を作製した。
<Production Example of Conductive Particles 4-9>
The number average particle diameter is 3.0 μm and the hardness is 3,920 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is appropriately changed. A certain conductive particle 4 was produced.
The number average particle diameter is 3.0 μm and the hardness is 5,880 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is appropriately changed. Conductive particles 5 were produced.
The number average particle diameter is 3.0 μm and the hardness is 13,720 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is appropriately changed. Conductive particles 6 were produced.
The number average particle diameter is 3.0 μm and the hardness is 19,600 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is appropriately changed. Conductive particles 7 were produced.
The number average particle diameter is 3.0 μm and the hardness is 24,500 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is appropriately changed. Conductive particles 8 were produced.
The number average particle diameter is 3.0 μm and the hardness is 26,460 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is appropriately changed. Conductive particles 9 were produced.
The number average particle diameter is 3.0 μm and the hardness is 29,400 N / mm 2 in the same manner as in the production example of the conductive particles 1 except that the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is appropriately changed. Conductive particles 10 were produced.

(実施例1)
<異方性導電材料の作製>
前記膜形成樹脂としてのフェノキシ樹脂(品名:PKHH、フェノキシアソシエーツ社製)を30質量部、前記熱硬化性樹脂としてのナフタレン型エポキシ樹脂(品名:HP4032D、DIC社製)を30質量部、前記硬化剤としてのイミダゾール硬化剤(品名:ノバキュア3941HP、旭化成イーマテリアルズ社製)を30質量部、及びシランカップリング剤(品名:A−187、モメンティブ・パフォーマンス・マテリアルズ社製)を1質量部で構成された接着剤中に、前記導電性粒子1を35質量部で分散させて、不揮発分50質量%の酢酸エチル−トルエン混合溶液を得た。
次に、この混合溶液を厚み50μmのPETフィルム上に塗布した後、80℃のオーブンで5分間乾燥することで、平均厚み20μmの異方性導電フィルム(異方性導電材料)を作製した。
Example 1
<Production of anisotropic conductive material>
30 parts by mass of phenoxy resin (product name: PKHH, manufactured by Phenoxy Associates) as the film-forming resin, 30 parts by mass of naphthalene type epoxy resin (product name: HP4032D, manufactured by DIC) as the thermosetting resin, the curing 30 parts by mass of an imidazole curing agent (product name: Novacure 3951HP, manufactured by Asahi Kasei E-Materials) as an agent, and 1 part by mass of a silane coupling agent (product name: A-187, manufactured by Momentive Performance Materials) The conductive particles 1 were dispersed in 35 parts by mass in the constituted adhesive to obtain an ethyl acetate-toluene mixed solution having a nonvolatile content of 50% by mass.
Next, this mixed solution was applied onto a PET film having a thickness of 50 μm, and then dried in an oven at 80 ° C. for 5 minutes to produce an anisotropic conductive film (anisotropic conductive material) having an average thickness of 20 μm.

<第1の電子部品の端子の作製>
半導体素子としてICチップ(外形1.8mm×20.0mm、厚さ0.5mm、バンプ高さ12.0μm、バンプ外形85.0μm×30.0μm)を用いた。前記半導体素子のバンプ上にスクリーン印刷によって、硬金属部として硬度がHv250であるパラジウム(Pd)を平均厚みが9.0μmとなるようにメッキした。続いて、前記硬金属部上に軟金属部として硬度がHv100である金(Au)を平均厚みが3.0μmとなるようにメッキし、高さ24.0μm、外形97.0μm×42.0μmからなる端子を有する第1の電子部品を作製した。
なお、作製した第1の電子部品の概略断面図を図1に示す。図1において、第1の電子部品7は、基板9上に平板状の硬金属部6及び平板状の軟金属部5がこの順で積層された構造をしている。
<Production of terminal of first electronic component>
As a semiconductor element, an IC chip (outer shape 1.8 mm × 20.0 mm, thickness 0.5 mm, bump height 12.0 μm, bump outer shape 85.0 μm × 30.0 μm) was used. On the bumps of the semiconductor element, palladium (Pd) having a hardness of Hv250 as a hard metal part was plated by screen printing so as to have an average thickness of 9.0 μm. Subsequently, gold (Au) having a hardness of Hv100 as a soft metal portion is plated on the hard metal portion so as to have an average thickness of 3.0 μm, a height of 24.0 μm, and an outer shape of 97.0 μm × 42.0 μm. A first electronic component having a terminal made of was produced.
A schematic cross-sectional view of the manufactured first electronic component is shown in FIG. In FIG. 1, the first electronic component 7 has a structure in which a flat hard metal portion 6 and a flat soft metal portion 5 are laminated on a substrate 9 in this order.

厚み0.7mmのガラス基板(品番:1737F、コーニング社製)にスパッタにより非結晶ITOを製膜させたITOコーティングガラス基板(第2の電子部品)上に実施例1で作製した異方性導電材料を配置し、実施例1で作製した第1の電子部品を前記異方性導電材料上に載置し、圧着条件200℃、60MPa、5秒間で異方性導電接続を行い、異方性導電接合体を製造した。
具合的には、前記ITOコーティングガラス基板上に異方性導電材料を配置した後、更に、前記異方性導電材料上に前記第1の電子部品を仮固定し、ヒートツール25mm幅で緩衝材(厚み50μmのテフロン(登録商標))を用いて、前記第1の電子部品上から圧着条件200℃、60MPa、5秒間(ツールスピード30mm/sec、ステージ温度40℃)で異方性導電接続を行い、異方性導電接合体を製造した。なお、前記ツールスピードとは、前記第1の電子部品上から前記ヒートツールによって押圧する際の押し込む速度である。
Anisotropic conductivity prepared in Example 1 on an ITO-coated glass substrate (second electronic component) in which a non-crystalline ITO film was formed by sputtering on a 0.7 mm thick glass substrate (product number: 1737F, manufactured by Corning) The material was placed, the first electronic component produced in Example 1 was placed on the anisotropic conductive material, and anisotropic conductive connection was performed under pressure bonding conditions of 200 ° C., 60 MPa for 5 seconds. A conductive assembly was produced.
Specifically, after an anisotropic conductive material is disposed on the ITO-coated glass substrate, the first electronic component is temporarily fixed on the anisotropic conductive material, and a cushioning material having a heat tool width of 25 mm is provided. (Teflon (registered trademark) having a thickness of 50 μm) is used to form an anisotropic conductive connection from above the first electronic component under pressure bonding conditions of 200 ° C., 60 MPa for 5 seconds (tool speed 30 mm / sec, stage temperature 40 ° C.). The anisotropic conductive joined body was manufactured. The tool speed is a speed at which the tool is pushed from above the first electronic component by the heat tool.

<評価>
作製した異方性導電材料について、以下の評価を行った。結果を表1−1に示す。
<Evaluation>
The following evaluation was performed about the produced anisotropic conductive material. The results are shown in Table 1-1.

〔導電性粒子の潰れ具合〕
異方性導電材料に含まれる導電性粒子について、金属顕微鏡(品番:MX51、オリンパス社製)を用いて、異方性導電接続前の前記導電性粒子の直径を測定し、次に異方性導電接続後初期、及び85℃、85%RHで500時間経過後の前記導電性粒子の短手方向の長さを測定し、下記式(1)から初期、及び85℃、85%RHで500時間経過後の導電性粒子の潰れ具合を求めた。
導電性粒子の潰れ具合(%)=(異方性導電接続後の導電性粒子の短手方向の長さ/異方性導電接続前の導電性粒子の直径/)×100・・・・・・・・・・・・・・・式(1)
なお、異方性導電接続後の導電性粒子の短手方向の長さは、異方性導電接続時における第1の電子部品とITOコーティングガラス基板とに直交する方向の前記導電性粒子の長さとした。
上記評価結果に基づき、前記導電性粒子の潰れ具合を以下の5段階で評価した。
強:導電性粒子の潰れ具合(%)が50%以上
やや強:導電性粒子の潰れ具合(%)が40%以上50未満
良好:導電性粒子の潰れ具合(%)が30%以上40未満
やや弱:導電性粒子の潰れ具合(%)が20%以上30未満
弱:導電性粒子の潰れ具合(%)が10%未満
[Condition of conductive particles]
For the conductive particles contained in the anisotropic conductive material, the diameter of the conductive particles before anisotropic conductive connection is measured using a metal microscope (product number: MX51, manufactured by Olympus Corporation), and then anisotropic The length in the short direction of the conductive particles was measured at the initial stage after conductive connection and after 500 hours at 85 ° C. and 85% RH. From the following formula (1), the initial length and 500% at 85 ° C. and 85% RH were measured. The degree of crushing of the conductive particles after elapse of time was determined.
Degree of collapse of conductive particles (%) = (length of conductive particles after anisotropic conductive connection in the short direction / diameter of conductive particles before anisotropic conductive connection) × 100...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Formula (1)
The length in the short direction of the conductive particles after anisotropic conductive connection is the length of the conductive particles in the direction orthogonal to the first electronic component and the ITO coated glass substrate at the time of anisotropic conductive connection. Say it.
Based on the evaluation results, the degree of collapse of the conductive particles was evaluated in the following five stages.
Strong: Crushing degree (%) of conductive particles is 50% or more Slightly strong: Crushing degree (%) of conductive particles is 40% or more and less than 50 Good: Crushing degree (%) of conductive particles is 30% or more and less than 40 Slightly weak: The degree of crushing of conductive particles (%) is 20% or more and less than 30 Weak: The degree of crushing of conductive particles (%) is less than 10%

〔導通抵抗値〕
実施例1において製造した異方性導電接合体について、デジタルマルチメータ(品番:デジタルマルチメータ7555、横河電機社製)を用いて16chの端子間の抵抗値(導通抵抗値、Ω)を測定した。具体的には、4端子法にて電流1mAを流したときの、初期、及び85℃、85%RHで500時間経過後の抵抗値(導通抵抗値、Ω)を測定した。
[Conduction resistance value]
About the anisotropic conductive joint manufactured in Example 1, the resistance value (conduction resistance value, Ω) between terminals of 16ch is measured using a digital multimeter (product number: digital multimeter 7555, manufactured by Yokogawa Electric Corporation). did. Specifically, the resistance value (conducting resistance value, Ω) at the initial time when a current of 1 mA was passed by the four-terminal method and after 500 hours at 85 ° C. and 85% RH was measured.

(実施例2〜6)
実施例1において、第1の電子部品の端子における硬金属部の平均厚み及び軟金属部の平均厚みを、表1−1に記載の平均厚みとした以外は、実施例1と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−1に示す。
(Examples 2 to 6)
In Example 1, except that the average thickness of the hard metal part and the average thickness of the soft metal part in the terminal of the first electronic component were the average thicknesses described in Table 1-1, the same as in Example 1, An anisotropic conductive assembly was prepared and evaluated. The results are shown in Table 1-1.

(比較例1)
実施例1において、第1の電子部品の端子における硬金属部を作製せずに、軟金属部の平均厚みを12.0μmとした以外は、実施例1と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−1に示す。
(Comparative Example 1)
In Example 1, the anisotropic conductive bonding was performed in the same manner as in Example 1 except that the hard metal part in the terminal of the first electronic component was not produced and the average thickness of the soft metal part was 12.0 μm. A body was prepared and evaluated. The results are shown in Table 1-1.

(比較例2)
実施例1において、第1の電子部品の端子における硬金属部の平均厚みを12.0μmとし、軟金属部を作製しなかった以外は、実施例1と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−1に示す。
(Comparative Example 2)
In Example 1, the anisotropic conductive joint was obtained in the same manner as in Example 1 except that the average thickness of the hard metal part in the terminal of the first electronic component was 12.0 μm and no soft metal part was produced. Were prepared and evaluated. The results are shown in Table 1-1.

Figure 0006057521
実施例1〜6及び比較例1〜2において、導電性粒子の個数平均粒子径(D)、導電性粒子の硬度、硬金属部の硬度、軟金属部の硬度、及び硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S)は、以下の通りである。
導電性粒子の個数平均粒子径(D):3.0μm
導電性粒子の硬度:7,840N/mm(800kgf/mm
硬金属部の硬度:Hv250
軟金属部の硬度:Hv100
硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S):Hv150
Figure 0006057521
In Examples 1 to 6 and Comparative Examples 1 and 2, the number average particle diameter (D) of the conductive particles, the hardness of the conductive particles, the hardness of the hard metal part, the hardness of the soft metal part, and the hardness of the hard metal part ( The difference in hardness (HS) between H) and the hardness (S) of the soft metal part is as follows.
Number average particle diameter of conductive particles (D): 3.0 μm
Hardness of conductive particles: 7,840 N / mm 2 (800 kgf / mm 2 )
Hardness of hard metal part: Hv250
Hardness of soft metal part: Hv100
Hardness difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part: Hv150

(実施例7)
実施例1において、前記導電性粒子1を前記導電性粒子2とし、かつ第1の電子部品の端子における硬金属部の平均厚みを7.5μm及び軟金属部の平均厚みを4.5μmとした以外は、実施例1と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−2に示す。
(Example 7)
In Example 1, the conductive particles 1 were the conductive particles 2, and the average thickness of the hard metal part in the terminal of the first electronic component was 7.5 μm and the average thickness of the soft metal part was 4.5 μm. Except for the above, an anisotropic conductive joined body was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1-2.

(実施例8〜13)
実施例7において、第1の電子部品の端子における硬金属部の平均厚み及び軟金属部の平均厚みを、表1−2に記載の平均厚みとした以外は、実施例7と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−2に示す。
(Examples 8 to 13)
In Example 7, except that the average thickness of the hard metal part and the average thickness of the soft metal part in the terminal of the first electronic component was the average thickness described in Table 1-2, as in Example 7, An anisotropic conductive assembly was prepared and evaluated. The results are shown in Table 1-2.

(比較例3)
実施例7において、第1の電子部品の端子における硬金属部を作製せずに、軟金属部の平均厚みを12.0μmとした以外は、実施例7と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−2に示す。
(Comparative Example 3)
In Example 7, the anisotropic conductive bonding was performed in the same manner as in Example 7 except that the hard metal portion in the terminal of the first electronic component was not manufactured and the average thickness of the soft metal portion was 12.0 μm. A body was prepared and evaluated. The results are shown in Table 1-2.

(比較例4)
実施例7において、第1の電子部品の端子における硬金属部の平均厚みを12.0μmとし、軟金属部を作製しなかった以外は、実施例7と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−2に示す。
(Comparative Example 4)
In Example 7, the anisotropic conductive joint was obtained in the same manner as in Example 7 except that the average thickness of the hard metal part in the terminal of the first electronic component was 12.0 μm and no soft metal part was produced. Were prepared and evaluated. The results are shown in Table 1-2.

Figure 0006057521
実施例7〜13及び比較例3〜4において、導電性粒子の個数平均粒子径(D)、導電性粒子の硬度、硬金属部の硬度、軟金属部の硬度、及び硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S)は、以下の通りである。
導電性粒子の個数平均粒子径(D):5.0μm
導電性粒子の硬度:7,840N/mm(800kgf/mm
硬金属部の硬度:Hv250
軟金属部の硬度:Hv100
硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S):Hv150
Figure 0006057521
In Examples 7 to 13 and Comparative Examples 3 to 4, the number average particle diameter (D) of the conductive particles, the hardness of the conductive particles, the hardness of the hard metal part, the hardness of the soft metal part, and the hardness of the hard metal part ( The difference in hardness (HS) between H) and the hardness (S) of the soft metal part is as follows.
Number average particle diameter of conductive particles (D): 5.0 μm
Hardness of conductive particles: 7,840 N / mm 2 (800 kgf / mm 2 )
Hardness of hard metal part: Hv250
Hardness of soft metal part: Hv100
Hardness difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part: Hv150

(実施例14)
実施例1において、前記導電性粒子1を前記導電性粒子3とし、かつ第1の電子部品の端子における硬金属部の平均厚みを3.0μm及び軟金属部の平均厚みを9.0μmとした以外は、実施例1と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−3に示す。
(Example 14)
In Example 1, the conductive particles 1 are the conductive particles 3, and the average thickness of the hard metal portion in the terminal of the first electronic component is 3.0 μm, and the average thickness of the soft metal portion is 9.0 μm. Except for the above, an anisotropic conductive joined body was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1-3.

(実施例15〜23)
実施例14において、第1の電子部品の端子における硬金属部の平均厚み及び軟金属部の平均厚みを、表1−3に記載の平均厚みとした以外は、実施例14と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−3に示す。
(Examples 15 to 23)
In Example 14, except that the average thickness of the hard metal part and the average thickness of the soft metal part in the terminal of the first electronic component was the average thickness described in Table 1-3, as in Example 14, An anisotropic conductive assembly was prepared and evaluated. The results are shown in Table 1-3.

(比較例5)
実施例14において、第1の電子部品の端子における硬金属部を作製せずに、軟金属部の平均厚みを12.0μmとした以外は、実施例14と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−3に示す。
(Comparative Example 5)
In Example 14, the anisotropic conductive bonding was performed in the same manner as in Example 14 except that the hard metal portion in the terminal of the first electronic component was not manufactured and the average thickness of the soft metal portion was 12.0 μm. A body was prepared and evaluated. The results are shown in Table 1-3.

(比較例6)
実施例14において、第1の電子部品の端子における硬金属部の平均厚みを12.0μmとし、軟金属部を作製しなかった以外は、実施例14と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−3に示す。
(Comparative Example 6)
In Example 14, the anisotropic conductive joint was obtained in the same manner as in Example 14 except that the average thickness of the hard metal portion in the terminal of the first electronic component was 12.0 μm and no soft metal portion was produced. Were prepared and evaluated. The results are shown in Table 1-3.

Figure 0006057521
実施例14〜23及び比較例5〜6において、導電性粒子の個数平均粒子径(D)、導電性粒子の硬度、硬金属部の硬度、軟金属部の硬度、及び硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S)は、以下の通りである。
導電性粒子の個数平均粒子径(D):10.0μm
導電性粒子の硬度:7,840N/mm(800kgf/mm
硬金属部の硬度:Hv250
軟金属部の硬度:Hv100
硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S):Hv150
Figure 0006057521
In Examples 14 to 23 and Comparative Examples 5 to 6, the number average particle diameter (D) of the conductive particles, the hardness of the conductive particles, the hardness of the hard metal part, the hardness of the soft metal part, and the hardness of the hard metal part ( The difference in hardness (HS) between H) and the hardness (S) of the soft metal part is as follows.
Number average particle diameter of conductive particles (D): 10.0 μm
Hardness of conductive particles: 7,840 N / mm 2 (800 kgf / mm 2 )
Hardness of hard metal part: Hv250
Hardness of soft metal part: Hv100
Hardness difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part: Hv150

(比較例7)
実施例1において、前記導電性粒子1を前記導電性粒子4とし、更に、第1の電子部品の端子における硬金属部の平均厚みを3.0μm及び軟金属部の平均厚みを9.0μmとした以外は、実施例1と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−4に示す。
(Comparative Example 7)
In Example 1, the conductive particle 1 is the conductive particle 4, and the average thickness of the hard metal portion in the terminal of the first electronic component is 3.0 μm and the average thickness of the soft metal portion is 9.0 μm. Except for the above, an anisotropic conductive joint was produced and evaluated in the same manner as in Example 1. The results are shown in Table 1-4.

(比較例8〜12)
比較例7において、第1の電子部品の端子における硬金属部の平均厚み及び軟金属部の平均厚みを、表1−4に記載の平均厚みとした以外は、比較例7と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−4に示す。
(Comparative Examples 8-12)
In Comparative Example 7, the average thickness of the hard metal part and the average thickness of the soft metal part in the terminal of the first electronic component were the same as in Comparative Example 7, except that the average thickness described in Table 1-4 was used. An anisotropic conductive assembly was prepared and evaluated. The results are shown in Table 1-4.

Figure 0006057521
表1−4において、導電性粒子の個数平均粒子径(D)、導電性粒子の硬度、硬金属部の硬度、軟金属部の硬度、及び硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S)は、以下の通りである。
導電性粒子の個数平均粒子径(D):3.0μm
導電性粒子の硬度:3,920N/mm(400kgf/mm
硬金属部の硬度:Hv250
軟金属部の硬度:Hv100
硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S):Hv150
Figure 0006057521
In Table 1-4, the number average particle diameter (D) of the conductive particles, the hardness of the conductive particles, the hardness of the hard metal part, the hardness of the soft metal part, and the hardness (H) of the hard metal part and the soft metal part The hardness difference (HS) from the hardness (S) is as follows.
Number average particle diameter of conductive particles (D): 3.0 μm
Hardness of conductive particles: 3,920 N / mm 2 (400 kgf / mm 2 )
Hardness of hard metal part: Hv250
Hardness of soft metal part: Hv100
Hardness difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part: Hv150

(実施例24)
実施例4において、第1の電子部品の端子における硬金属部の硬度をHv100及び軟金属部の硬度をHv10とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価した。結果を表1−5に示す。
(Example 24)
In Example 4, an anisotropic conductive joined body was fabricated in the same manner as in Example 4 except that the hardness of the hard metal portion in the terminal of the first electronic component was Hv100 and the hardness of the soft metal portion was Hv10. ,evaluated. The results are shown in Table 1-5.

(実施例25〜29、及び比較例13)
実施例24において、第1の電子部品の端子における軟金属部の硬度を、表1−5に記載の硬度とした以外は、実施例24と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−5に示す。
(Examples 25-29 and Comparative Example 13)
In Example 24, an anisotropic conductive joint was produced in the same manner as in Example 24 except that the hardness of the soft metal part in the terminal of the first electronic component was changed to the hardness shown in Table 1-5. The evaluation was carried out. The results are shown in Table 1-5.

Figure 0006057521
実施例24〜29及び比較例13において、導電性粒子の個数平均粒子径(D)、導電性粒子の硬度、硬金属部の平均厚み、軟金属部の平均厚み、及び軟金属部の平均厚み〔A(μm)〕と導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)は、以下の通りである。
導電性粒子の個数平均粒子径:3.0μm
導電性粒子の硬度:7,840N/mm(800kgf/mm
硬金属部の平均厚み:11.0μm
軟金属部の平均厚み:1.0μm
軟金属部の平均厚み〔A(μm)〕と導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D):0.33
Figure 0006057521
In Examples 24-29 and Comparative Example 13, the number average particle diameter (D) of the conductive particles, the hardness of the conductive particles, the average thickness of the hard metal part, the average thickness of the soft metal part, and the average thickness of the soft metal part The ratio (A / D) between [A (μm)] and the number average particle diameter [D (μm)] of the conductive particles is as follows.
Number average particle diameter of conductive particles: 3.0 μm
Hardness of conductive particles: 7,840 N / mm 2 (800 kgf / mm 2 )
Average thickness of hard metal part: 11.0μm
Average thickness of soft metal part: 1.0 μm
Ratio (A / D) of the average thickness [A (μm)] of the soft metal part to the number average particle diameter [D (μm)] of the conductive particles: 0.33

(実施例30)
実施例4において、第1の電子部品の端子における硬金属部の硬度をHv150及び軟金属部の硬度をHv100とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−6に示す。
(Example 30)
In Example 4, an anisotropic conductive joint was produced in the same manner as in Example 4 except that the hardness of the hard metal part in the terminal of the first electronic component was Hv150 and the hardness of the soft metal part was Hv100. The evaluation was carried out. The results are shown in Table 1-6.

(実施例31〜35、及び比較例14〜15)
実施例30において、第1の電子部品の端子における硬金属部の硬度を、表1−6に記載の硬度とした以外は、実施例30と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−6に示す。
(Examples 31-35 and Comparative Examples 14-15)
In Example 30, an anisotropic conductive joint was produced in the same manner as in Example 30, except that the hardness of the hard metal part in the terminal of the first electronic component was changed to the hardness shown in Table 1-6. The evaluation was carried out. The results are shown in Table 1-6.

Figure 0006057521
実施例30〜35及び比較例14〜15において、導電性粒子の個数平均粒子径(D)、導電性粒子の硬度、硬金属部の平均厚み、軟金属部の平均厚み、及び軟金属部の平均厚み〔A(μm)〕と導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)は、以下の通りである。
導電性粒子の個数平均粒子径(D):3.0μm
導電性粒子の硬度:7,840N/mm(800kgf/mm
硬金属部の平均厚み:11.0μm
軟金属部の平均厚み:1.0μm
軟金属部の平均厚み〔A(μm)〕と導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D):0.33
Figure 0006057521
In Examples 30 to 35 and Comparative Examples 14 to 15, the number average particle diameter (D) of the conductive particles, the hardness of the conductive particles, the average thickness of the hard metal part, the average thickness of the soft metal part, and the soft metal part The ratio (A / D) between the average thickness [A (μm)] and the number average particle diameter [D (μm)] of the conductive particles is as follows.
Number average particle diameter of conductive particles (D): 3.0 μm
Hardness of conductive particles: 7,840 N / mm 2 (800 kgf / mm 2 )
Average thickness of hard metal part: 11.0μm
Average thickness of soft metal part: 1.0 μm
Ratio (A / D) of the average thickness [A (μm)] of the soft metal part to the number average particle diameter [D (μm)] of the conductive particles: 0.33

(実施例36)
実施例4において、第1の電子部品の端子における硬金属部の硬度をHv200及び、軟金属部の軟度をHv100とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−7に示す。
(Example 36)
In Example 4, the anisotropic conductive joint was obtained in the same manner as in Example 4 except that the hardness of the hard metal part in the terminal of the first electronic component was Hv200 and the softness of the soft metal part was Hv100. Fabricated and evaluated. The results are shown in Table 1-7.

(比較例16〜20)
実施例36において、第1の電子部品の端子における軟金属部の硬度を、表1−7に記載の硬度とした以外は、実施例36と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−7に示す。
(Comparative Examples 16-20)
In Example 36, an anisotropic conductive joint was produced in the same manner as in Example 36 except that the hardness of the soft metal part in the terminal of the first electronic component was changed to the hardness shown in Table 1-7. The evaluation was carried out. The results are shown in Table 1-7.

Figure 0006057521
実施例36及び比較例16〜20において、導電性粒子の個数平均粒子径(D)、導電性粒子の硬度、硬金属部の平均厚み、軟金属部の平均厚み、及び軟金属部の平均厚み〔A(μm)〕と導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)は、以下の通りである。
導電性粒子の個数平均粒子径(D):3.0μm
導電性粒子の硬度:7,840N/mm(800kgf/mm
硬金属部の平均厚み:11.0μm
軟金属部の平均厚み:1.0μm
軟金属部の平均厚み〔A(μm)〕と導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D):0.33
Figure 0006057521
In Example 36 and Comparative Examples 16 to 20, the number average particle diameter (D) of the conductive particles, the hardness of the conductive particles, the average thickness of the hard metal part, the average thickness of the soft metal part, and the average thickness of the soft metal part The ratio (A / D) between [A (μm)] and the number average particle diameter [D (μm)] of the conductive particles is as follows.
Number average particle diameter of conductive particles (D): 3.0 μm
Hardness of conductive particles: 7,840 N / mm 2 (800 kgf / mm 2 )
Average thickness of hard metal part: 11.0μm
Average thickness of soft metal part: 1.0 μm
Ratio (A / D) of the average thickness [A (μm)] of the soft metal part to the number average particle diameter [D (μm)] of the conductive particles: 0.33

(実施例37)
実施例4において、前記導電性粒子1を前記導電性粒子5とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−8に示す。
(Example 37)
In Example 4, an anisotropic conductive joined body was prepared and evaluated in the same manner as in Example 4 except that the conductive particle 1 was changed to the conductive particle 5. The results are shown in Table 1-8.

(実施例38)
実施例4において、前記導電性粒子1を前記導電性粒子6とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−8に示す。
(Example 38)
In Example 4, an anisotropic conductive joined body was prepared and evaluated in the same manner as in Example 4 except that the conductive particle 1 was changed to the conductive particle 6. The results are shown in Table 1-8.

(実施例39)
実施例4において、前記導電性粒子1を前記導電性粒子7とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−8に示す。
(Example 39)
In Example 4, an anisotropic conductive joined body was prepared and evaluated in the same manner as in Example 4 except that the conductive particle 1 was changed to the conductive particle 7. The results are shown in Table 1-8.

(実施例40)
実施例4において、前記導電性粒子1を前記導電性粒子8とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−8に示す。
(Example 40)
In Example 4, an anisotropic conductive joined body was prepared and evaluated in the same manner as in Example 4 except that the conductive particle 1 was changed to the conductive particle 8. The results are shown in Table 1-8.

(実施例41)
実施例4において、前記導電性粒子1を前記導電性粒子9とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−8に示す。
(Example 41)
In Example 4, an anisotropic conductive joined body was prepared and evaluated in the same manner as in Example 4 except that the conductive particle 1 was changed to the conductive particle 9. The results are shown in Table 1-8.

(比較例21)
実施例4において、前記導電性粒子1を前記導電性粒子10とした以外は、実施例4と同様にして、異方性導電接合体を作製し、評価を実施した。結果を表1−8に示す。
(Comparative Example 21)
In Example 4, an anisotropic conductive joined body was produced and evaluated in the same manner as in Example 4 except that the conductive particle 1 was changed to the conductive particle 10. The results are shown in Table 1-8.

Figure 0006057521
実施例37〜41及び比較例21において、導電性粒子の個数平均粒子径(D)、硬金属部の硬度、軟金属部の硬度、硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S)、及び軟金属部の平均厚み〔A(μm)〕と導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)は、以下の通りである。
導電性粒子の個数平均粒子径:3.0μm
硬金属部の硬度:Hv250
軟金属部の硬度:Hv100
硬金属部の硬度(H)と軟金属部の硬度(S)との硬度差(H−S):Hv150
軟金属部の平均厚み〔A(μm)〕と、導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D):0.33
Figure 0006057521
In Examples 37 to 41 and Comparative Example 21, the number average particle diameter (D) of the conductive particles, the hardness of the hard metal part, the hardness of the soft metal part, the hardness (H) of the hard metal part and the hardness of the soft metal part ( S) hardness difference (HS) and the ratio (A / D) of the average thickness [A (μm)] of the soft metal part and the number average particle diameter [D (μm)] of the conductive particles, It is as follows.
Number average particle diameter of conductive particles: 3.0 μm
Hardness of hard metal part: Hv250
Hardness of soft metal part: Hv100
Hardness difference (HS) between the hardness (H) of the hard metal part and the hardness (S) of the soft metal part: Hv150
Ratio (A / D) of the average thickness [A (μm)] of the soft metal part to the number average particle diameter [D (μm)] of the conductive particles: 0.33

表1−1〜表1−8より、実施例1〜41の異方性導電接合体は、異方性導電材料に含有される導電性粒子の潰れが好適であることから、導通抵抗値(Ω)が低く、接続信頼性に優れることが確認できた。特に、実施例3〜5、9〜11、16〜22、24〜28、30〜33の異方性導電接合体は、導電性粒子の潰れが85℃、85%RHで500時間経過後においても良好であり、かつ導通抵抗値(Ω)が0.8〜1.3とより低い値を示しているため、より優れていることがわかる。
一方、表1−1〜表1−3より、比較例1〜6の異方性導電接合体は、第1の電子部品と端子として、軟金属部のみからなる端子、又は、硬金属部のみからなる端子を使用しているため、85℃、85%RHで500時間経過後の導電性粒子の潰れが弱く、更に、導通抵抗値が高くなっていることがわかる。また、表1−4より、導電性粒子の硬度が5,880N/mm(600kgf/mm)未満であると、粒子潰れは、良好であっても、導通抵抗値が高くなっていることがわかる。更に、表1−5〜表1−7より、比較例13〜20の異方性導電接合体は、前記硬金属部の硬度と前記軟金属部の硬度とに差異がない、軟金属部の硬度がHv100よりも大きい、又は、硬金属部の硬度がHv650より大きいため、85℃、85%RHで500時間経過後の粒子潰れが弱く、導通抵抗値が高くなっていることがわかる。
From Table 1-1 to Table 1-8, since the anisotropic conductive joints of Examples 1-41 are suitable for the collapse of conductive particles contained in the anisotropic conductive material, the conduction resistance value ( Ω) was low, and it was confirmed that the connection reliability was excellent. In particular, the anisotropic conductive joints of Examples 3 to 5, 9 to 11, 16 to 22, 24 to 28, and 30 to 33 were obtained after the crushed conductive particles were 85 ° C. and 85% RH after 500 hours. Since the conduction resistance value (Ω) shows a lower value of 0.8 to 1.3, it can be seen that it is more excellent.
On the other hand, from Table 1-1 to Table 1-3, the anisotropic conductive joined bodies of Comparative Examples 1 to 6 have only the soft metal part or only the hard metal part as the first electronic component and the terminal. Therefore, it can be seen that the conductive particles are weakly crushed after a lapse of 500 hours at 85 ° C. and 85% RH, and the conduction resistance value is high. Moreover, from Table 1-4, when the hardness of the conductive particles is less than 5,880 N / mm 2 (600 kgf / mm 2 ), even if the particle crushing is good, the conduction resistance value is high. I understand. Furthermore, from Table 1-5 to Table 1-7, the anisotropic conductive joined bodies of Comparative Examples 13 to 20 have no difference between the hardness of the hard metal part and the hardness of the soft metal part. Since the hardness is larger than Hv100 or the hardness of the hard metal part is larger than Hv650, it is understood that the particle collapse after 500 hours at 85 ° C. and 85% RH is weak and the conduction resistance value is high.

本発明の異方性導電材料を用いた接続方法及び異方性導電接合体は、導電性粒子の潰れが良好に行われ、接続抵抗値が低く、かつ導電性粒子の粒子反発が小さくなり、接続信頼性が向上するため、異方性導電材料の接続方法及び異方性導電接合体として、好適に利用可能である。   The connection method using the anisotropic conductive material of the present invention and the anisotropic conductive joint, the conductive particles are crushed well, the connection resistance value is low, and the particle repulsion of the conductive particles is small, Since connection reliability improves, it can be suitably used as a method for connecting an anisotropic conductive material and an anisotropic conductive joined body.

1 第2の電子部品
2 第2の電子部品の端子
3 導電性粒子
4 異方性導電材料
5 軟金属部
6 硬金属部
7 第1の電子部品
8 異方性導電接合体
9 基板
DESCRIPTION OF SYMBOLS 1 2nd electronic component 2 Terminal of 2nd electronic component 3 Conductive particle | grains 4 Anisotropic conductive material 5 Soft metal part 6 Hard metal part 7 1st electronic component 8 Anisotropic conductive junction 9 Substrate

Claims (12)

第1の電子部品の端子と第2の電子部品の端子とを、異方性導電材料を介して接続した異方性導電接合体であって、
前記第1の電子部品の端子が、硬金属部及び前記硬金属部よりも柔らかい軟金属部を有し、
前記異方性導電材料が、導電性粒子を有し、
前記軟金属部が、前記導電性粒子と接しており、
前記硬金属部が、前記第1の電子部品の配線と接しており、
前記硬金属部の硬度が、Hv100〜Hv650であり、
前記軟金属部の硬度が、Hv10〜Hv100であり、
前記導電性粒子の硬度が、5,880N/mm〜26,460N/mmであることを特徴とする異方性導電接合体。
An anisotropic conductive joint in which a terminal of a first electronic component and a terminal of a second electronic component are connected via an anisotropic conductive material,
The terminal of the first electronic component has a hard metal part and a soft metal part softer than the hard metal part,
The anisotropic conductive material has conductive particles;
The soft metal portion is in contact with the conductive particles;
The hard metal portion is in contact with the wiring of the first electronic component;
The hardness of the hard metal part is Hv100-Hv650,
The soft metal part has a hardness of Hv10 to Hv100,
An anisotropic conductive joined body, wherein the conductive particles have a hardness of 5,880 N / mm 2 to 26,460 N / mm 2 .
硬金属部が、平板状であり、接続前の前記硬金属部の平均厚みが、3.0μm〜12.0μmであり、
軟金属部が、平板状であり、接続前の前記軟金属部の平均厚みが、0.1μm〜9.0μmである請求項1に記載の異方性導電接合体。
The hard metal part is flat, and the average thickness of the hard metal part before connection is 3.0 μm to 12.0 μm,
2. The anisotropic conductive joint according to claim 1, wherein the soft metal portion has a flat plate shape, and an average thickness of the soft metal portion before connection is 0.1 μm to 9.0 μm.
接続前の導電性粒子の個数平均粒子径が、3.0μm〜10.0μmである請求項1から2のいずれかに記載の異方性導電接合体。   The anisotropic conductive joined body according to claim 1, wherein the number average particle diameter of the conductive particles before connection is 3.0 μm to 10.0 μm. 接続前の平板状の軟金属部の平均厚み〔A(μm)〕と、接続前の導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)が、0.02〜1.00である請求項2から3のいずれかに記載の異方性導電接合体。   The ratio (A / D) between the average thickness [A (μm)] of the flat soft metal portion before connection and the number average particle diameter [D (μm)] of the conductive particles before connection is 0.02. The anisotropic conductive joint according to claim 2, which is ˜1.00. 硬金属の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv40以上である請求項1から4のいずれかに記載の異方性導電接合体。   The anisotropic conductive joined body according to any one of claims 1 to 4, wherein a difference (HS) between the hardness (H) of the hard metal and the hardness (S) of the soft metal portion is Hv40 or more. 接続前の平板状の軟金属部の平均厚み〔A(μm)〕と、接続前の導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)が、0.07〜0.70であり、
硬金属の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv50〜Hv350である請求項2から5のいずれかに記載の異方性導電接合体。
The ratio (A / D) between the average thickness [A (μm)] of the flat soft metal portion before connection and the number average particle diameter [D (μm)] of the conductive particles before connection is 0.07. ~ 0.70,
The anisotropic conductive joined body according to any one of claims 2 to 5, wherein a difference (HS) between the hardness (H) of the hard metal and the hardness (S) of the soft metal portion is Hv50 to Hv350.
第1の電子部品の端子と第2の電子部品の端子とを、異方性導電接続させる接続方法であって、
前記第1の電子部品の端子が、硬金属部及び前記硬金属部よりも柔らかい軟金属部を有し、
前記硬金属部が、前記第1の電子部品の配線と接しており、
前記第1の電子部品の端子及び前記第2の電子部品の端子のいずれか一方の上に、導電性粒子を含有する異方性導電材料を配置する配置工程と、
前記異方性導電材料上に他方の前記電子部品を載置する載置工程と、
前記軟金属部と前記導電性粒子とが接するように、前記第1の電子部品及び前記第2の電子部品のいずれか一方を、加熱及び押圧する加熱押圧工程とを含み、
前記硬金属部の硬度が、Hv100〜Hv650であり、
前記軟金属部の硬度が、Hv10〜Hv100であり、
前記導電性粒子の硬度が、5,880N/mm〜26,460N/mmであることを特徴とする接続方法。
A method of connecting anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component,
The terminal of the first electronic component has a hard metal part and a soft metal part softer than the hard metal part,
The hard metal portion is in contact with the wiring of the first electronic component;
An arrangement step of arranging an anisotropic conductive material containing conductive particles on either one of the terminal of the first electronic component and the terminal of the second electronic component;
A placing step of placing the other electronic component on the anisotropic conductive material;
A heating and pressing step of heating and pressing either the first electronic component or the second electronic component so that the soft metal portion and the conductive particles are in contact with each other,
The hardness of the hard metal part is Hv100-Hv650,
The soft metal part has a hardness of Hv10 to Hv100,
The connection method, wherein the conductive particles have a hardness of 5,880 N / mm 2 to 26,460 N / mm 2 .
硬金属部が、平板状であり、接続前の前記硬金属部の平均厚みが、3.0μm〜12.0μmであり、
軟金属部が、平板状であり、接続前の前記軟金属部の平均厚みが、0.1μm〜9.0μmである請求項7に記載の接続方法。
The hard metal part is flat, and the average thickness of the hard metal part before connection is 3.0 μm to 12.0 μm,
The connection method according to claim 7, wherein the soft metal part has a flat plate shape, and an average thickness of the soft metal part before connection is 0.1 μm to 9.0 μm.
接続前の導電性粒子の個数平均粒子径が、3.0μm〜10.0μmである請求項7から8のいずれかに記載の接続方法。   The connection method according to claim 7, wherein the number average particle diameter of the conductive particles before connection is 3.0 μm to 10.0 μm. 接続前の導電性粒子の個数平均粒子径〔D(μm)〕と、接続前の平板状の軟金属部の平均厚み〔A(μm)〕との比(A/D)が、0.02〜1.00である請求項8から9のいずれかに記載の接続方法。   The ratio (A / D) between the number average particle diameter [D (μm)] of the conductive particles before connection and the average thickness [A (μm)] of the flat soft metal part before connection is 0.02 The connection method according to claim 8, which is ˜1.00. 硬金属部の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv40以上である請求項7から10のいずれかに記載の接続方法。   The connection method according to any one of claims 7 to 10, wherein a difference (HS) between a hardness (H) of the hard metal portion and a hardness (S) of the soft metal portion is Hv40 or more. 接続前の平板状の軟金属部の平均厚み〔A(μm)〕と、接続前の導電性粒子の個数平均粒子径〔D(μm)〕との比(A/D)が、0.07〜0.70であり、
硬金属の硬度(H)と軟金属部の硬度(S)との差(H−S)が、Hv50〜Hv350である請求項8から11のいずれかに記載の接続方法。
The ratio (A / D) between the average thickness [A (μm)] of the flat soft metal portion before connection and the number average particle diameter [D (μm)] of the conductive particles before connection is 0.07. ~ 0.70,
The connection method according to any one of claims 8 to 11, wherein a difference (HS) between the hardness (H) of the hard metal and the hardness (S) of the soft metal portion is Hv50 to Hv350.
JP2012047773A 2012-03-05 2012-03-05 Connection method using anisotropic conductive material and anisotropic conductive joined body Active JP6057521B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012047773A JP6057521B2 (en) 2012-03-05 2012-03-05 Connection method using anisotropic conductive material and anisotropic conductive joined body
PCT/JP2013/055335 WO2013133116A1 (en) 2012-03-05 2013-02-28 Connection method using anisotropic conductive material and anisotropic conductive connected structure
CN201380012602.2A CN104145329B (en) 2012-03-05 2013-02-28 Connection method using anisotropic conductive material and anisotropic conductive connected structure
KR1020147027523A KR101994507B1 (en) 2012-03-05 2013-02-28 Connection method using anisotropic conductive material and anisotropic conductive connected structure
TW102107605A TWI528384B (en) 2012-03-05 2013-03-05 Bonding method using anisotropic conductive material, and anisotropic conductive bonded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047773A JP6057521B2 (en) 2012-03-05 2012-03-05 Connection method using anisotropic conductive material and anisotropic conductive joined body

Publications (2)

Publication Number Publication Date
JP2013183118A JP2013183118A (en) 2013-09-12
JP6057521B2 true JP6057521B2 (en) 2017-01-11

Family

ID=49116598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047773A Active JP6057521B2 (en) 2012-03-05 2012-03-05 Connection method using anisotropic conductive material and anisotropic conductive joined body

Country Status (5)

Country Link
JP (1) JP6057521B2 (en)
KR (1) KR101994507B1 (en)
CN (1) CN104145329B (en)
TW (1) TWI528384B (en)
WO (1) WO2013133116A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220071295A (en) * 2014-05-12 2022-05-31 세키스이가가쿠 고교가부시키가이샤 Electroconductive particles, conductive material, and connection structure
JP6945276B2 (en) * 2016-03-31 2021-10-06 デクセリアルズ株式会社 Anisotropic conductive connection structure
JP6885863B2 (en) * 2017-12-28 2021-06-16 富士フイルム株式会社 Pattern formation method, film formation method and sheet-like material
JP2019179647A (en) 2018-03-30 2019-10-17 デクセリアルズ株式会社 Conductive material, and manufacturing method of connection body
CN110534540B (en) * 2018-05-25 2021-12-10 群创光电股份有限公司 Electronic device and method for manufacturing the same
CN117836941A (en) * 2021-08-17 2024-04-05 索尼半导体解决方案公司 Semiconductor device and electronic device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766123B2 (en) * 1995-10-03 2006-04-12 積水化学工業株式会社 Conductive connection method between electrodes and conductive fine particles
JPH10107072A (en) * 1996-10-02 1998-04-24 Oki Electric Ind Co Ltd Structure and method for connecting semiconductor element
US7390732B1 (en) * 1997-07-15 2008-06-24 Hitachi, Ltd. Method for producing a semiconductor device with pyramidal bump electrodes bonded onto pad electrodes arranged on a semiconductor chip
JP3486346B2 (en) * 1998-07-16 2004-01-13 ソニーケミカル株式会社 Bare chip mounting structure
JP2000286299A (en) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Method for connecting semiconductor device
JP3624818B2 (en) * 1999-10-12 2005-03-02 ソニーケミカル株式会社 Anisotropic conductive connection material, connection body, and manufacturing method thereof
JP3810064B2 (en) * 2002-03-15 2006-08-16 松下電器産業株式会社 Liquid crystal display
JP4608178B2 (en) 2002-12-06 2011-01-05 旭化成エレクトロニクス株式会社 Electronic device and electronic device forming method
JP2005072262A (en) * 2003-08-25 2005-03-17 Seiko Epson Corp Circuit board, its manufacturing method, electrooptic device, and electronic equipment
JP2005191541A (en) * 2003-12-05 2005-07-14 Seiko Epson Corp Semiconductor device, semiconductor chip, manufacturing method of the semiconductor device, and electronic apparatus
JP2005311293A (en) * 2004-03-26 2005-11-04 Seiko Epson Corp Semiconductor chip, semiconductor device, manufacturing method for the semiconductor device, and electronic device
KR100877264B1 (en) * 2007-05-09 2009-01-09 엘에스엠트론 주식회사 Semiconductor device having electrode for low pressure bonding and Semiconductor package using the same
KR101041146B1 (en) * 2009-09-02 2011-06-13 삼성모바일디스플레이주식회사 Display device

Also Published As

Publication number Publication date
KR101994507B1 (en) 2019-06-28
WO2013133116A1 (en) 2013-09-12
CN104145329B (en) 2017-04-12
TW201337959A (en) 2013-09-16
JP2013183118A (en) 2013-09-12
TWI528384B (en) 2016-04-01
CN104145329A (en) 2014-11-12
KR20140138822A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP6057521B2 (en) Connection method using anisotropic conductive material and anisotropic conductive joined body
CN104106182B (en) Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
JP5685473B2 (en) Anisotropic conductive film, method for manufacturing bonded body, and bonded body
KR20100017828A (en) Anisotropic conductive film, joined structure and method for producing the joined structure
CN101946371A (en) Connecting film, bonded body and method for manufacturing the bonded body
KR101344965B1 (en) Anisotropic conductive film, united object, and process for producing united object
KR102517498B1 (en) Conductive material and manufacturing method of connection body
WO2013129437A1 (en) Method for manufacturing connection element, and anisotropic electroconductive adhesive
KR20170036721A (en) Conductive material
KR102114802B1 (en) Anisotropic conductive film, connection method, and connected body
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
WO2017047671A1 (en) Connection material
KR20140019235A (en) Circuit connection material
JP5698080B2 (en) Anisotropic conductive film, connection method, and joined body
TWI719054B (en) Method for manufacturing connection structure, conductive particles, conductive film, and connection structure
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP2023024086A (en) Laminated resin film, connection structure, and method for manufacturing connection structure
JP2016072097A (en) Connection method, conjugate and touch panel device
KR20210129169A (en) adhesive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6057521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250