WO2019188262A1 - Surface-treated copper foil and copper-clad laminate - Google Patents

Surface-treated copper foil and copper-clad laminate Download PDF

Info

Publication number
WO2019188262A1
WO2019188262A1 PCT/JP2019/010096 JP2019010096W WO2019188262A1 WO 2019188262 A1 WO2019188262 A1 WO 2019188262A1 JP 2019010096 W JP2019010096 W JP 2019010096W WO 2019188262 A1 WO2019188262 A1 WO 2019188262A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
silane compound
treated copper
treated
treatment layer
Prior art date
Application number
PCT/JP2019/010096
Other languages
French (fr)
Japanese (ja)
Inventor
友希 大理
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201980010640.1A priority Critical patent/CN111655900B/en
Priority to KR1020207020817A priority patent/KR102502018B1/en
Priority to MYPI2020004832A priority patent/MY194720A/en
Publication of WO2019188262A1 publication Critical patent/WO2019188262A1/en
Priority to PH12020551281A priority patent/PH12020551281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a surface-treated copper foil and a copper clad laminate.
  • Copper clad laminates are widely used in various applications such as flexible printed wiring boards.
  • This flexible printed wiring board is formed by etching a copper foil of a copper-clad laminate to form a conductor pattern (also referred to as a “wiring pattern”), and connecting and mounting electronic components on the conductor pattern with solder. Manufactured.
  • the loss of signal power in electronic circuits can be roughly divided into two.
  • One is conductor loss, that is, loss due to copper foil
  • the other is dielectric loss, that is, loss due to resin base material.
  • the conductor loss has a skin effect in a high frequency region and has a characteristic that the current flows on the surface of the conductor. Therefore, if the copper foil surface is rough, the current flows along a complicated path. Therefore, in order to reduce the conductor loss, it is desirable to reduce the surface roughness of the copper foil.
  • the dielectric loss depends on the type of the resin base material, it is desirable to use a resin base material formed from a low dielectric material (for example, a liquid crystal polymer or a low dielectric polyimide). Moreover, since dielectric loss is also influenced by the adhesive agent which adhere
  • a silane compound between copper foil and a resin base material
  • the roughened particles electrodeposited on the surface of the copper foil increase the conductor loss due to the skin effect, and cause the phenomenon that the roughened particles, which are called powder fall off, are peeled off. It is desirable to reduce the amount of roughened particles.
  • the number of roughened particles to be electrodeposited on the surface of the copper foil is reduced, the anchor effect by the roughened particles is lowered, and sufficient adhesion between the copper foil and the resin base material cannot be obtained.
  • resin base materials formed from low dielectric materials such as liquid crystal polymers and low dielectric polyimides are less likely to adhere to copper foils than conventional resin base materials.
  • the surface treatment layer of a silane compound has the effect which improves the adhesiveness between copper foil and a resin base material, it cannot be said that the adhesive improvement effect is sufficient depending on the kind.
  • An embodiment of the present invention has been made to solve the above-described problems, and is a surface-treated copper foil capable of improving the adhesion with a resin base material, particularly a resin base material suitable for high-frequency applications.
  • the purpose is to provide.
  • Another object of the present invention is to provide a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil.
  • the present inventors have found that the position (mass number: m / z) at which the peak is detected when the surface treatment layer of the silane compound is measured by TOF-SIMS.
  • the present inventors have found that it is related to the adhesion between the surface treatment layer of the silane compound and the resin substrate, and have completed the surface-treated copper foil and the copper clad laminate according to the embodiment of the present invention.
  • the surface-treated copper foil according to the embodiment of the present invention has a surface-treated layer of a silane compound on the surface of the copper foil, and when the surface-treated layer of the silane compound is measured by TOF-SIMS, 240.9 To 241.1, 241.9 to 242.1, 242.9 to 243.1, 243.9 to 244.1, 244.9 to 245.1, 260.9 to 261.1, 261.9 to 262 .1 and 262.9 to 263.1, a peak is detected at the position of at least one mass number (m / z) selected from the group consisting of.
  • the copper clad laminated board which concerns on embodiment of this invention contains the resin base material joined on the surface treatment layer of the said silane compound of the said surface treatment copper foil and the said surface treatment copper foil.
  • the embodiment of the present invention it is possible to provide a surface-treated copper foil capable of enhancing the adhesion with a resin base material, particularly a resin base material suitable for high frequency applications. Moreover, according to embodiment of this invention, the copper clad laminated board excellent in the adhesiveness between a resin base material, especially the resin base material suitable for a high frequency use, and surface-treated copper foil can be provided.
  • FIG. 2 is a TOF-SIMS spectrum (mass number (m / z) is in the range of 240 to 260) in the surface treatment layer of the silane compound of the surface-treated copper foil obtained in Example 1 and Comparative Examples 1 and 2.
  • FIG. 3 is a TOF-SIMS spectrum (mass number (m / z) is in the range of 260 to 263.5) in the surface treatment layer of the silane compound of the surface-treated copper foil obtained in Example 1 and Comparative Examples 1 and 2.
  • FIG. 3 is a TOF-SIMS spectrum (mass number (m / z) is in the range of 260 to 263.5) in the surface treatment layer of the silane compound of the surface-treated copper foil obtained in Example 1 and Comparative Examples 1 and 2.
  • the surface-treated copper foil which concerns on embodiment of this invention has the surface treatment layer of a silane compound on the copper foil surface.
  • the “surface treatment layer of a silane compound” means a film formed from a silane compound.
  • the “copper foil” includes not only copper foil but also copper alloy foil.
  • the surface-treated copper foil according to the embodiment of the present invention is 240.9 to 241.1, 241. 9 to 242.1, 242.9 to 243.1, 243.9 to 244.1, 244.9 to 245.1, 260.9 to 261.1, 261.9 to 262.1, and 262.9 to A peak is detected at the position of at least one mass number (m / z) selected from the group consisting of 263.1.
  • mass number m / z
  • the mass number of 240.9 to 241.1 is preferably 241.03, and the mass number of 241.9 to 242.1 is preferably 242.03, and 242.9 to 243.1.
  • the mass number is preferably 243.03, the mass number of 243.9 to 244.1 is preferably 244.05, and the mass number of 244.9 to 245.1 is preferably 245.05.
  • the mass number of 260.9 to 261.1 is preferably 261.01, the mass number of 261.9 to 262.1 is preferably 262.01, and 262.9 to 263.1.
  • the mass number is preferably 263.03.
  • the silane compound is not particularly limited as long as a peak is detected at the position of the above mass number when the surface treatment layer of the silane compound is measured by TOF-SIMS.
  • the silane compound has a reactive functional group and a hydrolyzable group.
  • the “reactive functional group” refers to a chemical interaction with a resin substrate (for example, an interaction by van der Waals force, an interaction by Coulomb force, but is not limited thereto). )
  • the “hydrolyzable group” means a reactive group that can be hydrolyzed by moisture and chemically bonded to the copper foil.
  • a reactive functional group of a silane compound From an adhesive viewpoint with respect to a resin base material, at least 1 sort (s) selected from an amino group, a (meth) acryl group, a thiol group (mercapto group), and an epoxy group.
  • the “(meth) acryl group” means both an acryl group and a methacryl group.
  • Alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group; An acyloxy group etc. are mentioned. Among these, alkoxy groups such as a methoxy group, an ethoxy group, and a propoxy group are preferable because they have a high effect of improving the adhesion between the resin base material and the surface-treated copper foil.
  • silane compound can be manufactured by a well-known method, you may use a commercial item.
  • examples of commercially available products that can be used as the silane compound include KBM series and KBE series manufactured by Shin-Etsu Chemical Co., Ltd.
  • a commercially available silane compound is used alone, when the surface treatment layer of the silane compound is measured by TOF-SIMS, a peak is hardly detected at the position of the above mass number. Therefore, when using a commercially available silane compound, it is preferable to use a mixture of two or more silane compounds.
  • a preferable mixture of silane compounds is a mixture of KBM603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBM602 (N-2- A mixture of (aminoethyl) -3-aminopropyldimethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBM603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) and KBE503 ( A mixture of 3-methacryloxypropyltriethoxysilane), KBM602 (N-2- (aminoethyl) -3-aminopropyldimethoxysilane) and KBE503 (3-methacryloxypropyltriethoxysilane), KBM903 (3 -
  • the surface roughness of the surface treatment layer of the silane compound is not particularly limited, but the ten-point average roughness Rz is preferably 0.1 to 2.0 ⁇ m, more preferably 0.50 to 1.0 ⁇ m.
  • the arithmetic average roughness Ra is preferably 0.01 to 0.30, more preferably 0.05 to 0.16.
  • a rolled copper foil or an electrolytic copper foil can be used.
  • the rolled copper foil is preferable because the surface roughness is small and the conductor loss can be reduced.
  • middle layer may be sufficient as copper foil.
  • the carrier and the intermediate layer are not particularly limited, and known ones can be used.
  • a roughening treatment layer may be formed on the surface of the copper foil by subjecting it to a roughening treatment from the viewpoint of enhancing the adhesion to the resin base material.
  • the “roughening treatment layer” in this specification means a layer of roughening particles electrodeposited on a copper foil.
  • the roughened particles are not particularly limited, and are formed from copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, zinc, or an alloy containing one or more of them, which is generally used for the roughening treatment. Fine particles.
  • the roughened particles electrodeposited on the surface of the copper foil increase the conductor loss due to the skin effect, and can cause the phenomenon that the roughened particles called powder fall off, so the copper foil can be used as necessary. It is good also as an aspect which makes the roughening particle
  • one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer and a chromate treatment layer are provided from the viewpoint of improving various properties. Also good. These layers may be a single layer or a plurality of layers.
  • a surface-treated copper foil having a surface-treated layer of a silane compound having the above characteristics on the surface of the copper foil is manufactured by preparing a solution containing the silane compound and then surface-treating the copper foil using this solution. Can do.
  • the solution containing a silane compound can contain a solvent such as water in addition to the silane compound.
  • the concentration of the silane compound in the solution is not particularly limited, but it is preferable that the silane concentration of the silane compound in the solution is 0.5 volume% to 10 volume%. From the viewpoint of solubility in a solvent in the solution, the silane concentration of the entire silane compound in the solution is preferably 0.1% to 5.0% by volume.
  • the solution containing the silane compound can be prepared, for example, by adding the silane compound to a solvent and mixing.
  • the surface treatment conditions may be appropriately adjusted according to the type of silane compound used. Specifically, the temperature of the solution is 10 to 30 ° C., the pH of the solution is 1 to 12, the treatment time is 1 to 5 seconds, the drying temperature is 100 to 150 ° C., and the drying time is 10 to 300 seconds. A surface treatment may be performed.
  • the pH of the solution is particularly preferably around neutral, that is, 3 to 10. When the silane compound contains an amino group, the pH of the solution is preferably 6-12.
  • the surface treatment method is not particularly limited, and a known method such as a coating method or a dipping method can be used.
  • the adhesion amount of the silane compound can be controlled by changing the coating means such as showering and spraying or adjusting the number of coatings. It is also possible to control the adhesion amount of the silane compound by adjusting the concentration of the silane compound in the solution containing the silane compound.
  • an electroplating method can be used.
  • the amount of electrodeposition of the roughened particles on the copper foil surface can be controlled mainly by adjusting the current density and the electrodeposition time.
  • the amount of electrodeposition of the roughened particles mainly affects the surface roughness of the surface-treated copper foil.
  • the roughening treatment for example, the following roughening treatment method (1) or roughening treatment method (2) can be used.
  • the heat treatment, anti-rust treatment or chromate treatment should be applied before the surface treatment of the silane compound. What is necessary is just to go to the foil surface.
  • These treatment methods are not particularly limited, and can be performed according to known methods.
  • the surface-treated copper foil produced as described above has a surface treatment layer of a silane compound in which a peak is detected at a specific position (mass number: m / z) when measured by TOF-SIMS. Therefore, the adhesiveness between the surface treatment layer of the silane compound and the resin base material is high.
  • this surface-treated copper foil can improve the adhesion to the resin substrate even when there are few roughened particles electrodeposited on the copper foil surface by the roughening treatment or when the roughening treatment is not performed. it can.
  • this surface-treated copper foil is suitable not only for conventional resin base materials but also for resin base materials suitable for high frequency applications that are harder to adhere to copper foil than conventional resin base materials (liquid crystal polymers, low dielectric materials such as low dielectric polyimides). It can also be used for bonding to a resin base material formed from a material.
  • a copper clad laminate according to an embodiment of the present invention includes the above-described surface-treated copper foil and a resin base material bonded onto the surface-treated layer of the silane compound of the surface-treated copper foil.
  • the resin base material is preferably a resin base material formed from a low dielectric material.
  • low dielectric in this specification means that the dielectric loss tangent (1 GHz) is 0.01 or less.
  • the low dielectric material include, but are not limited to, liquid crystal polymer (LCP), low dielectric polyimide, low dielectric epoxy resin, fluorine resin, polyphenylene ether resin, and the like.
  • liquid crystal polymer means an aromatic polyester that exhibits optical anisotropy in the liquid phase.
  • the liquid crystal polymer is generally commercially available, and for example, Vecstar (registered trademark) series manufactured by Kuraray Co., Ltd. can be used.
  • “low dielectric polyimide” means, for example, a polyimide having a relative dielectric constant (1 GHz) of 3.3 or less and a dielectric loss tangent (1 GHz) of 0.005 or less.
  • the low dielectric polyimide is generally commercially available, and for example, U varnish, Upilex (registered trademark) manufactured by Ube Industries, Ltd. can be used.
  • the fluororesin include PTFE.
  • Polyphenylene ether resins also include compounds with other resins such as polystyrene.
  • the copper clad laminate having the above-described configuration is formed by placing a resin base material on the surface treatment layer of the silane compound of the surface-treated copper foil, and then applying pressure between the surface-treated copper foil and the resin base material. Can be manufactured.
  • the applied pressure is not particularly limited, and may be appropriately set according to the type of the surface-treated copper foil and the resin base material to be used.
  • the copper clad laminate produced as described above is a surface-treated copper having a surface-treated layer of a silane compound in which a peak is detected at a specific position (mass number: m / z) when measured by TOF-SIMS. Since the foil is provided, the adhesiveness between the surface-treated copper foil and the resin base material is excellent. Therefore, this copper-clad laminate is suitable for use in applications such as flexible wiring boards, rigid wiring boards, shield materials, RF-IDs, planar heating elements, and radiators.
  • silane compounds used in each example and comparative example are as follows. ⁇ KBM603 (Shin-Etsu Chemical Co., Ltd., N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) ⁇ KBM503 (Shin-Etsu Chemical Co., Ltd., 3-methacryloxypropyltrimethoxysilane)
  • Example 1 In accordance with the roughening method (2) described above, a roughened layer is obtained by subjecting a rolled copper foil of 12 ⁇ m thickness (BHZ-Z-HA-V2 manufactured by JX Metals Co., Ltd.) to the following conditions. Formed.
  • a surface treatment layer is formed using a solution containing a silane compound under the following conditions to form a surface treatment layer of the silane compound.
  • a treated copper foil was obtained.
  • Silane compound A mixture of KBM603 and KBM503 (volume ratio of KBM603 to KBM503 is 75:25)
  • Concentration of silane compound in solution 1% by volume Solution temperature: 20 ° C Solution pH: 4.5 Processing time: 3 seconds
  • Application frequency 1 time Drying temperature: 110 ° C Drying time: 30 seconds
  • a resin substrate made of a liquid crystal polymer (Vecstar (registered trademark) CT-Z manufactured by Kuraray Co., Ltd.) having a thickness of 50 ⁇ m was disposed on the surface-treated layer of the silane compound of the surface-treated copper foil obtained above.
  • a resin substrate made of a liquid crystal polymer (Vecstar (registered trademark) CT-Z manufactured by Kuraray Co., Ltd.) having a thickness of 50 ⁇ m was disposed.
  • the copper clad laminated board was obtained by pressurizing and joining. At this time, the applied pressure was set to 4 MPa.
  • Example 1 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM603 was used as the silane compound, the concentration of the silane compound in the solution was changed to 4% by volume, and the pH of the solution was changed to 11.
  • Comparative Example 2 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM503 was used as the silane compound.
  • the surface-treated copper foils obtained in the above examples and comparative examples were subjected to TOF-SIMS analysis of the silane compound surface treatment layer.
  • the analysis conditions are shown below.
  • FIGS. 1 and 2 show a spectrum of TOF-SIMS in the range of mass number (m / z) from 240 to 260.
  • FIG. 2 shows a spectrum of TOF-SIMS in the range of mass number (m / z) from 260 to 263.5. It is a spectrum.
  • the mass number (m / z) is position A at 240.9 to 241.1, position B at 241.9 to 242.1, 242.9 to 243. 1 position C, 243.9 to 244.1 position D, 244.9 to 245.1 position E, 260.9 to 261.1 position F, 261.9 to 262.1 positions G and 262
  • a peak was detected at position H between .9 and 263.1.
  • Example 1 the mass numbers (m / z) are 241.03, 242.03, 243.03, 244.05, 245.05, 261.01, 262.01, and 263.03. A peak was detected at the position of. In contrast, in Comparative Examples 1 and 2, no peak was detected at any of the positions A to H.
  • the 10-point average roughness Rz and arithmetic average roughness Ra of the surface treatment layer of the silane compound were measured for the surface-treated copper foils obtained in the above Examples and Comparative Examples.
  • the results are shown in Table 1.
  • the ten-point average roughness Rz and arithmetic average roughness Ra of the surface treatment layer of the silane compound were measured according to JIS B0601: 1982 using a contact roughness meter Surfcoder SE-600 manufactured by Kosaka Laboratory. In this measurement, the measurement reference length is 0.8 mm, the evaluation length is 4 mm, the cutoff value is 0.25 mm, the feeding speed is 0.1 mm / second, and the measurement position is changed in the width direction of the surface-treated copper foil. 10 times, and the average of the 10 measurements was taken as the evaluation result.
  • 90 degree peel strength was measured about the copper clad laminated board obtained by said Example and comparative example.
  • the results are shown in Table 1.
  • the 90 degree peel strength was measured in accordance with JIS C6471: 1995. Specifically, the strength when the conductor (surface-treated copper foil) width was 3 mm and the resin substrate and the surface-treated copper foil were peeled at a speed of 50 mm / min at an angle of 90 degrees was measured. The measurement was performed twice, and the average value was taken as the result of 90 degree peel strength.
  • Example 1 has a 90 degree peel strength higher than that of Comparative Examples 1 and 2, and has high adhesion between the surface treatment layer of the silane compound and the resin substrate. It was.
  • the embodiment of the present invention it is possible to provide a surface-treated copper foil capable of improving the adhesion with a resin substrate, particularly a resin substrate suitable for high frequency applications. Moreover, according to embodiment of this invention, the copper clad laminated board excellent in the adhesiveness between a resin base material, especially the resin base material suitable for a high frequency use, and surface-treated copper foil can be provided.
  • the surface-treated copper foil according to the embodiment of the present invention has a surface-treated layer of a silane compound that has high adhesion to the resin substrate, it can be used for the production of a copper-clad laminate.
  • the copper-clad laminate according to the embodiment of the present invention is excellent in adhesion between the resin base material and the surface-treated copper foil. Therefore, the flexible wiring board, the rigid wiring board, the shield material, the RF-ID, It can be used for applications such as planar heating elements and radiators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A surface-treated copper foil, wherein a surface treatment layer comprising a silane compound is present on a copper foil surface. When the surface treatment layer comprising the silane compound of this surface-treated copper foil is measured according to TOF-SIMS, a peak is detected in the location of at least one mass number (m/z) selected from the group consisting of 240.9-241.1, 241.9-242.1, 242.9-243.1, 243.9-244.1, 244.9-245.1, 260.9-261.1, 261.9-262.1 and 262.9-263.1.

Description

表面処理銅箔及び銅張積層板Surface treated copper foil and copper clad laminate
 本発明は、表面処理銅箔及び銅張積層板に関する。 The present invention relates to a surface-treated copper foil and a copper clad laminate.
 銅張積層板は、フレキシブルプリント配線板などの各種用途において広く用いられている。このフレキシブルプリント配線板は、銅張積層板の銅箔をエッチングして導体パターン(「配線パターン」とも称される)を形成し、導体パターン上に電子部品を半田で接続して実装することによって製造される。 Copper clad laminates are widely used in various applications such as flexible printed wiring boards. This flexible printed wiring board is formed by etching a copper foil of a copper-clad laminate to form a conductor pattern (also referred to as a “wiring pattern”), and connecting and mounting electronic components on the conductor pattern with solder. Manufactured.
 近年、パソコン、モバイル端末などの電子機器では、通信の高速化及び大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能なフレキシブルプリント配線板が求められている。特に、電気信号の周波数は、高周波になるほど信号電力の損失(減衰)が大きくなり、データが読み取れなくなり易いため、信号電力の損失を低減することが求められている。 In recent years, in electronic devices such as personal computers and mobile terminals, with the increase in communication speed and capacity, the frequency of electrical signals has been increased, and a flexible printed wiring board that can cope with this has been demanded. In particular, as the frequency of the electrical signal increases, the loss (attenuation) of the signal power increases as the frequency increases, and data cannot be read easily. Therefore, it is required to reduce the loss of signal power.
 電子回路における信号電力の損失は大きく二つに分けることができる。その一は、導体損失、すなわち銅箔による損失であり、その二は、誘電体損失、すなわち樹脂基材による損失である。
 導体損失は、高周波域では表皮効果があり、電流は導体の表面を流れるという特性を有するため、銅箔表面が粗いと複雑な経路を辿って、電流が流れることになる。したがって、導体損失を少なくするためには、銅箔の表面粗さを小さくすることが望ましい。
The loss of signal power in electronic circuits can be roughly divided into two. One is conductor loss, that is, loss due to copper foil, and the other is dielectric loss, that is, loss due to resin base material.
The conductor loss has a skin effect in a high frequency region and has a characteristic that the current flows on the surface of the conductor. Therefore, if the copper foil surface is rough, the current flows along a complicated path. Therefore, in order to reduce the conductor loss, it is desirable to reduce the surface roughness of the copper foil.
 他方、誘電体損失は、樹脂基材の種類に依存するため、低誘電材料(例えば、液晶ポリマー、低誘電ポリイミド)から形成された樹脂基材を用いることが望ましい。また、誘電体損失は、銅箔と樹脂基材との間を接着する接着剤によっても影響を受けるため、銅箔と樹脂基材との間は接着剤を用いずに接着することが望ましい。
 そこで、銅箔と樹脂基材との間を接着剤なしに接着するために、銅箔に粗化処理を施すと共に、銅箔と樹脂基材との間にシラン化合物の表面処理層を設ける方法が提案されている(例えば、特許文献1)。銅箔の粗化処理は、銅箔表面に粗化粒子が樹木状に形成されるため、アンカー効果によって銅箔と樹脂基材との間の接着性を高めることができる。
On the other hand, since the dielectric loss depends on the type of the resin base material, it is desirable to use a resin base material formed from a low dielectric material (for example, a liquid crystal polymer or a low dielectric polyimide). Moreover, since dielectric loss is also influenced by the adhesive agent which adhere | attaches between copper foil and a resin base material, it is desirable to adhere | attach between copper foil and a resin base material, without using an adhesive agent.
Then, in order to adhere | attach between copper foil and a resin base material without an adhesive agent, while providing a roughening process to copper foil, the method of providing the surface treatment layer of a silane compound between copper foil and a resin base material Has been proposed (for example, Patent Document 1). In the roughening treatment of the copper foil, since the roughened particles are formed in a tree shape on the surface of the copper foil, the adhesion between the copper foil and the resin base material can be enhanced by the anchor effect.
特開2012-112009号公報JP 2012-112009 A
 しかしながら、銅箔表面に電着した粗化粒子は、表皮効果によって導体損失を増大させると共に、粉落ちと称される粗化粒子が剥がれ落ちる現象を引き起こす原因となるため、銅箔表面に電着させる粗化粒子を少なくすることが望ましい。他方、銅箔表面に電着させる粗化粒子を少なくすると、粗化粒子によるアンカー効果が低下してしまい、銅箔と樹脂基材との接着性が十分に得られない。特に、液晶ポリマー、低誘電ポリイミドなどの低誘電材料から形成された樹脂基材は、従来の樹脂基材よりも銅箔と接着し難いため、銅箔と樹脂基材との間の接着性を高める別の手段が要求されている。
 また、シラン化合物の表面処理層は、銅箔と樹脂基材との間の接着性を向上させる効果を有するものの、その種類によっては、接着性の向上効果が十分とは言えない状況である。
However, the roughened particles electrodeposited on the surface of the copper foil increase the conductor loss due to the skin effect, and cause the phenomenon that the roughened particles, which are called powder fall off, are peeled off. It is desirable to reduce the amount of roughened particles. On the other hand, if the number of roughened particles to be electrodeposited on the surface of the copper foil is reduced, the anchor effect by the roughened particles is lowered, and sufficient adhesion between the copper foil and the resin base material cannot be obtained. In particular, resin base materials formed from low dielectric materials such as liquid crystal polymers and low dielectric polyimides are less likely to adhere to copper foils than conventional resin base materials. There is a need for another means to enhance.
Moreover, although the surface treatment layer of a silane compound has the effect which improves the adhesiveness between copper foil and a resin base material, it cannot be said that the adhesive improvement effect is sufficient depending on the kind.
 本発明の実施形態は、上記のような問題を解決するためになされたものであり、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することを目的とする。
 また、本発明の実施形態は、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することを目的とする。
An embodiment of the present invention has been made to solve the above-described problems, and is a surface-treated copper foil capable of improving the adhesion with a resin base material, particularly a resin base material suitable for high-frequency applications. The purpose is to provide.
Another object of the present invention is to provide a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil.
 本発明者らは、上記のような問題を解決すべく鋭意研究した結果、シラン化合物の表面処理層をTOF-SIMSによって測定した際にピークが検出される位置(質量数:m/z)が、シラン化合物の表面処理層と樹脂基材との間の接着性と関係していることを見出し、本発明の実施形態に係る表面処理銅箔及び銅張積層板を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the position (mass number: m / z) at which the peak is detected when the surface treatment layer of the silane compound is measured by TOF-SIMS. The present inventors have found that it is related to the adhesion between the surface treatment layer of the silane compound and the resin substrate, and have completed the surface-treated copper foil and the copper clad laminate according to the embodiment of the present invention.
 すなわち、本発明の実施形態に係る表面処理銅箔は、シラン化合物の表面処理層を銅箔表面上に有し、前記シラン化合物の表面処理層をTOF-SIMSによって測定した際に、240.9~241.1、241.9~242.1、242.9~243.1、243.9~244.1、244.9~245.1、260.9~261.1、261.9~262.1及び262.9~263.1からなる群から選択される少なくとも1つの質量数(m/z)の位置にピークが検出されるものである。 That is, the surface-treated copper foil according to the embodiment of the present invention has a surface-treated layer of a silane compound on the surface of the copper foil, and when the surface-treated layer of the silane compound is measured by TOF-SIMS, 240.9 To 241.1, 241.9 to 242.1, 242.9 to 243.1, 243.9 to 244.1, 244.9 to 245.1, 260.9 to 261.1, 261.9 to 262 .1 and 262.9 to 263.1, a peak is detected at the position of at least one mass number (m / z) selected from the group consisting of.
 また、本発明の実施形態に係る銅張積層板は、前記表面処理銅箔と、前記表面処理銅箔の前記シラン化合物の表面処理層上に接合された樹脂基材とを含む。 Moreover, the copper clad laminated board which concerns on embodiment of this invention contains the resin base material joined on the surface treatment layer of the said silane compound of the said surface treatment copper foil and the said surface treatment copper foil.
 本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。
 また、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。
According to the embodiment of the present invention, it is possible to provide a surface-treated copper foil capable of enhancing the adhesion with a resin base material, particularly a resin base material suitable for high frequency applications.
Moreover, according to embodiment of this invention, the copper clad laminated board excellent in the adhesiveness between a resin base material, especially the resin base material suitable for a high frequency use, and surface-treated copper foil can be provided.
実施例1及び比較例1~2で得られた表面処理銅箔のシラン化合物の表面処理層におけるTOF-SIMSのスペクトル(質量数(m/z)が240~260の範囲)である。FIG. 2 is a TOF-SIMS spectrum (mass number (m / z) is in the range of 240 to 260) in the surface treatment layer of the silane compound of the surface-treated copper foil obtained in Example 1 and Comparative Examples 1 and 2. FIG. 実施例1及び比較例1~2で得られた表面処理銅箔のシラン化合物の表面処理層におけるTOF-SIMSのスペクトル(質量数(m/z)が260~263.5の範囲)である。FIG. 3 is a TOF-SIMS spectrum (mass number (m / z) is in the range of 260 to 263.5) in the surface treatment layer of the silane compound of the surface-treated copper foil obtained in Example 1 and Comparative Examples 1 and 2. FIG.
 以下、本発明の実施形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。各実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, embodiments of the present invention will be specifically described. However, the present invention should not be construed as being limited thereto, and various modifications can be made based on the knowledge of those skilled in the art without departing from the gist of the present invention. Can be changed and improved. A plurality of constituent elements disclosed in each embodiment can form various inventions by an appropriate combination. For example, some constituent elements may be deleted from all the constituent elements shown in each embodiment, or constituent elements of different embodiments may be appropriately combined.
 本発明の実施形態に係る表面処理銅箔は、シラン化合物の表面処理層を銅箔表面上に有する。
 ここで、本明細書において「シラン化合物の表面処理層」とは、シラン化合物から形成される皮膜のことを意味する。また、「銅箔」とは、銅箔だけでなく銅合金箔を含む。
The surface-treated copper foil which concerns on embodiment of this invention has the surface treatment layer of a silane compound on the copper foil surface.
In this specification, the “surface treatment layer of a silane compound” means a film formed from a silane compound. The “copper foil” includes not only copper foil but also copper alloy foil.
 本発明の実施形態に係る表面処理銅箔は、シラン化合物の表面処理層をTOF-SIMS(飛行時間型二次イオン質量分析法)によって測定した際に、240.9~241.1、241.9~242.1、242.9~243.1、243.9~244.1、244.9~245.1、260.9~261.1、261.9~262.1及び262.9~263.1からなる群から選択される少なくとも1つの質量数(m/z)の位置にピークが検出される。詳細な理由は明らかではないが、このような質量数の位置にピークが検出されるシラン化合物の表面処理層であれば、樹脂基材に対する表面処理銅箔の接着性を向上させることができる。 When the surface treatment layer of the silane compound is measured by TOF-SIMS (time-of-flight secondary ion mass spectrometry), the surface-treated copper foil according to the embodiment of the present invention is 240.9 to 241.1, 241. 9 to 242.1, 242.9 to 243.1, 243.9 to 244.1, 244.9 to 245.1, 260.9 to 261.1, 261.9 to 262.1, and 262.9 to A peak is detected at the position of at least one mass number (m / z) selected from the group consisting of 263.1. Although the detailed reason is not clear, if it is a surface treatment layer of such a silane compound in which a peak is detected at the position of mass number, the adhesion of the surface-treated copper foil to the resin substrate can be improved.
 また、240.9~241.1の質量数は、好ましくは241.03であり、241.9~242.1の質量数は、好ましくは242.03であり、242.9~243.1の質量数は、好ましくは243.03であり、243.9~244.1の質量数は、好ましくは244.05であり、244.9~245.1の質量数は、好ましくは245.05であり、260.9~261.1の質量数は、好ましくは261.01であり、261.9~262.1の質量数は、好ましくは262.01であり、262.9~263.1の質量数は、好ましくは263.03である。 The mass number of 240.9 to 241.1 is preferably 241.03, and the mass number of 241.9 to 242.1 is preferably 242.03, and 242.9 to 243.1. The mass number is preferably 243.03, the mass number of 243.9 to 244.1 is preferably 244.05, and the mass number of 244.9 to 245.1 is preferably 245.05. The mass number of 260.9 to 261.1 is preferably 261.01, the mass number of 261.9 to 262.1 is preferably 262.01, and 262.9 to 263.1. The mass number is preferably 263.03.
 シラン化合物としては、シラン化合物の表面処理層をTOF-SIMSによって測定した際に、上記の質量数の位置にピークが検出されるものであれば特に限定されない。典型的には、シラン化合物は、反応性官能基と加水分解性基とを有する。
 ここで、本明細書において「反応性官能基」とは、樹脂基材と化学的な相互作用(例えば、ファンデルワールス力による相互作用、クーロン力による相互作用が挙げられるが、これらに限定されない)を発揮し得る反応基を意味する。また、「加水分解性基」とは、水分によって加水分解され、銅箔と化学結合し得る反応基を意味する。
The silane compound is not particularly limited as long as a peak is detected at the position of the above mass number when the surface treatment layer of the silane compound is measured by TOF-SIMS. Typically, the silane compound has a reactive functional group and a hydrolyzable group.
Here, in the present specification, the “reactive functional group” refers to a chemical interaction with a resin substrate (for example, an interaction by van der Waals force, an interaction by Coulomb force, but is not limited thereto). ) Means a reactive group capable of exhibiting The “hydrolyzable group” means a reactive group that can be hydrolyzed by moisture and chemically bonded to the copper foil.
 シラン化合物の反応性官能基としては、特に限定されないが、樹脂基材に対する接着性の観点から、アミノ基、(メタ)アクリル基、チオール基(メルカプト基)及びエポキシ基から選択される少なくとも1種を末端に有することが好ましい。なお、「(メタ)アクリル基」とは、アクリル基及びメタクリル基の両方を意味する。
 シラン化合物の加水分解性基としては、特に限定されないが、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基;アシロキシ基などが挙げられる。その中でも、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基は、樹脂基材と表面処理銅箔との間の接着性を高める効果が高いため好ましい。
Although it does not specifically limit as a reactive functional group of a silane compound, From an adhesive viewpoint with respect to a resin base material, at least 1 sort (s) selected from an amino group, a (meth) acryl group, a thiol group (mercapto group), and an epoxy group. At the end. The “(meth) acryl group” means both an acryl group and a methacryl group.
Although it does not specifically limit as a hydrolysable group of a silane compound, Alkoxy groups, such as a methoxy group, an ethoxy group, a propoxy group; An acyloxy group etc. are mentioned. Among these, alkoxy groups such as a methoxy group, an ethoxy group, and a propoxy group are preferable because they have a high effect of improving the adhesion between the resin base material and the surface-treated copper foil.
 シラン化合物は、公知の方法によって製造することができるが、市販品を用いてもよい。シラン化合物として利用可能な市販品の例としては、信越化学工業株式会社製のKBMシリーズ、KBEシリーズなどが挙げられる。ただし、市販のシラン化合物を単独で用いる場合、シラン化合物の表面処理層をTOF-SIMSによって測定した際に、上記の質量数の位置にピークが検出され難い。そのため、市販のシラン化合物を用いる場合は、2種以上のシラン化合物の混合物とすることが好ましい。その中でも好ましいシラン化合物の混合物は、KBM603(N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)とKBM503(3-メタクリロキシプロピルトリメトキシシラン)との混合物、KBM602(N-2-(アミノエチル)-3-アミノプロピルジメトキシシラン)とKBM503(3-メタクリロキシプロピルトリメトキシシラン)との混合物、KBM603(N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)とKBE503(3-メタクリロキシプロピルトリエトキシシラン)との混合物、KBM602(N-2-(アミノエチル)-3-アミノプロピルジメトキシシラン)とKBE503(3-メタクリロキシプロピルトリエトキシシラン)との混合物、KBM903(3-アミノプロピルトリメトキシシラン)とKBM503(3-メタクリロキシプロピルトリメトキシシラン)との混合物、KBE903(3-アミノトリエトキシシラン)とKBM503(3-メタクリロキシプロピルトリメトキシシラン)との混合物、KBE903(3-アミノトリエトキシシラン)とKBE503(3-メタクリロキシプロピルトリエトキシシラン)との混合物、KBM903(3-アミノプロピルトリメトキシシラン)とKBE503(3-メタクリロキシプロピルトリエトキシシラン)との混合物である。
 2種以上のシラン化合物の混合物とする場合、その混合比率は、特に限定されず、使用するシラン化合物の種類に応じて適宜調整すればよい。
Although a silane compound can be manufactured by a well-known method, you may use a commercial item. Examples of commercially available products that can be used as the silane compound include KBM series and KBE series manufactured by Shin-Etsu Chemical Co., Ltd. However, when a commercially available silane compound is used alone, when the surface treatment layer of the silane compound is measured by TOF-SIMS, a peak is hardly detected at the position of the above mass number. Therefore, when using a commercially available silane compound, it is preferable to use a mixture of two or more silane compounds. Among them, a preferable mixture of silane compounds is a mixture of KBM603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBM602 (N-2- A mixture of (aminoethyl) -3-aminopropyldimethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBM603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) and KBE503 ( A mixture of 3-methacryloxypropyltriethoxysilane), KBM602 (N-2- (aminoethyl) -3-aminopropyldimethoxysilane) and KBE503 (3-methacryloxypropyltriethoxysilane), KBM903 (3 -A Nopropyltrimethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBE903 (3-aminotriethoxysilane) and KBM503 (3-methacryloxypropyltrimethoxysilane), KBE903 (3 -Aminotriethoxysilane) and KBE503 (3-methacryloxypropyltriethoxysilane), KBM903 (3-aminopropyltrimethoxysilane) and KBE503 (3-methacryloxypropyltriethoxysilane).
When the mixture of two or more silane compounds is used, the mixing ratio is not particularly limited, and may be appropriately adjusted according to the type of the silane compound to be used.
 シラン化合物の表面処理層の表面粗さは、特に限定されないが、十点平均粗さRzが好ましくは0.1~2.0μm、より好ましくは0.50~1.0μmである。また、その算術平均粗さRaは、好ましくは0.01~0.30、より好ましくは0.05~0.16である。シラン化合物の表面処理層の表面粗さを上記範囲に制御することにより、従来の樹脂基材、特に、銅箔と接着し難い高周波用途に好適な樹脂基材に対する接着性を向上させることができる。
 ここで、本明細書において「十点平均粗さRz」及び「算術平均粗さRa」とは、JIS B0601:1982に準拠して測定されるものを意味する。
The surface roughness of the surface treatment layer of the silane compound is not particularly limited, but the ten-point average roughness Rz is preferably 0.1 to 2.0 μm, more preferably 0.50 to 1.0 μm. The arithmetic average roughness Ra is preferably 0.01 to 0.30, more preferably 0.05 to 0.16. By controlling the surface roughness of the surface treatment layer of the silane compound within the above range, it is possible to improve adhesion to conventional resin base materials, particularly resin base materials suitable for high-frequency applications that are difficult to adhere to copper foil. .
Here, in this specification, “ten-point average roughness Rz” and “arithmetic average roughness Ra” mean those measured in accordance with JIS B0601: 1982.
 銅箔としては、特に限定されず、圧延銅箔又は電解銅箔を用いることができる。その中でも圧延銅箔は、表面粗さが小さく、導体損失を低減させることができるため好ましい。また、銅箔は、キャリアと、キャリア上に積層された中間層と、中間層上に積層された銅箔とを備えたキャリア付き銅箔であってもよい。キャリア及び中間層としては、特に限定されず、公知のものを用いることができる。
 銅箔の表面には、樹脂基材との接着性を高めるなどの観点から、粗化処理を施すことによって粗化処理層を形成してもよい。ここで、本明細書において「粗化処理層」とは、銅箔上に電着した粗化粒子の層を意味する。
 粗化粒子としては、特に限定されず、粗化処理に一般的に用いられる銅、ニッケル、リン、タングステン、ヒ素、モリブデン、クロム、コバルト、亜鉛、又はそれらの1種以上を含む合金から形成された微粒子が挙げられる。
 ただし、銅箔表面に電着した粗化粒子は、表皮効果によって導体損失を増大させると共に、粉落ちと称される粗化粒子が剥がれ落ちる現象を引き起こす原因となり得るため、必要に応じて銅箔表面に電着させる粗化粒子を小さく若しくは少なくするか、又は粗化処理を行わない態様としてもよい。
It does not specifically limit as copper foil, A rolled copper foil or an electrolytic copper foil can be used. Among them, the rolled copper foil is preferable because the surface roughness is small and the conductor loss can be reduced. Moreover, copper foil with a carrier provided with the carrier, the intermediate | middle layer laminated | stacked on the carrier, and the copper foil laminated | stacked on the intermediate | middle layer may be sufficient as copper foil. The carrier and the intermediate layer are not particularly limited, and known ones can be used.
A roughening treatment layer may be formed on the surface of the copper foil by subjecting it to a roughening treatment from the viewpoint of enhancing the adhesion to the resin base material. Here, the “roughening treatment layer” in this specification means a layer of roughening particles electrodeposited on a copper foil.
The roughened particles are not particularly limited, and are formed from copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, zinc, or an alloy containing one or more of them, which is generally used for the roughening treatment. Fine particles.
However, the roughened particles electrodeposited on the surface of the copper foil increase the conductor loss due to the skin effect, and can cause the phenomenon that the roughened particles called powder fall off, so the copper foil can be used as necessary. It is good also as an aspect which makes the roughening particle | grains electrodeposited on the surface small or few, or does not perform a roughening process.
 銅箔とシラン化合物の表面処理層との間には、各種特性を向上させる観点から、耐熱処理層、防錆処理層及びクロメート処理層からなる群から選択される1種以上の層を設けてもよい。これらの層は、単層であってもよいが、複数層であってもかまわない。 Between the copper foil and the surface treatment layer of the silane compound, one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer and a chromate treatment layer are provided from the viewpoint of improving various properties. Also good. These layers may be a single layer or a plurality of layers.
 上記の特性を備えるシラン化合物の表面処理層を銅箔表面上に有する表面処理銅箔は、シラン化合物を含む溶液を調製した後、この溶液を用いて銅箔を表面処理することによって製造することができる。
 シラン化合物を含む溶液は、シラン化合物以外に水などの溶媒を含むことができる。溶液中のシラン化合物の濃度としては、特に限定されないが、溶液中のシラン化合物のシラン濃度が0.5体積%~10体積%となるようにすることが好ましい。また、溶液中の溶媒に対する溶解性などの観点からは、溶液中のシラン化合物全体のシラン濃度は、好ましくは0.1体積%~5.0体積%である。
 シラン化合物を含む溶液は、例えば、シラン化合物を溶媒に加えて混合することによって調製することができる。
A surface-treated copper foil having a surface-treated layer of a silane compound having the above characteristics on the surface of the copper foil is manufactured by preparing a solution containing the silane compound and then surface-treating the copper foil using this solution. Can do.
The solution containing a silane compound can contain a solvent such as water in addition to the silane compound. The concentration of the silane compound in the solution is not particularly limited, but it is preferable that the silane concentration of the silane compound in the solution is 0.5 volume% to 10 volume%. From the viewpoint of solubility in a solvent in the solution, the silane concentration of the entire silane compound in the solution is preferably 0.1% to 5.0% by volume.
The solution containing the silane compound can be prepared, for example, by adding the silane compound to a solvent and mixing.
 表面処理の条件は、使用するシラン化合物の種類に応じて適宜調整すればよい。具体的には、溶液の温度を10℃~30℃、溶液のpHを1~12、処理時間を1秒~5秒、乾燥温度を100℃~150℃、乾燥時間を10秒~300秒として表面処理を行えばよい。また、溶液のpHは、特に中性付近、すなわち3~10とすることが好ましい。シラン化合物がアミノ基を含む場合、溶液のpHを6~12とすることが好ましい。 The surface treatment conditions may be appropriately adjusted according to the type of silane compound used. Specifically, the temperature of the solution is 10 to 30 ° C., the pH of the solution is 1 to 12, the treatment time is 1 to 5 seconds, the drying temperature is 100 to 150 ° C., and the drying time is 10 to 300 seconds. A surface treatment may be performed. The pH of the solution is particularly preferably around neutral, that is, 3 to 10. When the silane compound contains an amino group, the pH of the solution is preferably 6-12.
 表面処理の方法としては、特に限定されないが、塗布法、浸漬法などの公知の方法を用いることができる。特に、塗布法を用いる場合、シャワー、スプレーなどの塗布手段を変更したり、塗布回数を調整したりすることにより、シラン化合物の付着量を制御することができる。また、シラン化合物を含む溶液中のシラン化合物の濃度を調整することによっても、シラン化合物の付着量を制御することが可能である。 The surface treatment method is not particularly limited, and a known method such as a coating method or a dipping method can be used. In particular, when the coating method is used, the adhesion amount of the silane compound can be controlled by changing the coating means such as showering and spraying or adjusting the number of coatings. It is also possible to control the adhesion amount of the silane compound by adjusting the concentration of the silane compound in the solution containing the silane compound.
 表面処理を行う前に銅箔表面に粗化処理を施す場合、電気めっき法を用いることができる。粗化粒子の銅箔表面に対する電着量は、主として電流密度及び電着時間を調整することによって制御することができる。粗化粒子の電着量は、主として表面処理銅箔の表面粗さに影響する。
 粗化処理としては、例えば、以下の粗化処理方法(1)や粗化処理方法(2)を用いることができる。
 <粗化処理方法(1)>
  液組成:銅10~20g/L、ニッケル7~10g/L、コバルト7~10g/L
  液温:30~60℃
  電流密度:1~50A/dm2
  pH:2.0~3.0
  電着時間:0.12~1.15秒
  粗化処理によって付着する1dm2当たりの各金属量は、銅15~40mg、ニッケル100~1500μg、コバルト700~2500μgが好ましい。
When a roughening treatment is performed on the surface of the copper foil before the surface treatment, an electroplating method can be used. The amount of electrodeposition of the roughened particles on the copper foil surface can be controlled mainly by adjusting the current density and the electrodeposition time. The amount of electrodeposition of the roughened particles mainly affects the surface roughness of the surface-treated copper foil.
As the roughening treatment, for example, the following roughening treatment method (1) or roughening treatment method (2) can be used.
<Roughening treatment method (1)>
Liquid composition: copper 10-20 g / L, nickel 7-10 g / L, cobalt 7-10 g / L
Liquid temperature: 30-60 ° C
Current density: 1 to 50 A / dm 2
pH: 2.0 to 3.0
Electrodeposition time: 0.12 to 1.15 seconds The amount of each metal per 1 dm 2 deposited by the roughening treatment is preferably 15 to 40 mg of copper, 100 to 1500 μg of nickel, and 700 to 2500 μg of cobalt.
 <粗化処理方法(2)>
  1次粒子めっき(1)
   液組成:銅10~15g/L、ニッケル0~10g/L、コバルト0~20g/L、硫酸10~60g/L
   液温:20~40℃
   電流密度:10~50A/dm2
   電着時間:0.2~5秒
  1次粒子めっき(2)
   液組成:銅10~30g/L、硫酸70~120g/L
   液温:30~50℃
   電流密度:3~30A/dm2
   電着時間:0.2~5秒
  2次粒子めっき
   液組成:銅10~20g/L、ニッケル0~15g/L、コバルト0~10g/L
   液温:30~40℃
   電流密度:10~35A/dm2
   電着時間:0.2~5秒
<Roughening treatment method (2)>
Primary particle plating (1)
Liquid composition: copper 10-15 g / L, nickel 0-10 g / L, cobalt 0-20 g / L, sulfuric acid 10-60 g / L
Liquid temperature: 20-40 ° C
Current density: 10 to 50 A / dm 2
Electrodeposition time: 0.2-5 seconds Primary particle plating (2)
Liquid composition: copper 10-30 g / L, sulfuric acid 70-120 g / L
Liquid temperature: 30-50 ° C
Current density: 3 to 30 A / dm 2
Electrodeposition time: 0.2 to 5 seconds Secondary particle plating Liquid composition: Copper 10 to 20 g / L, nickel 0 to 15 g / L, cobalt 0 to 10 g / L
Liquid temperature: 30-40 ° C
Current density: 10 to 35 A / dm 2
Electrodeposition time: 0.2-5 seconds
 銅箔とシラン化合物の表面処理層との間に耐熱処理層、防錆処理層又はクロメート処理層を設ける場合、シラン化合物の表面処理を行う前に、耐熱処理、防錆処理又はクロメート処理を銅箔表面に行えばよい。これらの処理方法としては、特に限定されず、公知の方法に準じて行うことができる。 When providing a heat-resistant, anti-rust or chromate treatment layer between the copper foil and the surface treatment layer of the silane compound, the heat treatment, anti-rust treatment or chromate treatment should be applied before the surface treatment of the silane compound. What is necessary is just to go to the foil surface. These treatment methods are not particularly limited, and can be performed according to known methods.
 上記のようにして製造される表面処理銅箔は、TOF-SIMSによって測定した際に特定の位置(質量数:m/z)にピークが検出されるシラン化合物の表面処理層を有しているため、シラン化合物の表面処理層と樹脂基材との間の接着性が高い。特に、この表面処理銅箔は、粗化処理で銅箔表面に電着させた粗化粒子が少ない場合又は粗化処理を行わない場合であっても、樹脂基材に対する接着性を高めることができる。したがって、この表面処理銅箔は、従来の樹脂基材のみならず、従来の樹脂基材よりも銅箔と接着し難い高周波用途に好適な樹脂基材(液晶ポリマー、低誘電ポリイミドなどの低誘電材料から形成された樹脂基材)などに接合するためにも用いることができる。 The surface-treated copper foil produced as described above has a surface treatment layer of a silane compound in which a peak is detected at a specific position (mass number: m / z) when measured by TOF-SIMS. Therefore, the adhesiveness between the surface treatment layer of the silane compound and the resin base material is high. In particular, this surface-treated copper foil can improve the adhesion to the resin substrate even when there are few roughened particles electrodeposited on the copper foil surface by the roughening treatment or when the roughening treatment is not performed. it can. Therefore, this surface-treated copper foil is suitable not only for conventional resin base materials but also for resin base materials suitable for high frequency applications that are harder to adhere to copper foil than conventional resin base materials (liquid crystal polymers, low dielectric materials such as low dielectric polyimides). It can also be used for bonding to a resin base material formed from a material.
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔と、表面処理銅箔のシラン化合物の表面処理層上に接合された樹脂基材とを含む。樹脂基材としては、低誘電材料から形成された樹脂基材であることが好ましい。
 ここで、本明細書において「低誘電」とは、誘電正接(1GHz)が0.01以下であることを意味する。
 低誘電材料としては、特に限定されないが、液晶ポリマー(LCP)、低誘電ポリイミド、低誘電エポキシ樹脂、フッ素樹脂、ポリフェニレンエーテル樹脂などが挙げられる。
 ここで、本明細書において「液晶ポリマー」とは、液相で光学的な異方性を示す芳香族ポリエステルを意味する。液晶ポリマーは、一般に市販されており、例えば、クラレ株式会社製のVecstar(登録商標)シリーズなどを用いることができる。
 また、本明細書において「低誘電ポリイミド」とは、例えば、比誘電率(1GHz)が3.3以下、誘電正接(1GHz)が0.005以下のポリイミドを意味する。低誘電ポリイミドは、一般に市販されており、例えば、宇部興産株式会社製のUワニス、ユーピレックス(登録商標)などを用いることができる。
 フッ素樹脂としては、例えば、PTFEなどが挙げられる。
 ポリフェニレンエーテル樹脂は、ポリスチレンなどの他の樹脂とのコンパウンドも含む。
A copper clad laminate according to an embodiment of the present invention includes the above-described surface-treated copper foil and a resin base material bonded onto the surface-treated layer of the silane compound of the surface-treated copper foil. The resin base material is preferably a resin base material formed from a low dielectric material.
Here, “low dielectric” in this specification means that the dielectric loss tangent (1 GHz) is 0.01 or less.
Examples of the low dielectric material include, but are not limited to, liquid crystal polymer (LCP), low dielectric polyimide, low dielectric epoxy resin, fluorine resin, polyphenylene ether resin, and the like.
As used herein, “liquid crystal polymer” means an aromatic polyester that exhibits optical anisotropy in the liquid phase. The liquid crystal polymer is generally commercially available, and for example, Vecstar (registered trademark) series manufactured by Kuraray Co., Ltd. can be used.
In the present specification, “low dielectric polyimide” means, for example, a polyimide having a relative dielectric constant (1 GHz) of 3.3 or less and a dielectric loss tangent (1 GHz) of 0.005 or less. The low dielectric polyimide is generally commercially available, and for example, U varnish, Upilex (registered trademark) manufactured by Ube Industries, Ltd. can be used.
Examples of the fluororesin include PTFE.
Polyphenylene ether resins also include compounds with other resins such as polystyrene.
 上記のような構成を有する銅張積層板は、表面処理銅箔のシラン化合物の表面処理層上に樹脂基材を配置した後、表面処理銅箔と樹脂基材との間を加圧して接合することによって製造することができる。
 加圧力としては、特に限定されず、使用する表面処理銅箔及び樹脂基材の種類に応じて適宜設定すればよい。
The copper clad laminate having the above-described configuration is formed by placing a resin base material on the surface treatment layer of the silane compound of the surface-treated copper foil, and then applying pressure between the surface-treated copper foil and the resin base material. Can be manufactured.
The applied pressure is not particularly limited, and may be appropriately set according to the type of the surface-treated copper foil and the resin base material to be used.
 上記のようにして製造される銅張積層板は、TOF-SIMSによって測定した際に特定の位置(質量数:m/z)にピークが検出されるシラン化合物の表面処理層を有する表面処理銅箔を備えているため、表面処理銅箔と樹脂基材との間の接着性に優れている。したがって、この銅張積層板は、フレキシブル配線板、リジッド配線板、シールド材、RF-ID、面状発熱体、放熱体などの用途に用いるのに適している。 The copper clad laminate produced as described above is a surface-treated copper having a surface-treated layer of a silane compound in which a peak is detected at a specific position (mass number: m / z) when measured by TOF-SIMS. Since the foil is provided, the adhesiveness between the surface-treated copper foil and the resin base material is excellent. Therefore, this copper-clad laminate is suitable for use in applications such as flexible wiring boards, rigid wiring boards, shield materials, RF-IDs, planar heating elements, and radiators.
 以下、実施例により本発明の実施形態に係る表面処理銅箔及び銅張積層板を詳細に説明するが、これらによって本発明の実施形態に係る表面処理銅箔及び銅張積層板が限定されるものではない。
 各実施例及び比較例で使用したシラン化合物は以下の通りである。
 ・KBM603(信越化学工業株式会社製,N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)
 ・KBM503(信越化学工業株式会社製,3-メタクリロキシプロピルトリメトキシシラン)
Hereinafter, the surface-treated copper foil and the copper-clad laminate according to the embodiment of the present invention will be described in detail by way of examples, but these limit the surface-treated copper foil and the copper-clad laminate according to the embodiment of the present invention. It is not a thing.
The silane compounds used in each example and comparative example are as follows.
・ KBM603 (Shin-Etsu Chemical Co., Ltd., N-2- (aminoethyl) -3-aminopropyltrimethoxysilane)
・ KBM503 (Shin-Etsu Chemical Co., Ltd., 3-methacryloxypropyltrimethoxysilane)
(実施例1)
 厚さ12μmの圧延銅箔(JX金属株式会社製BHZ-Z-HA-V2)に対し、上述した粗化処理方法(2)に準じ、以下の条件で粗化処理して粗化処理層を形成した。
 <1次粒子めっき(1)>
  液組成:銅11g/L、硫酸52g/L
  液温:22℃
  電流密度:40A/dm2
  電着時間:1秒
 <1次粒子めっき(2)>
   液組成:銅19g/L、硫酸101g/L
   液温:42℃
   電流密度:4A/dm2
   電着時間:3秒
 <2次粒子めっき>
   液組成:銅15g/L、ニッケル10g/L、コバルト7g/L
   液温:37℃
   電流密度:30A/dm2
   電着時間:1秒
Example 1
In accordance with the roughening method (2) described above, a roughened layer is obtained by subjecting a rolled copper foil of 12 μm thickness (BHZ-Z-HA-V2 manufactured by JX Metals Co., Ltd.) to the following conditions. Formed.
<Primary particle plating (1)>
Liquid composition: copper 11g / L, sulfuric acid 52g / L
Liquid temperature: 22 ° C
Current density: 40 A / dm 2
Electrodeposition time: 1 second <Primary particle plating (2)>
Liquid composition: copper 19g / L, sulfuric acid 101g / L
Liquid temperature: 42 ° C
Current density: 4 A / dm 2
Electrodeposition time: 3 seconds <Secondary particle plating>
Liquid composition: copper 15g / L, nickel 10g / L, cobalt 7g / L
Liquid temperature: 37 ° C
Current density: 30 A / dm 2
Electrodeposition time: 1 second
 次に、粗化処理層上に耐熱処理層及びクロメート層を順次形成した後、シラン化合物を含む溶液を用い、下記の条件で表面処理してシラン化合物の表面処理層を形成することにより、表面処理銅箔を得た。
 シラン化合物:KBM603及びKBM503の混合物(KBM603とKBM503との体積比が75:25)
 溶液中のシラン化合物の濃度:1体積%
 溶液の温度:20℃
 溶液のpH:4.5
 処理時間:3秒
 塗布回数:1回
 乾燥温度:110℃
 乾燥時間:30秒
Next, after sequentially forming a heat-resistant treatment layer and a chromate layer on the roughening treatment layer, a surface treatment layer is formed using a solution containing a silane compound under the following conditions to form a surface treatment layer of the silane compound. A treated copper foil was obtained.
Silane compound: A mixture of KBM603 and KBM503 (volume ratio of KBM603 to KBM503 is 75:25)
Concentration of silane compound in solution: 1% by volume
Solution temperature: 20 ° C
Solution pH: 4.5
Processing time: 3 seconds Application frequency: 1 time Drying temperature: 110 ° C
Drying time: 30 seconds
 次に、上記で得られた表面処理銅箔のシラン化合物の表面処理層上に、厚さ50μmの液晶ポリマー(クラレ株式会社製Vecstar(登録商標)CT-Z)からなる樹脂基材を配置した後、加圧して接合することによって銅張積層板を得た。このとき、加圧力は4MPaに設定した。 Next, on the surface-treated layer of the silane compound of the surface-treated copper foil obtained above, a resin substrate made of a liquid crystal polymer (Vecstar (registered trademark) CT-Z manufactured by Kuraray Co., Ltd.) having a thickness of 50 μm was disposed. Then, the copper clad laminated board was obtained by pressurizing and joining. At this time, the applied pressure was set to 4 MPa.
(比較例1)
 シラン化合物としてKBM603を用い、溶液中のシラン化合物の濃度を4体積%、溶液のpHを11に変更したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
(比較例2)
 シラン化合物としてKBM503を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
(Comparative Example 1)
A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM603 was used as the silane compound, the concentration of the silane compound in the solution was changed to 4% by volume, and the pH of the solution was changed to 11.
(Comparative Example 2)
A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM503 was used as the silane compound.
 上記の実施例及び比較例で得られた表面処理銅箔について、シラン化合物の表面処理層のTOF-SIMS分析を行った。分析条件を以下に示す。
 装置:Ion-tof社製TOF-SIMS 4S
 一次イオン種:Bi3+
 測定モード:positive
 測定面積:200μm×200μm
 中和銃使用:無
The surface-treated copper foils obtained in the above examples and comparative examples were subjected to TOF-SIMS analysis of the silane compound surface treatment layer. The analysis conditions are shown below.
Equipment: Ion-tof TOF-SIMS 4S
Primary ion species: Bi 3+
Measurement mode: positive
Measurement area: 200 μm × 200 μm
Neutralizing gun used: None
 TOF-SIMS分析の結果を図1及び2に示す。図1は、質量数(m/z)が240~260の範囲におけるTOF-SIMSのスペクトルであり、図2は、質量数(m/z)が260~263.5の範囲におけるTOF-SIMSのスペクトルである。
 図1及び2に示すように、実施例1では、質量数(m/z)が240.9~241.1の位置A、241.9~242.1の位置B、242.9~243.1の位置C、243.9~244.1の位置D、244.9~245.1の位置E、260.9~261.1の位置F、261.9~262.1の位置G及び262.9~263.1の位置Hにピークが検出された。より具体的には、実施例1では、質量数(m/z)が241.03、242.03、243.03、244.05、245.05、261.01、262.01及び263.03の位置にピークが検出された。これに対して比較例1及び2では、位置A~Hのいずれにもピークが検出されなかった。
The results of TOF-SIMS analysis are shown in FIGS. FIG. 1 shows a spectrum of TOF-SIMS in the range of mass number (m / z) from 240 to 260. FIG. 2 shows a spectrum of TOF-SIMS in the range of mass number (m / z) from 260 to 263.5. It is a spectrum.
As shown in FIGS. 1 and 2, in Example 1, the mass number (m / z) is position A at 240.9 to 241.1, position B at 241.9 to 242.1, 242.9 to 243. 1 position C, 243.9 to 244.1 position D, 244.9 to 245.1 position E, 260.9 to 261.1 position F, 261.9 to 262.1 positions G and 262 A peak was detected at position H between .9 and 263.1. More specifically, in Example 1, the mass numbers (m / z) are 241.03, 242.03, 243.03, 244.05, 245.05, 261.01, 262.01, and 263.03. A peak was detected at the position of. In contrast, in Comparative Examples 1 and 2, no peak was detected at any of the positions A to H.
 次に、上記の実施例及び比較例で得られた表面処理銅箔について、シラン化合物の表面処理層の十点平均粗さRz及び算術平均粗さRaを測定した。その結果を表1に示す。
 シラン化合物の表面処理層の十点平均粗さRz及び算術平均粗さRaは、株式会社小坂研究所製の接触粗さ計Surfcorder SE-600を用い、JIS B0601:1982に準拠して測定した。この測定では、測定基準長さを0.8mm、評価長さを4mm、カットオフ値を0.25mm、送り速さを0.1mm/秒とし、表面処理銅箔の幅方向に測定位置を変えて10回行い、10回の測定値の平均値を評価結果とした。
Next, the 10-point average roughness Rz and arithmetic average roughness Ra of the surface treatment layer of the silane compound were measured for the surface-treated copper foils obtained in the above Examples and Comparative Examples. The results are shown in Table 1.
The ten-point average roughness Rz and arithmetic average roughness Ra of the surface treatment layer of the silane compound were measured according to JIS B0601: 1982 using a contact roughness meter Surfcoder SE-600 manufactured by Kosaka Laboratory. In this measurement, the measurement reference length is 0.8 mm, the evaluation length is 4 mm, the cutoff value is 0.25 mm, the feeding speed is 0.1 mm / second, and the measurement position is changed in the width direction of the surface-treated copper foil. 10 times, and the average of the 10 measurements was taken as the evaluation result.
 次に、上記の実施例及び比較例で得られた銅張積層板について90度ピール強度を測定した。その結果を表1に示す。
 90度ピール強度の測定は、JIS C6471:1995に準拠して行った。具体的には、導体(表面処理銅箔)幅を3mmとし、90度の角度で50mm/分の速度で樹脂基材と表面処理銅箔との間を引き剥がしたときの強度を測定した。測定は2回行い、その平均値を90度ピール強度の結果とした。
Next, 90 degree peel strength was measured about the copper clad laminated board obtained by said Example and comparative example. The results are shown in Table 1.
The 90 degree peel strength was measured in accordance with JIS C6471: 1995. Specifically, the strength when the conductor (surface-treated copper foil) width was 3 mm and the resin substrate and the surface-treated copper foil were peeled at a speed of 50 mm / min at an angle of 90 degrees was measured. The measurement was performed twice, and the average value was taken as the result of 90 degree peel strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1は、比較例1及び2に比べて、90度ピール強度が高く、シラン化合物の表面処理層と樹脂基材との間の接着性が高いことがわかった。 As shown in Table 1, it can be seen that Example 1 has a 90 degree peel strength higher than that of Comparative Examples 1 and 2, and has high adhesion between the surface treatment layer of the silane compound and the resin substrate. It was.
 以上の結果からわかるように、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。また、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。 As can be seen from the above results, according to the embodiment of the present invention, it is possible to provide a surface-treated copper foil capable of improving the adhesion with a resin substrate, particularly a resin substrate suitable for high frequency applications. . Moreover, according to embodiment of this invention, the copper clad laminated board excellent in the adhesiveness between a resin base material, especially the resin base material suitable for a high frequency use, and surface-treated copper foil can be provided.
 本発明の実施形態に係る表面処理銅箔は、樹脂基板との接着性が高いシラン化合物の表面処理層を有するため、銅張積層板の製造に利用することができる。また、本発明の実施形態に係る銅張積層板は、樹脂基材と表面処理銅箔との間の接着性に優れているため、フレキシブル配線板、リジッド配線板、シールド材、RF-ID、面状発熱体、放熱体などの用途に利用することができる。 Since the surface-treated copper foil according to the embodiment of the present invention has a surface-treated layer of a silane compound that has high adhesion to the resin substrate, it can be used for the production of a copper-clad laminate. In addition, the copper-clad laminate according to the embodiment of the present invention is excellent in adhesion between the resin base material and the surface-treated copper foil. Therefore, the flexible wiring board, the rigid wiring board, the shield material, the RF-ID, It can be used for applications such as planar heating elements and radiators.

Claims (12)

  1.  シラン化合物の表面処理層を銅箔表面上に有する表面処理銅箔であって、
     前記シラン化合物の表面処理層をTOF-SIMSによって測定した際に、240.9~241.1、241.9~242.1、242.9~243.1、243.9~244.1、244.9~245.1、260.9~261.1、261.9~262.1及び262.9~263.1からなる群から選択される少なくとも1つの質量数(m/z)の位置にピークが検出される表面処理銅箔。
    A surface-treated copper foil having a surface-treated layer of a silane compound on the surface of the copper foil,
    When the surface treatment layer of the silane compound was measured by TOF-SIMS, 240.9 to 241.1, 241.9 to 242.1, 242.9 to 243.1, 243.9 to 244.1, 244 .9 to 245.1, 260.9 to 261.1, 261.9 to 262.1, and at least one mass number (m / z) selected from the group consisting of 262.9 to 263.1 Surface-treated copper foil where peaks are detected.
  2.  241.03、242.03、243.03、244.05、245.05、261.01、262.01及び263.03からなる群から選択される少なくとも1つの質量数(m/z)の位置に前記ピークが検出される、請求項1に記載の表面処理銅箔。 Position of at least one mass number (m / z) selected from the group consisting of 241.03, 242.03, 243.03, 244.05, 245.05, 261.01, 262.01, and 263.03 The surface-treated copper foil according to claim 1, wherein the peak is detected.
  3.  240.9~241.1、241.9~242.1、242.9~243.1、243.9~244.1、244.9~245.1、260.9~261.1、261.9~262.1及び262.9~263.1の質量数(m/z)の位置に前記ピークが検出される、請求項1記載の表面処理銅箔。 240.9 to 241.1, 241.9 to 242.1, 242.9 to 243.1, 243.9 to 244.1, 244.9 to 245.1, 260.9 to 261.1, 261. The surface-treated copper foil according to claim 1, wherein the peak is detected at positions of mass numbers (m / z) of 9 to 262.1 and 262.9 to 263.1.
  4.  241.03、242.03、243.03、244.05、245.05、261.01、262.01及び263.03の質量数(m/z)の位置に前記ピークが検出される、請求項3に記載の表面処理銅箔。 The peak is detected at the positions of mass numbers (m / z) of 241.03, 242.03, 243.03, 244.05, 245.05, 261.01, 262.01, and 263.03, Item 4. The surface-treated copper foil according to Item 3.
  5.  前記シラン化合物が、2種以上のシラン化合物の混合物である、請求項1~4のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 4, wherein the silane compound is a mixture of two or more silane compounds.
  6.  前記シラン化合物が、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン及び3-メタクリロキシプロピルトリメトキシシランを含む混合物である、請求項1~5のいずれか一項に記載の表面処理銅箔。 The surface according to any one of claims 1 to 5, wherein the silane compound is a mixture containing N-2- (aminoethyl) -3-aminopropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane. Treated copper foil.
  7.  前記銅箔と前記シラン化合物の表面処理層との間に、耐熱処理層、防錆処理層及びクロメート処理層からなる群から選択される1種以上の層を有する、請求項1~6のいずれか一項に記載の表面処理銅箔。 7. One or more layers selected from the group consisting of a heat-resistant treatment layer, a rust-proof treatment layer, and a chromate treatment layer are provided between the copper foil and the surface treatment layer of the silane compound. The surface-treated copper foil as described in one.
  8.  前記シラン化合物の表面処理層の十点平均粗さRzが0.50~1.0μmである、請求項1~7のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 7, wherein a ten-point average roughness Rz of the surface treatment layer of the silane compound is 0.50 to 1.0 µm.
  9.  樹脂基材に接合される、請求項1~8のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 8, which is bonded to a resin base material.
  10.  請求項1~9のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の前記シラン化合物の表面処理層上に接合された樹脂基材とを含む銅張積層板。 A copper-clad laminate comprising the surface-treated copper foil according to any one of claims 1 to 9 and a resin base material bonded onto the surface-treated layer of the silane compound of the surface-treated copper foil.
  11.  前記樹脂基材が、液晶ポリマー、低誘電ポリイミド、低誘電エポキシ樹脂、フッ素樹脂又はポリフェニレンエーテル樹脂である、請求項10に記載の銅張積層板。 The copper-clad laminate according to claim 10, wherein the resin base material is a liquid crystal polymer, a low dielectric polyimide, a low dielectric epoxy resin, a fluororesin or a polyphenylene ether resin.
  12.  フレキシブル配線板、リジッド配線板、シールド材、RF-ID、面状発熱体又は放熱体に用いられる、請求項10又は11に記載の銅張積層板。 The copper-clad laminate according to claim 10 or 11, which is used for a flexible wiring board, a rigid wiring board, a shield material, RF-ID, a planar heating element or a radiator.
PCT/JP2019/010096 2018-03-29 2019-03-12 Surface-treated copper foil and copper-clad laminate WO2019188262A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980010640.1A CN111655900B (en) 2018-03-29 2019-03-12 Surface-treated copper foil and copper-clad laminate
KR1020207020817A KR102502018B1 (en) 2018-03-29 2019-03-12 Surface treatment copper foil and copper clad laminate
MYPI2020004832A MY194720A (en) 2018-03-29 2019-03-12 Surface treated copper foil and copper clad laminate
PH12020551281A PH12020551281A1 (en) 2018-03-29 2020-08-19 Surface treated copper foil and copper clad laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065668A JP6413039B1 (en) 2018-03-29 2018-03-29 Surface treated copper foil and copper clad laminate
JP2018-065668 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019188262A1 true WO2019188262A1 (en) 2019-10-03

Family

ID=63920543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010096 WO2019188262A1 (en) 2018-03-29 2019-03-12 Surface-treated copper foil and copper-clad laminate

Country Status (7)

Country Link
JP (1) JP6413039B1 (en)
KR (1) KR102502018B1 (en)
CN (1) CN111655900B (en)
MY (1) MY194720A (en)
PH (1) PH12020551281A1 (en)
TW (1) TWI687527B (en)
WO (1) WO2019188262A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715424B (en) 2020-01-22 2021-01-01 長春石油化學股份有限公司 Electrolytic copper foil and electrode and lithium-ion cell comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263790A (en) * 2008-04-04 2009-11-12 Nippon Paint Co Ltd Composition for conditioning copper surface and surface treatment method
JP2016006227A (en) * 2014-05-28 2016-01-14 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil having carrier, laminate, printed wiring board, electronic apparatus, method for manufacturing surface-treated copper foil, and method for manufacturing printed wiring board
JP2017088971A (en) * 2015-11-12 2017-05-25 Jx金属株式会社 Copper foil with carrier, manufacturing method of copper foil with carrier, laminate, manufacturing method of printed wiring board and manufacturing method of electronic device
JP2017122274A (en) * 2016-01-04 2017-07-13 Jx金属株式会社 Surface-treated copper foil
JP6334034B1 (en) * 2017-06-09 2018-05-30 Jx金属株式会社 Surface-treated copper foil, method for producing the same, and copper-clad laminate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030626A1 (en) * 2009-09-11 2011-03-17 Jx日鉱日石金属株式会社 Copper foil for lithium ion battery current collector
JP5885054B2 (en) * 2010-04-06 2016-03-15 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP2012112009A (en) 2010-11-26 2012-06-14 Hitachi Cable Ltd Copper foil, and method for producing copper foil
KR101999422B1 (en) * 2011-03-30 2019-07-11 제이엑스금속주식회사 Copper foil for printed circuit
WO2013147116A1 (en) * 2012-03-29 2013-10-03 Jx日鉱日石金属株式会社 Surface-treated copper foil
WO2014073694A1 (en) * 2012-11-09 2014-05-15 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using same, copper-clad laminate, printed circuit board, and electronic device
KR101852671B1 (en) * 2015-01-21 2018-06-04 제이엑스금속주식회사 Copper foil with carrier, laminate, printed circuit board and method of manufacturing printed circuit board
JP6294862B2 (en) * 2015-12-09 2018-03-14 古河電気工業株式会社 Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
US10806031B2 (en) * 2016-07-22 2020-10-13 Kyocera Corporation Organic insulating body, metal-clad laminate and wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263790A (en) * 2008-04-04 2009-11-12 Nippon Paint Co Ltd Composition for conditioning copper surface and surface treatment method
JP2016006227A (en) * 2014-05-28 2016-01-14 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil having carrier, laminate, printed wiring board, electronic apparatus, method for manufacturing surface-treated copper foil, and method for manufacturing printed wiring board
JP2017088971A (en) * 2015-11-12 2017-05-25 Jx金属株式会社 Copper foil with carrier, manufacturing method of copper foil with carrier, laminate, manufacturing method of printed wiring board and manufacturing method of electronic device
JP2017122274A (en) * 2016-01-04 2017-07-13 Jx金属株式会社 Surface-treated copper foil
JP6334034B1 (en) * 2017-06-09 2018-05-30 Jx金属株式会社 Surface-treated copper foil, method for producing the same, and copper-clad laminate

Also Published As

Publication number Publication date
MY194720A (en) 2022-12-15
KR20200100138A (en) 2020-08-25
CN111655900B (en) 2022-05-13
JP6413039B1 (en) 2018-10-24
KR102502018B1 (en) 2023-02-21
TWI687527B (en) 2020-03-11
JP2019173139A (en) 2019-10-10
CN111655900A (en) 2020-09-11
TW201942369A (en) 2019-11-01
PH12020551281A1 (en) 2021-05-31

Similar Documents

Publication Publication Date Title
JP6149066B2 (en) Surface treated copper foil
JP6190846B2 (en) Surface treated copper foil
TWI645759B (en) Surface-treated copper foil for printed wiring board, copper-clad laminated board for printed wiring board, and printed wiring board
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
WO2019188262A1 (en) Surface-treated copper foil and copper-clad laminate
JP6854114B2 (en) Surface-treated copper foil
TWI668337B (en) Surface treated copper foil and its manufacturing method, and copper clad laminate
JP2019019414A (en) Surface-treated copper foil, laminate and printed wiring board
JP7177956B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN115024029A (en) Electromagnetic wave shielding film
JP2019049017A (en) Surface treated copper foil and copper clad laminate
JP2005064110A (en) Member for electronic component and electronic component using the same
TW202403111A (en) Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
TW202403110A (en) Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207020817

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774989

Country of ref document: EP

Kind code of ref document: A1